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Introduction

Aim
This thesis deals with the problem of constructing interesting complex alge-

braic varieties. Our main goal will be to construct and study new special varieties
inside homogeneous spaces.

By special varieties we mean either Fano varieties or varieties with trivial
canonical bundle. As opposed to varieties of general type, these objects are not
so common. On the one hand, for each fixed dimension, it is known that there is
only a finite number of families of Fano manifolds; on the other hand, varieties
with trivial canonical bundle can be divided essentially in three classes, which
are interesting for different reasons: tori, Calabi-Yau (CY) and hyper-Kähler (HK)
manifolds.

A great effort has been put in the search and analysis of these objects. Since
there exists finitely many families of Fano manifolds, one could ask for their
classification: this has been found in dimension 1, 2 and 3 thanks to the works
of Del Pezzo, Iskovskikh, Mori and Mukai, among others. The next step, i.e.
dimension 4, is being attacked by several research groups (for instance, see the
project Classification, Computation, and Construction: New Methods in Geometry,
or 3C in G).

The scarcity of the known families of hyper-Kähler manifolds contrasts with
their importance among varieties with trivial canonical bundle. Not only do we
know essentially only four kinds of such manifolds (Hilbert schemes of points on
K3 surfaces, generalized Kummer varieties, and the two O’Grady’s exceptional
examples); but also, we lack explicit descriptions of a general member of these
families. Finally, let us mention that for Calabi-Yau manifolds, mirror symmetry
is still a quite mysterious phenomenon. Being able to test it on more examples
(in particular non toric examples) could help to understand it better.

Motivation
There are interesting connections between special varieties and homogeneous

spaces. A striking evidence of this relation is the work of Mukai about K3 sur-
faces and Fano threefolds (as a reference, see [Muk88]). Mukai was able to rein-
terpret families of Fano threefolds as families of subvarieties of homogeneous
spaces. His idea was that on a sufficiently general Fano threefold X of a certain
type, one can sometimes prove the existence of a special vector bundle. One gets
a morphism, and eventually an embedding, from X to a certain Grassmannian.
It turned out that all the families of prime Fano threefolds of degree greater than
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10 (for which a classification was already known) admitted a nice description
in terms of homogeneous bundles over Grassmannians. This description of the
families was helpful to understand better their geometry in relation to the well
known geometry of Grassmannians.

Mukai also used the vector bundle method to prove the unirationality of some
moduli spaces of polarized K3 surfaces with small genus. Indeed, via the same
construction, he proved that the general surface is the zero locus of a section of
a homogeneous bundle; as a consequence, an open subset of the corresponding
moduli space is dominated by an open subset of the space of sections of the
bundle ([Muk88], [Muk06], and [Muk92]).

From then, other works have showed the interest of homogeneous spaces in
providing examples of special varieties. For instance, it is a difficult problem to
provide explicit locally complete families of hyper-Kähler manifolds, and very
few are known; among them, two can be seen as varieties of zeroes of a general
global section of a homogeneous vector bundle over a Grassmannian; both are
families of fourfolds. The first one is the family of varieties of lines in a cubic
fourfold, due to Beauville and Donagi ([BD85]). The variety of lines in a cubic
fourfold is actually a subvariety of the Grassmannian Gr(2, 6) of projective lines
on a projective space of dimension 5. It is the zero locus of a section of the third
symmetric power of the dual of the tautological bundle. We denote this family
of varieties by X1. The second one, more recent, is due to Debarre and Voisin
([DV10]). They start from the Grassmannian Gr(6, 10) of 6-dimensional planes in
a vector space V of dimension 10, and consider a general skew symmetric 3-form
over V . The variety of planes isotropic with respect to this form is the zero locus
of a section (which corresponds to the form) of the third anti-symmetric power
of the dual of the tautological bundle. They prove that this is a locally complete
family, which we denote by X2, of fourfolds which are hyper-Kähler.

In this thesis we essentially use two methods to obtain special subvarieties of
homogeneous spaces. We begin by considering zero loci inside Grassmannians,
and then we use the more general construction of orbital degeneracy loci. Finally,
the study of bisymplectic Grassmannians will show how we can use the structure
of homogeneous spaces in order to study their special subvarieties; this subject
would deserve to be investigated further.

Zero loci inside Grassmannians
In Chapter 2 we construct special varieties as zero loci of sections of homo-

geneous vector bundles. Most of the results in this Chapter can be found in
[Ben18].

The two examples X1 and X2 were our main motivation. Indeed, we study
fourfolds which arise as zero loci of general global sections of homogeneous,
completely reducible bundles over ordinary, classical and exceptional Grassman-
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nians (see Definition 1.1.1). We will see that the only hyper-Kähler varieties of
this form are those already mentioned; indeed, the following theorem holds:

Theorem 0.0.1. Suppose Y is a hyper-Kähler fourfold which is the zero locus of a
general section of a homogeneous, completely reducible, globally generated vector
bundle over an ordinary or classical (symplectic or orthogonal) Grassmannian.
Then either Y is of type X1 or of type X2.

This theorem will be a direct consequence of the classification theorems con-
tained in Chapter 2. For ordinary Grassmannians, we followed the analogous
study done in [Küc95], where the author has classified and then studied the
properties of Fano fourfolds with index one obtained in the same way. Already
in that case the two constraints for the varieties to be four dimensional and Fano
of index one were sufficient to have a classification of the bundles which could
give rise to the required varieties.

In Section 2.1, we will generalize this result by giving a classification of four-
folds with trivial canonical bundle (Theorem 2.1.1), following substantially the
same ideas and proofs. With the help of the MACAULAY2-package SCHUBERT2
([GS]) we will determine which subvarieties are Calabi-Yau (CY) and which are
irreducible holomorphic symplectic (IHS, which is the same as hyper-Kähler, or
HK) among the examples we have found.

The two examples X1 and X2 share an additional feature: the homogeneous
bundles defining them are both irreducible. In Section 2.1.3 we were able to
prove the following result, which holds in any dimension:

Theorem (Theorem 2.1.20). Let Y be the zero locus of a general section of an
irreducible homogeneous bundle over the ordinary Grassmannian. If Y is hyper-
Kähler, then it must have dimension 4 and it is of type X1 or X2.

In Section 2.2, we will extend the classification to subvarieties of dimension 4
of the other classical Grassmannians. It should be remarked that, even though
the symplectic and orthogonal Grassmannians can already be seen as varieties
of zeroes of sections of homogeneous bundles over the ordinary Grassmannian,
a new classification needs to be done. In fact, there exist homogeneous bun-
dles over the classical Grassmannians that are not restriction of bundles over
the ordinary ones. For instance, the orthogonal of the tautological bundle is
not irreducible, and one can quotient it by the tautological bundle. Also, the
spin bundles in the orthogonal case do not extend to a bundle on the ordinary
Grassmannian.

We will then present the corresponding results for dimension 2 and 3 (Section
2.3). We give the classification for surfaces and threefolds and, for the surfaces,
we report also the computation of the degree, which gives the genus of the natu-
ral polarization of the surface, and the Euler characteristic. Surprisingly enough,
for surfaces, there are many more cases than those considered by Mukai in his
work on K3 surfaces, and they would be worth being studied thoroughly. We

11



begin doing so in Section 2.3.1 for two threefolds, and in Section 2.3.2 for some
maximal families of K3 surfaces with Picard number two, but clearly there is
much more to investigate. For instance, we identify a locally complete family of
K3 surfaces with Picard number two (labelled by (oe9) in Section 2.3.2) which
admits two quadric projections and whose geometry deserves a more detailed
analysis.

We remark that a result similar to Theorem 0.0.1 holds for exceptional Grass-
mannians, which are quotients of exceptional groups G by parabolic subgroups
Pi associated to one simple root αi. This is a consequence of the analogous
exceptional classification given by Theorem 2.4.3. However, in the exceptional
situation, for three cases (two subvarieties in E6/P5 and one in E7/P1) we were
not able to determine if the varieties were CY or HK; indeed, the computations
with MACAULAY2 were too heavy.

As a final remark, let us point out that the classifications given in this paper
give for free the analogous classifications for Fano threefolds, fourfolds and five-
folds (see Remark 2.1.2).

As we were finishing to write down of the article [Ben18], an article by D. In-
oue, A. Ito and M. Miura on the same subject was published on arXiv ([IIM16]).
In this work the authors prove that, under the same hypothesis as ours, a finite
classification is possible for subvarieties of the ordinary Grassmannian with triv-
ial canonical bundle of any fixed dimension (see Theorem 2.1.3). They also study
in more detail the case of CY threefolds, giving an explicit classification similar to
ours and studying the cases found. On the other hand, they do not deal with the
cases of symplectic, orthogonal and exceptional Grassmannians, which is inter-
esting too (for example, see Mukai’s articles [Muk88] and [Muk92], in particular
the sections on K3 surfaces of genus seven and eighteen).

Orbital degeneracy loci
The second method we use to construct varieties is through orbital degen-

eracy loci (ODL). These are generalizations of the classical degeneracy loci of
morphisms between vector bundles, which have already been used to produce
examples of special varieties in the literature (see for example [KK10]). They
are modelled on a given, fixed, closed stable subvariety Y of a representation V
of an algebraic group G.

The study of ODL is a joint project with Sara Angela Filippini, Laurent Manivel
and Fabio Tanturri that led to the production of two articles [BFMT17a] and
[BFMT17b], in which their fundamental properties are collected. In the first
two sections of Chapter 3 we summarize these properties for both classical and
orbital degeneracy loci. In this thesis, we decided to illustrate the ODL method
by describing three families of hyper-Kähler fourfolds, which is a non published

12



work; a supplementary new contribution to the study of ODL is given by the
study of quivers in Section 3.3 and Section 3.4, whose results can be found in
[Ben17].

The first example of ODL is given by zero loci of sections (where Y = {0} ⊂ V ),
but this example is not rich enough to understand the subtleties of ODL. When
Y is a determinantal variety inside a space of matrices, we recover the classical
degeneracy loci of a morphism between vector bundles. In the following we
outline an example that can be thought of as a prototype of ODL, which allows
us to give an idea of what these objects resemble to. Let us consider the GL6-
orbit closure Y ⊂ V ∼= ∧3C6 of partially decomposable tensors, i.e. tensors that
can be written as v ∧ σ, where v ∈ C6 and σ ∈ ∧2C6. The corresponding ODL
is the relativization of Y inside an ambient variety X. The relativization of V
over X is the vector bundle ∧3E6, where E6 is a vector bundle of rank six over
X. Given a section s of ∧3E6, the ODL DY (s) is defined as the locus of points
x ∈ X such that s(x) is a partially decomposable tensor. Here we have used the
fact that the fiber (∧3E6)x is naturally isomorphic to V .

When the group acting on V is more complicated, one can still define a vector
bundle whose fiber is isomorphic to V by using a G-principal bundle over X;
the general construction is described in Chapter 3. In order to define an ODL,
one needs a section s of a certain vector bundle endowed with some G-structure
over an ambient variety X (as we have seen for partially decomposable tensors);
if the bundle is globally generated and the section general, an assumption we
will always make, one can control the codimension and the singular locus of the
ODL through a Bertini type theorem. Indeed, as their models are usually singular,
ODL are as well singular in general.

In fact, the codimension inside V and the dimension of the singular locus are
not the only features of the stable subvariety Y that one is able to relativize to
orbital degeneracy loci. The two main ones are the following:

1. a desingularization of Y by a Kempf collapsing, when it exists;

2. the minimal G-equivariant free resolution of OY .

We will see that Kempf collapsings are a special kind of desingularizations that
can be used to obtain free resolutions of OY ; this is done by using the so called
geometric technique, for which a reference is [Wey03] (and which is recalled
in Section 1.4). Moreover, for a large class of orbit closures, this kind of desin-
gularizations exists. For instance, they can be constructed for orbit closures in-
side prehomogeneous spaces (whose definition is recalled in Section 1.4). In
[BFMT17b] we analyse thoroughly the case of prehomogeneous parabolic rep-
resentations, which have the advantage of containing a finite number of orbits.
The two properties of Y we mentioned respectively give for ODL:

1. a desingularization of DY (s) by the zero locus Z (s̃) of a section s̃ con-
structed from s ([BFMT17a, Proposition 2.3]);

2. if Y is Cohen-Macaulay, a locally free resolution ofODY (s) (Theorem 3.2.20).

13



For our purposes however, this is not enough: in order to construct special
varieties, it is essential to be able to control the canonical bundle of ODL. Both
constructions 1. and 2. can be used independently to understand what KDY (s) is:

Proposition (Proposition 3.2.12). Suppose that Y has rational singularities and
admits a crepant Kempf collapsing, i.e. a Kempf collapsing which is a desingular-
ization with trivial relative canonical bundle. Then the resolution Z (s̃)→ DY (s)
is crepant as well, and the canonical bundle of DY (s) is the restriction of some line
bundle over X.

Proposition (Corollary 3.2.23). Suppose that Y has Cohen-Macaulay and Goren-
stein ring; then the last term of the induced locally free resolution of ODY (s) is of
rank one. As a consequence, KDY (s) is the restriction of some line bundle over X.

In both cases, the line bundle over X whose restriction gives KDY (s) can be
computed explicitly, and these two tools are effective methods that can be used
in a complementary way.

Using these techniques, we have been able to construct many special vari-
eties as ODL. We obtained several dozens Calabi-Yau varieties of dimension 4
from the orbit closure of partially decomposable tensors, from nilpotent orbit
closures ([BFMT17a]) and from other orbit closures in parabolic representations
([BFMT17b]), as well as five Calabi-Yau threefolds ([BFMT17a]); in [BFMT17a]
we also constructed and analysed several examples of (almost) Fano threefolds
and fourfolds. Moreover, we were able to determine the main invariants of the
varieties we found through some non trivial computations in cohomology. In
Section 3.2.1 we give a sample of those computations by obtaining the Hodge
numbers for the Fano fourfolds we found in [BFMT17a].

As a concrete illustration of the theory developed for ODL, and in order to
show that they can produce very nice constructions, we study three families of
Hilbert schemes of two points on K3 surfaces. We start in each case from a K3
surface inside a (ordinary, classical) Grassmannian. As we want to construct the
Hilbert scheme of length two subschemes, we need to consider two points inside
the K3 surface, so two points inside the Grassmannian. From such a couple of
points seen as linear subspaces, by taking their union (or intersection depending
on the geometry of the problem), we obtain a point of another Grassmannian
Gr(k, n). We prove that in the three cases the Hilbert scheme of two points on
the K3 surface can be obtained by this naive procedure.

Actually, as we always consider a K3 surface which is a complete intersection
of codimension m, we are able to show that the Hilbert scheme can be seen as
a degeneracy locus DY (s) of a morphism between vector bundles (see Section
3.1). Its desingularization Z (s̃) turns out to live inside a product Gr(k, n) ×
Gr(k′,m). We then analyze in detail the second projection towards Gr(k′,m),
whose image we prove to be an orbital degeneracy locus constructed from a
parabolic representation (see Proposition 3.2.27, 3.2.30 and 3.2.32). We then
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get the chain of isomorphisms

Hilbert scheme of two points on a K3↔ classical degeneracy locus↔ ODL

which permits to see the Hilbert scheme as an ODL and, in this way, to enlighten
some interesting geometric aspects of the HK fourfold considered. Even though
these constructions do not give new examples of hyper-Kähler varieties, in our
opinion they indicate that there is a chance that searching for HK varieties among
ODL may eventually be successful.

In Section 3.3 we study orbit closures inside quiver representations. We chose
to analyze the case of quiver orbits because of their nice properties. In partic-
ular, when the quivers are of finite type, a complete description of such orbits
is known ([Gab72]). Moreover, some aspects of the orbit closures have already
been studied, for instance by Sutar in [Sut13] or in her PhD thesis. By using the
geometric technique and Reineke’s resolutions of singularities, Sutar is able to
obtain a locally free resolution of their ideals. She works with a certain quiver
of type A3, and then she extends her results to source-sink quivers of finite type
(e.g. of type E). Moreover, from the locally free resolution it is possible to ex-
tract further geometric informations, which include whether the orbit closures
are normal, Cohen-Macaulay or Gorenstein; in the A3 case, for example, Sutar
determines which orbit closures are Gorenstein.

After recalling basic facts about quiver representations, we explain Reineke’s
construction of resolutions of singularities of quiver orbit closures. We discuss
when those resolutions are crepant for quivers of type A3, one-way and source-
sink quivers of type An, and a quiver of type D4. In the A3 case we are able to
prove that the Gorenstein property studied by Sutar is actually a consequence of
the generally stronger condition of admitting a crepant desingularization. Finally,
some quiver degeneracy loci fourfolds (and one threefold) with trivial canonical
bundle are constructed in Section 3.4 using the results of the previous section.
The varieties constructed are just a sample of what is possible to achieve by using
these techniques.

To sum up, in Chapter 2 and Chapter 3 we have been able to construct many
special varieties inside homogeneous spaces. The methods we have used are
very general and leave the door open to searching for other kinds of varieties;
for example, one could try to construct curves or surfaces of general type with
prescribed invariants.

Bisymplectic Grassmannians
Classical Grassmannians are a special kind of homogeneous spaces for classi-

cal groups. Symplectic Grassmannians parametrize subspaces of a given vector
space V isotropic with respect to a non degenerate skew-symmetric two-form on
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V , while orthogonal Grassmannians parametrize subspaces of V isotropic with
respect to a non degenerate symmetric two-form. As these varieties are the “sim-
plest" homogeneous spaces, they have been the object of a lot of attention for
more than a century, from different points of view (classical, quantum and equiv-
ariant cohomology, derived category, etc.). For G-varieties much less is known
when the homogeneity hypothesis is dropped.

In Chapter 4 we focus on some non homogeneous types of Grassmannians,
by which we mean varieties that parametrize special classes of subspaces of a
given vector space V . By mimicking the definition of symplectic Grassmannians
one can define multisymplectic Grassmannians: they parametrize subspaces of a
given vector space that are isotropic with respect to a finite set of skew-symmetric
forms. Similarly, one can define multiorthogonal Grassmannians (by considering
a finite set of symmetric forms), or multiorthosymplectic Grassmannians (by con-
sidering symmetric and skew-symmetric forms at the same time).

A remarkable example among multisymplectic Grassmannians is V22; this va-
riety is the prime Fano threefold in Iskovskikh’s classification with the largest
possible anticanonical degree. Mukai, by using the vector bundle method, in-
terpreted V22 as the trisymplectic Grassmannian of 3-dimensional subspaces that
are isotropic with respect to three skew-symmetric two-forms on a 7-dimensional
vector space (see [Muk02] and Example 1.5.1).

The second remarkable example is given by bisymplectic Grassmannians. We
will denote by I2Gr(k, 2n) a bisymplectic Grassmannian of k-dimensional sub-
spaces of a 2n-dimensional vector space V that are isotropic with respect to two
general skew-symmetric two-forms. These varieties are always Fano, the canoni-
cal bundle being the restriction of O(2n−2k+2) over Gr(k, 2n) (we suppose that
k ≤ n). In [Kuz15], the case where k = n has been worked out: the bisymplectic
Grassmannian I2Gr(n, 2n) is isomorphic to (P1)n. Moreover, I2Gr(1, 2n) ∼= P2n−1.

If 2 ≤ k ≤ n − 1, suppose that the bisymplectic Grassmannian is defined by
ω1 and ω2; one can prove that if X = I2Gr(k, 2n) is smooth, then ω1 and ω2
are simultaneously block diagonalizable with 2 × 2 blocks (Proposition 4.1.6).
This has the crucial consequence that the automorphism group of X contains
the group (SL(2)n)/Z2, which is the stabilizer of the 2 × 2 blocks. Even more
importantly, a maximal torus T ∼= (C∗)n inside SL(2)n acts on X with a finite
number of fixed points. This, as we will see, allows to use all the power of the
localization theorems to determine its equivariant cohomology.

Another class of Grassmannians that admit a torus action with a finite number
of fixed points are orthosymplectic Grassmannians; again, the existence of the
torus action is ensured by the fact that a general skew-symmetric two form and
a general symmetric two form are simultaneously (2 × 2)-block diagonalizable.
These varieties would deserve to be studied thoroughly in the future.

Actually one can prove that the automorphism group of bisymplectic Grass-
mannians is SL(2)n up to a finite group. We obtain this result as a consequence
of the following theorem:
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Theorem (Theorem 4.1.12). Let X = I2Gr(k, 2n), with 2 ≤ k ≤ n − 1. If TX
denotes the tangent bundle of X, we have the following isomorphisms:

H0(X,TX) ∼= sl(2)n and H1(X,TX) ∼= Cn−3.

This result is obtained by using the fact that X can be seen as the zero locus
of a general section of the vector bundle (∧2U∗)⊕2 over Gr(k, 2n). Theorem
4.1.12 implies that bisymplectic Grassmannians form a locally complete family
of dimension n− 3 depending on the choice of the two skew-symmetric forms ω1
and ω2. Therefore, in contrast with the case of symplectic Grassmannians, there
is not a unique isomorphism class of bisymplectic Grassmannians (even though
we refer sometimes to the bisymplectic Grassmannian). Moreover, this gives a
substantial difference with the cases k = 1, n.

The last part of Chapter 4 is devoted to the study of the cohomology of bisym-
plectic Grassmannians. As we anticipated, the existence of the torus T suggested
us to try to understand first the T -equivariant cohomology of X. The torus T
is also a maximal torus inside Sp2n, and it acts on the symplectic Grassmannian
IGr(k, 2n) with a finite number of points. Actually, via the natural embedding of
I2Gr(k, 2n) inside IGr(k, 2n), the T -fixed locus is the same for the two varieties.
Therefore, we decided to include Section 4.2 to understand better the equivari-
ant cohomology of IGr(k, 2n), in order to elucidate the equivariant bisymplectic
case.

The main results on equivariant cohomology are recalled in Section 4.2.2. The-
orem 4.2.12 gives some relations that equivariant classes need to satisfy, and
Theorem 4.2.13 asserts that these relations are sufficient to determine the equiv-
ariant cohomology as a quotient of a polynomial ring when there exists only a
finite number of T -invariant curves. Then, a classical result on torus actions
allows to recover easily the classical cohomology from the equivariant one (The-
orem 4.2.14).

The equivariant cohomology of symplectic Grassmannians can be understood
very well. Not only it is possible to determine it as a subring of the direct sum
of copies of a certain polynomial ring (Theorem 4.2.15), but it is also possi-
ble to prove that the equivariant classes of Schubert subvarieties (which give
an additive basis in cohomology) are completely determined by this description
(Proposition 4.2.16); this is similar to what happens, for example, for ordinary
Grassmannians (see [KT03]). Even more, one can recover these classes by an in-
ductive method, which consists in computing the product of any Schubert variety
with the (unique) hyperplane section:

Theorem (Theorem 4.2.20). Equation (4.8) and Proposition 4.2.19 determine
inductively the equivariant classes of all the Schubert varieties inside IGr(k, V ).

The analogous results for ordinary Grassmannians are [KT03, Lemma 1 and
Proposition 1] (analogous to Proposition 4.2.16) and [KT03, Proposition 2] (anal-
ogous to Theorem 4.2.20). The situation is more complicated for bisymplectic
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Grassmannians. For these, in general, we were only able to describe the equivari-
ant cohomology as a subring of the direct sum of copies of a certain polynomial
ring:

Theorem (Theorem 4.3.15). The relations in Theorem 4.2.12 are enough to de-
termine the equivariant cohomology of I2Gr(k, V ).

However, we could not prove that this description determines uniquely the
equivariant classes of the analog of the Schubert subvarieties inside X; these
subvarieties are obtained from the Bialynicki-Birula cell decomposition (see Sec-
tion 1.2) and provide an additive basis in cohomology. The critical reason for
the difference between the behaviour of IGr(k, 2n) and I2Gr(k, 2n) is that in the
homogeneous situation Schubert varieties are actually orbit closures (of a Borel
subgroup), which is no longer the case for bisymplectic Grassmannians.

As an application of the results we have found, we were able to compute explic-
itly the equivariant and classical cohomology of the bisymplectic Grassmannian
I2Gr(2, 6), and we obtained equivariant and classical Pieri rules (see Theorem
4.3.19 and Theorem 4.3.21). The variety I2Gr(2, 6) is actually a codimension 2
complete intersection inside Gr(2, 6). The analysis of this example has allowed us
to point out some interesting features that may be generalized to all bisymplectic
Grassmannians and may help understanding the (equivariant) cohomology of X
in the general case (see the remarks at the end of the section on I2Gr(2, 6)).

We would like to underline once more that the work on bisymplectic Grass-
mannians is far from being over, and we have here just a sample of their basic
properties. Apart from completing the study of their cohomology, there are other
open questions worthy to be posed about these varieties. For instance, one may
be interested in understanding their derived category, or their quantum cohomol-
ogy (for which one could use the techniques given by the equivariant quantum
cohomology). We included Section 4.4 at the end of Chapter 4 in order to give
some ideas and research directions that one may follow to continue the study of
bisymplectic Grassmannians.
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1. Generalities
We report in this first chapter the mathematical background that we will need

for all the following results. It is divided in two big sections. The first one deals
with general facts about homogeneous spaces and the action of algebraic groups
on algebraic varieties; we include a section on prehomogeneous spaces, as it will
be useful later on. The second part is an introduction to special varieties, where
we pointed out the properties that are relevant to our work.

1.1. Homogeneous varieties
In this section we recall some facts about homogeneous varieties and homoge-

neous bundles; for a more complete exposition see [Ott95]. We introduce some
notations that will be used in all chapters, namely those concerning generalized
Grassmannians (ordinary, classical and exceptional). One of the aims of this sec-
tion is also to present Bott’s theorem, which is an essential cohomological tool,
and that will appear throughout the thesis.

Let G be a reductive complex algebraic group; for instance, one of the clas-
sical groups SL(n,C), Sp(2n,C), Spin(2n + 1,C) or Spin(2n,C), or one of the
exceptional ones G2, F4, E6, E7, E8. A variety X is G-homogeneous if it admits
a transitive algebraic left action of G. Homogeneous varieties can be seen as
quotients G/P of G by a subgroup P . A homogeneous variety G/P is projective
if and only if P contains a Borel subgroup B (it is the case of the Grassmanni-
ans); in this case the subgroup P is said to be parabolic. Parabolic subgroups
can be classified combinatorially by subsets of the simple roots of G. We will be
interested mostly in generalized Grassmannians.

Definition 1.1.1. Generalized Grassmannians are homogeneous varieties G/P
where P is a maximal parabolic subgroup of a simple Lie group G. A Grassmannian
G/P is said to be ordinary (respectively classical, exceptional) if the group G is
SL(n,C) (respectively a classical group, an exceptional group).

Example 1.1.2. We will denote by Gr(k, n) or Gr(k, V ) the ordinary Grassmannian
of k-planes in a n-dimensional complex vector space V . It will be the prototype of
the ambient variety for the subvarieties we will construct and study in the following
chapters.
Example 1.1.3. Classical Grassmannians admit a similar description as that for
ordinary ones. Indeed, let V be a vector space of dimension 2n (respectively 2n,
2n + 1) on which a non-degenerate skew-symmetric (resp. symmetric) form is
defined. If k ≤ n, the variety IGr(k, 2n) (resp. OGr(k, 2n), OGr(k, 2n + 1)) of
k-dimensional isotropic subspaces of V with respect to the form is a Grassmannian
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for Sp(2n,C) (resp. SO(2n,C), Sp(2n+ 1,C)); we will refer to it as the symplectic
(resp. even orthogonal, odd orthogonal) Grassmannian.

In the even orthogonal case, the variety of n-dimensional isotropic subspaces
of V is the disjoint union of two connected families denoted by OGr+(n, 2n) and
OGr−(n, 2n). These are isomorphic, and correspond to the quotient of Spin(2n,C)
by the parabolic subgroup associated to one of the last simple roots of Dn. We
will denote by OGr(n, 2n) one of these connected families without specifying which
one if it is not necessary in the context. Finally, recall that OGr(n− 1, 2n) is not
a Grassmannian; indeed, it is the quotient of Spin(2n,C) by the (non maximal!)
parabolic subgroup associated to the two last simple roots of Dn (see Section 2.2.4
for more details on this variety).
Example 1.1.4. Exceptional Grassmannians as well admit explicit descriptions
which we will not need in the following. More generally, homogeneous spaces G/P
admit an interpretation as generalized flag varieties.

We will see in Chapter 2 that exceptional and classical Grassmannians behave
similarly to ordinary ones, for instance they have Picard number equal to one.
We will use all of them as ambient varieties for several classifications of subva-
rieties. These will be zero loci of sections of homogeneous bundles (see Section
1.3) over generalized Grassmannians.

Many cohomological properties of homogeneous varieties are known. For in-
stance, an additive basis for their cohomology is given by the so-called Schubert
subvarieties, while the multiplicative structure is described by the Borel presenta-
tion (see Appendix A.2.1). We will use this description in Chapter 2 and Chapter
3 in order to do some computations of Euler characteristics.

Moreover in Chapter 4, in order to understand better bisymplectic Grassmanni-
ans, which are not homogeneous, we will study the (equivariant) cohomology of
symplectic Grassmannians. To do so, we will exploit the fact that homogeneous
varieties admit an action of a torus C∗ with finitely many fixed points. Such
an action defines the so-called Bialynicki-Birula decomposition (see [BB73]). In
the next section we recall how to obtain this decomposition, and we will see its
relation with the decomposition in Schubert varieties in the homogeneous case.

1.2. The Bialynicki-Birula decomposition
Let us consider a torus τ ∼= C∗ acting on a smooth proper variety X. We will

assume that the action has only a finite number of fixed points {p1, . . . , pr} = Xτ .
We recall that the character group Ξ(τ) of τ is isomorphic to Z. As the point pi is
fixed, the torus acts on its tangent space TX,pi. As τ is reductive and abelian, its
action is diagonalizable on TX,pi, i.e. we can write

TX,pi =
⊕

α∈Ξ(τ)
Vα,
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where Vα is the eigenspace with eigenvalue α. By using the identification Ξ(τ) ∼=
Z, we have the following decomposition:

TX,pi =
⊕
α>0

Vα ⊕
⊕
α<0

Vα ⊕ V0 = T+
i ⊕ T−i ⊕ T 0

i .

Now, the hypothesis that the fixed locus Xτ is finite implies that T 0
i = 0 for

i = 1, . . . , r. For each i we define the following varieties:

Yi = {p ∈ X such that, if t ∈ τ , then lim
t→∞

t.p = pi}.

Clearly from the definition pi ∈ Yi ∀i. The following result can be found in
[BB73]:

Theorem 1.2.1 (Bialynicki-Birula decomposition). Let τ ∼= C∗ act on a smooth
proper variety X with a finite number of fixed points {p1, . . . , pr} = Xτ . Then the
subvarieties Yi ⊂ X for i = 1, . . . , r give a cell decomposition of X, meaning that
they satisfy the following properties:
— Yi is an affine space smooth at pi and such that TYi,pi = T−i ;
— Yi ∩ Yj = ∅ for i 6= j, and X = ⋃

i Yi;

Remark 1.2.2. Theorem 1.2.1 actually provides two decompositions; the second
one is defined by replacing τ with τ−1, i.e. T−i with T+

i .

Remark 1.2.3. Let us denote by Zi the closure of Yi. As the Yi’s are isomorphic to
an affine space, the classes [Zi] for i = 1, . . . , r are a basis for the integer cohomology
of X.

In the case when X is a homogeneous space X = G/P , things work even
better. Indeed, let T ∼= (C∗)rank(G) be a maximal torus inside G, and B a Borel
subgroup of G containing T . Then T acts on G/P with a finite number of fixed
points, parametrized by the elements w ∈ W/WP , where W is the Weyl group of
G, and WP is the Weyl group of the semisimple part of P . We will denote by wP

the element in the class of w of minimal length. Moreover, one can consider the
decomposition of X in B-orbits. Indeed, by the Bruhat decomposition for G, it
turns out that

G/P =
⋃

w∈W/WP

BwP/P,

where the union is disjoint. The orbit BwP/P is isomorphic to an affine space
of dimension l(wP ). The fixed points of the action of T are the points wP/P
for w ∈ W/WP . The closures of the B-orbits are called Schubert varieties and
denoted by σw; as it was the case for the subvarieties Zi, their classes provide
a basis for the integer cohomology of X. For the Bruhat decomposition, and in
general for flag varieties, the reader can refer to [Bri05].
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A general subgroup τ of T still acts with a finite number of fixed points on
G/P . Therefore for X = G/P we have two decompositions, the Bruhat one in
Schubert varieties and the Bialynicki-Birula one. In fact, the two decompositions
are the same. If we choose τ such that it acts positively on the simple roots of B,
then it is possible to show (see [BBCM02, Book II, Example 4.2]) that BwP/P is
exactly the variety YwP/P for w ∈ W/WP .

Remark 1.2.4. This has an interesting consequence for homogeneous spaces. It
implies that Zw\Yw is the union of Yw′ for some w′ ∈ W/WP (because the Yw’s are
orbits!). Moreover if Zw′ ∩ Zw 6= ∅, then either Zw′ ⊂ Zw or Zw ⊂ Zw′ . Finally, if
w′P/P ∈ Zw, then Zw′ ⊂ Zw. These properties do not hold in general. In Chapter
4 we will show, for instance, that bisymplectic Grassmannians admit the action of a
torus τ with finitely many fixed points, and therefore they admit a Bialynicki-Birula
decomposition. However, we will see on an explicit example (I2Gr(2, 6)) that it may
happen that two distinct Zi and Zj have the same dimension, but Zi∩Zj 6= ∅. This
is the principal reason why describing the equivariant cohomology of bisymplectic
Grassmannians is more complicated than doing so for symplectic ones.

Even though the Schubert varieties provide a natural additive basis for the
integer cohomology of generalized flag varieties, the multiplication rules for
them (usually referred to as Littlewood-Richardson rules) can involve very com-
plicated combinatorics. For classical Grassmannians these combinatorics have
been worked out, but a lot of work still needs to be done for exceptional Grass-
mannians and more general flag varieties.

For classical Grassmannians, a multiplicative basis of the cohomology can be
described in terms of certain special Schubert varieties. For these spaces, it is
known how to express Schubert varieties in terms of special ones (Giambelli
formulae, see [BKT11] and [BKT17]) and how to multiply any Schubert variety
with a special one (Pieri formulae, see [BKT09]). These formulae have been the
object of a long and highly non trivial work lasted more than a century.

Special Schubert subvarieties of Grassmannians are given in terms of Chern
classes of the so-called homogeneous bundles. For instance, for the ordinary
Grassmannians, the special Schubert varieties are the Chern classes of the tau-
tological bundle (or, equivalently, of the quotient tautological bundle), which
therefore generate multiplicatively the integer cohomology. We introduce in the
next section homogeneous bundles, giving the basic properties and definitions
which we will use extensively later on.

1.3. Homogeneous bundles
We recall the following important definition:

Definition 1.3.1. A homogeneous vector bundle F over a homogeneous variety
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X = G/P is a vector bundle which admits a G-action compatible with the one on
the variety X.

If a vector bundle F is homogeneous, then the fiber F[P ] over the point [P ] ∈ X
is stabilized by the subgroup P , i.e. F[P ] is a representation of P ; the converse
holds as well. More precisely, there is an equivalence of categories between
homogeneous vector bundles over G/P and representations of P . Therefore,
in this context, one can define irreducible and indecomposable homogeneous
bundles, in analogy with the definitions in representation theory.

Notice that P , contrary to G, is not reductive in general. Let PU be the unipo-
tent factor of P and PL a Levi factor. The latter is a reductive group. It turns out
that a representation ρ : P → GL(V ), where V is a vector space, is completely
reducible if and only if ρ|PU is trivial. So, completely reducible homogeneous
bundles are identified with representations of PL, and these in turn are identified
with their maximal weights. This provides a combinatorial way to classify com-
pletely reducible homogeneous bundles which consists in indicating the maximal
weights of the irreducible representations to which they correspond. We recall
some important homogeneous bundles for classical Grassmannians.

Example 1.3.2. Let Gr(k, n) be the ordinary Grassmannian. We will denote by
U the tautological bundle of rank k and U∗ its dual, and by Q the tautological
quotient bundle of rank n − k; the ample generator of the Picard group of the
Grassmannian, which corresponds to det(U∗) = det(Q), will be denoted by O(1),
and O(n) = O(1)⊗n.
Example 1.3.3. Let IGr(k, 2n) (OGr(k,m), m = 2n, 2n + 1) be the symplectic
(orthogonal) Grassmannian. Let us denote again by U the tautological bundle of
rank k, U∗ its dual, and Q the tautological quotient bundle of rank 2n − k; the
ample generator of the Picard group of the Grassmannian, which corresponds to
det(U∗) = det(Q), will be denoted by O(1), and O(n) = O(1)⊗n.
Moreover, over IGr(k, 2n), U⊥ will denote the orthogonal of the tautological

bundle of rank 2n − k, which is not irreducible: in fact, there is an injective
homomorphism U → U⊥, and the quotient U⊥/U is irreducible of rank 2n − 2k.
The bundle U⊥ is however indecomposable, and the exact sequence

0→ U → U⊥ → U⊥/U → 0

is non split; the existence of non split sequences is a consequence of the fact that
the parabolic groups are not semisimple.

Over OGr(k, 2n+ 1), T+ 1
2
will denote the spin bundle of rank 2n−k coming from

the spin representation, and over OGr(k, 2n), T+ 1
2
and T− 1

2
will denote the two

spin bundles of rank 2n−k−1 coming from the two half-spin representations. Finally,
over OGr(n, 2n), the line bundle O(1) is not a generator of the Picard group. It
is actually divisible, and its square root will be denoted by O(1

2) (note that over
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OGr(n, 2n+ 1), T+ 1
2
is again a square root of O(1)). The line bundle O(1

2) gives
the spinorial embedding of OGr(n, 2n) in P2n−1−1.

Bott’s Theorem
A tool which is very useful when studying homogeneous vector bundles is

Bott’s theorem (or Borel-Weil-Bott’s theorem, see [Bot57]). It gives the coho-
mology of all irreducible homogeneous vector bundles over G/P in terms of G
representations. Depending on the particular group G we are studying, it can be
expressed more combinatorially, and we use these reformulations in Chapter 2.
Here we give the general statement.

Let F be an irreducible homogeneous vector bundle over G/P . As irreducible
representations of simple groups are parametrized by their maximal weight, we
can suppose that F corresponds to a PL-representation Vλ with maximal weight
λ. We recall that a weight of PL is a linear combination of the simple roots of PL,
which are the same as those of G; if the coefficients of the linear combination
are non negative (respectively nonzero) with respect to the positive simple roots
of G, the weight is said to be G-dominant (resp. G-regular). Therefore λ can be
seen as a weight for G. Let ρ be the sum of the fundamental weights, and W the
Weyl group of G. The group W acts on the set of characters of G; moreover, W is
a Coxeter group, and as such to each element w ∈ W we can associate its length
l(w) ∈ N. Finally, let λ∨ denote the maximal weight of V ∗λ .

Theorem 1.3.4 (Bott’s theorem). Let Fλ be an irreducible homogeneous vector
bundle over G/P associated to the PL-representation Vλ.

If λ∨ + ρ is not G-regular, then

Hi(G/P,Fλ) = 0 ∀i.

If λ∨ + ρ is G-regular and w(λ∨ + ρ) is G-dominant for w ∈ W , then

Hi(G/P,Fλ) = 0 ∀i 6= l(w) and Hl(w)(G/P,Fλ) = (V G
w(λ∨+ρ)−ρ)∗,

where V G
µ denotes the irreducible G-representation with highest weight µ.

Remark 1.3.5. Notice that the homogeneity condition implies that if an irreducible
bundle admits a nonzero section, then it is globally generated. Moreover, an
irreducible homogeneous vector bundle associated to Vλ is globally generated if
and only if λ∨ is G-dominant. The Borel-Weil theorem usually refers to the result
concerning the space of sections H0(G/P,Fλ).

We give a useful application of the Borel-Weil Theorem to Grassmannians.
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Example 1.3.6. Consider the variety Gr(k, 2n) = Gr(k, V ), with k ≤ n. By applying
the Borel-Weil theorem, it is easy to see that

H0(Gr(k, V ),∧2U∗) ∼= ∧2V ∗.

A general section ω of ∧2U∗ is a non-degenerate skew-symmetric form over V . The
zero locus of ω, which we denote by Z (ω), is the set of subspaces P ∈ Gr(k, V )
such that ω(P ) = ω|P = 0, i.e. is the set of isotropic subspaces. Therefore there is
an isomorphism Z (ω) ∼= IGr(k, V ), and the symplectic Grassmannian can be seen
as a closed subvariety of the ordinary one.

Similarly, the orthogonal Grassmannian OGr(k,m) is the zero locus of a general
section of S2U∗ inside Gr(k,m).

1.4. Prehomogeneous spaces
Even though the subject of “prehomogeneous spaces" is different from those

treated in this section, we decided to include it here because they are part of
the background material on algebraic groups that will be used later on. More
specifically, we will use them to search for models for orbital degeneracy loci
(Chapter 3, see also [BFMT17b]). These models are nothing more than closed
G-stable subvarieties of a given G-representation. We will focus on a certain
class among prehomogeneous spaces, called parabolic representations, which
are closely related to homogeneous varieties (see Remark 1.4.10). Then, we will
introduce Weyman’s geometric technique (see [Wey03]) in order to study orbit
closures inside such representations.

Prehomogeneous spaces can be thought of as affine generalizations of homo-
geneous spaces:

Definition 1.4.1. Let G be an algebraic group. A prehomogeneous space V is a G
representation with an open dense G-orbit.

Example 1.4.2. The group GLn acts with only two orbits on Cn, which is preho-
mogeneous. More generally, GLe×GLf acts on the space of matrices Me,f with
finitely many orbits, parametrized by the rank. Therefore, Me,f is GLe×GLf -
prehomogeneous.
Example 1.4.3. Example 1.4.2 is however particular. In general, prehomogeneous
spaces do not need to have finitely many orbits. For instance, by using certain
operations called castling transfoms on a given prehomogeneous space (see [Man13]),
it is possible to produce another prehomogeneous space. This can be used to show
that C2 ⊗ C4 ⊗ C5 is GL2×GL4×GL5-prehomogeneous. It turns out that this
representation does not have a finite number of orbits.

Among prehomogeneous spaces with finitely many orbits, a large class is pro-
vided by parabolic representations. They are parametrized by the choice of a
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simple root αi of a simple Lie group (or Dynkin diagram) G. The Lie algebra g
of G can be decomposed as g = h⊕⊕α∈Φ gα, where h is a Cartan subalgebra, Φ
a system of roots with set of simple roots ∆ = {α1, . . . , αn}.

Definition 1.4.4. A Z-grading on g is a decomposition

g =
⊕
j∈Z

gj

such that [gj, gh] ⊂ gj+h.

Remark 1.4.5. Given a Z-grading, g0 is a Lie subalgebra acting on each gi.

Let Hi ∈ h be an element such that αj(Hi) = δij for j = 1, . . . , n. Then, one
obtains a Z-grading by defining

gj :=
⊕

α∈φ,α(Hi)=j
gα.

With this definition, gα belongs to gh if and only if α = ∑
j njαj with ni = h.

Moreover, h ⊂ g0. Actually, the semisimple part of the Lie subalgebra g0 can
be deduced by suppressing the simple root αi from the Dynkin diagram of g.
Denote by G0 the connected subgroup of G with Lie algebra g0. The following
result motivates our interest for this construction (see [Vin79]):

Theorem 1.4.6 (Vinberg). Consider a Z-grading induced by Hi ∈ h. The g0-
module g1 is irreducible. Moreover, G0 acts on g1 with a finite number of orbits.
In particular, g1 is G0-prehomogeneous.

Definition 1.4.7. A parabolic representation is a prehomogeneous space of the
form g1 described in Theorem 1.4.6.

Remark 1.4.8. We point out that a parabolic representation g−1 is contained
in the nilpotent cone of the simple Lie algebra g of G, and Theorem 1.4.6 is a
consequence of the finiteness of nilpotent orbits. These are defined as G-orbits of
nilpotent elements inside the Lie algebra g.

Example 1.4.9. By choosing G = SLn+1 and αi the ith simple root of the Dynkin
diagram An, one can see that the parabolic space g1 is isomorphic to the space
of matrices Mk,n+1−k. By using the Dynkin diagrams Cn and Dn with the choice
of the simple root αn, one obtains the spaces of symmetric and skew-symmetric
matrices. Other examples will be given in Chapter 3.

Remark 1.4.10. There is a nice geometric interpretation of the parabolic repre-
sentation g1 induced by Hi ∈ h. Indeed, consider the parabolic group Pi associated
to the i-th simple root of G, its Lie algebra pi and the Lie algebra of its Levi factor
li. Then

pi =
⊕
j≥0

gj
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as li-representations. Over the variety G/Pi, the tangent bundle TG/Pi is the homo-
geneous bundle associated to the P -representation g/pi which, as a li-representation,
is ⊕j<0 gj. Moreover g−1 is naturally the dual of g1 (via the Killing form).
Notice that a line passing through the point [Pi] ∈ G/Pi which is entirely

contained inside G/Pi naturally lives in P(TG/Pi,[Pi]). It turns out (see [LM03]) in
many cases that the variety of such lines is isomorphic to the unique closed Pi-orbit
inside

P(g−1) ⊂ P(g/pi) = TG/Pi,[Pi].

This gives a natural frame to introduce parabolic spaces via generalized Grassman-
nians.

The geometric method
In Chapter 3 we will be interested in orbit closures inside G-representations.

Weyman and his collaborators developed a method (the geometric technique, see
[Wey03]) to study the properties of such orbit closures. This method has proved
to be very efficient for studying parabolic orbit closures, and it is interesting to
us because it provides two fundamental tools, both of which can be relativized to
obtain informations on the orbital degeneracy loci (see [BFMT17a], [BFMT17b]
or Chapter 3).

The first one is a G-equivariant desingularization of an orbit closure, called a
Kempf collapsing. Let Y be a closed G-stable subvariety inside a G-representation
V . Moreover, suppose Y admits a resolution of singularities of the following type:
the desingularization of Y is given by the total space W of a (homogeneous)
vector bundle W over the homogeneous variety G/P . HereW ⊂ V := V ×G/P ,
and the morphismW → V is given by the first projection onto V :

V

��

W? _oo

((
pW

��
G/P

V Y? _oo

(1.1)

The map pW is therefore proper, surjective and birational; such a desingulariza-
tion is called a Kempf collapsing (Kempf having used it in [Kem76] to study
determinantal varieties).

Almost all orbit closures inside parabolic representations admit a desingular-
ization given by a Kempf collapsing; this may be false for some parabolic repre-
sentations deduced from E8.

Remark 1.4.11. Kempf collapsings need not be unique, for a given orbit closure,
as illustrated by Example 1.4.12.

Example 1.4.12. Let Me,f be the space of matrices which parametrises morphisms
Ce → Cf . The determinantal variety of matrices of rank at most 0 ≤ r ≤ min{e, f}
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is
Y r
e,f = {x ∈Me,f | rank(x) ≤ r}

It is the closure of the orbit of matrices of rank exactly r. Its singular locus is Y r−1
e,f ;

we describe now a Kempf collapsing for Y r
e,f . Indeed, consider the Grassmannian

Gr(e− r, e) of (e− r)-planes in Ce (this has to be thought of as parametrising the
kernel of the morphisms in Y r

e,f ). IfW = Q∗⊗Cf is the bundle on the Grassmannian,
denote by W ⊂Me,f ×Gr(e− r, e) its total space; then W is a Kempf collapsing of
Y r
e,f via the proper, birational morphism W ↪→Me,f ×Gr(e− r, e)→Me,f . From

this description, Y r
e,f is a variety of dimension r(e+f)− r2, singular in codimension

e + f − 2r + 1. Another Kempf collapsing for Y r
e,f is given by the total space of

W = (Ce)∗⊗U over Gr(r, f); in this case, the homogeneous variety is parametrizing
the images of the morphisms.

Remark 1.4.13. We recall that a desingularization π : Z ′ → Z is said to be
crepant if the relative canonical bundle KZ′/Z is trivial. In the case of a Kempf
collapsing, the crepancy condition becomes

KG/P = det(W ).

Using Kempf collapsings and under some additional hypothesis on the coho-
mology of the bundles involved, it is possible to produce a locally free resolution
of the ideal of Y ⊂ V ; this is achieved by pushing down a suitable locally free
resolution constructed over the variety G/P . Moreover, this method allows to
understand some properties of Y , namely if it is normal, with rational singulari-
ties, Cohen-Macaulay and Gorenstein. A famous example of such resolutions is
given by the Eagon-Northcott complex, or the more general Lascoux complex for
determinantal varieties. In [KW12], [KW13] and [KW], the geometric technique
is used to study orbit closures in parabolic representations of exceptional type
(the classical types having being dealt with by many authors, see [Wey03]).

1.5. Special varieties
This section is devoted to recalling some basic facts about the other protag-

onists of this work, together with homogeneous spaces: special varieties. By
special varieties we will mean Fano varieties and varieties with trivial canonical
bundle. Chapter 2 and Chapter 3 are both motivated by the attempt to construct
new interesting special varieties, and the subject of Chapter 4 is the study of a
particular class of Fano manifolds.

In what follows, we explain the strong relationships between homogeneous
spaces and Fano manifolds, which was one of the first motivations for this thesis.
This relationship is clearly showed by Mukai’s classification of Fano threefolds
(see [Muk02] for instance) as subvarieties of certain Grassmannians. In the sec-
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ond part of this section, we introduce Calabi-Yau varieties, hyper-Kähler mani-
folds, and we recall the Beauville-Bogomolov decomposition for varieties with
trivial canonical bundle.

1.5.1. Fano threefolds
A Fano variety is a variety whose anticanonical bundle is ample. Fano varieties

are rationally connected and simply connected. Examples of Fano varieties are
the projective space, Grassmannians and in general all rational homogeneous
spaces.

For each fixed dimension, there is only a finite number of families of Fano
manifolds. In dimension 2 Fano surfaces have been classified by Del Pezzo, while
in dimension 3 a classification has been given by Iskovskikh when the Picard
number is one (see [IP99]), and by Mori and Mukai when it is greater (see
[MM03]). In higher dimension the problem of describing all families is probably
too hard, even though there is an effort to classify Fano fourfolds (this is one of
the aims of the project 3C in G cited in the Introduction).

The classification given by Iskovskikh has been later reinterpreted by Mukai.
Mukai was able to bring to light the strong liaison between Fano varieties and
homogeneous spaces, or more precisely Grassmannians.

