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Abstract

Localization phenomenon has attracted significant interest recently due to its impor-
tant role in the qualification as well as quantification of periodic systems dynamics.
The localization can be generated either by the disorder (imperfection) in a lattice
or by the interaction between nonlinearities in a discrete system. One of the most
frequent localization phenomena is the nonlinear energy localization, called intrinsic
localized modes or solitons.

Although the dynamics of periodic nonlinear lattices was thoroughly investigated
in the frequency and time-space domains, there is a real need to perform profound
analysis of the collective dynamics of such systems in order to identify practical
relations with the nonlinear energy localization phenomenon in terms of modal in-
teractions and bifurcation topologies. The principal goal of this thesis consists in
exploring the localization phenomenon for modeling the collective dynamics of peri-
odic arrays of weakly coupled nonlinear resonators.

An analytico-numerical model has been developed in order to study the collective
dynamics of a periodic coupled Duffing-Van Der Pol oscillators array under simul-
taneous primary and parametric excitations, where the bifurcation topologies, the
modal interactions and the basins of attraction have been analyzed. Two applica-
tions were considered: (i) an array of coupled pendulums under harmonic external
excitation, where it has been shown that by increasing the number of coupled pen-
dulums, the number of multi-modal solutions increases and the distribution of the
basins of attraction of the resonant solution branches becomes larger, (ii) an array
of electrostatically coupled nanobeams under parametric excitation, while including
the main sources of nonlinearities up to the fifth-order. The model was extended to
investigate the collective dynamics of periodic nonlinear two-dimensional arrays, and
two applications have been considered: (i) a 2D array of coupled pendulums under
harmonic base excitation, where it has been shown that considering a high ratio
between the coupling parameters in the two directions leads to additional features
distinct from those obtained in 1D arrays, mainly a larger bandwidth and important
vibrational amplitudes, (ii) a 2D periodic granular crystals array subjected to com-
pressive loadings and a harmonic horizontal base excitation, where each particle is
coupled with fixed-fixed uniform beam while the nonlinear dynamics is governed by
the Hertzian contact. A second investigation of this thesis consist in transforming
the developed discrete model into a continuous one, where the dynamics is generated

Ph.D. Thesis - D. Bitar 11



Abstract

by the Schrödinger equation. This model allows the identification of the solitons
associated to the collective nonlinear dynamics of the considered arrays of periodic
structures and the study of their stability.

Keywords: Periodic lattices, nonlinear oscillators, collective dynamics, weak
coupling, modal interactions, basins of attraction, localization phenomenon, solitons.
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Résumé

La localisation joue un rôle important pour de nombreuses applications en physique
car elle permet de quantifier et de qualifier la dynamique d’un système périodique.
Elle peut être générée, soit par le désordre (imperfections) dans un réseau ou par
l’interaction entre les non-linéarités dans un système discret. L’un des phénomènes
de localisation le plus courant est celui de la localisation non-linéaire de l’énergie,
connu sous le nom de modes intrinsèques localisés (ILMs) ou Solitons.

Bien que la dynamique des réseaux périodiques non-linéaires ait été investiguée
dans les domaines temporel et fréquentiel, il existe un réel besoin d’identifier des rela-
tions pratiques avec le phénomène de la localisation d’énergie en termes d’interactions
modales et topologies de bifurcation. L’objectif principal de cette thèse consiste à
exploiter le phénomène de la localisation pour modéliser la dynamique collective d’un
réseau périodique de résonateurs non-linéaires faiblement couplés.

Un modèle analytico-numérique a été développé pour étudier la dynamique col-
lective d’un réseau périodique d’oscillateurs couplés de type Duffing-Van Der Pol
sous excitations simultanées primaire et paramétrique, oú les interactions modales,
les topologies de bifurcations et les bassins d’attraction ont été analysés. Deux ap-
plications ont été investiguées: (i) un réseau de pendules couplés sous excitation
extérieure harmonique, oú il a été démontré qu’en augmentant le nombre de pend-
ules, le nombre de solutions multimodales et la distribution des bassins d’attraction
des branches résonantes augmentent, (ii) un réseau de nano-poutres couplées élec-
trostatiquement sous excitation paramétrique en incluant les principales sources de
non-linéarité jusqu’à l’ordre cinq. Ce modèle a été étendu pour investiguer la dy-
namique collective d’un réseau périodique non-linéaire bidimensionnel, oú deux ap-
plications ont été étudiées: (i) un réseau 2D de pendules couplés sous excitation
extérieure harmonique, oú il a été démontré que le choix de différents paramètres de
couplage dans les deux directions, enrichit la dynamique collective comparée à celle
obtenue dans les réseaux 1D, et conduit principalement à des amplitudes de vibra-
tion plus importantes et des bandes passantes plus larges, (ii) un réseau 2D de billes
métalliques en compression, guidées élastiquement par des poutres et sous excitation
à la base, où la non-linéarité est gouvernée par le contact de Hertz. Une deuxième
investigation de cette thèse consiste à transformer le modèle discret développé en
modèle continu dont la dynamique est régie par l’équation de Schrödinger. Ce mod-
èle permet d’identifier les solitons associés à la dynamique collective du réseau de
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Résumé

structures périodiques et d’étudier leurs stabilités.

Mots clés: réseaux périodiques, oscillateurs non-linéaires, dynamique collective,
couplage faible, interactions modales, bassins d’attraction, localisation d’énergie, soli-
tons.
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Frequently used Abbreviations

1D One-Dimensional

2D Two-Dimensional
dof degree-of-freedom
Mdofs Multi-degrees-of-freedom
ANM Asymptotic Numerical Method
ILMs Intrinsic Localized Modes
MEMS Microelectromechanical systems
NEMS Nanoelectromechanical systems
DBs Discrete Breathers
HBM Harmonic Balance Method
D-VDP Duffing-Van Der Pol
EoM Equations of Motion
SM Single Mode
DM Double Mode
TM Triple Mode
ROM Reduced Order Model
R Resonant
NR Non-Resonant
NLS Nonlinear Schrödinger
PDNLS Parametrically Driven Damped Nonlinear Schrödinger
PDE Partial Differential Equation
CSDNLS Conservative Simultaneously Driven NonLinear Schrödinger
DSDNLS Dissipative Simultaneously Driven NonLinear Schrödinger
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Introduction

Motivations

Arrangements of periodically repeated united cells, known as periodic structures
are ubiquitous. They exist naturally as can be man-made over a large range of
length scales, with a wide range of engineering applications, including photonic crys-
tals, elastic plates and shells, honeycombs, civil constructions, antennas, mechanical
constructions, MEMS/NEMS and so on. The motivations behind studying similar
structures, lie in their ability to exploit periodicity in order to attenuate, isolate or
localize vibrations. Their simple fabrication was the main advantage, which moti-
vated researchers in several domains to emerge innovative applications and develop
new devices, to explore in deep wave propagation in periodic structures.

In fact, periodic arrangement properties present a particular capacity to attenu-
ate the propagation of elastic waves [Romeo 03], reduce the transmitted vibrations
and noise [Li 17] or filter them [Barbarosie 04] as the dichroic filters which is real-
ized on the concept of photonic crystals [Winnewisser 98]. In addition, interesting
electromagnetic properties arise from periodic structures as when white light passes
through a diffraction grating (optical component with a periodic structure) or pho-
tonic crystal fibers and integrated optical devices based on photonic crystals and
periodic arrays of holes [Broeng 99] and frequency-selective surfaces which are peri-
odic surfaces that can be found on a plane, designed to reflect, transmit or absorb
electromagnetic fields based on frequency [Mittra 88]. Moreover, it has been shown
that mode localization can occur in weakly coupled quasi-periodic linear systems
[Hodges 82], resulting to the Anderson localization [Anderson 58].

Despite the interesting wave properties encountered in periodic linear system as
filtering, bandgaps, propagation and attenuation zones, isolate or localize vibrations,
periodic nonlinear structures may exhibit variety of rich dynamics properties. For
instance, bifurcations, solitary waves and solitons [Cuevas 09], energy dependent
nonlinear propagation/attenuation zones [Romeo 06], nonlinear modes localization
[Vakakis 97], multitude of nonlinear resonances [Nayfeh 08], wave interaction, spatial
and temporal chaos [Waller 84] and energy transfer/harvesting/trapping [Lydon 15].

In fact, space localization represents an interesting phenomenon in engineering
science, which attracted significant interest recently due to its important role in the
qualification as well as quantification of periodic systems dynamics. It is based on the
fact that the energy does not propagate arbitrary and it is localized in space, while
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Introduction

the wave-function amplitude of the oscillating modal shape decays exponentially in
space. This phenomenon has inspired innovative studies in physics and motivated
researchers over many years to explore in depth its effects and consequences. The
localization can be generated either by the disorder (imperfection) in a lattice or by
the interaction between nonlinearities in a discrete system. One of the most frequent
localization phenomena is the nonlinear energy localization, called intrinsic localized
modes or solitons.

Although the dynamics of periodic nonlinear lattices was thoroughly investigated
in the frequency and time-space domains, there is a real need to perform profound
analysis of the collective dynamics of such systems in order to identify practical rela-
tions with the nonlinear energy localization phenomenon in terms of modal interac-
tions and bifurcation topologies. The principal goal of this thesis consist in exploring
the localization phenomenon for modeling the collective dynamics of periodic arrays
of weakly coupled nonlinear resonators.

Overview

Chapter 1 presents a state of art of the dynamics of periodic structures, their ex-
istence and the characteristics of their assemblies. Then, methods for dealing with
wave propagation in multidimensional periodic linear systems are presented, with
the highlight of the interesting wave properties that can produce. Variety of rich dy-
namical nonlinear phenomena motivated the study of wave propagation in periodic
nonlinear lattices. In particular, the review of several physical applications that can
be modeled as periodic nonlinear lattices is given; in particular, pendulums arrays,
MEMS/NEMS arrays and granular crystal lattices. The history of localization phe-
nomenon, the presentation of the techniques employed to investigate localization in
discrete and continuous quasi-periodic structure and spatial localization in weakly
coupled perfectly periodic and quasi-periodic structures are emphasized.

Chapter 2 is devoted to covering most of the numerical, analytical or combina-
tion of both methods employed to study periodic nonlinear lattices. The direct time
integration, the asymptotic numerical method (ANM), ANM with the harmonic bal-
anced method (HBM), the multiple scales method with and without standing waves
decomposition are presented. An application consisting of periodic two weakly cou-
pled mass-spring system is considered and a comparison between the different used
methods is presented. The goal is to validate the capability of the multiple scales
method coupled with standing wave decomposition to handle weakly coupled non-
linear periodic oscillators.

InChapter 3, we consider the general case of an array of weakly coupled Duffing-
Van Der Pol oscillators with fifth order nonlinearity under simultaneous primary and
external excitations. An important choice of weakly linear coupling parameter be-
tween substructures is made enabling the creation of linear closed modes. The cou-
pled nonlinear differential system is solved using an analytico-computational model,
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based on the method of multiple scales coupled with standing wave modal decompo-
sition, transforming the nonlinear differential system into a set of coupled complex
algebraic equations which are numerically solved using the ANM enabling the con-
struction of resonance curves for a large number of dofs. The complexity and the
multivaludness of the responses are illustrated by a detailed study of its basins of at-
traction. The ability of the combination of both primary and parametric excitations
to adjust the stability of the system is shown.

