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de l’invasivité de la mesure quantique
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Elza abriram caminho para que seus netos tivessem condições
de seguir a carreira acadêmica, se desejassem.
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conversation sur n’importe quel sujet. Merci également à Louis,
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Abstract

Quantum measurement invasiveness is a feature of quantum phenomena,
i.e. associated with the fact that measurements can affect quantum systems
in a manner which cannot be described by classical physics. In this the-
sis, we will investigate measurement invasiveness through the Leggett-Garg
inequality and another inequality based on the non-disturbance condition,
both of which, when violated, witness measurement invasiveness.

First, we will study a model for the violation of the Leggett-Garg in-
equality, which will allow us to provide an operational characterization of
measurement invasiveness through a parameter called the measurability of
the physical system. This parameter controls Leggett-Garg inequality vi-
olation and can be associated with experimental tests of this inequality,
helping one to understand and interpret them. We will also investigate,
through this model, the relationship between measurement invasiveness
and a specific definition of macroscopicity, related to the “size” of spin
systems.

We will then seek to study an application of measurement invasiveness
in the context of protocols for parameter estimation or quantum metrol-
ogy. A general relationship between the Fisher information and temporal
quantum correlations will be established, allowing one to characterize the
robustness of metrological scenarios against the presence of noise. This re-
lationship will also serve as a guideline for a connection between measure-
ment invasiveness and (nearly-)optimal metrological scenarios. We will also
establish a relationship between measurement invasiveness and a definition
of a measure of macroscopic coherence.

Lastly, we will propose a protocol for testing measurement noninvasi-
ness based on the non-disturbance condition for spin systems of arbitrary
size. This inequality allows one to argue against the possibility of its
violation being due to the classical disturbance of measurements. We
will show that the maximum value for the violation of this inequality
corresponds to the number of particles which constitutes the system.

Keywords: quantum measurement; measurement invasiveness; Leggett-
Garg inequality; quantum metrology; rmacroscopic realism.



Résumé

L’invasivité de la mesure quantique est une propriété des phénomènes quan-
tiques. Elle est reliée au fait que la mesure de systèmes quantiques peut les
affecter d’une façon que ne peut pas être décrite au sein de la physique clas-
sique. Cette thèse tudie la question de l’invasivité des mesures quantiques à
travers l’inégalité de Leggett-Garg et d’une autre inégalité basée sur la con-
dition de non perturbation (“ non-disturbance condition ”). La violation
de ces inégalités témoignent de l’invasivité des mesures quantiques.

Dans un premier temps, nous étudierons un modèle pour la viola-
tion de l’inégalité de Leggett-Garg, qui permettra une caractérisation
opérationnelle de l’invasivité de la measure quantique à travers un
paramétre appelé la mesurabilité du système physique. Ce paramètre
contrôle la violation de l’inégalité de Leggett-Garg et peut être reliée à
des tests expérimentaux de cette ingalité. De cette façon, ce paramétre
permet la comprehénsion et l’interprétation de ces violations. Nous avons
également étudié, via ce modèle, la relation entre l’invasivité et une
définition particuliére de la “ macroscopicité ”, associée la “ taille ” de
systèmes de spin.

Nous avons ensuite étudié une application de l’invasivité de la measure
quantique dans le cadre des protocoles pour l’estimation de param’́etres en
métrologie quantique. Une relation générale entre l’information de Fisher
et les corrélations quantiques temporelles a été établie, et permet la car-
actérisation de la robustesse au bruit de scenarios de métrologie. Cette
relation sert de ligne directrice pour la connexion entre l’invasivité de la
mesure quantique et des scenarios (quasi-)optimaux en métrologie. Nous
avons également établi une relation entre l’invasivité de la mesure quantique
et une définition de la cohérence macroscopique.

Pour finir, nous avons proposé un protocole pour tester la non-invasivité
de mesures, basé sur la condition de non perturbation, pour des systèmes
de spin de taille arbitraire. Cette inégalité permet de s’assurer contre la
possibilité que sa violation soit due á des perturbations classiques de la
mesure. Nous avons montré que la valeur maximale pour la violation de
l’inégalité correspond au nombre de particules qui constitue le systéme.

Mots clefs : mesure quantique; invasivité de la mesure; inégalité de
Leggett-Garg; métrologie quantique; réalisme macroscopique.



Résumé substantiel

La théorie quantique est certainement une des théories scientifiques les
plus révolutionnaires elaborées au début du 20ème siècle et developpées
depuis. Le formalisme quantique a été concevé dû à l’incapacité de la
théorie classique de décrire les résultats de quelques expériences realisées
avec des systèmes microscopiques, comme des atomes ou des photons, où
le terme “microscopique” est defini par rapport à un certain paramètre du
système, e.g. la masse, la taille etc. De cette façon, la théorie quantique
entraine plusieurs défis à notre intuition, la dernière étant basée sur la
physique classique. Comme a bien été remarqué par Leggett [Leggett,
2002],

Quantum mechanics is very much more than just a ‘theory’; it is a

completely new way of looking at the world [...]

Ainsi, les phénomènes non-classiques décrits par la théorie quan-
tique se retrouvent au-delà de la capacité descriptive et prédictive de la
physique classique. Dans le chapitre 2, nous discutons certains d’entre
ces phénomènes non-classiques dans le cadre d’une concise présentation
générale de la théorie quantique, phénomènes comme l’interference quan-
tique, liée au concept non-classique de la superposition d’états, et la
non-localité, lié au concept de l’intrication. Nous y discutons également un
autre concept important pour cette thèse, relié à la nature non-deterministe
de la théorie quantique, c’est-à-dire le concept de la mesure de systèmes
quantiques. Le terme “non-deterministe” est associé au fait que les
résultats de la mesure de systèmes quantiques ne peuvent pas être toujours
prévus avec certitude. La mesure de systèmes quantiques constitue, par
conséquence, encore un de ses aspects qui ne peuvent pas être décrits
selon les lois de la physique classique. De façon générale, le problème lié à
l’interpretation de la mesure en physique quantique est appelé le problème
de la mesure [Leggett, 2005].

Malgré le fait que la théorie quantique a été originalement formulée
en réponse aux écarts des résultats de quelques expériénces dans le cadre
de systèmes microscopiques par rapport à la description classique, il est
naturel de se demander si ces phénomènes non-classiques pourraient être
observés à une échelle macroscopique, définie par rapport à un paramètre
donné [Leggett, 2002, Arndt and Hornberger, 2014, Knee et al., 2016, For-
maggio et al., 2016, Ghirardi et al., 1986]. Cette question fondamentale



de la validité de la théorie quantique à l’échelle macroscopique a déjà été
formulée en 1935 par Schrödinger [Schrödinger, 1935].

Dans ce manuscrit, nous nous concentrons sur la notion non-classique de
l’invasivité de la mesure, liée au fait que la mesure peut affecter l’évolution
de systèmes quantiques d’une façon qui ne peut pas être décrite par la
théorie classique. Plus spécifiquement, la notion de l’invasivité de la mesure
est définie comme l’impossibilité d’obtenir, à partir de la distribution de
probabilité globale du résultat de deux mesures séquentielles de systèmes
quantiques et à travers le marginal de cette probabilité globale sur les
résultats de la première mesure, le résultat de la deuxième mesure indi-
viduellement. Dans le but d’étudier l’invasivité de la mesure, nous em-
ploierons principalement l’inégalité de Leggett-Garg, qui est définie par la
somme de correlations entre les résultats de deux mesures effectuées sur un
système physique qui évolue dans le temps, sa violation étant un témoin de
l’invasivité de la mesure. Nous présenterons également ces concepts dans
le chapitre 2, où nous établirons d’abord le cadre pour cette présentation
à travers l’introduction du formalisme général pour la contextualité de la
théorie quantique.

Dans le chapitre 3, nous introduisons un modèle opérationnel pour la
violation de l’inégalité de Leggett-Garg, où les effets de l’invasivité de la
mesure sont controlables à travers un paramètre associé à la definition de
mesurabilité du système physique. Ce paramètre est lié à des measures gen-
eralisées, et qui peuvent être associées à la dimension du système, erreurs
de mesure, ou back action. Ce modèle permet, par conséquence, l’étude de
la relation entre l’invasivité de la mesure et une definition spécifique de la
macroscopicité de systèmes de spin-j, caractérisée par la magnitude de j,
la “taille” du spin.

Ensuite, dans le chapitre 4, nous étudierons une application pour le
concept de l’invasivité de la mesure dans le cadre de protocoles pour
l’estimation de paramètres. Le cadre général de cette théorie, pour
des systèmes classiques aussi bien que quantiques, est introduit dans le
chapitre 2. La théorie de l’estimation de paramètres est l’objet d’étude de
la métrologie quantique, qui a pour but l’emploi de systèmes quantiques
afin de surpasser la précision possible en utilisant des systèmes classiques.
Nous investiguerons la connexion entre l’inégalité de Leggett-Garg et
des scénarios optimales du point de vue de la métrologie quantique, et
cette connexion nous permettra d’associer scénarios (quasi-)optimales en
métrologie avec des scenarios où l’inégalité de Leggett-Garg est violée.
Ainsi, une connexion entre l’invasivité de la mesure et des scénarios en
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métrologie plus ou moins favorables est établie. Comme dans le chapitre
2, nous illustrons les résultats en utilisant un modèle pour des systèmes de
spin.

Finalement, dans le chapitre 5, nous explorons une inégalité basée
sur la condition de non-perturbation. Cette inégalité est une alterna-
tive à l’inégalité de Leggett-Garg, sa violation étant aussi un témoin de
l’invasivité de la mesure, et qui permet que l’on argumente contre la
possibilité d’expliquer cette violation comme résultat de perturbations
classiques au lieu d’un effet non-classique. Nous proposons un protocole
qui permet de tester l’invasivité de la mesure pour des systèmes de spin-j
de dimension arbitraire, pour lesquels la valeur maximale de la violation
de l’inégalité correspond au nombre de particules du système.

.
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Chapter 1

Introduction

Quantum theory is certainly one of the most revolutionary theories devised
in the beginning of the 20th century and developed from then on. Quantum
formalism was formerly conceived in view of the failure of classical physics
to describe the results of experiments involving microscopic systems such
as atoms and photons, where the term “microscopic” is defined in relation
to a given parameter of the system, such as mass, size etc. In this way,
the advent of quantum theory brought about numerous challenges to our
classical-physics-based intuition. As pointed out by Leggett [Leggett, 2002],

Quantum mechanics is very much more than just a ‘theory’; it is a

completely new way of looking at the world [...]

Indeed, the nonclassical phenomena described by quantum theory are be-
yond the scope of the predictions and descriptive capacity of classical
physics. In chapter 2, we will discuss some of these nonclassical phenom-
ena by providing a brief overview of quantum theory, phenomena such as
quantum interference, related to the nonclassical notion of superposition of
states, and nonlocality, associated with the concept of entanglement. An-
other important element for this thesis, related to the non-deterministic
nature of quantum theory, is the concept of measurement of quantum
systems. The term “non-deterministic” is related to the fact the results
of measurements of quantum systems cannot be predicted with certainty.
Quantum measurements are, therefore, another feature of quantum theory
characterized by a strikingly departure from the classical description. Is-
sues concerning the different interpretations of quantum measurements in
quantum theory are, in general, referred to as the quantum measurement
problem [Leggett, 2005].
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Despite the fact that quantum physics was originally formulated in re-
sponse to the deviations of the results of experiments performed at a mi-
croscopic level, it is natural to ask the question of whether such nonclas-
sical phenomena could also be observed at a macroscopic scale, defined
with respect to a given parameter [Leggett, 2002, Arndt and Hornberger,
2014,Knee et al., 2016,Formaggio et al., 2016, Ghirardi et al., 1986]. This
fundamental question concerning the validity of extrapolating quantum
mechanics to the macroscopic world was formulated as early as 1935 by
Schrödinger [Schrödinger, 1935].

In this thesis we will focus on the nonclassical notion of measurement
invasiveness, which accounts for the fact that measurements can affect the
evolution of quantum systems in a manner which cannot be described classi-
cally. Specifically, the notion of measurement invasiveness is defined as the
impossibility of a joint probability distribution of obtaining the results of
two subsequent measurements on a quantum system to describe, by taking
the marginals of the joint probability over the results of the first measure-
ment, the result of the second measurement individually. To investigate
measurement invasiveness, we will mainly use the Leggett-Garg inequality,
which consists of a sum of correlations between the results of the two mea-
surements, of which the violation is a witness of measurement invasiveness.
We will also present these concepts in chapter 2, by first establishing the
context for this presentation by introducing a general framework for the
contextuality of quantum theory.

In chapter 3, we will introduce an operational model for the violation
of the Leggett-Garg inequality where the effects of measurement invasive-
ness are controllable through a parameter associated with what is defined
as the measurability of the physical system. This parameter is associated
with different generalized measurements that can be associated with the di-
mensionality of a system, measurement errors, or back action. This model
will also permit us to investigate the relationship of measurement inva-
siveness and a specific definition of the macroscopicity for spin-j systems,
characterized by the magnitude of j, the “size” of the spin.

Next, in chapter 4, we will seek to investigate an application for the
concept of measurement invasiveness in the context of protocols for param-
eter estimation. The background for this discussion is presented in chapter
2, where we introduce the general framework of the classical and quantum
theory of parameter estimation. The quantum theory of parameter estima-
tion is the object of study of quantum metrology, of which goal is to employ
quantum systems in order to improve the precision of estimation beyond

13



what is possible by using classical systems. Therefore, we will investigate
the connection between the Leggett-Garg inequality and optimal scenarios
from the point of view of quantum metrology, and this connection will al-
lows us to associate (nearly-)optimal metrological scenarios to scenarios in
which the Leggett-Garg inequality is violated. In this way, a connection
between measurement invasiveness and more or less favorable metrological
scenarios is established. As well as in chapter 2, we illustrate our results
by using a model for spin systems.

Finally, in chapter 5, we will explore an inequality based on the non-
disturbance condition, which is an alternative to the Leggett-Garg inequal-
ity also ruling out measurement noninvasiveness. This inequality allows
one to argue against the possibility of explaining its violation as a result of
classical disturbance, instead of a nonclassical effect. We will propose a pro-
tocol allowing one to witness measurement invasiveness for arbitrary spin-j
systems, and show that the maximal value for this violation corresponds
to the number of particles of the system.

14



Chapter 2

Quantum theory: an overview

In this chapter, we give an overview of quantum theory focusing on the
ingredients which are fundamental to the comprehension of the following
chapters, in an effort to present a self-contained thesis. However, we do
not intend to provide a complete review, and some familiarity with quantum
theory is required on the part of the reader.

We start by introducing the general framework of quantum theory, which
is then followed by the presentation of some other important features for
this work, namely contextuality, quantum correlations, and the classical and
quantum theory of parameter estimation.

2.1 The general framework of quantum the-

ory

2.1.1 Interference, the evidence for quantum theory

At the core of the conception of quantum theory in the 20th century, were
experimental deviations of classical physics’ predictions at the level of single
atoms, electrons and photons - one can cite as examples the photoelectric
effect, the Davisson-Germer experiment and other realizations [Davisson
and Germer, 1927, Einstein, 1905, von Halban and Preiswerk, 1936, Ester-
mann and Stern, 1930, Gähler and Zeilinger, 1991]. In order to describe
the oddness of quantum systems in relation to our (classical) intuition, we
analyze, in the following, a double-slit experiment, also known as Young
experiment, which has been already used in the context of classical physics
to demonstrate the wave nature of light through the observation of inter-
ference. In the following description, based on Leggett’s [Leggett, 2002],
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the term microscopic refers to systems at the atomic or subatomic level,
for instance.

Consider the double-slit experiment sketched in Fig. 2.1 performed by
using a quantum system. This system is constituted of microscopic systems,
for instance particles such as electrons, sent by a source S and which will
be detected on a screen. It is possible for the particles to take two paths,
represented by slits 1 and 2, in order to reach the spot D, where one places
a detector. If the slit 1 is closed, one can state with certainty that a particle
detected at D went through slit 2 - we will call the associated probability
that this happens p2; correspondingly, if slit 2 is blocked, the probability
of detecting the particle at D is p1, since in that case one knows that it
assuredly went through slit 1 before reaching D. On the other hand, if
both slits are open, the total probability that a particle arrives at D is p12.
From our classical intuition, we expect that

p12 − (p1 + p2) = 0. (2.1)

However, for quantum systems, whenever there is the possibility of such
systems take one or another path out of two paths, it is a well-established
experimental fact that [Carnal and Mlynek, 1991,Nairz et al., 2001,Keith
et al., 1991,Rauch et al., 1974,Kunze et al., 1997,Rasel et al., 1995,Giltner
et al., 1995,Cotter et al., 2015]

p12 − (p1 + p2) = K 6= 0. (2.2)

Therefore, within the context of the double-slit experiment with quan-
tum systems, this can be expressed as follows: the total probability p12 of
detecting a particle at D, which corresponds to a situation in which both
slits are opened1 , is not equal to the sum of p1 and p2, the probabilities of
detecting at D when one of the slits, 1 or 2, is respectively obstructed. As
we will see below, the mathematical description of these results can be done
by assigning complex amplitudes c1 and c2 to each one of the alternative

1Here, we consider that no information about a particle’s path, the so-called which-
path information, is available. For a more general description which considers this
possibility, see [Englert, 1996,Wootters and Zurek, 1979,Bagan et al., 2016].
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Figure 2.1: Representation of a double slit experiment: a source S emit
particles towards the obstacle with slits 1 and 2. A fraction of these particles
will be eventually detected by a detector placed on a spot D over a screen.

paths, in such a way that the probabilities are given by

p1 = |c1|2,
p2 = |c2|2,

K = 2<[c∗1c2].

(2.3)

Thus, it follows that a quantum-mechanical description is mathematically
identical to the classical description of interference of classical waves in
Young’s double-slit experiment. By referring to this analogy, K can be
named the interference term. This term, as pointed out by Leggett, is a
experimental evidence for quantum theory. The consequence of K 6= 0
is that, in an experiment with both slits open, one is not able to assert
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whether each particle of the ensemble takes its way through either slit 1 or
2.

This conclusion, based on experiments, is clearly in conflict with clas-
sical physics. For a system described by classical physics, once one knows
the system’s initial configuration (e. g. position, momentum), one can in
principle predict deterministically the system’s future configurations from
Newtonian laws. As we will present below, the time evolution of the afore-
mentioned amplitudes within the formalism of quantum mechanics is also
deterministic. Nevertheless, whether these amplitudes can be associated
with entities existing in the real word is a question which is at the core
of the different existent interpretations of quantum formalism, which can
be classified according to two main positions: epistemic and ontic [Leifer,
2014]. The first, the epistemic, is the view that quantum theory is not a
science which can be directly connected with the real world, but rather a
science of information, predictions of which can be confirmed by experi-
ments. The second, the ontic, is the hypothesis that the quantum theory
describes the real state of physical systems and therefore has a direct con-
nection with reality.

In this chapter and throughout this thesis, we will present quantum
formalism from the perspective of the epistemic view, or, more specifically,
from the perspective of the Copenhagen interpretation. However, we will
attempt to present some features of quantum formalism independently of
any interpretation whenever possible.

2.1.2 Quantum states

In the above described double-slit experiment, there are two mutually ex-
clusive paths which can be taken by the particles, represented by slits 1 and
2. Alternatively, one could also use as example the quantum description
of the polarization of light. Polarization is a property of electromagnetic
waves, passed on to photons in a quantized description of the field. In this
way, by labelling the “up” and “down” polarizations as “1” and “2”, this
system can be formally described by the general framework which we will
introduce in this section.

We then proceed by using the useful and compact notation introduced
by Dirac [Dirac, 1939], through which one can associate to these two mutual
exclusive alternatives the ortogonal states |1〉 and |2〉. Let us consider the
quantum states of this system which can be mathematically expressed as

|ψ〉 = c1 |1〉+ c2 |2〉 , (2.4)
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where c1 and c2 are complex amplitudes, c1, c2 ∈ C. In the context of
the double-slit experiment described above, |c1|, |c2| 6= 0 correspond to the
situation where the two slits are opened, leading consequently to quantum
interference. Whenever this is the case, the quantum state |ψ〉 is referred
to as a superposition of the states |1〉 and |2〉. The states |1〉 and |2〉 are
orthonormal eigenstates, as they satisfy

〈i | j〉 = δi,j, (2.5)

where i, j = 1, 2. The symbol 〈i| is named a bra, which is anti-linearly
associated with the ket |i〉, that is (λ |i〉)† → λ∗ 〈i|, λ being a complex
number.

Formally, the quantum state of a physical system is characterized by
a mathematical object: a state vector in a vector space possessing inner
product, the so-called Hilbert space H . A linear operator A defined over
H , which is associated with a measurable physical quantity, is called an
observable. The possible values for the physical quantity that one can
measure in the system, as we will see below, correspond to the eigenvalues
of the observable A. Hence, an observable must satisfy the condition A =
A†, in order to have a real spectrum λ1, λ2, ..., λn of eigenvalues, n being
therefore the dimension of H . Operators satisfying this condition are
called hermitian operators. The eigenvalues λ1, λ2, ..., λn are associated
with the eigenstates |1〉 , |2〉 , ..., |n〉, respectively, which in turn satisfy the
orthonormality condition (2.5) with i, j = 1, 2, ..., n 2.

Using Dirac’s notation, A can therefore be represented in its diagonal
form as

A =
n∑
i

λi |i〉 〈i| , (2.6)

where |i〉 〈i| represents the diagonal matrix elements of A. A quantum
state can then be written in its general form in the basis constituted of the
eigenstates |i〉 as

|Ψ〉 =
n∑
i

ci |i〉 , (2.7)

with ci ∈ C.

2This is only valid if the eigenvalues are non-degenerate, i. e., if to each eigenvalue λi
is associated only one eigenstate |i〉. For a description of a situation in which the spec-
trum is degenerate, see [Cohen-Tannoudji et al., 1973] or [Sakurai, 1994], for instance.
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For a continuous system, considering for instance the position of a par-
ticle in one of the directions x, y, z as observable, e. g. by defining the
observable X, to which the eigenstates |x〉 and corresponding eigenvalues
x, (2.6) are associated, must be expressed using an integral

|Ψ〉 =

∫
ψ(x)dx, (2.8)

where ψ(x) are complex functions of the position x called wavefunctions.
Analogously to (2.4), the orthonormality of the eigenstates |x〉 can in turn
be expressed through the following relation:

〈x′ |x′′〉 = δ(x′ − x′′), (2.9)

where δ(x− x′) is the Dirac delta function.
By applying a linear transformation T to the quantum state (2.7), it

can be expressed in a different basis of which the eigenstates are |i′〉 with
correspondent complex coefficients c′i:

|Ψ′〉 ≡ T |Ψ〉 =
n∑
i′

c′i |i′〉 , (2.10)

T must preserve norm and orthogonality,

TT† = I, (2.11)

in such a way that 〈i′ | j′〉 = δi′j′ . Thus, as it preserves orthonormality, T
is called a unitary transformation.