Indeed, for each family of prime Fano threefold of Picard number one, he could
produce a globally generated vector bundle F , say of rank r, living on a general
member X of the family. Therefore, one could define the morphism

ψF : X → Gr(r,H0(X,F )∗).

In fact ψF was an embedding of the Fano variety inside the Grassmannian. As a
matter of fact, he was able to describe all (families of) Fano threefolds as being
zero loci of certain homogeneous bundles over generalized Grassmannians. Most
of them turned out to be complete intersections in generalized Grassmannians,
as it is the case for the zero locus of a general section of O(1)5 over Gr(2, 6), or
of O(1

2)8 over Gr(5, 10), but not all of them.

Example 1.5.1. A family of Fano threefolds which have been studied from different
points of view is the so-called family V22. In Mukai’s interpretation, it can be seen
as the zero locus of a general section of (∧2U∗)3 over Gr(3, 7); by the Borel-Weil
theorem, it parametrizes 3-dimensional subspaces of C7 isotropic with respect
to three general skew-symmetric forms. We will refer to it as the trisymplectic
Grassmannian I3Gr(3, 7). In Chapter 4, inspired by this example, we study another
similar class of Fano varieties, i.e. bisymplectic Grassmannians.
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1.5.2. Varieties with trivial canonical bundle
There are three main categories of varieties which can be thought of as the

“building blocks" of Kähler varieties with trivial canonical bundle, as implied
by the Beauville-Bogomolov decomposition theorem: complex tori, Calabi-Yau
manifolds, and irreducible holomorphic symplectic manifolds. Complex tori of
dimension n are just compact quotients of Cn by a lattice. Let us examine the
other two classes in more detail.

For what concerns Calabi-Yau manifolds, in the literature various different def-
initions can be found; we will use the following one:

Definition 1.5.2. A manifold X with trivial canonical bundle is of Calabi-Yau
type if

H0(X,Ω0
X) ∼= H0(X,Ωdim(X)

X ) ∼= C,

H0(X,Ωk
X) = 0 for 1 ≤ k ≤ dim(X),

and its dimension is at least 3.

Remark 1.5.3. Calabi-Yau manifolds are manifolds of Calabi-Yau type which are
simply connected.

The condition on the dimension is required because K3 surfaces, which meet
the requirements of Definition 1.5.2, are considered to be irreducible holomor-
phic symplectic surfaces. This brings us to the last class of varieties we consider:

Definition 1.5.4. A Kähler manifold Z with trivial canonical bundle and dimension
2n is irreducible holomorphic symplectic, or hyper-Kähler, if

H0(Z,Ω∗Z) = C[σ]/σn+1,

where σ ∈ H0(Z,Ω2
Z) is everywhere nondegenerate.

As anticipated before, these definitions gain in importance if we consider the
following theorem (see [Bog74]):

Theorem 1.5.5 (Decomposition theorem). Let Y be a compact Kähler simply
connected manifold with KY = OY . Then

Y =
∏
i

Xi ×
∏
j

Zj

where
– Xi are simply connected Calabi-Yau manifolds;
– Zj are simply connected and irreducible holomorphic symplectic.

This result will be useful later to distinguish which of the varieties that we find
are of Calabi-Yau type and which are irreducible holomorphic symplectic.
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Example 1.5.6 (Hilbert scheme of points on K3 surfaces). Let X be a K3 surface.
We denote by X [n] the Hilbert scheme of n points on X, or equivalently of length
n subschemes of X. X [n] can be constructed as a desingularization of the nth-
symmetric product X(n), and has dimension 2n. Beauville showed in [Bea83] that
X [n] is a hyper-Kähler variety, thus providing an example (together with Kummer
generalized varieties) of hyper-Kähler varieties in each dimension. The second
Betti number of X [n] is b2(X [n]) = 23, therefore these varieties live in a family of
dimension 21 (dimension 20 if the family has projective members). As K3 surfaces
live in a family of dimension 20 (dimension 19 if the K3s are projective), the general
deformation of X [n] is not an Hilbert scheme of n points on a K3 surface.

When n = 2, X [2] is the blow-up of X(2) along the diagonal, which is its singular
locus. Examples of projective locally complete families of such fourfolds are X1
and X2, as explained in the Introduction.

When dealing with fourfolds, it is possible to understand if a variety with trivial
canonical bundle is a torus, a Calabi-Yau (CY) or a hyper-Kähler (HK) manifold
by computing the Euler characteristic of its trivial bundle:

Proposition 1.5.7. Suppose Y is a smooth projective fourfold with trivial canonical
bundle. If the Euler characteristic of the trivial bundle χ(OY ) is either two or three,
then Y is simply connected. Moreover:
– If χ(OY ) = 2, then Y is CY;
– If χ(OY ) = 3, then Y is IHS;

Proof. Let us first suppose to have proven that Y is simply connected. Then we
can apply Theorem 1.5.5. Therefore, our variety Y is a product of CY and IHS
manifolds, i.e. it is either a product of two K3 surfaces, or a CY fourfold, or a
IHS one. In the first case χ(OY ) = 4, in the second χ(OY ) = 2 and in the third
χ(OY ) = 3, thus proving the last assertion.
Next we turn to the proof of simply connectedness of Y . As a matter of fact,

a generalization of the decomposition Theorem 1.5.5 holds ([Bea83]): for any
compact Kähler manifold Y with trivial canonical bundle, there exists an étale
cover f : Y ′ → Y of degree d such that

Y ′ =
∏
i

Xi ×
∏
j

Zj ×
∏
k

Tk

where Xi are simply connected CYs, Zj are simply connected IHS’, and Tk are
complex tori. Moreover, a well-known formula says:

χ(Y ′,OY ′) = d χ(Y,OY ) .

Recall also that the Euler characteristic of a product is the product of the Euler
characteristics of the single factors, and that χ(OT ) = 0 for T a complex torus.
Therefore, if χ(OY ) is either two or three, then no factor of Y ′ can be a torus,

because χ(OY ′) 6= 0; as a consequence, for such a cover f : Y ′ → Y the degree is
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1, f is an isomorphism, and Y ∼= Y ′ is either CY or IHS, and in both cases it is
simply connected.

Remark 1.5.8. Notice that connectedness too is ensured by the hypothesis that
χ(OY ) = 2 or 3. In fact, the above proof shows that χ(OY ) cannot be equal to one.
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2. Zero loci in generalized
Grassmannians

As already pointed out in Section 1.5.1, homogeneous spaces can be conve-
niently used to provide examples of special varieties. The classification of Fano
threefolds is not an isolated case. The examples of families of hyper-Kähler four-
folds described in [BD85] and [DV10] are another manifestation of this phe-
nomenon, as explained in the Introduction.

In this chapter, we study fourfolds with trivial canonical bundle which are
zero loci of sections of homogeneous, completely reducible bundles over ordi-
nary, classical and exceptional Grassmannians. We give a complete classification
of those varieties, and we include also the analogous classification for surfaces
and threefolds. In doing so, we study some interesting behaviours of these vari-
eties (Section 2.1.3 and Section 2.4). The chapter includes a result on zero loci
of sections of irreducible bundles inside ordinary Grassmannians (see Section
2.1.3). In this framework we were able to prove that, in any dimension, the only
hyper-Kähler varieties are those of type X1 and X2 (defined in the Introduction).

Some of the results contained in this chapter can be found in [Ben18]. More
precisely the article includes the classification theorems in ordinary Grassman-
nians (Theorem 2.1.1, 2.3.1 and 2.3.4) and classical Grassmannians (Theorem
2.2.1, 2.3.2 and 2.3.5). On the contrary, all the material concerning irreducible
bundles (Section 2.1.3), the study of an isomorphism between Calabi-Yau three-
folds (Section 2.3.1) and of some families of K3 surfaces (Section 2.3.2), and the
classification in exceptional Grassmannians (Section 2.4) is new.

2.1. Fourfolds in ordinary Grassmannians
We will refer to Example 1.3.2 for notations on homogeneous bundles over

the ordinary Grassmannian. We will denote by Λi(E) the i-th exterior power of
the bundle E, and Si(E) the i-th symmetric power of E. Our first main theorem
is the following:

Theorem 2.1.1. Let Y be a fourfold with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated vector
bundle F over Gr(k, n). Up to the identification of Gr(k, n) with Gr(n− k, n), the
only possible cases are those appearing in Table B.1 in Appendix B.

In the classification we have put also the computation of χ(OY ) as it is the
quantity that permits to distinguish between CY and IHS manifolds, as the for-
mer satisfy χ(OY ) = 2 (H0(Y,Ω2

Y ) = 0), while the latter satisfy χ(OY ) = 3
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(H0(Y,Ω2
Y ) = C).

All the subvarieties found are CY manifolds, with the exception of the cases
(d7), (d5) and (b12), which we examine now. The case (b12) is the IHS fourfold
appearing in [BD85], while the case (d7) is the one appearing in [DV10].

The case (d5) already appears in [Rei72], where the variety of n-planes in the
intersection of two quadrics in a space of dimension 2n + 2 is proved to be an
abelian variety, the Jacobian variety of an hyperelliptic curve of genus n+ 1. So,
for (d5), Y is an abelian variety.

On the other hand, the case (d6) has χ(OY ) = 4 because it is not connected.
In fact it has two connected components, as if one considers the variety Y1 of
zeroes of a general section of S2U∗ in Gr(4, 8), it is the set of maximal subspaces
isotropic with respect to a general symmetric 2-form. It is well known that Y1
has two connected components. As a consequence, the connected components
of (d6) are two isomorphic CY manifolds, which can be seen as complete inter-
sections in the orthogonal Grassmannian OGr(4, 8). Notice that OGr(4, 8) in turn
is isomorphic to OGr(1, 8) because of the symmetries of the Dynkin diagram D4,
and OGr(1, 8) is a quadric in P7; the isomorphism is given by the embedding
of OGr(4, 8) in P7 defined by the line bundle O(1

2). Therefore each connected
component of (d6) is a complete intersection in P7.

Remark 2.1.2. As already stated in the Introduction, the previous classification
gives the analogous one for Fano varieties of dimension 5. Indeed, suppose Y and
F are as in Theorem 2.1.1, and F = L ⊕ F ′, where L is a homogeneous globally
generated line bundle. Then the zero locus of a general section of F ′ is a Fano
fivefold. Vice versa, consider a zero locus inside a Grassmannian which is a Fano
fivefold; an anticanonical section inside of it is a fourfold with trivial canonical
bundle, therefore appearing in Table B.1. A similar argument holds for all the
other classifications in Grassmannians.

As we mentioned in the Introduction, in [IIM16] zero loci inside ordinary
Grassmannians are studied as well; the authors are able to prove the following
finiteness result ([IIM16, Corollary 2.3]):

Theorem 2.1.3. For a fixed positive integer d > 0, there are at most finitely many
families of d-folds with trivial canonical bundle in Grassmannians which are zero
loci of completely reducible globally generated homogeneous vector bundles, up to
natural identifications among Grassmannians.

This indicates that an explicit classification of such subvarieties of Grassman-
nians in higher dimension is possible.
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2.1.1. Classification
The proof of the theorem will be divided into different lemmas and proposi-

tions which concern the subvarieties of Gr(k, n) for different choices of k and
n.

Notation 2.1.4. The notations will be similar to those used in [Küc95]. The Grass-
mannian Gr(k, n) will be thought of as the quotient G/Pk, where Pk is the maximal
parabolic subgroup containing the Borel subgroup of positive standard roots in
G = SL(n,C). Every irreducible homogeneous bundle is represented by its highest
weight. A weight is represented by β = (β1, . . . , βn) or by (β1, . . . , βk; βk+1, . . . , βn),
where

β = β1λ1 + β2(λ2 − λ1) + · · ·+ βn−1(λn−1 − λn−2)− βnλn−1,

and the λi’s are the fundamental weights for G = SL(n,C). All weights can be
renormalized so to have βn = 0.

A consequence of the homogeneous condition is that as soon as a homoge-
neous bundle admits non zero global sections, it is globally generated. Another
equivalent condition for a bundle to have global sections is the existence of a
G-representation for the dual of the weight representing the homogeneous bun-
dle: in this case, the G-representation in question is canonically isomorphic to
the space of global sections (see Theorem 1.3.4 and the remark following it).

Remark 2.1.5. As we work with globally generated bundles, from now on the
notation will change: to indicate a bundle with highest weight β as before, we will
write (−βk, . . . ,−β1; βk+1, . . . , βn), which is equivalent to taking the highest weight
of the dual representation. In this way, a bundle α = (α1, . . . , αn), according to the
new notation, is globally generated when α1 ≥ · · · ≥ αn ≥ 0, i.e. when the weight
α is dominant under the action of G.

Example 2.1.6. Over the Grassmannian Gr(3, 7) of 3-dimensional spaces in a 7-
dimensional space, the dual tautological bundle U∗ of rank 3 will be denoted by its
highest weight (1, 0, 0; 0, 0, 0, 0) = (1, 0, . . . , 0), the tautological quotient bundle Q
by (1, 1, 1; 1, 1, 1, 0), O(1) = Λ3U∗ by (1, 1, 1; 0, . . . , 0).

The rank of a bundle can be calculated explicitly:

rank(β1, . . . , βn) = dim(β1, . . . , βk)× dim(βk+1, . . . , βn)

where
dim(β1, . . . , βr) =

∏
1≤i<j≤r

j − i+ βi − βj
j − i

is the Weyl character formula (see [FH91, Chapter 24] for this formula and
similar ones for classical groups).

The formula comes from the fact that the rank of a homogeneous bundle over
G/P is the same as the dimension of the P -module representing it (see Section
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1.1). As the P -module is irreducible, it is actually an irreducible module of the
Levi factor of P , or of its Lie algebra, which is sl(k)⊕sl(n−k) for G/P = Gr(k, n).
Moreover the Weyl character formula gives the dimension of a sl(r)-module in
terms of its highest weight. Putting these facts together, we obtain the formula
for the rank in terms of the weight.

Remark 2.1.7. Analogous formulas for classical Grassmannians will be derived
in a similar way; it will therefore be necessary to understand what the Levi factor
of P is for symplectic and orthogonal Grassmannians.

The first three results have been proved in Küchle’s paper ([Küc95, Lemma 3.2,
Lemma 3.4, Corollary 3.5]). In what follows, we assume that the subvarieties of
Gr(k, n) we are constructing are zero loci of general sections of the homogeneous
bundle F . This bundle being completely reducible, it can be decomposed as a
direct sum F = ⊕iEi.

Lemma 2.1.8. One can assume that the following bundles over Gr(k, n) do not
appear as summands in F = ⊕iEi:
(i) the bundles (1, 0, . . . , 0) (respectively (1, . . . , 1, 0)) corresponding to U∗ (resp. Q
on Gr(n− k, n) ); (ii) if 2k > n the bundles (1, 1, 0, . . . , 0) and (2, 0, . . . , 0) (resp.
(1, . . . , 1, 0, 0) and (2, . . . , 2, 0) for 2k < n).

One defines:

dex(β) = ( |β|1
k
− |β|2
n− k

) rank(β) (2.1)

where |β|1 = ∑k
i=1 βi and |β|2 = ∑n

i=k+1 βi.

Lemma 2.1.9. For F = ⊕iEi we have

rank(F) =
∑
i

rank(Ei) = k(n− k)− 4 , (2.2)

and ∑
i

dex(Ei) = n . (2.3)

Proof. The first formula of this lemma is the same as in [Küc95, Lemma 3.4], on
the other hand the second is different as in this case one requires KY = OY .

However, it is worth giving a hint on how to prove (2.3). Let us fix an irreducible
P -module Vβ given by the weight β. Equation (2.3) is proved if we show that

det(Vβ) = Ldex(Vβ),

where L is the 1-dimensional representation associated to the highest weight
(1, . . . , 1; 0, . . . , 0). Now, the highest weight associated to det(Vβ) is the sum of all
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the weights of Vβ. Moreover, the space of weights is invariant under the action of
the Weyl group W of P , and for ordinary Grassmannians we have

W = Sk ×Sn−k,

where Sr stands for the symmetric group on r; the action on the weights is the
expected one. Therefore, it is straightforward to see that the weight associated to
det(Vβ) is

(dim(Vβ) |β|1
k
, . . . , dim(Vβ) |β|1

k
; dim(Vβ) |β|2

n− k
, . . . , dim(Vβ) |β|2

n− k
).

By rescaling, this weight is equal to (dex(β), . . . , dex(β); 0, . . . , 0), thus ending the
proof.

Remark 2.1.10. The same method used to prove (2.3) can be used when dealing
with symplectic and orthogonal Grassmannians. The only difference will be that
generally one of the factors of the Weyl group of P will be given by a certain
signed symmetric group: here again what matters is the Weyl group of the Levi
factor of P . Therefore, as we will see, the formula for dex depends on the type of
Grassmannian we consider; however, the relation

det(Vβ) = Ldex(Vβ)

which was proved above will hold in general.

Corollary 2.1.11. Using the correspondence irreducible bundles - weights, in the
same hypothesis as before:
(a) for each bundle Ei = (βi1, . . . , βin), we have βi1 = · · · = βik or |βi|2 = 0;
(b) dim(β1, . . . , βr) ≥

(
r
i

)
if βi > βi+1.

The strategy of the proof is the same as that of [Küc95]. We recall that the
bundle F that defines the fourfold lives on Gr(k, n), 2k ≤ n.

Proposition 2.1.12 (Classification for k ≤ 3). If k ≤ 3, then for F we have one
of the cases labelled by the letters (a), (b), (c) appearing in Table B.1.

Proof. k = 1.
If |β|2 6= 0, then rank(β) ≥ n− 1 > n− 1− 4, so the only possible case is (a).

k = 2.
The variety Gr(2, 4) is a Fano variety, so one can suppose that n ≥ 5. Calcu-

lating the rank, one can see that the only possible bundles Ei are (p, q; 0, . . . , 0),
(r, r; 1, 0, . . . , 0) for r ≥ 1, (s, s; 1, . . . , 1, 0) for s ≥ 2. If (s, s; 1, . . . , 1, 0) is present
as an addend, the only possibility is (b3) (if s ≥ 3, then dex(s, s; 1, . . . , 1, 0) ≥ n
). For the same reason, if (r, r; 1, 0, . . . , 0) is present, r = 1 and one has the
cases (b10)(.i). Then, one remains only with the bundles (p, q; 0, . . . , 0), for which
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dex
rank ≥ 1, which forces n ≤ 8. These are the remaining (b)-cases.
k = 3.
One has n ≥ 6, and, calculating the rank, for n ≥ 9 the possible bundles

are (p, q, r; 0, . . . , 0) for p ≥ q ≥ r, (p, q, r; 0, . . . , 0) 6= (1, 0, . . . , 0), 6= (0, . . . , 0);
(r, r, r; 1, 0, . . . , 0) for r ≥ 1; (s, s, s; 1, . . . , 1, 0) for s ≥ 2. An argument similar to
the one used when k = 2 shows that the only possible bundles are the (c)-cases.

Lemma 2.1.13 (“Reduction of cases"). If

rank(β)(|β|1 − 1) ≤ k2 + 4 (2.4)

and not considering the cases (d7) and (d8) in Table B.1, then the possible bundles
β representing Ei and appearing as addend of F for k, n− k ≥ 4 are the following:

(A) = (1, . . . , 1, 0; 0, . . . , 0)

(B) = (1, 1, 0, . . . , 0)
(C) = (2, 0, . . . , 0)

(Z) = (2, 1, . . . , 1; 0, . . . , 0)
(D) = (p, . . . , p; βk+1, . . . , βn)

Remark 2.1.14. If F = ⊕iEi, the expression k2 + 4 is equal to∑
i

(k(dex(Ei))− rank(Ei)) = kn− kn+ k2 + 4.

So, if one knows that all the terms in the sum are positive, one can apply the lemma
to each bundle appearing in F . This is the case, as we will see, of Proposition
2.1.15.

Proof. Let us suppose that the bundle β is not of type (D). If βk ≥ 2, then
rank(β) ≥ k and |β|1− 1 ≥ 2k, which gives a contradiction with (2.4). So, suppose
βk = 1. If β 6= (Z), it means that

rank(β)(|β|1 − 1) > k(k + 1),

which is a contradiction with (2.4). So one can suppose that βk = 0. If |β| ≥ 5,
as 2 rank(β) ≥ k(k − 1), we have a contradiction with (2.4). If |β| = 4, (2.4)
implies k = 4, but by studying the possible cases one sees that none satisfies (2.4).
So |β| ≤ 3. Apart from (B) and (C), there are cases (3, 0, . . . , 0) not satisfying
(2.4), (2, 1, 0, . . . , 0) not satisfying (2.4), and type (Y) = (1, 1, 1, 0, . . . , 0). This last
bundle satisfies (2.4) only for k = 4, 5, 6.

For k = 4, (Y)=(A). By studying the possible appearances of (Y) together with
the other bundles (A), (B), (C), (Z), (D), the only cases we obtain are (d7) and
(d8).
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Proposition 2.1.15 (Classification for k ≥ 4, |βi|2 = 0). Suppose k, n− k ≥ 4. If
the bundles appearing as summands in F = ⊕iEi all satisfy |βi|2 = 0, then the only
possible cases are (d1),(d2),(d3),(d4),(d6) of Table B.1.

Proof. The hypothesis permits to apply Lemma 2.1.13 (see also Remark 2.1.14).
Then the only possible bundles are those mentioned: (A), (B), (C), (Z), (D). Let
us define, for a bundle β, the quantity

ξ = ξ(β) = rank(β)(k( dex(β)
rank(β))− 1).

If (Z) is a summand, then

k2 + 4− ξ(Z) = 4,

and among the other bundles the only one which has ξ ≤ 4 is (D) for k = 5, p = 1.
But then n = dex(Z) + dex(D) = k + 2, and this case is in Proposition 2.1.12.
If (A) is a summand, we have

k2 + 4− ξ(A) = 4 + 2k.

Then another (A) cannot be added, otherwise, by computing ξ, k = 4 and n = 7,
and this case is in Proposition 2.1.12. Similarly by adding (C). With (B), it is only
possible to have k = 5 and n = 9, which is prohibited by Lemma 2.1.8, or k = 4,
which gives cases (d1) and (d9). Then, if there are just line bundles (D) in addition
to (A), by studying ξ we have p ≤ 2, and one can see that all the cases arising have
already been studied.
If (B) is a summand, then

k2 + 4− ξ(B) = 4 + k2 − k
2 .

Suppose moreover that there is another (B) (k2 + 4− 2ξ(B) = 4); then one can
have only a bundle of type (D) with p = 2 (case (d2)) or two bundles of type (D)
with p = 1 (case (d3)). If instead one supposes that there is a bundle of type (C),
one finds the only possibility to be (d4). Finally, by supposing to add just line
bundles, then their number must be k(n− k)− 4− rank(B), and the sum of their
dex must be equal to n− dex(B) = n− k + 1. By imposing dex

rank ≥ 1, which is true
for line bundles, and knowing that n ≥ 2k by Lemma 2.1.8, one finds for k the
equation k2 − k − 10 ≤ 0, which has no solution for k ≥ 4.
If (C) is a summand, then again

k2 + 4− ξ(C) = 4 + k2 − k
2 ;

by adding another (C), one gets only the case (d5): (2, 0, . . . , 0)⊕2 in Gr(4, 10).
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Therefore, let us suppose the other bundles are only line bundles. One must have
0 ≤ rank(F)− rank(C) ≤ n− (dex(C)) (for line bundles dex

rank ≥ 1). Moreover, by
Lemma 2.1.8, one can suppose n ≥ 2. Putting all together, one finds that the only
possible case is (d6).
If there are only bundles of type (D), as

n

k(n− k)− 4 = dex
rank ≥ 1,

and as k, n− k ≥ 4, no other case arises.

Before digging in the proof of the classification, let us explain the plan we
will follow. Proposition 2.1.12 deals with the classification when k ≤ 3, and an
argument of symmetry allows us to suppose that 2k > n. This will imply that all
remaining bundles F in the classification satisfy Lemma 2.1.13, which restricts
the possible addends of F to a finite set. The last step of the proof is to ensure
that the classification is complete, i.e. that all remaining F satisfy the hypothesis
of Proposition 2.1.15. This is done by a case by case analysis of the possible
combinations of addends of the type allowed by Lemma 2.1.13.

Proof of the classification. As a consequence of Proposition 2.1.12, we can suppose
k, n − k ≥ 4. Using the isomorphism of Gr(k, n) with Gr(n − k, n), we suppose
also 2k ≥ n. When 2k = n,

ξ = rank(β)(k(dex(β))− 1) = rank(β)((n− k)(dex(β))− 1),

and this symmetry implies that all the bundles satisfy Lemma 2.1.13. Then,
dropping the hypothesis |β|2 = 0, one only has to “symmetrize" the results found
in Proposition 2.1.15; this means that the cases (d2.1), (d3.1) and (d9.1) are to be
added to the classification.

So, from now on, 2k > n. As the expressions of the form (a, . . . , a; a, . . . , a) are not
considered, and βi ≥ βi+1, either (n−k)(|β|1−1) ≥ k|β|2 or (n−k)|β|1 ≥ k(|β|2+1),
and in both cases 2k > n implies that all the terms of the sum on the right side
of k2 + 4 = ∑

i ξ(E i) are positive. Then Lemma 2.1.13 can be applied. As we
have Proposition 2.1.15, and using Gr(k, n)←→ Gr(n− k, n), it remains to deal
just with the following situation: there exists i0 for which |βi0|2 = 0 (and the
corresponding bundle is not of rank one), but this doesn’t hold for every i.

By Lemma 2.1.8, this bundle must be either (A) or (Z). As k ≥ 5, by computing
ξ, one cannot have: (A) ⊕ (Z), (Z) ⊕ (Z), (A) ⊕ (A). For the bundles of type (D),
let us change notation:

(p, . . . , p; βk+1, . . . , βn) −→ (0, . . . , 0;−δ1, . . . ,−δn−k)←→ (δn−k, . . . , δ1; 0, . . . , 0)

where←→ stands for Gr(k, n)←→ Gr(n−k, n). Then, if βi0 = (Z), k2 +4−ξ(Z) =
4; but the presence of a bundle δ which is of rank 6= 1 leads to a contradiction;
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indeed
rank(δ)( k

n− k
|δ| − 1) > (n− k)(|δ| − 1) ≥ 4(|δ| − 1),

where |δi| = ∑
j δ

i
j.

As a result, the bundles present as summands of F are: one of type (A) and
the others of type (D), with at least one which is not a line bundle. One has
k2 + 4− ξ(A) = 4 + 2k. Then the condition ∑i 6=i0(ξ(βi)) + ξ(A) = k2 + 4 becomes

∑
i 6=i0

( k

n− k
|δi| − 1) rank(δi) = 4 + 2k.

If for the bundle δ which is not of rank one δ1 ≥ 1, then

rank(δ)( k

n− k
|δ| − 1) > k(n− k) ≥ 4k,

which is a contradiction.
Therefore δ1 = 0. Define

ψ(δ) = rank(δ)( k

n− k
|δ| − 1).

If |δ| ≥ 4, ψ(δ) ≥ 3k+1. So, one is led to consider |δ| = 2, 3. With a similar estimate,
one can eliminate δ = (2, 1, 0, . . . , 0) and (3, 0, . . . , 0). The bundle (1, 1, 1, 0, . . . , 0)
is possible just for n− k = 4; but then

n− dex(A)− dex(δ) = 2 , k(n− k)− 4− rank(A)− rank(δ) = 3k − 8,

and one easily verifies that neither line bundles nor the bundles β = (1, . . . , 1, 0, 0),
(2, . . . , 2, 0) can be added to give new cases in the classification. Therefore δ = 2
and coming back to the notation with β, the last cases to study are those with
(A)⊕(1, . . . , 1, 0, 0) or (A)⊕(2, . . . , 2, 0).

If (A)⊕(2, ..., 2, 0) is a factor of F , then n−dex(A)−dex(2, ..., 2, 0) = 0, so there
cannot be other bundles. Then equation (2.2) gives

0 = 4kn−n2−3k2−n−k−8 = −(n−2k)2 +k2−n−k−8 = k2−a2 +a−8−3k

where a = 2k−n. Integer solutions for k are given only if 4a2−4a+41 = b2 = c2+40,
where c = 2a− 1, and b is an integer. By writing down all the integer solutions for
(b+ c)(b− c) = 40, none gives new cases.

If (A)⊕(1, ..., 1, 0, 0) is a factor of F , then n− dex(A)− dex(1, ..., 1, 0, 0) = 2, so
there cannot be summands other than (A), (1, ..., 1, 0, 0) and line bundles. Then
k(n− k)− 4− rank(A)− rank(1, ..., 1, 0, 0) can be only 2 or 1, and equation (2.2)

41



gives

0 = 4kn−n2−3k2 +n−3k− c = −(n−2k)2 +k2 +n−3k− c = k2−a2−a− c−k

where a = 2k − n, and c can be 10 or 12. Integer solutions for k are given only if
4a2 + 4a+ 4c+ 1 = b2 = d2 + 4c, where d = 2a+ 1, and b is an integer. By writing
down all the integer solutions for (b+ d)(b− d) = 4c, for c = 10, 12, none gives new
cases.

Remark 2.1.16. Having dealt with the combinatorics of the problem, we turn
to the geometry. All the bundles we have considered so far, and appearing in
Table B.1, are globally generated (Remark 2.1.5). Therefore, by applying the usual
Bertini theorem, our subvarieties with trivial canonical bundle are smooth. The
same will hold when dealing with the classical Grassmannians, as in that case too
all the bundles considered will be globally generated.

2.1.2. CY vs IHS
We want now to show how to distinguish between CY and IHS manifolds in an

efficient way because we have to deal with a great number of cases. Actually for
this, by Proposition 1.5.7, it will be enough to compute the Euler characteristic
of the trivial bundle of the variety Y with trivial canonical bundle in question.

For the actual computation of χ(OY ) it is possible to use the Hirzebruch-Riemann-
Roch theorem, which gives:

χ(OY ) =
∫
Y

td(Y )

where td(Y ) = td(TY ) is the todd class of the tangent bundle. SCHUBERT2
allows to compute easily these quantities for subvarieties of Grassmannians.

Another aspect of these varieties that can be studied is their Hodge numbers.
A tool which is useful in this sense is the Koszul complex for a variety Y which
is the zero locus of a section of a vector bundle F over another variety G. If the
bundle has rank r, and codimG(Y ) = r, then one has the exact sequence:

0→ ΛrF∗ → Λr−1F∗ → · · · → Λ2F∗ → F∗ → OG → OY → 0 .

Using this complex, tensoring it by any other bundle, it is possible to find the
cohomology groups of the restriction of the bundle to Y . Moreover, one can use
the short exact sequence

0→ F∗|Y → Ω1
G|Y → Ω1

Y → 0

to study the cohomology groups of the cotangent bundle of Y . This is not enough
in general; one needs to know the cohomology groups on the variety G. But for
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1
0 0

0 1 0
0 0 0 0

1 145 628 145 1
0 0 0 0

0 1 0
0 0

1

Table 2.1. – Hodge diamond of case (c6) in Table B.1

this it is possible, as G = Gr(k, n) and F is homogeneous, to use Bott’s theorem
([Bot57], [Küc95, Theorem 2.3] for the version that is needed here).

Example 2.1.17. It is a (lengthy) exercice to compute the Hodge Diamond of case
(c6) in Table B.1; the result is displayed in Table 2.1.

However, this method takes some time to be employed, though it is not compli-
cated using the Littlewood-Richardson rule. Therefore we decided not to include
computations of cohomology groups apart from when necessary.

2.1.3. Zero loci of Irreducible bundles in ordinary
Grassmannians and hyper-Kähler manifolds

The examples of Beauville-Donagi and Debarre-Voisin may suggest that other
HK of dimension 4 may exist which are zero loci of homogeneous bundles over
ordinary Grassmannians. We proved this is false for completely reducible bun-
dles. It should be noted, however, that the two examples arise by considering
homogeneous bundles which are irreducible. One could drop the hypothesis
of dimension 4 and keep the irreducibility condition, and try to solve the same
problem. This is the motivation for what follows.

Consider a variety Y ⊂ Gr(k, n) with trivial canonical bundle which is the zero
locus of a general section of an irreducible homogeneous bundle F . By counting
dimensions, and up to the isomorphism with Gr(n− k, n), we can suppose that

F = Sλ1,...,λkU∗.

In the above expression, Sλ1,...,λk( · ) denotes the Schur functor associated to Λ :=
(λ1, ..., λk), where λ1 ≥ ... ≥ λk are non-negative integers. Let us denote λ :=
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∑
i λi; the rank of F depends only on Λ. Then, we have the following formulas:

k det(F ) = rank(F )λ, (2.5)

dim(Y ) = k(n− k)− rank(F ).
The condition KY = OY then, by the adjunction formula, becomes

n = rank(F )λ
k
.

We will use the Koszul complex in order to find when such an Y may be HK.
In fact, we can ask ourselves when H2(Y,OY ) ∼= C. By looking at the Koszul
complex, this is possible only if, for a certain u ≤ rank(F ),

Hu+2(∧uF ∗) ∼= C⊕ {eventual other terms}. (2.6)

Therefore, let us study the cohomology of ∧uF ∗ = ∧u(Sλ1,...,λkU). We have that

∧u(Sλ1,...,λkU) = ⊕ Sµ1,...,µkU

for a finite number of non-increasing sequences (µ1, ..., µk) such that µ := ∑
i µi =

λu. By Bott’s theorem, the (u+ 2)−cohomology of Sµ1,...,µkU is isomorphic to C if
and only if there exists an integer 1 ≤ j ≤ k such that

j(n− k) = u+ 2 ,

µi = n− k + j for i ≤ j and

µi = j for i > j .

Now, as µ = λu, one finds the relation

j = 2λ
(λ− 1)n− kλ.

The inequality j ≥ 1 gives the inequality which bounds the number of cases to
study, i.e.

n ≤ (2 + k) λ

λ− 1 . (2.7)

This is the right bound to study; actually, by imposing condition (2.5), we get:

rank(F ) ≤ (2 + k) k

λ− 1 . (2.8)

But rank(F ) grows fast with λ, which can be supposed to be ≥ 3. In what follows
we apply this inequality to show that, fixing the "form" of Λ, we can find all the
cases in which the variety Y may be HK. Before, let us see some examples
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Example 2.1.18 (Beauville-Donagi generalized). We study here the case where

F = Sλ1,...,λkU∗ = Sλ,0,...,0U∗ = SλU∗

is the λ-th symmetric power of U∗. In this hypothesis,

rank(F ) =
(
k + λ− 1

λ

)
.

Then one can apply (2.8). For example, in the case λ = 3, one gets k ≤ 2, and
therefore only the Beauville-Donagi case (type X1). If λ = 4, then k ≤ 1.
Example 2.1.19 (Debarre-Voisin generalized). In this case

F = Sλ1,...,λkU∗ = S1,...,1,0,...,0U∗ = ∧λU∗

is the λ-th exterior power of U∗ (λ ≤ k). In this hypothesis,

rank(F ) =
(
k

λ

)
.

Then, by applying (2.8) for example with λ = 3, we get k ≤ 6. Again, the only
relevant solution is the Debarre-Voisin example (type X2). If λ = 4, then k ≤ 6;
the only possible solution is k = 6, but in this case the dimension of Y is odd.

Theorem 2.1.20. Let Y be the zero locus of a general section of an irreducible
homogeneous bundle F = SΛU∗ over the ordinary Grassmannian. If Y is hyper-
Kähler, then it is of type X1 or X2, or it is a quartic inside P3.

The proof will be split in several (eleven!) lemmas which deal with different
Λ’s. We will always suppose that Y is the zero locus of a general section of a
irreducible bundle F = SΛU∗ over the ordinary Grassmannian Gr(k, n). For the
lemmas, we will assume that F is not a line bundle.

Lemma 2.1.21. If λi 6= λi+1 with i ≥ 3 and k − i ≥ 3, and Y is HK, then Y is
of type X2.

Proof. The hypothesis implies k ≥ 6 and λ ≥ 3. Then, equation 2.8 implies k ≤ 6.
For k = 3, the only possibility is Λ = (1, 1, 1, 0, 0, 0), i.e. the Debarre-Voisin
case.

Lemma 2.1.22. If λ2 ≥ λ3 + 2 (respectively λk−2 ≥ λk−1 + 2), k ≥ 4, and Λ does
not satisfy the hypothesis of the previous lemma, then Y is not HK.

Proof. We have λ ≥ 4 and rank(F ) ≥ rank(S2,2,0,...,0U∗). This is computable using
the Weyl character formula, and with equation 2.8 it implies that k ≤ 2, which is
not possible.
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Lemma 2.1.23. If λ1 6= λ2 6= λ3 (respectively λk−2 6= λk−1 6= λk), k ≥ 4, and Λ
does not satisfy any of the hypothesis of the previous lemmas, then Y is not HK.

Proof. We have λ ≥ 3 and rank(F ) ≥ rank(S2,1,0,...,0U∗). Therefore, using equation
2.8, we have that k ≤ 3, which is not possible.

Lemma 2.1.24. If λ2 6= λ3 and λk−2 6= λk−1, k ≥ 4, and Λ does not satisfy any
of the hypothesis of the previous lemmas, then Y is not HK.

Proof. We have λ ≥ 4 and rank(F ) ≥ rank(S2,2,1,...,1,0,0U∗). Therefore, using
equation 2.8, we have that k ≤ 3, which is not possible.

Lemma 2.1.25. If λ2 6= λ3 and λk−1 6= λk (respectively λ1 6= λ2 and λk−2 6= λk−1),
k ≥ 4, and Λ does not satisfy any of the hypothesis of the previous lemmas, then Y
is not HK.

Proof. We have λ ≥ 3, and rank(F ) ≥ rank(S2,1,...,1,0,0U∗). Therefore, using
equation 2.8, we have that k ≤ 3, which is not possible.

Lemma 2.1.26. If λ1 ≥ λ2 + 3 (respectively λk−1 ≥ λk + 3), Λ does not satisfy
any of the hypothesis of the previous lemmas and Y is HK, then Y is of type X1.

Proof. We have λ ≥ 3, and rank(F ) ≥ rank(S3,0,...,0U∗). Therefore equation 2.8
implies k ≤ 2. Then, k = 2 gives only the Beauville-Donagi case.

Lemma 2.1.27. If λ1 ≥ λ2 + 2 and λk−1 6= λk (respectively λ1 6= λ2 and λk−1 ≥
λk + 2), k ≥ 3, and Λ does not satisfy any of the hypothesis of the previous lemmas,
then Y is not HK.

Proof. We have λ ≥ 4, and rank(F ) ≥ rank(S3,1,...,1,0U∗). Therefore equation 2.8
implies k ≤ 1, which is not possible.

Lemma 2.1.28. If λ1 ≥ λ2 + 1 and λk−1 ≥ λk + 1, k ≥ 3, and Λ does not satisfy
any of the hypothesis of the previous lemmas, then Y is not HK.

Proof. We have λ ≥ 3, and rank(F ) ≥ rank(S2,1,...,1,0U∗). Therefore equation 2.8
implies k ≤ 2, which is not possible.

Lemma 2.1.29. If λ1 ≥ λ2 + 2 (respectively λk−1 ≥ λk + 2), k ≥ 2, and Λ does
not satisfy any of the hypothesis of the previous lemmas, then Y is not HK.

Proof. We have λ ≥ 2, and rank(F ) ≥ rank(S2,0,...,0U∗). If λ ≥ 2 + k as for
Λ = (3, 1, . . . , 1), then k ≤ 1 by equation 2.8.

If λ ≥ 2k − 2 and k ≥ 3 as for Λ = (2, . . . , 2, 0), then k ≤ 3; the only possibility
is F = S2,2,0 in Gr(3, 8), whose dimension is odd (equal to nine).

Finally, if Λ = (2, 0, . . . , 0), then equation 2.5 implies n = k+ 1. But a section of
S2U∗ over Gr(k, k + 1) is empty, as there exists no k-plane isotropic with respect
to a non-degenerate symmetric form over a space of dimension k + 1.
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Lemma 2.1.30. If λ2 ≥ λ3 +1 (or λk−2 ≥ λk−1 +1), k ≥ 4, and Λ does not satisfy
any of the hypothesis of the previous lemmas, then Y is not HK.

Proof. We have λ ≥ 2. If Λ = (1, 1, 0, . . . , 0), then equation 2.5 implies n < k.
If Λ = (1, . . . , 1, 0, 0), equation 2.8 implies k ≤ 5. In the case k = 5, we have
∧3U∗ over Gr(5, 6), for which the zero locus of a general section is empty.
If λ2 6= λ3 and λk ≥ 1, then λ ≥ 6 and rank(F ) ≥ rank(S2,2,1,...,1U∗). Equation

2.8 implies k ≤ 3, which is not possible.

Lemma 2.1.31. If λ1 ≥ λ2 +1 (respectively λk−1 ≥ λk +1), and Λ does not satisfy
any of the hypothesis of the previous lemmas, then Y is not HK.

Proof. In the hypothesis we made, we have that Λ = (a + 1, a, . . . , a). Equation
2.5 implies n = λ, and therefore λ ≥ k. If Λ = (2, 1, . . . , 1), we have n = k + 1.
But in this case Y is 0-dimensional.
If λ ≥ 2k − 1 and k ≥ 3 as for Λ = (2, . . . , 2, 1), equation 2.8 implies k ≤ 3, i.e.

actually k = 3, n = 5, Λ = (2, 2, 1). But in this case Y is 5-dimensional, so it
cannot be HK (odd dimension).

Proof of Theorem 2.1.20. The weight Λ either satisfies the hypothesis of the lemmas
which go from Lemma 2.1.21 to Lemma 2.1.31, either gives a rank one bundle F .
In this last hypothesis, Y is an hypersurface in Gr(k, n), and therefore it is HK
only when it is a K3 quartic surface in P3.

2.2. Fourfolds in classical Grassmannians
In this section we study subvarieties of classical, i.e. symplectic and orthogo-

nal, Grassmannians, showing that a result similar to Theorem 2.1.1 holds. The
geometry of these isotropic Grassmannians is well known (see [FP98, Chapter 6]
for some basic properties). They belong to the class of flag manifolds, for which
a good reference is [Bri05]. Their classical and quantum cohomology has been
the subject of several studies (for instance, see [BKT09]).

We will refer to Example 1.3.3 for notations on homogeneous bundles over
the classical Grassmannians. The main theorem is the following.

Theorem 2.2.1. Let Y be a fourfold with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated
vector bundle F over the symplectic Grassmannian IGr(k, 2n) (respectively the
odd orthogonal Grassmannian OGr(k, 2n+ 1), the even orthogonal Grassmannian
OGr(k, 2n)), and which does not appear in the analogous classification for the
ordinary Grassmannian. Up to identifications, the only possible cases are those
appearing in Table B.2 (respectively Table B.3, Table B.4).
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Remark 2.2.2. The varieties Y appearing in Theorem 2.2.1 are smooth (see
Remark 2.1.16).

Remark 2.2.3. All the cases studied refer to subvarieties of classical Grassmanni-
ans which are the quotient of a classical group G by a parabolic subgroup associated
to a single simple root (see Definition 1.1.1). So, we have skipped the classification
of subvarieties of OGr(n− 1, 2n), because in this case the corresponding parabolic
subgroup is associated to the last two simple roots of the Dynkin diagram Dn. How-
ever, for the sake of completeness we have also reported the analogous classification
for OGr(n− 1, 2n) at the end of this section.

Remark 2.2.4. It is well known that the Grassmannians OGr(n− 1, 2n− 1) and
OGr(n, 2n) are isomorphic. But the bundles which are homogeneous in one case
may not be homogeneous in the other. For example, consider Λ2U∗ on OGr(n, 2n),
which is the tangent bundle. Pulling back this bundle via the isomorphism gives the
tangent bundle T on OGr(n− 1, 2n− 1), which is not a priori the second exterior
power of a vector bundle homogeneous with respect to so(2n − 1), and is not
irreducible. On the contrary, O(1) on OGr(n, 2n) pulls back to the corresponding
O(1) on OGr(n− 1, 2n− 1), and the same for O(1

2). So, referring to Table B.3 and
Table B.4, one can easily identify cases (oz3) and (oy1), (oz4) and (oy5), (oz5) and
(oy4), (oz7) and (oy1.1).

We break the classification given by Theorem 2.2.1 into three parts, which cor-
respond to subvarieties in symplectic, odd and even orthogonal Grassmannians.
Furthermore, the method used to understand if the varieties we have found are
CY or IHS is the one already used in Section 2.1.2. Indeed, we want to apply
Proposition 1.5.7. In order to do so, we need to compute the Euler characteristic
of the trivial bundle of the variety. This requires some technical facts about the
cohomology of classical Grassmannians; in Appendix A we reported the details
of how to do such a computation.

2.2.1. Symplectic Grassmannians
The symplectic Grassmannian IGr(k, 2n) will be thought of as the quotient

G/Pk, where Pk is the maximal parabolic subgroup containing the standard Borel
subgroup of positive roots in G = Sp(2n,C). Every irreducible homogeneous
bundle is represented by its highest weight. A weight is represented by β =
(β1, . . . , βn) or by (β1, . . . , βk; βk+1, . . . , βn) when this notation is needed, where

β = (β1 − β2)λ1 + λ2(β2 − β3) + · · ·+ λn−1(βn−1 − βn) + λnβn,

and the λi’s are the fundamental weights for G = Sp(2n,C). Notice that the
parabolic algebra Lie(Pk) has Levi factor sl(k)⊕ sp(2(n− k)) for k 6= 1, n, which
is straightforward by looking at the Dynkin diagram.
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Notation 2.2.5. As we work with globally generated bundles, from now on the
notation will change: to indicate a bundle with highest weight β as before, we will
write (−βk, . . . ,−β1; βk+1, . . . , βn), which is equivalent to taking the highest weight
of the dual representation. In this way, a bundle α = (α1, . . . , αn), according to the
new notation, is globally generated when α1 ≥ · · · ≥ αn ≥ 0, i.e. when the weight
α is dominant under the action of G. To understand why we use this “dualized"
notation, refer to the explication before Remark 2.1.5.
Example 2.2.6. Over the symplectic Grassmannian IGr(3, 14), the dual tautological
bundle U∗ of rank 3 will be denoted by (1, 0, 0; 0, 0, 0, 0) = (1, 0, . . . , 0), and the
tautological “orthogonal" bundle U⊥/U of rank 8 by (0, 0, 0; 1, 0, 0, 0).

The dimension of a bundle can be calculated explicitly: suppose k 6= 1, n;

rank(β1, . . . , βn) = dimsl(k)(β1, . . . , βk)× dimsp(2(n−k))(βk+1, . . . , βn),

where
dimsl(r)(β1, . . . , βr) =

∏
1≤i<j≤r

j − i+ βi − βj
j − i

,

and

dimsp(2r)(β1, . . . , βr) =
∏

1≤i<j≤r

j − i+ βi − βj
j − i

∏
1≤i≤j≤r

2r + 2− j − i+ βi + βj
2r + 2− j − i

are the Weyl character formula relative to the corresponding Lie algebras (see
[FH91, Chapter 24, Equation 24.19]). This formula is a consequence of the form
of the Levi factor of P and of Remark 2.1.7.

One defines:

dex(β) = ( |β|1
k

) rank(β)

where |β|1 = ∑k
i=1 βi. Then, similarly to the case for the ordinary Grassmannian

(see Remark 2.1.10),
det(β) = O(dex(β)).

Therefore, fourfolds with trivial canonical bundle correspond to homogeneous
vector bundles F = ⊕iEi, with

∑
i

rank(Ei) = k(2n− k)− k(k − 1)
2 − 4 , (2.9)

∑
i

dex(Ei) = 2n− k + 1 . (2.10)

49



Classification in symplectic Grassmannian

We recall that IGr(k, 2n) is embedded naturally in Gr(k, 2n) as the zero locus
of a general section of Λ2U∗ (see Example 1.3.6). The following lemma is useful
to avoid repeating cases already considered in Theorem 2.1.1 and will be used
throughout the proof of the classification.

Lemma 2.2.7. Suppose F = ⊕iEi is as in the hypothesis of Theorem 2.2.1. In
order to find new varieties in IGr(k, 2n) with respect to the case of the ordinary
Grassmannian, it is necessary that for at least one bundle Ei = βi, |βi|2 6= 0.

Proof. The tautological bundle over IGr(k, 2n) is the restriction of the tautological
bundle over Gr(k, 2n). Similarly, the bundle represented by the weight β =
(β1, . . . , βk, 0, .., 0) over the symplectic Grassmannian is the restriction of the bundle
represented by the same weight β over the ordinary Grassmannian. Therefore if
for all i, |βi|2 = 0, the resulting fourfold is already the zero locus of a homogeneous
bundle over Gr(k, 2n); as a consequence it has already been considered in Theorem
2.1.1

So, one has to suppose that k 6= n. Moreover, if k = 1, IGr(1, 2n) = Gr(1, 2n),
so one can also suppose k 6= 1.

One can assume that (U∗)⊕2 over IGr(k, 2n) does not appear as summand in
F = ⊕iEi; in fact, taking a zero section locus of this bundle in IGr(k, 2n) is
equivalent to restricting to the space IGr(k, 2(n− 1)).

Finally, remark that for any bundle E globally generated summand of F (also
for the odd and even orthogonal Grassmannians),

dex(E)
rank(E) = |β|1

k
≥ 1
k
. (2.11)

The proof now consists in studying cases with low k (in IGr(k, 2n)), and then
eliminating any other possibility.

Proposition 2.2.8 (Classification for k ≤ 3). If k ≤ 3, as suitable F satisfying
the hypothesis of Theorem 2.2.1 one has all and only the bundles appearing in Table
B.2.

Proof. k = 2
In this case rank(F) = 4n− 9, and dex(F) = 2n− 1. If one has the bundle λ,

with λ1 6= λ2 and |λ|2 6= 0, then

rank(λ) ≥ 2(2(n− 2)) = 4n− 8,

which is impossible; so, by checking the dimensions of the corresponding modules,
and comparing with (2.9) and (2.10), one remains with the bundles (p, q; 0, . . . , 0)
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for p ≥ q, (p, p; 1, 0, . . . , 0) for n ≥ 3, and finally for n = 4 with those mentioned
and with (p, p; 1, 1). Then one checks that this gives the bundles (sb) for n = 3, 4.
For n > 4, one knows that there must be one summand of the form (p, p; 1, 0, . . . , 0),
and one sees that (2.10) implies p = 1. But then

dex(F)− dex((1, 1; 1, 0, . . . , 0))
rank(F)− rank((1, 1; 1, 0, . . . , 0)) = 3

2n− 5 ≥
1
2

by (2.11), which means n = 5, for which one can check by hand that there is no
other possibility.
k = 3
In this hypothesis rank(F) = 6n − 16, and dex(F) = 2n − 2. Doing the

computation by hand, for n = 4 one finds all the cases (sc). For a bundle β such
that there exists 1 ≤ i ≤ k − 1 such that βi < βi+1 and |β|2 6= 0, the minimal
value of dex corresponds to the bundle (2, 1, 1; 1, 0, . . . , 0). Equation (2.10) then
implies that it cannot appear for n ≥ 5. Then one only has (p, q, r; 0, . . . , 0) or
(p, p, p; βk+1, . . . , βn), and βk+1 6= 0. As a consequence of (2.11), there is at least
once the bundle (1, 0, . . . , 0), therefore

rank(F)− rank((1, 0, . . . , 0)) = 6n− 19 , dex(F)− dex((1, 0, . . . , 0)) = 2n− 3.