Chapter 4 is dedicated to the study of with the collective dynamics of a periodic
array of linearly coupled pendulums under primary resonance. A model reduction
method is proposed to calculate the dominant dynamics without significant loss of
accuracy compared to the full model. The modal interactions and their effects on
the nonlinear dynamics and their bifurcation topology are studied. The model is
extended to investigate the collective dynamics of 2D coupled pendulums arrays,
under harmonic base excitation, where additional feature not obtained in the 1D
array are achieved.

Chapter 5 studies the collective dynamics of nonlinear oscillator’s arrays with
weakly nonlinear coupling, for two different physical applications. An electrostati-
cally coupled nanobeams array under parametric excitation is modeled and investi-
gated, while including the main sources of nonlinearities up to the fifth order. The
influence of the fifth order nonlinearity on the complexity of the frequency responses
is highlighted. In addition, we investigated, the collective dynamics of a 2D periodic
lattice of granular particles coupled with identical beams and subjected to a pre-
compression loads where the nonlinearity is governed by the Hertzian contact law,
under horizontal base excitation.

Chapter 6 deals with a different type of behavior in nonlinear periodic arrays,
called the intrinsic localized modes or solitons. The multiple scales method is used to
transform the differential nonlinear system into an amplitude equation in the form
of a Nonlinear Schrödinger (NLS) equation. Exact analytical solitary solutions of
the conservative NLS equation are derived, while the dissipative system is solved
numerically using the analog Newton’s method. Several numerical simulations are
performed demonstrating that the stability of localized solutions can benefit from
the combination of both parametric and external excitations.
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1.1 Overview

The current research interests focus on the collective dynamics to explore the lo-
calization phenomena in periodic nonlinear lattices. The upcoming section starts
introducing periodic systems along with some definitions and examples on both nat-
urally existing and man-made periodic structures. Next, a literature review on the
dynamics of multidimensional linear periodic structures is introduced along with the
methods devoted to study wave propagation in periodic media such as Floquet, Block,
and finite element method and so on. Although linear periodic structures exhibit a
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number of interesting wave phenomena as bandgaps, propagation and attenuation
zones, vibration isolation and localization, variety of rich dynamic properties such as
wave localization, solitary waves, energy transfer and frequency-conversion emerged
the trend to study the wave propagation in nonlinear periodic systems. Then, a
review on the state of art of the different complex dynamical phenomena encoun-
tered in periodic nonlinear structures is reported. Three famous physical examples:
pendulums, MEMS/NEMS and granular crystals that can be modeled as periodic
nonlinear lattices are presented, along with a brief literature review, background
study and properties. A historical background, highlighting the existing of the local-
ization phenomena is presented followed by a detailed study on the space localization
and its properties in periodic linear and nonlinear arrays. The research motivations,
the objectives and the challenges of studying the collective dynamics of periodic non-
linear lattices are addressed and the methodology employed to achieve the present
goal is announced.

(a) (b) (c)

(d)

Figure 1.1: (a) Crystal lattice of diamond or silicon( Image credit: Dr. Willem Tjerkstra,
et al., MESA+ Institute for Nanotechnology, University of Twente). (b) a- Photograph of
the Weevil Lamprocyphus Augustus b- Optical micrograph of individual scales attached
to the exoskeleton under white-light illumination c- Cross-sectional SEM image of a single
scale d- Detailed cross-sectional SEM image of a region of a scale (Reproduced from Phys
Rev E 2008;77:050904). (c) Honeycomb. (d) Morpho rhetenor nanostructures (Reproduced
from www.asknature.org/media/image/28125#)
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1.2 Periodic structures

Periodic structures consist of an arrangement of coupled identical substructures,
geometrically repeated and defined by a unit cell at periodic intervals. They can
exist naturally (figure 1.1) as they can be man-made (figure 1.2) over a wide range
of length scales. For instance, crystal lattices are three-dimensional arrangement
of unit cells, made of atoms, ions and molecules. Interactions between these last
are characterized by potential energy that result in a series of vibrational waves
propagations (Phonons). On the other hand, the origin of the shinning colors of some
insects lies in a distinct nanostructure built into their biopolymeric wing scales and
exoskeletons which have a high degree of periodicity. Particularly, the propagation of
light through the polymeric structures (diffraction and specular reflection) those with
nanostructures periodicity produce angle-dependent iridescent colors. Furthermore,
honeycombs consist of hexagonal cells built by bees, where their periodicity influence
the way waves propagate.

In regards to man-made periodic structures, we can mention many architectural
designs as long span bridges and high-rise buildings, aircrafts wing ribs in aerospace,
micro- and nano-electromechanical systems, LED arrays in electronics and so on.
In addition, they can support many applications as photonic crystals cavities and
bandgaps, electromagnetic/optics devices, frequency selective surface or metamate-
rials.

(a) Blue plate LED array (b) Aircrafts wing ribs (c) high-rise building

(d) Arakawa railway bridge (e) MEMS array (f) CMUT

Figure 1.2: Numerous periodic structures among man-made structures.
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From an engineering viewpoint, the principal advantage of such structures is due
to the simplicity of their geometry and manufacturing, the significant impact and
high temperature tolerance and their high strength-to-weight ratios. In addition,
periodic structures provides interesting wave propagation properties as mechanical
filters or waveguides. Moreover, the motivations behind studying similar structures,
lie in their ability to exploit periodicity in order to attenuate, isolate or localize
vibrations. Therefore, the comprehension of the dynamics of periodic structures is
necessary for analyzing and synthetizing the role of periodicity in generating local-
ization phenomena.

1.3 Linear systems

Several researches on the dynamics of one-dimensional periodic structures were based
on linear model structure. Under the hypothesis of linearity, analytical and numerical
methods have been developed in order to analyze their dynamics, where the study
of wave propagation in these structures was thoroughly addressed in the literature.

1.3.1 Methods for dealing with linear periodic systems

Brillouin [Brillouin 53] traces a detailed historical background and motivation be-
hind treating wave propagation in the field of solid-state physics, by considering a
classical mass-spring system. Mead and his research group [Mead 73, Mead 96] de-
veloped methods and techniques based on wave modes to analyze and predict free
vibration propagation and forced vibration induced by stationary harmonic loads in
continuous periodic engineering structures. In the field of structural mechanics, Lan-
gley [Langley 96] studied the response of a two-dimensional linear periodic structure
subject to point harmonic forcing using a spring mass model, showing that the loca-
tion and the extension of the stop bands depend on the considered direction of wave
propagation on the structure plane. Later, Langley et al. [Langley 97] presented
theoretical and experimental studies to the response of a beam grillage constructed
from strips of aluminum with bolted joints (figure 1.3 (a)), using the finite element
analysis.

About 50 years ago, the dynamics of wave propagation in periodic linear systems
has been investigated by means of transfer matrix method. This method allow re-
ducing computational effort and time of the considered problem to the number of
degrees of freedom coupling basic periodic element. Lin et al. [Lin 69] developed an
analytical technique applying a transfer matrix for the determination of the frequency
response of stiffened plate vibration. A review on the theory of wave propagation
in a survey physical applications of one-dimensional locally periodic media using
the transfer matrix approach has been reported by Griffiths [Griffiths 01]; proving
that as the number of coupled resonators increases, the band structure characteris-
tic of waves in infinite periodic media emerges. Vibrational responses of 1D filter
and 2D wave guide modeled as mass-spring structures subjected to periodic loading
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has been analyzed, while studying the effects of boundaries, viscous damping and
imperfections [Jensen 03]. The well know formulation of Floquet [Floquet 83] is a
methodology to solve differential equations with periodic coefficients, assuming that
any solution of the system can be expressed as a linear combination of functions.

Although Bloch theorem [Bloch 29] was firstly introduced to represent the model
of homogenous states of Schrödinger equation with periodic potential, it can be con-
sidered as a multidimensional application of the Floquet theorem. The Floquet-Bloch
theorem is extensively used for calculating the dispersion properties, wave modes and
group velocities of periodic structures. Collet et al. [Collet 09, Collet 11] developed
new multifunctional structures integrating electro-mechanical systems in order to
optimize their vibro-acoustic behavior over a large frequency band and introduced a
Floquet-Bloch decomposition for the computation of dispersion of two-dimensional
periodic (figure 1.3 (b)), damped mechanical systems. Recently, an efficient method
originally proposed by Zhou et al. [Zhou 15a, Zhou 15b] was illustrated by one and
two-dimensional periodic structures; this method is based on a Component Mode
Synthesis (CMS) approach to analyze the local behavior of the unit cell using a re-
duced modal basis in addition to a Wave Finite Element Method (WFEM) that fully
exploit the periodic propriety of the structure and extracts directly the propagation
parameters.

(a) (b)

Figure 1.3: (a) A schematic of a periodic beam grillage system with a single period high-
lighted The point A represents the reference node [Langley 97]. (b) Generic 3D periodic
cells [Collet 11]

1.3.2 Multidimensional linear periodic systems

A large number of physical systems in different scientific areas can be modeled as two-
dimensional linear periodic lattices. For instance, in the field of acoustics, Vasseur
et al. [Vasseur 98] validated theoretically and experimentally the existence of large
band gaps at low frequencies in 2D periodic binary solid/solid composite media.
The dynamic behavior of 2D cellular structures with the focus on the effect of the
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dynamics of the propagation of elastic waves within the structure has been evalu-
ated [Ruzzene 03]. In addition, Zou et al. [Zou 08] presented a detailed calculations
of the dispersion relations of bulk waves propagating in two-dimensional piezoelec-
tric composite structures and showed that the first bandgaps could be controlled
according to need. A new continualization procedure that refers to the non-local
interaction between variables of a 2D discrete media (figure 1.4 (a)) was proposed
[Andrianov 08]. Moreover, the effect of micro-structural properties on the wave dis-
persion in linear elastic membrane, using a periodic 2D-mass spring lattice under
transverse vibrations has been studied [Lombardo 10]. A finite element formula-
tion of the wave propagation problem and a discussion of the dispersion relation
for classical honeycomb geometries (figure 1.4 (b)) were given, where the standard
terminology used in honeycomb mechanics was also recalled [Gonella 08]. Further-
more, Leamy [Leamy 12] detailed an exact wave-based approach for characterizing
wave propagation in two-dimensional periodic lattices. In phononics, Zhang et al.
[Zhang 12] investigated numerically Lamb wave propagation in a homogenous plate
with periodic tapered surface, showing that the BGs could be effectively shifted by
changing the geometrical parameters, including the ratio of lower base width to upper
base width.

(a) (b)

Figure 1.4: (a) A 2D lattice in the (x,y) plane. The lattice is assumed to vibrate in direction
perpendicular to its planar position [Rosenau 87, Andrianov 08]. (b) Schematic of generic
lattice and unit cell with considered reference frames [Gonella 08]

A high number of researches on wave propagation in periodic structures is based
on studying linear structural designs. Although these latter produce interesting
wave properties as filtering the propagation of waves, bandgaps, propagation and
attenuation zones and isolate or localize vibrations, complex dynamical phenomena
may be detected in nonlinear periodic structures, which can be exploited to design
periodic structure-based smart systems with high performance. In addition, and since
most of the structures are nonlinear due to their nature, the interactions with their
neighbors, the restoring forces and so on, it’s essential to analyze wave propagation
in periodically nonlinear systems.
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1.4 Nonlinearity in periodic systems

Variety of rich dynamic properties such as multi-stability, bifurcations, existence
of highly stable localized solutions, solitary waves and solitons, energy transfer,
frequency-conversion and variation in wave speeds and propagation direction related
to wave amplitude and nonlinearity etc. emerged the trend to devote significant stud-
ies to explore these complex phenomena for wave propagation in nonlinear periodic
media.