2.1.3 Evolution in time of quantum states

A quantum state |Ψ(t)〉 at time t can be written as

|Ψ(t)〉 ≡
n∑
i

ci(t) |i〉 , (2.12)

being the ci(t) time-dependent complex amplitudes. The evolution in time
of a quantum state from an initial state |Ψ(t0)〉 at time t0 is deterministic
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and can be described through the Schrödinger equation :

i~
d

dt
|Ψ(t)〉 = H(t) |Ψ(t)〉 , (2.13)

where ~ is Planck’s fundamental constant, t > t0, and H(t) is called the
Hamiltonian operator, associated with the total energy of the system.

Alternatively, (2.13) can be written by defining the evolution operator
U(t, t0) by writing

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 . (2.14)

The substitution of (2.14) into (2.13) therefore provides

i~
∂

∂t
U(t, t0) = H(t)U(t, t0). (2.15)

In this thesis there will only be cases in which the Hamiltonian operator
does not depend explicitly on time, we will then represent it simply by H.
Also, for simplicity, ~ = 1 in this chapter and in the rest of this thesis.
Taking this into consideration, integration of (2.15) gives

U(t, t0) = e−iH(t−t0). (2.16)

U(t, t0) is a unitary operator, since

U†(t, t0)U(t, t0) = I. (2.17)

In the following, we recall the discrete case described in the previous section
where H is defined over a n-dimensional Hilbert space H - the extrapola-
tion to the continuous case can be done straightforwardly through the use
of integrals. The set of eigenvalues e1, e2, ..., en, constitutes the spectrum of
H, being the possible values for the total energy of the system. These eigen-
values are respectively associated with the eigenvectors |e1〉 , |e2〉 , ..., |en〉.
Thus, H has the following diagonal representation

H =
n∑
i

ei |ei〉 〈ei| . (2.18)

Thus, for an eigenstate |ei〉, and from (2.16) and (2.18), one obtains

U(t, t0) |ej〉 = e−iej(t−t0) |ej〉 . (2.19)
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The eigenstates are therefore called stationary states, since systems initially
in an eigenstate will remain in it at all times due to the fact that the effect
of the dynamics upon them only adds a global phase, which cannot be
observed. These global phases do not affect the probabilities of measuring
each one of the eigenvalues of an observable (see next section).

2.1.4 Projective measurements

The process called a measurement within the context of quantum theory is
particularly challenging to our intuition. In classical physics, measurements
of physical systems can in principle be carried out with arbitrarily small
disturbance on the system. As we will see, this does not hold for quantum
measurements, which interpretation is far from intuitive: for an overview
of the problems related to the interpretation of the quantum measurement,
the so-called “quantum measurement problem”, see Ref. [Leggett, 2005].

In quantum theory, when a measurement of a physical quantity associ-
ated with an observable A is performed, the obtained outcome is randomly
determined at the time of the measurement out of its n eigenvalues. This
process is known as collapse. The probability pi of obtaining a particular
eigenvalue λi when measuring A, given that the system’s normalized state
is |Ψ〉, is

pi = | 〈i |Ψ〉 |2, (2.20)

where |i〉 is the normalized eigenstate corresponding to the eigenvalue λi.
This postulate is called Born rule. Therefore, it connects the quantum
state to what can be observed - for instance, as discussed above, the afore-
mentioned probabilities can be associated with interference patterns.

In other words, (2.20) gives the probability pi of projecting the system’s
state onto the eigenstate |i〉: since the result λi is obtained, the system’s
state is updated to |i〉. This process is named a projective measurement.
This suggestive name is due to the fact that it can be represented through
the definition of a projector Pi:

Pi = |i〉 〈i| . (2.21)

For instance, by acting the projector Pi upon the state |Ψ〉 of (5.9), given
the orthonormality condition between the eigenstates of (2.5), one obtains

Pi |Ψ〉 = |i〉 〈i |Ψ〉 = ci |i〉 . (2.22)
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One can notice that the following relation holds:

n∑
i

Pi =
n∑
i

|i〉 〈i| = I. (2.23)

Using the definition (2.21), the probability pi (2.20) can therefore be rewrit-
ten as

pi = 〈Ψ |Pi |Ψ〉 = 〈Ψ | i〉 〈i |Ψ〉 = |ci|2. (2.24)

Finally, after the realization of many measurements on several copies of
systems prepared in the quantum state |Ψ〉 allowing one to collect some
statistics, the expected value of the observable A can then be obtained,
which is defined as follows

〈A〉 ≡ 〈Ψ |A |Ψ〉 =
n∑
i

〈Ψ | i〉 〈i |A | i〉 〈i |Ψ〉 =
n∑
i

piλi. (2.25)

Now, once the observable A is measured and a particular eigenvalue λi ob-
tained, the system’s state is updated in accordance with the corresponding
eigenstate |i〉:

|Ψ〉 → Pi |Ψ〉√
〈Ψ |Pi |Ψ〉

≡ |i〉 . (2.26)

2.1.5 Density operator: pure and mixed states

So far we have used pure quantum states in order to introduce quantum
formalism. Pure states are called vector states and can be represented by
a ket, such as |Ψ〉.

Nevertheless, we use the pedagogical support introduced above to ad-
dress realistic situations, in which it is impossible to perfectly attribute a
pure state to quantum systems. Similar situations in classical physics are
those in which the system’s classical state cannot be perfectly known, the
use of probabilities in order to write the statistical state of the physical
system being necessary. For example, a thermodynamical system in equi-
librium at temperature T has a probability proportional to eEn/kT of being
in a energy state En.

In quantum theory, this is expressed through a statistical mixture of pure
states. This is the case when probabilities f1, f2, ..., fν are associated with
the quantum states |ψ1〉 , |ψ1〉 , ..., |ψν〉 respectively. The representation of
this general case is possible by defining the density operator.
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Considering pure states |ψ〉 =
∑n

i ci |i〉, one can define their correspon-
dent density operators, ρ, as:

ρ ≡ |ψ〉 〈ψ| . (2.27)

Thus, in the orthonormal basis of eigenstates |i〉, with a finite number of
eigenstates n, the density operator has a matrix representation, its matrix
elements being given by

[ρ]ij = 〈i | ρ | j〉 = c∗i cj. (2.28)

As an example, for n = 2 and therefore

|ψ〉 = c1 |1〉+ c2 |2〉 ,

the associated density operator ρ is

ρ =

(
|c1|2 c∗1c2

c1c
∗
2 |c2|2

)
. (2.29)

The probabilities pi = |ci|2, the diagonal terms of ρ, are called populations
of the eigenstates |i〉; the terms c∗i cj are in turn called coherences, since the
interference term K (2.3) is non-zero only if these crossed terms are also
non-zero. Thus, one can verify quantum interference if the coherences are
not equal to zero.

From the normalization condition, we know that it can be expressed in
terms of ρ as follows:

n∑
i

|ci|2 =
n∑
i

[ρ]ii = Tr{ρ} = 1. (2.30)

Similarly, for the expected value (2.25):

〈A〉 =
n∑
i

piλi = Tr{ρA}, (2.31)

where pi is the probability associated with the obtention of the outcome λi
when the system is measured.
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The Schrödinger equation for the system’s dynamics (2.13) can also be
rewritten by using the definition of density operator:

i
d

dt
ρ(t) = [H(t), ρ]. (2.32)

Finally, the probabilities pi(t), which can be derived from (2.24), can
be expressed as

pi(t) = Tr{ρ(t)Pi}. (2.33)

Thus, one can see that the density operator provides a characterisa-
tion of a system’s quantum state, once one can obtain from it the same
predictions as obtained from |ψ〉.

We will now analyse the situation where the system’s state cannot
be represented as a pure state, but rather as statistical mixture of pure
states, given that the probabilities f1, f2, ..., fν are assigned to vector states
|ψ1〉 , |ψ2〉 , ..., |ψν〉, respectively. In order to simplify the notation, we omit
the time t in the following - unless when deriving the system’s dynamics
from the dynamics of pure states. The system’s state will be then generally
represented as

ρ =
ν∑
k

fk |ψk〉 〈ψk| , (2.34)

where the probabilities fk satisfy

ν∑
i

fk = 1. (2.35)

Hence, the normalization of ρ will be given by

Tr{ρ} =
ν∑
k

fkTr{ρk} = 1. (2.36)

since Tr{ρk} = 1.
The probability p(λi) of obtaining the eigenvalue λi when measuring on

the system will be generally given by

p(λi) =
ν∑
k

fkTr{ρkPi} = Tr{ρPi}. (2.37)
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Analogously, for the expected value,

〈A〉 =
n∑
i

p(λi)λi = Tr{ρ
n∑
i

λiPi} = Tr{ρA}. (2.38)

In order to derive the system’s dynamics, we now write the density
operator at time t as ρ(t):

ρ(t) =
ν∑
i

fkρk(t), (2.39)

where ρk(t) is given by (2.27). It follows then immediately from the linearity
of (2.32) and (2.39) that

i
d

dt
ρ(t) = [H(t), ρ]. (2.40)

As before, the system’s dynamics can be expressed in terms of the
evolution operator U(t) (2.16). It can be verified from (2.14), (2.27) and
(5.30) that the evolution of the system for this general case can also be
written as

ρ(t) = U†(t)ρ0U(t), (2.41)

where ρ0 is the system’s state at t0, ρ0 = ρ(t0).
Therefore, in general, a quantum system can be represented by a density

operator ρ, i. e., a positive hermitian operator.

2.1.6 Composite quantum systems: separable and
entangled states

Consider two quantum systems A and B which are respectively associated
with the Hilbert spaces HA and HB, of dimensions nA and nB, respectively.
The Hilbert space HAB associated with the system constituted by these two
subsystems or parties A and B, which we will call the global system A+B,
is defined through the tensor product of HA and HB:

H = HA ⊗HB. (2.42)

The global system is therefore called a composite quantum system.
In order to simplify and better illustrate this, let us consider the case

in which H is constituted only by the two parties HA and HB. A global
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system’s state ρ ∈ H = HA ⊗HB is then considered a separable state if
it can be written as a convex sum of product states. Product states are
defined as the tensor product of a state ρA of the system A and ρB of the
system B, that is

ρ = ρA ⊗ ρB. (2.43)

In a similar way, for the pure states |ψ〉A and |φ〉B respectively associated
with each one of the parties A and B, the separable global state can be
written as |Ψ〉 = |ψ〉A⊗|φ〉B, or more compactly, |Ψ〉 = |ψA, φB〉 = |ψAφB〉.

In what follows, we consider the case nA be the dimension of HA and nB
the dimension of HB satisfying nA = nB = 2. This corresponds to two-level
systems or qubits for instance, which have a basis formed of two eigenstates
that we denote by {|0〉 , |1〉}. Taking two qubits defined by this basis into
consideration, the basis associated with HAB is then given by the tensor
product of the eigenstates constituting the basis: {|00〉 , |01〉 , |10〉 , |11〉}.

A separable global pure state in this basis is given, for instance, by

1√
2

(|00〉+ |01〉) =
1√
2
|0〉 ⊗ (|0〉+ |1〉). (2.44)

However, one can have global states which do not admit a representation
as separable states. As an example, one can write the following pure state,
which is not separable:

|Ψ〉 =
1√
2

(|00〉+ |11〉). (2.45)

This state was named entangled state by Schrödinger [Schrödinger, 1935].
It establishes correlations between the system’s parties which can be dis-
tinguished by a given measurement apparatus - this distinction between
the system’s parties is what allows the description of a quantum system
as a composite quantum system. Entangled states are the resource of non-
classical features of quantum mechanics such as nonlocality, as we will see
later in this chapter. They are also fundamental in quantum information
theory [Nielsen and Chuang, 2010], since many of its protocols are based
on them.

2.1.7 Kraus operators and generalized measurements

In this section, we consider the definition of a linear and completely positive
map M from H to H . This means that given ρ =

∑
k ckρk with ck ∈ C,
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the map M satisfies the following conditions:

M
(∑

k

ckρk

)
=
∑
k

ckM(ρk) (2.46)

M⊗ IE ≥ 0. (2.47)

Condition (2.47) requires M to be positive for any extension or ancil-
lary HE of H , where IE is the identity operator on HE . The two conditions
guarantee the preservation of the following properties of the density oper-
ator ρ by the map M: linearity, positivity and hermicity. The application
of M to ρ can be represented as

M(ρ) =
h∑
i

= K†i ρKi, (2.48)

where the operators Ki are called Kraus operators and satisfy

h∑
i

K†iKi = IE , (2.49)

where h is the dimension of HE .
An important definition in the present context is the one of reduced

density operator. In order to introduce it, let S be a system and E its
ancillary. We also define USE as a unitary evolution operator in HSE =
HS ⊗HE : the global system S + E evolves unitarily with dynamics given
by USE , and for that reason is called a closed system. Using USE , the
evolution of a separable initial pure state at t = 0, |Ψ0〉 = |ψS〉 ⊗ |φE〉, can
be written such that the evolution of the system S will be represented by
a Kraus map:

|Ψ(t)〉 = USE(|ψS〉 ⊗ |φE〉) =
h∑
i

(Ki ⊗ IE)(|ψS〉 ⊗ |i〉), (2.50)

where |i〉 is an orthonormal basis for HE . In terms of the initial global
system’s density operator ρSE(0) = |Ψ0〉 〈Ψ0| and with ρS(0) = |ψS〉 〈ψS |
being the density operator of the system S, the global system’s state at
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time t, ρSE(t) = |Ψ(t)〉 〈Ψ(t)|, will read

ρSE(t) = U†SE(ρS ⊗ |φ〉 〈φ|E)USE =
∑
i,w

(Ki ⊗ IE |ψS , i〉 〈ψS , w|K†i ⊗ IE).

(2.51)
The evolved state ρS(t) of the system S itself, then, can be obtained from
the global state (2.51), which evolves unitarily, by taking the partial trace
over E , i.e

ρS(t) = TrE{ρ(t)} =
∑
j

〈j|
(∑

i,w

(Ki ⊗ IE |ψS , i〉 〈ψS , w|K†i ⊗ IE)

)
|j〉

=
∑
j

〈j | i〉 〈w | j〉 (K†i (|ψS〉 〈ψS |)Ki)

=
∑
j

K†j (|ψS〉 〈ψS |)Kj. (2.52)

One can therefore obtain the system’s state ρS(t) from the global system’s
state ρ(t) by tracing out the ancillary system E . Thus, the state ρS(t)
obtained this way is called reduced density operator.

Now if M, in addition to linear and completely positive, is also trace
preserving, i. e.

Tr{M(ρ)} = Tr{ρ}, (2.53)

then all the properties of the density operator ρS will be preserved by the
map (linearity, positivity, hermiticity and trace). In this way, trace preserv-
ing Kraus operators provide a general description for quantum dynamics,
including the cases in which the system’s dynamics S is non-unitary due to
its interaction with an ancillary system E , as for the so-called open quantum
systems [Zurek, 2003]. However, a unitary evolution can also be described
by a Kraus map with h = 1 in (2.48) and K1 = U, as one can see by
comparing (2.48) to (2.41).

In what follows, we recall the discussion about quantum measurements
introduced in a previous section of this chapter. Here we introduce a gen-
eral description of the measurement process described by Kraus operators.
Hence, as we will see, a projective measurement is a particular case within
this general framework. In order to present this generalization, let us con-
sider the operators Mi instead of projectors Pi, which are not necessarily
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hermitians and satisfy ∑
i

M †
iMi = I. (2.54)

Then, one can write the probability pi of obtaining a result i when a gen-
eralized measurement is realized by using the operators Mi as follows

pi =
〈
ψ
∣∣∣M †

iMi

∣∣∣ψ〉 , (2.55)

where |ψ〉 is the system’s state when the measurement is performed. As
a result of the measurement, the system’s state will be projected onto the
following state:

|ψ〉 → |ψi〉 =
Mi |ψ〉√

pi
. (2.56)

In a similar way, for a statistical mixture ρ, the probability pi reads

pi = Tr{ρM †
iMi}, (2.57)

and the state after the measurement will be given by

ρ→ ρi =
MiρM

†
i

pi
. (2.58)

From this we can define Positive Operators Valued Measure (POVM) as
the set of n operators Ei ≡ M †

iMi. The set Ei is constituted of hermitian
(Ei = E†i ) and positive operators, Ei > 0, satisfying

∑
iEi = I. The

probabilities pi of obtaining the result associated with the element Ei is, in
terms of these operators, given by

pi = Tr{Eiρ}. (2.59)

In the particular case where Mi is hermitian, we have Mi = M †
i =
√
Ei,

and therefore after the measurement and obtention of the result associated
the element Ei, the system’s state becomes

ρ→ ρi =

√
Eiρ
√
Ei

pi
. (2.60)

The case of projective measurements is a particular case of POVM with
Ei = Pi. However, any POVM with n elements acting on a Hilbert space
of dimension N can be written as a projective measurement on a Hilbert
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space of dimension n > N . This is the content of the Neumark dilation
theorem.

2.2 Contextuality of quantum theory

2.2.1 (Non)contextuality

In this section we introduce the concept of (non)contextuality. Generally,
the concept of contextuality is introduced as the dependence of probabilities
of measurement outcomes on the context, which we precisely define in the
present section. The contextuality of quantum theory, as demonstrated
by Kochen-Specker theorem [Kochen and Specker, 1967] and developed in
many other works [Laversanne-Finot et al., 2017,Winter, 2014,Kleinmann
et al., 2012,Cabello, 2008,Cabello et al., 2015,Asadian et al., 2015,Amselem
et al., 2009, Spekkens, 2005], shows the impossibility of a non-contextual
hidden variable explanation of the predictions of quantum mechanics.

In the following, we will focus on the general operational framework
introduced by Spekkens [Spekkens, 2005]. Within this framework, as
we will see, an operational definition of noncontextual operational mod-
els and context are provided, through which several manifestations of
(non)contextuality are identified.

Noncontextual ontological models for quantum theory

We first review an operational approach [Peres, 1993,Kraus, 1983,P. Busch
and Lahti, 1995] which later in this chapter will applied to quantum the-
ory [Spekkens, 2005]. In a laboratory, an experiment can be divided into
the following procedures: preparation, transformation and measurement.
Therefore, the probabilities of obtaining the different outcomes k associ-
ated with a given preparation preparation P , transformation T and mea-
surement M can be written as p(k|P, T,M). One may consider the trans-
formation T as part of the preparation P : in this case, the probabilities are
writen as p(k|P,M). Different equivalence classes can then be defined: two
preparations P1 and P2 are defined as equivalent if the probabilities for the
different outcomes are the same for any transformation and measurement,
i. e.

p(k|P1, T,M) = p(k|P2, T,M),∀T, (2.61)
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Similarly, two transformations T1 and T2 are equivalent if

p(k|P, T1,M) = p(k|P, T2,M),∀P,M, (2.62)

and the same holds for two measurements M1 and M2:

p(k|P, T,M1) = p(k|P, T,M2),∀P, T, (2.63)

Suppose now that the equivalence class of a given experiment is specified.
All the other features of the experiment, i.e., the ones which cannot be
fixed by the specification of the equivalence class, constitute the experi-
mental context.

Example of context described in Ref [Spekkens, 2005]. In an experiment
for measuring photon polarization, one has 4 measurement procedures
{M1,M2,M3,M4} at one’s disposal. The first measurement, M1, is realized
by a device as a piece of polaroid which permits the passage of vertically
polarized light in the ẑ-axis, with a photodetector placed after it. The
device associated with the measurement M2 is in turn a birefringent crystal
which separates the vertical polarized light in the z-axis from the horizontal
components, followed by a photodetector oriented in the ẑ-axis output.
This is represented in Fig. 2.2(a). The same description is valid for M3

and M4, which are the same as M1 and M2 respectively, except for the
fact that they are performed with respect to an n̂-axis, tilted with respect
to ẑ, as it is represented in Fig. 2.2(b). In this way, the probabilities for
the outcomes for M1 are the same as for M2 for all preparations, and the
ones for M3 are identical those for M4. Notwithstanding, the probabilities
for the outcomes for M1 and M2 are different from the probabilities for
the outcomes for M3 and M4. The first pair of measurements belongs to
an equivalence class, and the second pair to a different one. Therefore,
the polaroid and the birefringent crystal’s orientation define the different
equivalence classes. However, the question of whether one uses the po-
laroid or the crystal does not change the equivalence class. This feature is
therefore part of the context of the measurement.

Before moving on, we should also define an ontological model. An on-
tological model assumes that physical systems which are the subject of
an experimental realization have definite properties irrespective of what is
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polaroid or birefringent crystal, vertical axis

polaroid or birefringent crystal, tilted axis

photodetectora)

b)

Figure 2.2: Representation of the different equivalence classes defined by
the orientation of the polaroid (or birefringent crystal) in parts a) and b),
through which light is sent. In this way, in a), one has the equivalence
class defined by vertical (ẑ-direction) transmission axis. Analogously, in
b) one has another equivalence class, defined by a tilted transmission axis.
Using a polaroid or a birefringent crystal with the same axis orientation
does not change the probabilities of obtaining the different results within
a given experiment, and therefore does not change the equivalence class:
these elements are, therefore, part of the context of the measurement.

known about the system, and that the specification of these properties at
a given time describe its real or ontic state. If one cannot fully specify the
ontic state of a system after the preparation procedure, then supplemental
variables named hidden variables are required for the complete specifica-
tion. The complete set of variables in an ontological model is characterized
by λ, and the space of values of λ represented by Ω.

When considering an ontological model, one therefore assumes that
preparations prepare ontic states. The same holds for measurements and

33



transformations: in an ontological model, these terms refer to measure-
ments and transformations of ontic states. Therefore, given a system pre-
pared following a preparation procedure P, we can define the probability
density µP (λ) over the variable λ. Thus, the preparation P prescribes
probabilities to different ontic states λ.

In a similar way, we can associate the probability ξM,k(λ) of obtaining
a specific outcome k in a measurement M when the system is in the ontic
state λ. This probability is called the response function. For a transforma-
tion T, we can write ΓT (λ′, λ) as the probability density of this transfor-
mation leading the ontic state λ to the ontic state λ′.

We can then write the probability p(k|P, T,M) of obtaining an outcome
k given a preparation P , a transformation T and a measurement M :

p(k|P, T,M) =

∫
dλ′dλξM,k(λ

′)ΓT (λ′, λ)µP (λ). (2.64)

Let us now define a noncontextual ontological model as a model wherein
the experimental realization depends only on its equivalence class: there is
no dependence on the context. In this way, one can characterize ontological
models according to the different equivalence classes. For instance, an
ontological, preparation noncontextual model is such that

µP (λ) = µe(P )(λ). (2.65)

where e(P ) is the equivalence class of the preparation P . Therefore, the
density probabilities for preparations P associated with a ontic state λ
depends only on the equivalence class e(P ). Similarly, an ontological, mea-
surement noncontextual model satisfies

ξM,k(λ) = ξe(M),k(λ), (2.66)

where e(M) is the equivalence class of the measurement M. If in turn an
ontological model is transformation noncontextual, the following condition
is fulfilled:

ΓT (λ′, λ) = Γe(T )(λ
′, λ), (2.67)

e(T ) being the equivalence class of the transformation T .
Thus, an ontological model which is noncontextual for all experimental

procedures, i.e., preparations, transformations and measurements, is called
universally noncontextual.
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Let us now apply this operational approach to quantum theory. An
equivalence class of preparations P in quantum theory is associated with
a density operator ρ over the Hilbert space H . Thus, if one assumes
preparation noncontextuality in quantum theory, it implicates that the
probability density associated with a preparation P depends solely on ρ:

µP (λ) = µρ(λ). (2.68)

An equivalence class of a transformation T is associated with completely
positive maps T . Therefore, the assumption of transformation noncontex-
tuality in quantum theory implies that the probability density associated
with a transformation T of the ontic state λ′ to the ontic state λ depends
uniquely on the completely positive map T , that is

ΓT (λ′, λ) = ΓT (λ′, λ). (2.69)

Finally, an equivalence class of a measurement is associated with a POVM
{Ek}. Accordingly, measurement noncontextuality in quantum theory re-
quires that the set of response functions3 be dependent only on the POVM
{Ek}:

ξM,k(λ) = ξ{Ek},k(λ). (2.70)

2.2.2 Bell inequality and locality

Local-causality or locality is the notion according to which two physical
systems can only obtain information from each other if there is an interac-
tion between them. Furthermore, two quantum systems can only interact
locally. Otherwise, the system is called nonlocal.