This last equation gives as the only possibility for the second type bundles that
p = 1, and for n ≥ 6, |β|2 = 1. Studying separately n = 5 and n ≥ 6 one checks
that there are no other cases.

Proof of the classification of Table B.2. As a consequence of the previous proposi-
tion, it is sufficient to show that for k ≥ 4, there is no bundle F with the properties
required in Theorem 2.2.1. As one knows rank(F) and dex(F), one finds that,
except for the case k = 4, n = 5, one of the summands must be (1, 0, .., 0) (otherwise
k dex(F) ≥ 2 rank(F)). As there cannot be two such bundles, one can write

dex(F)− dex((1, 0, . . . , 0))
rank(F)− rank((1, 0, . . . , 0)) ≥

2
k
,

which gives n ≤ k+ 1
2 + 4

k
. This implies that the only cases that have to be studied

are: (k, n) = (4, 5), (5, 6), (6, 7), (7, 8), (8, 9). If (k, n) = (4, 5), as for at least one
bundle β5 6= 0, a similar reasoning on rank

dex tells us that there must be one bundle
(1, 0, . . . , 0). Then, simple combinatorics prevent any bundle to have the good
properties. The remaining cases can be inspected explicitly.

2.2.2. Odd Orthogonal Grassmannians
The odd orthogonal Grassmannian OGr(k, 2n + 1) will be thought of as the

quotient G/Pk, where Pk is the maximal parabolic subgroup containing the stan-
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dard Borel subgroup of positive roots in G = SO(2n + 1,C). Every irreducible
homogeneous bundle is represented by its highest weight. A weight is repre-
sented by β = (β1, . . . , βn) or by (β1, . . . , βk; βk+1, . . . , βn) when this notation is
needed, where

β = (β1 − β2)λ1 + λ2(β2 − β3) + · · ·+ λn−1(βn−1 − βn) + 2λnβn,

the λi’s are the fundamental weights for SO(2n+1,C), and the βi’s are all integers
or all half integers. Notice that the parabolic algebra Lie(Pk) has Levi factor
sl(k) ⊕ so(2(n − k) + 1) for k 6= 1, n, which is straightforward by looking at the
Dynkin diagram.

Notation 2.2.9. As we work with globally generated bundles, from now on the
notation will change: to indicate a bundle with highest weight β as before, we will
write (−βk, . . . ,−β1; βk+1, . . . , βn), which is equivalent to taking the highest weight
of the dual representation. In this way, a bundle α = (α1, . . . , αn), according to the
new notation, is globally generated when α1 ≥ · · · ≥ αn ≥ 0, i.e. when the weight
α is dominant under the action of G. To understand why we use this “dualized"
notation, refer to the explication before Remark 2.1.5.
Example 2.2.10. Over the orthogonal Grassmannian OGr(3, 15), the dual tautologi-
cal bundle U∗ of rank 3 will be denoted again by (1, 0, 0; 0, 0, 0, 0), the tautological
“orthogonal" bundle U⊥/U of rank 9 by (0, 0, 0; 1, 0, 0, 0). With T+ 1

2
we will denote

the bundle coming from the representation (−1
2 , . . . ,−

1
2 ; 1

2 , . . . ,
1
2).

The dimension of a bundle can be calculated explicitly: suppose k 6= 1, n;

rank(β1, . . . , βn) = dimsl(k)(β1, . . . , βk)× dimso(2(n−k)+1)(βk+1, . . . , βn),

where

dimso(2r+1)(β1, . . . , βr) =
∏

1≤i<j≤r

j − i+ βi − βj
j − i

∏
1≤i≤j≤r

2r + 1− j − i+ βi + βj
2r + 1− j − i

is the Weyl character formula (see [FH91, Chapter 24, Equation 24.29]). This
formula is a consequence of the form of the Levi factor of P and of Remark 2.1.7.
A similar formula holds when k = 1, n.

The definition of the function dex is the same as before (see Remark 2.1.10).
Therefore, fourfolds with trivial canonical bundle correspond to homogeneous
vector bundles F = ∑

i Ei, with

∑
i

rank(Ei) = k(2n+ 1− k)− k(k + 1)
2 − 4 , (2.12)

∑
i

dex(Ei) = 2n− k . (2.13)
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Classification in odd orthogonal Grassmannian

We recall that OGr(k, 2n+1) is embedded naturally in Gr(k, 2n+1) as the zero
locus of a general section of S2U∗ (see Example 1.3.6). The following lemma is
similar to Lemma 2.2.7.

Lemma 2.2.11. Suppose F = ⊕iEi is as in the hypothesis of Theorem 2.2.1. In
order to find new varieties in OGr(k, 2n+ 1) with respect to the case of the ordinary
Grassmannian, it is necessary that for at least one bundle Ei = β, |β|2 6= 0 or the
βi’s are not integers (they can be half integers).
Proof. The proof is the same as the one for Lemma 2.2.7. Notice only that half
integer weights are associated to spin representations.

One can assume that (U∗) over OGr(k, 2n + 1) do not appear as summand in
F = ⊕iEi; in fact, taking a zero section locus of this bundle in OGr(k, 2n + 1) is
equivalent to restricting to the space OGr(k, 2n).

The classification will be made in three steps: one has to distinguish the three
particular cases: k = n, k = n− 1, k ≤ n− 2. This is a consequence of the differ-
ence in these cases of the Dynkin diagram of Bn with the k-th root removed. The
classification in Table B.3 is a direct consequence of the following propositions.

Proposition 2.2.12 (Classification for k = n). Over OGr(n, 2n+ 1), as suitable
F satisfying the hypothesis of Theorem 2.2.1, one has all and only the cases (oy)
appearing in Table B.3.
Proof. Under the hypothesis of the proposition, (1

2 , . . . ,
1
2) is a line bundle, “square

root" of O(1). Moreover, one has rank(F) = n(n+1)
2 −4, dex(F) = n. One can study

the rate dex
rank and obtain constraints. Indeed dex(2, 0, . . . , 0) = n+ 1, so this bundle

cannot appear. On the other hand dex(1, 1, 0, . . . , 0) = n − 1 = dex(1, . . . , 1, 0),
and for all the other bundles which are not line bundles, dex is greater than n. If
(1, 1, 0, . . . , 0) appears, rank(F) − rank(1, 1, 0, . . . , 0) = n − 4. As there must be
also at least one bundle with half integers, the only possibility is n = 6, i.e. (oy6).
Therefore, except for this case, one checks that for all the other possible bundles,
and therefore for F , dex

rank ≥
1
2 , which implies n ≤ 4. This gives the other cases

(oy).
Proposition 2.2.13 (Classification for k = n− 1). Over OGr(n− 1, 2n+ 1), as
suitable F satisfying the hypothesis of Theorem 2.2.1, one has all and only the
cases (ox) appearing in Table B.3.
Proof. In this case notice that (0, . . . , 0; β) is of rank 2β + 1. If n 6= 3, 4, the
minimal ratio dex

rank is 2
n−1 given by (1, 1, 0, . . . , 0). But this implies n ≤ 3. So the

only cases to study are n = 3, n = 4, and this gives the cases (ox).
Proposition 2.2.14 (Classification for k ≤ n−2). If k ≤ n−2, over OGr(k, 2n+1),
as suitable F satisfying the hypothesis of Theorem 2.2.1, one has all and only the
cases (ob0), (ob0.1) appearing in Table B.3.
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Proof. With this hypothesis, except for k ≤ 3, we have dex(F)
rank(F) ≥

2
k
, which implies

k ≤ 1. So three cases have to be considered.
If k = 1, one easily sees that no possibility matches the requirements.
If k = 2, rank(F) = 4n − 9, dex(F) = 2n − 2, and if n ≥ 4 then dex(F)

rank(F) < 1;
therefore there must be at least one bundle (1

2 , . . . ,
1
2), whose rank is 2n−2. This

means that 2n−2 ≤ 4n − 9, so 3 ≤ n ≤ 5. For n = 4, one gets the cases (ob0),
(ob0.1), and no case for n = 5.

If k = 3, the same argument as before gives 5 ≤ n ≤ 8, and inspecting case by
case one finds that no other variety arises.

2.2.3. Even Orthogonal Grassmannians
The even orthogonal Grassmannian OGr(k, 2n) will be thought of as the quo-

tient G/Pk, where Pk is the maximal parabolic subgroup containing the standard
Borel subgroup of positive roots in G = SO(2n,C). Every irreducible homoge-
neous bundle is represented by its highest weight. A weight is represented by
β = (β1, . . . , βn) or by (β1, . . . , βk; βk+1, . . . , βn) when this notation is needed,
where

β = (β1 − β2)λ1 + λ2(β2 − β3) + · · ·+ λn−1(βn−1 − βn) + λn(βn−1 + βn),

the λi’s are the fundamental weights for SO(2n,C), and the βi’s are all integers
or all half integers. Notice that the parabolic algebra Lie(Pk) has Levi factor
sl(k)⊕ so(2(n− k)) for k 6= 1, n, n− 1, which is straightforward by looking at the
Dynkin diagram.

Notation 2.2.15. As we work with globally generated bundles, from now on the
notation will change: to indicate a bundle with highest weight β as before, we will
write (−βk, . . . ,−β1; βk+1, . . . , βn), which is equivalent to taking the highest weight
of the dual representation. In this way, a bundle α = (α1, . . . , αn), according to
the new notation, is globally generated when α1 ≥ · · · ≥ αn−1 ≥ |αn|, i.e. when
the weight α is dominant under the action of G. To understand why we use this
“dualized" notation, refer to the explication before Remark 2.1.5.
Example 2.2.16. Over the orthogonal Grassmannian OGr(3, 14), with T± 1

2
we will

denote (−1
2 , . . . ,−

1
2 ; 1

2 , . . . ,
1
2 ,±

1
2) the bundle coming from the spin representations.

The dimension of a bundle can be calculated explicitly: suppose k 6= 1, n, n−1;
then

rank(β1, . . . , βn) = dimsl(k)(β1, . . . , βk)× dimso(2(n−k))(βk+1, . . . , βn),

where

dimso(2r)(β1, . . . , βr) =
∏

1≤i<j≤r

j − i+ βi − βj
j − i

∏
1≤i<j≤r

2r − j − i+ βi + βj
2r − j − i
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is the Weyl character formula (see [FH91, Chapter 24, Equation 24.41]). This
formula is a consequence of the form of the Levi factor of P and of Remark 2.1.7.
A similar formula holds when k = 1, n.

The definition of the function dex is the same as before (see Remark 2.1.10).
Therefore, fourfolds with trivial canonical bundle correspond to homogeneous
vector bundles F = ∑

i Ei, with

∑
i

rank(Ei) = k(2n− k)− k(k + 1)
2 − 4 , (2.14)

∑
i

dex(Ei) = 2n− k − 1 . (2.15)

Classification in even orthogonal Grassmannian

We recall that OGr(k, 2n) is embedded naturally in Gr(k, 2n) as the zero locus
of a general section of S2U∗ (see Example 1.3.6). The following lemma is similar
to Lemma 2.2.7.

Lemma 2.2.17. Suppose F = ⊕iEi is as in the hypothesis of Theorem 2.2.1. In
order to find new varieties in OGr(k, 2n) with respect to the case of the ordinary
Grassmannian, it is necessary that for at least one bundle Ei = β, |β|2 6= 0 or the
βi’s are not integers (they can be half integers).

Proof. The proof is the same as the one for Lemma 2.2.7. Notice only that half
integer weights are associated to spin representations.

One can assume that U∗ over OGr(k, 2n) does not appear as summand in F =
⊕iEi; in fact, taking a zero section locus of this bundle in OGr(k, 2n) is equivalent
to restricting to the space OGr(k, 2n− 1).

The classification will be made in three steps: one has to distinguish the three
particular cases: k = n, k = n−2, k ≤ n−3. This is due to the difference in these
cases of the Dynkin diagram of Dn with the k-th root removed. The classification
of Table B.4 is a direct consequence of the following propositions.

Proposition 2.2.18 (Classification for k = n). Over OGr(n, 2n), as suitable F
satisfying the hypothesis of Theorem 2.2.1, one has all and only the cases (oz)
appearing in Table B.4.

Proof. The only bundles that do not appear in the ordinary Grassmannian are
those with half integer coefficients. One checks that equations (2.14) and (2.15)
make it impossible to have twice the bundle (1

2 , . . . ,
1
2 ,−

1
2). If it appears even once,

(2.15) implies that no bundle with integer coefficients which is not a line bundle
can appear, therefore dex(F)

rank(F) ≥
1
2 , which gives n = 5, 6. One obtains therefore (oz1)

and (oz2). If the bundle (1
2 , . . . ,

1
2 ,−

1
2) is not present, the same argument as before

gives that dex(F)
rank(F) ≥

1
2 , which gives the remaining cases (oz).
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Proposition 2.2.19 (Classification for k = n−2). Over OGr(n−2, 2n), as suitable
F satisfying the hypothesis of Theorem 2.2.1, one has all and only the cases (ow)
appearing in Table B.4.

Proof. In this case the Levi factor of Lie(P ) is given by the Dynkin diagram Dn

where the (n− 2)-th root has been removed. Therefore its semisimple part is equal
to sl(n− 2)⊕ sl(2)⊕ sl(2). Then, following Remark 2.1.7, we have for a bundle
β = (β1, . . . , βn),

rank(β) = dimsl(n−2)(β1, . . . , βn−2)× dimsl(2)(βn−1, βn)× dimsl(2)(βn−1,−βn).

If n 6= 3, 4, 5, the minimal ratio dex
rank is 2

n−2 , given by (1, 1, 0, . . . , 0). But this implies
n ≤ 4. So the only cases to study are n = 3, n = 4 and n = 5, and this gives the
cases (ow).

Proposition 2.2.20 (Classification for k ≤ n− 3). If k ≤ n− 3, over OGr(k, 2n),
as suitable F satisfying the hypothesis of Theorem 2.2.1, one has all and only the
cases (ob) appearing in Table B.4.

Proof. With this hypothesis, except for k ≤ 3, we have dex(F)
rank(F) ≥

2
k
, which implies

k ≤ 1. So three cases have to be considered.
If k = 1, one easily sees that no possibility matches the requirements.
If k = 2, as in the analogous proposition for the odd orthogonal Grassmannian,

there must be at least one bundle (1
2 , . . . ,±

1
2), whose rank is 2n−3. As rank(F) =

4n− 11, this gives 5 ≤ n ≤ 7. Therefore, studying case by case, one recovers all
the cases (ob).
If k = 3, the same reason as before gives 6 ≤ n ≤ 9. But in all these cases,

dex(F)
rank(F) is less than 1

2 , therefore no other case arises.

2.2.4. The case of OGr(n− 1, 2n)
Let OGr(n− 1, 2n) be the orthogonal Grassmannian of isotropic (n− 1)-planes

in a 2n-dimensional complex vector space. This variety is different in nature
from those considered up to now, as it is not a generalized Grassmannian in the
usual sense (it has Picard rank equal to 2).

It is well known that the zero locus of a general section of S2U∗ in Gr(n, 2n)
consists of two components OGr+ and OGr−, each of which is a copy of OGr(n, 2n).
For each point W+ ∈ OGr+, and W− ∈ OGr− such that dim(W+ ∩W−) = n − 1,
let us denote W := W+ ∩ W−. Then W ∈ G := OGr(n − 1, 2n). Moreover,
given W ∈ G, one can recover W+ and W− in a unique way, i.e. there exist two
morphisms

π+/− : G→ OGr+/− , W 7→ W+/− .

Over OGr+ (respectively OGr−) there is a line bundle O(1
2)+ (resp. O(1

2)−)
which is the square root of the restriction to OGr+ (resp. OGr−) of O(1) over
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Gr(n, 2n). Therefore there are two line bundles L+ := π∗+O(1
2)+ and L− :=

π∗−O(1
2)− over G. In fact, it can be shown that the Picard group of G is generated

by those two line bundles. This description corresponds to the following picture
from the point of view of quotients of SO(2n,C).

Recall that Pi denotes the parabolic subgroup of SO(2n,C) corresponding to
the i-th simple root. The even orthogonal Grassmannian OGr(n − 1, 2n) can
be thought of as the quotient G/Pn,n−1, where Pn,n−1 is the parabolic subgroup
Pn ∩ Pn−1. The reason why G is not considered to be a Grassmannian is exactly
because the parabolic subgroup Pn,n−1 is associated to two, and not one, simple
roots. This also explains why ρ(G) = Z2 (general theory of homogeneous spaces).
The two morphisms π+ and π− correspond to the two projections

G = G/Pn,n−1 → G/Pn ∼= OGr+

and
G = G/Pn,n−1 → G/Pn−1 ∼= OGr− .

Now we want to understand the relation between L+, L−, andO(1) (which is the
restriction to G of the Plücker line bundle O(1) over Gr(n− 1, 2n)). Let U be the
tautological bundle of rank n − 1, and U∗ its dual, on G. As already mentioned
for the classical Grassmannians, there is a vector bundle U⊥/U over G of rank 2.
Let us also denote U± the tautological bundles over OGr± restricted to G. Then,
U⊥ = U+ + U− ⊂ C2n, where the sum is not direct, and, as a consequence,

U⊥/U = U+/U ⊕ U−/U .

In this second equation the sum is actually a direct sum; this comes from the fact
that W = W+ ∩W− for W an isotropic (n− 1)-plane in C2n. The quadratic form
on C2n restricts to a form on U⊥. Since this form descends to a form on U⊥/U
which is non degenerate, then U⊥/U ∼= (U⊥/U)∗, which implies det(U⊥/U) = 0.
Moreover det(U±) = π∗±O(1

2)⊗2
± . By taking the determinant of the bundles in the

previous equation, we get the important relation

L+ ⊗ L− = O(1) .

The following theorem holds:

Theorem 2.2.21. Let Y be a fourfold with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated
vector bundle F over the even orthogonal Grassmannian OGr(n−1, 2n) (and which
does not appear in the analogous classification for the classical Grassmannian). Up
to identifications, the only possible cases are those appearing in Table B.5.

For the proof of the theorem, every irreducible homogeneous bundle is repre-
sented by its highest weight. The notations for the bundles on OGr(n−1, 2n) are
the same as those used for OGr(k, 2n) for general k, as well as the formula for
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rank and dex of the bundles (notice that the parabolic algebra Lie(Pn−1,n) has
Levi factor sl(n − 1)). The line bundles L+ and L− will be respectively denoted
by (1

2 , . . . ,
1
2) and (1

2 , . . . ,
1
2 ,−

1
2). Finally, the canonical bundle of OGr(n − 1, 2n)

is a tensor power of O(1).
Fourfolds with trivial canonical bundle correspond to homogeneous vector

bundles F = ∑
i Ei, with

∑
i

rank(Ei) = (n− 1)(n+ 1)− (n− 1)(n)
2 − 4 , (2.16)

∑
i

dex(Ei) = n . (2.17)

In order to find new varieties with respect to the case of the ordinary Grass-
mannian, it is necessary that for at least one bundle Ei = β, |β|n 6= 0 or the βi’s
are not integers (they can be half integers).

Proof of Theorem 2.2.21. Suppose the variety is embedded in OGr(n−1, 2n), with
n ≥ 4. Then, for any irreducible homogeneous globally generated bundle Ei which is
a component of F , we have dex(Ei)

rank(Ei) ≥
2

n−1 . By using equations (2.17) and (2.16), we
get the inequality n ≤ 5. Then, the theorem follows by inspecting all the possible
cases. It should be remarked that, if F = ⊕iEi = ⊕i(βi1, . . . , βin) is a suitable vector
bundle, then ∑i rank(Ei)βin = 0, which ensures that det(F) is a multiple of O(1),
as KOGr(n−1,2n) is.

2.3. The cases of dimensions 2 and 3
In this section, we will give the analogous results of the previous classifications

of varieties with trivial canonical bundle in dimensions 2 and 3. We recall that
a pioneering work on K3 surfaces (and Fano threefolds) inside Grassmannians
has been conducted by Mukai in a more geometrical manner (see [Muk02]). We
will recover the families described by Mukai in our classification. The proofs do
not present anything new from the previous ones, they follow the exact same
strategy, so we omit them. It is perhaps worth remarking that the first problem
is to prove the finiteness of the number of such varieties in Grassmannians (for
the ordinary Grassmannian, see [IIM16]). The notations are the same used in
the previous classifications.

We will begin with the classification in dimension 3.

Theorem 2.3.1. Let Y be a threefold with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated vector
bundle F over Gr(k, n). Up to the identification of Gr(k, n) with Gr(n− k, n), the
only possible cases are those appearing in Table B.6.
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This classification, as already mentioned in the introduction, appears also in
[IIM16]. However, we point out the fact that in [IIM16], the cases (c3), (d3.1)
and (d2.1) do not appear. The bundles which define them are analogous to the
one appearing respectively in the cases (c2), (d3) and (d2), and in fact there
are isomorphisms (c3) ∼= (c2), (d3.1) ∼= (d3) and (d2.1) ∼= (d2). These isomor-
phisms come from the fact that all these cases live in the symplectic Grassman-
nian IGr(n, 2n), on which there is a canonical isomorphism of bundles U∗ ∼= Q.

Theorem 2.3.2. Let Y be a threefold with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated
vector bundle F over the symplectic Grassmannian IGr(k, 2n) (respectively the
odd orthogonal Grassmannian OGr(k, 2n+ 1), the even orthogonal Grassmannian
OGr(k, 2n)) and which does not appear in the analogous classification for the
ordinary Grassmannian. Up to identifications, the only possible cases are those
appearing in Table B.7 (respectively Table B.8, Table B.9).
Theorem 2.3.3. Let Y be a threefold with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated
vector bundle F over the even orthogonal Grassmannian OGr(n−1, 2n) (and which
does not appear in the analogous classification for the classical Grassmannian). Up
to identifications, the only possible cases are those appearing in Table B.10.

Now, the classification for dimension 2 (K3 surfaces). In this case we reported
the degree of the surface with respect to the bundle O(1

2) for the varieties in
OGr(n, 2n+ 1) and OGr(n, 2n), and with respect to the bundle O(1) in the other
cases. For OGr(n− 1, 2n), we reported the degree with respect to O(1), L+ and
L−. In this way, one also gets the genus of the K3 by the well known formula
deg = 2 genus−2.

Theorem 2.3.4. Let Y be a surface with KY = OY which is the variety of zeroes of
a general section of a homogeneous, completely reducible, globally generated vector
bundle F over Gr(k, n). Up to the identification of Gr(k, n) with Gr(n− k, n), the
only possible cases are those appearing in Table B.11.
Theorem 2.3.5. Let Y be a surface with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated
vector bundle F over the symplectic Grassmannian IGr(k, 2n) (respectively the
odd orthogonal Grassmannian OGr(k, 2n+ 1), the even orthogonal Grassmannian
OGr(k, 2n)) and which does not appear in the analogous classification for the
ordinary Grassmannian. Up to identifications, the only possible cases are those
appearing in Table B.12 (respectively Table B.13, Table B.14).
Theorem 2.3.6. Let Y be a surface with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated
vector bundle F over the even orthogonal Grassmannian OGr(n−1, 2n) (and which
does not appear in the analogous classification for the classical Grassmannian). Up
to identifications, the only possible cases are those appearing in Table B.15.
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2.3.1. An unexpected isomorphism
Among the Calabi-Yau threefolds we have found, we realised that the cases

(c8) and (oz5) have the same Hodge numbers (by an explicit computation). In
fact, they are the same varieties. This is a consequence of the existence of an
isomorphism between the Grassmannian Gr(3, 6) and the zero locus of a general
section of ∧5U∗ ⊗ O(−1

2) in the orthogonal Grassmannian OGr(6, 12). To prove
this, a more explicit description of the bundle ∧5U∗ ⊗O(−1

2) is necessary. What
follows should convince the reader that among the varieties we found, there
could be some isomorphisms which are not easy to detect.

We start by recalling basic facts about the spin representations. Fix a com-
plex vector space V of dimension 2n and a non degenerate quadratic form
on it. The space of sections H0(OGr(n, V ),∧n−1U∗ ⊗ O(−1

2)) of the bundle
∧n−1U∗ ⊗ O(−1

2) ∼= U ⊗ O(1
2), by the Borel-Weil Theorem, is isomorphic to the

dual of the spin representation S−(V )∗. On the other hand, H0(OGr(n, V ),O(1
2))

is isomorphic to the dual of the spin representation S+(V )∗. Consider a maximal
isotropic subspace F of V . Then, one has the following identifications:

S+(V ) ∼= ∧evenF = ∧+F , S−(V ) ∼= ∧oddF = ∧−F.

Let us denote by S(V ) the exterior algebra S+(V ) ⊕ S−(V ); it is isomorphic to
∧•F . The Clifford algebra Cl(V ) acts on S(V ). Its action is defined by the action
of V , which is as follows: fix an isotropic F ′ ⊂ V such that F ′ t F ; via the duality
given by the quadratic form F ′ ∼= F ∗. Then the action of Cl(V ) is induced by the
one of V which is the usual wedge product for the vectors in F , while the action
of f ∗ ∈ F ∗ on ∧•F is defined by:

f ∗. (v) = f ∗(v) for v ∈ F ,

f ∗. (ξ ∧ η) = (f ∗. ξ) ∧ η + (−1)deg(ξ)ξ ∧ (f ∗. η).
Let us here remark that the choice of another isotropic space G gives another
S(V ), i.e. S(V ) ∼=Cl(V ) ∧•G. The isomorphism ∧•F ∼=Cl(V ) ∧•G is unique mod-
ulo multiplication by a scalar. This isomorphism respects the decomposition
∧−( · ) ⊕ ∧+( · ) or inverses it depending on the fact that F and G are in the
same connected component of isotropic spaces or in different ones.

To every maximal isotropic subspace W ∈ V , we can associate a line PfW ⊂
S(V ):

W 7→ PfW = {φ ∈ S(V ) such that w. φ = 0 ∀w ∈ W}.
In fact, if W ∈ OGr(n, V )±, then PfW ∈ S±(V ). Therefore we get a morphism

η : OGr±(n, V )→ P(S±(V )), η(W ) = PfW .

All vectors 0 6= φ ∈ PfW as W varies among maximal isotropic subspaces W ⊂ V
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are called pure spinors. From φ ∈ PfW ⊂ S(V ), it is possible to recover W as

W = {v ∈ V such that v. φ = 0}.

As a matter of fact, η is an embedding and realizes OGr±(k, V ) as the spinorial
variety inside P(S±(V )). From now on we denote by OGr(k, V ) = OGr±(k, V ).

When identifying S(V ) with the exterior algebra ∧•W , we get PfW = ∧nW =
det(W ). The following result can be found in [PS86]:

Proposition 2.3.7. The line bundle on OGr(n, V ) defined by

W 7→ PfW ⊂ S+(V ) ∀W ∈ OGr(n, V )

is the square root of the bundle O(−1)|OGr = det(U)|OGr, where U is the tautological
subbundle in Gr(n, V ).

Following the same line of ideas, we give a description of the bundle ∧n−1U∗⊗
O(−1

2). For every maximal isotropic subspace Y , identify S(V ) and ∧•Y . Let us
define

V PfY = ∧n−1Y ⊂ ∧•Y

A more intrinsic way of defining V PfY is to say that it is the image (Y ∗. PfY ) of
PfY in S(V ) under the action of Y ∗ ⊂ Cl(V ). The following holds:

Proposition 2.3.8. The vector bundle on OGr(n, V ) defined by

Y 7→ V PfY ⊂ S−(V ) ∀Y ∈ OGr(n, V )

is the bundle ∧n−1U ⊗O(1
2).

Proof. Notice that the two bundles have the same rank. Denote the first bundle in
the statement of the proposition by F . Let us rewrite the second one:

∧n−1U ⊗O(1
2) ∼= ∧1U∗ ⊗O(−1)⊗O(1

2) ∼= U∗ ⊗O(−1
2)

The action of V in the Clifford algebra Cl(V ) defines a morphism

ψ : V ⊗ S+(V )→ S−(V )

Take Y ∈ OGr(n, V ). The fiber at Y of U∗ ⊗O(−1
2) is Y ∗ ⊗ PfY ⊂ V ⊗ S+(V ).

By applying ψ, we get that

ψ(Y ∗ ⊗ PfY ) = (Y ∗. PfY ) = V PfY ⊂ S−(V )

As a consequence ψ defines a morphism ψ̃ : U∗ ⊗ O(−1
2) → F which is an

isomorphism on the fibers over OGr(n, V ); therefore it is an isomorphism of vector
bundles.
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Remark 2.3.9. A similar description holds for all spin bundles over orthogonal
Grassmannians. Indeed, consider the Grassmannian OGr+(k, V ), and for simplicity
suppose k even. Then the bundle T+ 1

2
is a subbundle of the trivial bundle S+(V )

over OGr+(k, V ); it can be proved to be the image of the morphism

ψ̃ : U∗ ⊗ S+(V )→ S+(V ),

where the morphism ψ̃ is induced on each fiber by ψ.

As a consequence, we have the description of the zero locus of a general sec-
tion of ∧5U∗ ⊗O(−1

2) we claimed: fix n = 6;

Proposition 2.3.10. The zero locus Z(s̃) of a general section s of the bundle
∧5U∗ ⊗O(−1

2) on OGr(6, V ) is isomorphic to Gr(3, 6).

Proof. By the Borel-Weil Theorem, the space of sections of ∧5U∗ ⊗ O(−1
2) is

given by S−(V )∗ (which is isomorphic to S−(V ) as n is even). So we can suppose
s ∈ S−(V )∗. As s is a generic spinor and V is of dimension 12, it can be written as
the sum of two pure spinors ([Igu70]), i.e.

s = sW + sW ′ , sW ∈ PfW , sW ′ ∈ PfW ′

where W,W ′ are maximal isotropic subspaces. As s ∈ S−(V )∗, the two subspaces
W,W ′ do not belong to OGr(6, V ), but to the other connected component of
isotropic maximal subspaces in V . Moreover, by the generality assumption, we can
suppose that W ∩W ′ = {0}. Therefore we can identify W ′ ∼= W ∗. Consider the
embedding

iW,W ′ : Gr(3, 6) ∼= Gr(3,W )→ OGr(6, V ) , P 7→ 〈P, P⊥ ∩W ′〉

This embedding will give the isomorphism we want. Indeed, let us study Z(s̃).
By proposition 2.3.8, the fiber of the bundle ∧5U∗ ⊗ O(−1

2) over the point
Y ∈ OGr(6, V ) is given by

Y 7→ (V PfY )∗,
and we have the natural restriction map S−(V )∗ → (V PfY )∗. The evaluation of
the section s at Y is given by

s(Y ) = s|V PfY ∈ (V PfY )∗.

By the description of V PfY as ∧5Y ⊂ ∧oddY ∼= S−(V ), we get that the section s
is zero at Y if and only if µ(s) = 0 ∀µ ∈ ∧5Y .
If Y ∈ Im(iW,W ′), the intersections Y ∩W and Y ∩W ′ both have dimension 3.

We claim that
µ(s) = µ(sW + sW ′) = 0 ∀µ ∈ ∧5Y, (2.18)

which implies that s(Y ) = 0.
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Indeed, it suffices to verify the equality in (2.18) on a basis of ∧5Y . Take
y1, y2, y3 ∈ Y ∩W , y4, y5, y6 ∈ Y ∩W ′ such that 〈y1, y2, y3, y4, y5, y6〉 = Y . Then a
basis of ∧5Y is given by all the vectors of the form µ = yi1 ∧ . . . ∧ yi5 . Without
losing any generality, we can suppose that µ = y1 ∧ . . . ∧ y5. Then

µ(sW ) = y2 ∧ . . . ∧ y5 ∧ y1(sW ) = 0

because y1 ∈ W and sW ∈ PfW . Similarly

µ(sW ′) = y1 ∧ . . . ∧ y5(sW ′) = 0

because y5 ∈ W ′ and sW ′ ∈ PfW ′ . As a consequence µ(s) = 0.
As W and W ′ do not belong to the same connected component of maximal

isotropic subspaces of Y , the intersections Y ∩W and Y ∩W ′ have odd dimension.
If Y 6∈ Im(iW,W ′) we can suppose that dim(Y ∩W ) or dim(Y ∩W ′) is equal to
one; assume dim(Y ∩W ) = 1. Let us show that

∃µ̃ ∈ ∧5Y such that µ̃(sW ) 6= 0 and µ̃(sW ′) = 0;

this will imply that s(Y ) 6= 0. Take 0 6= w ∈ W ∩ Y , and 0 6= w′ ∈ W ′ ∩ Y , and
suppose 〈w,w′, y1, y2, y3, y4〉 = Y . Then µ̃ = y1 ∧ y2 ∧ y3 ∧ y4 ∧ w′ will do.

2.3.2. Maximal families of K3 surfaces with Picard number
two

In Theorem 2.3.4, 2.3.5, 2.3.6 we found all K3 surfaces in classical Grass-
mannians which are zero loci of general sections of homogeneous completely
reducible vector bundles. All the varieties we constructed come naturally in
families; indeed, by letting the section that defines them vary, we get a family
of deformation of those varieties. Mukai studied families of polarized K3 sur-
faces of maximal dimension (i.e. 19) inside Grassmannians (e.g. see [Muk88],
[Muk92], [Muk06]). The general element of such families is a K3 surface with
ρ = 1.

In the following we will study families of polarized K3 surfaces with Picard
number two of maximal dimension (i.e. 18). K3 surfaces with ρ = 2 have
been studied for various reasons. For instance, K3 surfaces which admit a dou-
ble cover over P2 branched over a sextic are used in [Gal17] to approach the
rationality problem of cubic fourfolds.

Ottem focused as well on some K3s with ρ = 2 in [Ott13], for which he was
able to describe the Cox ring. He considered doubly elliptic K3 surfaces, i.e. K3
surfaces which are elliptic bundles over P1 in two different ways. Doubly elliptic
surfaces are similar to some of the surfaces we will analyze more in detail (see
Table 2.2, cases (b12), (oe6), (oe9), and the end of section on (oe9)).

Finally, studying non general K3 surfaces is interesting as one can produce
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examples of such varieties with non trivial automorphism groups, which in turn
can enlighten geometric aspects of these surfaces. The situation where ρ = 2 has
been investigated in [Bin05]. The analysis of the automorphism group is done in
terms of the intersection matrix of rank two surfaces. We will use Bini’s results
to understand the automorphism group of K3 surfaces of type (oe9).

In order to have ρ = 2, we will take our examples of K3 surfaces inside
OGr(n − 1, 2n). The Picard group of this homogeneous space is generated by
two line bundles L+, L− such that L+⊗L− = O(1), where O(1) is the restriction
ofO(1) over Gr(n−1, 2n) to OGr(n−1, 2n) (more details on this are given in Sec-
tion 2.2.4). The fact that the ambient variety of the surfaces we are considering
has ρ = 2 is a good starting point.

Let us recall some general facts about deformation theory. Let S → B be a
(smooth proper) deformation of the central fiber Sb0 = S. Then there exists a
morphism

δKS : TB,b0 → H1(S, TS)
called the Kodaira-Spencer map (e.g. see [Kod05] or [KS58]). Here TS denotes
the tangent space of S. Elements in H1(S, TS) can be identified with infinitesimal
effective deformations

S̃ → Spec(C[t]/t2)
modulo isomorphism. Moreover, the dimension of the image of the Kodaira-
Spencer map δKS(TB,b0) should be thought of as the “effective” dimension of the
deformation family S at b0.

In our situation S is the zero locus of a general section s of a vector bundle
F over X. The parameter space for the deformation is an open subset B of the
space of sections H0(X,F) (such that zero loci are smooth, for example). The
deformation family can be described as

S = {(S ′, s′) s.t. S ′ is the (smooth) zero locus of the section s′ ∈ H0(X,F)}.

The map S → B ⊂ H0(X,F) is the natural projection onto the second factor. As
B is an open set in an affine space, the Kodaira-Spencer map becomes

δKS : TB,s ∼= H0(X,F)→ H1(S, TS)

This morphism is described, for instance, in [Bor83]. On one hand, consider the
exact sequence:

0→ IS ⊗F → F → OS ⊗F → 0,
where IS is the ideal of S. It induces a map in cohomology η1 : H0(X,F) →
H0(S,F|S), whose cokernel is H1(X, IS ⊗ F). On the other hand, the normal
exact sequence

0→ TS → TX |S → F|S → 0
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case bundle F X= OGr(n-1,2n) O(1)2 L2
+ L2

− L+L−
(b12) O(1)⊕3 OGr(2,6) 20 4 4 6
(oe4) O(1)⊕ L+(1)⊕ L− OGr(2,6) 16 4 2 5
(oe5) L− ⊕ L− ⊕ L⊗2

+ (1) OGr(2,6) 10 4 0 3
(oe6) O(2)⊕ L− ⊕ L+ OGr(2,6) 12 2 2 4
(oe9) O(1)⊕ L⊕3

− ⊕ L⊕3
+ OGr(3,8) 28 6 6 8

Table 2.2. – Families of surfaces in OGr(n-1,2n) of dimension 18

induces the map in cohomology η2 : H0(S,F|S) → H1(S, TS), whose cokernel is
H1(S, TX |S). Then, the Kodaira-Spencer map is the composition

δKS = η2 ◦ η1.

This in turn implies:

Corollary 2.3.11. If H1(X, IS ⊗ F) = 0, then the codimension of the image of
the Kodaira-Spencer map is equal to dim H1(S, TX |S). If dim H1(S, TX |S) = 0, then
the family is locally complete.

In our case, even though H1(X, IS ⊗ F) may be zero, the family cannot be
locally complete. Indeed, for us X is a projective variety, and so S is polarized;
but a general K3 surface is not projective. Actually primitively polarized K3
surfaces with a certain degree of the polarization form a hypersurface of the
space of K3 surfaces. Moreover, we want the K3 surface to have ρ = 2, so they
live in a family of codimension 2 (dimension 18).

In the end, we have the following proposition:

Proposition 2.3.12. Let S be a K3 surface which is the zero locus of a general
section of a homogeneous, completely reducible vector bundle F over X := OGr(n−
1, 2n). Suppose that H1(X, IS ⊗F) = 0 and H1(S, TX |S) ∼= C2. Then S lives in a
family of dimension 18, and it appears in Table 2.2.

Proof. To compute the cohomology groups, we used the Koszul complex associated
to S, and Bott’s theorem for the cohomology of homogeneous bundles over the
Grassmannians.

We analyze in what follows the geometry and the equations defining the K3
surfaces in Table 2.2. In particular, we describe cases (b12), (oe4), (oe5) as families
of special quartics in P3; case (oe6) has already been studied in [Ili97]. Case (oe9)
is a little bit different from the others.

K3 (b12)

The K3 surface S lives inside OGr(2, V6), where V6 has dimension 6.
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Remark 2.3.13. Actually OGr(2, V6) is isomorphic to the flag variety F (1, 3, V4),
where V4 has dimension 4. The isomorphism is a consequence of the identification
of SO6 and SL4, but we give a more concrete description. Identify V6 ∼= ∧2V4 for a
certain vector space V4, so that the symmetric form is the wedge product. Then
we have a morphism:

F (1, 3, V4)→ Gr(2,∧2V4) , (l ⊂ P ⊂ V4) 7→ l ∧ P.

The image is isotropic because (l ∧ P ) ∧ (l ∧ P ) = 0. Conversely, suppose that
Q ∈ OGr(2,∧2V4); then as Q is isotropic, it is a plane of rank 2 elements in ∧2V4,
and therefore it can be written as l′ ∧ P ′.

Moreover F (1, 3, V4) can be seen as the zero locus of the section id ∈ H0(P(V4)×
P(V ∗4 ),O(1, 1)) ∼= End(V4). Under the isomorphism described above, we have the
following identifications:

L+ → O(1, 0) , L− → O(0, 1) , O(1)→ O(1, 1).

Therefore, by using the linear system of L+, L−, we obtain the two natural
projections π± : F (1, 3, 4)→ P3.

The following proposition shows what are the equations of S (we study the
projection π+; the projection π− admits the same description).

Proposition 2.3.14. Suppose S is of type (b12). Then π+ realises S inside P(V4)
as the zero locus of the determinant of a 4× 4 matrix of linear forms. In particular,
S is a quartic in P3.

Proof. Let V4, V ′4 , be two vector spaces of dimension 4. Inside P(V4)×P(V ′4), S is
the zero locus of a section s of C4⊗O(1, 1). Explicitly, s ∈ C4⊗ V ∗4 ⊗ V ′∗4 , which is
also the space of sections of C4⊗V ′∗4 ⊗O(1) over P(V4). A point l ∈ P(V4) belongs
to the image of π+ if and only if there exists l′ ∈ P(V ′4) such that (l, l′) ∈ S. This
is equivalent to the fact that s|l ∈ l∗ ⊗ C4 ⊗ V ′∗4 = l∗ ⊗ Hom(V ′4 ,C4) has kernel
different from zero. Therefore, l ∈ π+(S) if and only if det(s) = 0, where s is
seen as a section of C4 ⊗ V ′∗4 ⊗O(1) over P(V4). Moreover π+|S is an isomorphism
onto its image because the degree of π+ is 1, and S has trivial canonical bundle.
Therefore we get the statement of the proposition.

Determinantal hypersurfaces have been studied in [Bea00]. More precisely,
[Bea00, Corollary 6.6] asserts that a smooth quartic hypersurface in P3 is de-
terminantal if and only if it contains a non-hyperelliptic curve C of genus three,
embedded in P3 by a linear system of degree 6. Actually, the curve C can be
explicitly obtained as a divisor of the cokernel bundle of the morphism:

s : O4
P(V4) → V ′4 ⊗OP(V4)(1).
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K3 (oe4), (oe5), (oe6)

The K3 surfaces of type (oe4) and (oe5) admit a description similar to those of

type (b12). We will denote by

v1

∣∣∣∣ . . . ∣∣∣∣vn
 the matrix whose column vectors are

v1, . . . , vn.
Let S be of type (oe4); then S ⊂ P(V4)×P(V ′4) is the zero locus of a section s

of F = 2O(1, 1)⊕O(2, 1)⊕O(0, 1).

Proposition 2.3.15. Suppose S is of type (oe4). Then π+ realises S inside P(V4)

as the zero locus of the determinant of a square matrix
s1

∣∣∣∣ . . . ∣∣∣∣s4

 of sections

such that s1, s2 ∈ H0(P(V4), 4O(1)), s3 ∈ H0(P(V4), 4O(2)), s4 ∈ H0(P(V4), 4O).
In particular, S is a quartic in P3. The second projection π−|S is a double covering
of P2 ramified over a sextic.

Proof. Let V4, V ′4 , be two vector spaces of dimension 4. Inside P(V4)×P(V ′4), S is
the zero locus of a section s of (C2 ⊗O(1, 1))⊕O(2, 1)⊕O. The proof of the first
part of the theorem is the same as for the case (b12); the only difference is that

s ∈ (C2 ⊗ V ∗4 ⊗ V ′∗4 )⊕ (S2(V ∗4 )⊗ V ′∗4 )⊕ V ′∗4 ∼=

H0(P(V4), (2O(1)⊗ V ′∗4 )⊕ (O(2)⊗ V ′∗4 )⊕ (O ⊗ V ′∗4 ))
Therefore π+(S) is again the locus where det(s) = 0, but the matrix is of the form
showed in the statement of the proposition.

For the second part, as the vector bundle F contains a copy of O(0, 1), the zero
locus of s is contained in P(V4)×P2. The projection π− sends S to P2 and is of
degree 2. By the Riemann-Hurwitz formula

KS = π∗(deg(π)KP2 +R),

where R is the divisor of the branch locus; the formula implies that R is a curve of
degree 6 inside P2.

Similarly, let S be of type (oe5); then S ⊂ P(V4)×P(V ′4) is the zero locus of a
section s of F = O(1, 1)⊕O(3, 1)⊕ 2O(0, 1).

Proposition 2.3.16. Suppose S is of type (oe5). Then π+ realises S inside P(V4)

as the zero locus of the determinant of a square matrix
s1

∣∣∣∣ . . . ∣∣∣∣s4

 of sections such

that s1 ∈ H0(P(V4), 4O(1)), s2 ∈ H0(P(V4), 4O(3)), s3, s4 ∈ H0(P(V4), 4O). In
particular, S is a quartic in P3. The second projection π−|S is an elliptic fibration
over P1.
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Proof. Let V4, V ′4 , be two vector spaces of dimension 4. Inside P(V4)×P(V ′4), S is
the zero locus of a section s of O(1, 1)⊕O(3, 1)⊕ (C2 ⊗O). The proof of the first
part of the theorem is the same as for the case (b12) and (oe4); the only difference
is that

s ∈ (V ∗4 ⊗ V ′∗4 )⊕ (S3(V ∗4 )⊗ V ′∗4 )⊕ (C2 ⊗ V ′∗4 ) ∼=
H0(P(V4), (O(1)⊗ V ′∗4 )⊕ (O(3)⊗ V ′∗4 )⊕ (2O ⊗ V ′∗4 ))

Therefore π+(S) is again the locus where det(s) = 0, but the matrix is of the form
showed in the statement of the proposition.
For the second part, as the vector bundle F contains two copies of O(0, 1), the

zero locus of s is contained in P(V4)×P1. The projection π− sends S to P1 and
is of degree 3. The preimage of a point l′ ∈ P1 ⊂ P(V ′4) is the intersection of the
zero locus of s1|l′ and of s2|l′ inside P(V ′4) × {l′}. This intersection is a cubic in
P2, i.e. an elliptic curve.

Finally, for the K3 surface S of type (oe6), we will not give the details of
the equations, as this variety has already been studied throughly, for instance
in [Ili97] (see in particular [Ili97, Corollary 5.3]). We just remark that the two
projections π±|S are double coverings of P2 branched over a sextic.

K3 (oe9)

In what follows we just give a brief description of the K3 surface S of type
(oe9), without stating any result. To our knowledge, this is the only K3 surface
with ρ = 2 which is new in the literature.

The variety S lives inside the homogeneous space OGr(3, 8). This variety is
the quotient SO8/Pα3,α4, where Pα3,α4 is the parabolic group associated to the
last two simple roots of D4. It admits two projections

π+ : OGr(3, 8)→ Q6 = SO8/Pα3 , π− : OGr(3, 8)→ Q6 = SO8/Pα4

as explained in Section 2.2.4. The pullback of OQ6(1) via π± is L±. As inside
F = O(1) ⊕ L⊕3

− ⊕ L⊕3
+ there is a factor L⊕3

± , we have that π±(S) is contained
inside Q3. Thus, S admits an embedding in Q3 × Q3.

Remark 2.3.17. S contains two (−2)-curves, i.e. two P1’s. Indeed, the bundles
L∗+⊗L⊗2

− and L∗−⊗L⊗2
+ have degree −2. Moreover, a computation using the Koszul

complex and Bott’s theorem shows that their space of sections is 1-dimensional.
The unique divisors of these two line bundles are therefore two P1’s contained in S.
In the basis given by M1 = L∗+ ⊗L⊗2

− and M2 = L⊗2
+ ⊗ (L∗−)⊗5, we have M2

1 = −2,
M2

2 = 14, and M1M2 = 0; therefore by [Bin05, Theorem 1], the automorphism
group of S is trivial.

Finally, we remark that π± realizes S as a (possibly singular) intersection of a
quadric and a cubic in P4. This situation is similar to the ones we have for the
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K3s (b12) and (oe6) and doubly elliptic K3s. In each of these cases, we have a
general K3 surface S with ρ = 2 which can be realized in two possible ways S+
and S−, which in turn live inside the same locally complete family of K3 surfaces
with ρ = 1.

2.4. Classification in exceptional Grassmannians
In this section we explain how to give an analogous classification as the one

in the previous sections for the exceptional Grassmannians: we look for subvari-
eties with trivial canonical bundle which are zero loci of sections of completely
reducible homogeneous bundles. In doing so we will explain once more how one
can obtain the quantity dex, in order to generalize it for exceptional Lie groups.
As there is a finite number of exceptional groups, the finiteness of the classifica-
tion is clear; but still, we will show how to find all the possible varieties of low
dimension. We will then compute the Euler characteristic in order to distinguish
between Calabi-Yau and hyper-Kähler manifolds.

Let us fix some notation: G2, F4, E6, E7, E8 will denote the exceptional Lie
groups. The exceptional Grassmannians G/P related to them will be denoted by
the group G and an index i which represents one of the simple roots αi of the
Dynkin diagram: it will mean that the parabolic subgroup P is the one associated
to the i-th simple root. For example E6(1) will denote the Cayley plane (see
[IM]).