(a) (b) (c)

Figure 1.5: (a) Bifurcation diagram for the logistic map Jordan Pierce. (b) Spatiotemporal
chaos http://www.physics.uci.edu/ dennin/pictures.html. (c) 3D view of the spatio-temporal
evolution of a Peregrine soliton Christophe Finot

For instance, the existence of waves and amplitude dependent frequencies bound-
ing nonlinear propagation and attenuation zones (PZs and AZs) has been found by
studying an infinite chain of mono-coupled oscillators with geometric nonlinearities
[King 95]. The existence of solitary wave propagation in strongly nonlinear periodic
structures such as uncompressed granular media was first revealed by Nesterenko
[Nesterenko 83]. Soliton-defect interactions using simple two-mode models charac-
terized by a mobile soliton and a localized (trapped) mode were first suggested by
Goodman et al. [Goodman 04]. Localization and solitary wave phenomenon were ob-
served in a perfectly cyclic, weakly nonlinear periodic system [Vakakis 93]. Nayfeh et
al. [Nayfeh 08] explored the multitudes of nonlinear resonances such as subharmonic,
superharmonic and combination resonances by applying several perturbation tech-
niques for predicting wave propagation in weakly nonlinear continuous systems. In
addition, the synchronization of chaotic circuits has been studied in random network
such as secure communication [Zhou 05]. Moreover, it was found that the presence
of defects and interfaces in granular media is interesting to control stress propagation
and produces energy trapping [Daraio 06].

Chapter 1 is dedicated to the theoretical framework of methods for solving pe-
riodic nonlinear problems, with a short literature review on the methods employed
to solve similar systems. In addition, many physical systems in several scientific do-
mains such as materials, acoustics, optics, mechanics, MEMS/NEMS and vibrations
can be modeled as periodic nonlinear chains. In the following section, we will be
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interested in three principal physical application that can be modeled as arrays of
coupled nonlinear oscillators.

1.4.1 Pendulums arrays

(a) (b) (c)

Figure 1.6: (a) Pictures of three stationary states of the pendula chain obtained for one
single given driving amplitude and frequency [Khomeriki 08]. (b)-(c) Experimental setup
and schematic diagram of a pendulum array and its frame sits on a platform that can freely
move horizontally [Cuevas-Maraver 14]

In mechanics, the array of coupled pendulums (figure 1.6 (b), (c)) represents a famous
example of periodic nonlinear structures which can be described by the Sine-Gordon
model [Cuevas-Maraver 14]. The latter is suitable for a large variety of physical
systems, which explains the vast research area developed around this field. Several
theorems on the existence of oscillatory, rotary, and mixed periodic motions of cou-
pled pendulums were proved [Marlin 68]. In addition, Cai et al. [Cai 93] identified
two distinct regimes for a damped Sine-Gordon chain driven by the spatio-temporal
periodic potential. The nonlinear dynamics and chaos in a simple pendulum array
have been reported experimentally, reproducing the fact that if there was no disorder
a state of fully developed spatiotemporal chaos appears, while an optimal amount of
disorder returns the dynamics regular [Shew 99]. In addition, the synchronization of
parametrically excited coupled chaotic pendulums has been experimentally observed
[Zhang 01]. Vyas et al. [Vyas 01] showed that the bandwidth of absorber effectiveness
can be increased substantially by using an array of pendulums with slightly different
natural frequencies. For a chain of coupled pendula driven periodically at one end
(figure 1.6 (b)), Khomeriki et al. [Khomeriki 08] demonstrated experimentally the
existence of a novel regime which produces an output frequency at an odd fraction of
the driving frequency. Chen et al. [Chen 07] showed using the Floquet theory that
the instability onset in a pendulum array always responds to the forcing frequency
subharmonically. Recently, Liang et al. [Liang 15] reported an experiment using a
coupled-pendulums chain to demonstrate various aspects of wave motion. Further-
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more, Jallouli et al. [Jallouli 15] investigated the nonlinear dynamics of a 2D array
of coupled pendulums under parametric excitation.

(a) (b)

Figure 1.7: (a) Observation of an inter-site breather [Cuevas 09]. (b) Soliton visualized
along a pendulum. Image: pe.soliton.free.fr/.

In other studies, Intrinsic Localized Modes (ILMs), existing as exact solutions
in nonlinear lattices have been widely studied. Particularly, for an array of coupled
pendulums [Ikeda 15] which is an ideal playground for showcasing many interesting
features of discrete breathers (figure 1.7 (a)), [Cuevas 09] which can be stabilized in
the presence of driving and damping [English 14] or propagate energy in a forbidden
band gap [Geniet 02]. The nonlinear coupling and decoupling between ILM and
third allowed plane-wave mode, as well as both modes interaction with the driver,
give rise to pulsating breather instability [Thakur 08]. In addition, it was shown that
the mass impurity in a parametrically driven, damped nonlinear coupled pendula has
striking influence on the high-frequency modes [Hai-Qing 06]. Recently, the influence
of adding external harmonic excitation on the intrinsic localized modes of coupled
pendulums chains parametrically excited has been investigated [Jallouli 17].

1.4.2 MEMS/NEMS arrays

Over the last decade, there has been an increasing attention in the field of MEMS &
NEMS dynamics as an important process technology, induced by a set of functional
needs which have the potential to affect our lives as well as fundamental questions
[Bao 96]. These small integrated devices are used to create tiny systems that com-
bine electrical and mechanical components, having high frequencies contrary to their
microscales. There are plenty of new challenges in this area of researches that results
from the request to manufacture new MEMS devises that improve the reliability and
performances of the existing ones.

In parallel, there was the effort of miniaturization for designing Nanoelectrome-
chanical systems (NEMS), with a reduced size that is less than one micrometer.
This down scaling from MEMS to NEMS has permitted the fabrication of very small
devices having faster speed, higher complexity, lower power and cost in the domain
beyond electronics, that allow for better performing sensors. While operating at res-
onance, NEMS display high fundamental frequencies, small masses, tolerable linear
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stiffness and they are subject to very low damping. These characteristics enable
NEMS to be a perfect candidate for several applications like inertial sensors, gas
sensing, filters and switches [Craighead 00, Ekinci 05].

(a) (b)

Figure 1.8: (a) A series of silicon nanowires from [Carr 99]. (b) A scanning electron mi-
crograph showing a fluidics structure fabricated with the sacrificial layer removal technique
[Craighead 00]

The capability to produce arrays of high number of coupled beams in very large
scale integration fashion opens new possibilities to study the nonlinear dynamics of
coupled MEMS and NEMS. These devices are compatible and co-integrable with
standard silicon electronics processes and one can take advantage of their result-
ing collective dynamics to enhance the performances of MEMS/NEMS sensors and
actuators. The collective responses of coupled arrays could be beneficial for signal
improvement and noise decrease , as well as sophisticated mechanical signal pro-
cessing applications. To possess rich dynamic behavior unreachable with uncoupled
MEMS resonators, Buks and Roukes [Buks 02] studied the mechanical character-
istics of an array of parametrically excited micromechanical doubly clamped gold
beams (figure 1.9 (a)). Qualitative comparison with the experiment of Buks and
Roukes was done by Lifshitz and Cross [Lifshitz 03], by modeling a parametrically
excited MEMS array using a set of coupled discrete nonlinear equations of motion.
They used the secular perturbation theory and standing waves decomposition to
transform the coupled differential equations of motion into a set of coupled nonlin-
ear complex algebraic equations for the normal modes amplitudes. Although, this
procedure helped them to obtain exact solutions for few coupled oscillators, they
gave a qualitative understanding of the dynamics of large arrays. Later, Bromberg,
Cross and Lifshitz [Bromberg 06] studied the same equations of motion to obtain an-
alytical results for large arrays by approaching the system from the continuous limit
of infinitely large degrees of freedom, and obtaining a description of the slow spa-
tiotemporal dynamics of the array of oscillators in terms of an amplitude equation.
Moreover, Kenig, Lifshitz and Cross [Kenig 09a] extended the investigations of the
amplitude equation to study the problem of pattern selection with the application to
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MEMS/NEMS systems. They described the transitions between standing-wave pat-
terns of different wave numbers as the drive amplitude is varied either quasistatically,
abruptly, or as a linear ramp in time. A review of the nonlinear dynamics and com-
plexity of such nanomechanical and micromechanical resonators was conducted by
Lifshitz and Cross [Lifshitz 10]. The nonlinear dynamics of electrostatically coupled
microresonators (figure 1.9 (b)) in several frequency regions have been performed
by Gutschmidt et al. [Gutschmidt 12] using a continuum model. We should note
that, such arrays may exhibit interesting dynamical phenomena such as the intrinsic
localized modes [Sato 03c, Sato 03a], which make them adequate for analyzing the
dynamics of large degrees of freedom systems.

(a) (b)

Figure 1.9: (a) Array of doubly clamped beams forming a diffraction grating [Buks 02]. (b)
Micro-electromechanical array; actuation and dissipative forces applied at mid-span of each
beam [Gutschmidt 12]

1.4.3 Granular crystal lattices

Hertzian chains of spherical particles represent a famous example of nonlinear dis-
crete structures, where the nonlinearity emerges from two characteristics; the first
one is the geometry between particles is such that the transmission between two
particles in contact is nonlinear and the second one from the applied compressive
load. The dynamic behavior of one-dimensional chain of granular crystals emerged
by Nesterenko [Nesterenko 83] showing analytical and numerical studies. Later,
the concept of “sonic vacuum” and the formation and propagation of highly non-
linear solitary waves in similar arrays was experimentally shown by Lazaridi et al.
[Lazaridi 85]. The motivation behind studying granular crystals lies from their abil-
ity to control the nonlinearity and tune their dynamic responses from linear to weakly
and strongly nonlinear by changing the amount of the static precompression loads
[Nesterenko 01]. In addition, they have a great controllability of the assembly as well
as the simplicity of their construction and their applicability to engineering devices
[Boechler 11, Spadoni 10].
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Figure 1.10: One-dimensional chain of particles compressed by a large static force F0

[Nesterenko 01], causing initial displacement δ0 between neighboring centers.