We recall the phenomenon of entanglement previously introduced in
this chapter, which can be verified for quantum systems possessing two or
more parts. As it can be seen from the state in (2.45), measuring one of the
system’s parties in state |0〉 (|1〉) implies that the second party collapses
into state |0〉 (|1〉). In the case that the system’s parties are far away, it nec-
essarily follows that the phenomenon of entanglement defies the notion of
locality. Indeed, the observation of nonlocality implies entanglement, lead-
ing to the empirical inadequacy of locally-causal theories [O. J. E. Maroney,
2014].

3As a matter of fact, this is a generalized notion of measurement contextuality corre-
sponding to objectively indeterministic ontological models, since it involves probabilities
of different outcomes for a given ontic state instead of the outcomes themselves.
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In a famous 1935 paper by Einstein, Podolsky and Rosen, the authors
consider the following definition for the completeness of a physical theory
[Einstein et al., 1935]

Every element of the physical reality must have a counterpart in the

physical theory.We shall call this the condition of completeness.

Given this definition, they showed that quantum theory is incomplete, i.e.,
incompatible with the description of completeness above, and concluded
with the following statement,

While we have thus shown that the wave function does not provide a

complete description of the physical reality, we left open the question

of whether or not such description exists. We believe, however, that

such a theory is possible.

This question remained open until the formulation of Bell theorem in
1964 [Bell, 1964,Bell, 2004]. Bell considered a mathematical formulation of
the assumption of realism and locality in terms of hidden variables. Accord-
ingly, the assumption of realism (i.e., that physical quantities have definite
values at all times, whether they are measured or not) would imply that,
if correlations between systems far away from each other are verified, these
correlations could only have been established before the measurements on
those systems take place. Furthermore, the assumption of local-causality
would in turn imply that, before the measurement, the distant systems
could only have communicated through the hidden variables λ. In this
way, one would have a physical theory wherein there would be no need
to speak of nonclassical concepts such as entanglement. Based on these
assumptions, inequalities which consists of a sum of spatial correlations
between two distant systems, called Bell inequalities, were derived. The
experimental violation of such inequalities accounts, therefore, for a viola-
tion of local realism.

For instance, one of these inequalities is known as the Clauser-Horne-
Shimony-Holtz (CHSH) inequality [Clauser et al., 1969]. Consider a system
S constituted of a party A, to which is associated the dichotomic observ-
ables A1 and A2, and a party B, to which in turn one associates the di-
chotomic observables B1 and B2. The CHSH inequality is then expressed
as

KCHSH = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2, (2.71)

where

〈AiBj〉 =

∫
xiyjp(xi, yj|Ai, Bj)dxidyj. (2.72)
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In the expression of the correlation above, xi, yj are respectively the out-
comes associated with the observables Ai, Bj, where p(xi, yj|Ai, Bj) is the
probability of obtaining these outcomes when measuring Ai, Bj.

As a result, any quantum state violating the inequality (2.71) cannot
be explained by a local hidden variable model.

Experimental tests of Bell-type inequalities

The derivation of CHSH inequalities was crucial for the development of
experimental tests of Bell-type inequalities. Indeed, the first test of Bell-
type inequality was carried out by Freedman and Clauser in 1972, showing
the violation of a variant of the CHSH inequality [Freedman and Clauser,
1972]. The system used in this first test was constituted of a pair of photons
with entangled polarization.

Notwithstanding the observation of violation in this first experiment,
it is important to mention that it was subject to detection and locality
loopholes. The detection loophole has as its cause an additional assumption
called fair sample assumption. This means that only a small fraction of
probes are detected (less than 2

3
of the pairs), and it is assumed that this

is a representative sample of the total number of probes.
The second loophole, the locality one, is the assumption that measure-

ments are performed without the possibility of communication between
the two spots where they are carried out. Practically, this is ensured
by a measurement duration short enough to avoid that any signal trav-
els with the speed of light from one spot to the other. Remarkably, this
loophole was already overcame in 1982 Aspect’s experiment [Aspect et al.,
1982a]. This experiment and many other tests were also realized consid-
ering entangled-polarized photons systems [Aspect et al., 1981, Giustina
et al., 2015, Giustina et al., 2013, Hensen et al., 2015]. However, all these
realizations were subjected to loopholes.

The realization of a free-loophole Bell test, closing both the detection
and locality loopholes, was only very recently reported by using distant
(separation of 1.3 km) entangled electron spins [Hensen et al., 2015].

2.2.3 Leggett-Garg inequality and noninvasiveness

In 1985, Leggett and Garg derived an inequality based on two assumptions
which in the authors’ words were expressed as follows:
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(i) Macroscopic realism: a macroscopic system with two or more

macroscopically distinct states available to it will at all times be in

one of those states.

(ii) Noninvasive measurability: it is possible, in principle, to

determine the state of the system with arbitrarily small perturba-

tion to its subsequent dynamics.

At this point, before proceeding, it is important to clarify the fact that
Leggett and Garg’s original motivation for the proposition of the Leggett-
Garg inequality was the question of whether quantum theory can be ex-
trapolated to the macroscopic world [Leggett, 2002], which would allow
one to witness its nonclassical effects involving objects in the scale of our
everyday lives, for instance. In particular, this fact becomes clear in the
following Leggett and Garg’s statement [Leggett and Garg, 1985], when
referring to assumptions (i) and (ii) above:

A direct extrapolation of quantum mechanics to the macroscopic level
denies this [assumptions (i) and (ii)].

This is the reason why the authors call the assumption (i) macroscopic real-
ism instead of realism, and refer, in their statement of assumption (i), to a
“macroscopic system”. This assumption can also be seen as an implicit way
of referring to the classical world, since macroscopic objects are intuitively
expected to have their behaviour described by classical physics. However,
regardless of the use of the term “macroscopic” to name the assumption of
macroscopic realism in Leggett and Garg’s statement, this assumption can
be reformulated and called realism, in the following way:

Realism: a system with two or more distinct states available to it

will at all times be in one of those states.

Indeed, this would be a clearer statement of assumption (i), highlight-
ing the fact that this assumption refers to the notion of realism, and can be
considered independently of the size of the system subjected to a Leggett-
Garg test. Irrespective of this fact, following Leggett and Garg, this as-
sumption is commonly called macroscopic realism in the literature, even for
propositions or experimental tests of the Leggett-Garg inequality involving
microscopic systems [Emary et al., 2014]. See chapter 5 for a description
of some protocols for experimental tests of the Leggett-Garg inequality.
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As we will see in details in the derivation below, the Leggett-Garg in-
equality involves measurements of a two-valued observable Q that may be
associated with physical properties of a system at different times, such
that Qi = Q(ti). By considering experimental realizations in which a sys-
tem initially at t0 evolves in time, and by measuring Q at two different
times in order to obtain the temporal correlations 〈QkQl〉, an example of
Leggett-Garg inequality is given by

− 1 ≤ KLG ≡ 〈Q1Q2〉+ 〈Q2Q3〉 − 〈Q1Q3〉 ≤ 1. (2.73)

Accordingly, the Leggett-Garg inequality violation would imply the viola-
tion of at least one of these assumptions.

However, the Leggett-Garg inequality derivation can be based solely
on the notion of noninvasive measurability. By following Ref. [O. J.
E. Maroney, 2014], we demonstrate that a condition based on this
assumption, called measurement noninvasiveness, is sufficient for the
Leggett-Garg inequality derivation. Indeed, as pointed out by Maroney
and Timpson [O. J. E. Maroney, 2014], whether the assumption of macro-
scopic realism can be ruled out by the Leggett-Garg inequality violation
or not is the subject of a debate which started as early as 1987 [Ballentine,
1987, Leggett and Garg, 1987, Leggett, 1988]. Given this, we will also
discuss how the assumption of macroscopic realism can be tested by the
Leggett-Garg inequality, and therefore, how it can be connected to the no-
tion of noninvasive measurability, to which we will refer as (measurement)
noninvasiveness.

Leggett-Garg inequality derivation

We first consider the following experimental realization: a system S is pre-
pared according to a preparation procedure P at time t0. In the following
description, we consider measurements of a two-valued quantity Q = ±1.
A first measurement M1 which has the two possible outcomes Q1 = ±1 is
performed on S at time t1 > t0. S is then subjected to the transformation
T1 between times t1 and t2 > t1. At t2, a measurement M2 which also
has two possible outcomes Q2 = ±1 is done on S. Finally, between t2 and
t3 > t2, S undergoes a transformation T2, and then at t3 one performs a last
two-valued measurement M3, with possible outcomes Q3 = ±1. Accord-
ing to the operational approach introduced above, one can represent the
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joint probability distribution associated with this experimental realization
as follows:

p(P,M1,T1,M2,T2,M3)(Q1 = qi, Q2 = qj, Q3 = qk). (2.74)

t1 t2 t3

Figure 2.3: The probability p(P,M1,T1,M2,T2,M3)(Q1 = qi, Q2 = qj, Q3 = qk)
(of obtaining the outcome Q1 = qi when measuring the system at the
subsequent times t1 (measurement M1), Q2 = qj at t2 (measurement M2)
and Q3 = qk at t3 (measurement M3)) is associated with experimental
realizations in which all three measurements M1, M2 and M3 are carried
out in each run of the experiment. The realization of these measurements
is represented by the dots over the “arrow of time” line.

Suppose now that one can derive probabilities4 associated with a smaller
number of variables by taking the marginal over the joint probability dis-
tribution of (2.75), for instance

p(M1,M2,M3)(Q1 = qi) =
∑
qjqk

p(M1,M2,M3)(Q1 = qi, Q2 = qj, Q3 = qk). (2.75)

One can then write the correlations 〈Q1Q2〉M1M2M3 between the outcomes of
measurements realized at times t1 and t2, given that all three measurements
were performed, as

〈Q1Q2〉M1M2M3 =
∑
qiqj

p(M1,M2,M3)(Q1 = qi, Q2 = qj)qiqj. (2.76)

Let us consider the definition of the following quantity:

〈QLG〉M1M2M3 ≡ 〈Q1Q2〉M1M2M3 + 〈Q2Q3〉M1M2M3 −〈Q1Q3〉M1M2M3 . (2.77)

4For simplicity, we omit the index for the preparation and transformations from now
on.
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Assuming that all three measurements are performed, one can see from
(2.75) and (2.76) that 〈QLG〉M1M2M3 satisfies

− 1 ≤ 〈QLG〉M1M2M3 ≤ 1. (2.78)

Thus, the bound of (2.78) will always be fulfilled, even within quantum
theory: it does not matter whether one previously had the information of
these values, in which case they are merely revealed by the measurements,
or whether these values are defined as a consequence of performing the
measurements.

In what follows, we analyse the realizations in which only two mea-
surements out of three possible (M1,M2,M3) are performed. Similarly, we
consider the quantity

KLG ≡ 〈Q1Q2〉M1M2 + 〈Q2Q3〉M2M3 − 〈Q1Q3〉M1M3 , (2.79)

where the correlations can be written, for instance, as

〈Q1Q2〉M1M2 =
∑
qiqj

p(M1,M2)(Q1 = qi, Q2 = qj)qiqj. (2.80)

The other correlation terms in (2.79) can be similarly written.
Let us then suppose that the probabilities associated with these real-

izations can be obtained by taking the marginals of the joint probability
(for which the 3 measurements are performed):

p(M1,M2)(Q1 = qi, Q2 = qj) =
∑
qk

p(M1,M2,M3)(Q1 = qi, Q2 = qj, Q3 = qk),

(2.81)

p(M2,M3)(Q2 = qj, Q3 = qk) =
∑
qi

p(M1,M2,M3)(Q1 = qi, Q2 = qj, Q3 = qk),

(2.82)

p(M1,M3)(Q1 = qi, Q3 = qk) =
∑
qj

p(M1,M2,M3)(Q1 = qi, Q2 = qj, Q3 = qk).

(2.83)
We stress the fact that the probabilities p(M1,M2)(Q1 = qi, Q2 = qj),
p(M2,M3)(Q2 = qj, Q3 = qk) and p(M1,M3)(Q1 = qi, Q3 = qk) refer to three
different and independent experimental realizations, in which the measure-
ments are performed only at two out of the predefined times t1, t2 and
t3, considering the same preparation and transformations used in order to
obtain (2.75). For this reason, it is not trivial that the probabilities asso-
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t1 t2 t3

hQ1Q2i

hQ1Q3i

hQ2Q3i

Figure 2.4: In order to determine the two-time correlations 〈QlQm〉, one
performs a a measurement at time tl, of which result is Ql = ql and then a
measurement at a later time tm, of which result is Qm = qm. As before, we
indicate the instant of time at which the measurement is carried out by a
dot over the “arrow of time” line.

ciated with the experiments involving just two measurements are related
to the experiment wherein one realizes all three measurements as made
explicit in (2.81), (2.82) and (2.83). However, if one can derive p(M1,M2),
p(M2,M3) and p(M1,M3) from the joint probability, which is associated with
an experiment in which all the three measurements are performed, one
can conclude that there must be no difference for these probabilities
within the experimental realizations in which all three measurements M1,
M2 and M3 are performed and those in which one skips one of the mea-
surements M1, M2 or M3. The following conclusion can be therefore drawn:

If the probabilities p(M1,M2)(Q1 = qi, Q2 = qj), p(M2,M3)(Q2 = qj, Q3 = qk)
and p(M1,M3)(Q1 = qi, Q3 = qk) (which are associated to experimental
realizations wherein only the two measurements to which they refer
are performed out of the three measurements M1, M2 and M3) can be
obtained by taking the marginal distribution of the joint probability
p(M1,M2,M3)(Q1 = qi, Q2 = qj, Q3 = qk), then one can conclude that it is in-
different whether one performs all the three measurements or just a smaller
set of them in an experimental realization. In this case, the Leggett-Garg
inequality (2.79) will hold, and the measurements can therefore be called
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noninvasive.

Formalizing operational noninvasiveness

We can therefore formalize the operational notion of noninvasive measura-
bility of the previous section, within the context of the operational approach
presented before. Let us consider a preparation P , and a measurement M
followed by the measurement M ′. We define the measurement M as oper-
ationally noninvasive for the preparation P and subsequent measurement
M ′ if it is impossible to state if M was performed based on the observed
statistics of P and M ′, i. e.,

p(P,M ′)(Q
′ = qj) =

∑
qi

p(P,M,M ′)(Q = qi, Q
′ = qj). (2.84)

This is the notion of noninvasiveness which is verified by conditions (2.82)
and (2.83). If both conditions are not satisfied, then measurements M1

and M2 are operationally invasive. Condition (2.81) can be called in
turn no-signaling backwards in time, since it dictates that measurements
performed afterwards must not affect the statistics of previously performed
measurements.

How can measurement noninvasiveness be connected to realism?

We based the Leggett-Garg inequality derivation uniquely on the opera-
tional notion of noninvasive measurabililty defined above, which can be
viewed as a reformulation of assumption (ii) of Leggett and Garg’s original
proposition. Indeed, this is the assumption which can always be ruled out
by a test of the Leggett-Garg inequality. Therefore, what is primarily wit-
nessed by a Leggett-Garg inequality violation is that M1 or M2, or both,
are operationally disturbing or invasive for their corresponding preparations
and transformations.

When it comes to realism, one can first notice that the assumption of
(macro)realism cannot be stated without the specification of the interpre-
tation of quantum theory which one takes into consideration. For exam-
ple, consider the framework of the de Broglie-Bohm theory [de Broglie,
1923,Bohm and Hiley, 1993]. Therefore, within the context of this theory,
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the assumption (ii) as stated by Leggett and Garg [Leggett and Garg, 1985],
has no meaning, since quantum superpositions already have an ontological
status.

Indeed, since the assumption of (macro)realism can be interpreted as
the imposition of the prohibition of superposition of states, a question one
might naturally ask is is the following: with respect to which basis are su-
perpositions of states being tested by the Leggett-Garg inequality? In what
follows, we will clarify this point by introducing the definition of operational
eigenstate mixture (macro)realism [O. J. E. Maroney, 2014], which can be
viewed as a refinement of Leggett and Garg’s notion of (macroscopic) re-
alism. We will see how this refined notion of (macroscopic) realism can be
connected to noninvasiveness and therefore be dismissed by the Leggett-
Garg inequality violation.

To introduce the definition of operational eigenstate, consider the op-
erational framework described above. Let e(M) be an equivalence class of
measurements, with M ′ ∈ e(M), where M ′ are measurements of a quantity
Q̃. An operational eigenstate is defined as a particular equivalence class of
preparations P which, when followed by any measurement M ′ ∈ e(M), has
either the probability 0 or 1 associated with the measurement outcomes
qi of Q̃. In this way, if one prepares the operational eigenstate qi of Q̃, it
then follows that any measurement M ′ ∈ e(M) will give the outcome qi
with probability 1. Given this, noninvasiveness is verified if there is some
measurement M within the operational equivalence class which is opera-
tional noninvasive when the system’s state corresponds to an operational
eigenstate of the quantity Q̃.

This is the motivation for the definition of operational eigenstate mixture
(macro)realism, which accounts for the following view: the only possible
preparation states of a system S are operational eigenstates of Q̃ and their
statistical mixtures.

In order to formalize this notion, consider a preparation Pqi which lies
on the operational eigenstate equivalence class P̃qi , and which satisfies
p(Pqi ,M)(Q = qi) = 1 for all M ∈ e(M). Let Ω be the space of ontic states λ,
and the probability density associated with the preparations Pqi given by
µPqi (λ). Correspondingly, for all λ and M ∈ e(M), the response function
associated with λ is given by ξM(Q = qi|λ) = 1. Let µqi be a convex sum of
operational eigenstate preparation densities µPqi . As a result, every ontic
state λ, to which µqi is associated, is noncontextually value-definite with
value Q = qi.
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In summary, if a measurement M1 is operationally noninvasive for op-
erational eigenstate preparations, then the statistics for (P,M1,M2) will
not differ from those for (P,M2). Therefore, if one does prove the inva-
siveness of M1 by, for instance violating the Leggett-Garg inequality, then
operational eigenstate mixture (macro)realism must be dismissed. It turns
out then that invasiveness can be connected to the view of operational
eigenstate (macro)realism.

2.2.4 The no-signaling in time condition

Kofler and Brukner proposed the no-signaling in time condition as a al-
ternative to Leggett-Garg inequalities in Ref. [Kofler and Brukner, 2013].
It was defined by the authors as follows: “No-signaling in time (NSIT): A
measurement does not change the outcome statistics of a later measure-
ment.”

Let p(AtA) (p(BtB)) be the probability for a variable A (B) measured
at time tA (tB), and tB > tA, the NSIT can be mathematically expressed
as

p(BtB) = p(BtB |tA) ≡
∑
A

p(AtA , BtB), (2.85)

being ∑
A

p(AtA , BtB) =
∑
A

p(AtA)p(BtB |AtA), (2.86)

where p(BtB |AtA) is the probability for the outcome B at tB, given the
outcome A at tA, and p(AtA , BtB) is the joint probability of obtaining A at
tA and B at tB. An operational formulation for NSIT can be found in Ref.
[Clemente and Kofler, 2015]. We will further analyse this condition in the
context of the comparison between Bell-type and Leggett-Garg inequalities.

2.2.5 Comparing Bell-type and Leggett-Garg in-
equalities

We now discuss some fundamental aspects concerning the contrast between
Bell-type and Leggett-Garg inequalities.

The first of these aspects is related to Fine’s theorem [Fine, 1982,Halli-
well, 2014]. According to this theorem, Bell inequalities are necessary and
sufficient for local realism. Similarly, one may wonder whether there is a
Fine theorem for Leggett-Garg inequalities. In Ref. [Clemente and Kofler,
2016], it is shown that equalities such as the no-signaling in time condi-
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tion, which we present in the following, are both sufficient and necessary
for noninvasiveness. Conversely, the authors conclude that there is no set
of inequalities which are sufficient for noninvasiveness. Therefore, it is con-
cluded that the Leggett-Garg inequality is only a necessary condition for
noninvasiveness.

Another point which is worth mentioning, considering the contrast be-
tween Bell-type and Leggett-Garg inequalities, is related to the so-called
Tsirelson bound [Budroni and Emary, 2014, Budroni et al., 2013]. The
Tsirelson bound is an upper bound for the sum of quantum spatial cor-
relations in Bell-type inequalities [Cirel’son, 1980]. For instance, for the
CHSH inequality, given the dichotomic observables A1, A2, B1 and B2, the
Tsirelson bound imposes the upper value of 2

√
2 to the sum of quantum

correlations:

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2
√

2. (2.87)

For the derivation of this upper bound, see [Cirel’son, 1980]. Hence, we
see that the algebraic bound for the CHSH inequality, which is 4, cannot
be attained by considering quantum theory. In this way, the violation of
the Tsirelson bound by a Bell inequality would indicate new physics be-
yond quantum theory [Popescu and Rohrlich, 1994, Budroni and Emary,
2014]. One can naturally consider if this maximum quantum value can be
understood from physical principles. Indeed, as indicated in Ref. [Budroni
et al., 2013], some principles suggest that, “in a world where maximal cor-
relations are observed, the communication complexity is trivial [Popescu
and Rohrlich, 1994], a principle established as information causality is
violated [Pawlowski et al., 2009], and there exists no reversible dynam-
ics [Gross et al., 2010]”. However, even if there are similarities between the
Leggett-Garg inequality and Bell-type inequalities, such as the assumption
of a joint probability distribution in their derivation [Markiewicz et al.,
2014], Budroni and co-authors have shown that the temporal sum of tem-
poral correlations in the Leggett-Garg inequality can attain its algebraic
bound by considering more “general” projective measurements5 [Budroni
and Emary, 2014]. As further discussed by the authors, it is not possible to

5This more general projective measurements in Ref. [Budroni and Emary, 2014] are
achieved by considering state-update rules like the von Neumann’s [von Neumann, 1932],
which states that a quantum state ρ, when measured, is updated according to the follow-

ing rule: ρ →∑
k Π

(k)
± ρΠ

(k)
± , where Π

(k)
± are one-dimensional projectors, and the index

± indicate their association with those outcomes. This strategy is called “degeneracy-
breaking” when compared to Lüders’ rule [Lüders, 1951, Lüders, 2006], according to
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use these same measurement strategies to violate the Tsirelson for Bell-type
inequalities. The saturation of the algebraic bound of Bell-type inequalities
is only possible within the context of post-quantum theories [Popescu and
Rohrlich, 1994].