The dimension and the index of a homogeneous space G/Pi = G(i) can be
recovered from the decomposition of the Lie algebra g of G as g = h ⊕⊕α∈Φ gα,
where h is a Cartan subalgebra, Φ a system of roots with set of simple roots ∆.
In fact, denote

Φ(i)<0 = {α ∈ Φ s.t. α =
∑
αj∈∆

cjαj , ci < 0} ,

and pi the Lie algebra associated to Pi. One has that the tangent bundle of G(i)
(which is a homogeneous bundle) is associated to the Pi-module

t = g/pi ∼=
⊕

α∈Φ(i)<0

gα,

where the last isomorphism is only as T -modules for a maximal torus T inside
Pi. Moreover, from the general theory of homogeneous spaces, the positive gen-
erator of the Picard group of G(i) is the line bundle associated to the Pi-module
with weight ωi. Therefore one can compute the dimension and the index of the
varietyG(i) just by looking at the set Φ. The following picture explains the choice
of the labelling of the simple roots in the Dynkin diagram, and Table 2.3 shows
the dimensions and indexes of the various exceptional Grassmannians.
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G2
α1 α2

F4
α1 α2 α3 α4

E6 α1 α3
α4

α5 α6

α2

E7 α1 α3
α4

α5 α6 α7

α2

E8 α1 α3
α4

α5 α6 α7 α8

α2

Table 2.3. – Dimension and index of the Fano varieties G(i) := G/Pi for G an
exceptional group; see for example [Sno93]

.
G(i) dim(G(i)) i(G(i)) G(i) dim(G(i)) i(G(i)) G(i) dim(G(i)) i(G(i))
G2(1) 5 3 G2(2) 5 5 F4(1) 15 8
F4(2) 20 5 F4(3) 20 7 F4(4) 15 11
E6(1) 16 12 E6(2) 21 11 E6(3) 25 9
E6(4) 29 7 E7(1) 33 17 E7(2) 42 14
E7(3) 47 11 E7(4) 53 8 E7(5) 50 10
E7(6) 42 13 E7(7) 27 18 E8(1) 78 23
E8(2) 92 17 E8(3) 98 13 E8(4) 106 9
E8(5) 104 11 E8(6) 97 14 E8(7) 83 19
E8(8) 57 29

The second step in order to be able to classify subvarieties is to classify irre-
ducible homogeneous bundles or, equivalently, irreducible Pi-modules. This can
be done by parametrizing them by their highest weights (see Section 1.3), in
terms of which we will be able to understand what the determinant of the cor-
responding homogeneous bundle is. This will be useful in order to apply the
adjunction formula, which will tell us when we are dealing with subvarieties
with trivial canonical bundle.
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2.4.1. Determinant of irreducible bundles
We recall from Section 1.3 that (Pi)L denotes the Levi factor of Pi. It can be

easily read from the Dynkin diagram of G, and the maximal torus in (Pi)L is
the same as the one in G. Denoting by li the Lie algebra of (Pi)L, this means
that h ⊂ li ⊂ g, where h is a Cartan subalgebra of g contained in li. As (Pi)L is
reductive, all irreducible (Pi)L-modules V are classified by their maximal weight
λ ∈ h∗.

Denote by ωj ∈ h∗ the fundamental weight dual to Hαj ∈ h. On h and h∗

there is a natural non-degenerate symmetric pairing, given by the Killing form
K. Recall that the coroot Hαj is defined by the relations

αk(Hαj) = 2K(αj, αk)
K(αj, αj)

∀k.

If Ei denotes the linear space generated by {αj}j 6=i, then its orthogonal in h∗ is
E⊥i = Cωi.

Now, if λ corresponds to a completely reducible vector bundle Fλ over G/Pi
and therefore to a Pi-module V = Vλ,

λ =
∑
j

λjωj where λj ∈ N if j 6= i , and λi ∈ Z.

By the Borel-Weil Theorem, the associated bundle is globally generated if and
only if λi ≥ 0. Actually, λi represents just the tensor product (λi times) with the
positive generator of the Picard group of G/Pi.

The Pi-module V admits a decomposition given by diagonalizing the action of
h: V = ⊕

γ∈Γ Uγ for a finite set of weights Γ ∈ h∗. Clearly λ ∈ Γ. If Wi is the Weyl
group of li, by general representation theory the set Γ is contained in the convex
hull of Wi(λ). Moreover, Wi is generated by the simple reflections with respect
to {αj}j 6=i, and its action on Cωi is trivial. If γ ∈ Γ, we use the following notation

γ =
∑
j

γjωj =
∑
j 6=i

γ̃jαj + cγωi;

what we have said implies that cγ = cλ for every γ ∈ Γ.

Lemma 2.4.1. In the notations used so far,

det(Fλ) = Hrank(Fλ)cλ

where H is the positive generator of the Picard group of G/Pi.

Proof. In order to understand what is the determinant of the bundle Fλ, we try to
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understand its weight, which we denote by λdet. Clearly, this weight is given by

λdet =
∑
γ∈Γ

dim(Uγ)γ.

Moreover, λdet will be proportional to ωi, i.e. λdet = (λdet)iωi (on the semisimple
part of li the only representation of dimension 1 is the trivial one). As a consequence,

det(Fλ) = H(λdet)i .

Therefore we can compute det(Fλ). First of all, express the (maximal) weight
λ = (λ1, ..., λn) in terms of α1, ..., α̂i, ..., αn, ωi; this allows to find cλ. By using the
properties of the representations of semisimple algebras , and the fact that cγ = cλ
∀γ ∈ Γ, one gets

λdet =
∑
γ∈Γ

dim(Uγ)γ = dim(V )cλωi + x

where x ∈ Ei. As we have already remarked, this must be equal to (λdet)iωi,
therefore x = 0 and

(λdet)i = dim(V )cλ = rank(Fλ)cλ.

Example 2.4.2 (Gr(k, n)). In this case a Cartan subalgebra is given by diagonal
matrices with zero trace. We can identify h∗ with the vectors v = (v1, ..., vn) =
(v1, ..., vk; vk+1, ..., vn) in Cn such that ∑j vj = 0. A system of simple roots is given
by α1 = (1,−1, 0, ..., 0), ..., αn−1 = (0, ..., 0, 1,−1). Here we supposed that the
Killing form is the restriction of the standard symmetric form on Cn. With these
notations,

ωk = k(n− k)
n

(1
k
, ...,

1
k

;− 1
n− k

, ...,− 1
n− k

)

Given a weight λ = (λ1, ..., λn), we get that

cλ = K(ωk, λ)
K(ωk, ωk)

=
∑k
j=1 λj

k
−
∑n
j=k+1 λj

n− k

and as a consequence, if dex := rank(Fλ)(
∑k

j=1 λj

k
−
∑n

j=k+1 λj

n−k ),

det(Fλ) = Hdex

In this way we have found Equation 2.1 once more. The analogous formulas used
for the other classical Grassmannians can be recovered in the same way. We will
not study in detail these cases, but we will pass directly to the exceptional groups.

In the Appendix C, we reported the value of the coefficient cλ for all the excep-

72



tional Grassmannians G(i).

2.4.2. Exceptional classification
Consider the variety G(i) = G/Pi. We will denote by (λ1, ..., λn) the bundle

Fλ associated to the maximal weight λ = ∑
j λjωj. Moreover, H will denote the

positive generator of the Picard group of G(i). We have the following:

Theorem 2.4.3. Let G be an exceptional Lie group. Let Y be a surface, a threefold,
a fourfold or a sixfold with KY = OY which is the variety of zeroes of a general
section of a homogeneous, completely reducible, globally generated vector bundle F
over G(i). Then F appears in one of the Tables B.16, B.17, B.18 in the Appendix.

Remark 2.4.4. We classified sixfolds too in order to have more examples. For
varieties of higher dimension a finite classification still holds, but it is difficult
to extract some useful information on the varieties one finds; for instance, the
computation of their invariants becomes too heavy for MACAULAY2.

Proof. One can put together Lemma 2.4.1, Lemma C.1 and the Weyl character
formulas for the dimension of a representation of a semisimple Lie algebra to
compute rank(Fλ) and det(Fλ). By using Table 2.3, one finds all possible globally
generated completely reducible vector bundles F = ⊕λFλ such that the variety of
zeroes of a general section has dimension 2, 3, 4 or 6, and trivial canonical bundle
(adjunction formula). This variety will be smooth by a Bertini type theorem,
because of the generality of the section.
We just remark that the bundle Fω6 over E6(1), even if it is globally generated,

admits an exact sequence of the following form:

0→ OE6(1) → Fω6 → F̃ → 0

for a certain vector bundle F̃ (see for example [FM15, Section 2]). Therefore the
zero locus of a general section over it is empty. This means that even though Fω6

would give, numerically, zero loci which have trivial canonical bundle, these loci
are in fact empty.

The computation of the Euler characteristic of the trivial bundle, as well as the
degree of H for K3 surfaces, has been done with the help of [GS] and with the
same method used for the subvarieties of the even orthogonal Grassmannian (see
Appendix A). Even though it is a long work to do, it is not original nor it presents
interesting ideas, so we did not report it.
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3. Orbital degeneracy loci and
quiver representations

An effective way to construct subvarieties which are not complete intersec-
tions is to use degeneracy loci. Classically, these loci are constructed by starting
from a morphism of vector bundles; the locus of points for which the morphism
on the fibers has rank bounded by a constant is a (classical) degeneracy locus.
This construction can be generalized to any closed G-stable subvariety of a G-
representation, e.g. an orbit closure, and they include zero loci as a particular
case. In [BFMT17a] and [BFMT17b] the general theory of orbital degeneracy
loci is developed.

In this chapter we use orbital degeneracy loci (later on ODL) to continue try-
ing to fulfil our goal of constructing interesting special varieties. We start by
collecting some general facts about classical loci; then, we recall the definition
and fundamental properties of orbital degeneracy loci. As a proof of the useful-
ness and richness of degeneracy loci, we construct some Hilbert schemes of two
points on a K3 surface: the Hilbert schemes will be naturally isomorphic to some
classical degeneracy loci. By using such isomorphism, it will then be possible to
reinterpret them as orbital degeneracy loci. Thus, on one hand we obtain a new
insight on the geometry of the Hilbert schemes, on the other hand, hopefully,
the constructions we present may be generalized to study other hyper-Kähler
varieties.

The second part of this chapter is devoted to the study of quiver orbit closures
and quiver degeneracy loci. Orbit closures inside quiver representations have
been studied thoroughly, and admit a desingularization by a Kempf collapsing
(a construction due to Reineke). We study the conditions under which those
desingularizations permit to control the canonical bundle of the corresponding
ODL, in order to be able to construct special varieties. Throughout the chapter,
we give applications of the general theory to obtain Fano varieties and varieties
with trivial canonical bundle.

The definition of ODL and how to construct a desingularization of such loci can
be found in [BFMT17a], while how to obtain a locally free resolution of an ODL
is explained in [BFMT17b]. In the latter, moreover, we study ODL which come
from Gorenstein orbit closures in parabolic representations, showing the many
possibilities ODL offer. We notice however that the techniques developed in the
two papers are generalizations of the analogous ones for classical degeneracy
loci, which were known before in the literature.

Finally, the content of Section 3.3 on crepant desingularizations of quiver or-
bit closures, and Section 3.4 on quiver orbital degeneracy loci can be found in
[Ben17]. The sections on Hilbert schemes of two points on K3 surfaces and on
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the Hodge numbers of some Fano fourfolds are, on the other hand, new.

3.1. Classical degeneracy loci
LetMe,f be the space of matrices e×f which parametrises morphisms Ce → Cf ,

and Y r
e,f the determinantal variety defined in Example 1.4.12. As Y = Y r

e,f is a
GLe×GLf -stable subvariety of an affine GLe×GLf -variety, we can consider the
relative situation, i.e. degeneracy loci (see [FP98]). Let X be a projective variety,
and E, F two bundles on X of respective ranks e, f . Suppose E∗ ⊗ F is globally
generated, and consider a general section s ∈ H0(X,E∗ ⊗ F ). Then

DY (s) = {x ∈ X| rank(s(x)) ≤ r}

is a variety of dimension dim(X) + r(e + f − r) − ef , singular in codimension
e+f −2r+ 1. It has a natural desingularization induced by the Kempf collapsing
of W = Q∗ ⊗ Cf over Gr(e− r, e). Let θ : Gr(e− r, E)→ X be the Grassmannian
bundle of (e−r)-planes in E over X; the section s induces a section of θ∗(E∗⊗F ),
and hence a section s̃ of the bundle

QW := θ∗(E∗ ⊗ F )/(Q∗ ⊗ θ∗F ) = U∗ ⊗ θ∗F

over Gr(e− r, E). It is straightforward to see that a desingularization of DY (s) is
given by the zero locus Z (s̃) of the section s̃.

By the adjunction formula, the canonical bundle of Z (s̃) is

KZ (s̃) = θ∗(KX ⊗ (det(E∗)⊗ det(F ))e−r)⊗OGr(f − e).

A way to impose that Z (s̃) has trivial canonical bundle is to require the two
following conditions to be satisfied:

f = e, K∗X = (det(E∗)⊗ det(F ))e−r.

There are two ways to understand why the condition e = f needs to be imposed
from the point of view of orbital degeneracy loci (see Section 3.2): firstly, under
this assumption, det(W ) = KGr(e−r,e) and the Kempf collapsing is crepant; sec-
ondly, when e = f (and only in this case), the determinantal orbit closures are
Gorenstein.

Application to Hilbert schemes of points
Degeneracy loci have already been successfully used to construct Calabi-Yau

threefolds (for instance, in [KK10]). Here, we use them to construct Hilbert
schemes of points on K3 surfaces, in particular in dimension 4, i.e. K3[2] (see
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Example 1.5.6). The classical degeneracy loci we are going to construct will
help us build a bridge, in the next section, between ODL and Hilbert schemes.
Moreover, in view of the importance of these varieties and in general of hyper-
Kähler varieties, we hope that in the future it will be possible to use similar
constructions to find more of them. We took inspiration from the paper by Iliev
and Manivel ([IM16]), in which a similar situation is analysed.

3.1.1. First HK: S [2]
14

The construction that follows should remind the reader of the proofs in the
paper by Beauville and Donagi. Consider the Grassmannian Gr(2, V6), where V6
is a vector space of dimension 6. The zero locus of a general section t of the
vector bundle 6O(1) is a K3 surface S14 of degree 14 with respect to O(1); the
family thus parametrised is 19-dimensional, and therefore locally complete. We
want to construct the Hilbert scheme of points S[2]

14 associated to a member of
this family.

Let us formalise our notation: the section t lives in the space of sections
H0(Gr(2, V6), 6O(1)), which is naturally isomorphic to V ′∗6 ⊗ ∧2V ∗6 , where V ′6 is
another vector space of dimension 6; the reason for considering its dual will be
clear in the following. Two general points of S14 are represented by two 2-planes
P,Q inside V6, whose intersection is P ∩Q = 0. Then P +Q defines a 4-plane in
V6. This suggests to search for S[2]

14 inside Gr(4, V6). Therefore, our choice of the
base variety X to construct the degeneracy locus is X = Gr(4, V6). Moreover, we
want our degeneracy locus to be parametrised by the same space of sections of
t, i.e. V ′∗6 ⊗ ∧2V ∗6 . Therefore we make the choice E = V ′6 ⊗OX , and F = ∧2U∗X .
Notice that, under this hypothesis, rankE = rankF = 6.

Proposition 3.1.1. Let X,E, F be as before, and let Y = Y 4
6,6 be the determinantal

variety defined in section 3.1. Let s ∈ V ′∗6 ⊗ ∧2V ∗6 be a general section of E∗ ⊗ F .
Then, the Y -degeneracy locus DY (s) is the Hilbert scheme of points S[2]

14 , where S14
is the K3 surface defined by s in Gr(2, V6). Moreover, varying s, one obtains a
family of dimension 19.

Proof. As recalled in the previous section, DY (s) is a fourfold with trivial canonical
bundle (rankE = rankF ). As it is singular in codimension e+ f − 2r + 1 = 5, it
is in fact smooth. Therefore it is isomorphic to its desingularization Z (s̃), which
is a subvariety of Gr(2, V ′6)×Gr(4, V6). Moreover, as s̃ varies inside

H0(Gr(2, V ′6)×Gr(4, V6),U∗1 ⊗ ∧2U∗2 ) ∼= V ′∗6 ⊗ ∧2V ∗6 ,

and H0(Gr(a, n), TGr) = sln, the family we obtain is of dimension

dim(P(V ′∗6 ⊗ ∧2V ∗6 ))− dim(SL6)− dim(SL6) = 89− 35− 35 = 19.
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Therefore we only need to show the isomorphism η : Z (s̃)→ S
[2]
14 . The section s̃

defines an homomorphism V ′6 → ∧2V ∗6 . The image of this map can be seen as a
section of 6O(1) inside Gr(2, V6), which in turn defines a K3 surface S14 of degree
14.

Suppose (P,Q) ∈ Z (s̃) ⊂ Gr(2, V ′6)×Gr(4, V6). By composing s̃ with the natural
projection, we get the morphism

φ : V ′6 → ∧2V ∗6 → ∧2Q∗.

The rank of φ is at most four; indeed, since (P,Q) ∈ Z (s̃), the map

P → V ′6 → ∧2V ∗6 → ∧2Q∗

is the zero morphism. As DY 3
6,6

(s) is empty, P = Ker(φ) and the image of φ is of
dimension 4. Therefore, the morphism φ can be seen as defining a section of 4O(1)
over Gr(2, Q); its zero locus is of dimension 0, degree 2 and contained in S14, i.e. a
point in S[2]

14 . This point will be η(P,Q).
Conversely, if R, T ∈ S14 ⊂ Gr(2, V6) are general, then R + T is of dimension

4 and defines a point of DY (s) ∈ Gr(4, V6). The isomorphism θ′ : Z (s̃)→ DY (s)
then gives a birational inverse to η. As the two varieties have trivial canonical
bundle, it extends to a morphism and defines the inverse η−1.

The above proof also shows that:

Corollary 3.1.2. The degeneracy locus DY (s) is smooth, hence isomorphic to its
desingularization Z (s̃) ⊂ Gr(2, V ′6) × Gr(4, V6); the isomorphism is given by the
restriction of the projection to the second factor.

From now on, we will denote by ZS14(s̃) the variety Z (s̃) ⊂ Gr(2, V ′6) ×
Gr(4, V6).

3.1.2. Second HK: S [2]
8

We use the same ideas as in the previous example in order to construct S[2]
8 ,

where S8 is a K3 surface of degree 8. A general such surface is obtained as the
intersection of three general quadrics in P5 = P(V6), i.e. a general section t of
3O(2). The space of sections in which t lives is isomorphic to V ∗3 ⊗ Sym2(V ∗6 ),
where V3 is a vector space of dimension 3. Let l 6= m denote two lines in V6 such
that [l], [m] ∈ S8 ⊂ P(V6); they define a 2-plane l + m in V6. This, as before,
motivates the choice X = Gr(2, V6). Moreover as before, as the space of sections
is V ∗3 ⊗ Sym2(V ∗6 ), we make the choice E = V3 ⊗ OX , F = Sym2(U∗X). Notice
again that rankE = rankF = 3.

Proposition 3.1.3. Let X,E, F be as before, and let Y = Y 1
3,3 be the determinantal

variety defined in section 3.1. Let s ∈ V ∗3 ⊗Sym2V ∗6 be a general section of E∗⊗F .
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Then, the Y -degeneracy locus DY (s) is the Hilbert scheme of points S[2]
8 , where S8

is the K3 surface defined by s in P(V6). Moreover, varying s, one obtains a family
of dimension 19.

Proof. As the proof is similar to the one in Section 3.1.1, we will be more concise.
DY (s) is a fourfold with trivial canonical bundle; it is smooth, and therefore
isomorphic to Z (s̃). By letting s̃ vary, the family we obtain is of dimension
(63− 1)− 8− 35 = 19.

The isomorphism η : Z (s̃)→ S
[2]
8 is given as follows. Suppose (P,Q) ∈ Z (s̃) ⊂

Gr(2, V3)×Gr(2, V6). By using the morphism defined by s̃, we get

φ : V3 → Sym2V ∗6 → Sym2Q∗.

As DY 0
3,3

(s) is empty and P ⊂ Ker(φ), the image of φ is of dimension 1. Therefore
φ defines a section of O(2) over P(1, Q), whose zero locus is of dimension 0, degree
2 and contained in S8, i.e. a point in S[2]

8 .
Conversely, if R, T ∈ S8 ⊂ P(1, V6) are general, then R + T is of dimension 2

and defines a point of DY (s) ∈ Gr(2, V6). The isomorphism θ′ : Z (s̃) → DY (s)
then gives a (birational) inverse η−1 to η.

In this case too, the above proof shows that:

Corollary 3.1.4. The degeneracy locus DY (s) is smooth, hence isomorphic to its
desingularization Z (s̃) ⊂ Gr(2, V3) × Gr(2, V6); the isomorphism is given by the
restriction of the projection to the second factor.

From now on, we will denote by ZS8(s̃) the variety Z (s̃) ⊂ Gr(2, V3) ×
Gr(2, V6).

3.1.3. Third HK: S [2]
12

The final example is the Hilbert scheme of points of a general K3 surface
S12 of degree 12. These surfaces are embedded in the orthogonal Grassman-
nian OGr(5, V10) of isotropic 5-planes in the 10-dimensional vector space V10
as the intersection of 8 hyperplane sections. In other words, S12 is defined as
the zero locus of a section t of 8O(1

2). In this case, the space of sections is
H0(OGr(5, V10), 8O(1

2)) = V ∗8 ⊗ S+(V10), where V8 is a vector space of dimension
8, and S+(V10) is one of the two spinor representations of Spin10 of dimension 16.
Consider two general points of S12, represented by two isotropic 5-planes P,Q
in S12 ⊂ OGr(5, V10); as OGr(5, V10) is the connected component of isotropic
5-planes in V10 intersecting each other in odd dimension, by generality P and
Q will intersect in a 1-dimensional space, i.e. P ∩ Q = l, where l ∈ P(V10),
or more precisely l ∈ OGr(1, V10). This guides our choice for X = OGr(1, V10).
Moreover, if we denote by T 1

2
(1) the globally generated rank 8 vector bundle
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over OGr(1, V10) whose space of sections is S+(V10), we redefine E and F as
E = V8 ⊗OX , F = T 1

2
(1). We have again rankE = rankF = 8.

Proposition 3.1.5. Let X,E, F be as before, and let Y = Y 6
8,8 be the determinantal

variety defined in section 3.1. Let s ∈ V ∗8 ⊗ T 1
2
(1) be a general section of E∗ ⊗ F .

Then, the Y -degeneracy locus DY (s) is the Hilbert scheme of points S[2]
12 , where S12

is the K3 surface defined by s in OGr(5, V10). Moreover, varying s, one obtains a
family of dimension 19.

Proof. The line of the proof for this case is the same as the ones already encountered.
DY (s) is again a smooth (by dimensional reasons) fourfold with trivial canonical
bundle isomorphic to Z (s̃); varying s̃ the family is of dimension (128−1)−63−45 =
19 (recall that H0(OGr(a, 2n), TOGr) = so2n).

Let us show the isomorphism η : Z (s̃) → S
[2]
12 . Suppose (P, l) ∈ Z (s̃) ⊂

Gr(2, V8)×OGr(1, V10). Then, as DY 5
8,8

(s) is empty,

φ : V8 → S+
V10 → S+

l⊥/l

has rank six, with Ker(φ) = P . Therefore φ defines a section of 6O(1) over
OGr(4, l⊥/l), whose zero locus is of dimension 0 and degree 2, i.e. two points Q1,
Q2 in OGr(4, l⊥/l). Then, Q1 + l, Q2 + l are two isotropic 5-planes in V10 that
contain l, and define a point in S[2]

12 . This point will be η(P, l).
In order to understand the morphism η−1, we recall some facts about spinors

(see [Igu70]). The nullity of a spinor ψ ∈ S+
V10 is the dimension of the maximal

isotropic subspace of V10 that is annihilated by ψ under the action of the Clifford
algebra. Pure spinors have by definition nullity 5, and they parametrise points of
OGr(5, V10). The sum of two pure spinors in S+

V10 in general has nullity one. The
fact that this sum ψ has nullity one reflects the fact that two general isotropic
5-planes in V10 (associated to the two pure spinors) intersect in a 1-dimensional
space l; with this notation, l is indeed nullified by ψ.
As a consequence, two points R, T ∈ S12 ⊂ OGr(5, V10) define a point l =

R ∩ T ∈ DY (s) ⊂ OGr(1, V10). The isomorphism θ′ : Z (s̃)→ DY (s) then gives a
(birational) inverse η−1 to η.

As in the other cases, we have the following corollary:

Corollary 3.1.6. The degeneracy locus DY (s) is smooth, hence isomorphic to its
desingularization Z (s̃) ⊂ Gr(2, V8)×OGr(1, V10); the isomorphism is given by the
restriction of the projection to the second factor.

From now on, we will denote by ZS12(s̃) the variety Z (s̃) ⊂ Gr(2, V8) ×
OGr(1, V10).
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3.2. Orbital degeneracy loci
In the following, we refer to [BFMT17a] and [BFMT17b] for general facts

about orbital degeneracy loci; we recall just some notation, which was already
used in Section 3.1.

Fix an algebraic group G, a finite dimensional G-module V , and a closed G-
invariant subvariety Y ⊂ V . A wide class of examples of such Y ’s is given by
orbit closures in prehomogeneous spaces (Section 1.4). More precisely, many of
the varieties Y we will use are orbit closures inside parabolic spaces.

Example 3.2.1. Y r
e,f will be the determinantal variety of matrices in V = Me,f

of rank at most r. The group acting on V is G = GLe×GLf . As a parabolic
representation, V is obtained from the grading given by the couple (Ae+f−1, αe),
where αe is the e-th simple root of Ae+f−1.
Example 3.2.2. Let G = GL6 and V = ∧3V6 where V6 is a 6-dimensional vector
space; V6 can be seen as the parabolic representation associated to the couple
(E6, α2). There are five orbits in V6: the dense orbit, a hypersurface of degree 4,
the orbit of partially decomposable forms, the cone over the Grassmannian Gr(3, 6)
and the {0}-orbit. We will be mostly interested in the middle orbit closure, whose
description is the following:

Y = {partially decomposable forms} =

= {σ ∈ ∧3V6 s.t. σ = v ∧ ω for v ∈ V6 and ω ∈ ∧2V6}.

The dimension of Y is 15, and its singular locus is the cone over the Grassmannian
Gr(3, 6) (of dimension 10).
Example 3.2.3. One can of course also consider orbit closures which do not live
inside parabolic representations; for instance, in the second half of this chapter we
will focus on orbit closures inside quiver representations.

The degeneracy locus is a way to relativize Y inside an ambient variety X.
The right way to obtain such a relativization is to use the G structure of the
model Y ⊂ V . For this purpose, one can start by assuming that the variety X is
equipped with a G-principal bundle E . For all the following results on ODL, we
will also assume that X is smooth and projective.

As a matter of fact, E defines a functor

E• : {G-spaces Z} → {locally trivial fibrations over X with fiber Z},

Z 7→ EZ := E × Z/ ∼,
where for any e ∈ E , z ∈ Z, (eg, z) ∼ (e, gz) for all g ∈ G.

Remark 3.2.4. In particular, if Z is a G-representation, then EZ is a vector bundle
over X. Therefore, E• is a functor that sends any G-module to an OX-module.
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As a consequence, one can construct from the data (V,X, E) a vector bundle
EV on X, whose fiber over each point is isomorphic to V as a G-module. Being
the inclusion Y ⊂ V G-equivariant, it can be relativized as well over X to the
inclusion EY ⊂ EV , which are fibrations over X.

Having relativized the model over X, we still need to pull it back inside of
X. Let s be a section of EV . Then, one can construct the Y -degeneracy locus
associated to s, which is denoted by DY (s); indeed, DY (s) is defined as the locus
of points in X which are sent by s inside EY . More intrinsically:

Definition 3.2.5 (ODL, [BFMT17b]). The Y -degeneracy locus of s, denoted by
DY (s), is the scheme defined by the Cartesian diagram

EY
�

// EV

DY (s)

OO

� � // X

s

OO (3.1)

Its support is {x ∈ X, s(x) ∈ EY ⊂ EV } = s−1(EY ).

Example 3.2.6. Let Y = {0} inside the standard representation Cr of GLr. Then
DY (s) is the zero locus of the section s.
Example 3.2.7 (Example 3.2.1 continued). In the relative setting, the data of a
G-principal bundle E over a variety X is the same as the data of two vector
bundles E and F of respective ranks e and f . With this notation, one obtains
that EV ∼= Hom(E,F ), and a section s of this bundle is a morphism s : E → F .
Then DY r

e,f
(s) is the classical degeneracy locus of the morphism s between vector

bundles, described in Section 3.1.
If the bundle EV is globally generated, and the section s is general, DY (s) satis-

fies nice properties ([BFMT17a, Proposition 2.3]); in particular, codimX(DY (s)) =
codimV (Y ), its singular locus is DSing(Y )(s), and it is normal if Y is normal. These
facts are proven by using a Bertini type argument, as it can be done for (the
special case of) zero loci.

Example 3.2.8 (Example 3.2.2 continued). In the relative setting, EV over X is
isomorphic to ∧3E, for E a vector bundle over X of rank six. If ∧3E is globally
generated and s is a general section, then DY (s) has codimension 5 in X and is
singular in codimension 5.
In [BFMT17a] we have used the orbit closure of partially decomposable forms

as a model to construct many Calabi-Yau and Fano orbital degeneracy loci. It has
also been the first example which was not a classical locus; we have studied its
geometry in detail, and we have found a Thom-Porteous formula for its class in
the cohomology of X. In the next section we will understand why this example is
so important.
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In the following two sections we will see how to construct desingularizations
of ODL and locally free resolutions of their ideals. Both techniques are useful
(and crucial!) to control the canonical bundle of the ODL.

3.2.1. Desingularization of ODL
Suppose Y admits a resolution of singularities given by a Kempf collapsing:

the desingularization of Y is given by the total space W of a (homogeneous)
vector bundle W over a homogeneous variety G/P (see Section 1.4). Then it is
possible to relativize this construction, and obtain a desingularization of DY (s).

This resolution of singularities will live inside the variety EG/P , which admits a
fibration θ : EG/P → X whose fiber is isomorphic to G/P . The following diagram
illustrates the situation we are describing:

θ∗EV

��

EW? _oo

&&

��

EG/P

θ

��

Z (s̃)? _oo

θ′

��

EV EY? _oo

''
X DY (s)? _oo

In order to understand better the diagram, we suggest to compare it to its ab-
solute version 1.1. Denote by QW the quotient of θ∗EV by EW (seen as a vector
bundle over EG/P ). Then s induces a section s̃ of QW , and its zero locus Z (s̃) is
the wanted resolution of DY (s) (refer to [BFMT17a, Proposition 2.3]).

Such a desingularization becomes very important when trying to understand
the canonical bundle of the ODL. We recall the following definition:

Definition 3.2.9. A variety Z has rational singularities if there exists a desingu-
larization π : Z ′ → Z of Z such that:

π∗OZ′ = OZ and
Riπ∗OZ′ = 0 for i > 0.

Remark 3.2.10. Having rational singularities implies normality. Moreover, if
the properties in the previous definition are satisfied for one desingularization
π : Z ′ → Z, they are satisfied for any desingularization of Z.

Remark 3.2.11. For an orbit closure Y ⊂ V , it is possible to verify if it has
rational singularities via the geometric method (see Section 1.4).

In this context crepant resolutions (see Remark 1.4.13) are interesting. Morally,
with crepant resolutions we are requiring the relative canonical bundleKZ (s̃)/DY (s)
to be trivial, which means that the canonical bundle KZ (s̃) is the pull-back of a
line bundle over X. With a further technical hypothesis (rational singularities)
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one is able to pushforward KZ (s̃) to recover KDY (s) as the restriction of a line
bundle over X. More precisely:

Proposition 3.2.12 ([BFMT17a]). Suppose that Y has rational singularities and
the Kempf collapsing pW : W → Y satisfies

det(W ) = KG/P .

If EV is globally generated and s is a general section, then the canonical sheaf of
DY (s) is the restriction of some line bundle on X.

Remark 3.2.13. Rational singularities are needed for two reasons. First of all,
they imply the normality of Y , which ensures the normality of DY (s) and therefore
the existence of a canonical sheaf KDY (s). Secondly, it can be proven that DY (s)
has rational singularities too, and thus the canonical class of the desingularization
Z (s̃) can be pushed forward to the canonical class of DY (s).

Notice that the line bundle mentioned in the previous proposition can be com-
puted explicitly, by applying the adjunction formula for zero loci to Z (s̃).
Example 3.2.14 (Example 3.2.1 continued). The Kempf collapsing of Y r

e,f described
in Example 1.4.12 is crepant if and only if e = f . This explains the behaviour
illustrated at the end of Section 3.1.
Example 3.2.15 (Example 3.2.2 continued). A Kempf collapsing of the orbit closure
Y of partially decomposable forms is given by the total space of

W = U ∧ ∧2V6 = ∧2Q(−1) over P(V6).

This collapsing turns out to be crepant, and the relative canonical bundle can be
computed as:

KDY (s) = KX ⊗ det(E)5.

As DY (s) is smooth in codimension 4, this model can be used to construct smooth
fourfolds which are Fano or with trivial canonical bundle, which was done extensively
in [BFMT17a]. The existence of the crepant Kempf collapsing is what brought at
first this example to our attention.

Hodge diamond of some Fano fourfolds

In [BFMT17a] we constructed many ODL of Calabi-Yau type and of Fano type
in dimension 3 and 4. Essentially, we used the orbit of partially decomposable
forms Y in ∧3C6 (Example 3.2.2) and some nilpotent orbit closures (Remark
1.4.8). Most of the latter varieties admit crepant Kempf collapsings. Indeed, a
nilpotent orbit closure is contained in a Lie algebra g. Notice that the total space
Ω1
G/P of the cotangent bundle of a homogeneous variety G/P is a subbundle of
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the trivial bundle g over G/P . Denote by Yn the image of the natural morphism

p : Ω1
G/P → G/P × g→ g.

The tangent bundle of G/P is the homogeneous bundle associated to the P -
representation g/p, where g (respectively p) is the Lie algebra of G (resp. P ); as
a consequence, Ω1

G/P is associated to the P -module

(g/p)∗ ∼= p⊥,

which is contained in the nilpotent cone of g via the Killing form.
Thus Yn is a closed, irreducible subvariety of the nilpotent cone, which con-

tains only finitely many orbits, i.e. Yn is a nilpotent orbit closure. If p is bira-
tional onto its image, we obtain that the orbit closure Yn is desingularized by the
crepant Kempf collapsing given by Ω1

G/P .
In this section we want to complement on a result of [BFMT17a]. In this

paper, we constructed five families of Fano fourfolds, of which we computed
some invariants (see [BFMT17a, Table 8]). Here we report the computation
of their Hodge numbers, which could be useful in order to study them more in
detail. Moreover, it shows once more why having a (crepant) Kempf collapsing is
useful; using the Leray spectral sequence and the Koszul complex for zero loci in
the relative situation, it allows to obtain the Hodge diamond. However, applying
this method presents some complications, as it involves a strong use of Bott’s
theorem; in addition, in order to determine the Hodge diamond, one needs to
be able to describe completely the maps that appear in the complexes involved,
which can become quite difficult.

Theorem 3.2.16. The Hodge numbers of the Fano fourfolds that appear in [BFMT17a,
Table 8] are shown in Table 3.1.

Table 3.1. – Hodge numbers of Fano degeneracy loci F of dimension 4
X E h1,1 h1,2 h1,3 h2,2

Y ⊂ ∧3C6 Gr(3, 6) U∗X ⊕ 3OX 2 1 1 23

Y ⊂ ∧3C6 IGr(2, 7) QX ⊕OX 3/4 0/1 1 26/28

Y ⊂ ∧3C6 IGr(2, 7) U∗X ⊕ 4OX 2 0 5 54

(3) P3, SL4 Q13 4OX 2 0 16 114

(7) P4, SL5 P20 5OX 2 0 4 46

Proof. We will explain the computation for the last two varieties inside Q13 and
P20. The others are ODL’s coming from the orbit of partially decomposable forms;
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in [BFMT17a, Appendix A] we explain in detail how to compute their Hodge
numbers. Notice just that the indeterminacy in the second fourfold for h1,1, h1,2,
h2,2, is the same that was present when computing the Hodge diamond of the
Calabi-Yau threefold obtained by cutting it with an anticanonical hyperplane.
For what concerns the last two Fano varieties, they come from nilpotent orbits.

However, the bundle E is trivial in the two cases. We will explain here how we
computed the Hodge diamond of the Fano F in X = P20; the one in Q13 can be
studied similarly. As F = DY (s) is smooth, it is isomorphic to its desingularization
Z (s̃). The section s lives in H0(X, sl(E) ⊗ L), where L = OX(1). Consider the
projective bundle θ : P(E)→ X; then Z (s̃) ⊂ P(E) is the zero locus of a section
inside

H0(P(E), θ∗(sl(E)⊗ L)/Ω1
P(E)/X ⊗ θ∗L).

This bundle will be denoted by T = T̃ ⊗ θ∗L.
By using the Koszul complex, to compute the cohomology of OZ (s̃), we are

reduced to compute Hj(P(E),∧iT ∗). This in turn, by the Leray spectral sequence,
can be obtained from

Hp(X,Rqθ∗(∧iT ∗)) = Hp(X,Rqθ∗(θ∗L−i ⊗ ∧iT̃ ∗)) = Hp(X,L−i ⊗Rqθ∗(∧iT̃ ∗)),

by the projection formula. Moreover, as E is trivial, T̃ is too, and

Rqθ∗(∧iT̃ ∗) = Rq,i ⊗OX

for vector spaces Rq,i of dimension equal to rank(∧iT̃ ∗). Therefore we can write

Hp(X,L−i ⊗Rqθ∗(∧iT̃ ∗)) = Hp(X,L−i)⊗Rq,i,

whose computation is an easier task: as i goes from 0 to 20, the only cohomology
different from zero of L−i = OX(−i) is, for i = 0, H0(X,OX) ∼= C. For what
concerns the cohomology of Ω1

Z (s̃), we can use the exact normal sequence and the
exact sequence of the relative tangent bundle of P(E) over X; by applying again
the Koszul complex and the Leray spectral sequence, we are lead to compute the
following quantities:

Hp(X,Rqθ∗(T ∗⊗∧iT ∗)) = Hp(X,L−i−1⊗Rqθ∗(T̃ ∗⊗∧iT̃ ∗)) = Hp(X,L−i−1)⊗Rp,i
N ,

Hp(X,Rqθ∗(Ω1
P(E)/X ⊗ ∧iT ∗)) = Hp(X,L−i ⊗Rqθ∗(Ω1

P(E)/X ⊗ ∧iT̃ ∗)) =

= Hp(X,L−i)⊗Rp,i
P(E)/X ,

Hp(X,Rqθ∗(Ω1
X⊗∧iT ∗)) = Hp(X,L−i⊗Ω1

X⊗Rqθ∗(∧iT̃ ∗)) = Hp(X,L−i⊗Ω1
X)⊗Rp,i

Ω1
X
,

for suitable vector spaces Rp,i
N , R

p,i
P(E)/X , R

p,i
Ω1
X
. The dimension of these vector spaces

can be computed as described in [BFMT17a], and the rest is just regular cohomology
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over P20.
Finally, to compute h2,2 we used χ(Ω2

F ), which is given again in [BFMT17a].

3.2.2. Locally free resolution of ODL
One of the aims of [BFMT17b] was to construct a locally free resolution of the

ideal of an ODL. We did it by starting from a G-equivariant free resolution of the
G-stable subvariety Y of the G-representation V . Furthermore, in the case when
Y is Gorenstein, the resolution can be used to understand the canonical bundle
of the ODL. In this section we report the main results in this sense. In order to
gain in clearness, we will state the results in a less technical situation than the
one considered in [BFMT17b].

We begin by recalling some definitions for affine varieties:

Definition 3.2.17. An affine variety Z ⊂ Cn has Cohen-Macaulay ring if there
exists a minimal free resolution of OZ of length codimCn Z. Moreover, Z has
Gorenstein ring if and only if the minimal resolution is self-dual.

Remark 3.2.18. If an affine variety Z has Gorenstein ring, the last term of the
minimal resolution is free of rank one (see [Eis95, Corollary 21.16]).

Remark 3.2.19. As already mentioned in Section 1.4, it is concretely possible to
verify if an orbit closure inside a parabolic representation is Cohen-Macaulay or
Gorenstein by using the geometric technique.

Let us suppose that Y ⊂ V is Cohen-Macaulay. Let us consider a minimal free
resolution F• of Y of length codimV Y . As Y is G-stable, we can suppose that
the resolution F• is G-equivariant (as explained in [Wey03]). The terms of the
complex F• are OV -modules.

Let us consider the relative situation. We fix a variety X and a G-principal bun-
dle E over it. By applying the functor E• defined at the beginning of Section 3.2
to the complex F•, we obtain a locally free complex EF•, which has the following
properties:

— as the Fi’s are OV -modules, in the relative case the EFi ’s become OEV -
modules. Therefore EF• can be seen as a locally free complex over the
total space EV ;

— EF• can be proved to be an exact complex resolving OEY (as EY ⊂ EV ).

As stated here, the complex EF• naturally lives on EV over X. In order to bring
it back to X we can apply the pullback via the section s : X → EV . By using the
Generic Perfection Theorem (see [EN67]), we obtain:

Theorem 3.2.20 ([BFMT17b]). Let Y be a G-stable subvariety of the G-representation
V with Cohen-Macaulay ring and minimal free resolution

0→ F• → OY → 0.
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Moreover, let X be a smooth projective variety and E a G-principal bundle over it.
If EV is globally generated and s is a general section of EV , then the complex

0→ s∗(EF•)→ s∗(OEY )→ 0

is a length codimV Y locally free resolution of ODY (s) = s∗(OEY ).

Example 3.2.21 (Example 3.2.1 continued). The determinantal variety Y r
e,f is always

Cohen-Macaulay and it is Gorenstein if and only if e = f . Suppose e ≥ f ,
r = f − 1. The resolution of the ideal of the classical degeneracy locus DY r

e,f
(s)

given by Theorem 3.2.20 is the well-known Eagon-Northcott complex (e.g. see
[Laz04, Theorem B.2.2]).
Example 3.2.22 (Example 3.2.2 continued). A relative version of the resolution of
the ideal of the orbit closure Y of partially decomposable forms has been given in
[BFMT17b].

The following corollary of Theorem 3.2.20 is what allows to control the canon-
ical bundle.

Corollary 3.2.23. In the hypothesis of Theorem 3.2.20, assume moreover that Y
is normal of codimension c and has Gorenstein ring. Then the last term of the
minimal resolution of OY is

Fc = W

for W a 1-dimensional representation of G, and

KDY (s) = KX ⊗ E∗W |DY (s)

Remark 3.2.24. Notice that the bundle EW is defined on the whole variety X.
This result has therefore the same flavour as Proposition 3.2.12, and it can be used
to control KDY (s). As a matter of fact, admitting a crepant Kempf collapsing is a
condition which is stronger than having Gorenstein ring (see [BFMT17b, Section
2.5]).

Remark 3.2.25. Sometimes we do not have a crepant Kempf collapsing of a given
orbit closure, but we know that it is Cohen-Macaulay and Gorenstein. For instance,
this is always true for a cone over an ordinary Grassmannian Gr(k, n): the natural
resolution given by O(−1) over Gr(k, n) is indeed never crepant. However, it is
possible to compute the relative canonical bundle of the ODL knowing that the
cone is Gorenstein.

Remark 3.2.26. In [BFMT17b] we were able to compute the last term of the
resolution, which gives the (dual of the) relative canonical bundle of the ODL, in
many cases. In particular, we did it for all parabolic representations.
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Orbital interpretation of Hilbert schemes of points
The examples we have studied in Section 3.1 admit a second interpretation as

orbital degeneracy loci. It is interesting to notice that this second interpretation,
in the first HK example of S[2]

14 , allows to construct a complete 20-dimensional
family of hyper-Kähler fourfolds (it is the same family as the one appearing in
[BD85]). Unfortunately, this extension of the family is not possible in the other
two cases, as we will show.

More precisely, as a consequence of the description given in Section 3.1, in
the cases studied a general member of S[2]

d lives in the product of two varieties
which is of the form Gr(2, · ) × X; if before we focused on the second projec-
tion, we want to study now the projection onto the first factor. It turns out that
this projection realises the Hilbert scheme as another degeneracy locus for exam-
ples 3.1.1 and 3.1.3; in example 3.1.2 instead, the first projection realises the
Hilbert scheme as a fibration in Jacobians over Gr(2, V3) (this situation has been
described in [Saw14]). Morally, by “forgetting" the variety X (through the first
projection), we get rid of the direct connection with the K3 surface Sd, and in
our opinion this is a heuristic explanation of the fact that it is possible to extend
the family described in Section 3.1.1.

3.2.3. Beauville-Donagi revisited
As we have seen in Section 3.1.1 (and in Corollary 3.1.2), a general member

of S[2]
14 is a subvariety ZS14(s̃) ⊂ Gr(2, V ′6) × Gr(4, V6) (here an important role is

played by the fact that the bundle E was chosen to be trivial). The second pro-
jection onto Gr(4, V6) restricted to S[2]

14 is an isomorphism with its image; actually,
we realised S

[2]
14 starting from the consideration that it should be a subvariety of

Gr(4, V6). We study now the first projection onto Gr(2, V ′6); we will see that its
image can be well understood as orbital degeneracy locus. As a consequence, we
have the following result:

Proposition 3.2.27. Let ZS14(s̃) ⊂ Gr(2, V ′6) × Gr(4, V6) be the Hilbert scheme
of points of S14 as defined in Section 3.1.1. Then the image of the projection
ZS14(s̃) → Gr(2, V ′6) is the zero locus of a section of the bundle Sym3U∗. By
varying this section, one obtains a 20-dimensional family of hyper-Kähler fourfolds.

Notice that this family is exactly the same as the one that appears in [BD85].

Proof. Consider the prehomogeneous representation V associated to the pair
(E7, α3), where α3 is the third simple root (in standard conventions) of the Lie
algebra associated to the group E7. By looking at the Dynkin diagram,

V = U∗2 ⊗ ∧2U∗6 ,
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where U2, U6 are vector spaces of respective dimension 2 and 6 (the duals are taken
for later convenience). It is a representation under the action ofG0 = SL2×SL6×C∗.
Take the codimension 4 orbit, and denote its closure by Y . Then Y is the closure
of the space of morphisms U2 → ∧2U∗6 such that the image has zero Pfaffian. A
resolution of Y is given by the total space of the bundle

W = U∗2 ⊗ (O(−1)⊕Q∗ ⊗ U∗) over Gr(4, U6).

In the relative case, consider a variety X endowed with two vector bundles G, H
of respective rank two and six, with G∗ ⊗ ∧2H∗ globally generated. Then, if

s ∈ H0(X,G∗ ⊗ ∧2H∗),

we can define DY (s) ⊂ X. If s is general, it is a subvariety of codimension 4
resolved by Z (s̃), where s̃ ∈ H0(Gr(4, H),∧2U∗) (as explained in Section 3.2). By
making the choice X = Gr(2, V ′6), G = UX and H = V6 ⊗OX , it is straightforward
to see that Z (s̃) is exactly the same as ZS14(s̃) defined after Corollary 3.1.2.
To prove that DY (s) lives in a family of dimension 20, notice that s(x) can be

seen as a skew-symmetric matrix of forms over the fiber Gx. Since Y is the closure
of morphisms with null Pfaffian,

DY (s) = {x ∈ X|Pf(s(x)) = 0} = Z (Pf(s)),

where Z (Pf(s)) is the zero locus of

Pf(s) ∈ H0(X,Sym3G∗) = H0(Gr(2, V ′6), Sym3U∗) = Sym3V ′∗6 .

By taking a general section t of Sym3U∗ over Gr(2, V ′6), one obtains a family of hyper-
Kähler fourfolds Z (t) deformation equivalent to S[2]

14 of dimension (56− 1)− 35 =
20.

Remark 3.2.28. By fixing an isomorphism V ′6
∼= V ∗6 , our construction and

Beauville-Donagi’s one are the same. Indeed, while in their construction what
is used in order to construct the K3 surface is just the image of the morphism
V ′6 → ∧2V ∗6 , in our construction we need to fix the whole morphism. This means
that we need to fix also an automorphism of V ′6 , which is the same as fixing the
isomorphism V ′6

∼= V ∗6 .

Remark 3.2.29. Consider the codimension 10 orbit Y in the prehomogeneous
representation V associated to the pair (E7, α3). Moreover, let X = Gr(2, V9) where
V9 has dimension 9, with two bundles G = U , H = 6OX on it, of respective ranks 2
and 6. Then, by following exactly the same line of ideas used before, one can prove
that the orbital degeneracy locus DY (s) (where s is a general section of G∗⊗∧2H)
is again hyper-Kähler and isomorphic to S[2]

14 (it is smooth as the singularities of
the orbital degeneracy locus are in codimension 5).
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Indeed, if before we were fixing a subspace of dimension 6 in ∧2H∗ in order
to construct the K3 surface S14, now we are fixing its dual, i.e. a subspace of
dimension 9 in ∧2H. This gives another embedding of S[2]

14 in Gr(2, V9).

3.2.4. Fibration in Jacobians
The Hilbert scheme of points of a K3 surface of degree 8 can be seen as a

subvariety ZS8(s̃) ⊂ Gr(2, V3) × Gr(2, V6) by Corollary 3.1.4. In this case, the
first projection restricted to ZS8(s̃) is surjective. Moreover, it is a fibration in
Jacobians, as explained by the following proposition.

Proposition 3.2.30. Let ZS8(s̃) ⊂ Gr(2, V3)×Gr(2, V6) be the Hilbert scheme of
points of S8 as defined in Section 3.1.2. Then the projection ZS8(s̃)→ Gr(2, V3) is
a fibration, with fibers isomorphic to the Jacobian of a curve of genus 2.

Proof. Consider the GL2 ×GL6-representation

V = U∗2 ⊗ Sym2U∗6 = Hom(U2, Sym
2U∗6 ),

where U2, U6 are vector spaces of respective dimension 2 and 6. A generic element
of V defines an element of Gr(2, Sym2U∗6 ). This in turn defines the variety J ⊂
Gr(2, U6) of 2-planes isotropic with respect to the symmetric forms generating the
2-plane in Sym2U∗6 . J can thus be seen as the zero locus of a general section in
H0(Gr(2, U6), 2(Sym2U∗)). It has been proved in [Rei72] that such a J is isomorphic
to the Jacobian of a curve of genus two.

In the relative setting, take X = Gr(2, V3), G = UX and H = V6⊗OX , where the
two vector bundles G, H are of respective ranks two and six, such that G∗⊗Sym2H∗

is globally generated. Then, on the Grassmannian bundle π : Gr(2, H) → X,
consider a generic section t ∈ H0(Gr(2, H), π∗G∗ ⊗ Sym2 U∗). From what we have
said before, its zero locus Z (t) is a variety which admits a surjective fibration in
Jacobians π′ : Z (t)→ X over its image. But Z (t) is actually the same as ZS8(s̃)
for t = s̃, and we get the assertion of the proposition.

Remark 3.2.31. As in Remark 3.2.29, instead of constructing the Hilbert scheme
S

[2]
8 from a subspace of dimension 3 inside Sym2H∗ (the image of the morphism

defined by s), we can consider its dual space, i.e. a subspace of dimension 18 inside
Sym2H. By doing so, we obtain an embedding from S

[2]
8 into Gr(2, V18), where

V18 has dimension 18 (we do not give further details, as the method to prove this
statement is similar to the one already used).
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3.2.5. A Spinor orbit
The case of the Hilbert scheme of points of a K3 surface of degree 12 is similar

to the Beauville-Donagi case: the first projection onto Gr(2, V8) is an isomor-
phism that realises it as an orbital degeneracy locus; however, in this case, the
family doesn’t extend inside Gr(2, V8) to a 20-dimensional family. Moreover, the
image of ZS12(s̃) cannot be seen as the zero locus of a general section of a vector
bundle.