Granular crystals showed the ability to support tunable acoustic band gaps in
their linear and weakly nonlinear regime, where a novel perturbation analysis verified
by numerical simulations was applied to derive amplitude dependent dispersion rela-
tions [Boechler 10a]. In addition, it was observed that the wave speed changes with
increase in amplitude at certain frequency leading to small changes in the band edges
[Boechler 10b]. Several studies have reported, both experimentally and numerically,
energy localization phenomena in Hertzian chains with mass defects considering a
one-dimensional diatomic granular crystals [Boechler 10c]. Experimental observation
of the modulation instability and discrete breathers in the weakly nonlinear dynam-
ical regime in such arrays was reported [Theocharis 10]. Heterogeneous, 1D strongly
compressed spheres chain has been used to generate solitary waves [Yang 11]. In
the strongly nonlinear regime it has been demonstrated that a sequence of pulses is
induced at the interface of two sonic vacua by the deceleration of interfacial particles
[Nesterenko 05]. In addition, Daraio et al. [Daraio 06] demonstrated experimentally
and numerically the efficiency of soliton-like and shock-like pulse trapping and dis-
integration in a composite granular protector and proved that its efficiency depends
on the particle’s arrangements. Moreover, Job et al. [Job 07] described through
experimental, numerical and theoretical studies the formation of solitary wave train
by large striker on an alignment of spheres. On the other hand, Theocharis et al.
[Theocharis 13] reported the dynamic behavior of nonlinear periodic phononic struc-
tures, along with how such structures can be utilized to affect the propagation of
mechanical waves.

Several studies were devoted to investigate the dynamics of two-dimensional gran-
ular lattices, motivated by the richness of the complex dynamical nonlinear phenom-
ena found in one-dimensional ones. Recently, Leonard et al. [Leonard 13] studied the
stress wave properties in a basic 2D granular crystals. Coste et al. [Coste 08] inves-
tigated the effects of varying the isotropic static compression in linear and nonlinear
regimes for 2D granular lattice (figure 1.11 (a)). Experimental and numerical studies
have been performed in order to show the impact of the type of excitation imparted
on a centered square of highly nonlinear granular system [Leonard 12] (figure 1.11
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(b)).

(a) (b)

Figure 1.11: (a) 2D triangular lattice of beads [Coste 08]. (b) Uncompressed 20 by 20
square array of spherical particles square array of cylindrical particles (intruders) in the
interstitial spacings [Leonard 12]

1.5 Localization phenomena

Space localization represents an interesting phenomenon in engineering science, which
can occur in periodic structures when the wave-function amplitude of the oscillating
modal shape decays exponentially in space. It is based on the fact that the energy
does not propagate and it is localized in space. Consequently, researchers were moti-
vated to explore more deeply the effects and consequences of the localization, where
they demonstrated analytically and numerically that for linear periodic systems mode
localization exists when: (1) the coupling between substructures is weak enough and
(2) the periodicity in the structure is perturbed by structural mistuning. However,
for perfectly periodic nonlinear systems, strongly localized nonlinear normal modes
may occur for sufficiently weak substructures coupling.

1.5.1 History of localization studies

In the previous sections, the dynamics of perfectly periodic structures encountered
in many field of engineering and physics have been examined. Manufacturing and
assembly defects may produce disorder that can occur in material properties of the
system. Spatial localization of normal modes and attenuation of waves in all fre-
quency bands could be the consequence of a disorder in periodic structures, in which
energy is confined to the region near disorder where the dynamics behavior of the
structure changes.

Starting from the fifties, two notable papers the first one by Dyson [Dyson 53]
explored the effect of disorder of a one-dimensional oscillators, coupled by harmonic
forces where the inertia of each oscillator and the strength of each coupling were con-
sidered as random variables. A vibrating mass-spring system has been considered
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where a method for calculating the distribution-function of the frequencies of nor-
mal modes has been presented. In addition to the frequency spectra, was calculated
analytically when the considered distribution law of the oscillator parameter takes
an exponential form. The second paper, Schmidt [Schmidt 57] developed a math-
ematical method which gives fairly generally the density of eigenstates for linear
disordered chain system. Although, their results helped explaining in a mathemat-
ical way the wave transmission in a disordered periodic systems, they ignored the
effect of disorder on the eigenvectors and wave propagation.

(1) (2)

Figure 1.12: Normal modes of an isotopically disordered harmonic chain, half-heavy atoms
and half·light with a mass ratio of three. The mode numbering is from the lowest to the
highest frequency. (1) N=50, (2) N=200 [Matsuda 70]

In quantum mechanics, the first scientist to describe eigenstate localization by
the absence of diffusion of waves in a disordered potential is the American physicist
Philip Warren Anderson [Anderson 58]. He showed that an electron in a semiconduc-
tor has the possibility of not being transported, provided that the number of disorder
is sufficiently large in a lattice. This phenomenon is named Anderson localiza-
tion in some cases token of appreciation for his original contribution. Anderson
suggestions motivated researchers over many years to well understand localization.
This phenomenon has been thoroughly investigated in mistuned periodic structures,
inspiring innovative studies in physics. Early studies treated disordered chains of
atoms, it has been proved that any infinite disordered chain can be made to have
an exponentially localized solution (figure 1.12) for any frequency by modifying the
mass of one atom to a suitable real value as a function of frequency [Matsuda 70].
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In addition, a general proof for the exponential growth of the particular solutions of
the stationary equation of motion in the system was given later by Ishii [Ishii 73].

1.5.2 Localization in linear quasi-periodic structures

In the field of structural dynamics and vibrations, Hodges [Hodges 82] was the first
to study localization phenomena in disordered periodic structures. He used simple
examples such as coupled pendula (figure 1.13) and strings chains to prove that
disorder in periodicity could have amazing impact on the structural dynamics and
waves attenuation in all frequency bands independently of any dissipation in the
system. Later, Hodges et al. [Hodges 83] measured the transmission of energy and
the mode shapes in a mass-spring system after moving the masses in a controlled way
to provide small degree of irregularities. They satisfied the theoretical predictions by
proving that the individual modes making up each passband are localized in specific
areas of the disordered structure.

1.5.2.1 Techniques to investigate mode localization in discrete sys-
tems

The possibility of localization in large space structures including the effect of struc-
tural imperfection and disorder was investigated theoretically and numerically, prov-
ing that mode localization is most likely to occur in structures consisting of a large
number of weakly coupled substructures [Bendiksen 87]. Pierre et al. [Pierre 87b]
considered a multispan beams on irregularly spaced supports to study localization
using a perturbation technique. In a disordered system consisting of identical nearly
coupled component systems, strongly localized modes of vibration may occur if the
coupling between the substructures is of the order of or smaller than the spread
in natural frequencies of the component system [Pierre 87a, Pierre 88]. Later, Li
et al. [Li 92] gave a brief review underlying the effects of near-periodicity on both
linear waves and dynamic behavior in the interest of engineering structures. For
one-dimensional chain of coupled disordered, Ottarasson et al. [Óttarsson 96] stud-
ied mode localization in mistuned bladed disk using random transfer matrices where
they used a perturbation technique to obtain an approximation of the localization
factor and the spatially averaged rate of exponential attenuation.

Figure 1.13: Coupled pendula arranged on a chain [Hodges 82].
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1.5.2.2 Techniques to investigate mode localization in continuous
systems

Several researchers thoroughly analyzed the dynamics of continuous disordered sys-
tems such as chains of beams, panels, blades, patches or strings using different tech-
niques. Bendiksen et al [Bendiksen 89] investigated mode localization phenomenon
in a generic class of large space reflectors, using a Rayleigh-Ritz formulation for few
cantilevered beam bending modes and a finite-element formulation using Bernoulli-
Euler beam elements. A new perturbation scheme for damped disordered periodic
structures, which permits to calculate the localization factor which means the av-
erage exponential decay rate of wave transmission with respect to the distance of
transmission has been developed [Cai 91]. In disordered cyclic structures, a local-
ization length scale is proposed as a measure of the spatial extent of a mode using
numerical experiments indicating that the particular set of random disorder can
have a significant effect on the degree of localization [Cornwell 92]. Axially vibrat-
ing beam continuously restrained by imperfect elastic springs have been analyzed
by [Luongo 92] using a deterministic approach. Pierre et al. [Pierre 89] developed
a perturbation method which was applied for mistuned assemblies of coupled Mdof
component systems, showing that higher modes are more susceptible to localization,
which is unavoidable if the mode number is large enough.

More recently, Localization phenomena in one-dimensional imperfect continu-
ous structures have been analyzed in both dynamics and buckling, where Luongo
developed a general perturbation method which generalizes the classical WKB ap-
proximation (in Honor of Léon Brillouin, Hendrik Anthony Kramers and Gregor
Wentzel) which consists in finding approximate solutions to linear differential equa-
tions with spatial varying coefficients [Luongo 01]. Disorder in periodically shunted
piezoelectric patches extends the stop bands into two adjacent propagation zones and
produces the localization of the vibration energy near the excitation zone [Thorp 01].
The wave localization in disordered periodic 2-2 piezoelectric composite structures is
strengthened due to the piezoelectricity, where a slight disorder can lead to promi-
nent localization phenomenon [Li 05]. Huang [Huang 06] Used the Galerkin method
to discretize the localization equation of a continuous system constituting a number
of several mistuned blades, revealing that the number of grouped blades and the
distribution of multi-disorder in a rotating blade system my markedly affect the lo-
calization phenomenon. A review on the literature of mistuned blade disks vibration
has been given by Castanier et al. [Castanier 06] enabling better understanding of
their forced responses and highlighting important developments and emerging di-
rections in this research area. The Lyapunov exponent has been used in order to
calculate the localization factors in a disordered periodically stiffened double-leaf
panels, where the numerical results show the significant effect on the pass bands and
the localization factor [Yu 10] and the localization characterizing the average expo-
nential rate of decay of the wave amplitude in a disordered piezoelectric axial-bending
coupled beams [Zhu 13].

Recently, an homogenous approach has been applied to highlight the frequency
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split and localization in disordered rotationally periodic structure [Bisegna 11]. The
frequencies of the wave localization in periodic composite materials with local de-
fects have been analyzed based on the transfer-matrix and the plane-wave expansion
methods [Andrianov 14]. Ding et al. [Ding 16] modeled a disordered tunnel with a
pipe-beam with periodic joints on elastic foundation, localization factors were cal-
culated showing that the flexural wave is always localized near the moving load
when the velocity is less than some critical velocity of a uniform tunnel on elastic
foundations. In addition, a numerical approach using the modal data has been sug-
gested in order to quantify vibration mode localization in complex systems using
the modal criterion across all the modes sue to changes in some systems parameters
[Chandrashaker 16].

1.5.3 Nonlinear localization

Although, mode localization in linear periodic structures exists only when the cou-
pling is sufficiently weak and the structure is perturbed by small mistuning, It has
been shown that for sufficiently weak substructure coupling in perfectly nonlinear
periodic structure, strongly localized Nonlinear Normal Modes (NNMs) may occur.

1.5.3.1 Mode localization in perfectly periodic structures

In the theory of nonlinear waves, spatial nonlinear localization is one of the most
important properties encountered in NNMs, where it provides a link between these
modes and solitary solutions (solitary waves and solitons). This link was demon-
strated by Scott et al. [Scott 85] where they considered a general system of arbitrary
large or infinite degrees of freedom. Their analysis showed that in the limit of weak
nonlinearity and when the coupling parameters are at the same order, the system
possesses 3n−1

2
NNMs where the majority are spatially localized.

Voluminous studies on mode localization in discrete and continuous periodic non-
linear systems exist in the physics of engineering using appropriate analytical and
numerical techniques. In 1955, Fermi, Pasta, Ulam (FPU) and Tsingou [Fermi 55]
studied numerically the lack of equipartition of energy in one dimensional anhar-
monic nonlinear lattice of 64 particles (equation (1.1)), where they found that the
solution almost recurred and the energy is localized in the lower modes.