2.3 General estimation theory: from classi-

cal to quantum theory of parameter es-

timation

We will introduce here a topic which is independent of quantum theory,
the so-called classical theory of parameter estimation. We will then use
it to present the formulation of the theory of parameter estimation for
quantum systems. The quantum theory of parameter estimation provides
the theoretical foundations for the field of quantum metrology [Giovannetti
et al., 2004,Giovannetti et al., 2011,Giovannetti et al., 2006], allowing one
to surpass the classical precision in parameter estimation by using quan-
tum systems. This presentation will be based on L. Davidovich’s lectures
delivered at the Collège de France [Davidovich, 2016].

Consider the following experiment, sketched in Fig. 2.5: a probe is
prepared in a suitable initial state, which is then subjected to a dynamical
process. At a given instant t = tF , at which we will call the system’s
state “final state”, a measurement is performed. Finally, one associates an
estimation for a parameter θ, θ = θest(j), with each experimental result, j.
We will first discuss this experiment within the context of classical physics,
then we will consider its description in the context of quantum theory.

As our focus here is on the study of the quality of the estimation of the
parameter θ, taking into account the processes described above, it is useful
to introduce the following general definitions:

• An estimator is called unbiased if the following conditions are satis-
fied, the average taken over all experimental results and where θtrue

which ρ → Π±ρΠ±, where we have only two (not necessarily one-dimensional) projec-
tors associated with the ± outcomes, Π±.
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Initial State Dynamical process Final State Measurement Estimator

✓est

Figure 2.5: Representation of an experiment for estimation of a parameter
θ. A probe, prepared in an initial state, is subjected to a dynamical process,
leading it to a final state. This final state is then measured, and exper-
imental results j are associated with estimation of the parameter θ. We
will discuss this experiment both in the context of classical and quantum
theory.

is the true value of the parameter being estimated:

〈θest〉 = θtrue,

[d〈θest〉/dθ]|θ=θtrue = 1.

(2.88)

• The variance of θest can be expressed as an average taken over all
experimental results as well:

∆θ2 =
〈
[θest − 〈θest〉]2

〉
. (2.89)

2.3.1 Classical parameter estimation

Given an unbiased estimator, the classical lower bound for the variance of
θest, ∆θ, is determined by the Cramér-Rao bound [Fisher, 1912, Cramér,
1946,Rao, 1973]:

∆θ ≥ 1√
NF (θ)|θ=θtrue

. (2.90)
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In the equation above, N is the number of experimental realizations and
F (θ) is called Fisher information, defined as

F (θ) ≡
∑
j

pj(θ)

(
d ln pj(θ)

dθ

)2

, (2.91)

where pj(θ) are the probabilities of obtaining the result j. Similarly, for
a continuous spectrum of measurements results ξ, the Fisher information
can be written as

F (θ) ≡
∫
dξp(ξ|θ)

(
∂ ln p(ξ|θ)

∂θ

)2

, (2.92)

p(ξ|θ) being the probability distribution of obtaining the result ξ.

Derivation of the Cramér-Rao bound

Consider an unbiased estimator, 〈θest(ξ)〉 = θ, which therefore satisfies the
following trivial identity:∫

dξp(ξ|θ)[θest(ξ)− θ] = 0. (2.93)

By differentiating it with respect to θ, one obtains:∫
dξ

{
∂p(ξ|θ)
∂θ

[θest(ξ)− θ] + p(ξ|θ) ∂
∂θ

[θest(ξ)− θ]
}

= 0,

or even ∫
dξp(ξ|θ)∂ ln p(ξ|θ)

∂θ
[θest(ξ)− θ] = 1.

We now use the Cauchy-Schwartz inequality:

〈A2〉〈B2〉 ≥ |〈AB〉|2, (2.94)
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where

A =
∂ ln p(ξ|θ)

∂θ
,

B = θest(ξ)− θ.
(2.95)

In this way, (2.94) reads〈[
∂ ln p(ξ|θ)

∂θ

]2
〉
〈(∆θest)2〉 ≥ 1, (2.96)

where (∆θest)
2 = (θest − 〈θest〉)2 = (θest − θ)2.

Therefore, (2.96) gives:

(∆θest)
2|θ=θtrue ≥

 1〈[
∂ ln p(ξ|θ)

∂θ

]2
〉

θ=θtrue

. (2.97)

One can then see that the denominator of the expression above is the
Fisher information, already defined in the expression (2.91). Alternatively,
the Fisher information can be written as follows:

〈[
∂ ln p(ξ|θ)

∂θ

]2
〉

=

∫
dξp(ξ|θ)

[
∂ ln p(ξ|θ)

∂θ

]2

=

∫
dξ

1

p(ξ|θ)

[
∂p(ξ|θ)
∂θ

]2

= −
〈
∂2 ln p(ξ|θ)

∂θ2

〉
.

(2.98)

Finally, given many identical and independent measurements, in such
a way that the probability distribution associated with the ensemble of
measurements is

p(~ξ|θ) = p(ξ1|θ) . . . p(ξN |θ), (2.99)
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where p(ξi|θ) is the probability of obtaining the result ξi, if the value of
the parameter is θ. Let F (θ) be the Fisher information corresponding to a
measurement. Therefore, the Fisher information F (N)(θ), associated with
the ensemble of measurements, can be written as:

F (N)(θ) = −
〈
∂2 ln p(~ξ|θ)

∂θ2

〉
. (2.100)

It follows then that
F (N)(θ) = NF (θ), (2.101)

i. e., the Fisher information fulfils the property of additivity. One can
write the Cramér-Rao bound for unbiased estimators as

∆θ ≥ 1√
NF (θ)

, (2.102)

where ∆θ ≡
√

(∆θest)2.

2.3.2 Quantum theory of parameter estimation

We will now discuss the extension of Cramér-Rao-Fisher theory to quantum
theory. Therefore, the experiment sketched in Fig. 2.5 is now considered
in the context of quantum theory [Helstrom, 1976,Holevo, 1982,Braunstein
et al., 1996, Braunstein and Caves, 1994]. Loosely speaking, the precision
associated with the determination of the parameter will now depend on the
distinguishability between quantum states which are, in turn, associated to
nearby values of the parameter.

Quantum Cramér-Rao bound

The derivation of the Cramér-Rao bound is as before. However, the prob-
ability distribution of obtaining the result ξ, given that the value of the
parameter is θ, and the probe’s quantum state |ψ(θ)〉, is

p(ξ|θ) = 〈ψ(θ) |E(ξ) |ψ(θ)〉 , (2.103)

where E(ξ) are POVM elements describing a given generalized measure-
ment. Accordingly, the set {E(ξ)} satisfies the equations below:∫

dξE(ξ) = I, (2.104)
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so that ∫
dξp(ξ|θ) = 1. (2.105)

In this way, given a set {E(ξ)}, the lower bound for the estimation of the
parameter θ can be written as√

〈(∆θest)2〉 ≥ 1√
NF (θ)

, (2.106)

where the Fisher information F (θ) can be expressed as

F (θ; {E(ξ)}) =

∫
dξp(ξ|θ)

[
∂ ln p(ξ|θ)

∂θ

]2

=

∫
dξ

1

p(ξ|θ)

[
∂p(ξ|θ)
∂θ

]2

.

(2.107)
One can note that equation 2.107 corresponds to a specified quantum

measurement, described by a given set {E(ξ)}. One may therefore pose
the question of what would be the best possible estimation, which would
be correspondently associated with a particular measurement. The best
possible estimation is in turn associated with the ultimate lower bound for
〈(∆θest)2〉, for which the Fisher information is maximal. In this particular
case, the Fisher information is called quantum Fisher information, and can
be obtained through an optimization of the Fisher information over all
quantum measurements specified by each set {E(ξ)}. This can be written
as in the following expression:

FQ = max
{E(ξ)}

F (θ, {E(ξ)}), (2.108)

so that the improved variance now reads

〈(∆θest)2〉 ≥ 1

NFQ
. (2.109)

As before, N is the number of experimental realizations.

Quantum Fisher information for pure states

In the following, we derive the expression of the quantum Fisher informa-
tion for pure states. As, we will see that it can be simply expressed as the
variance of the system’s Hamiltonian.
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Let us consider a unitary process U(θ), and the initial state of a probe,
|ψ(0)〉. As illustrated in Fig. 2.5, the final θ-dependent state is

|ψ(θ)〉 = U(θ) |ψ(0)〉 . (2.110)

Before proceeding, it will be useful to define an auxiliary operator ĥ

ĥ(θ) = −idU(θ)

dθ
U †(θ). (2.111)

Using the definition of ĥ, one can write:

d |ψ(θ)〉
dθ

=
dU(θ)

dθ
|ψ(0)〉 =

dU(θ)

dθ
U †(θ) |ψ(θ)〉

= iĥ(θ) |ψ(θ)〉 .
(2.112)

One can therefore see that the equation above is equivalent to the
Schrödinger equation with Hamiltonian −ĥ(θ). The operator −ĥ(θ) is
then called the generator of U(θ).

We now recall equations (2.103) and (2.104). Considering them, one
can derive the following equation:

∂p(ξ|θ)
∂θ

=

[
d 〈Ψ(θ)|
dθ

]
E(ξ) |Ψ(θ)〉+ 〈Ψ(θ)|E(ξ)

[
d |Ψ(θ)〉
dθ

]
= i 〈ψ(θ)| [E(ξ), ĥ] |ψ(θ)〉 = −2=[〈ψ(θ)|E(ξ)ĥ(θ) |ψ(θ)〉]

(2.113)

One can alternatively write the equation above considering a real func-
tion g(θ), as

∂p(ξ|θ)
∂θ

= −2=[〈ψ(θ)|E(ξ)[ĥ(θ)− g(θ)] |ψ(θ)〉]. (2.114)
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By squaring the expression above, we are able to obtain the following result[
∂p(ξ|θ)
∂θ

]2

= 4[=[〈ψ(θ)|E(ξ)[ĥ(θ)− g(θ)] |ψ(θ)〉]]2

≤ 4| 〈ψ(θ)|E1/2(ξ)E1/2(ξ)[ĥ(θ)− g(θ)] |ψ(θ)〉 |2

≤ 4 〈ψ(θ) |E(ξ) |ψ(θ)〉 〈ψ(θ)|E(ξ)[ĥ(θ)− g(θ)]2 |ψ(θ)〉 ,
(2.115)

where, in the last step, we used the Cauchy-Schwartz inequality (2.94). In
this way, we obtain the expression below:[

∂p(ξ|θ)
∂θ

]2

≤ 4p(ξ|θ) 〈ψ(θ)|E(ξ)[ĥ(θ)− g(θ)]2 |ψ(θ)〉 . (2.116)

Finally, dividing the expression above by p(ξ|θ) and integrating it with
respect to ξ, we have

F (θ) =

∫
dξ

1

p(ξ|θ)

[
∂p(ξ|θ)
∂θ

]2

≤ 4

∫
dξ 〈ψ(θ)|E(ξ)[ĥ(θ)− g(θ)]2 |ψ(θ)〉

= 4 〈ψ(θ)| [ĥ(θ)− g(θ)]2 |ψ(θ)〉 , (2.117)

given that
∫
dξE(ξ) = 1.

One can therefore see that the Fisher information F (θ) is upper-
bounded by the quantity 4 〈ψ(θ)| [ĥ(θ)− g(θ)]2 |ψ(θ)〉. We now rewrite the
expression above in terms of the initial state |ψ(0)〉:

F (θ) ≤ 4 〈ψ(0)| [Ĥ(θ)− g(θ)]2 |ψ(0)〉 , (2.118)

where

Ĥ(θ) ≡ U †(θ)ĥ(θ)U(θ) = −iU †(θ)dU(θ)

dθ
. (2.119)

Specifically, by employing the following expression of U(θ),

U(θ) = exp(iθÔ), (2.120)

where Ô is independent of θ, it results then that Ĥ(θ) = Ô. One can note
that, if Ô is a Hamiltonian, θ is consequently a time displacement, U(θ)
being the evolution operator. We can then see that the minimum value for
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the bound is attained when

g(θ) =
〈
ψ(0)

∣∣∣ Ĥ(θ)
∣∣∣ψ(0)

〉
≡ 〈Ĥ(θ)〉0. (2.121)

Then, we are finally able to write the following expression for the upper-
bound of the Fisher information:

F (θ) ≤ 4〈(∆Ĥ)2〉0, (2.122)

with
〈(∆Ĥ)2〉0 ≡ 〈ψ(0)| [Ĥ(θ)− 〈Ĥ(θ)〉0]2 |ψ(0)〉 . (2.123)

Hence, we have shown that, for pure states, the upper bound for the
Fisher information, called quantum Fisher information, is given by

FQ = 4〈(∆Ĥ)2〉0. (2.124)

Alternatively, by using the definition of Ĥ, the quantum Fisher information
for pure states can be also written as follows:

FQ = 4

[
d 〈ψ(θ)|
dθ

d |ψ(θ)〉
dθ

− | d 〈ψ(θ)|
dθ

|ψ(θ)〉 |
]
. (2.125)

For pedagogical purposes, we will show in the following how this ulti-
mate lower bound can be obtained analytically for pure states, leading to
a simple expression for the quantum Fisher information.

When the Fisher information equals the quantum Fisher infor-
mation: pure state case

Consider the state |ψ(θ′)〉, and the measurement defined by

E1 = |ψ(θ)〉 〈ψ(θ)| ,
E2 = 1− |ψ(θ)〉 〈ψ(θ)| .

(2.126)

We show here that the Fisher information corresponding to this measure-
ment attains the quantum Fisher information when θ′ → θ. For the mea-
surement defined above, the probability p1 and p2 of obtaining the result 1
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and 2, respectively, are:

p1(θ′) =| 〈ψ(θ′) |ψ(θ′)〉 |2
p2(θ′) = 1− p1(θ′).

(2.127)

It follows then that the corresponding Fisher information is:

Fθ(θ
′) =

1

p1(θ′)

[
dp1(θ′)

dθ′

]2

+
1

p2(θ′)

[
dp2(θ′)

dθ′

]2

=
1

p1(θ′)[1− p1(θ′)]

[
dp1(θ′)

dθ′

]2

.

(2.128)

Now, given that limθ′→θ p1(θ′) = 1 and limθ′→θ

[
dp1(θ′)
dθ′

]
= 0, it results that

the limit θ′ → θ of the Fisher information is indeterminate. Therefore, by
applying l’Hôpital’s rule, one obtains

lim
θ′→θ

Fθ(θ
′) = −2

[
d2p1(θ′)

dθ′2

]
= 4

〈
ψ(0)

∣∣∣ (∆Ĥ)2
∣∣∣ψ(0)

〉
. (2.129)

where, as defined before, Ĥ ≡ idU
†(θ)
dθ

U(θ).
One can then see that this is precisely the upper bound found before,

i. e., the quantum Fisher information for pure states.

2.3.3 General expression for the Fisher information
and quantum Fisher information

The expression of the Fisher information can be generalized by noting that
the derivative of the probability can be written in a symmetrical form [Luo,
2004]:

∂p(θ)

∂θ
=

1

2

(
∂

∂θ
(ln p(θ)).p(θ) + p(θ).

∂

∂θ
(ln p(θ))

)
(2.130)
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In Equation (2.92), we replace the integration by trace, and the
parametrized probability p(θ) by a corresponding density operator

ρθ = e−iθĤρ0e
iθĤ , (2.131)

where ρ0 is the initial state in Fig. 2.5, and ρθ, the evolved or final state.
Also, we replace the logarithmic derivative by the symmetric logarithmic
derivative, Lθ, determined by

∂

∂θ
ρθ =

1

2
(Lθρθ + ρθLθ). (2.132)

In so doing, by using (2.130) and (2.132), we can express the quantum
Fisher information FQ(ρθ) as

FQ(ρθ) = Tr(L2
θρθ). (2.133)

This expression is quite useful and allows one to calculate the quantum
Fisher information of a given quantum state ρθ.

By using the general expression for the quantum Fisher information
given by (2.133), one can easily show that the quantum Fisher information
does not depend on the parameter θ. This is a consequence of the cyclic
property of the trace:

FQ = Tr(ρθL
2
θ) = Tr(e−iθĤρ0e

iθĤL2
θ)

= Tr(ρ0e
−iθĤL2

θe
iθĤ).

(2.134)

By using the fact that ρθ satisfies the von Neumann-Liouville equation,

i
∂ρθ
∂θ

= Hρθ − ρθH, (2.135)

and considering also equation (2.132), we have

i(ρθH −Hρθ) =
1

2
(Lθρθ − ρθLθ). (2.136)
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This last equation implies the following one

i(ρ0H −Hρ0) =
1

2
(Lρ0 − ρ0L), (2.137)

with L = e−iθHLθe
iθH .

We can see that L is independent of θ, as H and ρ0 in (2.137), are
also independent of θ. In this way, one can show that the quantum Fisher
information is independent of the parameter θ, since, as a result of (2.134),
we have

FQ = Tr(ρ0L
2). (2.138)
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Chapter 3

Modeling Leggett-Garg
inequality violation

As we have seen in the previous chapter, the Leggett-Garg inequality is a
test of the nonclassicality of a system, and involves correlations between
measurements performed at different times. According to its original inter-
pretation, a violation of the Legget-Garg inequality disproves macroscopic
realism and noninvasiveness. Nevertheless, macroscopic realism is a model
dependent notion, and one should always be able to attribute to measure-
ment invasiveness a violation of a Legget-Garg inequality. Given this, we
introduce, in the present chapter, an operational model where the effects of
invasiveness are controllable through a parameter associated with what is
called the measurability of the physical system. Such a parameter leads to
different generalized measurements that can be associated with the dimen-
sionality of a system, measurement errors, or back action. This work has
been published as an article in Phys. Rev. A [Moreira et al., 2015].

3.1 Introduction

In the previous chapter, we gave an overview of quantum theory and high-
lighted some of its contrasts with our everyday-based intuition. One may
wonder if what is at the heart of the quantum mechanical incoherences
with our world is the elusive definition of what is “classical”. Indeed, one
may be tempted to define as classical everything that does not seem to
behave quantum mechanically, as for instance objects on the human scale.
Nevertheless, this definition is not very helpful, since it is not more straight-
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forward to define what one means by “behave quantum mechanically” than
it is to do the opposite.

One aspect of quantum theory that is incompatible with classical theory,
defined as local and realist by Einstein, Podolsky and Rosen [Einstein et al.,
1935, Bohr, 1935], is Bell-type inequality violations [Bell, 1964, Clauser
et al., 1969, Aspect et al., 1982b]. However, one cannot safely assert that
all states that do not violate these inequalities are classical. Perhaps, as
suggested by our presentation in the previous chapter, the most general
property of quantum mechanics is contextuality [Cabello, 2008, Cabello
et al., 2015, Kochen and Specker, 1967], which can be observed for any
quantum state [Cabello, 2008, Badzia̧g et al., 2009]. Assuming noncon-
textuality allows one to derive inequalities, of which Bell’s are a special
case. Such inequalities suffer, in their broader and state independent ver-
sion, from a lack of intuitive interpretation. They do not classify quantum
states according to any usefulness they may have as a resource, or any
of their particular properties that would help one’s understanding of the
quantum-classical frontier.

With this goal in mind, in the 1980s, Leggett and Garg [Leggett and
Garg, 1985] proposed an inequality which is often presented as enabling
us to witness nonclassicality of a (macroscopic) system when violated. We
recall briefly the expression and discussion of the Leggett-Garg inequality
which we introduced in the previous chapter. The Leggett-Garg inequal-
ity involves measurements of a two-valued quantity Q at different times,
defined here as Q(ti). By defining Ckl ≡ 〈Q(tk)Q(tl)〉, the Leggett-Garg
inequality can be written as:

− 2 ≤ KLG ≡ C12 + C23 + C34 − C14 ≤ 2. (3.1)

As formerly introduced by Leggett and Garg and presented before in
this thesis, the Leggett-Garg inequality must be satisfied if the assumptions
of (macroscopic) realism and noninvasive measurability hold. Thus, the
Leggett-Garg inequality violation would imply nonclassicality by the terms
of both assumptions.

Notwithstanding, there has been a lively debate in the recent liter-
ature about the interpretation of the Leggett-Garg inequality violation
[O. J. E. Maroney, 2014, Clemente and Kofler, 2015, Clemente and Kofler,
2016,Moreira et al., 2016]. According to what we have seen before, Maroney
and Timpson [O. J. E. Maroney, 2014] have shown that Leggett and Garg’s
first assumption, namely macroscopic realism, is model-dependent. In the
authors point of view, as usually interpreted in the Leggett-Garg inequal-
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ity, this assumption is analogous to a superselection rule [Zurek, 2003]
that prepares the system in a statistical mixture of some privileged states.
According to this definition, violating the Leggett-Garg inequality would
imply that the system is, at some point during its evolution, in a quan-
tum superposition. However, the notion of quantum superposition is not
necessarily incompatible with either macroscopicity or with realism, and
depends on the specific interpretation of quantum theory considered. For
instance, as discussed in chapter 2, if the Bohm-de Broglie’s interpreta-
tion [Bohm and Hiley, 1993] is taken into account, then the meaning of
the violation of the Leggett-Garg inequality can be put in question [O. J.
E. Maroney, 2014]. It is then concluded that the only notion that can actu-
ally be tested in a model-independent way by the Leggett-Garg inequality
is measurement invasiveness.

It is also worth mentioning that the notion of macroscopicity in the
Leggett-Garg inequality has always been somewhat controversial. Indeed,
since one of the mathematical requirements in the derivation of the Leggett-
Garg inequality is that correlations between measurements should be corre-
lations between dichotomic observables, one may wonder what is the sense
of macroscopicity. Can one speak of macroscopicity when only two effective
numbers are assigned to each observable?

Therefore, before proceeding, we first discuss how the notion of macro-
scopicity lacks of a general definition and depends on the conditions of the
experiment considered.

3.1.1 “Micro. versus Macro.”

We have previously seen in chapter 2 that assumption (i) can be generally
called realism instead of macrorealism. The notion of realism applies to
physical systems irrespective of their size, and the use of the prefix “macro”
in “macrorealism” would express our intuition that macroscopic objects are
supposed to have a classical description. However, to my knowledge, we
still do not dispose of a general definition of macroscopicity. One may
wonder, indeed, if such a more general definition is possible.

Macrorealist theories are required to provide the regimes in which quan-
tum theory ceases to be valid, i. e. the level or scale at which quantum
theory applies [Knee, 2014]. A possible way of studying the quantum-to-
classical frontier is to apply the Leggett program [Takagi, 2005,Knee, 2014],
which consists of testing the Leggett-Garg inequality considering physical
systems of progressively increased sizes.
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This is illustrated in Fig. 3.1, taken from [Knee, 2014], where the blue
polygon delimits the region of validity of quantum theory on the parameter
space specified by the set of parameters {ri}, which can be defined, for
instance, as the number of particles, mass, distance etc. On the other hand,
if it is verified experimentally that quantum theory is valid in a region of
parameter space delimited by the set of parameters {si}, as illustrated by
the red polygon of Fig. 3.1, then one is able to establish the failure of a
macrorealist description in that region of the parameter space.

micro

macro

r1

r2

r3

r4

r5

Figure 3.1: Illustration shown in Ref. [Knee, 2014], where the blue polygon
represents the region of validity of quantum theory imposed by macroreal-
ism theories, for instance. The region in red represents experimental data
which can violate macrorealism for a set of parameters which are larger
than is fixed by the theory of macrorealism in question. The different
parameters ri can be the number of particles, mass, etc.