Proposition 3.2.32. Let ZS12(s̃) ⊂ Gr(2, V8)×OGr(1, V10) be the Hilbert scheme
of points of S12 as defined in section 3.1.3. Then the projection ZS12(s̃)→ Gr(2, V8)
is an isomorphism onto its image.

Proof. Consider in this case the prehomogeneous representation V associated to
the pair (E7, α6), where α6 is the sixth simple root of E7. In this hypothesis

V = U∗2 ⊗ S+(U10),

where U2, U10 are vector spaces of respective dimension 2 and 10. It is a represen-
tation under the action of G0 = SL2 × Spin10×C∗. There is only one codimension
8 orbit, whose closure we denote by Y : it is the closure of the space of morphisms
U2 → S+(U10) such that the image is a 2-plane of spinors which all annihilate the
same isotropic line in U10. Indeed, a resolution of Y is given by the total space W
of the bundle

W = U∗2 ⊗ T 1
2
(1) over OGr(1, U10).

This orbit closure is singular at the points representing morphisms φ : U2 → S+(U10)
whose image is a line inside OGr(5, U10). This is a consequence of the fact that a
spinor in S+(U10) that is not pure, has nullity equal to one; therefore if the image
of the morphism φ is not contained in OGr(5, U10), it identifies one (and only one)
point of the Grassmannian OGr(1, U10), thus providing an inverse to the morphism
W → V . As a result, the orbit closure is singular in codimension 5.

In the relative case, consider a variety X endowed with two vector bundles G, H
of respective rank two and ten, with G∗ ⊗ S+(H) globally generated. Then, if

s ∈ H0(X,G∗ ⊗ S+(H)),

we can define DY (s) ⊂ X. If s is general, it is a subvariety of codimension 8 resolved
by Z (s̃), where s̃ ∈ H0(OGr(4, H), T 1

2
(1)) (as explained in Section 3.2). By making

the choice X = Gr(2, V8), G = UX and H = V10 ⊗OX , it is straightforward to see
that the desingularization Z (s̃) of DY (s) is exactly the same as ZS12(s̃) defined
after Corollary 3.1.6 Moreover, as DY (s) is a fourfold, it is smooth and isomorphic
to Z (s̃).

Contrary to the Beauville-Donagi case, DY (s) does not live in a family of di-
mension 20 inside Gr(2, V8). Indeed, it is possible to use the resolution of the va-
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riety Y (see [KW13]) in order to compute the cohomology H0(DY (s), TGr|DY (s)),
which is an obstruction to the completeness of the family. It turns out that

H0(DY (s), TGr(2,V8)|DY (s)) ∼= C2,

and therefore the family can only be of codimension 2, i.e. of dimension 19.

So far, using orbital degeneracy loci we have been able to construct many spe-
cial varieties, whose geometry would be worth being investigated more closely.
More precisely, the situation is the following:

— in [BFMT17a], we have constructed six families of Fano degeneracy loci of
dimension 3 by using the orbit closure of partially decomposable forms (two
examples) and nilpotent orbit closures (four examples); as the classification
of Fano threefolds is known, we have been able to identify all the threefolds
we have found. Moreover, we have constructed eighteen families of almost
Fano nilpotent degeneracy loci of dimension 3, among which two remain
mysterious (see [BFMT17a, Table 7]);

— in [BFMT17a], we have found five families of Fano degeneracy fourfolds
(for which we have computed the Hodge numbers in Section 3.2.1);

— in [BFMT17a] we have constructed a dozen families of Calabi-Yau degener-
acy threefolds, five from the orbit closure of partially decomposable forms
and for which we have computed the Hodge numbers, and the rest from
nilpotent orbit closures;

— the largest number of degeneracy loci we have constructed to date are four-
folds of Calabi-Yau type. This is because we were essentially searching for
new examples of hyper-Kähler fourfolds among loci with trivial canonical
bundle. In [BFMT17a] we have found several dozens Calabi-Yau degener-
acy fourfolds from the orbit closure of partially decomposable forms (∼ 40
examples) and nilpotent orbit closures (∼ 20 examples); in [BFMT17b]
we have found two tens extra Calabi-Yau degeneracy fourfolds by using or-
bit closures inside parabolic representations. All these examples deserve a
more detailed analysis;

— finally, in this section, we have showed that orbital degeneracy loci can be
successfully used to construct some families of hyper-Kähler fourfolds. All
the examples are (deformations of) Hilbert schemes of two points on a K3
surface, but they suggest that other kinds of interesting hyper-Kähler vari-
eties can be found among orbital degeneracy loci. We believe that similar
constructions as the ones used here will permit to construct such hyper-
Kähler degeneracy loci.

The work done in [BFMT17a] and [BFMT17b] already shows that ODL pro-
vide an efficient way of producing (special) varieties. However, we would like
to underline the fact that much more can and needs to be done; for instance, in

92



[BFMT17b] we have just given a sample of parabolic degeneracy loci, and we in-
tend to enlarge this list in the future, with the hope of finding some remarkable
ODL.

In the next two sections we will study quiver degeneracy loci, and we will con-
struct eight additional examples among smooth and singular, Fano and Calabi-
Yau varieties of dimension 3 and 4.

3.3. Crepant resolutions of orbit closures in
Quiver representations of type An and D4

We study resolutions of singularities of orbit closures in quiver representations.
We chose to analyze the case of quiver orbits because of the nice properties they
have. In particular, when the quivers are of finite type, a complete description
of such orbits is known ([Gab72]). We dealt with the quivers of type An and D4.
We consider certain resolutions of singularities which have already been con-
structed by Reineke, and we determine under which conditions they are crepant.
Our motivation to search for crepant desingularizations is that we want to apply
Proposition 3.2.12 to construct special varieties; indeed, the desingularizations
we will consider are actually Kempf collapsings.

3.3.1. Quiver Representations
Let Q = (S,A) be a quiver; S is the set of vertices of the quiver, and A the set

of arrows. Each arrow a ∈ A starts from the vertex a(0) ∈ S and ends on the
vertex a(1) ∈ S. A quiver is said to be source-sink if for each vertex s ∈ S, either
all the arrows that are connected to s start from it, or they end on it.

If T is the type of a certain semisimple Lie algebra (e.g. T = An, Bn, . . . ) then
we will say that the quiver Q is of type T if the underlying graph of Q (which is
obtained by replacing arrows with edges) is the Dynkin diagram of type T . We
will always assume that the quiver has no loops, meaning that its graph has no
loops, so that the possible Dynkin types are An, Dn, E6, E7, E8. Actually, for the
definition of quivers of type Bn, Cn, G2, F4, one needs a more general definition
of quiver (i.e. that of a valued quiver, as is defined for example in [DR76]).

If Q is of type An, we will say that it is a one-way quiver if all the arrows point
in the same direction.

Definition 3.3.1. A representation φ of a quiver Q = (S,A) is defined by the
choice of a vector space Vs of dimension ds for all s ∈ S and of a morphism
φa : Va(0) → Va(1) for every a ∈ A. The data d = {ds}s∈S is usually referred to as
the dimension vector of the representation.

Definition 3.3.2. Consider two representations φ = ((Vs)s∈S, (φa)a∈A) and ψ =
((Ws)s∈S, (ψa)a∈A) of a quiver Q. A morphism α : φ→ ψ between them is the data

93



of morphisms αs : Vs → Ws for every s ∈ S such that for every a ∈ A the following
diagram commutes:

Va(0)
αa(0)
��

φa // Va(1)
αa(1)
��

Wa(0)
ψa // Wa(1)

The parameter space Rd for representations of a quiver Q with a given dimen-
sion vector d (and fixed spaces (Vs)s∈S) is

Rd :=
⊕
a∈A

Hom(Va(0), Va(1)) ,

on which there is a natural action of

G :=
∏
s∈S

GL(Vs) .

Remark 3.3.3. One can look at Rd as a representation of the group G. It is
straightforward to see that orbits in Rd under the action of G are in one-to-one
correspondence with isomorphism classes of representations with dimension vector
d.

We address now the problem of classifying the orbits in such a parameter space
Rd, which is equivalent to classifying isomorphism classes of representations of
Q. For some special type of quivers, Gabriel’s theorem ([Gab72]) gives this
classification:

Definition 3.3.4. A quiver Q is said to be of finite type if there exists only a finite
number of isomorphism classes of indecomposable representations of Q.

Theorem 3.3.5 ([Gab72]). A quiver Q is of finite type if and only if Q is of type
An, Dn, E6, E7, E8 or a finite disjoint unions of those. Moreover in this case,
there is a bijection between isomorphism classes of indecomposable representations
and positive roots of the Dynkin diagram underlying Q.

Corollary 3.3.6. If Q is of finite type, there are only finitely many orbits in Rd

under the action of G for a fixed d.

Example 3.3.7. Consider a quiver of type A2 (with the arrow toward the second
vertex, for example). The parameter space for representations Rd = Rd1,d2 is
the space of matrices Hom(V1, V2), where dim(Vi) = di, i = 1, 2. There are three
indecomposable representations; we denote by αi the i-th simple root of A2, and
the indecomposable representations associated to the positive roots as φα1 , φα2 ,
φα1+α2 . Their dimension vectors are respectively (1, 0), (0, 1), (1, 1). Notice that
these vectors are given by the coefficients of the positive root in the basis of simple
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roots; this is actually a general fact which comes from a more precise statement of
Gabriel’s theorem.
Orbits in Rd1,d2 correspond to the possible direct sums of the indecomposable

representations with dimension vector (d1, d2). For 0 ≤ r ≤ min(d1, d2), they are
of the form rφα1+α2 ⊕ (d1− r)φα1 ⊕ (d2− r)φα2 . The corresponding orbit Or is the
orbit in Hom(V1, V2) under the action of GL(V1)×GL(V2) of matrices of rank r.

Reineke’s resolutions

In the following we study the orbit closures in Rd for a fixed quiver Q with a
fixed dimension vector d under the action of G = ∏

s∈S GL(Vs). More precisely,
we give a description of a desingularization of the orbit closures, which was
first found by Reineke in [Rei03]. In Section 3.3.2, we will see some concrete
examples of those desingularizations. The power of Reineke’s construction is that
it gives a desingularization of each orbit closure; by working out the examples,
we will see that in some cases these desingularizations are easy to understand
and very natural.

We will follow Reineke’s paper [Rei03]. The desingularizations are indexed by
monomials in S.

Definition 3.3.8. A monomial in S is a couple (~s,~a), where ~s = (s1, . . . , sτ ) ∈ Sτ ,
~a = (a1, . . . , aτ ) ∈ Nτ for a certain τ .

To each monomial we will associate a flag variety F(~s,~a) and a vector bundle
W(~s,~a) on it. Consider the vector space V = ⊕s∈SVs. For s ∈ S, a subspace (or
more generally, a quotient of a subspace) of V is said to be pure of type s if it is
contained in Vs (if it is generated by a subspace of Vs). Then

F(~s,~a) =
 Flags 0 = F τ ⊂ · · · ⊂ F 1 ⊂ F 0 = V s.t.
F i−1/F i is pure of type si and dimension ai

.
In fact, it is possible to write this variety as a product of usual flag varieties: it
suffices to separate the contributions of the different Vs’s. For s ∈ S, let us define
(as1, . . . , asµ) = (ai1 , . . . , aiµ), where (i1, . . . , iµ) are all the occurrences of s in ~s (i.e.
si1 = · · · = siµ = s). Then :

F(~s,~a) ∼=
∏
s∈S
{Flags in Vs whose i-th successive quotient has dimension asi} =

=
∏
s∈S

F (as1, as1 + as2, . . . , Vs).

The vector bundle W(~s,~a) is given by the elements in Rd which are compatible
with the flag variety F(~s,~a); more precisely, over a point

F • = {0 = F τ ⊂ · · · ⊂ F 1 ⊂ F 0 = V } ∈ F(~s,~a),

95



the fiber of this bundle is defined as:

(W(~s,~a))F • = {w ∈ Rd ⊂ End(V ) s.t. w(F k) ⊂ F k for 0 ≤ k ≤ τ}.

We denote by π(~s,~a) : W(~s,~a) → Rd the natural projection.

Remark 3.3.9. By the description of F(~s,~a) as a product of flag varieties, it is clear
that it is a homogeneous variety under the action of G, and the vector bundle W(~s,~a)
is G-homogeneous. Being the projection morphism π(~s,~a) G-equivariant, its image
is G-stable. Moreover, it is irreducible and closed (since π(~s,~a) is projective). If Q is
of finite type, there is a finite number of orbits in Rd, and therefore π(~s,~a)(W(~s,~a)) is
the closure of one of them. Actually, for every orbit closure in Rd, a resolution of
singularities of the type W(~s,~a) for a certain monomial (~s,~a) always exists (and is
not unique!), as explained by the following theorem.

Theorem 3.3.10 ([Rei03]). For each representation M ∈ Rd, there exists a
monomial (~s,~a)(M) such that π(~s,~a)(M) is a desingularization of the orbit closure
OM of M , and is an isomorphism when restricted to the preimage of OM .

The theorem is proven by showing that each representation M admits a filtra-
tion (of indecomposable representations) of a certain type (~s,~a)(M), and then
constructing from this data a desingularization of OM .

Example 3.3.11. Before considering non-trivial cases, let us convince ourselves that
despite the heavy notation, we are dealing with familiar objects. We start from the
situation described in Example 3.3.7. We want to construct a desingularization
of Yr = Or ⊂ Hom(V1, V2) by using Reineke’s method. A monomial that defines a
resolution of singularities of Yr is given by (s1, d1 − r) (where s1 is the first vertex).
Then:

F := F(s1,d1−r)
∼= Gr(d1 − r, V1)

and, if P ∈ F ,

(W(s1,d1−r))P = {M ∈ Hom(V1, V2) s.t. M |P = 0}.

Therefore, W(s1,d1−r) = Q∗ ⊗ V2, where Q is the quotient bundle over F . This is a
well known resolution of a determinantal variety. Other choices of the monomial
are possible, and give other desingularizations of the same orbit closure.

3.3.2. Crepant resolutions
The aim of this section is to find resolutions of orbit closures in quiver rep-

resentations, and conditions under which they are crepant. We will start with
quivers of type A3, and then we will deal with quivers of type An. Finally, in
order to go beyond the An case, we will give some results on quivers of type D4.
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The quiver A3

Let us consider a quiver Q = (S,A) of type A3, where S = {s1, s2, s3}, and A =
{a1, a2}. We also fix vector spaces V1, V2, V3 of dimension vector d = d1, d2, d3.
According to the direction of the arrows, three different quivers occur. We study
them separately.

Quiver with a1(1) = a2(1) = s2

The quiver is represented by the following picture:

Figure 3.1. – Quiver of type A3 with a1(1) = a2(1) = s2

Q
s1 s2 s3

a1 a2

This configuration has been studied in [Sut13]. Rd is the representation
Hom(V1, V2) ⊕ Hom(V3, V2). Fix three integers r1, r2, p1. Under the action of
G = GL(V1)×GL(V2)×GL(V3), all the orbits in Rd are of the form

Or1,r2,p1 =
 φ ∈ Rd s.t. dim(Imφa1) = r1 , dim(Imφa2) = r2 ,

dim(Imφa1 + Imφa2) = p1


for all geometrically possible r1, r2, p1 (e.g. p1 ≥ max{r1, r2}). This means that
what defines an orbit is the rank of the morphisms, and the relative position of
the images, i.e. the dimension of the sum (we will see that in the other quivers
too, a similar description of the orbits will hold).

Remark 3.3.12. If needed, for a given element φ in the orbit, we will denote by
Ui, Uij, U123 respectively the image of φai , the intersection Imφai ∩ Imφaj and
the intersection Imφa1 ∩ Imφa2 ∩ Imφa3 (the last will make sense for quivers of
type D4); their respective dimensions will be denoted by ui, uij, u123. Moreover,
we will denote by Sij, S123 respectively the sum Imφai + Imφaj and the sum
Imφa1 + Imφa2 + Imφa3 (again, the last will make sense for quivers of type D4),
of dimensions sij, s123.

When we consider the closure of such an orbit we obtain:

Lemma 3.3.13. The orbit closure Or1,r2,p1 is given by

Or1,r2,p1 =
 φ ∈ Rd s.t. dim(Imφa1) ≤ r1 , dim(Imφa2) ≤ r2 ,

dim(Imφa1 + Imφa2) ≤ p1

.
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Proof. The inequalities come from the fact that the dimension of the kernels of φa1 ,
φa2 , φa1 ⊕ φa2 can only be greater than those of the elements in the orbit.
When u1 + u2 ≥ p1, the upper bound for s12 is p1 because one can suppose

that, moving inside Or1,r2,p1 , the images of the two morphisms collapse inside their
intersection in a complementary way; if u1 + u2 < p1, the upper bound is reached
when the intersection of the images of the two morphisms is zero.

Moreover, whenever the points φ with given u1, u2 and s12 belong to the orbit
closure, then also the points ψ with dim(Imψa1) = u1, dim(Imψa1) = u2 and
dim(Imψa1 + Imψa2) ≤ s12 belong to it, because suitable subspaces of the images
of the morphisms φa1 and φa2 can collapse onto each other, so that the dimension
of the intersection raises.

Remark 3.3.14. Recall that each orbit corresponds to an equivalence class of
quiver representations. Moreover, equivalence classes of indecomposable represen-
tations correspond to positive roots of A3 (Theorem 3.3.5), and are indexed by
their dimension vectors (see Example 3.3.7). Therefore, each representation is of
the form

a(0, 1, 0)⊕ b(1, 1, 0)⊕ c(0, 1, 1)⊕ d(1, 1, 1)⊕ e(1, 0, 0)⊕ f(0, 0, 1)

for some integers a, b, c, d, e, f . It corresponds to the orbit Or1,r2,p1 , with d1 =
b+ d+ e, d2 = a+ b+ c+ d, d3 = c+ d+ f , r1 = b+ d, r2 = c+ d, p1 = b+ c+ d
(a similar interpretation of the orbits holds for the other A3 cases, even though we
will not give further details for them).

In [Sut13], Sutar used the geometric technique (see [Wey03]) and Reineke’s
resolutions to classify all Gorenstein orbits:

Theorem 3.3.15 ([Sut13]). The orbit closure Or1,r2,p1 in Rd is Gorenstein if and
only if one of the following conditions hold:
(i) d1 = d3 = p1, d2 = r1 + r2;
(ii) d3 = r1 = p1, d2 = d1 + r2;
(iii) r1 = p1, r2 = d3, d2 = d1 + d3;
(iv) d1 = r2 = p1, d2 = d3 + r1;
(v) r2 = p1, r1 = d1, d2 = d1 + d3.

Remark 3.3.16. Conditions (iv) and (v) are equivalent to conditions (ii) and (iii)
when the two vertices of Q are exchanged.

Remark 3.3.17. Notice that condition (ii) implies that Imφa2 ⊂ Imφa1 , and
condition (iii) implies that Imφa2 ⊂ Imφa1 and Kerφa2 = {0}.

We now use Reineke’s construction to find desingularizations for all orbits in
Rd; therefore they will be total spaces of a vector bundle W ⊂ Rd × F over a
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homogeneous variety F . In practice, we will distinguish between three types of
orbits, each of which admits a different kind of resolution. As we are interested
in crepant resolutions, we try to find those resolutions π : Z → O which are not
dominated by some other desingularization π′ : Z ′ → O (i.e. such that there
exists no morphism f : Z ′ → Z with the property that π′ = π ◦ f). This condition
guided our choice of desingularization, even though there are other possibilities
one could consider.

Let us define the variety

Fi = Gr(d1 − r1, V1)×Gr(p1, V2)×Gr(d3 − r2, V3).

Let us denote Ui, Qi the tautological and quotient bundle over the Grassmannian
of subspaces in Vi; then

Wi = (Q∗1 ⊕Q∗3)⊗ U2 ⊂ (V ∗1 ⊕ V ∗3 )⊗ V2.

The total space ofWi is a desingularization of Or1,r2,p1 when p1 6= r1, r2. Indeed,
the variety Fi is parametrizing the planes Kerφ1 ⊂ V1, Kerφ2 ⊂ V3 and Imφ1 +
Imφ2 ⊂ V2 for all the elements φ ∈ Or1,r2,p1.

Remark 3.3.18. This total space is actually one of Reineke’s resolutions. In the
notation of the previous section, define:

(~s,~a) = ((s1, s3, s2, s1, s3), (d1 − r1, d3 − r2, p1, d1, d3)).

Then, (F(~s,~a),W(~s,~a)) desingularizes the orbit of elements φ ∈ Rd such that Ker(φa1)
contains a space of dimension d1 − r1, Ker(φa2) contains a space of dimension
d3 − r2, Im(φa1) and Im(φa2) are both contained in the same space of dimension
p1. This means that (F(~s,~a),W(~s,~a)) desingularizes Or1,r2,p1 , and one can easily see
that it is equal to (Fi,Wi).

The next two desingularizations admit the same interpretation, respectively for

(~s,~a) = ((s3, s2, s1, s3), (d3 − r2, r1, d1, d3))

and for
(~s,~a) = ((s2, s1, s3), (r1, d1, d3)).

In the following of this work, we will not explicit the vectors (~s,~a) for the resolutions
we will use, but it should be kept in mind that they can be interpreted as belonging
to Reineke’s construction.

In the case p1 = r1 we consider

Fii = Gr(r1, V2)×Gr(d3 − r2, V3)

with the bundle
Wii = (V ∗1 ⊕Q∗3)⊗ U2,
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whose total space is a desingularization of the orbit closureOr1,r2,r1 when r2 6= d3.
In this case, as p1 = r1, we do not need to fix the kernel of φ1 because we are
already fixing its image in V2.

Finally, if p1 = r1 and r2 = d3, the resolution of Or1,r2,p1 is given by the total
space of Wiii over Fiii, where:

Fiii = Gr(r1, V2),

Wiii = (V ∗1 ⊕ V ∗2 )⊗ U2.

Remark 3.3.19. The resolutions Sutar used in her work are not in general the
same as those we chose to use. Indeed, she used Reineke’s resolutions (F(~s,~a),W(~s,~a))
such that

ξ∗ = (F(~s,~a) ×Rd)/W(~s,~a) = (U∗1 ⊕ U∗3 )⊗Q2.

For these resolutions the expression of ξ in terms of irreducible bundles is very
easy. This is particularly useful to apply the geometric technique, for which the
cohomology of ∧iξ has to be computed.

For what concerns the crepant condition for those resolutions, we have the
following result:

Proposition 3.3.20. Let us take the orbit closure Or1,r2,p1 ⊂ Rd, and consider
its resolution of singularities of the form described above. The orbit closure is
Gorenstein if and only if the resolution is crepant.

Proof. Let us suppose the resolution is given by Wi over Fi; we prove that it is
crepant when the orbit satisfies condition (i) of Theorem 3.3.15. The proof for Wii

over Fii (condition (ii)) and Wiii over Fiii (condition (iii)) is similar.
The crepancy condition of a Kempf collapsing gives in our case det(Wi) = KFi .

We have
det(Wi) = O1(−p1)⊗O2(−r1 − r2)⊗O3(−p1)

and
KFi = O1(−d1)⊗O2(−d2)⊗O3(−d3).

By equating the different terms, we get condition (i).

Remark 3.3.21. The resolution given by Wiii over Fiii is actually the resolution of
determinantal varieties for Hom(V1⊕V3, V2) of rank r1. Therefore, the corresponding
orbit is a determinantal orbit. Indeed, the Gorenstein condition is the same as the
one that holds for determinantal varieties (d1 + d3 = d2).

Quiver with a1(0) = a2(0) = s2

This quiver is represented by the following picture:
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Figure 3.2. – Quiver of type A3 with a1(0) = a2(0) = s2

Q
s1 s2 s3

a1 a2

The representation we are dealing with isRd = Hom(V2, V1)⊕Hom(V2, V3). Fix
three integers k1, k2, q1. Then the orbits are

Ok1,k2,q1 =
 φ ∈ Rd s.t. dim(Kerφa1) ≥ k1 , dim(Kerφa2) = k2 ,

dim(Kerφa1 ∩Kerφa2) = q1


for d2 − d1 ≤ k1 ≤ d2, d2 − d3 ≤ k2 ≤ d2, and q1 ≤ min{k1, k2}. Again, what
matters is the relative position of the two subspaces (kernels) in V2.

Lemma 3.3.22. The orbit closure Ok1,k2,q1 is given by

Ok1,k2,q1 =
 φ ∈ Rd s.t. dim(Kerφa1) ≥ k1 , dim(Kerφa2) ≥ k2 ,

dim(Kerφa1 ∩Kerφa2) ≥ q1

.
Proof. Consider the dual situation, i.e. dual morphisms φ∗a1 and φ∗a2 , and reason as
in the proof of Lemma 3.3.13.

Depending on the choice of k1, k2, q1, there are two different kinds of resolu-
tions. On one hand, if q1 6= k1, k2, then we have resolution (i) given by the total
space of

Wi := Q∗2 ⊗ (U1 ⊕ U3) over Fi := Gr(d2 − k1, V1)×Gr(q1, V2)×Gr(d2 − k2, V3).

On the other hand, if q1 = k1 (and similarly for q1 = k2), we have resolution (ii)
given by

Wii := Q∗2 ⊗ (V1 ⊕ U3) over Fii := Gr(q1, V2)×Gr(d2 − k2, V3).

The following proposition describes when resolutions of type (i) and (ii) are
crepant.

Proposition 3.3.23. Resolutions of type (i) are crepant when d1 = d3 = d2−q1,
k1 + k2 = d2.
Resolutions of type (ii) are crepant when q1 = k1, d1 = k1, d3 = d2 − k1.

Proof. The proof is similar to the one of Proposition 3.3.20.

Remark 3.3.24. The quiver studied in this section can be thought of as being
the dual of the one described in Figure 3.1. Indeed, the representations (orbits,
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desingularizations) of one can be obtained from the other by considering the dual
situation, i.e. by passing from morphisms φa1 and φa2 to their duals φ∗a1 and φ∗a2 .
The same can be said for the quivers that will be described by Figure 3.6 and
Figure 3.7.

Quiver with a1(0) = s1, a2(0) = s2

This quiver is represented by the following picture:

Figure 3.3. – Quiver of type A3 with a1(0) = s1, a2(0) = s2

Q
s1 s2 s3

a1 a2

The representation we are dealing with isRd = Hom(V1, V2)⊕Hom(V2, V3). Fix
three integers r1, k2, u1. Then, the orbits are

Or1,k2,u1 =
 φ ∈ Rd s.t. dim(Imφa1) = r1 , dim(Kerφa2) = k2 ,

dim(Imφa1 + Kerφa2) = u1


for r1 ≤ min{d2, d1}, d2 − d3 ≤ k2 ≤ d2, and min{r1, k2} ≤ u1 ≤ min{r1 + k2, d2}.
Again, what matters is the relative position of the two subspaces (image and
kernel) in V2.

Lemma 3.3.25.

Or1,k2,u1 =
 φ ∈ Rd s.t. dim(Imφa1) ≤ r1 , dim(Kerφa2) ≥ k2 ,

dim(Imφa1 + Kerφa2) ≤ u1 + dim(Kerφa2)− k2

.
Proof. The only non trivial condition is the last one. The upper bound of the
inequality is attained, for fixed φa1 , by collapsing the morphism φa2 so that its
kernel becomes bigger while Imφa1 ∩ Kerφa2 remains unchanged. On the other
hand, when Imφa1 6⊂ Kerφa2 , the dimension of Imφa1 can be reduced without
changing Imφa1 + Kerφa2 . Then, if the dimensions of Kerφa2 and Imφa1 are fixed,
one can collapse these spaces onto each other; this “movement" just reduces the
dimension of Imφa1 +Kerφa2 . Hence all the possibilities which satisfy the inequality
correspond to points in the orbit closure.

Depending on the choice of r1, k2, u1, there are two different kinds of resolu-
tions. On one hand, if u1 6= k2, then we have resolution (i) given by the total
space of

Wi := (Q∗1 ⊗ U2,2)⊕ ((V2/U2,1)∗ ⊗ V3) over Fi := Gr(d1 − r1, V1)× F (k2, u1, V2).

102



where F (k2, u1, V2) is the flag variety with tautological bundles U2,1 ⊂ U2,2 of rank
k2, u1. On the other hand, if u1 = k2, we have resolution (ii) given by

Wii := (Q∗1 ⊗ U2)⊕ (Q∗2 ⊗ V3) over Fii := Gr(d1 − r1, V1)×Gr(k2, V2).

Proposition 3.3.26. Resolutions of type (i) are crepant when k2 = d2 − r1 =
d1 − u1, d1 = d3.
Resolutions of type (ii) are crepant when u1 = k2, d1 − r1 = d2 − k2, d3 =
2(d2 − k2).

Proof. The proof is similar to the one of Proposition 3.3.20.

One-way and source-sink quivers of type An

In this section we find crepant resolutions for certain orbit closures in Rd for a
quiver of type An, in a similar way we have proceeded for the A3 quivers. It is a
natural generalization of the results of the previous section.

Let us suppose Q = (S,A), is a quiver of type An with vertices S = {s1, . . . , sn}
and arrows A = {a1, . . . , an−1}. The vector spaces V1, . . . , Vn of dimensions d =
(d1, . . . , dn) are those appearing in the definition of Rd. For later use, let us
denote by F (α1, α2, Vi) the flag variety in Vi with tautological bundles Ui,1 ⊂
Ui,2 of ranks α1, α2 (for the Grassmannian, we will write Ui,1 or Ui,2 for the
tautological bundle, according to the symmetries of the formula it will appear
in).

One-way quiver of type An
This quiver is represented by the following picture (all the arrows point in the

same direction):

Figure 3.4. – One-way quiver of type An

Q
s1 s2 sn−1 sn
a1 an−1

Fix integer vectors k = (k1, . . . , kn−1), t = (t2, . . . , tn−1), and consider the orbits
given by

Ok,t =
 φ ∈ Rd s.t. dim(Kerφai) = ki for 1 ≤ i ≤ n− 1 ,

dim(Imφai ∩Kerφai+1) = ti+1 for 1 ≤ i ≤ n− 2

.
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Remark 3.3.27. Not all the orbits inRd are of the form Ok,t for some k, t. In order
to consider other orbits, one should also fix the dimension of other characteristic
subspaces, for example of Kerφi+1 ∩ Im(φi ◦ φi−1), just to name one. By using
notations similar to Example 3.3.7 and Remark 3.3.14, the orbits Ok,t correspond
to representations of the form⊕

i

αi(0, . . . , 0, 1, 0, . . . , 0)⊕
⊕
j

βj(0, . . . , 0, 1, 1, 0, 0, . . . , 0)⊕

⊕
⊕
l

γl(0, . . . , 0, 0, 1, 1, 1, 0, . . . , 0).

We study those orbits because the desingularization of their closure is the naive
generalization of the ones in the A3 case. A similar argument holds for the other
An cases.

Suppose ti 6= ki for 2 ≤ i ≤ n− 1. A resolution of singularities of Ok,t is given
by the total space of the vector bundle

W = ((Vn−1/Un−1,1)∗ ⊗ Vn)⊕
n−1⊕
i=1

((Vi/Ui,1)∗ ⊗ Ui+1,2)

over the variety

F = Gr(k1, V1)×
n−1∏
i=2
×F (ki, di−1 − ki−1 + ki − ti, Vi).

Proposition 3.3.28. Consider an orbit closure Ok,t with ti 6= ki for 2 ≤ i ≤ n− 1.
Then, the resolution of singularities defined by W,F as above is crepant if and only
if there exists r such that

d1 = dn = di − ti for 2 ≤ i ≤ n− 1 and r = di − ki for 1 ≤ i ≤ n− 1.

Proof. As in the proof of Proposition 3.3.20, the statement comes from the compu-
tation of the relative canonical bundle of the desingularization, and by imposing
the crepant equation appearing in Remark 1.4.13.

Source-sink quiver of type A2m

This quiver is represented by the following picture (all nodes are either a
source or a sink for the arrows):
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Figure 3.5. – Source-sink quiver of type A2m

Q
s1 s2 s3 s2m−2s2m−1 s2m

a1 a2 a2m−2a2m−1

Fix integer vectors r = (r1, . . . , r2m−1), p = (p1, . . . , pm−1), q = (q1, . . . , qm−1)
and consider the orbits given by

Or,p,q =

φ ∈ Rd s.t. dim(Imφai) = ri for 1 ≤ i ≤ 2m− 1 ,
dim(Imφa2i−1 + Imφa2i) = pi for 1 ≤ i ≤ m− 1 ,
dim(kerφa2i+1 ∩ kerφa2i) = qi for 1 ≤ i ≤ m− 1

.
Suppose pi 6= r2i−1, r2i and qi 6= d2i+1 − r2i+1, d2i+1 − r2i for 1 ≤ i ≤ m − 1. A

resolution of singularities of Or,p,q is given by the total space of the vector bundle

W = ((V2m−1/U2m−1,2)∗ ⊗ V2m)⊕

⊕
m−1⊕
i=1

(((V2i−1/U2i−1,2)∗ ⊗ U2i,2)⊕ ((V2i+1/U2i+1,1)∗ ⊗ U2i,1))

over the variety

F = Gr(d1 − r1, V1)×
m−1∏
i=1

(F (r2i, pi, V2i)× F (qi, d2i+1 − r2i+1, V2i+1)).

Proposition 3.3.29. Consider an orbit closure Or,p,q with pi 6= r2i−1, r2i and
qi 6= d2i+1−r2i+1, d2i+1−r2i for 1 ≤ i ≤ m−1. Then, the resolution of singularities
defined by W,F as above is crepant if and only if

d1 = d2m = pi for 1 ≤ i ≤ m− 1 , qi = d2i+1 − d1 for 1 ≤ i ≤ m− 1 and

ri = di+1 − ri+1 for 1 ≤ i ≤ 2m− 2.

Proof. The proof is similar to the one of Proposition 3.3.28.

Source-sink quiver of type A2m+1, type I

The quiver is represented by the following picture (all nodes are either a source
or a sink for the arrows):
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Figure 3.6. – Source-sink quiver of type A2m+1, type I

Q
s1 s2 s3 s2m−1 s2m s2m+1

a1 a2 a2m−1 a2m

Fix integer vectors r = (r1, . . . , r2m), p = (p1, . . . , pm), q = (q1, . . . , qm−1) and
consider the orbits given by

Or,p,q =


φ ∈ Rd s.t. dim(Imφai) = ri for 1 ≤ i ≤ 2m ,
dim(Imφa2i−1 + Imφa2i) = pi for 1 ≤ i ≤ m ,

dim(kerφa2i+1 ∩ kerφa2i) = qi for 1 ≤ i ≤ m− 1

.
Suppose pi 6= r2i−1, r2i and qj 6= d2j+1 − r2j+1, d2j+1 − r2j for 1 ≤ i ≤ m and

1 ≤ j ≤ m− 1. A resolution of singularities of Or,p,q is given by the total space of
the vector bundle

W =
m−1⊕
i=1

(((V2i−1/U2i−1,2)∗ ⊗ U2i,2)⊕ ((V2i+1/U2i+1,1)∗ ⊗ U2i,1))⊕

⊕((V2m−1/U2m−1,2)∗ ⊗ U2m,2)⊕ (V ∗2m+1 ⊗ U2m,1)
over the variety

F = Gr(d1 − r1, V1)× F (r2m, pm, V2m)×

×
m−1∏
i=1

(F (r2i, pi, V2i)× F (qi, d2i+1 − r2i+1, V2i+1)).

Proposition 3.3.30. Consider an orbit closure Or,p,q with pi 6= r2i−1, r2i and
qj 6= d2j+1 − r2j+1, d2j+1 − r2j for 1 ≤ i ≤ m and 1 ≤ j ≤ m − 1. Then, the
resolution of singularities defined by W,F as above is crepant if and only if

d1 = d2m+1 = pi for 1 ≤ i ≤ m , qi = d2i+1 − d1 for 1 ≤ i ≤ m− 1 and

ri = di+1 − ri+1 for 1 ≤ i ≤ 2m− 1.

Proof. The proof is similar to the one of Proposition 3.3.28.

Source-sink quiver of type A2m+1, type II

The quiver is represented by the following picture (all nodes are either a source
or a sink for the arrows):
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Figure 3.7. – Source-sink quiver of type A2m+1, type II

Q
s1 s2 s3 s2m−1 s2m s2m+1

a1 a2 a2m−1 a2m

Fix integer vectors r = (r1, . . . , r2m), p = (p1, . . . , pm−1), q = (q1, . . . , qm) and
consider the orbits given by

Or,p,q =


φ ∈ Rd s.t. dim(Imφai) = ri for 1 ≤ i ≤ 2m ,
dim(Imφa2i + Imφa2i+1) = pi for 1 ≤ i ≤ m− 1 ,

dim(kerφa2i ∩ kerφa2i−1) = qi for 1 ≤ i ≤ m

.
Suppose pi 6= r2i+1, r2i and qi 6= d2i−r2i−1, d2i−r2i for all possible i. A resolution

of singularities of Or,p,q is given by the total space of the vector bundle

W =
m−1⊕
i=1

(((V2i/U2i,1)∗ ⊗ U2i−1,1)⊕ ((V2i/U2i,2)∗ ⊗ U2i+1,2))⊕

⊕((V2m/U2m,1)∗ ⊗ U2m−1,1)⊕ ((V2m/U2m,2)∗ ⊗ U2m+1,2)
over the variety

F = Gr(r1, V1)× F (qm, d2m − r2m, V2m)×

×
m−1∏
i=1

(F (qi, d2i − r2i, V2i)× F (r2i+1, pi, V2i+1)).

Proposition 3.3.31. Consider an orbit closure Or,p,q with pi 6= r2i+1, r2i and
qi 6= d2i − r2i−1, d2i − r2i for all possible i. Then, the resolution of singularities
defined by W,F as above is crepant if and only if

d1 = d2m+1 = pi for 1 ≤ i ≤ m− 1 , qi = d2i − d1 for 1 ≤ i ≤ m and

ri = di+1 − ri+1 for 1 ≤ i ≤ 2m− 1.

A quiver of type D4

The study of quivers of typeD4 presents some interesting difficulties, especially
involving the construction of desingularizations for the orbit closures. We will
study the crepancy condition for the resolutions of singularities we will consider
among Reineke’s resolutions.

Let us begin with a quiver Q(S,A) of type D4 with S = (s1, s2, s3, s4), A =
(a1, a2, a3). We will study the quiver with all the arrows pointing toward the
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central vertex s2 (this is the analogue of the quiver of type A3 studied by Sutar).
The quiver is represented by the following picture:

Figure 3.8. – Quiver of type D4

Q
s1 s2

s3

s4

a1

a2

a3

The vector spaces appearing in the definition ofRd are V1, . . . , V4 of dimensions
d1, . . . , d4. Fix integers ri for i = 1, 2, 3, rij for 1 ≤ i < j ≤ 3, and r123. Define x :=∑
i ri −

∑
i<j rij + r123. All the orbits are of the following form, for geometrically

possible r:

Or =


φ ∈ Rd s.t. dim(Imφai) = ri for i = 1, 2, 3 ,
dim(Imφai ∩ Imφaj) = rij for 1 ≤ i < j ≤ 3 ,

dim(Imφa1 ∩ Imφa2 ∩ Imφa3) = r123

.
In words, we are fixing the relative position of the images of the morphisms.

Remark 3.3.32. Finding desingularizations of the orbit closures Or by hand may
be tricky (if one does not rely on Reineke’s construction). For example, one would
be tempted to write a Kempf collapsing of a vector bundle over the following flag
variety F0: ({Pi}i, {Pij}i,j, P123) ∈ ∏i Gr(ri, V2)×∏i<j Gr(rij, V2)×Gr(r123, V2)

s.t. P123 ⊂ Pij for all i, j and Pij ⊂ Pi for all i, j

.
Here, the desingularization is given by the morphisms φ such that
({Ui}i, {Uij}i,j, U123) ∈ F0. However, we do not know a priori if this variety is
smooth. The problem lies in the fact that the chain of inclusions between the Pi’s,
Pij’s, P123 is not linear (e.g. P2 ⊃ P12 ⊂ P1 ⊃ P13 ⊂ P3 ⊃ P23 ⊂ P2). If it was so,
the variety could be seen as a composition of Grassmannian bundles over a certain
flag variety, and would therefore be smooth.

Remark 3.3.33. Another problem that appears is to construct resolutions which,
in some particular cases, are crepant. For example, in the case of matrices (quiver
of type A2, see Example 3.3.7), consider the determinantal variety Yr (of matrices
of rank at most r). A resolution given by

Q∗1 ⊗ U2 over Gr(d1 − r, V1)×Gr(r, V2)
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is never crepant. Similarly, in our case, some resolutions are never crepant. For
instance, we could take the Kempf collapsing with vector bundle over the flag
variety which fixes, for each element φ, the spaces U123 ⊂ U12 ⊂ U12 + U13 ⊂
U12 + U13 + U23 ⊂ V2 (and the corresponding subspaces in V1, V3, V4), but these
collapsings are never crepant. In the following, we will describe three types of
resolutions which are sometimes crepant, and we will see exactly when they are.

Suppose that, for the elements in the orbit φ ∈ Or, there is no equality between
the spaces Ui, Uij, U123. Then, we consider the Kempf collapsing (i) given by the
vector bundle

Wi = ((
⊕

i=1,3,4
Ui,2/Ui,1)∗ ⊗ U2,1)⊕ ((

3⊕
i=1,3,4

Vi/Ui,2)∗ ⊗ (V2/U2,1))

over

Fi = F (d1 − r1, d1 − r1 + r12 + r13 − r123, V1)×Gr(r12 + r13 + r23 − 2r123, V2)×

×F (d3− r2, d3− r2 + r12 + r23− r123, V3)×F (d4− r3, d4− r3 + r13 + r23− r123, V4).
The motivation for this choice is that the base variety Fi parametrizes, for the

elements inside Or, the subspaces Kerφa1 ⊂ φ−1
a1 (U12 + U13) ⊂ V1 (and similarly

for the other spaces V3, V4) and U12 + U13 + U23 ⊂ V2.

Remark 3.3.34. Even though it may seem we are losing some information (e.g.
not fixing the dimension of U123), we are not. For instance, by taking a general
point φ of this resolution, U12 + U13 and U12 + U23 are well defined subspaces of
dimension r12 + r13 − r123 and r12 + r23 − r123 inside U12 + U13 + U23. Therefore,
they intersect in a subspace of dimension at least

r12 + r13 + r23 − r123 − (r12 + r13 − r123)− (r12 + r23 − r123) = r12,

which is exactly the bound we want for the dimension of U12. In the same way, the
dimension of the intersection of U12 + U13, U12 + U13 and U12 + U13 is at least

2(r12 + r13 + r23 − r123)− (r12 + r13 − r123)+

−(r12 + r23 − r123)− (r13 + r23 − r123) = r123,

which is the required bound for the dimension of U123. A similar argument will
hold for the other desingularizations below.

Remark 3.3.34 tells us that the image (insideRd) of this collapsing is contained
in Or. To see if it is a desingularization, let us take an element φ ∈ Or. Then,
its preimage inside Wi lies over the (unique) point of the flag variety Fi whose
explicit expression is:

(Kerφa1 ⊂ φ−1
a1 (U12 + U13) ⊂ V1)× (U12 + U13 + U23 ⊂ V2)×
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×(Kerφa2 ⊂ φ−1
a2 (U12 + U23) ⊂ V3)× (Kerφa3 ⊂ φ−1

a3 (U13 + U23) ⊂ V4).
Therefore the morphism Wi → Or is generically one-to-one, and as a conse-
quence it makes Wi a desingularization of Or.

The second resolution (ii) we consider is obtained by just fixing ri for i = 1, 2, 3
and the dimension of U1 + U2 + U3; therefore the dimensions of Uij and U123 are
the minimal possible for the generic element φ ∈ Or. Then, the orbit closure Or
is resolved by the total space of

Wii = (V ∗1 ⊗ U2,1)⊕ (((V3/U3,1)⊕ (V4/U4,1))∗ ⊗ U2,2)

over
Fii = F (r1, x, V2)×Gr(d3 − r2, V3)×Gr(d4 − r3, V4).

This Kempf collapsing is of the same type of the one that could be used for
the quivers of type A2, and therefore it should be straightforward to see that it
is a desingularization. Notice that this resolution is not symmetric: indeed, a
particular role is played by V1, because in Fii we are parametrizing the image of
φa1 (while for φa2, φa3 we are parametrizing the kernels).

Finally, in the third resolution (iii) we fix again ri for i = 1, 2, 3, and the
dimension of U1 + U2 + U3; as before, the dimensions of Uij and U123 are the
minimal possible for the generic element φ ∈ Or. The resolution of the orbit
closure is given by

Wiii = ((V1/U1)⊕ (V3/U3)⊕ (V4/U4))∗ ⊗ U2

over

Fiii = Gr(d1 − r1, V1)×Gr(x, V2)×Gr(d3 − r2, V3)×Gr(d4 − r3, V4).

As before, it is straightforward to see that it is a desingularization.

Proposition 3.3.35. Let Or be an orbit closure in Rd which admits one of the
three resolutions (i), (ii), (iii).

The resolution of type (i) is never crepant.
The resolution of type (ii) and the resolution of type (iii) are crepant when
d2 = ∑

i ri, d1 = d3 = d4 = x.

Proof. The proof is similar to the one of Proposition 3.3.20. We just remark that
the condition for (i) to be crepant is d1 = d2/3 = d3 = d4 = ri = rjk = r123 for all i,
j < k. But this is not possible, the definition of Fi requires that r1 < d1, r2 < d3,
r3 < d4.
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3.4. Quiver degeneracy loci
In this section, we use the results we found on crepancy of resolutions of quiver

orbit closures to construct some examples of orbital degeneracy loci. As already
pointed out, the fact that the resolution is crepant allows us to compute the
canonical bundle of these loci. We exhibit a sample of constructions of varieties
(especially fourfolds) with trivial canonical bundle.

All the computations in cohomology, in particular the computation of the Euler
characteristic of the trivial bundle, have been done with Macaulay2([GS]). With
this software in our cases it was possible to explicitly construct the resolution
of the orbital degeneracy loci and perform the computations we need in the
cohomology ring of the variety.

3.4.1. Quiver degeneracy loci of type A3

We begin by considering the case of quivers of type A3 described in Figure
3.1 (refer to it for the notations). If we want to consider ODL, we need to fix a
smooth projective variety X, and three vector bundles E1, E2, E3 of dimensions
d1, d2, d3 on it, such that Hom(E1, E2)⊕Hom(E3, E2) is globally generated. Then,
suppose that s is a general section of this bundle, and fix an orbit closure Y =
Or1,r2,p1 inside Rd = Hom(Cd1 ,Cd2) ⊕ Hom(Cd3 ,Cd2). Recall that DY (s) is the
locus of points x ∈ X which are sent by the section s inside Y ⊂ (Hom(E1, E2)⊕
Hom(E3, E2))x ∼= Rd.

Theorem 3.4.1. Let DY (s) be defined as above, where Y = Or1,r2,p1 ⊂ Rd. Then
KDY (s), codimX(DY (s)) and a lower bound for codimDY (s) Sing(DY (s)) are given
by the formulas in Table 3.2.

Table 3.2. – ODL from a quiver of type A3 with a1(1) = a2(1) = s2. We use the
following variables: η1 = d1 − r1, η2 = d2 − p1, η3 = d3 − r2.

Case
(Thm. 3.3.15) KDY (s)/X codimX DY (s) codimDY (s) Sing

(i) detE−r2
1 ⊗

detEp1
2 ⊗ detE−r1

3

η2
1 + η2

2 + η2
3+

+η2(η1 + η3) ≥ min
{ 2η1 + 1

2η3 + 1
2η2 + 1

}

(ii) detE−d2+p1
1 ⊗

(detE∗
2 ⊗ detE3)−d2+r2

η2
3 + η2

2 + η3η2 ≥ min
{

2η3 + 1
2η2 + 1

}

(iii) (detE1 ⊗ detE∗
2⊗

detE3)−d2+p1 η2
2 ≥ 2η2 + 1
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Proof. By [BFMT17a][Prop. 2.3], we have that codimX(DY (s)) = codimRd Y and
codimDY (s) Sing(DY (s)) = codimY Sing(Y ). The first quantity can be computed
directly from the resolution of singularities we have. For the codimension of the
singularities, we explain the case of the resolution Wi over Fi (the others are
similar).
The singularities are contained in the locus in the orbit closure Y where the

map π : Wi → Y ⊂ Rd is not an isomorphism. As Y is normal ([BZ01]), the
morphism π restricted to the fiber over such a point is a contraction. Take a point
y ∈ Y . If dim(Ker y1) = d1 − r1, dim(Ker y2) = d3 − r2, dim(Im y1 + Im y2) = p1,
then π−1y is a single point. Therefore, if y is in the singular locus, then either
dim(Ker y1) > d1 − r1 or dim(Ker y2) > d3 − r2 or dim(Im y1 + Im y2) < p1. As a
consequence, the singular locus is contained in the union of three orbit closures, i.e.

Sing(Y ) ⊂ Or1−1,r2,p1 ∪ Or1,r2−1,p1 ∪ Or1,r2,p1−1, (3.2)

whose dimension are easy to compute from their resolution, giving the bound for
codimDY (s) Sing of Table 3.2.

Finally, to compute the canonical bundle, recall that, from [BFMT17a], a crepant
resolution of DY (s) is given by π|Z (s̃) : Z (s̃)→ DY (s). This is the zero locus of
the section s̃ (which is constructed from s) of the bundle

QWi
:= ((E∗1 ⊕ E∗3)⊗ E2)/((Q∗1 ⊕Q∗3)⊗ U2)

over the Grassmannian bundle

Fi(E1, E2, E3) := Gr(d1 − r1, E1)×Gr(p1, E2)×Gr(d3 − r2, E3)

over X. This, together with the adjunction formula, gives

KZ (s̃) = (π∗(KX)⊗KFi(E1,E2,E3)/X ⊗ det(QWi
))|Z (s̃).

An easy computation shows that

KZ (s̃) = π|∗Z (s̃)((KX ⊗ detE−r2
1 ⊗ detEp1

2 ⊗ detE−r1
3 )|DY (s)),

which implies that

KDY (s) = KX ⊗ detE−r2
1 ⊗ detEp1

2 ⊗ detE−r1
3 .