Müi = k2(ui−1 − 2ui + ui+1) + k3[(ui+1 − ui)2 + (ui − ui−1)2] (1.1)

After 10 years, Zabusky et al. [Zabusky 65] studied the continuum limit of the
corresponding FPU lattice by expressing the displacement as a continuous functions
of position and time and expanding the continuous limit of u±1 into a Taylor series
up to the fourth order to obtain the famous integrable partial differential nonlinear
Diederik Korteweg and Gustav de Vries (KDV) equation of the form:

∂ty + y∂xy + δ2∂3
xy = 0, (1.2)
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with ∂x and ∂t denoting partial derivatives with respect to the space x and time t,
and δ a small parameter. They observed a noticeable property of solitary wave pulse
named Soliton that they interact elastically with each other and reappear virtually
unaffected in size or shape: "interacting localized pulses do not scatter irreversibly".

Researchers paid particular attention to study nonlinear localization in discrete
systems. For one dimensional periodic array of nonlinear oscillators, it was nu-
merically discovered that such system undergo time-periodic and spatially localized
solutions (Discrete Breathers DBs or Intrinsic Localized Modes ILMs), whose ampli-
tude decays exponentially in space [Takeno 88]. The existence of such strong, stable
large amplitude breathers in a discrete Klein-Gordon model [Kragh 84] has been dis-
covered and calculated numerically [Dauxois 92] and a qualitative explanation about
their importance was given by [Dauxois 93]. The existence of such spatially localized
solutions was rigorously proved for a broad range of weakly coupled oscillators arrays
regardless of the lattice dimension [MacKay 94].

1.5.3.2 Localization in weakly coupled disordered nonlinear sys-
tems

Kuske et al. [Kuske 93] developed a quasi-degenerate perturbation theory to compute
the localization length of the localized wave function while considering the stationary
Schrödinger equation in one-dimensional chain of particles with random potentials.
Thermal conductivity in one- and two-dimensional randomly disordered nonlinear
lattices has been studied when performing numerical simulations of energy transport
in these systems [Payton 68]. Toda [Toda 89] verified by numerical experiments that
introducing a nonlinearity of interaction in periodic lattices, only a little energy
partition occurred and the state of the systems return periodically to the initial
state. In addition, he proved via numerical experiments that the strength of the
energy flow in many cases, larger than that in the linear lattice with same impurity
concentration and nonlinearity enhance the energy transmission. Nonlinear mode
localization in certain classes of discrete periodic oscillators was discussed by Vakakis
et al. [Vakakis 96]. In addition, they confirmed for the first time experimentally the
existence of mode localization phenomena in a practical flexible structure of coupled
beams with actively induced stiffness nonlinearities. Moreover, they presented an
analytical methodology to study standing solitary waves of noncyclic continuous
oscillators governed by nonlinear partial differential equations. Nonlinear vibrational
localization was firstly reported by Brown [Brown 93] confirming experimentally their
presence in a rotating turbine-bladed disk assemblies. The main conclusion of these
works is that unlike the linear mode localization, nonlinear mode localization may
occur in perfectly symmetric periodic nonlinear lattices, where the only constraint is
the presence of weak coupling between oscillators.

1.5.3.3 Nonlinear spatial localization in optics and photonics

The concept of DBs or ILMs and Discrete Solitons (DS) has been the subject of theo-
retical, numerical and experimental researchers which attracted increasing attention
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over the last years. The discovery of such modes and their important role played
by nonlinear spatial localization motivated researchers in several domains toward a
better understanding of their role. For instance, DBs and ILMs attracted consid-
erable attention in optics due to their novel physics and light-routing applications
[Christodoulides 03, Campbell 04]. For a comprehensive review of the theoretical and
experimental developments in the area of discrete optical systems which provides new
possibilities for optical solitons see [Lederer 08]. In addition, the first experimental
observation of a 2D discrete solitons in a biased photorefractive crystals was made by
Fleischer et al. [Fleischer 03]. In photonics, Martin et al. [Martin 04] observed 2D
discrete solitons in optically induced partially coherent photonic lattices along with
a host of new phenomena arising from soliton-lattice interaction (see figure 1.14).
Experiments were performed in spatially random nonlinear optical media expanding
light propagation, demonstrating that weak interaction tend to restore the coherence
in Anderson insulators [Lahini 08]. Maldovan et al. [Maldovan 06] demonstrated the-
oretically the simultaneous localization of photons and phonons in the same spatial
region by introducing lattice defects in a periodic array of dielectric/elastic mate-
rial that exhibits gaps for both electromagnetic and elastic waves. Schwartz et al.
[Schwartz 07] reported experimentally the first observation of Anderson localization
of expanding waves packets in spatially random nonlinear 2D optical media. An im-
pressive number of various experiments during the last years observed the existence
of ILMs in driven arrays of micromechanical arrays [Sato 06, Kenig 09b].

(a)

Figure 1.14: A two-dimensional intrinsic localized mode forms in a photonic lattice
[Martin 04].

1.6 Conclusion

Variety of rich dynamical phenomena such as propagation and attenuation zones,
localization, solitary waves, energy transfer and frequency-conversion emerged the
trend to study wave propagation in periodic nonlinear systems. Pendulums, MEMS,
NEMS and granular crystal arrays represent famous examples of periodic nonlinear
lattices. It has been shown that spatial localization may occur in linear periodic
systems when the coupling between substructures is sufficiently weak and the pe-
riodicity is perturbed by small structural mistuning. However, perfectly periodic
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nonlinear structures may exhibit strongly localized nonlinear normal modes for suf-
ficiently weak substructure coupling.

The principal goal of this thesis consists in exploring the localization phenomena
by modeling the collective dynamics of periodic arrays of weakly coupled nonlinear
resonators. To do so, we propose the study of the collective dynamics of a periodic
array of weakly coupled Duffing-Van Der Pol oscillators under simultaneous primary
and external excitations. A convenient choice of physical parameters enabling the
creation of linear closed modes has to be considered. In addition, one must combine
appropriate quasi-analytical and numerical solving techniques to enable the study of
the modal interactions and bifurcation topologies. Therefore, the following chapter
presents a review of the analytical and numerical methods which are able to calculate
periodic responses of weakly coupled nonlinear systems.
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2.1 Introduction

Many physical problems in engineering can be modeled as periodic nonlinear systems,
which explain the considerable advances that have been made in order to compute
their periodic solutions. When such systems are subjected to periodic excitations
they react with variety of rich dynamical phenomena, therefore analytical, numerical
and combination of both techniques have been developed in order to determine the
periodic solutions, stability and bifurcations of such nonlinear systems. They can be
generally classified into two main categories, namely, time-domain formulations and
frequency-domain methods. The first category includes the direct time integration
[Subbaraj 89], shooting methods [Nayfeh 95], Poincaré map method [Parker 89] and
the orthogonal collocation methods (Gauss-Legendre collocation point) [Doedel 07].
These methods consist in transforming the original differential system into an al-
gebraic one using a time integration algorithm, generally limited to a single pe-
riod. Frequency-domain techniques include the harmonic balance method (HBM)
[Krylov 49] and perturbation techniques [Nayfeh 81]. Frequency-domain methods
consider periodic solutions with a finite number of harmonics or perturbations by re-
placing them in the given differential system and solving a resulting set of nonlinear
algebraic one. This chapter presents a classification of the analytical and numerical
methods to calculate periodic responses of nonlinear systems under periodic exci-
tations. Before doing so, a detailed review on the developed numerical techniques,
analytical approaches and combination of both to study the dynamics of periodic
nonlinear systems has been reported.

2.2 Literature review on methods in periodic nonlin-
ear systems

Several techniques have been developed using numerical methods, analytical ap-
proaches and combination of both, in order to study the dynamics of nonlinear
periodic structures. In the classical multiple scales perturbation method, Asfar et al.
[Asfar 83] gave a comprehension on the use of this method to derive coupled mode
equation for waveguides with periodic systems, while Nayfeh [Nayfeh 83] analyzed the
response of a Multi-degrees-of-freedom (Mdofs) system with quadratic nonlinearities
to a harmonic parametric excitation. Manktelow et al. [Manktelow 11] developed a
bloch wave-based multiple scales perturbation analysis method showing that in the
monoatomic chain, the propagation velocity depend on the wavenumber and ampli-
tude. Later, they determined dispersion frequency shifts for a Bloch wave solution
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containing two determinant harmonic components, for weakly nonlinear Mdofs pe-
riodic structures [Manktelow 14]. In continuous nonlinear periodic systems, wave
propagation and dispersion relations were studied using a finite-element discretiza-
tion of a single unit cell followed by a perturbation analysis finding that the band
gaps are amplitude dependent and sensitive to systems parameters [Manktelow 13].

Chakraborty et al. [Chakraborty 01] applied a perturbation approach to investi-
gate the effects of harmonic wave propagation in an infinite, weakly nonlinear peri-
odic chain. A novel perturbation analysis accompanying numerical simulations was
applied to analyze the nonlinear dispersion for weakly nonlinear one-dimensional sys-
tems, demonstrating the manner in which nonlinearities may be exploited to achieve
amplitude dependent dispersion properties [Narisetti 10]. A general harmonic bal-
ance method was used to analytically investigate wave propagation in strongly nonlin-
ear chain of beads under Hertzian contact [Narisetti 12].For two-dimensional mono-
atomic lattice of coupled Duffing masses, Narisetti et al. [Narisetti 11] developed
a perturbation approach to evaluate the influence of nonlinearities on the location
of band gaps, group velocity magnitudes and the direction of energy propagation.
Lazarov et al. [Lazarov 07] used the harmonic balanced method to investigate the
influence of the nonlinearities on the filtering properties of the chain around the
linear natural frequency of the attached oscillators. A combination of harmonic bal-
ance method and multiple scales analysis was used to study wave attenuation in
nonlinear periodic structures with weak damping [Marathe 06]. When dealing with
cubically nonlinear oscillatory chain, a nonlinear mapping technique has been used
to analyze the modification of the boundary of linear propagation/attenuation zones
[Romeo 06]. Romeo et al. [Romeo 15] applied the same technique using the non-
linear propagation region of chain of oscillators with cubic nonlinearity exhibiting
existence solutions to identify regions of existence of discrete breathers and to guide
their analysis. Recently, Jothimurugan et al. [Jothimurugan 16] analyzed the effect
of the coupling strength on the resonance and anti-resonance frequencies and their
response amplitudes, for n coupled Duffing oscillators using numerical integration.

The concept of Nonlinear Normal Mode (NNM) was initiated by Rosenberg
[Rosenberg 62] for conservative systems as a synchronous periodic oscillation and
symmetric nonlinearities. Vakakis [Vakakis 97] gave a comprehensive review on the
NNMs which may provide a valuable theoretical tool for analyzing some specificities
of nonlinear systems. Later, an efficient Galerkin projection method was developed,
which allows the construction of NNMs that are accurate out to large amplitudes
of vibration [Pierre 06]. This approach was extended to the generation of nonlin-
ear modes for variety of applications subjected to external resonance. In structural
dynamics, the Asymptotic Numerical Method (ANM) which consists in computing
power series expansion of solution branches was introduced by Noureddine Damil
and Michel Potier-Ferry [Damil 90] to compute the post buckling behavior of elastic
plates and shells. Luongo [Luongo 95] was the first to extend the transfer matrix
method to post-buckling problems in periodic nonlinear structures. Later, Luongo
et al. [Luongo 06] applied a transfer matrix-perturbation approach to the dynamics
of chains of continuous nonlinear sliding beams. An accurate approximate analytical
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solutions for Mdof coupled Van der Pol-Duffing oscillators has been given by Qian
et al. [Qian 10] using the Homotopy Analysis Method (HAM). The precise inte-
gration method combined with homotopy perturbation method were used to solve
a nonlinear dynamic system with Mdof [Mei 08]. In the upcoming sections, several
numerical and analytical techniques will be detailed starting by the numerical direct
time integration method.