In Ref. [Kofler and Brukner, 2007], of which results are discussed in
detail below, some physical insight was provided to help to interpret the
role of a specific aspect of macroscopicity in the Leggett-Garg inequality,
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defined as the limit of j → ∞. Within this model, measurements become
coarse-grained or noisier in this limit and, consequently, noninvasive. It is
this specific definition of macroscopicity which we consider whenever we
refer to this term in the present chapter.

3.1.2 Is there any relationship between invasiveness
and macroscopicity?

The more general approach mentioned above, wherein the Leggett-Garg
inequality primarily tests measurement invasiveness, becomes even clearer
if one considers the mathematical formulation of the Leggett-Garg inequal-
ity. Indeed, this formulation makes explicit what features of correlations
between measurement results are being tested.

To this end, one should consider that observables Q(ti) are measured, in
each of the many runs of an experiment, in order to compute the statistical
average needed to obtain the correlations Ckl. As we have seen in details
in the previous chapter, when the two-time correlations Ckl are computed
in the situation where the four measurements Q(ti) (i = 1, 2, 3, 4) were
realized, inequality (3.1) is always satisfied, both in the classical and in
the quantum realm. The relevant experimental realizations are those when
one considers the case where only the two measurements Q(tk) and Q(tl)
are made in each run to compute Ckl. In this case, Eq. (3.1) is valid
only if the noninvasiveness assumption is made. This last situation (two
measurements at each run) corresponds to the Leggett-Garg inequality.

Thus, a possible reformulation of what is tested by a Leggett-Garg
inequality would be:

The Leggett-Garg inequality tests the pertinence of the hypotheses that
correlations between two-measurement outcomes realized at different
times are undisturbed by the realization of other measurements to the
system at different times.

Given this formulation, how can one understand previous works, where
macroscopicity seemed to enhance coarse-graining or noise, being at the
origin of a quantum-to-classical transition? Is it possible to model and
control measurement invasiveness in a way that does not depend on the
system’s size? We aim to provide answers to these questions in the following
sections of this chapter. Before addressing them, we will introduce the
aforementioned model, due to Kofler and Brukner, in which macroscopicity
is associated to coarse graining.
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3.2 Kofler and Brukner’s model

In this section and in the remainder of this chapter, we will consider a spin-
j system [Cohen-Tannoudji et al., 1973]. Spin-j systems can be associated,
e.g., with an atom or an orbital angular momentum.

Let Jα, α = x, y, z, be the α-component of J, the total spin operator.
Eigenstates of the operator jz are denoted as |m〉, −j ≤ m ≤ j. It will be
considered that the dynamics of the system is governed by the Hamiltonian:

H = ΩJ2 + ωJx, (3.2)

where Ω and ω are constants with the dimension of frequency.
We will now review the results of Ref. [Kofler and Brukner, 2007], which

uses a spin-j system as described above. In this study, Kofler and Brukner
have shown that classical physics can arise out of quantum mechanics by
increasing the size of a system, more specifically, in the limit of infinitely
large j. In order to demonstrate this, the authors first consider the special
case of a spin-j coherent state.

Spin-j coherent states are defined as the eigenstates |θ, φ〉 with maximal
eigenvalue of the total spin operator J pointing in the direction (θ, φ)1,
where θ and φ are the polar and azimutal angles respectively, i. e.,

J |θ, φ〉 = j |θ, φ〉 .

Let |θ0, φ0〉 be the initial state at t = 0, where (θ0, φ0) define the direction
in which the total spin J operator is initially pointing, be given by the
following expression:

|θ0, φ0〉 =
∑
m

(
2j

j +m

)1/2

cosj+m
θ0

2
sinj−m

θ0

2
e−imφ0 |m〉 . (3.3)

This initial state will evolve in time according to the Hamiltonian of (4.15),
such that the evolution operator is given by U(t) = e−iHt. This unitary
corresponds therefore to a rotation over the yz-plane.

1Alternatively, one may define spin-j coherent states in the following way: start-
ing from Jz |j, j〉 = j |j, j〉, and defining |θ, φ〉 := Dj(Rθ,φ) |j, j〉, where Rθ,φ
represents the rotation from the vertical axis to the direction (θ, φ), we have
Dj(Rθ,φ)JzD

j(Rθ,φ)† |θ, φ〉 = j |θ, φ〉.
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By taking into consideration this initial state and evolution, the prob-
ability that a Jz measurement gives the outcome m at time t is

p(m, t) = | 〈m | θ, φ〉 |2,

with cos θ = sinωt sin θ0 sinφ0 + cosωt cos θ0, θ and φ being the polar and
azimutal angle of the rotated spin coherent state |θ, φ〉 at time t.

If now one considers the limit j � 1 it then shown that the expres-
sion for the probability distribution can be approximated by a Gaussian
distribution

p(m, t) ≈ 1√
2πσ

e−(m−µ)2/2σ2

, (3.4)

with a width given by σ ≡
√
j/2 sin θ and µ ≡ j cos θ.

Let us now define “slots” of finite size ∆m, which subdivide the 2j + 1
possible outcomes into a smaller number 2j+1

∆m
of slots. The size of the slot,

∆m, is defined as the resolution of the measurement apparatus. Now, con-
sider that in the limit of infinite dimensionality, j →∞, ∆m scales slower
than j, ∆m = o(j), and that the relation ∆m� √j is always satisfied. As
illustrated by Fig. 3.2, it follows then that in such conditions, the slot will
become infinitely narrow. In this manner, the Gaussian distribution (3.4)
will tend to the Dirac delta function:

p(m, t)→ δ(m− µ). (3.5)

Then, it is possible to show that an entirely classical description of the
system is valid in such a limit. This classical description can be put in
terms of a spin vector J (length J ≡ |J| =

√
J(J + 1) ≈ J , when J � 1)

which at t = 0 points in the (θ0, φ0)-direction, and which evolves in time
according to the Hamilton function

H = ΩJ2 + ωJx. (3.6)

At any time, the probability that the z-component of the spin vector,
J cos θ, is in slot m is given by δ(m − µ) (3.5), as if the time evolution
of the spin components Jα (α = x, y, z) were described by the classical
Hamilton equations of motion

J̇ = [Jα, H]PB. (3.7)

According to (3.6), the solutions correspond to a rotation around the
x-axis. Put differently, in the proper continuum limit, the spin vector at
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Figure 3.2: a) Representation of the probability distribution p(m, t) that
an outcome m is obtained when measuring a spin coherent state at time t
for j � 1 (3.4). b) As j → ∞ and ∆m = o(j), p(m, t) becomes infinitely
narrow, tending to the Dirac delta function δ(m− µ).

time t points in the (θ, φ)-direction where θ and φ correspond to those of
the spin-j coherent state, and the prediction is given by δ(m−µ). One can
then note that this corresponds to a classical description of a spin vector.
Measurements are therefore not invasive within this classical description.

The authors go further by showing a generalization of the result de-
scribed above for arbitrary spin-j states, which we will not reproduce here.
See Ref. [Kofler and Brukner, 2007] for the details.

To conclude, this result illustrates how a dimension-dependent coarse-
graining allows us to retrieve a classical description as j →∞.
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3.3 Modeling measurement invasiveness in

the Leggett-Garg inequality

With the purpose of formalizing the discussion of the previous sections
and determining in a precise mathematical way the interplay between in-
vasiveness, dimensionality and violation of the Leggett-Garg inequality, we
propose a model to test the Leggett-Garg inequality using positive operator
valued measure (POVM).

As we will see, invasiveness can be associated with the resolution and
efficiency of a measurement apparatus within this model. Depending on
the experimental situation, these parameters may or may not be associated
with the dimensionality of the system. In this way, the introduced POVMs
provide a physically sound and operational interpretation of what is actu-
ally being tested by the Leggett-Garg inequality, providing a clarification
of the relationship between the notions of invasiveness and macroscopicity.

In what follows, we will consider spin-j systems, such as those described
in the previous section. We start by defining the initial state, and then
introducing generalized measurements. These measurements are defined
by parameters which, in principle, can be controlled in the experiment.

The initial state is defined as a maximally mixed state,

ρ(0) ≡ 1

2j + 1

j∑
m=−j

|m〉 〈m| . (3.8)

This choice of initial state is motivated by the fact that it ensures that non-
classicality can only appear from the system’s dynamics and the subsequent
measurements.

In Ref. [Kofler and Brukner, 2007], it was shown that measurements
defined by the observable Q̂(0) = Π̂z, where

Π̂z =
∑
m

(−1)j−m |m〉 〈m| , (3.9)

is the parity operator, lead to violation of a Leggett-Garg inequality ir-
respectively of the dimensionality of the system, for a maximally mixed
initial state of the Jz eigenstates (3.8).

Indeed, projective parity measurements involve all the states |m〉, which
creates the analogous of “collective states” associated with a single quan-
tum number. Therefore, it reduces systems of any dimension to an effective
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two level system through a mapping that applies to all possible states: the
time evolution of the parity operator involves all the system’s states in the
same way (except for a sign change). It is thus intuitively acceptable that
such a measurement will always lead to a Leggett-Garg inequality viola-
tion, since one can hardly think of a less invasive dichotomic measurement.
Based on this fact, our approach consists in defining an observable depend-
ing on a parameter σ that, at one of its extremal values, corresponds to
the parity operator.

We then write the binary correlations Ckl as follows:

Ckl ≡ pkl+q
kl
+|+ + pkl−q

kl
−|− − pkl+q

kl
−|+ − pkl−qkl+|−. (3.10)

where pkl± are the probabilities of measuring one of the outcomes ±1, and
qkl±|± are the probabilities of obtaining the ± outcomes conditioned to those
which were previously obtained. This property of the binary correlations
Ckl were already explored in a recent work by Asadian et al., where a
Leggett-Garg inequality test using the measurement of periodic observables
defined in an nanomechanical oscillator is proposed [Asadian et al., 2014].
In [Ketterer et al., 2015] it is shown that Bell-type inequalities can be
performed using observables with an arbitrary spectrum. In both works,
the key ingredient is the definition of a two-valued POVM M̂±, as follows:

Ê± = M̂ †
±M̂± =

1

2
(1± Â), (3.11)

where Â is an operator with a spectrum in the interval [−1, 1].
It is known, in light of Neumark’s theorem introduced in chapter 2,

that each element of the above defined POVM, identified by the signs ±,
is associated with one of the two possible outcomes (±1) of a projective
measurement realized in an auxiliary two dimensional Hilbert space. Thus,
operators Â have a spectrum bounded between ±1, since

〈Â〉 = P+ − P−, and

P+ + P− = 1,

(3.12)

where P± are the probabilities of obtaining one of the two possible outcomes
of measurements realized in the aforementioned auxiliary two dimensional
space.
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3.3.1 The model

We now introduce the expression of the operator Â, which satisfies all the
above mentioned properties:

Â ≡
∑
µ

∑
m∈∆mµ

(−1)(j−m)fµ(m,σ) |m〉 〈m| , (3.13)

where fµ(m,σ) = e
−(m−µ)2

2σ2 and ∆mµ are disjoint sets containing equally

sized intervals of m. All these parameters in the expression of Â are illus-
trated in Figs. 3.4 and 3.5. In the following discussion, we interpret and
discuss them.

First of all, one can see that the operator (3.13) allows the descrip-
tion of both perfect and imperfect parity measurements. For instance, if
fµ(m,σ) = 1 ∀m, Â becomes the parity operator, and Ê± are perfect, pro-
jective measurements. In this case, to each m is assigned a ±1 eigenvalue,
according to the parity of j − m. Otherwise, this operator describes an
imperfect parity measurement, as we will see below. Indeed, this interpre-
tation will be completed by providing a physical meaning for the parameters
σ, µ and ∆mµ. These parameters will be associated with the concepts of
measurability, optimal measurement, and measurement resolution, respec-
tively.

We start by interpreting ∆mµ, the measurement resolution. It deter-
mines the number of eigenvalues N , among all the possible values of m,
that the measurement apparatus can faithfully detect. Faithfully detecting
means here detecting and assigning the correct value of m to a particle.
Each of these perfectly determined values is defined as the optimal mea-
surement µ. In this way, the total number of different values m = µ is
given by

N =
(2j + 1)

N (∆mµ)
, (3.14)

where N (∆mµ) is the number of elements in ∆mµ.
We provide an illustration of these concepts within the context of a

Stern-Gerlach type experiment. In this way one can see, with the help of
Fig. 3.3, that m = µ corresponds to a perfect Stern-Gerlach type measure-
ment: the z-axis projection of the spin with value m = µ is deflected by an
angle θm = θµ that allows one to identify the position it hits on the screen,
and associate it to the correct value of m univocally. In view of (3.13),
this can be translated in the following way: for m = µ, fµ(m,σ) = 1 irre-
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spectively of the value of σ. A correct and well defined parity is therefore
associated with these values of m, i. e.,

〈Â〉m=µ = (−1)(j−m) = 〈Π̂z〉m=µ = ±1. (3.15)

The measurement resolution ∆mµ also defines the interval of values of m
that are considered around each µ: each interval ∆mµ defines the domain
of a function fµ(m,σ).

Figure 3.3: Illustration, in the context of a Stern-Gerlach type experi-
ment, of the introduced parameters governing the two valued POVM in
Eq. (3.13): a spin-j is deflected by a magnetic field with spatial inho-
mogeneities. As a consequence, for some values of m (m = µ), the perfect
measurement of m is possible (perfect correlation between m and the deflec-
tion angle, θµ, and the position on the screen, the measurement apparatus).
For m 6= µ, uncertainties ∆θm around the deflection angle θm lead to un-
certainties in the position of the spin in the measurement apparatus, and
consequently, in the value of m. The interval ∆mµ is the resolution of the
measurement, in the sense that it determines the number of µ’s that can be
faithfully measured (i. e., are associated to a fixed position in the screen).

Finally, we define the parameter σ, the measurability. Later, we will
see that it can be related to measurement invasiveness. This parameter
is a measure of the unfaithfulness of the measurement. By unfaithfulness,
we mean the following scenario: for finite σ and m 6= µ, the particle is
detected, but the value of m cannot be perfectly determined. Thus, it will
be sometimes associated with the correct value, or to a value with the same
parity (and then the correct parity will be assigned to it) and sometimes
associated with a value of m corresponding to a different parity. As a
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consequence, for m 6= µ, one cannot assign a well-defined parity, and, as a
consequence, we have

〈Â〉m 6=µ = (−1)(j−m)e
−(m−µ)2

2σ2 . (3.16)

Note that, in particular, for σ such as fµ(µ + 1, σ) = 0, 〈Â〉m 6=µ = 0

and 〈Ê±〉 = 1/2, we have the equivalent of a perfectly random parity mea-
surement. Physically, unfaithfulness of measurements could arise, in the
context of a Stern-Gerlach type experiment, as a consequence of position
dependent fluctuations of the magnetic field, which can create an uncer-
tainty ∆θm in the deflection angle depending on the value of m. All these
parameters are illustrated in Fig. 3.4, where we plotted g ≡ fµ(m,σ), with
N (∆mµ) = 3 and σ = 0.6.

We conclude this discussion by noting that the limit of σ →∞ (perfect
measurability) is equivalent to that of perfect resolution (fµ(m,σ) = 1∀m,
N (∆mµ) = 1), since all the values of m are associated to a µ, and N =
2j + 1.

In what follows, we will move to an example which illustrates how the
introduced parameters can control measurement invasiveness in a way that
is dimension independent. We then discuss how the aforementioned pa-
rameters can be modified, depending on the experimental situation, by the
system’s dimensionality or measurement efficiency. To this effect, we first
notice that the probabilities appearing in (3.10) can be written, for a given
pair of measurement times tk, tl, as:

pkl± = Tr[E±ρ̂(tl)],

qkl±|± = Tr[E±ρ̂±(tk)], (3.17)

where we have used (3.2), with Û(tk−tl) = e−iθklĴx , with θkl = ω(tk−tl). In
(3.17), ρ±(tk) is the state of the system just before the second measurement,
performed at time tk. The index ± correspond to the two possible outputs
obtained just after the first measurement which have been performed at
time tl (tl < tk). Therefore, the state at time tk, just before the second
measurement, is given by

ρ̂±(tl) = Û(tk − tl)ρ̂±(tk)Û
†(tk − tl) = e−iθklĴx ρ̂±(tk)e

iθklĴx , (3.18)

with

ρ̂±(tk) =
M̂±ρ̂(tk)M̂

†
±

p±
=

1± Â
2(2j + 1)p±

. (3.19)
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The probabilities q+|± can be therefore expressed as:

q+|± =
1

2p±
Tr

[(
1 + Â

2
e−iθklĴx

(
1± Â
2j + 1

))
eiθklĴx

]
. (3.20)

Then, it turns out that the correlations Ckl are given by

Ckl =
1

(2j + 1)
Tr(ÂeiθklĴxÂe−iθklĴx). (3.21)

Now, it is known that for an arbitrarily given value for j, the general
expansion formula for the evolution operator is [?]

eiφ(~n.~j) =

2j∑
r=0

cr(φ)

r!
(2in̂.J sin(φ/2))r, (3.22)

where n̂ is an arbitrary unitary vector, φ is the rotation angle around n̂
and the coefficients cr(φ) are such that

cr(φ) = (cos(φ/2))εTrunc[j−r/2]

(
(arcsin

√
x/
√
x)r

(
√

1− x)ε

)
, (3.23)

where x = sin2(φ/2) and ε(j − r/2) = 1−(−1)2j−r

2
.

It turns out, then, that by using this expansion, one can evaluate the
correlations of (3.21).

3.3.2 An example: spin 5/2

We illustrate the model by considering an example with j = 5/2 (a six-
level system). In order to be able to identify the parameters introduced
above, we will only consider two possible values of µ, µ± = ±5/2, and
∆mµ± = [±5/2, 0] (intersection between the two sets is unimportant, since
0 is not a possible value of m).

In this simple example, we can identify three possible values of
fµ±(m,σ), namely a, b and c, obeying the following relations: a = 1 (for

m = ±5/2) and c = b4 (for m = ±1/2), with b = e−1/2σ2
(for m = ±3/2),

since the fµ±(m,σ) considered here is a Gaussian distribution centered at
µ±.

It is clear that modifying σ leads to a modification of b and c only (a
is constant, as previously defined). Thus, for σ � 1, only µ± = ±5/2
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Figure 3.4: Representation of the function g and definition of the pa-
rameters of the POVM in Eq. (3.13) as a function of m: the measurement
results µ are the central values of m in the interval ∆mµ. For m = µ, g = 1.
The width σ determining the measurability is associated to the width of
the Gaussian function defined in each interval ∆mµ. Nevertheless, we can
see that it is not the usual variance, since irrespective of its value, g = 1
for m = µ. In the Figure, σ = 0.6 and the number of elements in ∆mµ is
given by N (∆mµ) = 3.

are faithfully measured while for σ →∞ the operator Â tends to a parity
measurement.

We computed KLG as a function of b (which here, equivalently to σ, is
related to the measurability) and of time. We considered, for simplifying
and illustrative reasons, only measurement times such as k = l + 1 and
define θl+1l ≡ θ. Results are plotted in Fig. 3.6. One can notice that the
absolute value of KLG increases monotonically with b for the cases where
the inequality is violated for some b. Nonetheless, its maximum is always
reached for b = 1, which corresponds to σ → ∞. In this situation, we
retrieve the parity operator Π̂z, and we have perfect measurability and
measurement resolution.
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Figure 3.5: Representation of the three possible values of g (a, b and c) in
the illustrative case of j = 5/2 as a function of σ for the case where m± =
±5/2 are optimally measured. The parameters a, b and c are represented for
three possible choices of b (and consequently c): red, b = 0.98 is associated
to a invasiveness measurement, and high measurability; purple, b = 0.61
and green, b = 0.008 are associated to non invasiveness measurements (from
up to bottom curve, respectively).

We can thus associate invasiveness to measurability: the more a system
is measurable, in the sense that the more one can faithfully detect different
values of m (higher value of b), the more the Leggett-Garg inequality is
violated.

Measurability is a dimension independent definition, but it can perfectly
well depend on the dimensionality of a system in a similar way as in Ref.
[Kofler and Brukner, 2007]. By making ∆mµ increase faster with j than
σ, one can, by increasing j, lose violation of the Leggett-Garg inequality.
In the present measurement model, this can be understood easily as an
increase of the measurability that is slower than the increase in resolution
(increase of σ slower than of ∆mµ). Nevertheless, such a behavior can be
observed irrespective of the dimension of the system.
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Figure 3.6: Legget-Garg parameter, KLG (Eq. (3.1)) as a function of b
for the following values of θ/π (from up to bottom curve, respectively):
0.06 (red), 0.34 (purple), 0.50 (green), 0.95 (orange). We identified, for
the cases where violation is observed for some value of b (red and orange
curves, corresponding to 0.06 and 0.95 as values for θ/π, respectively) the
values of b corresponding to the functions g plotted in Fig. 3.5. They are
represented by dotted vertical lines: red for b = 0.98, purple for b = 0.61
and green for b = 0.008. The chosen color code is the same as in Fig. 3.5.

Finally, one should note that the proposed model can also be interpreted
as a measure of disturbance of a measurement: unfaithful measurements
can also be modeled by a measurement that highly disturbs the system, i.
e., modifies the value of m during the measurement process. Consequently,
a value of m is assigned to a state but, after the measurement process, it
is no longer applicable. In this context, our model easily connects the in-
troduced parameters to the notion of classical back action and disturbance
of a measurement. The more classical back action is introduced, the less
the Leggett-Garg inequality is violated, which would exclude the possibility
of the clumsiness loophole [Wilde and Mizel, 2012], described in detail in
chapter 4.
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3.4 Conclusion

To conclude, we provided a toy model where the violation of the Leggett-
Garg inequality can be directly controlled and understood through phys-
ically sound parameters. These parameters can be associated with the
unfaithfulness of a measurement, a notion that can have different physical
origins, all of them contemplated in the introduced model. One example is
the increase of dimensionality of the system and another one is the classical
disturbance created by the measurement process.

While each parameter’s precise interpretation depends on the physical
system one uses to test a Leggett-Garg inequality, the role of each parame-
ter is clearly identified and related to the invasiveness, whatever its physical
origin is. Thus, this notion is shown to be, operationally, the most funda-
mental one that is tested in a Leggett-Garg inequality. Our model can be
used to help understanding and interpretation of Leggett-Garg inequality
tests, and can be tested experimentally in a number of physical systems,
such as Stern-Gerlach-like experiments with inhomogeneous fields, or the
orbital angular momentum of photons.
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Chapter 4

Connecting measurement
invasiveness to optimal
metrological scenarios

The connection between the Leggett-Garg inequality and optimal scenarios
from the point of view of quantum metrology is investigated for perfect and
noisy general dichotomic measurements. In this context, we show that the
Fisher information can be expressed in terms of quantum temporal corre-
lations. This connection eventually allows us to associate scenarios with
relatively high Fisher information to scenarios in which the Leggett-Garg
inequality is violated, which leads therefore to a connection between mea-
surement invasiveness and more or less favorable metrological scenarios.
Finally, we illustrate our results by using a model for spin systems.

