Thèse soutenue

Modèles numériques des mécanismes de l’olfaction

FR  |  
EN
Auteur / Autrice : Caroline Bushdid
Direction : Jérôme Golebiowski
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 06/11/2018
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Institut de chimie (Nice) - Institut de Chimie de Nice
Jury : Président / Présidente : Uwe Meierhenrich
Examinateurs / Examinatrices : Uwe Meierhenrich, Loïc Briand, Laurent Chaloin, Isabelle André, Andrea Buettner
Rapporteurs / Rapporteuses : Loïc Briand, Laurent Chaloin

Résumé

FR  |  
EN

L’homme possède ~400 gènes codant pour des récepteurs aux odorants (ROs) qui sont différentiellement activés par un espace virtuellement infini de molécules. Le code combinatoire qui résulte de cette activation permettrait au nez humain de discriminer plus de mille milliards de stimuli olfactifs différents. Mais comment le percept est-il encodé dans la structure d’une molécule ? Pour comprendre comment notre nez décrypte la structure des molécules odorantes, des modèles numériques ont été utilisés pour étudier les principaux protagonistes de l’olfaction : les ROs et les odorants. Ici, l’apprentissage automatique est utilisé pour explorer et exploiter les données déjà existantes sur les ROs. D’autre part, la modélisation moléculaire est employée pour comprendre les mécanismes qui sous-tendent la reconnaissance moléculaire. Dans cette thèse j’ai passé en revue les relations structure-odeur du point de vue d’un chimiste. J’ai ensuite développé un protocole d’apprentissage automatique, qui a été validé pour prédire de nouveaux ligands pour quatre ROs. La modélisation moléculaire a été utilisée pour comprendre la reconnaissance moléculaire des ROs. Notamment, l’existence d’un site vestibulaire conservé dans une classe de ROs a été mis en évidence et le rôle de la cavité de liaison orthostérique dans les ROs a été étudiée. L’application de ces techniques permet de moderniser la déorphanisation guidée par ordinateur. Dans sa globalité, mes travaux ont aussi permis de préparer le terrain pour tester de façon virtuelle le code combinatoire des odeurs, et pour prédire la réponse physiologique déclenchée par ces molécules. Dans son ensemble, ce travail ancre la relation structure-odeur dans l’ère post-génomique, et souligne la possibilité de combiner différentes approches computationnelles pour étudier l’olfaction.