2.3 Direct time integration method

Direct time integration methods are widely used in the analysis of nonlinear dynamic
problems. They presents an easy implementation procedure to compute numerical
solutions in addition to their phase portrait and frequency spectra. In direct time in-
tegration, the resulting ordinary differential equations will be integrated considering
a numerical step-by-step procedure.

Consider, the forced nonlinear system described by the following second order
nonlinear equations

ẍn =
d2xn
dt2

= f(ẋn, xn, t) for n = 1 . . . N (2.1)

Equation (2.1) can be written in the form of two first order differential systems
by adding an additional variable as follows

dxn
dt

= yn

dyn
dt

= f(yn, xn, t)

(2.2)

which is equivalent to

dX

dt
= g(X, t), (2.3)

where X(t) = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , yn(t))t. In order to solve the
differential system, ones must find a stationary solution of equation (2.3), then solve
it numerically for a set of initial conditions using a time integration method as the
Rung- Kutta, Newmark, Adams, and so on until the periodic steady state is reached.
Based on that, the solution at t + T is obtained and generated by the following
equation

X(X0, t+ T ) = X(X0, t), (2.4)

where X0 = X(t = 0) describes the initial conditions and T defines the period of
the periodic solution which corresponds to the period orbit in the phase plane.

In order to obtain the nonlinear frequency responses, we proceed iteratively to
compute the maximum of amplitude amax for a given frequency Ω in the steady-
state regime. However, once a multistability domain is reached, jump phenomena
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may occurs according to the initial conditions that have been taken into account.
Nevertheless, these methods does not give enough information about the global dy-
namics of the system, particularly the bifurcation behavior where they generally fail
to capture unstable solutions. In addition, they are time consuming, for the compu-
tation of steady-state solutions especially when considering strongly, high order or
weakly damped nonlinear models.

2.4 Shooting method

When searching for periodic solutions determining the dynamics of nonlinear sys-
tems, particularly when the equations are stiff and the period of the responses are
long, shooting methods emerges to replace the direct time integration. It consists
in assuming a point directly in the periodic regime and then shoots in time for an
assumed period T and checks if the periodicity condition is satisfied leading to highly
computational time saving. These trajectories represents solutions obtained by using
the boundary conditions which need correction as it is off the mark. Considering the
following periodic nonlinear system with

dX

dt
= g(X, t)

X(X0, T ) = X0

(2.5)

To implement the shooting algorithm, one must seek a solution of the nonlinear
differential system such that

Q(X0, T ) = X(X0, T )−X0 = 0, (2.6)

Where Q is the boundary conditions residual function. As X0 is assumed to
approximate the initial solution of the system, one must use an iterative Newton-
Raphson correction procedure adopted for the present case for locating periodic
solutions. The correction phase may be outlined at iteration k as follows

Xk+1
0 = Xk

0 + δX, (2.7)

where the correction δX satisfies the following system of linear equations

J(Xk
0 , T )δX = −G(Xk

0 , T ), (2.8)

with J the Jacobian matrix of Q(X0, T ) with respect to X0 which can be written
as

J(Xk
0 ) =

∂Q

∂X0

∣∣∣
(X0,T )

(2.9)

The above iterative procedure for computing a periodic solution can be summa-
rized as follows. For a given solution Xk

0 , we simultaneously integrate the nonlinear
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differential system (2.5) and the Jacobian matrix defined in (2.9) and solve the linear
system (2.8), for Xk

0 at each iteration. Once the correction δX is sufficiently low, the
iterations are finished and the periodic solution will be achieved ([Sundararajan 97]).
The relative proposed error condition to check the convergence is obtained by

||δX||
||Xk+1

0 ||
≤ ε (2.10)

Since the shooting method requires to provide an initial guess for a solution on
the orbit and the period of the orbit, the sensitivity of this method is pronounced
when the sought periodic solution is highly unstable and when the different sources
of errors are highly controlled.

2.5 Asymptotic Numerical Method (ANM)

Continuous or discrete nonlinear problems depending on one or more real parameters
λ, can be written in the following form

R(U, λ) = 0, (2.11)

Where R is the vector of n equations ∈ Rn and U is the unknown vector ∈ Rn.
The aim of the family of Asymptotic Numerical Method (ANM) is to numerically

find the solution curves (or solution branches) U(λ). These ANM are based on
different techniques expanding the solution branches into series expansion which is
an efficient continuation technique of type prediction-correction based on computing
each branch step by step.

2.5.1 Basic concepts of correction-prediction methods

The general concept of continuation techniques of type of type prediction correction
is to consider (U0, λ0) as a starting solution point of equation (2.11) and generate a
sequence of solution points (U1, λ1), (U2, λ2), . . . , (U j, λj), . . . . This series of points
constitute a discrete representation of a branch in the (U, λ) space, where each point
satisfies the tolerance criterion

||(U j, λj)|| < ε (2.12)

when ε is a given positive number.
To describe any solution branch, one must introduce a path parameter denoted

by a, which is used to identify points along the solution branch. The transition
from the solution point (U j, λj) to the new one (U j+1, λj+1) involves two successive
steps: the prediction one which consist in calculating an approximation of the desired
quantity followed by the correction step which refines the initial approximation by
using the predicted value of the function and another method. Prediction-correction
methods differ from each other on many criteria such as the predictor, the corrector,
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the path parameter and the control of the steps length which means the distance
between two successive points. In the following, we briefly remind the most classical
techniques: the tangent prediction, Newton correction and the pseudo-arclength
parameterization.

6

u
i

(U j ;6j)

"6(0)

"U (0) "a

P rediction

Correction

(U j+1;6j+1)

( 7U j+1; 76j+1)

Figure 2.1: Stages of Prediction-Correction method.

2.5.1.1 Tangent Prediction

The prediction point is defined by

Ūj + 1 = U j + ∆U (0)

λ̄j+1 = λj + ∆λ(0), (2.13)

where (∆U (0),∆λ(0)) is the prediction increment. This later must be such that
(Ūj + 1, λ̄j + 1) is solution of equation (2.11) as

0 = R(U j + ∆U (0), λj + ∆λ(0))

= R(U j, λj) +
∂R

∂U

∣∣∣
j
∆U (0) +

∂R

∂λ

∣∣∣
j
∆λ(0) +

1

2

∂2R

∂U2

∣∣∣
j
∆U (0)∆U (0) + . . . , (2.14)

where ∂R
∂U

∣∣∣
j
, ∂R
∂λ

∣∣∣
j
, ∂2R
∂U2

∣∣∣
j
, . . . are the respective partial derivatives of the residual

vector R with respect to its arguments U and λ at (U j, λj).

Ph.D. Thesis - D. Bitar 47



Methods for solving nonlinear problems

In the case where R and U are vectors in Rn therefore the derivative ∂R
∂U

∣∣∣
j
becomes

a n×n matrix, called the Jacobian matrix or the tangent matrix. Using the fact that
R(U j, λj) ' 0, we may neglect the higher order terms in equation (2.14) then the
prediction increment becomes solution of the following linear problem which consist
of n equation and n+ 1 unknowns:

∂R

∂U

∣∣∣
j
∆U (0) +

∂R

∂λ

∣∣∣
j
∆λ(0) (2.15)

Solutions of this equation form a straight line which is tangent to the required
curve at (U j, λj) (see figure 2.1). To define the prediction step length we must add
the following condition

||∆U (0)||2 + (∆λ(0))2 = ∆a2 (2.16)

Where || · || represent the Euclidean norm and ∆a is a given arc length increment.

2.5.1.2 Newton correction

If the prediction point R(Ū j+1, λ̄j+1) does not verify the tolerance criterion (2.12) we
then proceed to one or more corrections. We suppose that (U (i), λ(i)) is an approx-
imation at the iteration (i). We define an approximation at the (i + 1) iteration as
follows:

U (i+1) = U (i) + ∆U (i)

λ(i+1) = λi + ∆λ(i), (2.17)

where (∆U (i),∆λ(i)) is the correction at the (i + 1) iteration. We choose to find
the point (U (i+1), λ(i+1)) in a manner to satisfy equation (2.11), which after canceling
the high order terms gives rise to the following equation

∂R

∂U

∣∣∣
(i)

∆U (i) +
∂R

∂λ

∣∣∣
(i)

∆λ(i) = −R(U (i), λ(i)). (2.18)

To conclude the problem, we add an additional condition which requests that
total increment (prediction plus correction) satisfies the given arc-length condition
of type (2.16). In practice, it is convenient to linearize this length condition which
can be reflected by the fact that the corrections must be orthogonal to the prediction
path:

∆U (i) ·∆U (0) + ∆λ(i)∆λ(0) = 0. (2.19)

If the prediction point is close to the curve, the norm of the R vector goes to 0
during the correction process and we stop the correction once the tolerance criteria
is satisfied.

In summary, the new solution point can be written as:
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U j+1 = U j + ∆U (0) + ∆U (1) + ∆U (2) + · · ·+ ∆U (Niter)

λj+1 = λj + ∆λ(0) + ∆λ(1) + ∆λ(2) + · · ·+ ∆λ(Niter), (2.20)

where the perdition (∆U (0),∆λ(0)) is solution of equations (2.15), (2.16) and the
corrections (∆U (i),∆λ(i)) are solutions of equations (2.18), (2.19). This algorithm is
called "Newton-Raphson" (see figure 2.1).

To move from the solution point (U j, λi) to (U j+1, λi+1), we must solve Niter + 1
linear problem, which can require high computational time if the number of equations
n is important. Numerous strategies were proposed in order to save computational

time. For instance, when the matrix representing the derivative operator ∂R
∂U

∣∣∣∣
(i)

converges relatively slowly over corrections, it is tempting to keep the same matrix
∂R
∂U

∣∣∣∣
(1)

for all correction iterations: which is called the modified-Newton algorithm.

However, this gain of time might cause slower convergence in the correction process
and the benefits are not guaranteed.

Before performing the prediction and the necessary corrections it would be useful
to know in advance the optimal path length, small enough to ensure convergence at
a reasonable cost and large enough so that the longest path of the response curve
does not get too long. The problem becomes more complicated by choosing different
predictor-corrector paths as the optimum may vary widely during the progress: it
can be large if the curve is almost rectilinear as it gets strongly smaller in areas of
high curvature which appears when modeling instabilities.

To conclude, the process of solving a nonlinear problem requires choices, in par-
ticular the choice of the iterative algorithm (Newton-Raphson, modified Newton-
Raphson or others) in addition to the choice of the path lengths: which is called
computational steering strategy. Although, prediction-correction methods manage
to construct solution branches, they fail to give a compromise between reliability and
efficiency.