4.1 Introduction

As mentioned in the previous chapter, the term “macroscopic” has always
been intuitively associated with classical physics. Macroscopic objects, for
instance, are the ones observed in our everyday life scale, and are expected
to behave classically. It is known that classical physics fails to provide
a description of phenomena at the microscopic level, which demand the
application of quantum mechanical principles, such as the superposition
principle and entanglement. Therefore, one is naturally led to the question
of whether such quantum mechanical principles could also be observed at
the macroscopic scale. This fundamental question concerning the validity of
extrapolating quantum mechanics to the macroscopic world [Leggett, 2002]
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was already pictured in 1935 in the Schrödinger’s cat Gedanken experiment
[Schrödinger, 1935], where superpositions of states (“dead” and “alive”) of
a macroscopic object (the cat) are at stake.

In chapter 3, we introduced an operational model relating the Leggett-
Garg inequality violation with a parameter called the measurability of phys-
ical systems. We illustrated our results using perfect and noisy parity mea-
surements performed in spin-j systems. According to our model, the more
the system is “measurable”, i.e., the more one is able to faithfully distin-
guish between its different possible outcomes, the more the Leggett-Garg in-
equality is violated. Maximum measurability therefore corresponds to pro-
jective measurements. As measurability decreases and the measurements
become weaker, Leggett-Garg inequality violation progressively ceases, van-
ishing at some point. Therefore, measurability is clearly associated with
the invasiveness of measurements, which in turn can depend e.g. on mea-
surement errors or on a dimension-dependent coarse graining [Kofler and
Brukner, 2007]. According to this model, the violation of the Leggett-
Garg inequality does not intrinsically depend on the system’s size, a notion
that lacks itself of precise definition whenever quantum systems are con-
cerned [Yadin and Vedral, 2016,Fröwis et al., 2016,Kwon et al., 2016].

Recently, remarkable experimental achievements and experimental pro-
posals regarding Leggett-Garg inequality violation for systems which can
be reasonably considered macroscopic, in relation to a given parameter,
were presented in Refs. [Knee et al., 2012, Formaggio et al., 2016, Budroni
et al., 2015].

4.1.1 A connection between temporal correlations
and quantum metrology?

Seemingly unconnected, the field of quantum metrology has recently at-
tracted considerable attention [Giovannetti et al., 2004,Giovannetti et al.,
2011,Giovannetti et al., 2006,Paris, 2009,Escher et al., 2011a,Escher et al.,
2011b,Alipour et al., 2014,Fröwis et al., 2016,Mehboudi et al., 2016,Braun
et al., 2017]. The use of some quantum mechanical states as probes for the
sake of estimating a parameter θ has been shown to lead to a better scaling,
with the dimension of the state, of the precision in the parameter’s estima-
tion than using classical resources only. For noisy systems, it was shown
that this scaling actually depends on the system’s size, the noise parameter
and noise model [Escher et al., 2011a]. Ultimately, for a fixed dimension
of the probe state, the precision of the estimation of θ usually decreases as
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the noise parameter increases, unless one resorts to appropriate control or
error-correcting methods [Braun et al., 2017].

In light of these elements, it thus seems natural to investigate con-
nections between the Leggett-Garg violation and quantum metrology. In
the present chapter, we investigate connections between temporal correla-
tions, and ultimately the Leggett-Garg inequality violation, and quantum
metrology. As we will see later, we will do so by identifying each step of
the Leggett-Garg inequality test with the steps of a metrological scenario.

Hence, before proceeding, it will be useful to recall the context of pa-
rameter estimation theory [Fisher, 1912, Cramér, 1946, Rao, 1973], which
we have discussed in details in chapter 2.

The definition of classical Fisher information (called, from now on,
Fisher information) is as follows: consider a parameter θ, the value of
which will be estimated through the measurement of a given observable. It
is clear that, if the result of the measurement is independent of θ, then no
information about this parameter can be obtained. Conversely, if the out-
put of the measurement is very sensitive to the value of θ, the measurement
will allow us to infer a more accurate value of θ. The Fisher information is
a way to characterize this sensitivity of the measurement of a given observ-
able to the estimation of the value of the parameter θ. Assuming unbiased
measurements (implying that the average of the estimated value over all
experimental results coincides with the true value of the parameter), the
standard deviation ∆θ can be written as

∆θ ≥ 1√
νF

, (4.1)

where ν is the number of repetitions of the experiment. For a given mea-
surement, F is given by

F (θ) =
∑
l

Pl(θ)

[
∂ lnPl(θ)

∂θ

]2

, (4.2)

where the Pl(θ) are the probabilities of obtaining each one of the different
outcomes l, satisfying

∑
l Pl(θ) = 1. The generalization of the Fisher infor-

mation to quantum mechanics is done by writing Pl(θ) = Tr[ρ(θ)El], where
El is a positive operator valued measure (POVM). By maximizing F (θ) over
all quantum measurements, one obtains the quantum Fisher information
(QFI) FQ [Helstrom, 1976,Holevo, 1982,Braunstein et al., 1996,Braunstein
and Caves, 1994], associated with the minimum lower bound for ∆θ, and
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saturated when ν → ∞. The quantum Fisher information provides an
upper bound to the Fisher information, and corresponds therefore to the
Fisher information associated with the optimal measurement, i.e. the one
which gives the best estimation for θ.

4.2 Leggett-Garg inequality and metrologi-

cal protocols

4.2.1 The correlation function

In this section, we compare the Leggett-Garg inequality test scenario to
a parameter estimation protocol and establish some general results. In a
Leggett-Garg inequality test, an initially maximally mixed state

ρ0 =
I
d
,

is prepared, where d is the dimension of the underlying Hilbert space.
We denote by Â the dichotomic observable measured in the Leggett-

Garg inequality, and U(ti) = e−iHti the unitary time evolution, generated
by the Hamiltonian H. From now on, we suppose that, by rescaling the
energies, the times ti are dimensionless.

Using these definitions, we have seen in chapter 3 that the two-time
correlation appearing in (3.1) can be written as

Ckl = Tr[ÂU(tk − tl)ÂU(tk)ρ0U
†(tk)U

†
j (tk − tl)] = C(θkl), (4.3)

where θij ≡ ti − tj.
We can then define the correlation function C(θ) as follows,

C(θ) =
1

d
Tr[ÂÛ(θ)ÂÛ †(θ)], (4.4)

where all the time intervals θ = t2− t1 = t3− t2 = t4− t3 are the same. The
correlation functions Ckl in the Leggett-Garg inequality (3.1) are called
stationary if they depend only the time difference θ [Emary et al., 2014].
Under this consideration, the Leggett-Garg inequality

− 2 ≤ KLG ≡ C12 + C23 + C34 − C14 ≤ 2, (4.5)
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can be rewritten as

|KLG| = |3C(θ)− C(3θ)| ≤ 2. (4.6)

Before proceeding, let us discuss Eq. (4.6). Generally, in a Leggett-Garg
test as described by (4.5), one must perform four independent experiments
in order to measure each one of the correlations C12, C23, C34 and C14.
As we assumed that the time intervals θ = t2 − t1 = t3 − t2 = t4 − t3
are the same, it suffices to determine only two terms: C(θ) and C(3θ).
Therefore, only two independent experiments, in which one performs two
subsequent measurements, are required in this case. In this way, one can
therefore notice that KLG (or C) can be expressed as a function of θ, the
time difference between subsequent measurements.

Since we consider a maximally mixed state as initial state, the system’s
state will remain the same before the first measurement for any unitary
transformation. After the first measurement, however, the system’s state
will be one of the two possible outcomes resulting from the measurement
of Â. We shall thus refer to the first measurement as the preparation
procedure.

4.2.2 A parallel between the metrological scenario
and Leggett-Garg’s

We introduce here a metrological scenario which will be related to the
Leggett-Garg inequality protocol described above. We consider the prob-
lem of estimating the parameter θ through the measurement of the di-
chotomic observable Â. This measurement, as in the case of a Leggett-Garg
inequality test, can correspond either to ideal, projective or to noisy mea-
surements, and can be generally described by a two-valued POVM. Such
measurements will be performed on a probe state, and will play a crucial
role on the ultimate precision that can be reached for the estimation of θ.

In order to establish a parallel between a metrological protocol and the
Leggett-Garg inequality we will consider the probe state to be one of the
possible outcomes of the preparation procedure, i.e., the state prepared as
result of the first measurement. Because we consider a maximally mixed
initial state, the results of the first measurement of Â are equally probable.
That is, each one of the two possible states associated with the preparation
procedure can be obtained with equal probabilities 1/2. As we will see
below in the derivation of the expression of the Fisher information, these
two states give the same results for an estimation of θ.
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The quality of the estimation of the parameter θ is characterized by the
Fisher information F (θ) given by Eq. 4.2, in which Pl(θ), with l = ±1, is the
probability for measuring each one of the two elements of the dichotomic
observable Â.

In this way, following the preparation procedure, at the time the second
measurement is performed, the evolved system’s state read

ρ+(θ) = U(θ)ρ+U
†(θ), (4.7)

if the system’s state is ρ+, i.e. as a result of recording the outcome “+1”
at the time of the first measurement. Similarly, the evolved state will read

ρ−(θ) = U(θ)ρ−U
†(θ), (4.8)

if the system’s state is ρ−, i.e. if the outcome“−1” is obtained at the first
measurement.

It follows then that the Fisher information F (θ) of either ρ+(θ) or ρ−(θ)
can be expressed as a function of the correlation function C(θ) as

F (θ) =
1

1− C(θ)2

[
∂C(θ)

∂θ

]2

. (4.9)

Derivation of (4.9)

In the following, we will show that Eq. (4.9) can be derived by con-
sidering either ρ+(θ) or ρ−(θ) as the preparation state. Explicitly, we can
express the two-valued POVMs as

Ê± = M̂ †
±M̂± =

1

2
(1± Â). (4.10)

In this way, if ρ+(θ) is considered, the probabilities of obtaining the
outcomes ± at the time at which of the second measurement is performed
can be written as

p±(θ) = Tr(Ê±ρ+(θ)) =
1

2
± 1

2
C(θ), (4.11)
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if ρ+(θ) is considered as the preparation state, and

p±(θ) = Tr(Ê±ρ−(θ)) =
1

2
∓ 1

2
C(θ), (4.12)

if one considers the preparation ρ−(θ) instead.
Finally, one obtains Eq. (4.9) by considering either the probability

distribution (4.11) or (4.12) in Eq. (4.2).

Hence, in (4.9) we have the expression of the Fisher information as a
function of quantum temporal correlations. This expression has, therefore,
several remarkable properties and will serve as guideline to establish a
connection between the Leggett-Garg inequality and the Fisher informa-
tion. As we will see, it will allow us to introduce the nonclassical notion
of measurement invasiveness in the context of metrological processes, and
discuss how it is associated with (nearly-)optimal scenarios for parameter
estimation. Before this, however, we will first discuss Eq. (4.9).

4.2.3 Connecting the Fisher information to temporal
correlations

In (4.9), we first note that the extrema of C(θ) (for which ∂C
∂θ

= 0) are also
extrema of F (θ). This follows from the derivation of (4.9):

∂F

∂θ
=

1

(1− C2)2

[
2(1− C2)

∂C

∂θ

∂2C

∂θ2
+ 2C

(
∂C

∂θ

)2
]
. (4.13)

A priori, the extrema of C(θ) are not all extrema of F (θ), but let us focus
on their common extrema, which we will label by θe.

It is straightforward to show that θe is a maximum of F if and only if
C(θe)

2 = 1. The value C = ±1 can only be obtained for an ideal projective
measurement. In particular, if we have such an extremum of C at θ = 0, and
if C(θ) is a periodic function with period denoted by T (which is the case
if the Bohr frequencies of H are commensurate), then θ = nT (n ∈ N) will
also correspond to extrema. In this last case, as C(θ) is an even function,
i.e. it fulfills the condition C(θ) = C(−θ), it can be shown that θ = nT/2
is also an extremum of C(θ). The global extremum correspond to the value
C(nT/2)2 = 1 only for ideal projective measurements.
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On the other hand, if an extremum of C is such that C(θe)
2 6= 1, then

F (θe) = 0 and θe is necessarily a minimum of F . This is the case for noisy
measurements.

Therefore, we find a very peculiar situation, in which the estimation
of θe can be optimal when the measurement is ideally projective but all
information about θe is lost when an infinitesimal amount of noise is added
to the measurement. Indeed, if the noise is such that

C(θe) = 1− ε, (4.14)

then F (θe) = 0, for ε as small as one wishes. In other words, the max-
imum of F which is also an extremum of C is not robust against noisy
measurements for parameter estimation.

4.3 Parity measurement on a spin system

The expression of the Fisher information as a function of C(θ) (4.9) is quite
general, and is only based on the fact that dichotomic measurements are
performed in the experiment described by the protocol presented above for
parameter estimation. In the following, we will consider a specific example
which illustrates its consequences.

We will study the case of parity measurements performed in a spin-
j system. Parity was shown to be useful in quantum optical metrology
[Chiruvelli and Lee, 2011,Gerry and Mimih, 2010], and has also been used
in our model, presented in the previous chapter, within which Leggett-
Garg inequality violation is controlled through a parameter determining
the invasiveness of a POVM.

Let us consider, then, the same system as described in the previous
chapter: a spin operator J , with spatial components Jυ, υ = x, y, z. The
Jz eigenstates are denoted as |m〉 , −j ≤ m ≤ j, where j(j + 1) (j ∈ N)
are the eigenvalues of J2. The dynamics of the system is governed by the
following Hamiltonian:

H = ΩJ2 + ωJx, (4.15)

where Ω and ω are constants with the dimension of frequency (~ = 1). The
initial state is given by a maximally mixed state:

ρ0 =
1

2j + 1

j∑
m=−j

|m〉 〈m| , (4.16)
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in such a way that, within this model, Leggett-Garg inequality violations
can only arise from the measurements and system’s dynamics. We consider
the two-valued POVM in Eq. (4.10) with

Â ≡
∑
µ

∑
m∈∆mµ

(−1)(j−m)fµ(m,σ) |m〉 〈m| . (4.17)

The functions fµ(m,σ) = e
−(m−µ)2

2σ2 and ∆mµ are disjoint sets containing
equally sized intervals of m. The parameter σ can be interpreted as being
associated with the unfaithfulness of the measurement: for finite σ and
m 6= µ, the particle is detected, but the value of m cannot be perfectly
determined. Hence, σ → ∞ implies performing projective measurements,
with perfect determination of the system’s parity as, for this case, Â = Π̂z =∑

m(−1)j−m |m〉 〈m|. Finally, the parameter ∆mµ determines the number
N , among all the possible values of m that the measurement apparatus can
faithfully detect, and therefore is called the measurement resolution of the
measurement apparatus.

As the preceding chapter, we study the example of a spin 5/2, which
will allow us to illustrate our results. In this example, we introduce a pa-
rameter, b, that is directly associated with the measurability of the system,
or alternatively, to the invasiveness of a measurement and the width σ of

the function fµ(m,σ) = e
−(m−µ)2

2σ2 . As we considered in the previous chap-
ter, by defining b ≡ e−1/2σ2

, we have that σ → ∞ corresponds to b → 1,
and σ → 0 to b → 0. In (4.17), we consider only two possible values of µ,
µ± = ±5/2, and the two corresponding intervals are ∆mµ± = [±5/2, 0].

We move on to the computation of the Fisher information and the
quantum Fisher information relative to the estimation of the parameter
θ. As mentioned before, the first parity measurement of the Leggett-Garg
inequality is identified as the state preparation procedure in the protocol
for parameter estimation. Therefore, this preparation state is one of the
following ones:

ρ±(tk) =
(Ê±)

1
2ρ0(Ê±)

1
2

p±
. (4.18)

In the protocol for parameter estimation, we will consider that the state
which is prepared as a result of the first measurement is ρ̂+. As we men-
tioned above, this choice is justified by the fact that either ρ̂+ or ρ̂− lead
to the same results.
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By taking into consideration the state’s dynamics given by (4.15), the
evolved state ρ+(θ), immediatelly before the realization of the parity mea-
surement, can be written as follows:

ρ+(θ) = U(θ)ρ+(tk)U
†(θ) = e−iθJxρ+(tk)e

iθJx . (4.19)

Using this state, we computed the Fisher information F (b, θ) defined by
(4.2), corresponding to measurements with the two-valued POVMs given
by (4.10). We also evaluated the quantum Fisher information FQ(b) by
using the expression in Ref. [Liu et al., 2014].

In the following, we split the analysis of the results into two cases: for
noise-free parity (b = 1) measurements and noisy parity measurements
(b 6= 1).

4.3.1 Projective parity measurements (b = 1)

The results for b = 1, i.e. for projective, noise-free parity measurements,
are shown in Fig. 4.1(a). The Fisher information F (1, θ) and the quantum
Fisher information FQ(b = 1) are both shown in this figure.

We see that both quantities are equal for θ = nπ, showing that the
measurement scenario is optimal at this point. We also note that these
maxima of F (1, θ) are also extremum of C(θ), and, as expected, the corre-
lation function reaches its optimal value C = ±1 at these points.

We then compare these results to KLG defined in Eq. (2.2) as a function
of θ. The point of maximal correlation cannot be a point of Leggett-Garg
inequality violation, and this is well illustrated in Fig. 4.1(a). Therefore,
invasiveness cannot be witnessed for θ = nπ. As it is shown in Fig. 4.1(a),
the region around θ = nπ corresponds to relatively high Fisher informa-
tion, and maximum Leggett-Garg inequality violation also occurs in this
region. In the framework of this model, we see that favorable metrolog-
ical scenarios occurs in the same region where invasiveness is witnessed
through Leggett-Garg inequality violation. Nevertheless, the maximum of
the Fisher information does not coincide with the maximum violation of
the Leggett-Garg inequality. But as we have seen in the previous section,
we expect these maxima of the Fisher information not to be robust against
infinitesimal addition of noise to the measurement process.
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4.3.2 Noisy parity measurements (b < 1)

We now examine the cases corresponding to limited precision, which cor-
responds to measurability b < 1. As b decreases and the measurements
become noisier, both the Leggett-Garg inequality violation and the opti-
mality of the metrological scenario are progressively degraded.

In Fig. 4.1(b), we have plotted F (θ), C(θ) and K(θ) for b = 0.99. This
correspond to a “quasi-projective” measurement. We now observe that the
Fisher information is zero at θ = nπ. This drastic transition observed in
this specific model is the consequence of the general relationship between
the correlation function and the Fisher information given by Eq. (4.9). As
discussed above, this “collapse” of the Fisher information induced by a
noisy measurement occurs because θ = nπ are common extremum of C
and F .

This observation further suggests that the Leggett-Garg inequality vio-
lation at the maximum Fisher information is a hallmark of the robustness
of the latter against noise.

In this way, we have obtained, in the framework of this model, a con-
nection between the points where invasiveness is witnessed and those cor-
responding to favorable metrological scenarios. From our results, one can
see that the generalization of such a connection between Leggett-Garg in-
equality and metrological scenarios to other physical models deserves future
investigations.

4.3.3 Discussion

Our model sheds light on the relationship between the quantum Fisher
information and quantum invasiveness. Some physical insight about this
connection was already given in Ref. [Fröwis and Dür, 2012] where, by
taking into account a “no-signaling in time condition” [Kofler and Brukner,
2013], the authors argued that quantum states with large FQ are necessary
for Leggett-Garg inequality violation with large measurement uncertainties.

In order to further investigate this point, we plotted F , KLG and FQ as
a function of b for fixed values of θ in Fig. 4.2. Specifically, in Fig. 4.2(a), we
have fixed θ/π = 0.95, a value that allows the violation of the Leggett-Garg
inequality for b > 0.94. We see that both FQ and F increase monotonically
as b increases and F approaches its optimal value, FQ, in the region where
Leggett-Garg inequality is violated. On the other hand, in Fig. 4.2(b), we
take θ/π = 0.34 so that no violation of the Leggett-Garg inequality can
occur. Note that FQ remains the same as a function of b, as FQ does not
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depend on θ. It is thus clear that large QFI is not a sufficient condition for
the Leggett-Garg inequality violation.

Note as well that, in Fig. 4.2(b), the Fisher information increases mono-
tonically as b increases but it does not reach its optimal value, FQ. In order
to investigate further the relationship between the Fisher information and
the Leggett-Garg inequality violation, we plot in Fig. 4.3 the normalized
Fisher information F/FQ versus the absolute value of the Leggett-Garg
parameter |KLG|. See caption for details.

We see that both the maximum (normalized) Fisher information and the
maximum of |KLG| monotonically increase with b. Furthermore, note that
F/FQ at the point of maximal violation of the Leggett-Garg inequality
(solid magenta line) is a monotonically increasing function of the viola-
tion itself. We can also see that, even though the maximization of F and
|KLG| are generally incompatible, violation of KLG is necessary to access
the nearly optimal regime of F/FQ above≈ 0.82. Finally, we see that, when
the Leggett-Garg inequality is violated, there is a lower bound for the Fisher
information, given by F/FQ & 0.27, thus Leggett-Garg inequality violation
guarantees a non-trivial minimum metrological precision. Conversely, when
the Leggett-Garg inequality is not violated, the Fisher information can be
arbitrarily small and vanish for specific parameter settings.

4.4 Discussion about measures of macro-

scopic coherence and relationship with

invasiveness

Coherence is an intrinsic quantum property, which is directly related to
the notion of quantum superposition. As discussed before in this thesis,
coherence terms are those non-diagonal terms of a density operator, which
are related to nonclassical phenomena such as quantum interference. The
study of coherence of quantum states and its quantification within the
context of resource theories [Coecke et al., 2016] has received considerable
attention over the last few years [Girolami, 2014, Baumgratz et al., 2014,
de Vicente and Streltsov, 2017,Marvian and Spekkens, 2016]. A review of
these efforts can be found in Ref. [Streltsov et al., 2016].

Here, we will focus on the notion of macroscopic coherence, which, in
the same manner as coherence, will also be discussed within the context
of a resource theory. Loosely speaking, measures of macroscopic coherence
also take into consideration a definition regarding the macroscopicity of
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the quantum state [Korsbakken et al., 2007,Korsbakken, J. I. et al., 2010,
Nimmrichter and Hornberger, 2013, Fröwis et al., 2016, Marquardt et al.,
2008,Kwon et al., 2016,Yadin and Vedral, 2016,Leggett, 2016]. This is the
reason why they are called “macroscopic”.

In the following, we will set the context for the discussion of measures of
macroscopic coherences by presenting some concepts on resource theories.

Some concepts on resource theories

We will here briefly highlight some elements and concepts of resource theory
which will be used in the remainder of this chapter [Yadin and Vedral,
2016,Baumgratz et al., 2014]:

• Free states : states containing no resource.

• Free operations E , given a state ρ, are defined as

E(ρ) =
∑
α

K†αρKα, (4.20)

where Kα are Kraus operators satisfying K†αKα ≤ I, in such a way
that E is defined as a completely positive trace-non-increasing map. A
free operation is defined as any quantum operation which is incapable
of creating resource.

• Finally, a measure or monotone of the resource must give zero for free
states and never increase under free operations.

As we will see in the following, the measure or monotone proposed in
Ref. [Yadin and Vedral, 2016] is defined as the quantum Fisher information
FQ(ρ,H) of a quantum state ρ which undergoes a transformation governed
by a Hamiltonian H, such as ρ(θ) = e−iHθρeiHθ, where θ is the time evolu-
tion.