Remark 3.4.2. In order to compute exactly the codimension of the singular locus it
would be necessary, for instance, to know that the desingularization morphism does
not contract any divisor. In this case, the morphism restricts to an isomorphism
over the smooth locus of Y , and equality holds in (3.2) (thus giving equality in the
last column of Table 3.2).
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Suppose that the resolution is given by W = U ⊗W ′ over F = Gr(a, v) × F ′,
for W ′ a vector bundle of rank w over the variety F ′. Then there is a locus E
contracted by the morphism π : W → Rd, whose general fiber is Pw−a, and whose
image is resolved by U ⊗W ′ over Gr(a− 1, v)× F ′. By a simple computation, one
gets that

codim(E) = w − a+ 1.
Therefore, if the contracted locus Ẽ of π is the union of such E’s, and for each of
them w > a, no divisor is contained in Ẽ. This is the case for example of (Fi,Wi)
when r1, r2 < p1 < r1 + r2. Similarly, one can work out the case of orbit closures
admitting other desingularizations.

The following are some explicit examples of such loci.

Example 3.4.3. Take X = Gr(4, 8), E1 = 2(OX(−1) ⊕ OX), E2 = Q ⊕ OX ,
E3 = 3OX , and the orbit closure Y = O3,1,3. Then DY (s) is a smooth fourfold
with trivial canonical bundle and χ(ODY (s)) = 2.
Example 3.4.4. Take X = IGr(2, 8), E1 = U ⊕OX(−1), E2 = U∗⊕2OX , E3 = 2OX ,
and the orbit closure Y = O2,1,2. Then DY (s) is a fourfold with trivial canonical
bundle, singular in codimension 3, and whose desingularisation satisfies χ(OZ (s̃)) =
2.
Example 3.4.5. Take X = OGr(2, 9), E1 = 3OX , E2 = U∗ ⊕ 2OX , E3 = U , and the
orbit closure Y = O2,1,2. Then DY (s) is a fourfold with trivial canonical bundle
singular in codimension 3 and whose desingularisation satisfies χ(OZ (s̃)) = 2.

We next consider the quiver described in Figure 3.2 (refer to it for the nota-
tions). In the relative setting, we fix a smooth projective variety X, three vector
bundles E1, E2, E3 of ranks d1, d2, d3 such that Hom(E2, E1)⊕Hom(E2, E3) is glob-
ally generated. Then, suppose that s is a general section of this bundle, and fix
an orbit closure Y = Ok1,k2,q1 inside Rd = Hom(Cd2 ,Cd1)⊕ Hom(Cd2 ,Cd3). Recall
that DY (s) is the locus of points x ∈ X which are sent by the section s inside
Y ⊂ (Hom(E2, E1)⊕ Hom(E2, E3))x ∼= Rd.

Theorem 3.4.6. Let DY (s) be defined as above, where Y = Ok1,k2,q1 ⊂ Rd. Then
KDY (s), codimX(DY (s)) and a lower bound for codimDY (s) Sing(DY (s)) are given
in Table 3.3.

Proof. The proof is similar to the one of Theorem 3.4.1.

Finally, let Q be the quiver appearing in Figure 3.3 (refer to it for the nota-
tions). In the relative setting, we fix a smooth projective variety X, three vector
bundles E1, E2, E3 of dimension d1, d2, d3 such that Hom(E1, E2) ⊕ Hom(E2, E3)
is globally generated. Then, suppose that s is a general section of this bundle,
and fix an orbit closure Y = Or1,k2,u1 inside Rd = Hom(Cd1 ,Cd2)⊕Hom(Cd2 ,Cd3).
Recall that DY (s) is the locus of points x ∈ X which are sent by the section s
inside Y ⊂ (Hom(E1, E2)⊕ Hom(E2, E3))x ∼= Rd.
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Table 3.3. – ODL from a quiver of type A3 with a1(0) = a2(0) = s2. We use the
following variables: η1 = d2 − k1, η2 = d2 − k2.

Case KDY (s)/X codimX DY (s) codimDY (s) Sing

(i) detEd2−k2
1 ⊗

detE−d2+q1
2 ⊗ detEd2−k1

3

η2
1 + η2

2 + q2
1+

−q1(η1 + η2) ≥ min
{ 2(η1 − q1) + 1

2(η2 − q1) + 1
2q1 + 1

}

(ii) detEq1
1 ⊗ detEd1

3 ⊗
detE−d1−q1

2

(d3 − η2)2 − q2
1

+(d3 − η2)q1
≥ min

{
2(d3 − η2) + 1

2q1 + 1

}

Theorem 3.4.7. Let DY (s) be defined as above, where Y = Or1,k2,u1 ⊂ Rd. Then
KDY (s), codimX(DY (s)) and a lower bound for codimDY (s) Sing(DY (s)) are given
in Table 3.4.

Table 3.4. – ODL from a quiver of type A3with a1(0) = s1, a2(0) = s2. We use
the following variables: η1 = k2 − d1 + r1, η2 = d2 − u1.

Case KDY (s)/X codimX DY (s) codimDY (s) Sing

(i) detE−k2
1 ⊗

detEk2
3

k2
2 + (d1 − r1)2 ≥ min

{ 2(d1 − r1) + 1
2(d2 − d1) + 1

k2 + 1

}

(ii) detE−d2+r1
1 ⊗

detEk2
3

2(d1 − r1)2 + η1η2+
+(d1 − r1)(η1 + η2) ≥ 2(d1 − r1) + 1

3.4.2. Quiver degeneracy loci of type D4

For notations, we refer to Figure 3.8. In order to construct the degeneracy
loci, we fix a smooth projective variety X, four vector bundles E1, E2, E3, E4 of
dimension d1, d2, d3, d4 such that Hom(E1, E2) ⊕ Hom(E3, E2) ⊕ Hom(E4, E2) is
globally generated. Then, suppose that s is a general section of this bundle,
and fix an orbit closure Y = Or inside Rd = Hom(Cd1 ,Cd2) ⊕ Hom(Cd3 ,Cd2) ⊕
Hom(Cd4 ,Cd2). Recall that DY (s) is the locus of points x ∈ X which are sent by
the section s inside Y ⊂ (Hom(E1, E2)⊕ Hom(E3, E2)⊕ Hom(E4, E2))x ∼= Rd.

Theorem 3.4.8. Let DY (s) be defined as above, where Y = Or ⊂ Rd is resolved
by the resolution of type (ii) or (iii). Then

KDY (s)/X = detEr1−d2
1 ⊗ detE2x

2 ⊗ detEr2−d2
3 ⊗ detEr3−d2

4 ,

codimX(DY (s)) =
∑
i

r2
i + x2,
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codimDY (s) Sing(DY (s)) ≥ min


d1 + x− 2r1 + 1
d2 + r1 + r2 + r3 − 2x+ 1

d3 + x− 2r2 + 1
d4 + x− 2r3 + 1

.
Proof. The proof is similar to the one of Theorem 3.4.1.

The easiest way to construct varieties with trivial canonical bundle in this case
is to assume that E1, E3, E4 are trivial and E2 is globally generated. We give two
explicit examples of ODL.

Example 3.4.9. Take X to be the intersection of a hypersurface in |O(1)| and a
hypersurface in |O(2)| inside Gr(3, 7); moreover take E1 = 2OX , E2 = U∗, E3 =
2OX , and E4 = 2OX . The orbit closure chosen will be Y = Or1,r2,r3,x = O1,1,1,2.
Then DY (s) is a singular (over a finite number of points) threefold whose resolution
of singularities is of type Calabi-Yau.

This singular variety is a hypersurface inside two singular (over a curve) almost
Fano fourfolds F1, F2, which are the corresponding degeneracy loci when the base
variety X is a hypersurface in respectively |O(1)| and |O(2)| inside Gr(3, 7). We
computed some invariants of their resolutions F̃1 and F̃2:

Table 3.5. – Some invariants of F̃1 and F̃2

i (−KF̃i
)4 χ(Ω1

F̃i
) χ(Ω2

F̃i
) χ(−KF̃i

)

1 224 −4 8 51

2 28 −16 94 12

Example 3.4.10. Take X the intersection of two hypersurfaces in |O(1)| inside
Gr(3, 7); moreover take E1 = 2OX , E2 = U∗, E3 = 2OX , and E4 = 2OX . The orbit
closure chosen will be Y = Or1,r2,r3,x = O1,1,1,2. Then DY (s) is a singular (over
a finite number of points) almost Fano threefold F whose resolution F̃ has the
following invariants: (−KF̃ )3 = 14, χ(Ω1

F̃
) = −2, χ(−KF̃ ) = 10.

Example 3.4.11. Take X a hypersurface in |O(3)| inside Gr(3, 7); moreover take
E1 = 2OX , E2 = U∗, E3 = 2OX , and E4 = 2OX . The orbit closure chosen will be
Y = Or1,r2,r3,x = O1,1,1,2. Then DY (s) is a singular (over a curve) fourfold whose
desingularisation has trivial canonical bundle and χ(OZ (s̃)) = 2.
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4. Bisymplectic Grassmannians
The last chapter of this thesis is dedicated to the analysis of a certain class of

Fano varieties inside ordinary Grassmannians, i.e. bisymplectic Grassmannians.
They parametrize subspaces of a given vector space isotropic with respect to two
symplectic forms. They belong to the larger class of multisymplectic Grassman-
nians, to which the symplectic Grassmannian and the Fano threefold V22 belong
(see Example 1.5.1) as well, but have some additional properties which make
them worthy to be investigated more in detail.

More precisely, they are always Fano, we are able to describe the general el-
ement in their moduli space, and we will show that they admit the action of a
torus with a finite number of fixed points. Therefore, the techniques of equiv-
ariant cohomology can be employed in this situation. We will see however how
using equivariant techniques for bisymplectic Grassmannian presents some ad-
ditional difficulties with respect to the case of homogeneous varieties (we will
work out the case of symplectic Grassmannians).

Finally, we will compute explicitly the (equivariant) cohomology in the special
case of I2Gr(2, 6). This is the smallest non trivial bisymplectic Grassmannian,
but its analysis will already underline all the specific features of these varieties.
Although in the general case, due to the intrinsic complexity of the combinatorics
of the problem, we were not able to determine the cohomology via a general
formula, we hope that the study of I2Gr(2, 6) will guide us in the future to find
one.

One can also be interested in other questions concerning bisymplectic Grass-
mannians, such as the study of their derived categories or quantum cohomology.
As the analysis of bisymplectic Grassmannians is far from being complete, we
added some possible research directions on them in Section 4.4.

4.1. First properties of I2Gr(k, 2n)
Let us consider the Grassmannian Gr(k, 2n) of k-dimensional subspaces inside

a vector space of dimension 2n. From now on, if not otherwise stated, we will
assume that 2 ≤ k ≤ n. By fixing a skew-symmetric form ω over C2n, one can
consider the subvariety IGr(k, 2n) inside Gr(k, 2n) of isotropic subspaces with
respect to ω. If ω is non-degenerate, IGr(k, 2n) is smooth, and it is a rational
homogeneous variety for the natural action of Sp(2n) ⊂ GL(2n). Denoting by
U the tautological bundle over the Grassmannian, the variety IGr(k, 2n) can be
seen as the zero locus of a general section of ∧2U∗ over Gr(k, 2n); indeed notice
that, by the Borel-Weyl Theorem, H0(Gr(k, 2n),∧2U∗) ∼= ∧2(C2n)∗. We will refer
to IGr(k, 2n) as the isotropic (or symplectic) Grassmannian.

Let us now fix two skew-symmetric forms ω1, ω2 over C2n.
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Definition 4.1.1. The bisymplectic Grassmannian is the subvariety I2Gr(k, 2n)
inside Gr(k, 2n) of subspaces isotropic with respect to ω1 and ω2. Equivalently, the
points in I2Gr(k, 2n) are isotropic with respect to the pencil 〈ω1, ω2〉.
Remark 4.1.2. As we will see later, there is not only one isomorphism class of
bisymplectic Grassmannians. Indeed, the definition depends on the choice of a
pencil 〈ω1, ω2〉. However, we will still refer to the bisymplectic Grassmannian in
the following.

Of course, I2Gr(k, 2n) ⊂ IGr(k, 2n)i, where IGr(k, 2n)i is the symplectic Grass-
mannian with respect to ωi, i = 1, 2. The fact that I2Gr(k, 2n) is not empty is
a consequence of the fact that I2Gr(n, 2n) 6= ∅ (see Example 4.1.3). Moreover,
I2Gr(k, 2n) can be seen as the zero locus of a section of (∧2U∗)⊕2 over Gr(k, 2n);
by Bertini’s theorem, if this section is general, the bisymplectic Grassmannian
is smooth. Moreover in this case, its dimension is 2k(n − k) + k and, by the
adjunction formula, its canonical bundle is

KI2Gr(k,2n) = O(−2n+ 2k − 2);

therefore, I2Gr(k, 2n) is a Fano variety. In the next sections, we will study under
which conditions the bisymplectic Grassmannians are smooth (i.e. for what kind
of pencils). Before doing so, let us deal with the case k = n.
Example 4.1.3 (k = n). In [Kuz15], Kuznetsov proves that the variety I2Gr(n, 2n)
is smooth exactly when the pencil 〈ω1, ω2〉 intersects the Pfaffian divisor D ⊂
P(∧2(C2n)∗) (of degree n) in n distinct points; in this case, the two forms are
simultaneously block diagonalizable (with blocks of size 2× 2), and there exists an
isomorphism

I2Gr(n, 2n) ∼= (P1)n. (4.1)
Therefore, the automorphism group of I2Gr(n, 2n) is (PGL(2))n × Sn (where
Sn is the group of permutations of n elements). Surprisingly enough, from the
isomorphism one realises that I2Gr(n, 2n) has no small deformations.

From now on, the zero locus of a section s will be denoted by Z (s). Moreover,
let us denote by V = C2n.

4.1.1. Smoothness
We have already said that if the pencil of skew-symmetric forms 〈ω1, ω2〉 is gen-

eral, the corresponding bisymplectic Grassmannian is smooth. In this section we
make more precise what the word general stands for in this situation. Essentially,
we use the same proof of the analogous result for k = n in [Kuz15].

We also include a weaker result (Proposition 4.1.4) which has the advantage
that its proof can be applied to other interesting cases (e.g. ortho-symplectic
Grassmannians). Recall that I2Gr(k, V ) can be seen as the zero locus of a section
of (∧2U∗)⊕2 over Gr(k, V ).
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Proposition 4.1.4. If (ω1, ω2) is general in (∧2V ∗)⊕2, then ω1 and ω2 are simoul-
taneously block diagonalizable.

Proof. The set of invertible forms is a dense open subset of ∧2(V )∗, so we can
suppose ω1 and ω2 to be invertible. If ω1 and ω2 are simoultaneously block
diagonalizable, then there exist n 2-planes K1, . . . , Kn which are orthogonal to each
other with respect to ω1 and ω2. These planes are also unique modulo permutations.
We can therefore suppose that Ki = 〈xi, x−i〉, and

ω1 =
n∑
i=1

lixi ∧ x−i,

ω2 =
n∑
i=1

λixi ∧ x−i.

Once more, the li’s and the λi’s are unique.
To resume, invertible simoultaneously block diagonalizable two-forms are parametrized

by an open subset of Gr(2, V )2n×C2n. This variety has dimension 4n2− 2n, which
is equal to the dimension of (∧2(V )∗)⊕2, therefore proving that two general forms
(ω1, ω2) are simoultaneosly block diagonalizable.

We need the following lemma on the smoothness of the zero locus of a section
of ∧2U∗ over Gr(k, V ). We will denote by [P ] a point in Gr(k, V ) represented by
the k-dimensional vector subspace P ⊂ V .

Lemma 4.1.5. Let ω0 ∈ ∧2V ∗ be a section of ∧2U∗ over Gr(k, V ). Suppose Z (ω0)
has the expected dimension. Then Z (ω0) is singular at a point [P ] ∈ Gr(k, V ) if
and only if dim(P ∩Ker(ω0)) ≥ 2.

Proof. The expected dimension of Z (ω0) is k(2n− k)−
(
k
2

)
. To prove the lemma,

we show that the tangent space has dimension greater than the expected dimension
exactly at the points described by the statement of the lemma.
Let [P ] ∈ Z (ω0). We have:

TZ (ω0),[P ] ↪→ TGr(k,V ),[P ] ∼= Hom(P, V/P ).

Moreover, let K := P ∩Ker(ω0), and j := dim(K). The two-form ω0 can be seen
as a linear map ω0 : V → V ∗; by using this morphism, and a point φ ∈ TGr(k,V ),[P ],
we get a chain of morphisms:

K ↪→ P
φ→ V/P

pr
� V/P⊥

ω0→ (P/K)∗ i
↪→ P ∗.

If K = ∅, then φ ∈ TZ (ω0),[P ] if and only if ηφ := (i ◦ ω0 ◦ pr ◦ φ) ∈ S2P ∗, i.e. the
skew-symmetric part (ηφ)a of ηφ is zero.
If K 6= ∅, the situation is just slightly more complicated. Indeed, an explicit

computation gives that φ ∈ TZ (ω0),[P ] if and only if (ηφ)|K = 0, ηφ(P ) ⊂ (P/K)∗
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(this condition is trivial), and the induced morphism P/K → (P/K)∗ is symmetric.
This gives

dim(TZ (ω0),[P ]) = dim(Z (ω0)) + j(j − 1)
2 ,

which is strictly greater than dim(Z ω0) if and only if j ≥ 2.

Let D ⊂ P(∧2V ∗) be the Pfaffian divisor of degree n.

Proposition 4.1.6. Let Ω = 〈ω1, ω2〉 ⊂ P(∧2(V ∗)) be a pencil of skew-symmetric
forms such that Z (Ω) ⊂ Gr(k, V ) has the expected dimension. If Z (Ω) is smooth
then Ω ∩D = p1, . . . , pn, where the pi’s are n distinct points such that:

1. dim(Ker(pi)) = 2 for 1 ≤ i ≤ n;
2. V = Ker(p1)⊕ · · · ⊕Ker(pn).

Having proved Lemma 4.1.5, the proof of this result is exactly the same as the
one used in [Kuz15]. We report it for the sake of completeness.

Proof. Let us denote by Ki := Ker(pi), pi ∈ Ω ∩ D. Assume dim(Ki) > 2, and
take p 6= pi, p ∈ Ω. Then there exists a 2-dimensional subspace K ⊂ Ki isotropic
with respect to p. If K⊥ is the orthogonal of K with respect to p, let us denote by
V ′ := K⊥/K. It is a vector space of dimension 2n− 4. For dimensional reasons,
there exists a (k− 2)-dimensional subspace U ′ ⊂ V ′ isotropic with respect to p and
pi. Then

U := U ′ +K ⊂ V

is a k-dimensional space isotropic with respect to p and pi. Therefore U belongs
to Z (Ω). But dim(U ∩Ki) ≥ 2; moreover Z (Ω) = Z (p) ∩Z (pi), and Z (pi) is
singular at U by the lemma. Therefore Z (Ω) is singular at U . This proves that
dim(Ker(pi)) = 2 for 1 ≤ i ≤ n.
The same argument holds if Ki = Kj for j 6= i (choose K = Kj); therefore all

the Ki’s are distinct. To prove that the intersection Ω ∩D is transversal, notice
that the tangent space TD,pi is given by all the skew-symmetric forms that vanish
on Ki; for what we have just stated, Ω cannot be tangent to D, and therefore the
intersection is transversal.

Finally, to prove the direct sum decomposition, fix a non-degenerate form p ∈ Ω.
Then, if i 6= j, Ki ⊥ Kj with respect to p, because p is a linear combination of pi
and pj, and pi(Ki, Kj) = 0 = pj(Kj, Ki).

Remark 4.1.7. The proof actually shows that if Z (Ω) is smooth then all the forms
in Ω are simoultaneously block diagonalizable. This can be seen as a proof of the
fact that two general skew-symmetric forms are simultaneously block diagonalizable.
Moreover, as any non-degenerate form is conjugate to the standard one, one can
suppose that Ω is generated by ω1 and ω2 with:

ω1 =
n∑
i=1

xi ∧ x−i
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ω2 =
n∑
i=1

λixi ∧ x−i

where 〈xi, x−i〉 = (Ki)∗ for 1 ≤ i ≤ n, and the λi’s are all distinct.

4.1.2. Small deformations
We now deal with the problem of understanding what are the small deforma-

tions of smooth bisymplectic varieties. We already saw that I2Gr(n, 2n) has no
deformation (this comes from the isomorphism (4.1)), but this is not the case for
I2Gr(k, 2n), k < n in general. The study will be conducted by computing (the
dimension of)

H1(I2Gr(k, 2n), TI2Gr(k,2n)).
We will use the fact that bisymplectic Grassmannians X = I2Gr(k, V ) = Z (Ω)
are zero loci of a section of F = (∧2U∗)⊕2 inside G = Gr(k, V ), and we will
compute the cohomology by using the Koszul complex

0→ det(F ∗)→ · · · → ∧2F ∗ → F ∗ → OG → OX → 0

and the normal exact sequence

0→ TX → TG|X → F |X → 0.

We will denote a (completely reducible) homogeneous vector bundle F over the
Grassmannian G by a sequence of integers a = (ak, . . . , a1; a2n, . . . , ak+1), which
means that F = Sak,...,a1U∗⊗ Sa2n,...,ak+1Q∗ (where S · denotes the Schur functor).
For instance TG = (1, 0, . . . , 0,−1), and F = (1, 1, 0, . . . , 0)⊕2. The cohomology
of an irreducible homogeneous vector bundle E is given by Bott’s theorem: if
δ = (2n, 2n − 1, . . . , 2, 1), the vector bundle associated to a has cohomology if
and only if a+ δ has all distinct integers; moreover, if σ ∈ Sn is the permutation
of length l such that σ(a+ δ) is a decreasing sequence of integers, then the only
non-trivial cohomology of the vector bundle E is

Hl(G,E) ∼= Vσ(a+δ)−δ,

where Vλ denotes the representation of GL(V ) with weight λ.
If λ = (λk ≥ · · · ≥ λ1) is a sequence of integers, we can represent it as a Young

diagram of the following form:
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1 2 3 . . . . . . . . . λk

1 2 3 . . . . . . λk−1

...
...

...
...

1 2 . . . λ1

In order to decompose the tensor product of two irreducible representations
in irreducible factors, one can use the Littlewood-Richardson rule. It says that, if
λ, µ are two weights, then

Vλ ⊗ Vµ =
⊕
ν

cνλ,µVν ,

where cνλ,µ is the number of ways the Young diagram of µ can be expanded to the
Young diagram of ν by a strict λ-expansion. For the definition of a λ-expansion,
refer to [FH91]; we will just recall that it is a particular way to add the boxes of
λ to the Young diagram of µ obtaining a new Young diagram.

Remark 4.1.8. A consequence of the definition of a λ-expansion is the following:
when multiplying two Young diagrams µ and λ, suppose that a box was in the i-th
row of λ; then in each Young diagram of the product, if it appears in the j-th row,
then j ≥ i. We will use this remark later on.

Proposition 4.1.9. The non-trivial cohomology groups of F |X are:

H0(G,F |X) ∼= ((∧2V ∗)⊕2/C4)/C2n−4 for k = n,

H0(G,F |X) ∼= (∧2V ∗)⊕2/C4 for k < n.

Moreover, the quotient factor C4 is the 4-dimensional space

〈(ω1, ω1), (ω1, ω2), (ω2, ω1), (ω2, ω2)〉 ⊂ (∧2V ∗)⊕2, (4.2)

where Ω = 〈ω1, ω2〉.

Proof. By using the Koszul complex, in order to compute the cohomology of F |X ,
we need to compute the cohomology groups

Hp(G,∧qF ∗ ⊗ F ).

Let us suppose that an irreducible factor of the bundle ∧qF ∗ ⊗ F is associated to
the weight a = (ak, . . . , a1; a2n, . . . , ak+1); as ∧qF ∗ ⊗ F is a Schur functor applied
to U and is independent of Q, we have that a2n = · · · = ak+1 = 0. It is easy to
verify that if p = 0 the only cohomology groups appear for q = 0, 1; more precisely:

H0(G,F ) ∼= (∧2V ∗)⊕2 and H0(G,F ∗ ⊗ F ) ∼= C4,
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where the explicit comutation gives that H0(G,F ∗ ⊗ F ) is the subspace described
in (4.2).
By Bott’s theorem and the fact that a2n = · · · = ak+1, we know that if p 6= 0,

the cohomology of a is concentrated in degree p = j(2n− k) for a certain integer
j > 0; indeed, to order a + δ, if the permutation σ moves an integer i ≤ k, then
σ has to move i past the integers k + 1, . . . , 2n. In order to have cohomology in
degree j(2n− k), a needs to satisfy:

− (2n− k + j) ≥ aj ≥ · · · ≥ a1 (4.3)

and
ak ≥ · · · ≥ aj−1 ≥ −j. (4.4)

This means that the Young diagram of the dual weight a∗ = (−a1, . . . ,−ak) should
be of the form:

A

B

where A is a Young diagram containing the j × (n − k + j) rectangle (of height
j and length (n− k + j)), and B is a Young diagram contained in a (k − j)× j
rectangle.

Now, a∗ is the weight of a factor of ∧q(∧2(U∗)⊕2)⊗ U . By classical formulas for
composing Schur functors,

∧q(F ∗) =
⊕
r+s=q

∧r ∧2 U ⊗ ∧s ∧2 U ,

and the weights of each irreducible factor of ∧r ∧2U are of the form b = (bk, . . . , b1),
with ∑i bi = 2r and Young diagram:

C D

E

with C a (h + 1) × h rectangle for a certain 1 ≤ h ≤ k − 1, and D and E
two Young diagrams dual to one another.
The fact that A contains a j × (n − k + j) rectangle means that (the Young
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diagram of) a factor of ∧r(∧2U)⊗ ∧s(∧2U) must contain on the top left corner a
j × (n− k + j) rectangle. Similarly, as B is contained in a (k − j)× j rectangle,
(the Young diagram of) the same factor of ∧r(∧2U)⊗ ∧s(∧2U) must be contained
in a (k − j)× j rectangle to which one can add two unit boxes (we need to tensor
∧qF ∗ by F ).
Such a factor is a subspace of the tensor product of two irreducible terms

b1 ⊂ ∧r(∧2U) and b2 ⊂ ∧s(∧2U). Let b1 correspond to C1, D1, E1 and b2 correspond
to C2, D2, E2 as above. Moreover, let x1 (respectively x2) be the number of unit
boxes in the first j rows of b1 (resp. b2). Then there are x1 + j (resp. x2 + j) unit
boxes in the first j columns of b1 (resp. b2). By the Littlewood-Richardson rule
(and Remark 4.1.8), conditions (4.3) and (4.4) become:

x1 + x2 ≥ j(2n− k + j),

x1 + x2 + 2j − 2j2 ≤ j(k − j) + 2.
By subtracting the two equations, one obtains:

k ≥ n+ 2− 2/j.

This equation is satisfied for j ≥ 1 only when j = 1, and k = n. These conditions
imply that p = n, q = n+ 1, and

Hn(Gr(n, 2n),∧n+1F ∗ ⊗ F ) ∼= C2n−4.

From these computations, the statement follows at once.

Proposition 4.1.10. The non-trivial cohomology groups of TG|X are:

H0(G, TG|X) ∼= sl(V )/Cn−1 for k = n,

H0(G, TG|X) ∼= sl(V ) for k < n.

Proof. The proof of this proposition is similar to the previous one. By the Koszul
complex, we need to compute the cohomology groups

Hp(G,∧qF ∗ ⊗ TG),

where TG is the tangent bundle ofG and is represented by the weight (1, 0, . . . , 0,−1).
Let us deal with the case p = 0: the only cohomology different from zero is when
q = 0 and

H0(G, TG) = sl(V ).
Let us suppose p 6= 0; then, by Bott’s theorem, p = jn − ε for ε ∈ {0, 1} and
1 ≤ j ≤ k. We study the two cases ε = 0 and ε = 1 separately.

If ε = 0, the same kind of argument we used in the previous proof gives that
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there should exist two integers x1 and x2 such that

x1 + x2 ≥ j(2n− k + j + 1)

and
x1 + x2 + 2j − 2j2 ≤ j(k − j) + 1.

This means
2k ≥ 2n+ 3− 1/j,

which is never possible for j ≥ 1, k ≤ n.
If ε = 1, there should exist two integers x1 and x2 such that

x1 + x2 ≥ j(2n− k + j)− 1

and
x1 + x2 + 2j − 2j2 ≤ j(k − j) + 1.

This means
k ≥ n+ 1− 1/j,

which is possible only for j = 1, k = n. In this case we have

Hn−1(Gr(n, 2n),∧nF ∗ ⊗ TG) ∼= Cn−1.

From these computations, the statement follows at once.

As we are interested in the case k < n, we need to study the morphism

sl(V )→ (∧2V ∗)⊕2/C4.

This is just the induced morphism of the differential of the natural action of
SL(V ) over (∧2V ∗)⊕2. The first step is to understand the differential of this
action:

Lemma 4.1.11. The differential of the natural action of SL(V ) over (∧2V ∗)⊕2 is
part of the following exact sequence:

0→ sl(2)n → sl(V )→ (∧2V ∗)⊕2 → Cn+1 → 0

Proof. The action of an element M ∈ SL(V ) on (∧2V ∗)⊕2 is given by:

M 7→ (M tω1M,M tω2M),

where Ω = 〈ω1, ω2〉. Let us suppose that:

ω1 =
(

0 1
−1 0

)
and ω2 =

(
0 J
−J 0

)
,
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where J = diag(λ1, . . . , λn), and the λi’s are pairwise distinct. Then the differential
of the action above is given by:(

A B
C D

)
7→
((−B +Bt A+Dt

−A−Dt C − Ct

)
,

(
−BJ + JBt AJ + JDt

−AJ − JDt CJ − JCt

))
.

It is straightforward to verify that the kernel of this morphism is given by

{
(
A B
C D

)
s.t. C = JCJ−1, B = JBJ−1,−Dt = A = JAJ−1} =

= {
(
A B
C D

)
s.t. −Dt = A and A,B,C are diagonal matrices} ∼= sl(2)n.

The following theorem puts everything together and gives the small deforma-
tions of bisymplectic Grassmannians for k < n.

Theorem 4.1.12. The following isomorphisms hold:

H0(X,TX) ∼= sl(2)n,

H1(X,TX) ∼= Cn−3.

Proof. Let C4 ⊂ (∧2V ∗)⊕2 be as in (4.2). We study its preimage W inside sl(V ).
We want to prove that W ∼= sl(2)n. Let

M =
(
A B
C D

)
∈ W.

Then M must satisfy C = JCJ−1, B = JBJ−1, i.e. B,C are diagonal matrices.
Moreover

A+Dt = diag(a+ bλ1, . . . , a+ bλn) and AJ + JDt = diag(c+ dλ1, . . . , c+ dλn)

for certain real numbers a, b, c, d. Therefore D is determined by A, and

AJ − JA = diag(−bλ2
1 + (d− a)λ1 + c, . . . ,−bλ2

n + (d− a)xλ + c). (4.5)

This implies that A must be diagonal, and D too. Equation (4.5) also implies that
−bλ2

i + (d− a)λi + c = 0 for i = 1, . . . , n. By regarding a, b, c, d as variables, one
obtains a system of n equations in four variables. As the λi’s are general for a
general Ω, one has that if n ≥ 3, then the only solution is (a, b, c, d) = (a, 0, 0, a).
But then, as M ∈ sl(V ), its trace is zero, which means that a = 0. This implies
that W ∼= sl(2)n, which proves the theorem.
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Remark 4.1.13. The fact that H0(X,TX) ∼= sl(2)n should not be surprising;
indeed, by Proposition 4.1.6 we know that the forms in Ω can be simultaneously
block diagonalized, the blocks being the 2-dimensional subspaces Ki appearing
in the proof of the same proposition. A consequence of this is the fact that, for
1 ≤ i ≤ n, the group PGL(Ki) ⊂ PGL(P(∧2V ∗)) fixes the pencil Ω. Therefore, it
is contained in the automorphism group of Z (Ω) = X. The fact that these are the
only automorphisms of X modulo a finite group is a consequence of the previous
theorem. To state it more intrinsically, we can write:

TAut(X) ∼= H0(X,TX) ∼= sl(K1)⊕ · · · ⊕ sl(Kn).

Moreover, this observation implies that a n-dimensional torus acts on X, which we
will use in Section 4.3.

Remark 4.1.14. When n = 3 (and k = 2), the varietyX has no small deformations.
This is related to the fact that (∧2V ∗) ⊗ C2 is a prehomogeneous space for the
action of SL(V )×SL(2)×C∗; more precisely, it is the parabolic space associated to
(E7, α3) (see Section 1.4). This implies that there are just a finite number of orbits,
and therefore that all pencils Ω in a dense subset of P(∧2V ∗) are conjugated under
the action of PGL(V ). As a consequence, there are only finitely many isomorphism
classes of varieties of the form Z (Ω).
Moreover, by Proposition 4.1.6, if Z (Ω) is smooth, Ω intersects the Pfaffian

divisor D in three points p1, p2, p3; by changing coordinates if necessary, we can
suppose that p1 = [x1 ∧ x−1 + x2 ∧ x−2] and p2 = [x2 ∧ x−2 + x3 ∧ x−3], where
(x±1, x±2, x±3) is a basis of V ∗. Thus, there is only one smooth isomorphism class
of I2Gr(2, 6).

Remark 4.1.15. What the theorem tells us is that the moduli spaceMbisym(k,n)
of bisymplectic Grassmannians should have dimension n− 3. This is the same as
the dimension of the moduli spaceMn of n points inside P1. It is not difficult to
define a rational morphism

Mbisym(k,n) 99KMn.

Indeed, to any smooth variety X = Z (Ω), we can associate Ω ∩D, which are n
distinct points inside Ω ∼= P1 (modulo PGL(2)!). More explicitly, if Ω is generated
by the two forms in Remark 4.1.7, we can use the following identification:

Ω ∼= P1 , (aω1 + bω2) 7→ [a, b].

Then to I2Gr(k, 2n) we associate the point inMn corresponding to the n points
[−λ1, 1], . . . , [−λn, 1] inside P1. The morphism between the moduli spaces corre-
sponds therefore to the fact that the bisymplectic Grassmannians are parametrized
by the λi’s; an interesting and natural question is wether this morphism is birational
or not.
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4.2. Cohomology of IGr(k, 2n)
In this section we make a digression from the central topic of the chapter, and

we deal with the well studied symplectic Grassmannians. We do this essentially
for two reasons. On one hand, it can be useful to start from a classical framework,
where (almost) everything is well understood, and only later pass to the rather
new context of bisymplectic Grassmannians, which presents some additional dif-
ficulties. On the other hand, there is a strong relationship between symplectic
Grassmannians and bisymplectic Grassmannians, which is even stronger when
we see them as varieties on which a torus acts. Of course, the fact that IGr(k, V )
is a homogeneous variety (for Sp(V )) is one of the principal reasons why things
are easier to deal with in this situation.

4.2.1. Torus action, weights, Schubert varieties
Let T ∼= (C∗)n be a maximal torus inside Sp(V ); as Aut(IGr(k, V )) ∼= Sp(V )/Z2,

then T acts on IGr(k, V ). For simplicity, we will assume from now on that T is
the diagonal torus diag(tn, . . . , t1, t−1

1 , . . . , t−1
n ) ⊂ Sp(V ). The first important fact

is the following:

Proposition 4.2.1. There are only 2k
(
n
k

)
fixed points for the action of T on

IGr(k, V ). They are parametrized by subsets I ⊂ {±1, . . . ,±n} such that I∩(−I) =
∅.

Proof. Let V be generated by the vectors vn, . . . , v1, v−1, . . . , v−n, and the skew-
symmetric form given by w = ∑n

i=1 xi ∧ x−i. A point p ∈ IGr(k, V ) ⊂ Gr(k, V ) can
be represented by a 2n× k matrix (aij), i = n, . . . , 1,−1, . . . ,−n, and j = 1, . . . , k.
It is well known that an open covering of the Grassmannian is given by the set of
matrices where a certain square k × k minor is invertible. If the minor is identified
by I ⊂ {±1, . . . ,±n}, by inverting the I-th minor, on the corresponding open
subset (which we denote by UI) coordinates are given by the remaining entries of
the matrix (xij), i /∈ I, j = 1, . . . , k.
The open subset UI is fixed by T . Let I = {h1 > · · · > hk}; then one has:

(tn, . . . , t1)((xij)) = ( ti
thj
xij),

where by convention, if i < 0, then ti = t−1
−i . Therefore, it is clear that the only

fixed point for each UI is pI := (0ij). Such a point pI belongs to the isotropic
Grassmannian if and only if I ∩ (−I) = ∅.

Definition 4.2.2. We will say that a subset I ⊂ {±1, . . . ,±n} is admissible if
I ∩ (−I) = ∅.
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Therefore, by the Bialynicki-Birula decomposition (refer to Section 1.2), by
fixing a general one dimensional torus τ ⊂ T , we can associate to each fixed
point pI (where I ⊂ {±1, . . . ,±n} is admissible) a Schubert variety σ′I , which is
the closure of a Schubert cell isomorphic to an affine space. The Schubert cell is
defined as the set of points which accumulate towards pI under the action of τ .
The condition that τ needs to satisfy in order to give the decomposition is that it
acts with a finite number of fixed points. For instance, let

τ = diag(tn, . . . , t, t−1, . . . , t−n) ⊂ T. (4.6)

Lemma 4.2.3. The one dimensional torus τ acts with a finite number of fixed
points over IGr(k, V ).

Proof. We use the same notation as in the proof of the previous lemma. Then we
have

t((xij)) = ( t
i

thj
xij).

As i /∈ I = {h1 > · · · > hk}, then (i− hj) 6= 0 for all the coefficients xij . Therefore,
as before, the only fixed points are the points where (xij) = (0ij), i.e. the points pI
for I admissible.

Remark 4.2.4. From the previous proof, it is clear that a 1-dimensional torus
τ ′ ⊂ T acts on IGr(k, V ) with a finite number of fixed points if and only if, whenever
i 6= j, the eigenvalue of τ ′ for the eigenvector vi is different from that of τ ′ for the
eigenvector vj.

Remark 4.2.5. The symplectic Grassmannian IGr(k, V ) is a homogeneous variety
under the action of Sp(V ), and as such it has a natural Bruhat decomposition in
orbits under the action of a Borel subgroup of Sp(V ). It turns out that the Bruhat
decomposition and the Bialynicki-Birula one are the same (Section 1.2).

This has a very important consequence for us (see Remark 1.2.4). It implies that
if a fixed point pJ belongs to a Schubert variety σ′I , then actually σ′J = B.pJ ⊂
B.pI = σ′I . This fact is crucial when trying to compute the equivariant cohomology
of IGr(k, V ), as we will see. However, this property will not hold in the bisymplectic
case, and it is one of the main reasons why computing the equivariant cohomology
for I2Gr(k, V ) becomes more difficult.

As pI is fixed, the torus T acts on the vector space TI := TIGr(k,V ),pI . Let
εi ∈ Ξ(T ) be the character of T given by diag(tn, . . . , t1, t−1

1 , . . . , t−1
n ) 7→ ti. If

i < 0, we denote by εi the character −ε−i.

Lemma 4.2.6. The weights of the action of T on TI are

−εi − εj for i ≤ j ∈ I and

εi − εj for i /∈ I ∪ (−I), j ∈ I.
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Proof. The tangent space to the Grassmannian is equal to U∗ ⊗Q. Therefore, the
weights of TGr(k,V ),pI are

−εi − εj for i, j ∈ I ,
εi − εj for i /∈ I ∪ (−I), j ∈ I.

The normal bundle of the isotropic Grassmannian inside Gr(k, V ) is the bundle
∧2U∗, whose weights are

−εi − εj for i < j ∈ I.

Therefore, by using the exact normal sequence, one obtains the statement.

The weights of the action of τ are easily deduced from Lemma 4.2.6; indeed,
under the identification Ξ(τ) ∼= Z, it is sufficient to notice that εi 7→ i under the
morphism j∗ : Ξ(T ) → Ξ(τ) induced by the natural inclusion j : τ → T . The
tangent space Tσ′I ,pI is the τ -invariant subspace of TI whose weights with respect
to τ are negative.

Definition 4.2.7. From now on, we will say that ξ ∈ Ξ(T ) is τ -positive (and we
will denote it by ξ > 0) if j∗(ξ) > 0.

Therefore, given a certain subset I, it is not difficult to compute the codimen-
sion of σ′I as:

codim(σ′I) = #{(i, j) s.t. i /∈ I ∪ (−I) , j ∈ I and i > j}+

+#{(i, j) ∈ I × I s.t. |j| ≤ i}.

In order to compute the equivariant cohomology of IGr(k, V ), which we will
do in the next section, we still need two results. The first concerns T -invariant
curves, and the second is about the inclusions of fixed points in Schubert varieties
pJ ∈ σ′I . Recall that T -invariant curves are rational curves whose intersection
with the fixed locus has cardinality 2; these two fixed points will be denoted by
p0 and p∞.

Lemma 4.2.8. There is only a finite number of T -invariant curves inside IGr(k, V ).
They are of two types:

type α: curves with p0 = pI and p∞ = pJ , where #(I ∩ J) = k − 1;
type β: curves with p0 = pI and p∞ = pJ , where #(I ∩ J) = k − 2, I − J = {a1, a2},

J − I = {−a2,−a1}.

Proof. Without any loss of generality, we can suppose that one of the fixed points
is pI , with I = {1, . . . , k}. We have already seen that the action of the torus T is
given in local coordinates in a neighbourhood of pI by:

(tn, . . . , t1)((xij)) = ( ti
tj
xij).
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The image T ((xij)) is a curve if and only if it depends on one parameter. This can
happen only in the following two situations:

type α: all the coordinates (xij) are zero except for one, for instance xī,j̄. Then the
other fixed point in the curve is pJ , with J = (I − {j̄}) ∪ {̄i};

type β: the coordinates x−ij = −x−ji are the only ones different from zero, with
i, j ∈ I. This is the second type of curves, with a1 = i, a2 = j.

Therefore, one sees that for each fixed point, there is a finite number of T -invariant
curves passing through it.

Definition 4.2.9. Let I = {ak ≥ · · · ≥ a1} and J = {bk ≥ · · · ≥ b1}. If ai ≥ bi
for 1 ≤ i ≤ k, then we will say that I is greater or equal than J , and we will denote
this by I ≥ J .

Lemma 4.2.10. For two admissible subsets I and J , the fact that I ≥ J is
equivalent to pJ ∈ σ′I .

Proof. First, let us suppose that pJ ∈ σ′I . If
◦
σ′I denotes the Schubert cell corre-

sponding to I, let us consider

Uσ′I := UI ∩
◦

σ′I = {p ∈ UI ∩ IGr(k, V ) s.t. lim
t→∞

t(p) = pI for t ∈ τ}.

Actually, we have that
Uσ′I =

◦

σ′I .

Indeed, the action of τ on the Plücker coordinate qI corresponding to I is given by

t(qI) = t
∑

i∈I iqI .

Therefore τ fixes the complementary U c
I of UI = {qI 6= 0}, thus implying that

U c
I ∩

◦
σ′I = ∅.

As already stated, the torus τ acts as:

t((xij)) = ( t
i

taj
xij).

Suppose that there exists (̄i, j̄) such that ī > aj̄ and ī is maximal with the property
that xīj̄ 6= 0. Then limt→∞ t((xij)) 6= pI for t ∈ τ because limt→∞ t(xīj̄) 6= 0.
Therefore Uσ′I is contained in the set

{(xij) ∈ UI ∩ IGr(k, V ) s.t. if ī > aj̄ then xīj̄ = 0}.

As a consequence, it is easy to verify that if the closure of Uσ′I (which is equal to
σ′I) contains a fixed point pJ , then I ≥ J .
Now, fix I, J such that I ≥ J . Let us suppose that we have proved that there

exists a chain of T -invariant curves pJ → pJ1 → · · · → pI such that the curve
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pJh → pJh+1 has pJh+1 as accumulation point for the action of τ . This implies that
pJh ∈ σ′Jh+1

for any h. Moreover by Remark 4.2.5, if pJh ∈ σ′Jh+1
, then the entire

orbit of pJh is contained in σ′Jh+1
. This implies that σ′Jh ⊂ σ′Jh+1

; by induction we
get that pJ ∈ σ′I .

As a consequence, we just need to prove the existence of a chain of curves from
pJ to pI . This will be done in several steps.

1. First, we can suppose that I ∩ J = ∅, i.e. we can replace I with I ′ = I − J
and J with J ′ = J − I.

2. If ai /∈ −J , then we can use a curve of type α and replace J with J ′ =
(J − {bi}) ∪ {ai}. Therefore we can suppose that I = −J .

3. If ai = −bi, we can use a curve of type α to replace J with J ′ = (J−{−ai})∪
{ai}, i.e. we can suppose that for any i, ai 6= −bi.

4. If ai > 0, and bj = −ai for j < i, we can use a curve of type α to replace J
with J ′ = (J − {−ai}) ∪ {ai}; here the condition j < i is essential in order to
ensure that I ≥ J ′.

5. From the previous steps, we can suppose that I = −J , and if bj = −ai
and ai > 0, then j > i. Moreover, the ai’s and the bi’s are ordered as
a decreasing sequence. This implies that a1 > 0, a1 = −bk, and b1 > 0,
b1 = −ak. Therefore, there exists a curve of type β which goes from pJ to pJ ′ ,
with J ′ = (J − {b1, bk}) ∪ {a1, ak}. One can apply this step until I = J ′, and
conclude the proof.

Poincaré duality

It is possible to understand Poincaré duality for Schubert varieties. In fact, the
following holds:

Proposition 4.2.11. The basis given by the classes of Schubert varieties σ′I , for I
admissible, is Poincaré self-dual; the dual of σ′I is σ′−I .

Proof. Recall that the Bialynicki-Birula decomposition Theorem actually provides
two cell decompositions, one for τ and the other for τ−1 (see Remark 1.2.2). Let
us denote by σ′+• = σ′• the first one and by σ′−• the second one.
Let us fix σ′+I = σ′I , with I admissible. Consider the subgroup SLn2 ⊂ Sp2n of

diagonal 2× 2 blocks which fixes the symplectic Grassmannian. One can find a
rational curve γ inside SLn2 such that, under its conjugation action, the torus τ is
sent to τ−1. For instance, one can take the rotation

γ(t) =
(

cos(t) − sin(t)
sin(t) cos(t)

)n
.
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This curve, when acting on IGr(k, V ), sends pI to p−I and gives a rational equiva-
lence between the class of σ′+I and the class of σ′−−I for every I admissible.
Now, consider σ′+I and σ′+J of complementary dimension inside IGr(k, V ). If

σ′+I ∩ σ′+J = ∅, then σ′+I σ
′+
J = 0 in cohomology. Therefore, let us assume that

σ′+I ∩ σ′+J 6= ∅. By Remark 4.2.5, we can assume that σ′+J ⊂ σ′+I . It is easy to verify
that codim(σ′+I ) = dim(σ′+−I), and therefore we have that codim(σ′+J ) = codim(σ′+−I).

As a consequence, if J 6= −I, then σ′+−I∩σ′+J = ∅, and this implies that σ′−−I∩σ′+J =
∅ as well. As a result, in cohomology we have

σ′+I σ
′+
J = σ′−−Iσ

′+
J = 0.

On the other hand it is straightforward to verify that

σ′+I σ
′+
−I = σ′−−Iσ

′+
−I = 1

because σ′−−I ∩ σ′+−I = pI .

4.2.2. Equivariant cohomology: an easy situation
In this section we study the equivariant cohomology for the torus T of IGr(k, V ).

We begin by recalling some basic facts about equivariant cohomology. A refer-
ence for this subject is [Bri98]; the general results we will cite can be found in
[GKM98] or [Bri97].

Let X be a smooth variety on which a torus T ∼= (C∗)n acts with finitely many
fixed points XT = {p1, . . . , pr}. Denote by Ξ(T ) ∼= Zn the character group of T .
Moreover, let τ ∈ T be a general 1-dimensional torus such that its fixed locus
is equal to XT ; then the Bialynicki-Birula decomposition for τ provides varieties
σpi for all 1 ≤ i ≤ r which are a basis for the ordinary cohomology H∗(X,Z).

The equivariant cohomology ring H∗T (X) is an algebra over the polynomial
ring H∗T (pt) ∼= C[Ξ(T )] = (Ξ(T )) ⊗Z C via the push-forward map of the natural
inclusion of a point pt inside X. An additive basis for this algebra is given by the
(equivariant) classes [σpi ] for 1 ≤ pi ≤ r.

Denote by H∗(X) := H∗(X,C). The pullback map i∗ : H∗T (X)→ H∗T (XT ) of the
natural inclusion i : XT → X is injective; therefore

H∗T (X) = Ξ(T )⊗Z H∗(X) ∼= Ξ(T )⊗Z

⊕
pi

C[σpi ]

can be seen as a subring of

H∗T (XT ) ∼= Ξ(T )⊗Z H∗(XT ) ∼= Ξ(T )⊗Z

⊕
pi

Cpi ∼= C[Ξ(T )]⊕r.

Via this inclusion, we will denote by fσi ∈ C[Ξ(T )]⊕r the class of [σi] ∈ H∗T (X),
and by fσi(pj) = (i ◦ ij)∗[σi], where ij : pj → XT is the natural inclusion. Clearly,
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if ε1, . . . , εn is a Z-basis of Ξ(T ), then fσi(pj) ∈ H∗T (pj) is a polynomial in ε1, . . . , εn.
Therefore, in order to understand the equivariant cohomology of X, we need to
find the polynomials fσi(pj). The following results hold:

Theorem 4.2.12. The polynomials fσi(pj) satisfy the following properties:
1. fσi(pj) is a homogeneous polynomial of degree codim(σi);
2. fσi(pj) = 0 if pj /∈ σi;
3. fσi(pj) is the product of the T -characters of the normal bundle Nσi/X,pj when-

ever σi is smooth at pj;
4. If there exists a T -equivariant curve between pj and pk whose character is χ,

then χ divides fσi(pj)− fσi(pk) for 1 ≤ i ≤ r.

Theorem 4.2.13. If there is only a finite number of T -invariant curves inside X,
then the equivariant cohomology H∗T (X) is the subset of C[Ξ(T )]⊕r consisting of
elements f = (f1, . . . , fr) satisfying the last condition in Theorem 4.2.12, i.e.:

if there exists a T -equivariant curve between pj and pk
whose character is χ, then χ divides fj − fk.