2.5.2 Concepts of the ANM

The idea behind the ANM is to numerically determine a solution of equation (2.11)
this time not with a sequence of points but a sequence of branches: branch1, branch2,
. . . , branchj, branchj+1, . . . as represented in figure 2.2.

Each solution branch is represented in a continuous way by a truncated power
series expansion of high order comparing to the path parameter a. Posteriori analysis
of the truncated series allows an estimation of the branch end amax, beyond which
the approximation is no longer valid.
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Figure 2.2: The principle of the ANM.

2.5.2.1 Perturbation technique: series calculation for algebraic
equations system

Considering (U j, λj) as a starting solution point, we generate a new branch by seeking
its power series expansion with regard to the path parameter a as following

U(a) = U j +
∞∑
p=1

apUp = U j + aU1 + a2U2 + . . .

λ(a) = λj +
∞∑
p=1

apλp = λj + aλ1 + a2λ2 + . . . (2.21)

This branch must define a solution of the equation (2.11), which is reflected by:

0 = R(U(a), λ(a))

= R(U j, λj) +
∂R

∂U

∣∣∣
j
(aU1 + a2U2 + . . . ) +

∂R

∂λ

∣∣∣
j
(aλ1 + a2λ2 + . . . ) (2.22)

+
1

2

∂2R

∂U2

∣∣∣
j
(aU1 + a2U2 + . . . )(aU1 + a2U2 + . . . ) + . . . .

Using the fact that R(U j, λj) = 0 and ordering the terms according to the growing
powers of a, equation (2.22) can be written as
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0 = a

{
∂R

∂U

∣∣∣
j
U1 +

∂R

∂λ

∣∣∣
j
λ1

}

+ a2

{
∂R

∂U

∣∣∣
j
U2 +

∂R

∂λ

∣∣∣
j
λ2 +

1

2

∂2R

∂U2

∣∣∣
j
U1U1 +

1

2

∂2R

∂λ2

∣∣∣
j
λ2 +

1

2

∂2R

∂U∂λ

∣∣∣
j
U1λ1

}

+ a3

{
∂R

∂U

∣∣∣
j
U3 +

∂R

∂λ

∣∣∣
j
λ3 + terms depending on U1, U2, λ1andλ2

}
+ . . .

+ ap

{
∂R

∂U

∣∣∣
j
Up +

∂R

∂λ

∣∣∣
j
λp + terms depending on U1, . . . , Up−1, λ1, . . . , λp−1︸ ︷︷ ︸

Noted −Fnl
p

}

...

Or in a condensed form

R(U(a), λ(a)) = aR1 + a2R2 + · · · = 0. (2.23)

This equation must be verified for all values of a, we deduce an infinity of equa-
tions which will allow to successively define terms of the initial series (2.21):

Rp = 0 ∀ p ≥ 1. (2.24)

At each p order, the equation Rp = 0 is a linear system in term of Up and λp
which can be written as

∂R

∂U

∣∣∣
j
Up +

∂R

∂λ

∣∣∣
j
λp = F nl

p , (2.25)

where the second member of this equation at the order p, depends only on the
lower order terms.

2.5.2.2 Definition of the path parameter

Equation (2.25) is an ill-posed problem as the number of unknowns is greater than
the number of equations. As in the prediction-correction problem, we should define
an additional condition at each order, however we use a pseudo arc-length parame-
terization

a = (U − U j) · U1 + (λ− λj)λ1, (2.26)

which corresponds to the projection of the solution increment on the tangent direction
(U1, λ1). By replacing equations (2.21) into equation (2.26) we find the searched
additional condition at each order:

||U1||2 + λ2
1 = 1 (2.27)
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Up · U1 + λpλ1 = 0 (2.28)

With a series truncation at the order N , computing the branch j requests calcu-
lating the N seconds members F nl

p and the computation of N linear problems (2.25)
and (2.28).

2.5.2.3 Steering technique

We know that the representation of an analytical function in a power series can’t be
valid without identifying the radius of convergence of the series acr where

|a| < acr (2.29)

Calculating numerically a finite number Norder of terms of the series (2.21) we
obtain an approximate representation of the form of a polynomial function of a

U(a) = U j +

Norder∑
p=1

apUp

λ(a) = λj +

Norder∑
p=1

apλp (2.30)

(2.31)

We define the validity domain of this approximate solution in a manner to satisfy
the following tolerance criteria:

||R(U(a), λ(a))|| < ε, (2.32)

where ε defines the precision parameter. This allows to define an interval [0, amax]
in a manner to satisfy the tolerance criteria for an a in this interval. equation (2.31)
for an a ∈ [0, amax] is the representation of the solution branch j.

Once the approximation (2.31) of the branchj is defined, it becomes easy to
continue the process and calculate a new truncated series and its validity domain.
The stating point of the branchj+1 can be the final point of previous one: (U j+1, λj+1).
It is possible also to add a correction phase between the computation of both series.

To conclude, the determination of solutions in nonlinear problems with the ANM
relies on two techniques: first development of solutions in the form of truncated
power series expansion to the given order Norder (perturbation technique), then an
estimation of the validity domain of this approximation and a simple continuation
technique.
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2.6 ANM with Harmonic Balance Method (HBM)

We focus on treating the following periodically forced non-autonomous system of
differential equations

Ẋ = f(t,X, λ) (2.33)

whereX is the unknown vector, f is a nonlinear vector valued function, periodic in
time t, λ is a real parameter and the dot notation is for the time derivative. When λ
varies, the considered system is assumed to have branches of periodic solutions. The
HBM and a continuation technique (path following procedure) were implemented to
follow these branches and finding them.

2.6.1 Principle of the harmonic balance method

The HBM consists basically in writing an approximation of the periodic solutions of
this kind of equation as a truncated Fourier series of order H

X(t) = X0 +
H∑
k=1

Xc,k cos(kωt) +
H∑
k=1

Xs,k sin(kωt) (2.34)

We replace this solution into equation (2.33) where we expand the nonlinear vec-
tor into Fourier series. After developing and linearizing the trigonometric functions,
the differential system is then transformed to an algebraic polynomial one of 2H + 1
vector equations and 2H + 1 unknown Xi vectors. Solution branches of the alge-
braic system are followed by a continuation technique, providing only approximate
periodic solutions as we consider a finite number H of harmonics.

2.6.2 The quadratic recast

Since nonlinear periodic systems may include nonlinearities of different types, the
expansion of the nonlinear vector into Fourier series can be complicated and heavy
despite the help of symbolic software. [Cochelin 09] et al. came with the idea of sys-
tematically recast the dynamical system (2.33) in quadratic polynomial form before
applying the HBM. The new quadratic equation can be written as following

m(Ẏ ) = c(t, λ) + l(Y ) + q(Y, Y ) (2.35)

Y define the unknown vector of size Neq composed of the original components
of X and other added variables which belongs to the quadratic transformation. c is
a constant vector with respect to the unknowns Y , l(·) and q(·, ·) are respectively
the linear and the quadratic vectors with respect to the entry vector Y . In addition,
m(·) is a linear vector operator with respect to the unknown Y which is null in the
case we are treating an algebraic system.
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2.6.3 HBM applied to the quadratic system

The next step is to apply the HBM to the quadratic system (2.35), where the un-
known vector Y is decomposed into Fourier series with H harmonics:

Y (t) = Y0 +
H∑
k=1

Yc,k cos(kωt) +
H∑
k=1

Ys,k sin(kωt) (2.36)

Then we collect all components of the Fourier series into a (2H + 1)Neq vector U

U = [Y t
0 , Y

t
c,1, Y

t
s,1, Y

t
c,2, Y

t
s,2, . . . , Y

t
c,H , Y

t
s,H ]t (2.37)

After replacing the expression of the unknown vector decomposition (2.36) into
the quadratic system (2.35), regrouping the terms having the same harmonic index
and canceling the high orders, we will end up having a large system of (2H + 1)Neq

equations

ωM(U) = C + L(U) +Q(U,U) (2.38)

The new operators M(·), C, L(·) and Q(·, ·) depend only on the operators of
equation (2.35), where λ and ω are respectively the continuation parameter and the
angular frequency.

2.6.4 The continuation procedure

In order to solve the obtained algebraic system resulting from the quadratic trans-
formation and the HBM using the ANM, we write the system as following

R(U) = C + L(U) +Q(U,U)− ωM(U) = 0 (2.39)

where R ∈ R(2H+1)Neq+1 and U = [U t, λ, ω]t ∈ R(2H+1)Neq+2. As shown in the
previous section, applying the continuation technique requires using a pseudo-arc
length parametrization with respect to λ. Therefore, this latter becomes an unknown
as U and ω.

Following this logic, we write c and l(·) as in the following form

C = c0 + λc1

L(·) = l0(·) + λl1(·), (2.40)

where all these operators are independent of λ. Therefore, the final algebraic
system (2.39) becomes

R(U) = L0 + L(U) + Q(U,U) (2.41)

where
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L0 = C0

L(U) = L0(U) + λC1

Q(U,U) = Q(U,U) + λL1(U)− ωM(U). (2.42)

L0 is a constant vector, L(·) and Q(·, ·) are respectively a linear and bilinear
vector valued operators.

The main advantages of the perturbation technique ANM is to find solution
branches in the form of power series as a function of the pseudo-arclength path
parameter a = (U −U0)tU1, where U0 is assumed to be a known starting regular
solution point and U1 is the tangent vector at U0

U(a) = U0 + aU1 + a2U2 + a3U3 + · · ·+ anUn (2.43)

Replacing the series expansion (2.43) into equation (2.41) and keeping the power
terms up to the Nth order leads to

R(a) = R0 + aR1 + a2R2 + · · ·+ aNRN = 0. (2.44)

Equating each power term Ri(1≤i≤N) of a to zero permits to transform the original
nonlinear problem (2.41) into a series of N linear systems of Neq equations in order
to successively solve Up. As a result, the problem at the p order can be written as

JU0Up +

p−1∑
i=1

Q(Ui,Up−i) = 0, (2.45)

where JU0 ∈ RN2+1 is the Jacobian matrix of R evaluated at U0 which is defined
by JU0U1 = 0 obtained at the first order. We should note that once each Up(p ∈
[1 . . . N ]) has been found and knowing that the range of a truncated series is generally
limited it is defined by the value amax such that

∀a ∈ [0amax], ||R(U(a))|| ≤ εr (2.46)

where εr defines the tolerance parameter as mentioned in the section before.

2.6.5 Implementation in MANLAB

MANLAB is a graphical interactive software implemented in Matlab by Karkar et al.
[Karkar 12] used for the continuation of solution branches based on the alternative
ANM continuation method. The latter is used for the continuation and bifurcation
analyses of a dynamical algebraic systems where two stability computation methods
were proposed depending on the type of the solution under study and on the selected
algorithm: frequency domain or time-domain.

The key point of the ANM implemented in MANLAB lies in the quadratic recast
in the form of equation (2.35), then providing MANLAB with the vectorsm(·), c, l(·)
and q(·, ·) where the resulting operators are automatically generated by the software.
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2.7 Multiple scales perturbation method

2.7.1 Introduction to perturbation techniques

The aim of this section is to introduce and highlight the important role of perturba-
tion (asymptotic) techniques in finding approximate analytical solutions of periodic
nonlinear problems. According to these techniques, the perturbation is based on
expanding the periodic solution in the form of a power series which is usually rep-
resented by the first two terms. The development may be performed with respect
to a parameter which naturally occurs in the system or which can be conveniently
introduced and called "coordinate perturbation".