4.4.1 Yadin and Vedral’s measure of macroscopic co-
herence

In Ref. [Yadin and Vedral, 2016] the notion of coherence is introduced by
taking into account the definition of a quantity called δ-coherence. This
definition is associated with a superposition of the eigenstates |ei〉 and |ej〉:
given an observable H, and the coherent superposition of its eigenstates
|ei〉 and |ej〉, then δij ≡ |ei − ej|. Roughly speaking, for this measure, the
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notion of macroscopicity is captured by giving more weight to superposi-
tions involving eigenstates of H to which are associated the largest pos-
sible difference between the corresponding eigenvalues. The definition of
macroscopicity here is therefore clearly associated with a notion of distance
defined by δ, i.e. the difference between the eigenvalues of the observable
H.

In order to introduce this measure, let us consider a quantum state
expanded in the basis of eigenstates of H, ρ =

∑
i,j ρij |ei〉 〈ej|, in such a

manner that the part containing the δ-coherence reads

ρ(δ) =
∑

i,j: ei−ej=δ

ρij |ei〉 〈ej| . (4.21)

In this way, the entire quantum state can be expressed as

ρ =
∑
δ

ρ(δ). (4.22)

with δ ∈ ∆ = {ei − ej}i,j, the set with all the differences between the
eigenvalues of H.

Hence, in the context of resource theories and considering coherence as
the resource, let us assume that a reasonable measure M of macroscopic
coherence is expected to satisfy the following properties:

(i) M(ρ) ≥ 0 and M(ρ) = 0↔ ρ = ρ(0).

(ii) For a deterministic free operation E - i.e., Tr(E(ρ)) = 1, M(ρ) ≥
M(E(ρ)).

(iii) Also, for E =
∑

ν εν, M(ρ) ≥ ∑
ν pνM(σν), where the outcome

σν = Eν(ρ)/pν occurs with probability pnu = TrEν(ρ).

(iv) M(
∑

i piρi) ≤
∑

i piM(ρi).

(v) Let |ψ〉 = 1√
2
(|ei〉+ |ej〉) and |φ〉 = 1√

2
(|ek〉+ |el〉). If |ei− ej| > |ek− el|

then M(|ψ〉 〈ψ|) >M(|φ〉 〈φ|).

The quantum Fisher information is shown to satisfy all the proper-
ties (i)-(v). These conditions are not independent, since (iii) and (iv)
imply (ii). In Appendix B, we provide a proof that the quantum Fisher
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information fulfils the conditions described above by following the proof
sketched in Ref. [Yadin and Vedral, 2016].

The quantum Fisher information is therefore a measure of macroscopic
coherence. As mentioned above, in this measure, the notion of macroscop-
icity is captured by giving higher weight to superpositions of eigenstates
associated to larger δ’s, as one can see from condition (v).

Now, we will finally discuss the relationship of this measure with our
model. Our results suggest an interconnection between invasiveness (which
is related to the parameter b, see chapter 3) and the present measure of
macroscopic coherence. This is discussed in the previous section and de-
picted in Fig. 4.2, since this measure corresponds to the quantum Fisher in-
formation, FQ(ρ,H), with ρ = ρ̂+. Hence, as the measurability b increases,
both the absolute value of the Leggett-Garg parameter and the quantum
Fisher information increase. In this way, as suggested by our model within
the context of the parallel between metrological and the Leggett-Garg sce-
narios, when the Leggett-Garg inequality is violated, the preparation states
associated with this violation also have large macroscopic coherences asso-
ciated to them. However, as we have also seen in the previous section, the
inverse does not hold, i.e., there are preparation states which, in despite
of having large macroscopic coherence, do not violate the Leggett-Garg
inequality.

4.5 Conclusion

We have established a connection between temporal correlations, involved
in Legget-Garg inequality tests, and the Fisher information associated with
a specific metrological scenario.

In particular, guided by the general expression of the Fisher informa-
tion in terms of two-time correlation functions, we established that the
precision of the estimation is very fragile against noise unless accompanied
by Leggett-Garg inequality violation. In addition, and looking at a specific
example, we showed that large quantum Fisher information is not sufficient
for violating the Leggett-Garg inequality.

We also illustrated how violation of Leggett-Garg inequality may set
a non-trivial lower bound for the precision of parameter estimation while,
on the other hand, large Leggett-Garg inequality violations may enable
nearly optimal parameter estimation. The ultimate precision limit in which
Fisher information and quantum Fisher information coincide may only be
achieved under violation of the Leggett-Garg inequality. Generalization of
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such intriguing connections between measurement invasiveness and sensi-
tivity beyond specific models certainly deserves further investigation.

Finally, we discuss, through our model, a relationship between inva-
siveness and the quantum Fisher information, and also with a measure of
macroscopic coherence.
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Figure 4.1: Plots of Fisher information F (solid magenta line, scaled to the
right vertical axis), quantum Fisher information FQ (dashed magenta line,
scaled to the right vertical axis), absolute value of the two-time correlation
C (dotted black line, scaled to the left vertical axis) and absolute value of
KLG (solid black line, scaled to the left vertical axis), as a function of θ, for
(a) b = 1 and (b) b = 0.99. The Leggett-Garg inequality violation region
(relative to the left vertical axis) is shaded in light gray. All the plotted
quantities are dimensionless. 93
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Figure 4.2: Plots of Fisher information F (solid magenta line, scaled to the
right vertical axis), quantum Fisher information FQ (dashed magenta line,
scaled to the right vertical axis), absolute value of the two-time correlation
C (dotted black line, scaled to the left vertical axis) and absolute value
of KLG (solid black line, scaled to the left vertical axis), as a function of
θ, for (a) b = 1 and (b) b = 0.99. The LGI violation region (relative to
the left vertical axis) is shaded in light gray. All the plotted quantities are
dimensionless.
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Figure 4.3: Normalized Fisher information, F/FQ, versus the absolute value
of the Leggett-Garg parameter |KLG|. The dashed gray lines are contours
at fixed b for all θ ∈ [0, π/2]. Specific contours at b = 0.5, 0.7, 0.9, 0.99, 1.0
are highlighted as solid dark gray lines. The solid magenta line connects the
points at the optimal θ maximizing the Leggett-Garg inequality violation,
while the dashed magenta line connects the points at the θ maximizing in-
stead the Fisher information. The Leggett-Garg inequality violation region
is shaded in light gray. All the plotted quantities are dimensionless.
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Chapter 5

An experimental proposal for
testing measurement
noninvasiveness

In this chapter, we explore an inequality based on the non-disturbance con-
dition. This is an alternative to the Leggett-Garg inequality which also rules
out measurement noninvasiveness, allowing one to argue against the possi-
bility of explaining its violation as a result of classical disturbance, instead
of a nonclassical effect. In this way, by using this inequality, we propose
an experimental protocol which would allow one to witness measurement
invasiveness in systems constituted of N spin-j particles. First, we dis-
cuss the simpler case of spin 1/2 systems, and then generalize for arbitrary
spin-j. In both cases, we show that quantum theory predicts violation of
the inequality.

5.1 Introduction

So far, we have addressed a fundamental aspect of the frontier between
classical and nonclassical effects, related to the notion of measurement in-
vasiveness. Measurements of physical systems, which permit one to ob-
tain information about their properties, presuppose their interaction with
a measurement device. However, classical physics assumes measurement
noninvasiveness, which is to say that, in principle, one can perform mea-
surements on classical systems with arbitrarily small disturbance on their
evolution. Conversely, one aspect of the nonclassicality of physical systems
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is invasiveness, meaning that measurements on these systems often affects
their subsequent evolution and which cannot be explained by classical the-
ory.

For example, measurement invasiveness can be illustrated, within the
context of the Copenhagen interpretation of quantum theory, by the so-
called concept of collapse. According to this concept, a quantum super-
position of outcomes is reduced to a single one of these results when the
system is measured, with probability of obtaining that particular outcome
given by the Born rule. The non-deterministic nature of this scenario illus-
trates the contrast between quantum description and classical physics in
regards to measurement processes. More generally, as pointed out earlier
in this thesis, fundamental questions and problems related to the measure-
ment process within the scope of the different interpretations of quantum
formalism are at the core of the “quantum measurement problem” [Leggett,
2002].

In this chapter, we will present some protocols for testing the Leggett-
Garg inequality and discuss how they can help verify that, whenever the
Leggett-Garg inequality is violated in an experiment, this is related to
measurement invasiveness. Then, by exploring a specific protocol based on
the non-disturbance condition [Knee et al., 2016], we will develop a proposal
for a test of noninvasiveness for spin-j systems.

5.2 Leggett-Garg experimental tests and

the clumsiness loophole

An experiment must always be capable of demonstrating convincingly that
an experimental violation of the Leggett-Garg inequality is a proof of inva-
siveness, i.e., that the violation is due to a nonclassical effect. In order to
address this issue, one must be able to devise strategies in order to avoid
or at least minimize the possibility of the Leggett-Garg inequality violation
being explained in terms of classical clumsiness, i.e. classically invasive
measurements or errors present in the experiment.

In fact, as pointed out in Ref. [Wilde and Mizel, 2012], it is, in principle,
impossible to definitively prove that a measurement device is not clumsy.
Even if a measurement device is not clumsy for a number of tests, one can-
not be prove that it would not be for others. Put differently, the hypothesis
that a measurement device is not at all clumsy can always be falsified, but
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cannot be shown to be definitively true. This problem is usually referred
as the clumsiness loophole.

In the course of the last seven years, there have been a number of
experimental tests of measurement noninvasiveness [Xu et al., 2011,Goggin
et al., 2011,Athalye et al., 2011,Souza et al., 2011,Knee et al., 2012,Dressel
et al., 2011, Emary et al., 2012, Palacios-Laloy et al., 2010, Groen et al.,
2013, Robens et al., 2016, Wang et al., 2017a, Wang et al., 2017b]. Ref.
[Emary et al., 2014] contains a review of some of these realizations. As we
have pointed out above, the conclusions drawn from these tests inevitably
suffer as a result of the clumsiness loophole, even though there have recently
been outstanding improvements permitting to reduce the effects of this issue
[Knee et al., 2016,Wang et al., 2017b,Robens et al., 2016]. In the following,
we will review the protocols and strategies most commonly employed, in
order to reduce the effects of the clumsiness loophole, up until the current
time. The last of these, called the non-disturbance condition, will receive
particular attention in the experimental proposal developed in the present
chapter.

5.2.1 A protocol addressing the clumsiness loophole

In Ref. [Wilde and Mizel, 2012], a strategy is devised in order to minimize
the effects of classical clumsiness in tests of the Leggett-Garg inequality.
This strategy is based on the definition of adroit measurement. As an intro-
duction to this definition, consider, for instance, the experiment represented
in the first line of Fig. 5.1, where a dichotomic observable Q is measured
at times ti, i = 1, 2, 3. We will denote the outcome of a measurement of
the observable Q at time ti by Qi = Q(ti). The second measurement at t2
is said to be adroit if “it does not have any effect on the joint probability
distribution of the outcomes of the first and third measurements” [Wilde
and Mizel, 2012].

In order to formalize this notion, consider that the outcomes of the first
and third measurement are Q1 = a and Q3 = c. In this case, the second

98



measurement is ε-adroit if the following inequality is satisfied:

∑
a,c

|p(a, c|2nd measurement is performed)

− p(a, c|2nd measurement not performed)| ≤ ε,

(5.1)

where p(a, c) are joint probabilities of obtaining the outcomes a and c.
Now, given that the 2nd measurement is confirmed to be ε-adroit, it

is not unreasonable to assume that two ε-adroit measurements yield a 2ε-
adroit composite measurement - this is called closure of adroit measure-
ments. However, if there is an abrupt effect provoked by the 2nd mea-
surement which is not revealed by the ε-adroitness test, it is in principle
possible for two apparently ε-adroit measurements to collude and cause a
strong disturbance. In this case, inequality (5.1) would be violated due to
“undetected” clumsiness in the ε-adroit test. This protocol does not rule
out this possibility, which, in the authors’ words, is “unnatural”.

It is also described in Ref. [Wilde and Mizel, 2012] how adroit mea-
surements can be employed in a Leggett-Garg inequality test, helping one
to argue against the possibility of classical disturbances whenever one ob-
tains a violation. Suppose the experiment depicted in the first line of
Fig. 5.1(counting from the top) is carried out (counting from the top) with
the input state ρ and considering Q2 = A, and its ε-adroitness is determined
with Q1 = M ′, and Q3 = M ′′. Then, one also establishes the ε-adroitness
of measurements of Q2 = B and Q2 = C, in the conditions illustrated in
the second, third and fourth lines of Fig. 5.1.

Finally, one performs a Leggett-Garg test described in chapter 2, such
that

〈Q1Q2〉+ 〈Q2Q3〉 − 〈Q1Q3〉 ≤ 1, (5.2)

also considering Q1 = M ′, and Q3 = M ′′ and the input ρ, as illustrated
in the last line of Fig. 5.1. This test is such that, in the realizations to
measure the correlation 〈Q1Q3〉, one carries out neither the “box” of mea-
surements ABC, nor the measurement of Q2. Conversely, both the “box” of
measurements ABC and Q2 are measured in the realizations to determine
〈Q1Q2〉 and 〈Q2Q3〉. Finally, by invoking the closure of adroit measurement
(since all the measurements involved in the realizations have been previ-
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Figure 5.1: Illustration of the protocol devised in order to tight the clum-
siness loophole, adapted from Ref. [Wilde and Mizel, 2012]. First to fourth
line (counting from the top): sketch of the experiments in which the ε-
adroitness of the measurements of the observables are individually estab-
lished, considering the input state ρ and Q1 = M ′ and Q3 = M ′′. Finally,
in the last line, we have a representation of the measurements used in a
Leggett-Garg test. The “box” of measurements is performed whenever Q2

is also performed. By assuming the closure of adroit measurements, one
can reasonably claim that, if the a violation is observed, it is due to a
nonclassical effect.

ously determined to be ε-adroit), whenever one observes a Leggett-Garg
inequality violation, one can therefore reasonably attribute this violation
to invasiveness.

An example of violation using this protocol can be found in Ref. [Wilde
and Mizel, 2012] for a qubit system.
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5.2.2 Ideal non-negative measurements

The proposition of protocols relying on ideal non-negative measurements
[Leggett and Garg, 1985,Leggett, 2008,Leggett, 1988], is another strategy
which has been employed in many experiments with the goal of provid-
ing elements which would allow one to argue against the possibility of
explaining the Leggett-Garg violation as having classical disturbance as
its cause [Leggett and Garg, 1985]. Indeed, this condition was proposed
in 1985 by Leggett and Garg in their proposition of the inequality with
a system called flux qubit. The detailed description of this system and
proposition can be found in Ref. [Leggett and Garg, 1985].

The concept of non-negative measurements can be illustrated by using
a qubit system {|0〉 , |1〉}. Suppose that, in a experiment, we use a mea-
surement device which cannot interact with the state |0〉, whilst it can only
interact (and then “click” with a hundred percent probability) with the sys-
tem’s state |1〉. Then, whenever the device does not click, one can deduce
that the system was in the state |0〉 immediately before the measurement.
Now, by using a device which cannot interact with the state |1〉, but that
does detect the system in state |0〉, one can obtain the complete set of data
in a non-invasive way.

In summary, the basic principle of an ideal non-negative measurement
is to reject the set of data obtained whenever the measurement device
interacts with the system, i.e., whenever the detector clicks, for instance.
Therefore, one can be sure that all the data collected in the experiment
is obtained in situations where there is no interaction of the measurement
device with the system, thus avoiding classical clumsiness.

5.3 The non-disturbance condition

We will now review the protocol proposed in Ref. [Knee et al., 2016], based
on a condition called quantum witness [Schild and Emary, 2015]. We also
describe how, ideally, it avoids the clumsiness loophole. This involves the
test of what was defined by the authors as the non-disturbance condition.
The definition of the non-disturbance condition is given in the context of
the illustration of Fig. 5.2, where the measurement of the observable Q,
which has g and e as possible outcomes, is performed at t2.

At t = 0, the system is in a preparation associated with the outcome
g, the eigenstate |g〉. Then, one prepares the state ρ by applying a unitary
transformation U1 to the initial state. In the upper part of Fig. 5.2, a
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Figure 5.2: Scheme of the main experiment: in the upper part, a system
initially in the state |g〉 at t = 0 is subjected to the transformation U1, and
then to the measurement operation O at t1. Finally, the measurement of
the observable Q is performed at t2. The same realization is considered in
the lower part of the figure, except for the fact that O is not carried out at
t1.

measurement operation O is performed at t1. Such measurement can be
a blind measurement [Schild and Emary, 2015]. A measurement is called
blind whenever one does not record or have access to the measurement
results.

Next, the system is subjected to the transformation U2, with Q being fi-
nally measured at t2. By repeating many times both experiments, sketched
in the upper and lower part of Fig. 5.2, one is able to collect statistics and
finally obtain the expectation values 〈Q〉′ρ and 〈Q〉ρ, respectively. In the
upper part, the prime indicates that the measurement operation O at t1 is
performed. In the lower part of Fig. 5.2, the same experimental realization
is considered, except for the fact that O is not performed. The definition
of the non-disturbance condition is then given by

dρ ≡ 〈Q〉ρ − 〈Q〉
′
ρ = 0. (5.3)

Consequently, the non-disturbance condition is verified only if the mea-
surement operation O has no significant effect on the statistics of the last
measurement.

102



In a recent paper [Wang et al., 2017b], K. Wang and co-authors gen-
eralize this protocol by replacing O by a general Kraus map. Therefore,
even a unitary operation would be suitable for replacing the measurement
operation O. The interpretation of this generalization is based on the fact
that, in quantum theory, a global quantum phase of a state have a null
effect on quantum systems, since it cannot be detected. However, if no
quantum superposition of eigenstates preparations is possible (according
to quantum theory, the states involved in a quantum superposition pick
up relative phases) and one has just a statistical or incoherent mixture,
then dρ = 0 must be obtained. Hence, the violation of (5.3) would allow
one to verify nonclassical behaviour associated with the invasiveness of O.

Proof of the non-disturbance condition

The proof of the non-disturbance condition follows immediately from
the derivation of the quantum witness in Ref. [Schild and Emary, 2015].
In order to derive the non-disturbance condition in this general case,
consider two observables A and B, measured at times t = 0 and t = T > 0,
respectively. In the general case, where the measurement of observable A
is a blind measurement, we represent its possible outcomes by ai. Suppose
one measures the observable B, obtaining always the outcome b. The
quantum witness is then defined as follows

W = P (b)− P ′(b), (5.4)

where P ′(b) =
∑

i P (b|ai)P (ai), with P (b|ai) the conditional probability
of obtaining the outcome b, given that the outcome ai was previously
obtained. W is then expected to be zero if the measurement of observable
A does not affect the probability of obtaining the outcome b at a later
time.
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5.3.1 Control-experiment: ruling out classical clum-
siness

A control-experiment, the scheme of which is depicted in Fig. 5.3, is set in
parallel to the main experiment, with the goal of avoiding classical distur-
bances of the measurement at t1.

In Ref. [Knee et al., 2016] a scheme similar to Fig. 5.2 is considered,
with the difference that the transformation U1 is not applied. One can then
write the classical non-disturbance conditions

dg = 〈Q〉g − 〈Q〉
′
g

de = 〈Q〉e − 〈Q〉
′
e ,

(5.5)

where the index g or e indicates the corresponding preparations. Therefore,
if dg or de is not equal to zero, it follows then that O induces a classical
disturbance.

Thus, taking into account the control-experiments and by assuming that
they can reasonably rule out the classical disturbances, nonclassical effects
can be witnessed only if the following inequality is violated:

min(dg, de) ≤ dρ ≤ max(dg, de). (5.6)

In this way, by associating the preparations with the eigenstates of a given
observable, effects of classical disturbances in the experiment can be ruled
out. This follows from the fact that eigenstates of the observable consid-
ered, having definite outcomes associated with them, can be related with
classical states. Therefore, by performing these experiments, one can deter-
mine the classical clumsiness resulting from the test of the aforementioned
classical preparations.

5.4 Testing measurement noninvasiveness

within spin-j systems

Here, we will employ the protocol described above in order to propose an
experimental test of measurement noninvasiveness in systems constituted
of N spin-j particles. First, we will consider spin 1/2 systems, and then
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Figure 5.3: Scheme of the control experiment: in the upper part, a system
initially in the state |g〉 at t = 0 is subjected to the measurement operation
O at t1. The measurement of the observable Q is performed at t2. The
same realization is considered in the lower part of the figure, except for the
fact that O is not carried out at t1

generalize for arbitrary spin-j. By judiciously choosing the measurement
operation O and the transformations U1 and U2, we will show that quan-
tum theory predicts a maximal violation equal to the number of particles
N , for arbitrary spin-j systems. Such large violations would possibly be
more effective in order to overcome issues as classical clumsiness in the
experiment.

5.4.1 N Spin 1/2 particles

We will first consider a two-level system constituted of N spin 1/2 particles,
and define the observable Q as

Q =
N∑
k

|e〉k 〈e| − |g〉k 〈g| . (5.7)

Hence, the measurement of Q determines the populations of the eigenstates
|e〉k and |g〉k, where |e〉 is associated with the spin eigenstate of the k-
th particle |e〉k → |1/2〉 and |g〉k → |−1/2〉. As mentioned above, the
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measurement of Q̂ can be accomplished by performing a Stern-Gerlach like
experiment such as described in chapter 3, for instance. In what follows,
the other elements of the main and control experiments illustrated in Figs.
5.2 and 5.3 are defined. We consider the transformations U1 = U2 = U as
rotations of π/2 around the ŷ-axis, i. e.,

U = (e−i
π
2
σy)⊗N , (5.8)

where σy is the Pauli matrix [Cohen-Tannoudji et al., 1973] associated with
the y-component of the spin 1/2. As a result, when U is applied to each
one of the one-particle eigenstates |g〉 and |e〉, one obtains

|g〉 → 1√
2

(|g〉+ |e〉)

|e〉 → 1√
2

(|e〉 − |g〉).

(5.9)

Local superpositions are therefore generated. For instance, by considering
the system’s state as

|g〉 ⊗ |g〉 ⊗ |g〉 ⊗ · · · ⊗ |g〉 ≡ |g〉⊗N , (5.10)

and applying the rotation U on it, one obtains

|ψ〉 =

(
1√
2
|g〉+ |e〉

)
⊗
(

1√
2
|g〉+ |e〉

)
⊗ · · · ⊗

(
1√
2
|g〉+ |e〉

)
=(

1√
2
|g〉+ |e〉

)⊗N
.

(5.11)

The measurement operation O is defined as a projector onto the system’s
ground state |g〉⊗N :

O = (|g〉 〈g|)⊗N (5.12)

The accomplishment of such a measurement operation can be achieved, for
example, through spin relaxation [Pasquiou et al., 2011]. In this way, the
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outcome of this measurement is always the system’s collective ground state
5.10.