(4.7)

Moreover, from the equivariant cohomology, it is possible to recover the ordi-
nary cohomology H∗(X):

Theorem 4.2.14. The classical cohomology H∗(X) can be recovered from the
equivariant cohomology H∗T (X) as

H∗(X) ∼= H∗T (X)/(ε1, · · · , εn).

Therefore, the finiteness of the number of T -invariant curves inside IGr(k, V )
(Lemma 4.2.8) and Theorem 4.2.13 give:

Theorem 4.2.15. The relations in (4.7) are enough to determine the equivariant
cohomology of IGr(k, V ).

One should be careful: being able to determine the equivariant cohomology
of IGr(k, V ) does not imply that we are able to identify the equivariant classes
[σ′I ] in general. However, as IGr(k, V ) is homogeneous, the following proposition
ensures that we can in this case:

Proposition 4.2.16. Let X = G/P be a homogeneous rational variety under the
action of a simple group G. Then the maximal torus T inside a Borel subgroup
B ⊂ G acts with a finite number of fixed points on X. Moreover, if there is only
a finite number of T equivariant curves, then the equivariant classes of Schubert
varieties inside H∗T (X) are determined by the relations 1, 2, 3 in Theorem 4.2.12.
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Proof. The first part of the theorem is classical from general theory on homogeneous
varieties. For the second part, consider a 1-dimensional torus τ ⊂ T which acts
positively on the set of positive roots of B. Let us denote by σi, i = 1, . . . , r the
Schubert varieties with respect to the action of τ . By Remark 4.2.5, these varieties
are equal to the orbits B.pi for i = 1, . . . , r, where the pi’s are the T -fixed points
inside X. Moreover, if pj ∈ σi, then σj ⊂ σi and therefore codim(σj) > codim(σi).

The polynomials fσi(pj) of the equivariant class of a Schubert variety σi satisfy
the relations in Theorem 4.2.12. Moreover, by the finiteness of the number of
T -invariant curves, we have that if two T -invariant curves with characters χ1, χ2
meet pi, then χ1 and χ2 must be prime to each other.
Let us consider an element

g = (g1 . . . , gr) ∈ H∗T (X) ⊂ C[Ξ(T )]⊕r

satisfying the relations 1, 2, 3 in Theorem 4.2.12. Then fσi − g is zero over all
points pj such that codim(σj) ≤ codim(σi). We want to prove that fσi − g = 0.
Let us suppose that fσi − g 6= 0. Then we can find a point ph ∈ σi such that
(fσi − g)(ph) 6= 0 and codim(σh) is minimal. Condition (4.7) and the finiteness of
the number of T -invariant curves implies that (fσi − g)(ph) must be divisible by
fσh(ph); but

deg((fσi − g)(ph)) = codim(σi) < codim(σh) = deg(fσh(ph)),

which gives a contradiction.

In the following, we present an effective way to compute explicitly the equiv-
ariant classes of the Schubert varieties of the symplectic Grassmannian. The
method uses an inductive argument, and was already used in [Man16]. We will
always suppose k < n. Moreover, if no ambiguity arises, we will denote σI and
pI by I. The first step is the following lemma:

Lemma 4.2.17. The Schubert variety σ′H , H = {n, . . . , n−k+2, n−k}, corresponds
to the unique generator of ρ(IGr(k, V )). Moreover, in the equivariant cohomology,
it is represented by the degree 1 polynomials

fH(I) =
∑
i∈I
−εi +

k∑
i=1

(εn−i+1).

Proof. It is well known that ρ(IGr(k, V )) ∼= Z. Moreover, by counting the number
of positive weights of TH with respect to τ , one obtains codim(σ′H) = 1. The
first assertion follows. For the second one, notice that by Proposition 4.2.16 fH
is uniquely determined by requiring that fH({n, . . . , n − k + 2, n − k + 1}) = 0,
and fH(H) = εn−k+1 − εn−k, which are satisfied by the formula in the statement,
together with condition (4.7).
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The inductive method proceeds as follows. Let us fix a Schubert variety σ′I .
Then

if pJ /∈ σ′I , then fI(J) = 0.
Moreover, fI(I) is just the product of the (positive) τ -weights of TI (because σ′I
is smooth at pI). Notice that these two assertions are general, and will hold for
the bisymplectic Grassmannian as well.

Finally, the polynomial fI( · )(fH( · )− fH(H)) has support over the points pJ ∈
σ′I , J 6= I. By applying Lemma 4.2.10, we obtain:

fI( · )(fH( · )− fH(I)) =
∑
J∈I−1

aI,JfJ( · ), (4.8)

where I−1 = {J s.t. I ≥ J, and codim(σ′J) = codim(σ′I) + 1}. The condition on
the codimension is a consequence of the fact that deg(fJ) = codim(σ′J). If we
are able to determine the coefficients aI,J for J ∈ I−1, then by induction on the
dimension of σ′I we can recover all the equivariant cohomology of IGr(k, V ). As
a matter of fact, the following results hold:

Lemma 4.2.18. Let I ≥ J and

codim(σ′I) = codim(σ′J)− 1. (4.9)

Then three cases are possible:
1. I − J = {1} and J − I = {−1};
2. I − J = {i} and J − I = {i− 1};
3. I − J = {i, 1− i} and J − I = {−i, i− 1}.

Proof. A consequence of the proof of Lemma 4.2.10 is that, as pJ ∈ σ′I , there exists
a chain of T -invariant curves joining pJ to pI . The condition on the codimension
then implies that the chain is actually composed of one single curve. This curve is
either of type α either of type β. For later use, let

WI = {τ -positive weights in the normal bundle at pI},

and similarly for WJ .
1. The curve is of type α, I − J = {i} and J − I = {−i}, i > 0. We want

to prove that the codimension condition implies i = 1. Let us compute
codim(σ′I)− codim(σ′J). We have:

WI −WJ ⊂ {εx − εi,−εj − εi for x /∈ (I ∪ −I), i 6= j ∈ I},

WJ −WI ⊂ {εx + εi,−εj + εi for x /∈ (I ∪ −I), i 6= j ∈ I, and 2εi}.
As i > 0, if x− i > 0 (respectively −j − i > 0), then x+ i > 0 (−j + i > 0).
Moreover, 2εi ∈ WJ and 2εi /∈ WI . Suppose that i > 1. Then there exists
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x /∈ (I ∪ −I) such that i > x > −i, or there exists i 6= j ∈ I such that
i > j > −i. In the first case εx − εi < 0 and εx + εi > 0; in the second
case −εj − εi < 0 and −εj − εi > 0. In both cases Equation (4.9) cannot be
satisfied. Therefore i = 1.

2. The curve is of type α, I − J = {i} and J − I = {j}, i > j 6= −i. We want
to prove that the codimension condition implies j = i− 1. We have:

WI −WJ ⊂ {εx − εi,−εh − εi,−εh + εj for x /∈ (I ∪ −I), x 6= ±j, h ∈ I},

WJ −WI ⊂

⊂ {εx − εj,−εh − εj,−εh + εi for x /∈ (I ∪ −I), x 6= ±i, h ∈ I, and εi − εj}.
As i > j, if x− i > 0 (respectively −h− i > 0, −h+ j > 0), then x+ i > 0
(−h+ i > 0, −h+ i > 0). Moreover, εi − εj ∈ WJ and εi − εj /∈ WI . Suppose
that i − 1 > j. Then there exists x /∈ (I ∪ I) such that i > x > j, or there
exists h ∈ I such that i > h > j, or there exists h ∈ I such that i > −h > j.
In the first case εx − εi < 0 and εx − εj > 0; in the second case −εh + εj < 0
and −εh + εi > 0; in the third case −εh − εi < 0 and −εh − εj > 0. In all the
cases Equation (4.9) cannot be satisfied. Therefore j = i− 1.

3. The curve is of type β, I − J = {i, j} and J − I = {−i,−j}, |i| > |j|, i > 0.
We want to prove that the codimension condition implies j = −i+ 1. First of
all, if j > 0, then we can connect pJ to pI with a chain composed of two curves
of type α (sending first {i} → {−i} and then {j} → {−j}); this implies that
codim(σ′J)− codim(σ′I) ≥ 2. So we can suppose that j < 0. We have:

WI −WJ ⊂
{

εx − εi, εx − εj,−εh − εi,−εh − εj
for x /∈ (I ∪ −I), h ∈ I, h 6= ±i,±j and − 2εj

}
,

WJ −WI ⊂
{

εx + εi, εx + εj,−εh + εi,−εh + εj
for x /∈ (I ∪ −I), h ∈ I, h 6= ±i,±j and 2εi, εi + εj

}
.

Moreover, 2εi, εi + εj ∈ WJ and 2εi, εi + εj /∈ WI , while −2εj ∈ WI and
−2εj /∈ WJ . It is possible to verify by hand that Equation (4.9) is true if and
only if for any x and any h as above the following conditions are satisfied:

x /∈ {(−j, i) ∪ (−i, j)} and h /∈ {(−j, i) ∪ (−i, j)}.

Therefore j = −i+ 1.

Proposition 4.2.19. Suppose I and J are as in Lemma 4.2.18. Then:
1. aI,J = 1;
2. aI,J = 1;
3. aI,J = 2.
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Proof. As, for all J ∈ I−1, the codimension of σ′J is the same, there exist no
J, J ′ ∈ I−1 such that pJ ∈ σ′J ′ . Therefore fJ ′(J) = 0. As a consequence, by
applying Equation (4.8) to pJ , we have:

fI(J)(fH(J)− fH(I)) = aI,JfJ(J).

This determines fI(J) modulo the constant aI,J (as by induction we already know
fJ(J)). To determine this constant, we use the fact that there is a T -invariant
curve between pJ and pI , and so, if χ is the character of this curve,

χ divides fI(I)− fI(J).

1. In this case χ = fH(J)− fH(H) = 2ε1. Let f be the polynomial of maximal
degree in which the variable ε1 does not appear, such that fI(I) = fp and
fI(J) = fq for suitable polynomials p, q. Then it is straightforward to see
that:

(fI(I)− fI(J))/f =
∏

x/∈(I∪−I),x>1
(εx − ε1)

∏
h∈I,h>1

(−εh − ε1)+

−aI,J
∏

x/∈(I∪−I),x>1
(εx + ε1)

∏
h∈I,h<−1

(−εh + ε1).

As this polynomial is equal to zero when we let 2ε1 = 0, we obtain aI,J = 1.
2. In this case j = i−1, χ = fH(J)−fH(H) = εi−εj . Let f be the polynomial of

maximal degree in which the variables εi, εj do not appear, such that fI(I) =
fp and fI(J) = fq for suitable polynomials p, q. Then it is straightforward
to see that:

(fI(I)− fI(J))/f =
∏

x/∈(I∪−I),x>i
(εx − εi)

∏
h∈I,h<−i

(−εh − εi)+

−aI,J
∏

x/∈(I∪−I),x>i
(εx − εj)

∏
h∈I,h<−i

(−εh − εj).

As this polynomial is equal to zero when we let εi = εj, we obtain aI,J = 1.
3. In this case j = −i + 1, χ = fH(J) − fH(H) = 2(εi + εj). Let f be the

polynomial of maximal degree in which the variables εi, εj do not appear,
such that fI(I) = fp and fI(J) = fq for suitable polynomials p, q. Then it is
straightforward to see that:

(fI(I)− fI(J))/f =
∏

x/∈(I∪−I),x>i
(εx − εi)

∏
x/∈(I∪−I),x>−i

(εx − εj)

∏
h∈I,h<−i

(−εh − εi)
∏

h∈I,h≤−j
(−εh − εj)+
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−aI,J2
∏

x/∈(I∪−I),x>−i
(εx + εi)

∏
x/∈(I∪−I),x>i

(εx + εj)

∏
h∈I,−j 6=h≤i

(−εh + εi)
∏

h∈I,h<−j
(−εh + εj).

Notice that in this case we obtain a factor 1
2 because χ is twice the character

εi + εj of the normal bundle NσI/X,pI . As the polynomial is equal to zero when
we let εi = −εj, we obtain aI,J = 2.

Putting everything together, we obtain:

Theorem 4.2.20. Equation (4.8) and Proposition 4.2.19 determine inductively
the equivariant classes of Schubert varieties inside IGr(k, V ).

Further, from the equivariant cohomology, one can recover the classical coho-
mology of IGr(k, V ).

4.3. Cohomology of I2Gr(k, 2n)
In this section we study the cohomology structure of the bisymplectic Grass-

mannians. The situation is more involved than that of IGr(k, V ). As an applica-
tion of the existence of an action of a torus with a finite set of fixed points, we
compute the Betti numbers of I2Gr(k, V ). Then we compute explicitly the coho-
mology of I2Gr(2, 6) as an application of the study of its equivariant cohomology.

4.3.1. Torus action, weights, Schubert varieties
From the results in Section 4.1.1, and more precisely from Remark 4.1.7, one

can suppose that the pencil Ω of skew-symmetric forms defining I2Gr(k, V ) is
generated by ω1 and ω2, with:

ω1 =
n∑
i=1

xi ∧ x−i

ω2 =
n∑
i=1

λixi ∧ x−i

where 〈xi, x−i〉 = (Ki)∗ for 1 ≤ i ≤ n, and the λi’s are all distinct. The torus T
introduced in the previous section fixes Ω, and therefore acts on I2Gr(k, V ).

Proposition 4.3.1. There are 2k
(
n
k

)
fixed points for the action of T on IGr(k, V ).

They are parametrized by the subsets I ⊂ {±1, . . . ,±n} such that I ∩ (−I) = ∅.
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Proof. The bisymplectic Grassmannian is contained in IGr(k, V ), and the torus
acting on the two varieties is the same. Then, the lemma follows from Proposition
4.2.1 and from the fact that all the pI ’s also belong to I2Gr(k, V ).

Therefore, by the Bialynicki-Birula decomposition, by fixing a general 1-dimensional
torus τ ⊂ T , we can associate to each fixed point pI a variety σI (see Section 1.2).
We will refer to σI (respectively its cell) as a Schubert variety (resp. cell) of the
bisymplectic Grassmannian, in analogy with the notation in the homogeneous
case.

Lemma 4.3.2. The 1-dimensional torus τ introduced in (4.6) acts with a finite
number of fixed points over IGr(k, V ).

Proof. This is a consequence of Lemma 4.2.3.

As pI is fixed, the torus T acts on the tangent space TI := TIGr(k,V ),pI . We have:

Lemma 4.3.3. The weights of the action of T on TI are

−2εi for i ∈ I and

εi − εj for i /∈ I ∪ (−I), j ∈ I.

Proof. This is similar to the proof of the analogous result for IGr(k, V ). Only
notice that in this case the normal bundle of the bisymplectic Grassmannian inside
Gr(k, V ) is the bundle (∧2U∗)⊕2, whose weights are

−εi − εj for i 6= j ∈ I.

Therefore, by using the exact normal sequence, one obtains the statement.

The weights of the action of τ are easily deduced from Lemma 4.3.3; indeed,
under the identification Ξ(τ) ∼= Z, it is sufficient to notice that εi 7→ i under
the morphism Ξ(T ) → Ξ(τ) induced by the inclusion. The tangent space TσI ,pI
is the τ -invariant subspace of TI whose weights with respect to τ are negative.
Therefore, given a certain subset I, it is possible to compute the codimension of
σI as:

codim(σI) = #{(i, j) s.t. i /∈ I ∪ (−I) , j ∈ I, and j > i}+ #{j ∈ I s.t. j < 0}.

4.3.2. Betti numbers
From what we have said in the previous section, it is a priori possible to de-

termine the Betti numbers of the variety I2Gr(k, V ) by hand. However, in this
section, we give a recursive formula to do so, which just requires knowing the
Betti numbers of, for instance, I2Gr(2, 4) ∼= P1 × P1 and of the projective space
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in order to recover those of all bisymplectic Grassmannians. Afterwards, we will
give a geometric interpretation for the terms in the recursive formula.

The decomposition of I2Gr(k, V ) in Schubert cells isomorphic to an affine
space implies that the odd Bettinumbers are all equal to zero. Let {bik,n}i be
the even Betti numbers of I2Gr(k, 2n) (where i is the codimension). We will
denote by Sk,n the sequence of integers:

Sk,n = (b0
k,n, . . . , b

dim(I2Gr(k,2n))
k,n , 0, . . . , 0, . . . ).

Of course, the decomposition of I2Gr(k, 2n) in Schubert cells isomorphic to the
affine space and whose closures are the σI ’s implies that bik,n is equal to the
number of subsets I such that codim(σI) = i. We will denote by [h] the shift on
the right by h. For instance, Sk,n[1] = (0, b0

k,n, . . . , b
dim(I2Gr(k,2n))
k,n , 0, . . . , 0, . . . ).

Theorem 4.3.4. The following recursive formula holds for the Betti numbers of
I2Gr(k, 2(n+ 1)):

Sk,n+1 = Sk,n[k] + Sk−1,n + Sk−1,n[1 + 2(n+ 1− k)]. (4.10)

Proof. Let us consider the set Ik,n+1 of subsets I ⊂ {±1, . . . ,±n + 1} such that
pI ∈ I2Gr(k, 2(n+ 1)). Then we have a partition of Ik,n+1 into three parts which
are the images of three morphisms:

η1 : Ik,n → Ik,n+1 , I 7→ I,

η2 : Ik−1,n → Ik,n+1 , I 7→ I ∪ {n+ 1},
η3 : Ik−1,n → Ik,n+1 , I 7→ I ∪ {−n− 1}.

Moreover:
η1. if codimI2Gr(k,2n)(σI) = c, then codimI2Gr(k,2(n+1))(σI) = c+ k. This is because

the normal bundle of σI at pI in I2Gr(k, 2(n+ 1)) contains the k additional
τ -positive weights εn+1 − εi for i ∈ I;

η2. if codimI2Gr(k−1,2n)(σI) = c, then codimI2Gr(k,2(n+1))(σI∪{n+1}) = c. This is
because the normal bundle of σI∪{n+1} at pI∪{n+1} in I2Gr(k, 2(n+1)) contains
no additional τ -positive weights;

η3. if codimI2Gr(k−1,2n)(σI) = c, then codimI2Gr(k,2(n+1))(σI∪{−n−1}) = c+ 1 + 2(n+
1 − k). This is because the normal bundle of σI∪{−n−1} at pI∪{−n−1} in
I2Gr(k, 2(n+ 1)) contains the 1 + 2(n+ 1− k) additional τ -positive weights
2εn+1, εi − εn+1 for i /∈ (I ∪ −I).

Therefore, by using the partition, one obtains the three factors in the RHS of
Equation (4.10).

Example 4.3.5. We give here a list of examples of Betti numbers of bisymplectic
Grassmannians for small k, n:
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S2,3 = (1, 1, 2, 4, 2, 1, 1, 0, . . . );
S3,4 = (1, 1, 2, 6, 6, 6, 6, 2, 1, 1, 0, . . . );
S4,5 = (1, 1, 2, 7, 8, 12, 18, 12, 8, 7, 2, 1, 1, 0, . . . );
S2,4 = (1, 1, 2, 2, 3, 6, 3, 2, 2, 1, 1, 0, . . . ).

Let
Sk,n(t) =

∑
i

bik,nt
i

be the Hilbert polynomial of I2Gr(k, 2n). The following equalities are given by
the isomorphisms I2Gr(1, 2n) ∼= P2n−1 and I2Gr(n, 2n) ∼= (P1)n:

Sn,n(t) = (1 + t)n ,

S1,n(t) = 1− t2n
1− t ,

S0,n(t) = 1.
Equation (4.10) gives the following identity:

Sk,n+1(t) = tkSk,n(t) + (1 + t1+2(n+1−k))Sk−1,n(t).

The following propositions allow to compute the Hilbert polynomial in two addi-
tional cases.

Proposition 4.3.6. The Hilbert polynomial of I2Gr(2, 2n) is equal to

S2,n(t) = (1− t2n−1)(1− t2n−2)
(1− t)(1− t2) + (n− 1)t2n−3.

Proof. We prove the formula by induction on n. When n = 2, S2,2(t) = 1+t+t2+t =
(1 + t)2. Suppose the formula is true for n, we prove it for n+ 1. We have

S2,n+1(t) = t2
(1− t2n−1)(1− t2n−2)

(1− t)(1− t2) + (n− 1)tn−1 + (1 + t2n−1)(1− t2n)
1− t =

= (1− t2n+1)(1− t2n)
(1− t)(1− t2) + nt2n−1.

Remark 4.3.7. This case is particularly easy because I2Gr(2, 2n) is a codimension
2 complete intersection inside Gr(2, 2n); all its Betti numbers except the middle
term can be derived from those of Gr(2, 2n) by applying Lefschetz hyperplane
theorem.
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Proposition 4.3.8. The Hilbert polynomial of I2Gr(k, 2k + 2) is equal to

Sk,k+1(t) =
∑
i+j=k

ti(1 + t)i(1 + t3)j

Proof. Let us define
S(x, y, t) =

∑
k,m≥0

xkymSk,k+m(t).

Then we have

S(x, y, t) =
∑
k,m≥0

xkymSk,k+m(t) =
∑
k≥0

xk(1 + t)k +
∑
k,m≥0

xkym+1Sk,k+m+1(t) =

=
∑
k≥0

xk(1 + t)k +
∑
k,m≥0

xkym+1tkSk,m(t) + (1 + t2m+3)
∑
k,m≥0

xkym+1Sk−1,k+m(t) =

=
∑
k≥0

xk(1+t)k+yS(xt, y, t)+xS(x, y, t)−
∑
k≥0

xk+1(1+t)k+xtS(x, yt2, t)−
∑
k≥0

xk+1t(1+t)k,

from which we obtain the relation:

S(x, y, t) = 1 + yS(xt, y, t) + xS(x, y, t) + xtS(x, yt2, t).

Let us rewrite S(x, y, t) = ∑
i≥0 S

[i](x, t)yi. The previous relation gives:

S[1](x, t) = S[0](xt, t)
1− x− xt3 .

By developing this expression, and using the fact that S[0](x, t) = ∑
i≥0(1 + t)ixi,

one obtains the statement of the proposition.

Remark 4.3.9. The series S(x, y, t) and the relation it satisfies can be used a
priori to find inductively the Hilbert polynomials of bisymplectic Grassmannians
for 1 ≤ k ≤ n.

Remark 4.3.10. By using the recursive formula, it is possible to prove that for
any 1 < k < n we have: b0

k,n = 1, b1
k,n = 1, b2

k,n = 2. In particular,

ρ(I2Gr(k, V )) ∼= Z.

The following lemma will be useful in the sequel.

Lemma 4.3.11. The Schubert variety σH , H = {n, . . . , n−k+2, n−k}, corresponds
to the unique generator of ρ(I2Gr(k, V )). Moreover, in the equivariant cohomology,
it is represented by the degree 1 polynomials

fH(I) =
∑
i∈I
−εi +

k∑
i=1

εn−i+1.
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Remark 4.3.12. The Schubert variety σH is a hyperplane section of O(1) inside
I2Gr(k, V ). Indeed, it is the restriction to I2Gr(k, V ) of the hyperplane section
σ′H ⊂ IGr(k, V ).

Proof. The codimension of σH is 1, and ρ(I2Gr(k, V )) ∼= Z, therefore the first
assertion follows. Moreover the same argument used in the proof of Proposition
4.2.16 shows that fH in the equivariant cohomology is uniquely determined by
the fact that fH({n, . . . , n− k + 2, n− k + 1}) = 0 and fH(H) = −εn−k + εn−k+1.
These conditions, together with condition (4.7), are satisfied by the formula in the
statement.

Remark 4.3.13. For what concerns Poincaré duality, in cohomology the basis
given by the classes of Schubert varieties σI , for I admissible, is not self-dual, as
it was the case for the symplectic Grassmannian. One can still prove that σI is
rationally equivalent to σ−−I as in the proof of Proposition 4.2.11; this implies that
σIσ−I = 1. However, if J 6= −I and codim(σI) = dim(σJ), one cannot conclude
that σIσJ = 0; indeed, refer to Remark 4.3.22.

4.3.3. Equivariant cohomology
In order to compute the equivariant cohomology of I2Gr(k, V ), we need to

understand what are the T -invariant curves in I2Gr(k, V ).

Lemma 4.3.14. There is only a finite number of T -invariant curves inside
I2Gr(k, V ). They are all the curves of type α.

Proof. The set of T -invariant curves inside I2Gr(k, V ) is contained in the set of
T -invariant curves inside IGr(k, V ). Among these, all the curves of type α belong
to the bisymplectic Grassmannian too, while the curves of type β do not.

As a consequence of Lemma 4.3.14 and of Theorem 4.2.13, we obtain:

Theorem 4.3.15. The relations in Theorem 4.2.12 are enough to determine the
equivariant cohomology of I2Gr(k, V ).

It would be nice to have a way to compute effectively this equivariant cohomol-
ogy, as in the case of the symplectic Grassmannian. However, the bisymplectic
case presents some difficulties which are harder to deal with, as it is illustrated
by the following explicit example.

The example of I2Gr(2, 6)

Let us determine the Schubert classes in the equivariant cohomology of I2Gr(2, 6).
We will do so by using the inductive method introduced to study the equivariant
cohomology of IGr(k, 2n). The problem for the bisymplectic Grassmannian is
that it may very well happen that pJ ∈ σI even though codim(σJ) ≤ codim(σI)
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(contrary to IGr(k, 2n) where pJ ∈ σ′I implies necessarily σ′J ⊂ σ′I!). Therefore, a
priori, we do not know over which set to carry the summation in (4.8).

In order to understand this problem, recall that if pJ ∈ σ′I , then I ≥ J . As a
consequence, if pJ ∈ σI , then also I ≥ J . Moreover ≥ is a partial order relation
on the admissible subsets of {±1, . . . ,±n} of cardinality k. We define the relation
≥∈ on admissible subsets: I ≥∈ J if and only if there exist admissible subsets
J = J1, J2, . . . , Ju = I such that pJi ∈ σJi+1 for i = 1, . . . , u − 1. This relation is
by construction reflexive and transitive. Moreover, it is skew-symmetric because
if I 6= J , I ≥∈ J and J ≥∈ I, then this would imply that J ≥ I ≥ J and I 6= J ,
which is a contradiction by the definition of ≥. As a result, ≥∈ is a partial order
relation on admissible subsets of {±1, . . . ,±n}.

Lemma 4.3.16. There exist polynomials aI,J ∈ C[ε1, . . . , εn] of degree codim(σJ)−
codim(σI)− 1 such that

fI( · )(fH( · )− fH(I)) =
∑

J∈I≥∈−1

aI,JfJ( · ), (4.11)

where I≥∈−1 = {J s.t. I ≥∈ J, and codim(σJ) ≤ codim(σI) + 1}.

Proof. We already know that

fI( · )(fH( · )− fH(I)) =
∑
J

aI,JfJ( · )

for some polynomials aI,J because the classes of Schubert varieties generate the
equivariant cohomology over Ξ(T ). We want to prove that aI,J = 0 if J /∈ I≥∈−1.
Indeed, let L /∈ I≥∈−1 be a subset which is maximal for the partial order relation
≥∈ such that aI,L 6= 0. Then, by evaluating the previous equation at pL, we obtain

0 = aI,LfL(L).

But fL(L) is the product of the weights of the normal bundle of σL at pL, and
we have fL(L) 6= 0. This gives a contradiction. The assertion on the degree of
aI,J is a consequence of the fact that fL(•) is a homogeneous polynomial of degree
codim(σL) for any admissible L.

A consequence of the lemma is that in general we are looking for coefficients
aI,J ’s which are not constants, but actual polynomials; determining even one of
them may need the use of a lot of relations, and not only, as for the symplectic
Grassmannian, essentially two.

A second problem which arises is the fact that it becomes harder to determine
the inclusions of the fixed points inside the Schubert varieties. In order to deter-
mine these inclusions, we need to work with the explicit equations.

Let us show it concretely. Figure 4.1 represents the graph of T -invariant curves
in I2Gr(2, 6): a vertex labelled by the ordered subset I corresponds to the fixed
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point pI , while an arrow corresponds to a T -invariant curve between two points.
The codimension increases towards the bottom of the graph. Notice that there
are two couples of points which are joined by a T -invariant curve, and whose
dimensions of the associated Schubert varieties are the same, which could not
happen in the case of IGr(k, V ).

Now, let us determine the relevant inclusions of fixed points for the computa-
tion of the cohomology:

Lemma 4.3.17. Figure 4.2 represents the inclusions inside I2Gr(2, 6): an arrow
goes from pI to pJ if and only if pJ ∈ σI and codim(σJ) ≤ codim(σI) + 1.

Figure 4.1. – T-invariant curves in I2Gr(2, 6)

(3,2)

(3,1)

(3,− 1)

(3,− 2)

(−1,− 2)

(−1,− 3)

(−2,− 3)

(2,1)

(2,− 3)(2,− 1)

(1,− 3)

(1,− 2)

145



Figure 4.2. – Inclusions of fixed points in I2Gr(2, 6)

(3,2)

(3,1)

(3,− 1)

(3,− 2)

(−1,− 2)

(−1,− 3)

(−2,− 3)

(2,1)

(2,− 3)(2,− 1)

(1,− 3)

(1,− 2)

Proof. If there exists a T -invariant curve between two points pI and pJ and I ≥ J ,
then pJ ∈ σI . Moreover, if I is not greater (≥) than J , then pJ /∈ σI . We
study case by case when I ≥ J , there is no T -invariant curve between pI and
pJ , and codim(σJ) ≤ codim(σI) + 1. Before doing so, let us fix some notation.
We denote by qI the Plücker coordinates on the Grassmannian Gr(2, V ). Then
Gr(2, V ) ⊂ P(∧2V ) is defined by the quadratic equations

q(a,b)q(c,d) − q(a,c)q(b,d) + q(b,c)q(a,d) = 0 for a, b, c, d ∈ {±1, . . . ,±n}. (4.12)

Moreover the two equations defining the bisymplectic Grassmannian (and coming
from ω1 and ω2) are:

n∑
i=1

q(i,−i) = 0 and
n∑
i=1

λiq(i,−i) = 0. (4.13)

Finally, the Schubert variety σI is defined by the relations

qJ = 0 for I � J,

while in a neighbourhood of pI we can suppose that qI 6= 0. This implies, for example,
that σ3,−2 and σ2,−1 are contained in the locus where q3,−3 = q2,−2 = q1,−1 = 0 (use
(4.13)).
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p(1,−2) ∈ σ(3,−1) The relations in (4.13) give that

σ(3,−1) ⊂ {q(1,−1) = αq(2,−2) and q(3,−3) = βq(2,−2)}

for α, β 6= 0 depending on the λi’s and that can be computed explicitely. The
points

p(t) = 〈v3 + t−1v2 + αtv1, v−1 + t2v−2 + βtv−3〉

belong to σ(3,−1), and we have limt→∞ p(t) = p(1,−2).
p(2,−3) ∈ σ(3,−1) The points p(t) = 〈v3 + tv2 + αt2v1, v−1 + tv−2 + βt2v−3〉 belong to σ(3,−1),

and we have limt→∞ p(t) = p(2,−3).
p(1,−3) /∈ σ(3,−2) Use the relations in (4.12) with a = 1, b = −3, c = 3, d = −2 to see that

σ(3,−2) ⊂ {q(1,−3) = 0}.
p(1,−3) /∈ σ(2,−1) Use the relations in (4.12) with a = 1, b = −3, c = 2, d = −1 to see that

σ(2,−1) ⊂ {q(1,−3) = 0}.
p(2,−3) /∈ σ(3,−2) Use the relations in (4.12) with a = 2, b = −3, c = 3, d = −2 to see that

σ(3,−2) ⊂ {q(2,−3) = 0}.
p(1,−2) /∈ σ(2,−1) Use the relations in (4.12) with a = 1, b = −2, c = 2, d = −1 to see that

σ(2,−1) ⊂ {q(1,−2) = 0}.

Notice that the two graphs in Figure 4.1 and Figure 4.2 are different.

Proposition 4.3.18. The coefficients aI,J that appear in Equation (4.11) for
I2Gr(2, 6) are uniquely determined by the relations in Theorem 4.2.12. They are
reported in Figure 4.3.
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Figure 4.3. – Coefficients aI,J in I2Gr(2, 6)
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Proof. First suppose that there is a T -invariant curve between pI and pJ , with
codim(σJ) = codim(σI) + 1, and J is a maximal element among those in I≥∈−1.
Then, by evaluating Equation (4.11) at pJ , one determines fI(J) as a function of
aI,J ; moreover, as fI(I)− fI(J) must be a multiple of the character of the curve
between pI and pJ , it is possible to determine aI,J , which turns out to be equal to
one (essentially, it is the same computation as in the symplectic case for curves of
type α). We determine the remaining coefficients one by one.

a(3,−2),· Let I = (3,−2). The only coefficients different from zero are aI,(1,−2), aI,(−1,−2),
aI,(1,−3,). As p(1,−3) /∈ σI , then fI(1,−3) = 0, and the existence of a T -
invariant curve between p(1,−2) and p(1,−3) implies that ε2−ε3 divides fI(1,−2).
Therefore, by applying (4.11) to p(1,−2), we get aI,(1,−2) = α(ε2 − ε3) for a
certain constant α. Then the existence of a T -invariant curve between pI and
p(1,−2) gives a relation that implies α = 1.
By applying (4.11) to p(1,−3), we get aI,(1,−3) = 1; by applying it to p(−1,−2)
and using the T -invariant curve between p(−1,−2) and pI , we get aI,(−1,−2) = 0.

a(2,−1),· Let I = (2,−1). The only coefficients different from zero are aI,(2,−3),
aI,(−1,−2) = 1, aI,(1,−3,). As p(1,−3) /∈ σI , then fI(1,−3) = 0, and the existence
of a T -invariant curve between p(2,−3) and p(1,−3) implies that ε1 − ε2 divides
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fI(2,−3). Therefore, by applying (4.11) to p(2,−3), we get aI,(2,−3) = α(ε1− ε2)
for a certain constant α. Then the existence of a T -invariant curve between
pI and p(2,−3) gives the relation determining α = 1.
By applying (4.11) to p(1,−3), we get aI,(1,−3) = 1.

a(2,1),· Let I = (2, 1). The only coefficients different from zero are aI,(2,−1) = 1,
aI,(1,−2) = 1, aI,(2,−3). By applying (4.11) to p(−2,−3) and using the T -invariant
curve between p(2,−3) and pI , we get aI,(2,−3) = 1.

a(3,−1),· Let I = (2, 1). The only coefficients different from zero are aI,(3,−2) = 1,
aI,(2,−1) = 1, aI,(1,−2), aI,(2,−3). By applying (4.11) to p(1,−2), we get aI,(1,−2) =
2. By applying (4.11) to p(2,−3), we get aI,(2,−3) = 2.

Thus, we have proved:

Theorem 4.3.19. Equation (4.11) and Proposition 4.3.18 determine inductively
the equivariant classes of all the Schubert varieties inside I2Gr(2, 6).

Remark 4.3.20. The constant coefficients aI,J determine the multiplication of a
Schubert variety with the hyperplane section in the ordinary cohomology, i.e. a
Pieri type formula for I2Gr(2, 6). In particular, our computations are coherent with
the fact that the degree of I2Gr(2, 6) is 14, as we know because it is the degree of
Gr(2, 6).

Figure 4.4. – Degrees of Schubert varieties

14

14
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1

1
1

1

5

12

1

2

From the equivariant cohomology, one can recover the classical cohomology
of I2Gr(2, 6) (Theorem 4.2.14). We will use the following notations:

σ1 := σ3,1 , σ2 := σ2,1 , σ3 := σ3,−2 , σ′3 := σ2,−3,

with
deg(σ1) = 14 , deg(σ2) = 5 , deg(σ3) = 1 , deg(σ′3) = 1.
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Theorem 4.3.21. A presentation of the cohomology of the bisymplectic Grassman-
nian I2Gr(2, 6) is given by:

H∗(I2Gr(2, 6),Z) ∼= Z[σ1, σ2, σ3, σ
′
3]/I,

where I is the ideal generated by the following elements:

2σ4
1 − 2σ2

1σ2 − 3σ1σ
′
3 , σ2σ

′
3 ,

σ1σ3 − σ1σ
′
3 , σ3σ

′
3 − σ3

1σ
′
3 ,

σ2
2 − σ4

1 + 2σ2
1σ2 + 2σ1σ

′
3 , σ2

3 ,
σ5

1 − 14σ2
1σ
′
3 , σ′23 ,

σ2σ3 , σ4
1σ
′
3 .

Proof. First, we prove that σ1, σ2, σ3, σ
′
3 generate the cohomology by showing that

they generate all the Schubert classes σI . This is a consequence of the following
formulas, which can be derived directly from Figure 4.4:

σ(3,−1) = σ2
1 − σ2,

σ(2,−1) = 3σ1σ2 − σ3
1 + σ3,

σ(1,−2) = σ3
1 − 2σ1σ2 − σ3 − σ′3,

σ(−1,−2) = σ4
1 − 2σ2

1σ2 − 3σ1σ
′
3,

σ(1,−3) = σ1σ
′
3,

σ(−1,−3) = σ2
1σ
′
3,

σ(−2,−3) = σ3
1σ
′
3.

The relations generating I involving the product of σ1 with other classes can be
derived from Figure 4.4 too. For the remaining relations, they can be derived from
the following identities, which hold in the equivariant cohomology, and can be
verified by computing explicitly the classes σI :

σ2
2 = σ2(ε3 − ε1)(ε3 − ε2) + σ(1,−2)(ε3 − ε1) + σ(2,−1)(ε3 − ε2)+

+σ′3(ε3 − ε2) + σ1σ(1,−2),
σ2σ3 = (ε2 + ε3)(σ(1,−2)(ε2 − ε3) + σ(1,−3)),

σ2σ
′
3 = 2ε3(σ′3(ε3 − ε2) + σ(1,−3)),

σ3σ
′
3 = σ(−2,−3),

σ2
3 = 2ε2(σ3(ε1 + ε2)(ε2 − ε1) + σ(1,−2)(ε1 + ε3)(ε3 − ε2)+
−σ(−1,−2)(ε3 − ε2)− σ(1,−3)(ε1 + ε3) + σ(−1,−3)),

σ′23 = 2ε3(σ′3(ε3 − ε1)(ε3 + ε1) + σ(1,−3)(ε1 + ε2)− σ(−1,−3)).

Remark 4.3.22. The basis given by the Schubert classes inside I2Gr(2, 6) is not
self-dual. For instance, the non zero products of codimension 3 Schubert classes
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are as follows:
σ(3,−2)σ(2,−3) = 1,
σ(1,−2)σ(2,−1) = 1,
σ(3,−2)σ(2,−1) = −1.

A self-dual basis in codimension 3 would be given by σ(3,−2), σ(2,−3), σ(1,−2), σx =
σ(2,−1) + σ(2,−3). In this basis, the degree diagram is the one shown in Figure 4.5.
Notice that the diagram is symmetric with respect to a central reflection; this is a
consequence of the fact that the additive basis chosen in this case is self-dual.

Figure 4.5. – Degree of classes in a self-dual basis; the codimension 3 classes are,
from left to right: σ(3,−2), σ(2,−3), σx, σ(1,−2)
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Remark 4.3.23. The group of permutations Sn acts on the cohomology of the
bisymplectic Grassmannians, even though it does not act on the varieties themselves;
the action is a consequence of a monodromy phenomenon.
Let X be a bisymplectic Grassmannian I2Gr(k, 2n) defined by the forms

ω1 =
n∑
i=1

xi ∧ x−i and ω2 =
n∑
i=1

λixi ∧ x−i.

Let η be an element of the group of permutations Sn. There exists a curve γ
inside the space of pencils of bisymplectic forms that goes from Ω = 〈ω1, ω2〉 to
η.Ω = 〈ω1, η.ω2〉, where

η.ω2 =
n∑
i=1

λη(i)xi ∧ x−i.

Following the curve, one obtains a continuous deformation γ such that γ(0) = X =
γ(1), and which sends a Schubert variety σI to η.σI , where the action on σI is
induced by the one of Sn on the pencils. As the cohomology is locally constant,
the action on Schubert varieties induces an action in cohomology. In the following
we show concretely what it means in the case when k = 2, n = 3.
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As the irreducible representations of S3 given by Schubert classes with codi-
mension different from 3 are only 1-dimensional, we will focus on codimension 3
Schubert varieties. They admit the following explicit description:

α2 := σ(3,−2) = v−2 ∧P(〈v±3, v±1〉),

β1 := σ(1,−2) = {x ∈ P(〈v−2, v−3〉) ∧P(〈v±1, v−2, v−3〉) s.t. x 6= 0},
β2 := σ(2,−1) = {x ∈ P(〈v−1, v−3〉) ∧P(〈v±2, v−1, v−3〉) s.t. x 6= 0},

α3 := σ(2,−3) = v−3 ∧P(〈v±2, v±1〉).
Moreover, inside the cohomology of I2Gr(2, 6) there are two more remarkable
classes:

α1 := v−1 ∧P(〈v±3, v±2〉),
β3 := {x ∈ P(〈v−1, v−2〉) ∧P(〈v±3, v−1, v−2〉) s.t. x 6= 0}.

Actually, there are also classes α−1, α−2, α−3, β−1, β−2, β−3, but one can prove that
in cohomology αi = α−i and βi = β−i for i = 1, 2, 3. The action of S3 on the
αi’s and the βi’s is the expected one. By using the products of the codimension 3
Schubert varieties and the symmetries given by S3, one can prove that

α1 − α2 = β1 − β2,

α2 − α3 = β2 − β3.

To summarize, the action of S3 on Hi(I2Gr(2, 6),Z) is trivial if i 6= 6, and
H6(I2Gr(2, 6),Z) decomposes in the sum of two trivial representations generated
by the classes of σ3

H = α2 + 3β1 + 2β2 + 3α3 and σ(2,1)σH = β1 + β2 + α3, and one
natural representation given by the action on 〈α1, α2, α3〉.

4.4. Conclusions
Even though we have shown that bisymplectic Grassmannians present inter-

esting properties, there is still much more work to be done. We have a local
description of the moduli space of these varieties, and we know which condi-
tions to impose on the forms ω1 and ω2 in order to have smooth bisymplectic
Grassmannians, but at the level of cohomology the work is still incomplete. We
added this brief section in order to summarize what we have done, and to sug-
gest what should or could be done in the future.

Our only general result concerning the equivariant cohomology of I2Gr(k, 2n)
is Theorem 4.3.15, which is far from being satisfying. At this level one does
not even know if the equivariant classes of Schubert varieties can be determined
only by using the relations in Theorem 4.2.12. What one would like to have is an
analogous of Theorem 4.2.16 or, even better, of Theorem 4.2.20 to give explicit
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formulas to compute inductively the equivariant classes of Schubert varieties.
With the example of I2Gr(2, 6) we have shown that, in this case, it is possible

to determine the equivariant classes of Schubert varieties only by imposing the
relations in Theorem 4.2.12. However, we have also brought to the surface
what are the features of bisymplectic Grassmannians that make it difficult to
determine the equivariant cohomology. We have identified the most important
feature in the fact that a Schubert variety σ1 may contain a fixed point p2 even
if the corresponding Schubert variety σ2 has dimension greater or equal than
σ1 (as it happens for σ(3,−2) and σ(1,−2), or σ(2,−1) and σ(2,−3) inside I2Gr(2, 6)).
Another property that should be understood better is the graph of the inclusions
of fixed points inside I2Gr(k, 2n). Also, an interesting role may be played by the
Sn-symmetries (see Remark 4.3.23).

A possible direction to follow in the future is the study of the quantum coho-
mology of bisymplectic Grassmannians. For classical Grassmannians quantum
cohomology is known (see [Buc03] or [Tam05]). In the quasi-homogeneous
case some results have been obtained recently: for instance, for odd symplectic
Grassmannians of lines one can refer to [Pec13], and more generally for non-
homogeneous horospherical spaces to [GPPS18]. An effective way to find the
quantum cohomology of I2Gr(k, 2n) would be to exploit the equivariant situation.
Indeed, it is possible to define an equivariant quantum cohomology, which is a
deformation of equivariant cohomology as the quantum cohomology is a defor-
mation of classical cohomology, and use it to recover the quantum cohomology.
Of course, the combinatorics involved in the problem may be very complicated,
but a priori this seems feasible.

The cohomology is not the only object of study worthy to be considered. An
interesting field to explore would concern the derived category of bisymplec-
tic Grassmannians. In particular, to study it one could use homological pro-
jective duality (see [Kuz07]), which has already proven to be a successful tool
for I2Gr(2, 6). In what follows, we sketch the situation for the Grassmannian
Gr(2, 6).

For a “sufficiently nice" projective variety X ⊂ P(V ) with projective dual Y ⊂
P(V ∗), derived Lefschetz type theorems can be proven to hold; they relate the
derived category of linear sections of X to that of linear sections of Y ⊂ P(V ∗).
More precisely, if L ⊂ V is a linear subspace, and L⊥ ⊂ P(V ∗) its annihilator,
one can reconstruct the derived category of YL⊥ := Y ∩ P(L⊥) from that of
XL := X ∩P(L), and vice versa.

For instance, it is known that the projective dual variety of X = Gr(2, V6) ⊂
P(∧2V6) is the Pfaffian cubic hypersurface Y ⊂ P(∧2V ∗6 ) (see [Kuz16]). Then,
if L ∼= C9, one obtains that the bounded derived category Db(YL⊥) of coherent
sheaves on the Pfaffian cubic fourfold YL⊥ admits a semiorthogonal decomposi-
tion given by

Db(YL⊥) = 〈OY
L⊥

(−3),OY
L⊥

(−2),OY
L⊥

(−1),Db(XL)〉,
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where XL is a K3 surface of degree 14 (see [Kuz16, Theorem 10.4]). If L ∼= C13,
we get that the derived category of I2Gr(2, 6) is related to that of three points
on the Pfaffian hypersurface cut out by a P1; in [Kuz16, Corollary 10.2] a full
exceptional collection for Db(I2Gr(2, 6)) is given explicitly.

Bisymplectic Grassmannians may be a good example to test Dubrovin’s conjec-
ture (see [Dub98]). The conjecture states that the big quantum cohomology of
a smooth projective variety is semisimple if and only if its bounded derived cat-
egory admits a full exceptional collection. Dubrovin’s conjecture, which relates
two a priori very different types of information, has been proved for isotropic
Grassmannians of lines (see [MKM+17]) and for other kinds of quasi homoge-
neous varieties (see [GPPS18]).

Finally, let us once more remark that there is at least another class of varieties
which share some interesting features with bisymplectic Grassmannians. We
refer to ortho-symplectic Grassmannians, i.e. the varieties of linear subspaces of
a fixed vector space which are isotropic with respect to a skew-symmetric form
and a symmetric form. For such varieties, it is possible to prove the analogous
result of Proposition 4.1.4, which implies that ortho-symplectic Grassmannians
admit the action of a torus with a finite number of fixed points. Therefore, one
could lead a study similar to the one done for bisymplectic Grassmannians for
these varieties too. We do not exclude that other kinds of Grassmannians may
share similar properties as those possessed by bisymplectic and ortho-symplectic
ones.
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Appendix

A. Euler characteristic
We refer to the notation in Chapter 2, more precisely in Section 2.1, 2.2 and

2.3. We recall that Y is the zero locus of a section of the bundle F inside a
classical Grassmannian. The computation of the Euler characteristic of the trivial
bundle OY can be done in two different ways. The first one is applicable in
general only for the symplectic and odd orthogonal Grassmannians, while the
second one can be applied to any generalized Grassmannian (and actually is
lighter in terms of computational time).

We explain the first method in Section A.1. For the second method, we use the
fact that the cohomology ring of the generalized Grassmannians is well known.
In Section A.2.1 we recall Borel’s presentation of the cohomology ring of orthog-
onal Grassmannians, and in Section A.2.2 we explain how to integrate products
of Chern classes of homogeneous vector bundles.

A.1. Computation in the symplectic and odd orthogonal case
For symplectic and odd orthogonal Grassmannians one knows that one can

choose multiplicative generators of the cohomology to be the Chern classes of
the quotient bundle Q. This is the tautological quotient bundle of the classical
Grassmannian in which the symplectic and odd orthogonal Grassmannians em-
bed naturally (as a reference, one can see [Tam05, Theorem 8, Theorem 12]).
For instance, IGr(k, 2n) embeds in Gr(k, 2n) as the zero locus of a section of
Λ2U∗. Then, suppose to be able to express the Chern classes of the bundle F
which defines Y in IGr(k, 2n) in terms of the Chern classes of Q, which live in
the cohomology of Gr(k, 2n). Then, the computation can be made in this last
space. Indeed, [Y ] = ctop(F) in the cohomology ring of IGr, [IGr] = ctop(Λ2U∗)
in the cohomology ring of Gr, and∫

Y
( · ) =

∫
IGr

( · )[Y ] =
∫

Gr
( · )[Y ][IGr].

Therefore, one has:

χ(OY ) =
∫
Y

td(TY ) =
∫

IGr

td(TIGr)
td(F) ctop(F) =

=
∫

Gr

td(TGr)
td(F)

ctop(Λ2(U∗))
td(Λ2(U∗)) ctop(F).
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In the second equality we have used the fact that td is multiplicative with respect
to short exact sequences, and we have applied this to the normal sequence for
Y :

0→ TY → TIGr|Y → F|Y → 0
Then, as in the case of the classification of fourfolds in the classical Grassman-
nian, one can use the MACAULAY2 package SCHUBERT2 to do the computa-
tion. In the symplectic Grassmannian concretely there is essentially one bundle
for which one needs to find the relation with the Chern classes of Q, namely
(U⊥/U)(1). This is given by the exact sequence:

0→ U⊥/U(1)→ Q(1)→ U∗(1)→ 0

For the orthogonal Grassmannian one has to consider also the bundles which
correspond to half integer sequences, and in particular the spin bundles. By re-
lating the exterior and symmetric powers of these bundles with the “classical"
bundles in the different cases, we can do the computation. For example, for
OGr(n, 2n+ 1), the spin bundle is just the “square root" of O(1), so its first Chern
class is half the one of the ample line bundle O(1).

A.2. Cohomology of the even orthogonal Grassmannian
The method explained earlier cannot be used in general for the even orthog-

onal Grassmannian (nor for the exceptional Grassmannians), because its coho-
mology is a little bit more complicated. In this case in fact, the Chern classes of
the tautological quotient bundle Q do not generate multiplicatively the cohomol-
ogy ring. One way to proceed is to use a “good" presentation of the cohomology,
for which it is relatively easy to understand what the Chern classes of the homo-
geneous bundles are, and so to compute the integral in the equation mentioned
above. The picture we are going to present applies actually, with appropriate
modifications, to the other cases too, and to exceptional Grassmannians as well.

A.2.1. Borel’s presentation of the cohomology ring

We present the multiplicative structure of the cohomology ring of the even
orthogonal Grassmannian; it is usually referred to as Borel’s presentation of the
cohomology. Borel’s presentation holds for any homogeneous space (as a ref-
erence see [Dem73]); when we compute the invariants for the classifications
in exceptional Grassmannians, we use it as well. However, we just explicit the
construction for the even orthogonal Grassmannian, as the exceptional cases are
similarly treated.
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The idea is to inject the cohomology ring into one which is better understood,
namely that of a complete flag variety. This has the property that every irre-
ducible homogeneous bundle has rank one. Therefore it will always be possible
to split completely a not necessarily irreducible bundle and to compute its Chern
class as the product of the Chern classes of the line bundles of the splitting.

To be more precise, one considers the projection map

π : SO(2n)/B → SO(2n)/Pk = OGr(k, 2n),

where B is a Borel subgroup contained in Pk. The homogeneous space SO(2n)/B
is the complete flag OF(1, . . . , n,C2n) of isotropic planes in C2n. The fiber of
π over a point [R] ∈ OGr(k, 2n) is isomorphic to F(1, .., k, R) × OF(1, . . . , n −
k,R⊥/R), where the first factor is the usual complete flag in R. As π is a fibration,
the pull-back morphism π∗ is an injection. Therefore, after pulling back, one can
work in the cohomology of the flag variety G/B, where G = SO(2n).

What one gains, as already anticipated, is the fact that this cohomology is well
known and every homogeneous vector bundle can be split as the sum of line
bundles. Indeed, let us denote by X(T ) the characters of the maximal torus T in
B. Then one has a morphism (defined in [Dem73, Section 3]):

c : SQ[X(T )]→ H∗Q(G/B)

from the symmetric algebra on the characters with rational coefficients to the
rational cohomology of G/B. This morphism is surjective, and so identifies a
quotient SQ[X(T )]/I with H∗Q(G/B). The ideal I can be computed explicitly as
the ideal generated by invariant polynomials (without constant terms) under the
natural action of the Weyl group W of G on SQ[X(T )]. On the other hand, we
will need to be able to write explicitly the morphism c. One has:

c(f) =
∑

w∈W |l(w)=deg(f)
∆w(f)Xw

for f homogeneous in SQ[X(T )], where Xw is the Schubert cohomology class
corresponding to the Weyl element w (in the usual Schubert presentation of the
cohomology ring of homogeneous spaces). Moreover, given a reduced decompo-
sition of w = si1 . . . sil(w) in terms of simple reflections, ∆w = ∆si1

◦ · · · ◦∆sil(w)
,

where

∆si(f) = f − si(f)
αi

,

αi being the i-th simple root. The value of ∆w(f) doesn’t depend on the chosen
reduced decomposition (again, refer to [Dem73, Theorem 1]).
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A.2.2. Chern class of homogeneous bundles

Now, having this in mind, the last step to do the computation of the Euler
characteristic is to express the Chern classes of a homogeneous vector bundle on
G/Pk in H∗(G/B). As already pointed out, a homogeneous completely reducible
bundle splits in H∗(G/B) as the sum of line bundles. These line bundles corre-
spond to representations of B, as explained in Section 1.1, i.e. to elements of
X(T ). Fix F on G/Pk coming from a representation V of Pk. Then one has the
weight space decomposition V = ⊕µ∈X(T )V

mµ
µ . As a consequence,

π∗(F) ∼ ⊕µ∈X(T )Lmµµ

where Lµ is the line bundle corresponding to µ ∈ X(T ). Here, the symbol ∼
stands for “are the same as T -homogeneous bundles", which implies that they
have the same Chern classes. The last ingredient is the fact that the Chern class
of Lµ is represented inside SQ[X(T )] by 1 + µ. As a consequence

Chern(π∗(F)) =
∏

µ∈X(T )
(1 + µ)mµ

Knowing this, we can compute the Chern class of the bundle, products of
cohomology classes, integrations, etc. In particular, the integration on G/Pk of a
class f of the right degree is given by computing ∆w0(f), where w0 is the longest
element in W/W (Pk).
Example A.1. Here we report the code to use in order to compute the Euler char-
acteristic for the case (ow6) in Table B.4, as an example:

—Definition of SQ[X(T )]

S = QQ[a, b, c, d, e];

—Chern class of the tangent bundle and todd class (first terms)

ctan = (1 + a + b + d) ∗ (1 + a + b + e) ∗ (1 + a + b − d) ∗ (1 + a + b −
e) ∗ (1 + a + c + d) ∗ (1 + a + c + e) ∗ (1 + a + c − d) ∗ (1 + a + c − e) ∗ (1 + c +
b+d)∗(1+c+b+e)∗(1+c+b−d)∗(1+c+b−e)∗(1+a+b)∗(1+a+c)∗(1+b+c);

ctan1 = part(1, ctan);

ctan2 = part(2, ctan);

ctan3 = part(3, ctan);
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ctan4 = part(4, ctan);

tdtan1 = ctan1//2;

tdtan2 = (ctan1 ∗ ctan1 + ctan2)//12;

tdtan3 = (ctan1 ∗ ctan2)//24;

tdtan4 = (−ctan1 ∗ ctan1 ∗ ctan1 ∗ ctan1 + 4 ∗ ctan1 ∗ ctan1 ∗ ctan2 + 3 ∗ ctan2 ∗
ctan2 + ctan1 ∗ ctan3− ctan4)//720;

—Chern class of the vector bundle F and todd class (first terms)

cF = (1 + ((a+ b+ c+ d+ e)//2)) ∗ (1 + ((a+ b+ c− d− e)//2)) ∗ (1 + ((a+
b+ c+ d+ e)//2)) ∗ (1 + ((a+ b+ c− d− e)//2)) ∗ (1 + ((a+ b+ c+ d+ e)//2)) ∗
(1 + ((a+ b+ c− d− e)//2)) ∗ (1 + ((a+ b+ c+ d+ e)//2)) ∗ (1 + ((a+ b+ c− d−
e)//2)) ∗ (1 + a+ b) ∗ (1 + b+ c) ∗ (1 + a+ c);

cF1 = part(1, cF );

cF2 = part(2, cF );

cF3 = part(3, cF );

cF4 = part(4, cF );

cF11 = part(11, cF );

tdF1 = cF1//2;

tdF2 = (cF1 ∗ cF1 + cF2)//12;

tdF3 = (cF1 ∗ cF2)//24;

tdF4 = (−cF1 ∗ cF1 ∗ cF1 ∗ cF1 + 4 ∗ cF1 ∗ cF1 ∗ cF2 + 3 ∗ cF2 ∗ cF2 + cF1 ∗
cF3− cF4)//720;

—Definition of (the first terms of) cr = todd(TOG)
todd(F)

cr1 = tdtan1− tdF1;

cr2 = tdtan2− tdF2− tdF1 ∗ cr1;
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cr3 = tdtan3− tdF3− tdF1 ∗ cr2− tdF2 ∗ cr1;

cr4 = tdtan4− tdF4− tdF1 ∗ cr3− tdF2 ∗ cr2− tdF3 ∗ cr1;

—Definition of the class int to be integrated

int = cr4 ∗ cF11;

— Computation of ∆w0(int)

intfifteen = (int− sub(int, d => c, c => d))//(c− d);

intfourteen = (intfifteen− sub(intfifteen, c => b, b => c))//(b− c);

intthirteen = (intfourteen− sub(intfourteen, e => d, d => e))//(d− e);

inttwelve = (intthirteen− sub(intthirteen, b => c, c => b))//(b− c);

inteleven = (inttwelve− sub(inttwelve, d => −e, e => −d))//(d+ e);

intten = (inteleven− sub(inteleven, d => c, c => d))//(c− d);

intnine = (intten− sub(intten, d => e, e => d))//(d− e);

inteight = (intnine− sub(intnine, b => c, c => b))//(b− c);

intseven = (inteight− sub(inteight, d => c, c => d))//(c− d);

intsix = (intseven− sub(intseven, a => b, b => a))//(a− b);

intfive = (intsix− sub(intsix, c => b, b => c))//(b− c);

intfour = (intfive− sub(intfive, c => d, d => c))//(c− d);

intthree = (intfour − sub(intfour, e => d, d => e))//(d− e);

inttwo = (intthree− sub(intthree, e => −d, d => −e))//(d+ e);

intone = (inttwo− sub(inttwo, c => d, d => c))//(c− d)

Remark A.2 (The case (ob5), Table B.4). It is the only case in which the Euler
characteristic is not equal to 2, but to 4. In order to understand better why this
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happens, we studied in more detail the cohomology of OY by using the Koszul
complex associated to the bundle F . The method is standard (see Section 2.1.2),
the only difficulty in this case is to express the bundle ΛkF∗ as a sum of irreducible
homogeneous bundles, but this can be done using the program LiE ([vCL]). What
one finds is that the variety (ob5) is not connected, and actually it consists of two
connected components, which are therefore Calabi-Yau varieties. Two questions
which can be asked is whether these two components are isomorphic, and if there
is a more geometric explanation for the existence of these two components, as it is
the case for the variety of zeroes of S2Q in Gr(m, 2m).

B. Tables classification theorems
In this appendix we report all tables of the varieties we have found, as indi-

cated in the classification theorems in Chapter 2. The labelling of the varieties
follows essentially the subdivision of the classification’s proofs in lemmas and
propositions. In the following we explicit some rules we adopted.

For the ordinary (respectively symplectic, orthogonal) Grassmannians Gr(k, n)
(IGr(k,m), OGr(k,m)) with k ≤ n, if k = 2 then the varieties are labelled by the
letter (b) (resp. (sb), (ob)), if k = 3 they are labelled by (c) (resp. (sc), (oc)), and
if k ≥ 4, labels start with the letter (d) (resp. (sd), (od)).

Some special cases are to be taken into account. For the odd orthogonal Grass-
mannians, varieties inside OGr(k − 2, 2k + 1) are labelled by (ox) and varieties
inside OGr(k, 2k + 1) by (oy). For the even orthogonal Grassmannians, varieties
inside OGr(k− 2, 2k) are labelled by (ow) and varieties inside OGr(k, 2k) by (oz).
Finally, varieties inside OGr(k − 1, 2k) are labelled by the letter (oe).

In the tables concerning K3 surfaces, we have marked with M. the varieties
which have already been studied by Mukai. In particular: casesM.(b10), M.(oy5),
M.(b13), M.(c6) are in [Muk88]; case M.(c9) is in [Muk06]; cases M.(ox5),
M.(d3) are in [Muk92]. There are many other cases which have not been ex-
amined yet, and they are worth being considered in more detail, as we intend to
do in the next future.

For what concerns the notations for tables in the exceptional cases, we refer to
Section 2.4. We recall that H denotes the positive generator of the Picard group
of the Grassmannian, and irreducible bundles are represented by the highest
weight of the irreducible representation they are associated to. We reported just
the invariants interesting (in our opinion) for each dimension. On the other hand
we were not able to compute some invariants for varieties of big codimension,
due to computational weight (c.w.).
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case bundle F Gr(k, n) χ(OY )
(a) complete intersection of hypersurfaces Pn

(b1) O(1)⊕O(4) Gr(2, 5) 2
(b2) O(2)⊕O(3) Gr(2, 5) 2
(b2.1) U∗(2) Gr(2, 5) 2
(b4) S2U∗ ⊕O(3) Gr(2, 6) 2
(b5) U∗(1)⊕O(2)⊕O(1) Gr(2, 6) 2
(b6) O(1)⊕2 ⊕O(2)⊕2 Gr(2, 6) 2
(b6.1) O(1)⊕3 ⊕O(3) Gr(2, 6) 2
(b6.2) U∗(1)⊕2 Gr(2, 6) 2
(b12) S3U∗ Gr(2, 6) 3
(b3) Q(1)⊕O(1) Gr(2, 7) 2
(b7) O(1)⊕5 ⊕O(2) Gr(2, 7) 2
(b8) S2U∗ ⊕O(1)⊕2 ⊕O(2) Gr(2, 7) 2
(b8.1) U∗(1)⊕O(1)⊕4 Gr(2, 7) 2
(b9) S2U∗ ⊕ U∗(1)⊕O(1) Gr(2, 7) 2
(b10) Λ4Q⊕O(3) Gr(2, 7) 2
(b10.1) Λ5Q⊕O(1)⊕O(2) Gr(2, 8) 2
(b10.2) Λ5Q⊕ U∗(1) Gr(2, 8) 2
(b11) O(1)⊕8 Gr(2, 8) 2
(b13) S2(U∗)⊕2 ⊕O(1)⊕2 Gr(2, 8) 2
(b14) S2(U∗)⊕O(1)⊕5 Gr(2, 8) 2
(b10.3) Λ6Q⊕ S2U∗ Gr(2, 9) 2
(b10.4) Λ6Q⊕O(1)⊕3 Gr(2, 9) 2
(c1) O(1)⊕4 ⊕O(2) Gr(3, 6) 2
(c1.1) Q(1)⊕O(1)⊕2 Gr(3, 6) 2
(c2) Λ2Q⊕O(1)⊕O(3) Gr(3, 6) 2
(c2.1) Λ2Q⊕O(2)⊕2 Gr(3, 6) 2
(c4) S2U∗ ⊕O(1)⊕O(2) Gr(3, 7) 2
(c5) Λ3Q⊕O(1)⊕4 Gr(3, 7) 2
(c5.1) Λ3Q⊕ Λ2U∗ ⊕O(2) Gr(3, 7) 2
(c6) (Λ2U∗)⊕2 ⊕O(1)⊕O(2) Gr(3, 7) 2
(c6.1) Λ2U∗ ⊕O(1)⊕5 Gr(3, 7) 2
(c7) Λ3Q⊕O(2) Gr(3, 8) 2
(c7.1) Λ4Q⊕ S2U∗ Gr(3, 8) 2
(c7.2) Λ4Q⊕ (Λ2U∗)⊕2 Gr(3, 8) 2
(c7.3) S2U∗ ⊕ Λ2U∗ ⊕O(1)⊕2 Gr(3, 8) 2
(c7.4) (Λ2U∗)⊕3 ⊕O(1)⊕2 Gr(3, 8) 2

Table B.1. – Fourfolds in ordinary Grassmannians, see Theorem 2.1.1
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case bundle F Gr(k, n) χ(OY )
(d6) S2U∗ ⊕O(1)⊕O(2) Gr(4, 8) 4
(d9) Λ2(U∗)⊕ Λ3(U∗)⊕O(1)⊕2 Gr(4, 8) 2
(d9.1) Λ3Q⊕ Λ2U∗ ⊕O(1)⊕2 Gr(4, 8) 2
(d1) Λ3U∗ ⊕ (Λ2U∗)⊕2 Gr(4, 9) 2
(d8) Λ2U∗ ⊕ Λ3Q Gr(4, 9) 2
(d5) (S2U∗)⊕2 Gr(4, 10) 0
(d7) Λ3Q Gr(4, 10) 3
(d2) (Λ2U∗)⊕2 ⊕O(2) Gr(5, 10) 2
(d2.1) Λ2Q⊕ Λ2U∗ ⊕O(2) Gr(5, 10) 2
(d4) Λ2U∗ ⊕ S2U∗ ⊕O(1) Gr(5, 11) 2
(d3) (Λ2U∗)⊕2 ⊕O(1)⊕2 Gr(6, 12) 2
(d3.1) Λ2Q⊕ Λ2U∗ ⊕O(1)⊕2 Gr(6, 12) 2

Fourfolds in ordinary Grassmannians, continues from Table B.1

case bundle F IGr(k, 2n) χ(OY )
(sb0) (U⊥/U)(1)⊕O(3) IGr(2, 6) 2
(sb0.1) (U⊥/U)(2)⊕O(1) IGr(2, 6) 2
(sb1) Λ2(U⊥/U)(1)⊕O(1)⊕2 IGr(2, 8) 2
(sb2) (U⊥/U)(1)⊕O(1)⊕3 IGr(2, 8) 2
(sb2.1) (U⊥/U)(1)⊕ U∗ ⊕O(2) IGr(2, 8) 2
(sb3) (U⊥/U)(1)⊕ S2U∗ IGr(2, 8) 2
(sc0.1) (U⊥/U)(1)⊕ (Λ2U∗)⊕2 IGr(3, 8) 2
(sc0.2) (U⊥/U)(1)⊕ S2U∗ IGr(3, 8) 2
(sc0.3) (U⊥/U)(1)⊕ U∗ ⊕O(1)⊕3 IGr(3, 8) 2
(sc0.4) (U⊥/U)(1)⊕2 ⊕ U∗ ⊕O(1) IGr(3, 8) 2

Table B.2. – Fourfolds in symplectic Grassmannians, see Theorem 2.2.1
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case bundle F OGr(k, n) χ(OY )
(ob0) T+ 1

2
(1)⊕O(1)⊕2 ⊕O(2) OGr(2, 9) 2

(ob0.1) T+ 1
2
(1)⊕ U∗(1)⊕O(1) OGr(2, 9) 2

(ox1) T+ 1
2
(1)⊕O(3) OGr(2, 7) 2

(ox2) T+ 1
2
(2)⊕O(1) OGr(2, 7) 2

(ox3) T+ 1
2
(1)⊕3 ⊕O(1)⊕2 OGr(3, 9) 2

(ox4) T+ 1
2
(1)⊕2 ⊕ Λ2U∗ ⊕O(1) OGr(3, 9) 2

(ox5) T+ 1
2
(1)⊕ (Λ2U∗)⊕2 OGr(3, 9) 2

(ox6) T+ 1
2
(1)⊕ S2U∗ OGr(3, 9) 2

(oy1) T+ 1
2
(1)⊕ T+ 1

2
(3) OGr(3, 7) 2

(oy1.1) T+ 1
2
(2)⊕2 OGr(3, 7) 2

(oy2) T+ 1
2
(1)⊕2 ⊕ Λ3U∗ OGr(4, 9) 2

(oy3) T+ 1
2
(1)⊕2 ⊕ (T+ 1

2
(1)⊗ U∗) OGr(4, 9) 2

(oy4) T+ 1
2
(1)⊕5 ⊕ T+ 1

2
(2) OGr(4, 9) 2

(oy5) T+ 1
2
(1)⊕4 ⊕O(1)⊕2 OGr(4, 9) 2

(oy6) T+ 1
2
(1)⊕2 ⊕ Λ2(U∗) OGr(6, 13) 2

Table B.3. – Fourfolds in odd orthogonal Grassmannians, see Theorem 2.2.1
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case bundle F OGr(k, n) χ(OY )
(ob1) T+ 1

2
(1)⊕2 ⊕O(3) OGr(2, 10) 2

(ob1.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(3) OGr(2, 10) 2

(ob2) T+ 1
2
(1)⊕O(1)⊕5 OGr(2, 10) 2

(ob3) T+ 1
2
(1)⊕ S2(U∗)⊕O(1)⊕2 OGr(2, 10) 2

(ob4) T+ 1
2
(1)⊕O(1)⊕5 OGr(2, 12) 2

(ob4.1) T+ 1
2
(1)⊕ S2(U∗)⊕O(1)⊕2 OGr(2, 12) 2

(ob5) T+ 1
2
(1)⊕O(3) OGr(2, 14) 4

(ow1) T+ 1
2
(1)⊕2 ⊕O(3) OGr(2, 8) 2

(ow1.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(3) OGr(2, 8) 2

(ow2) (U⊥/U)(1)⊕O(1) OGr(2, 8) 2
(ow3) (T+ 1

2
(1)⊗ U∗)⊕O(1) OGr(2, 8) 2

(ow4) (1, 1; 1; 1)⊕O(1)⊕2 OGr(2, 8) 2
(ow5) T+ 1

2
(1)⊕O(1)⊕2 ⊕O(2) OGr(2, 8) 2

(ow9) T+ 1
2
(2)⊕ T+ 1

2
(1)⊕O(1) OGr(2, 8) 2

(ow10) T− 1
2
(2)⊕ T+ 1

2
(1)⊕O(1) OGr(2, 8) 2

(ow11) U∗(1)⊕ T+ 1
2
(1)⊕O(1) OGr(2, 8) 2

(ow6) T+ 1
2
(1)⊕4 ⊕ Λ2(U∗) OGr(3, 10) 2

(ow7) T+ 1
2
(1)⊕2 ⊕ T− 1

2
(1)⊕2 ⊕ Λ2(U∗) OGr(3, 10) 2

(ow8) T+ 1
2
(1)⊕3 ⊕ T− 1

2
(1)⊕ Λ2(U∗) OGr(3, 10) 2

(ow12) T+ 1
2
(1)⊕5 ⊕O(1) OGr(3, 10) 2

(ow13) T+ 1
2
(1)⊕3 ⊕ T− 1

2
(1)⊕2 ⊕O(1) OGr(3, 10) 2

(ow14) T+ 1
2
(1)⊕4 ⊕ T− 1

2
(1)⊕O(1) OGr(3, 10) 2

(oz3) O(1
2)⊕O(5

2) OGr(4, 8) 2
(oz7) O(3

2)⊕O(3
2) OGr(4, 8) 2

(oz1) U∗(−1
2)⊕O(5

2) OGr(5, 10) 2
(oz4) O(1

2)⊕4 ⊕O(1)⊕2 OGr(5, 10) 2
(oz5) O(1

2)⊕5 ⊕O(3
2) OGr(5, 10) 2

(oz6) O(1
2)⊕ U∗(1

2) OGr(5, 10) 2
(oz2) U∗(−1

2)⊕O(1
2)⊕4 ⊕O(1) OGr(6, 12) 2

Table B.4. – Fourfolds in even orthogonal Grassmannians, see Theorem 2.2.1
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case bundle F OGr(n− 1, 2n) χ(OY )
(oe1) (U∗ ⊗ L+)⊕ L− ⊕ L⊗2

− OGr(3, 8) 2
(oe2) (L⊗2

+ )⊕2 ⊕ L⊗2
− ⊕ L⊕2

− OGr(3, 8) 2
(oe3) Λ2U∗ ⊕ L⊗2

− ⊕ L⊗2
+ OGr(3, 8) 2

(oe4) Λ2U∗ ⊕ L−(1)⊕ L+ OGr(3, 8) 2
(oe5) O(1)⊕3 ⊕ L− ⊕ L+ OGr(3, 8) 2
(oe6) O(1)⊕ L⊗2

− ⊕ L⊗2
+ ⊕ L− ⊕ L+ OGr(3, 8) 2

(oe7) O(1)⊕2 ⊕ L⊕2
− ⊕ L⊗2

+ OGr(3, 8) 2
(oe8) O(2)⊕ L⊕2

− ⊕ L⊕2
+ OGr(3, 8) 2

(oe9) L⊗2
+ (1)⊕ L⊕3

− ⊕ L+ OGr(3, 8) 2
(oe10) L⊕4

− ⊕ L⊗4
+ OGr(3, 8) 2

(oe11) O(1)⊕ L+(1)⊕ L⊕2
− ⊕ L+ OGr(3, 8) 2

(oe12) L⊗2
+ ⊕ L⊕3

− ⊕ L+(1) OGr(3, 8) 2
(oe13) L−(1)⊕ L⊗2

+ ⊕ L⊕2
− ⊕ L+ OGr(3, 8) 2

(oe14) O(1)⊕ L⊕3
− ⊕ L⊗3

+ OGr(3, 8) 2
(oe15) L⊗2

− ⊕ L⊗3
+ ⊕ L⊕2

− ⊕ L+ OGr(3, 8) 2
(oe16) L⊕5

− ⊕ L⊕5
+ OGr(4, 10) 2

(oe17) Λ2U∗ ⊕ L⊕2
− ⊕ L⊕2

+ OGr(4, 10) 2

Table B.5. – Fourfolds in OGr(n− 1, 2n), see Theorem 2.2.21
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case bundle F Gr(k, n)
(a) complete intersection of hypersurfaces Pn

(b1) O(4) Gr(2, 4)
(b2) O(1)⊕2 ⊕O(3) Gr(2, 5)
(b3) O(2)⊕2 ⊕O(1) Gr(2, 5)
(b4) Λ2Q(1) Gr(2, 5)
(b5) U∗(1)⊕O(2) Gr(2, 5)
(b6) Q(1)⊕O(1) Gr(2, 6)
(b9) Λ3Q⊕O(3) Gr(2, 6)
(b12) S2U∗ ⊕O(1)⊕O(2) Gr(2, 6)
(b13) O(1)⊕4 ⊕O(2) Gr(2, 6)
(b14) S2U∗ ⊕ U∗(1) Gr(2, 6)
(b15) U∗(1)⊕O(1)⊕3 Gr(2, 6)
(b8) Λ4Q⊕ U∗(1) Gr(2, 7)
(b10) Λ4Q⊕O(2)⊕O(1) Gr(2, 7)
(b16) (S2U∗)⊕2 ⊕O(1) Gr(2, 7)
(b17) S2U∗ ⊕O(1)⊕4 Gr(2, 7)
(b18) O(1)⊕7 Gr(2, 7)
(b7) Λ5Q⊕ S2U∗ Gr(2, 8)
(b11) Λ5Q⊕O(1)⊕3 Gr(2, 8)
(c2) Q(1)⊕ Λ2Q Gr(3, 6)
(c3) Q(1)⊕ Λ2U∗ Gr(3, 6)
(c4) Λ2Q⊕O(1)⊕2 ⊕O(2) Gr(3, 6)
(c8) O(1)⊕6 Gr(3, 6)
(c6) Λ3Q⊕2 ⊕O(1) Gr(3, 7)
(c7) Λ3Q⊕ Λ2U∗ ⊕O(1)⊕2 Gr(3, 7)
(c9) O(1)⊕3 ⊕ S2U∗ Gr(3, 7)
(c10) Λ2U∗ ⊕O(1)⊕3 Gr(3, 7)
(c1) Λ3Q⊕O(1)⊕2 Gr(3, 8)
(c11) (S2U∗)⊕2 Gr(3, 8)
(c12) S2U∗ ⊕ (Λ2U∗)⊕2 Gr(3, 8)
(c13) (Λ2U∗)⊕4 Gr(3, 8)
(d3) (Λ2U∗)⊕2 ⊕O(2) Gr(4, 8)
(d3.1) Λ2U∗ ⊕ Λ2(Q)⊕O(2) Gr(4, 8)
(d4) S2U∗ ⊕O(1)⊕3 Gr(4, 8)
(d1) Λ2U∗ ⊕ S2U∗ ⊕O(1) Gr(4, 9)
(d2) (Λ2U∗)⊕2 ⊕O(1)⊕2 Gr(5, 10)
(d2.1) Λ2U∗ ⊕ Λ2Q⊕O(1)⊕2 Gr(5, 10)

Table B.6. – Threefolds in ordinary Grassmannians, see Theorem 2.3.1
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case bundle F IGr(k, 2n)
(sb1) (U⊥/U)(2)⊕ U∗ IGr(2, 6)
(sb2) (U⊥/U)(1)⊕O(1)⊕O(2) IGr(2, 6)
(sb3) (U⊥/U)(1)⊕ U∗(1) IGr(2, 6)
(sb4) Λ2(U⊥/U)(1)⊕O(1)⊕ U∗ IGr(2, 8)
(sb5) (U⊥/U)(1)⊕ U∗ ⊕O(1)⊕2 IGr(2, 8)
(sc1) (U⊥/U)(1)⊕ Λ2U∗ ⊕ U∗ ⊕O(1) IGr(3, 8)

Table B.7. – Threefolds in symplectic Grassmannians, see Theorem 2.3.2

case bundle F OGr(k, n)
(ob1) T+ 1

2
(1)⊕ S2U∗ ⊕O(1) OGr(2, 9)

(ob2) T+ 1
2
(1)⊕O(1)⊕4 OGr(2, 9)

(ob3) T+ 1
2
(1)⊕ S2U∗ ⊕O(1) OGr(2, 11)

(ob4) T+ 1
2
(1)⊕O(1)⊕4 OGr(2, 11)

(ox1) T+ 1
2
(1)⊕ T+ 1

2
(2) OGr(2, 7)

(ox2) T+ 1
2
(1)⊗ U∗ OGr(2, 7)

(ox3) T+ 1
2
(1)⊕O(1)⊕O(2) OGr(2, 7)

(ox4) T+ 1
2
(1)⊕ U∗(1) OGr(2, 7)

(ox5) S2T+ 1
2
(1)⊕O(1) OGr(2, 7)

(ox6) T+ 1
2
(1)⊕4 ⊕O(1) OGr(3, 9)

(ox7) T+ 1
2
(1)⊕3 ⊕ Λ2U∗ OGr(3, 9)

(oy2) O(1
2)⊕O(3

2)⊕O(1) OGr(3, 7)
(oy3) O(1

2)⊕6 ⊕O(1) OGr(4, 9)
(oy1) O(1

2)⊕ Λ2U∗ OGr(5, 11)

Table B.8. – Threefolds in odd orthogonal Grassmannians, see Theorem 2.3.2
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case bundle F OGr(k, n)
(ob5) T+ 1

2
(1)⊕2 ⊕O(2)⊕O(1) OGr(2, 10)

(ob6) T+ 1
2
(1)⊕2 ⊕ U∗(1) OGr(2, 10)

(ob7) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(2)⊕O(1) OGr(2, 10)

(ob8) T+ 1
2
(1)⊕ T− 1

2
(1)⊕ U∗(1) OGr(2, 10)

(ob9) T+ 1
2
(1)⊕O(2)⊕O(1) OGr(2, 14)

(ob10) T+ 1
2
(1)⊕ U∗(1) OGr(2, 14)

(ow1) T+ 1
2
(2)⊕ T+ 1

2
(1)⊕2 OGr(2, 8)

(ow2) T+ 1
2
(2)⊕ T− 1

2
(1)⊕2 OGr(2, 8)

(ow3) T+ 1
2
(2)⊕ T+ 1

2
(1)⊕ T− 1

2
(1) OGr(2, 8)

(ow4) (T+ 1
2
(1)⊗ U∗)⊕ T+ 1

2
(1) OGr(2, 8)

(ow5) (T+ 1
2
(1)⊗ U∗)⊕ T− 1

2
(1) OGr(2, 8)

(ow6) T+ 1
2
(1)⊕2 ⊕O(1)⊕O(2) OGr(2, 8)

(ow7) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(1)⊕O(2) OGr(2, 8)

(ow8) T+ 1
2
(1)⊕2 ⊕ U∗(1) OGr(2, 8)

(ow9) T+ 1
2
(1)⊕ T− 1

2
(1)⊕ U∗(1) OGr(2, 8)

(ow10) T+ 1
2
(1)⊕ S2U∗ ⊕O(1) OGr(2, 8)

(ow11) T+ 1
2
(1)⊕ (1, 1; 1; 1)⊕O(1) OGr(2, 8)

(ow12) T+ 1
2
(1)⊕ (1, 1; 1;−1)⊕O(1) OGr(2, 8)

(ow13) T+ 1
2
(1)⊕ (U⊥/U)(1) OGr(2, 8)

(ow14) T+ 1
2
(1)⊕O(1)⊕4 OGr(2, 8)

(ow15) T+ 1
2
(1)⊕6 OGr(3, 10)

(ow16) T+ 1
2
(1)⊕5 ⊕ T− 1

2
(1) OGr(3, 10)

(ow17) T+ 1
2
(1)⊕4 ⊕ T− 1

2
(1)⊕2 OGr(3, 10)

(ow18) T+ 1
2
(1)⊕3 ⊕ T− 1

2
(1)⊕3 OGr(3, 10)

(oz1) O(1
2)⊕2 ⊕O(2) OGr(4, 8)

(oz2) O(1
2)⊕O(2)⊕ Λ4U∗(−1

2) OGr(5, 10)
(oz3) O(3

2)⊕O(1)⊕ Λ4U∗(−1
2) OGr(5, 10)

(oz4) O(1
2)⊕6 ⊕O(1) OGr(5, 10)

(oz5) O(1
2)⊕6 ⊕ Λ5U∗(−1

2) OGr(6, 12)

Table B.9. – Threefolds in even orthogonal Grassmannians, see Theorem 2.3.2
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case bundle F OGr(n− 1, 2n)
(oe1) L−(2)⊕ L+ OGr(2, 6)
(oe2) L⊗3

− ⊕ L⊗3
+ OGr(2, 6)

(oe3) L−(1)⊕ L+(1) OGr(2, 6)
(oe4) L⊗2

− (1)⊕ L⊗2
+ OGr(2, 6)

(oe5) L⊕3
− ⊕ (U∗ ⊗ L+) OGr(3, 8)

(oe6) O(1)⊕2 ⊕ L⊕2
− ⊕ L⊕2

+ OGr(3, 8)
(oe7) L⊗2

− ⊕ L⊗2
+ ⊕ L⊕2

− ⊕ L⊕2
+ OGr(3, 8)

(oe8) L−(1)⊕ L⊕2
− ⊕ L⊕3

+ OGr(3, 8)
(oe9) O(1)⊕ L⊗2

− ⊕ L− ⊕ L⊕3
+ OGr(3, 8)

(oe10) (L⊗2
− )⊕2 ⊕ L⊕4

+ OGr(3, 8)
(oe11) Λ2U∗ ⊕O(1)⊕ L− ⊕ L+ OGr(3, 8)
(oe12) Λ2U∗ ⊕ L⊗2

− ⊕ L⊕2
+ OGr(3, 8)

(oe13) L⊕4
− ⊕ L+ ⊕ L⊗3

+ OGr(3, 8)

Table B.10. – Threefolds in OGr(n− 1, 2n), see Theorem 2.3.3
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case bundle F Gr(k, n) χ(OY ) deg(F)
(a) complete intersection of hypersurfaces Pn

(b7) O(1)⊕O(3) Gr(2, 4) 2 6
(b8) O(2)⊕2 Gr(2, 4) 2 8
(b1) Q(1)⊕O(1) Gr(2, 5) 2 14
(b2) Λ2Q⊕O(3) Gr(2, 5) 2 6
(b9) S2U∗ ⊕O(2) Gr(2, 5) 2 16
M.(b10) O(1)⊕3 ⊕O(2) Gr(2, 5) 2 10
(b3) Λ3Q⊕O(2)⊕O(1) Gr(2, 6) 2 12
(b4) Λ3Q⊕ U∗(1) Gr(2, 6) 2 14
(b12) S2U∗ ⊕O(1)⊕3 Gr(2, 6) 2 20
M.(b13) O(1)⊕6 Gr(2, 6) 2 14
(b11) (S2U∗)⊕2 Gr(2, 6) 0 32
(b5) S2U∗ ⊕ Λ4Q Gr(2, 7) 2 24
(b6) O(1)⊕3 ⊕ Λ4Q Gr(2, 7) 2 18
(c2) Λ2U∗ ⊕ Λ2Q⊕O(2) Gr(3, 6) 2 12
(c4) S2U∗ ⊕O(2) Gr(3, 6) 4 32
(c5) (Λ2U∗)⊕2 ⊕O(2) Gr(3, 6) 2 12
M.(c6) Λ2U∗ ⊕O(1)⊕4 Gr(3, 6) 2 16
(c3) S2U∗ ⊕ Λ3Q Gr(3, 7) 2 48
M.(c9) Λ3Q⊕ (Λ2U∗)⊕2 Gr(3, 7) 2 24
(c7) S2U∗ ⊕ Λ2U∗ ⊕O(1) Gr(3, 7) 2 48
(c8) (Λ2U∗)⊕3 ⊕O(1) Gr(3, 7) 2 22
(c1) Λ3Q⊕ Λ2U∗ Gr(3, 8) 2 36
(d1) S2U∗ ⊕ Λ3U∗ Gr(4, 8) 4 96
(d1.1) S2U∗ ⊕ Λ3Q Gr(4, 8) 4 96
(d2) (Λ2U∗)⊕2 ⊕O(1)⊕2 Gr(4, 8) 2 24
(d2.1) Λ2U∗ ⊕ Λ2Q⊕O(1)⊕2 Gr(4, 8) 2 24
M.(d3) (Λ2U∗)⊕3 Gr(4, 9) 2 38

Table B.11. – Surfaces in ordinary Grassmannians, see Theorem 2.3.4

case bundle F IGr(k, 2n) χ(OY ) deg(F)
(sb1) (U⊥/U)(1)⊕ U∗ ⊕O(2) IGr(2, 6) 2 12
(sb2) (U⊥/U)(1)⊕ S2U∗ IGr(2, 6) 2 24
(sb3) (U⊥/U)(1)⊕2 ⊕O(1) IGr(2, 6) 2 24
(sb4) (U⊥/U)(1)⊕O(1)⊕3 IGr(2, 6) 2 18

Table B.12. – Surfaces in symplectic Grassmannians, see Theorem 2.3.5
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case bundle F OGr(k, n) χ(OY ) deg(F)
(ob1) T+ 1

2
(1)⊕2 ⊕O(2) OGr(2, 9) 2 12

(ob2) T+ 1
2
(1)⊕O(2) OGr(2, 13) 4 24

(ox1) T+ 1
2
(1)⊕2 ⊕O(2) OGr(2, 7) 2 12

(ox2) T+ 1
2
(1)⊕ S2U∗ OGr(2, 7) 2 24

(ox3) T+ 1
2
(1)⊕ S2T+ 1

2
(1) OGr(2, 7) 2 24

(ox4) T+ 1
2
(1)⊕O(1)⊕3 OGr(2, 7) 2 18

M.(ox5) T+ 1
2
(1)⊕5 OGr(3, 9) 2 34

(oy2) O(3
2)⊕O(1

2)⊕3 OGr(3, 7) 2 6
(oy3) U∗(1

2)⊕O(1
2) OGr(3, 7) 2 12

(oy4) O(1
2)⊕2 ⊕O(1)⊕2 OGr(3, 7) 2 8

(oy1) O(1
2)⊕2 ⊕ Λ2U∗ OGr(4, 9) 2 24

M.(oy5) O(1
2)⊕8 OGr(4, 9) 2 12

Table B.13. – Surfaces in odd orthogonal Grassmannians, see Theorem 2.3.5

case bundle F OGr(k, n) χ(OY ) deg(F)
(ob3) T+ 1

2
(2) Quadric in P7 2 12

(ob4) T+ 1
2
(1)⊕2 ⊕O(1)⊕3 OGr(2, 10) 2 18

(ob4.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(1)⊕3 OGr(2, 10) 2 20

(ob5) T+ 1
2
(1)⊕2 ⊕ S2U∗ OGr(2, 10) 2 24

(ob5.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕ S2U∗ OGr(2, 10) 2 24

(ob6) T+ 1
2
(1)⊕O(1)⊕3 OGr(2, 14) 4 36

(ob7) T+ 1
2
(1)⊕ S2U∗ OGr(2, 14) 4 48

(ow1) T+ 1
2
(1)⊕2 ⊕O(1)⊕3 OGr(2, 8) 2 20

(ow2) T+ 1
2
(1)⊕2 ⊕ (1, 1; 1; 1) OGr(2, 8) 0 32

(ow3) T+ 1
2
(1)⊕2 ⊕ S2U∗ OGr(2, 8) 2 24

(ow4) (T+ 1
2
(1)⊕3 ⊕O(2) OGr(2, 8) 2 16

(ow1.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(1)⊕3 OGr(2, 8) 2 18

(ow2.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕ (1, 1; 1; 1) OGr(2, 8) 2 24

(ow2.3) T− 1
2
(1)⊕2 ⊕ (1, 1; 1; 1) OGr(2, 8) 2 24

(ow3.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕ S2U∗ OGr(2, 8) 2 24

(ow4.2) T+ 1
2
(1)⊕2 ⊕ T− 1

2
(1)⊕O(2) OGr(2, 8) 2 12

(oz3) U∗(1
2) OGr(4, 8) 2 12

(oz4) O(1
2)⊕2 ⊕O(3

2)⊕ Λ4U∗(−1
2) OGr(5, 10) 2 6

(oz5) O(1)⊕2 ⊕O(1
2)⊕ Λ4U∗(−1

2) OGr(5, 10) 2 8
(oz7) O(1)⊕ Λ5U∗(−1

2)⊕2 OGr(6, 12) 2 12

Table B.14. – Surfaces in even orthogonal Grassmannians, see Theorem 2.3.5
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case bundle F OGr(n− 1, 2n) χ(OY ) deg(O(1)) deg(L+) deg(L−)
(oe1) L⊗2

− ⊕ (U∗ ⊗ L+) OGr(2, 6) 2 26 4 6
(oe2) L+ ⊕ L⊗3

− ⊕ L⊗2
+ OGr(2, 6) 2 18 0 6

(oe3) L−(1)⊕ L− ⊕ L⊗2
+ OGr(2, 6) 2 18 4 2

(oe4) O(1)⊕ L−(1)⊕ L+ OGr(2, 6) 2 16 2 4
(oe5) L− ⊕ L− ⊕ L⊗2

+ (1) OGr(2, 6) 2 10 4 0
(oe6) O(2)⊕ L− ⊕ L+ OGr(2, 6) 2 12 2 2
(oe7) O(1)⊕ L⊗2

− ⊕ L⊗2
+ OGr(2, 6) 2 24 4 4

(oe8) Λ2U∗ ⊕ L⊕2
− ⊕ L⊕2

+ OGr(3, 8) 2 36 8 8
(oe9) O(1)⊕ L⊕3

− ⊕ L⊕3
+ OGr(3, 8) 2 28 6 6

(oe10) L⊗2
+ ⊕ L⊕4

− ⊕ L⊕2
+ OGr(3, 8) 2 28 8 4

Table B.15. – Surfaces in OGr(n− 1, 2n), see Theorem 2.3.6

Table B.16. – Classification for exceptional Grassmannians with G = G2

G(i) dim(Y ) Fλ χ(Y ) deg(H)
G2(1) 2 H⊗2 ⊕ (0, 1) 2 12
G2(1) 2 (0, 2) 2 24
G2(1) 2 H⊕3 2 18
G2(1) 3 H ⊗ (0, 1) 0 −

G2(1) 3 H⊗2 ⊕H 0 −

G2(1) 4 H⊗3 2 −

G2(2) 2 H⊗2 ⊕H⊗2 ⊕H 2 8
G2(2) 2 H⊗3 ⊕H⊕2 2 6
G2(2) 2 H⊗2 ⊕ (1, 0) 2 12
G2(2) 3 H⊗3 ⊕H⊗2 0 −

G2(2) 3 H⊗4 ⊕H 0 −

G2(2) 3 (1, 0)⊗H 0 −

G2(2) 4 H⊗5 2 −
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Table B.17. – Classification for exceptional Grassmannians with G = F4

G(i) dim(Y ) Fλ χ(Y ) deg(H)
F4(1) 2 H⊗2 ⊕ (0, 0, 0, 1)⊕2 2 12
F4(1) 4 H⊕5 ⊕ (0, 0, 0, 1) 2 −

F4(1) 6 H⊗2 ⊕H⊗2 ⊕H ⊕ (0, 0, 0, 1) 2 −

F4(1) 6 H⊗3 ⊕H ⊕ (0, 0, 0, 1) 2 −

F4(2) 6 (1, 0, 0, 0)⊕ (0, 0, 0, 1)⊕4 2 −

F4(3) 6 (0, 0, 0, 1)⊕7 2 −

F4(4) 4 H⊕11 2 −

F4(4) 4 H⊕4 ⊕ (1, 0, 0, 0) 2 −

F4(4) 6 H⊗3 ⊕H⊕8 2 −

F4(4) 6 H⊗2 ⊕H⊗2 ⊕H⊕7 2 −

F4(4) 6 H⊗2 ⊕H⊗2 ⊕ (1, 0, 0, 0) 2 −

F4(4) 6 H⊗3 ⊕H ⊕ (1, 0, 0, 0) 2 −
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Table B.18. – Classification for exceptional Grassmannians with G = E6, E7, E8

G(i) dim(Y ) Fλ χ(Y ) deg(H)
E6(1) 4 H⊕12 2 −

E6(1) 6 H⊕9 ⊕H⊗3 2 −

E6(1) 6 H⊗2 ⊕H⊗2 ⊕H⊕8 2 −

E6(2) 2 H⊗2 ⊕ (1, 0, 0, 0, 0, 0)⊕3 2 12
E6(2) 2 H⊗2 ⊕ (1, 0, 0, 0, 0, 0)⊕2 ⊕ (0, 0, 0, 0, 0, 1) 2 12
E6(2) 4 H⊕5 ⊕ (1, 0, 0, 0, 0, 0)⊕2 2 −

E6(2) 4 H⊕5 ⊕ (1, 0, 0, 0, 0, 0)⊕ (0, 0, 0, 0, 0, 1) 2 −

E6(2) 6 H⊗2 ⊕H⊗2 ⊕H ⊕ (1, 0, 0, 0, 0, 0)⊕2 2 −

E6(2) 6 H⊗3 ⊕H⊕2 ⊕ (1, 0, 0, 0, 0, 0)⊕2 2 −

E6(2) 6 H⊗2 ⊕H⊗2 ⊕H ⊕ (1, 0, 0, 0, 0, 0)⊕ (0, 0, 0, 0, 0, 1) 2 −

E6(2) 6 H⊗3 ⊕H⊕2 ⊕ (1, 0, 0, 0, 0, 0)⊕ (0, 0, 0, 0, 0, 1) 2 −

E6(5) 3 (0, 1, 0, 0, 0, 0)⊕4 ⊕ (0, 0, 0, 0, 0, 1) c.w. −

E6(5) 4 (1, 0, 0, 0, 0, 0)⊕4 ⊕H c.w. −

E6(5) 4 (1, 0, 0, 0, 0, 0)⊕3 ⊕ (0, 0, 0, 0, 0, 1)⊕3 c.w. −

E6(5) 6 (1, 0, 0, 0, 0, 0)⊕3 ⊕ (0, 0, 0, 0, 0, 1)⊕H⊗2 c.w. −

E6(5) 6 (1, 0, 0, 0, 0, 0)⊕2 ⊕ (0, 0, 0, 0, 0, 1)⊕4 ⊕H c.w. −

E6(5) 6 (1, 0, 0, 0, 0, 0)⊕ (0, 0, 0, 0, 0, 1)⊕7 c.w. −

E7(1) 4 (0, 0, 0, 0, 0, 0, 1)⊕2 ⊕H⊕5 c.w. −

E7(1) 6 (0, 0, 0, 0, 0, 0, 1)⊕2 ⊕H⊗2 ⊕H⊗2 ⊕H c.w. −

E7(1) 6 (0, 0, 0, 0, 0, 0, 1)⊕2 ⊕H⊗3 ⊕H⊕2 c.w. −
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C. Table of cλ
We prove here a result that is needed in Section 2.4.2.

Lemma C.1. Let Fλ be a homogeneous irreducible vector bundle over G(i), where
λ = ∑

j λjωj. Then the coefficient cλ of Lemma 2.4.1 is given by the formulas in
Table C.19.

Proof. From an explicit description of the simple roots as vectors in CrankG ∼= h∗,
the problem is reduced to an easy computation in linear algebra. Indeed, as
〈ωi〉 ⊥ Ei = 〈α1, ..., α̂i, ..., αn〉, we have:

cλ = K(ωi, λ)
K(ωi, ωi)

.

Moreover, by definition of ωj and Hαk ,

ωj(Hαk) = 2K(ωj, αk)
K(αk, αk)

=
{ 1 if j = k

0 if j 6= k
.

Therefore, if ωi = ∑
k µkαk, we have

cλ = K(ωi, λ)
K(ωi, ωi)

=
∑
k,jK(µkαk, λjωj)
K(ωi, ωi)

=
∑
k

µkλk
K(αk, αk)
2K(ωi, ωi)

.

It is quite easy to find the µi’s; after doing so, this formula allows to compute
cλ.
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Table C.19. – Formulas for cλ with λ = (λ1, . . . , λn), refer to Lemma C.1

G(i) cλ

G2(1) λ1 + 1
2(λ2)

G2(2) λ2 + 1
2(3λ1)

F4(1) λ1 + 1
2(3λ2 + 2λ3 + 1λ4)

F4(2) λ2 + 1
6(3λ1 + 4λ3 + 2λ4)

F4(3) λ3 + 1
6(4λ1 + 8λ2 + 3λ4)

F4(4) λ4 + 1
2(2λ1 + 4λ2 + 3λ3)

E6(1) λ1 + 1
4(3λ2 + 5λ3 + 6λ4 + 4λ5 + 2λ6)

E6(2) λ2 + 1
2(λ1 + 2λ3 + 3λ4 + 2λ5 + λ6)

E6(3) λ3 + 1
10(5λ1 + 6λ2 + 12λ4 + 8λ5 + 4λ6)

E6(4) λ4 + 1
6(2λ1 + 3λ2 + 4λ3 + 4λ5 + 2λ6)

E7(1) λ1 + 1
4(4λ2 + 6λ3 + 8λ4 + 6λ5 + 4λ6 + 2λ7)

E7(2) λ2 + 1
7(4λ1 + 10λ3 + 16λ4 + 12λ5 + 8λ6 + 4λ7)

E7(3) λ3 + 1
12(6λ1 + 8λ2 + 16λ4 + 12λ5 + 8λ6 + 4λ7)

E7(4) λ4 + 1
12(4λ1 + 6λ2 + 8λ3 + 9λ5 + 6λ6 + 3λ7)

E7(5) λ5 + 1
15(6λ1 + 9λ2 + 12λ3 + 24λ4 + 10λ6 + 5λ7)

E7(6) λ6 + 1
4(2λ1 + 3λ2 + 4λ3 + 6λ4 + 5λ5 + 2λ7)

E7(7) λ7 + 1
3(2λ1 + 3λ2 + 4λ3 + 6λ4 + 5λ5 + 4λ6)

E8(1) λ1 + 1
4(5λ2 + 7λ3 + 10λ4 + 8λ5 + 6λ6 + 4λ7 + 2λ8)

E8(2) λ2 + 1
8(5λ1 + 10λ3 + 15λ4 + 12λ5 + 9λ6 + 6λ7 + 3λ8)

E8(3) λ3 + 1
14(7λ1 + 10λ2 + 20λ4 + 16λ5 + 12λ6 + 8λ7 + 4λ8)

E8(4) λ4 + 1
30(10λ1 + 15λ2 + 20λ3 + 24λ5 + 18λ6 + 12λ7 + 6λ8)

E8(5) λ5 + 1
20(8λ1 + 12λ2 + 16λ3 + 24λ4 + 15λ6 + 10λ7 + 5λ8)

E8(6) λ6 + 1
12(6λ1 + 9λ2 + 12λ3 + 18λ4 + 15λ5 + 8λ7 + 4λ8)

E8(7) λ7 + 1
6(4λ1 + 6λ2 + 8λ3 + 12λ4 + 10λ5 + 8λ6 + 3λ8)

E8(8) λ8 + 1
2(2λ1 + 3λ2 + 4λ3 + 6λ4 + 5λ5 + 4λ6 + 3λ7)
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