Now, since all the elements of Figs. 5.2 and 5.3 were defined and identi-
fied, we are therefore able to discuss individually the experiments to which
they refer. We start by the control experiment of Fig. 5.3. In this case,
one can easily see that 〈Q〉′g = 0 and 〈Q〉g = 0. Similarly, 〈Q〉′e = 0 and
〈Q〉e = 0. This is a consequence of the fact that all the system’s output
states, both in the lower an upper part of the control experiment of Fig.
5.3 are the superpositions (

1√
2
|g〉 ± |e〉

)⊗N
. (5.13)

As a result, one obtains
dg = de = 0. (5.14)

Accordingly, it suffices that d 6= 0 in order to violate inequality (4.2). Note
that the collective preparation states considered in the control experiments
of Fig. 5.3 are |g〉⊗N and |e〉⊗N . Since U1 = U2 = U are local transforma-
tions, it is easy to see that all product states of the form

|g(e)〉⊗N ,

where |g(e)〉 can be either the |g〉 or |e〉, give dg(e) = 0 as well.
We now turn our attention to the main experiment of Fig. 5.2. Con-

sidering the experimental realization in the upper part of the illustration
of the experiment, the state measured at t2 is(

1√
2
|g〉+ |e〉

)⊗N
. (5.15)

Therefore, 〈Q〉′ρ = 0. On the other hand, for the lower part, the state
measured at t2 is

|e〉⊗N . (5.16)

In this way, 〈Q〉ρ = N , so that the non-disturbance condition for the main
experiment will be given by

dρ = N. (5.17)

Hence, inequality (4.2) is potentially violated in this case, and one can see
that the obtained violation scales linearly with the total number of particles
N .
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To conclude this discussion, we show that if statistical mixtures ρ are
prepared,

ρ =

(
1

2
(|g〉 〈g|+ |e〉 〈e|)

)⊗N
, (5.18)

they cannot violate inequality (4.2), supposing that the elements (U2 = U
and O) are kept the same as before (note that we do not use U1 here, but
instead prepare a statististical mixture). This is due to the fact that, in
the lower part of the sketch of the main experiment, we would have

U †2ρU2 = ρ, (5.19)

since a unitary transformation does not change the completely mixed state.
Hence, 〈Q〉ρ = 0. Now, considering the realization sketched in the upper

part of Fig. 5.2, we see that the state measured at t1 will be |g〉⊗N . In conse-
quence, after the application of U2, the state at t2 will be the superposition
(5.15). Therefore, 〈Q〉′ρ = 0. As a result, one obtains dρ = 0, which shows
that violation of the inequality (5.6) is impossible for statistical mixtures.

Finally, one may argue that dg = de = 0 are not suitable for experi-
ments [Wang et al., 2017b]. Indeed, there may be errors due to underlying
uncontrollable variables in the experiment. The only way of ruling out
these errors is via the realization of the control experiments, possibly giv-
ing dg and de different from zero. This would then change the conditions
for violation.

5.4.2 General case: N spin-j particles

We will now generalize the protocol described above for a system of N
spin-j particles, j ∈ N. This protocol may be possibly implemented in the
experiment with cold atoms of chromium (j = 3) of the Cold Atoms Group
at the Université Paris 13 [Naylor et al., 2016,Naylor et al., 2015,Pasquiou
et al., 2011]. We will denote the eigenstates of the α̂-component of a single
spin, Jα, by |α,m〉, m = −j, . . . , j.

We will choose the observable Q as

Q =
N∑
k

(∑
m<0

|z,m〉k 〈z,m| −
∑
m>0

|z,m〉k 〈z,m|
)
. (5.20)

Hence, as one can see, 〈m |Q |m〉 > 0 for m < 0 and 〈m |Q |m〉 < 0 for
m > 0. For m = 0, 〈m |Q |m〉 = 0.
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As above, we consider U1 = U2 = U both in the control and main
experiments, with U as a local rotation around the ŷ-axis,

U = (e−i
π
2
Jy)⊗N . (5.21)

In this way, by applying U to a single-particle eigenstate |z,m〉, we have

|z,m〉 → |x,m〉 , (5.22)

and if it is applied again to the output |x,m〉, one obtains

|x,m〉 → − |z,m〉 . (5.23)

Also, similarly to the spin 1/2 case, the measurement operation O is
defined as a projector onto the system’s ground state, |z,−j〉⊗N :

O = (|z,−j〉 〈z,−j|)⊗N . (5.24)

As discussed before, this measurement operation can be associated with
spin relaxation [Pasquiou et al., 2011].

We analyze now the control experiments of Fig. 5.3, which will be
realized for each one of the eigenstates |z,m〉 as inputs at t = 0. Therefore,
a total of 2j+ 1 control experiments must be carried out in order to obtain
the associated non-disturbance conditions dm = 〈Q〉m−〈Q〉′m. One can see
that, at t2, both the lower and upper part of the control experiment of Fig.
5.3, performed with an input state |z,m〉⊗N at t = 0, are eigenstates of the
x-component of the spin, Jx. These eigenstates |x,m〉 are superpositions
of the eigenstates |z,m〉, which can be expressed as follows

|x,m〉 =

j∑
m=−j

cm |z,m〉 , (5.25)

with coefficients cm ∈ C satisfying |cm| = |c−m| (see Appendix A). It follows
then that

dm = 〈Q〉m − 〈Q〉′m = 0, (5.26)

∀ the m’s.
Finally, we consider the main experiment of Fig. 5.2. We suppose that

it is carried out with the state |z,−j〉⊗N as input at t = 0. In so doing,
one obtains 〈Q〉ρ = −N , since, as showed in the lower part of Fig. 5.2
and according to (5.22) and (5.23), the application of the transformation
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U twice will lead the system’s state into the following eigenstate

− |z,−j〉⊗N .

Due to the realization of the measurement operation O at t1, illustrated
in the upper part of Fig. 5.2, it can be easily seen that, similarly to the
control experiment, 〈Q〉′ρ = 0. As a result, we obtain

dρ = 〈Q〉ρ − 〈Q〉′ρ = −N. (5.27)

Therefore, violation of the inequality 5.6 can be achieved for an arbitrary
spin-j system, considering the specific protocol proposed above.

5.5 Discussion about macroscopicity

The superpositions created within the experiment described above are lo-
cal, as in (5.11), for instance. In this way, entanglement is not taken into
consideration here. Therefore, although the system under consideration
can be composed of many N particles, one cannot speak of superposition
of macroscopic distinct states [Leggett, 2002], as it is the case for super-
positions of the states as the so-called Greenberger-Horne-Zeilinger (GHZ)
state, i. e.

|φ〉 =
1√
2

(|g〉⊗N + |e〉⊗N ). (5.28)

This state is also known as an“ideal” N -particle cat state.
When the inequality (5.6) is violated, nonclassicality of the N -particle

system can be witnessed, which is in this case due to local superpositions.
Considering the protocol studied in this chapter, we have seen that dρ = N
for spin-j systems. After the realization of the control experiments, one
may then obtain a large value for the violation of inequality (5.6) in the
laboratory, scaling with the number of particles of the system, depending
on the result of the control experiments. Note that we assumed that all
the N particles are involved in these local superpositions. If it is not the
case, then dρ < N . Therefore, one progressively loses violation of (5.6) by
reducing the number of particles involved in the local superpositions.

In Ref. [Leggett, 1980], Leggett introduced a measure of macroscopic
distinctness of two quantum states. It consists of two quantitative mea-
sures named extensive difference and disconnectivity. The first definition,
the extensive difference, consists of the disparity between the values of a
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relevant extensive quantity for the system in each one of these two states,
normalized to some characteristic value of that quantity in a relevant mi-
croscopic scale. A related definition for the extensive difference λ for state
(5.11) can be given by the definition of the operator Λ:

Λ =

∑N
i |e〉i 〈e|Ee −

∑N
i |g〉i 〈g|Eg

Ee − Eg
, (5.29)

where Ee(g) is the energy of an atom in the state |e(g)〉. Then, λ can be
defined then as

λ = 〈Λ〉. (5.30)

By setting Eg = 0 and Ee = 1, (5.29) can be expressed as

Λ′ =
N∑
i

|e〉i 〈e| . (5.31)

and therefore,
λ′ = 〈Λ′〉 = ne ∼ N. (5.32)

The second definition, disconnectivity, will not be discussed here, since
it is related to the notion of degree of entanglement [Vedral et al., 1997]
and the concept of macroscopic distinct states mentioned in chapter 4, and
therefore, is not pertinent here.

To conclude, we see that the violation of inequality (5.6) may be of
the order of the extensive difference of the superposition (5.11), i.e. of the
order of the total number of particles N . In other words, the violation
obtained can be of the order of a quantity characterizing a specific aspect of
the macroscopicity of quantum systems. As we have seen above, however,
the magnitude of the violation will ultimately depend on the realization of
the control experiments.
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5.6 Conclusion

In this chapter, we introduced a protocol for testing noninvasiveness
through the non-disturbance condition in systems constituted of N spin-j
particles. We have seen that, within this protocol, in order to address
the possibility of classical clumsiness of measurements explanining the
violation of the non-disturbance condition instead of a genuine nonclassical
effect (invasiveness), control experiments are proposed.

In this way, depending on the control experiments, one can obtain large
violations for inequality (5.6), scaling with the system’s number of particles
N . Therefore, this violation can be of the order of the extensive difference,
a quantity characterizing a specific aspect of the macroscopicity of quantum
systems.
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Chapter 6

Conclusion

Throughout this thesis, we have focused on the study of a specific aspect
of the frontier between classical and nonclassical phenomena. Namely, we
investigated the nonclassical concept of measurement invasiveness, i.e., the
effect that the measurement of a quantum system has on its subsequent
evolution, and which cannot be described by classical physics. To do so,
we explored the Leggett-Garg inequality and an inequality based on a con-
dition called the non-disturbance condition, both involving realizations con-
sidering sequential measurements performed on a system as it evolves. We
also investigated the relationship of measurement invasiveness with specific
definitions of macroscopicity and macroscopic coherence.

In the first part of this work, we proposed a model where the violation of
the Leggett-Garg inequality, and therefore measurement invasiveness, can
be directly controlled and understood through physically sound parameters.
These parameters can be associated with the imprecision of a measurement,
which in turn, can be attributed to different physical origins. Furthermore,
by using spin-j systems, we showed that violations of the inequality do not
depend on the size of the spin (defined as the magnitude of j), and can be
modelled solely as a function of a parameter, called measurability, which
determines the invasiveness or disturbance of a measurement. This model
can be used to help understanding and interpreting Leggett-Garg inequality
tests, and can be tested experimentally in a number of physical systems,
such as Stern-Gerlach-like experiments with inhomogeneous fields, or the
orbital angular momentum of photons.

We then investigated an application of measurement invasiveness in the
context of quantum metrology. We derived a general expression for the
Fisher information as a function of temporal correlations and, guided by
this expression, we demonstrated that the precision of parameter estima-
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tion is very fragile against noise unless accompanied by the violation of the
Leggett-Garg inequality. Furthermore, by using a specific model, we showed
that large quantum Fisher information is not sufficient for the violation the
Leggett-Garg inequality. By considering spin systems, we illustrated how
violation of the Leggett-Garg inequality may set a non-trivial lower bound
for the precision of parameter estimation. Conversely, large violations of
the Leggett-Garg inequality may enable nearly optimal parameter estima-
tion. The relationship between measures of macroscopic coherence and
measurement invasiveness was also explored, suggesting that the violation
of the Leggett-Garg inequality is a witness of macroscopic coherence.

Generalization of such intriguing connections between measurement in-
vasiveness and sensitivity beyond specific models certainly deserves further
investigation. Also, the results obtained concerning specific definitions of
macroscopicity and their relationship with measurement invasiveness may
help in the search for a more general and sound definition of macroscopicity
in regards to the quantum-to-classical transition.

Finally, we proposed a protocol for testing measurement noninvasiness
based on the non-disturbance condition for spin-j systems of arbitrary size.
This inequality allows one to argue against the possibility of acrediting its
violation to the classical disturbance of measurements. We showed that
the maximal violation corresponds to the number of particles which consti-
tutes the system. However, the exact value for the violation will ultimately
depend on the presence of classical disturbance in the experiment in which
the experiment is performed, which can be detected by performing control
experiments. This protocol could possibly be implemented in the experi-
ment with cold atoms of chromium (j = 3) of the Cold Atoms Group at
the Université Paris 13.
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Appendix A

Symmetry of rotations

In order to show that, in chapter 5, the coefficients cm in (5.25) satisfy
|cm| = |c−m|, we will briefly introduce the definition of Wigner rotation
matrices and demonstrate the symmetry of their elements. The elements of
Wigner rotation matrix are the elements of the rotation operator [Morrison
and Parker, 1987,Pagaran et al., 2006],

Djµm = 〈jµ | exp(−iαJz) exp(−iβJy) exp(−iγJx) | jm〉
= exp(−iµα) 〈jµ | exp(−iJyβ) | jm〉 exp(−imγ)

= exp(−iµα)djµm(β) exp(−imγ),

(A.1)

where

djµm(β) =

[
(j −m)!(j + µ)!

(j +m)!(j − µ)!

] 1
2

(cos
β

2
)(m+µ)(sin

β

2
)(m−µ)

× P (m−µ,m+µ)
j−m (cos β).

(A.2)

The elements djµm(β) define, therefore, the reduced matrix d̂(β).
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In (A.2), P
(n1,n2)
n (cos β) are the Jacobi polynomials given by

P (n1,n2)
n (cos β) = (n+ n1)!(n+ n2)!

×
∑
s

1

s!(n+ n1 − s)(n2 + s)!(n− s)!(− sin2 β

2
)(n−s)(cos2 β

2
)s,

(A.3)

where n1, n2, n ∈ Z. The sum over s is taken over all the integers for which
the arguments of the factorials are positive.

Finally, it can be shown that djµm(β) obeys the following symmetry
[Pagaran et al., 2006]:

djµm(β)(π − β) = (−1)j−mdj−µm(β).

Therefore, for β = π/2, as it is the case in (5.21), we have

djµm(π/2) = (−1)j−mdj−µm(π/2).

As a result,
|djµm(π/2)|2 = |dj−µm(π/2)|2. (A.4)

Therefore, since the coefficients cm of the superposition (5.25), which
results from the application of the rotation (5.21), can be written as

|cm|2 = | 〈m| d̂ |m〉 |2 = |djmm(π/2)|2, (A.5)

we have that |cm| = |c−m|.
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Appendix B

Quantum Fisher information
as a measure of macroscopic
coherence

We follow the proof sketched in Ref. [Yadin and Vedral, 2016] that the
quantum Fisher information is a measure of macroscopic coherence accord-
ing to the definition presented in chapter 4. We will reproduce here the
proof that the conditions (ii) and (v) are fulfilled. Before this, we will first
evaluate some commutators which will be used later. In a similar way as
in (4.21), we will first write the Kraus operators in the following form

Kα =
∑
δα

∑
(i,j)∼δα

cα,i,j |ei〉 〈ej| , (B.1)

for some δα ∈ ∆, where (i, j) ∼ δα means that ei − ej = δα.
Then, let us evaluate the following commutator [H,Kα]:∑
(i,j)∼δα

cα,i,j[H, |ei〉 〈ej|] =
∑

(i,j)∼δα

cα,i,j(ei − ej) |ei〉 〈ej| = δαKα. (B.2)

By using the commutation relation above, one can write

[H2, Kα] = 2δαKαH + δ2
αKα. (B.3)

Now, following Ref. [Gour and Spekkens, 2008], suppose that a system is
in a pure state |ψ〉 and that, in a measurement, the outcome α is obtained.
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The system’s state will then read

|φα〉 =
Kα√
wα
|ψ〉 , (B.4)

where wα =
〈
ψ
∣∣K†αKα

∣∣ψ〉.
Let us define V (|ψ〉) as the variance of the observable H in the state

|ψ〉:

∑
α

wαV (|ψα〉) = 4
∑
α

(〈
ψ
∣∣K†αH2Kα

∣∣ψ〉− 〈ψ ∣∣K†αHKα

∣∣ψ〉2

wα

)
. (B.5)

By employing the commutation relations above, we have

∑
α

〈
ψ
∣∣K†αH2Kα

∣∣ψ〉 =〈
ψ
∣∣H2

∣∣ψ〉+ 2
∑
α

δα
〈
ψ
∣∣K†αKαH

∣∣ψ〉+
∑
α

wαδ
2
α,

(B.6)

and also that

∑
α

〈
ψ
∣∣K†αHKα

∣∣ψ〉2

wα
=

∑
α

1

wα

〈
ψ
∣∣K†αKαH

∣∣ψ〉+ 2
∑
α

δα
〈
ψ
∣∣K†αKαH

∣∣ψ〉+
∑
α

wαδ
2
α,

(B.7)

where we have used that
∑
K†αKα = I. Hence, we obtain

∑
α

wαV (|φ〉α) = 4

(〈
ψ
∣∣H2

∣∣ψ〉−∑
α

〈
ψ
∣∣K†αKαH

∣∣ψ〉2

wα

)
. (B.8)
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Consider now xα ≡
〈
ψ
∣∣K†αKαH

∣∣ψ〉. By invoking the Cauchy-Schwartz
inequality, we have

∑
α

x2
α

wα
=
∑
α

x2
α

wα

∑
α′

wα′ ≥
(∑

α

xα√
wα

√
wα

)2

=(∑
α

xα

)2

= 〈ψ |H |ψ〉2 ,

(B.9)

where we have used that
∑
K†αKα = I again in the last step.

In this way, we finally obtain∑
α

wαV (|φ〉α) = 4(
〈
ψ
∣∣H2

∣∣ψ〉− 〈ψ |H |ψ〉2) = V (|ψ〉). (B.10)

Therefore, this proves that the variance of H is non-increasing on aver-
age under the measurement E , which implies that conditions (ii) is satisfied.
The condition (v) is also satisfied, since

V

( |ei〉+ |ej〉√
2

)
=

1

4
(ei − ej)2 .

Now, we will use the fact that any quantum state ρ can be decomposed
in many ways as a mixture of pure states:

ρ =
∑
µ

pµ |ψµ〉 〈ψµ| , (B.11)

where pµ are the different probabilities. In the decomposition above, |ψµ〉
do not necessarily form an orthonormal basis.. Therefore, a convex roof
construction to extend any real-valued function f of pure states to mixed
states:

fCR ≡ inf
{pµ,|ψµ〉}

∑
µ

pµ |ψµ〉 〈ψµ| , (B.12)

with the optimization over all possible decompositions. One can note that
this reduces to f for pure states. It was shown in Ref. [Toloui et al., 2011]
that the convex roof of any pure state fulfiling (i)-(iii) is a monotone in
all states. Given that in Ref. [Tóth and Petz, 2013] it was shown that
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FQ(ρ,H) is the convex roof of V (ψ), it follows then that FQ(ρ,H) also
fulfils the condition (ii).

120



Bibliography

[Alipour et al., 2014] Alipour, S., Mehboudi, M., and Rezakhani, A. T.
(2014). Quantum metrology in open systems: Dissipative cramér-rao
bound. Phys. Rev. Lett., 112:120405.

[Amselem et al., 2009] Amselem, E., R̊admark, M., Bourennane, M., and
Cabello, A. (2009). State-independent quantum contextuality with single
photons. Phys. Rev. Lett., 103:160405.

[Arndt and Hornberger, 2014] Arndt, M. and Hornberger, K. (2014). Test-
ing the limits of quantum mechanical superpositions. Nat Phys,
10(4):271.

[Asadian et al., 2014] Asadian, A., Brukner, C., and Rabl, P. (2014). Prob-
ing macroscopic realism via ramsey correlation measurements. Phys. Rev.
Lett., 112:190402.

[Asadian et al., 2015] Asadian, A., Budroni, C., Steinhoff, F. E. S., Rabl,
P., and Gühne, O. (2015). Contextuality in phase space. Phys. Rev.
Lett., 114:250403.

[Aspect et al., 1982a] Aspect, A., Dalibard, J., and Roger, G. (1982a). Ex-
perimental test of bell’s inequalities using time- varying analyzers. Phys.
Rev. Lett., 49:1804.

[Aspect et al., 1981] Aspect, A., Grangier, P., and Roger, G. (1981). Ex-
perimental tests of realistic local theories via bell’s theorem. Phys. Rev.
Lett., 47:460–463.

[Aspect et al., 1982b] Aspect, A., Grangier, P., and Roger, G. (1982b). Ex-
perimental realization of einstein-podolsky-rosen-bohm gedankenexperi-
ment: A new violation of bell’s inequalities. Phys. Rev. Lett., 49:91–94.

[Athalye et al., 2011] Athalye, V., Roy, S. S., and Mahesh, T. S. (2011).
Investigation of the leggett-garg inequality for precessing nuclear spins.
Physical Review Letters, 107(13):130402.

121



[Badzia̧g et al., 2009] Badzia̧g, P., Bengtsson, I., Cabello, A., and
Pitowsky, I. (2009). Universality of state-independent violation of
correlation inequalities for noncontextual theories. Phys. Rev. Lett.,
103:050401.

[Bagan et al., 2016] Bagan, E., Bergou, J. A., Cottrell, S. S., and Hillery,
M. (2016). Relations between coherence and path information. Phys.
Rev. Lett., 116:160406.

[Ballentine, 1987] Ballentine, L. E. (1987). Realism and quantum flux tun-
neling. Phys. Rev. Lett., 59:1493–1495.

[Baumgratz et al., 2014] Baumgratz, T., Cramer, M., and Plenio, M. B.
(2014). Quantifying coherence. Phys. Rev. Lett., 113:140401.

[Bell, 1964] Bell, J. S. (1964). On the einstein podolsky rosen paradox.
Physics, 1(195).

[Bell, 2004] Bell, J. S. (2004). Speakable and Unspeakable in Quantum Me-
chanics: Collected Papers on Quantum Philosophy. Cambridge Univer-
sity Press, Cambridge.

[Bohm and Hiley, 1993] Bohm, D. and Hiley, B. (1993). The Undivided
Universe. Routledge, London.

[Bohr, 1935] Bohr, N. (1935). Can quantum-mechanical description of
physical reality be considered complete? Phys. Rev., 48:696–702.

[Braun et al., 2017] Braun, D., Adesso, G., Benatti, F., Floreanini, R.,
Marzolino, U., Mitchell, M. W., and Pirandola, S. (2017). Quantum
enhanced measurements without entanglement quantum enhanced mea-
surements without entanglement. quant-ph, (1701.05152).

[Braunstein and Caves, 1994] Braunstein, S. L. and Caves, C. M. (1994).
Statistical distance and the geometry of quantum states. Phys. Rev.
Lett., 72:3439–3443.

[Braunstein et al., 1996] Braunstein, S. L., Caves, C. M., and Milburn, G.
(1996). Generalized uncertainty relations: Theory, examples, and lorentz
invariance. Annals of Physics, 247:135.

[Budroni and Emary, 2014] Budroni, C. and Emary, C. (2014). Temporal
quantum correlations and leggett-garg inequalities in multilevel systems.
Phys. Rev. Lett., 113:050401.

[Budroni et al., 2013] Budroni, C., Moroder, T., Kleinmann, M., and
Gühne, O. (2013). Bounding temporal quantum correlations. Phys.
Rev. Lett., 111:020403.

122



[Budroni et al., 2015] Budroni, C., Vitagliano, G., Colangelo, G., Sewell,
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[Lüders, 1951] Lüders, G. (1951). Uber die zustandsanderung durch den
meßprozeß. 8(322).
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