2.7.1.1 Coordinate perturbation

All physical problems involving the operator x(t, ε) can be expressed mathematically
as a differential equation of the form L(x, t, ε) = 0 and the boundary condition
BC(x, ε) = 0, where t is a scalar or an independent vector variable and ε is a small
parameter. Perturbation techniques seek to find an approximated analytical solution
of the nonlinear problem by writing it as a power series of small ε as

x(t; ε) = x0(x) + εx1(t) + ε2x2(t) + . . . (2.47)

x0 define the solution of the problem when ε = 0 where xn are the high order terms
independent of ε. This expansion is substituted into the mathematical differential
equation and the boundary condition. Then, they are expanded and the coefficients
of all powers of small ε are collected. Therefore, as the sequences of ε are linearly
independent, all there coefficients must be vanished. As a result we obtain a system
of simple equations governing xn, which can be successively solved.

2.7.2 The method of multiple scales

The method of multiple scales suggest that the solution x(t; ε) is obtained by consid-
ering the expansion representing the response to be a function of multiple explicitly
independent variables t, εt, ε2t, . . . , as well as ε itself. Hence, in order to achieve
a truncated expansion of the solution valid for all t up to O(ε−M), where M is a
positive integer, we introduce different time scales T0, T1, . . . , TM , according to

Tm = εmt for m = 0, 1, 2, . . . (2.48)

where Tm−1 is slower than Tm. Therefore, one assumes that the solution can be
represented as an expansion of the form

X(t; ε) = x̃(T0, T1, T2, . . . , TM ; ε)

=
M−1∑
m=0

εmxm(T0, T1, T2, . . . TM) +O(εTM). (2.49)
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The initial ordinary differential system is transformed into a partial differential
one, where the derivatives with respect to t become expansions in terms of the partial
derivatives with respect to the Tn according to

d

dt
=
dT0

dt

∂

∂T0

+
dT1

dt

∂

∂T1

+
dT2

dt

∂

∂T2

+ . . .

=
∂

∂T0

+ ε
∂

∂T1

+ ε2 ∂

∂T2

+ . . . (2.50)

d2

dt2
=

∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1

+ ε2(
∂2

∂T 2
1

+ 2ε
∂2

∂T0∂T2

) + . . . (2.51)

The above equations define a version of the method of multiple scales called
the many-variable version which was first developed by Sturrock [Sturrock 57] and
Nayfeh [Nayfeh 65]. Later, Sturrock and Nayfeh called the technique of expanding
the derivatives as well as the dependent variables in powers of small parameters the
derivative-expansion method.

2.8 Applications

𝑘𝑐

𝑘𝑘

𝑐 𝑐

𝑘3 𝑘3

𝑢1 𝑢2
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𝑘𝑐

m

𝑘𝑐

m

Figure 2.3: Periodic nonlinear two coupled mass-spring system under primary resonance.

We consider the forced oscillations of a two coupled mass-spring system as shown
in figure 2.3 which can be modeled by the following set of coupled equations of motion

mün + cu̇n + kun − kc(un+1 − 2un + un+1) + k3u
3
n = f cos(Ωt) (2.52)

where un describes the deviation of the nth resonator from its equilibrium n = 1, 2,
with fixed boundary conditions u0 = u3 = 0. ω0 =

√
k
m

define the natural frequency

Ph.D. Thesis - D. Bitar 57



Methods for solving nonlinear problems

of the uncoupled oscillators, m is its effective mass, kc = d k is the coupling spring
constant, µ = c

m
with c the linear damping, α = k3

m
with k3 is the nonlinear Duffing

parameter and F = f
m

define the external excitation amplitude.

Table 2.1: Design parameters for the corresponding periodic two coupled mass-spring sys-
tem under primary resonance depicted in figure 2.3.

m (kg) c (kg.s−1) k (N.m−1) kc (N.m−1) k3 (N.m−3) f (N)
0.05 0.01 70 0.001 50 0.1

2.8.1 Time integration

The ordinary second order differential equations (2.52) can be transformed into a
system of 4 first order differential system as follows

du1

dt
= v1

du2

dt
= v2

dv1

dt
= −µv1 − ω2

0u1 + d(u2 − 2u1) + αu3
1 − F cos(Ωt)

dv1

dt
= −µv2 − ω2

0u2 + d(−2u2 + u1) + αu3
2 − F cos(Ωt)

(2.53)

which is equivalent to

dz

dt
= g(z, t) (2.54)

where z(t) = (u1(t), u2(t), v1(t), v2(t))t.
The above system is solved numerically using the time-difference Runge-Kutta

method until we reach a steady-state oscillation regime. The process is described in
figure 2.4, where we choose the given frequency Ω = 37.4, once the motion settles
down onto a steady oscillation, the maximal amplitude gives a point (Ω, amax) in the
response frequency curve as described in figure 2.5. To obtain the overall frequency
response, one must repeat the same procedure for different values of Ω.

2.8.2 ANM with HBM

In order to apply the HBM coupled with the ANM we must transform the consid-
ered nonlinear differential system (2.52) into its quadratic form by introducing the
following auxiliary variables: w1 = u2

1 and w2 = u2
2, the system can then be written

as following
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Figure 2.4: Direct time integration procedure.

u̇1 = +v1

u̇2 = +v2

v̇1 =f cos(Ωt) −ω2
0u1 − µv1 + du2 − 2du1 − αu1w1

v̇2 =f cos(Ωt) −ω2
0u2 − µv2 + du1 − 2du2 − αu2w2

0 = +w1 − u2
1

0 = +w2 − u2
2

v̇2︸︷︷︸
m(Ẋ)

f cos(Ωt)︸ ︷︷ ︸
c(Ω)

−ω2
0u2 − µv2 + du1 − 2du2︸ ︷︷ ︸

l(X)

−αu2w2︸ ︷︷ ︸
q(X,X)

The unknown vector is Z = [u1, u2, v1, v2, w1, w2]t where the external forces are
represented in the constant operator c. To compute the periodic solution branches
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Figure 2.5: Forced Duffing frequency response

using MANLAB, we must define the functions L0, L andQ which are the actual input
where the operators m(·), c0, c1, l(·), l1(·) and q(·, ·) are programmed once for all as
mentioned before in system (2.42). In MANLAB, the unknowns are assembled in the
single vector U = [u1, u2, v1, v2, w1, w2,Ω]. The functions allowing the performance
of the continuation solutions in MANLAB are given in detail in the Appendix (A.1).

In order to analyze the linear stability of dynamical systems we selected the
frequency domain algorithm in the lance.m file. The latter has been used to ana-
lyze the stability of fixed points in order to identify the stable multi-mode solution
branches. This algorithm relies on the computation of the Jacobian matrix JT, of
system (2.52).

JT =


0 0 1 0
0 0 0 1

−ω2
0 − 2d2 − 3αu2

1 d −µ 0
d −ω2

0 − 2d2 − 3αu2
2 0 −µ

 (2.55)

This analyze uses three additional functions J0, JL and JQ as

JT = J0 + JL + JQ (2.56)

60 Ph.D. Thesis - D. Bitar



2.8 Applications

36.6 36.8 37 37.2 37.4 37.6 37.8 38 38.2 38.4
0

0.05

0.1

0.15

0.2

0.25

Excitation frequency 

H
a

rm
o

n
ic

s
 a

m
p

li
tu

d
e

 

 

H
1
u

1
, H

1
u

2

(a) Transient and periodic regime

36.6 36.8 37 37.2 37.4 37.6 37.8 38 38.2 38.4
0

1

2

3

Excitation frequency 

H
a

rm
o

n
ic

s
 a

m
p

li
tu

d
e

 
1

0
-4

 

 

H
3
 u

1
, H

3
u

2

(b) Periodic solution for Ω = 37.4

Figure 2.6: Amplitudes of the harmonics 1 and 3 of the periodic solution as a function of
the frequency Ω.

Figure 2.6 shows the frequency amplitudes of the response obtained with the
HBM combined with the ANM. The figures show the amplitudes of the harmonics
1 and 3 as a function of the frequency Ω, where solid lines indicate stable solutions
and dashed lines indicate unstable ones. We didn’t plot the second odd harmonic
since it is null.

2.8.3 Multiple scales method

Following the concept of the multiple scales analysis, we seek an approximate solution
of the system which can vary slowly in time as the form

u1 = εu11(T0, T2) + ε3u13(T0, T2) + . . .

u2 = εu21(T0, T2) + ε3u23(T0, T2) + . . . (2.57)

Where ε is a small dimensionless parameter related to amplitudes, T0 = t and
T2 = ε2t. Note that, the terms ε2u12, ε2u22 as well as T1 = εt are missing from
equations (2.57) as the effects of nonlinearity appears at O(ε3) Moreover we set µ
and d at the order of ε2 and f of the order of ε3 so the effect of damping, linear
coupling and primary resonances balance the effect of nonlinearity and appear in
the same perturbation equation as the nonlinear Duffing terms. Consequently, the
periodic nonlinear system can be written as

ü1 + ω2
0u1 = −ε2µu̇1 + ε2du2 − 2ε2du1 − αu3

1 + ε3f cos(ΩT0)

ü2 + ω2
0u2 = −ε2µu̇2 + ε2du1 − 2ε2du2 − αu3

2 + ε3f cos(ΩT0) (2.58)
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The derivatives with respect to t of solutions u1 and u2 can be written as following
by expressing them in the form of expansions in terms of the partial derivatives with
respect to the Tn denoted by Dn = ∂

∂Tn

u̇1 = εD0u11 + ε3(D2u11 +D0u13) + . . .

ü1 = εD2
0u11 + ε3(2D0D2u11 +D2

0u13) + . . . (2.59)

u̇2 = εD0u21 + ε3(D2u21 +D0u23) + . . .

ü2 = εD2
0u21 + ε3(2D0D2u21 +D2

0u23) + . . . (2.60)

Substituting solutions (2.57) into the system (2.58) and equating coefficients of
like powers of ε, we obtain

order ε

D2
0u11 + ω2

0u11 = 0

D2
0u21 + ω2

0u21 = 0 (2.61)

order ε3

D2
0u13 + ω2

0u13 = −D0(2D2u11 + µu11) + d(u21 − 2u11)− αu3
11 + f cos(ΩT0)

D2
0u23 + ω2

0u23 = −D0(2D2u21 + µu21) + d(u11 − 2u21)− αu3
21 + f cos(ΩT0) (2.62)

Solutions of equations (2.61) can be written in the following form

u11 = A1(T2)eiω0T0 + Ā1(T2)e−iω0T0 = A1(T2)eiω0T0 + c.c.

u21 = A2(T2)eiω0T0 + Ā2(T2)e−iω0T0 = A2(T2)eiω0T0 + c.c. (2.63)

Instead of using the primary excitation Ω, we introduce a detuning parameter
σ, which characterize quantitatively its approximation to the natural frequency ω0,
according to

Ω = ω0 + εσ (2.64)

where An are complex unknown functions, Ān are there complex conjugates. We
choose c.c. to denote the complex conjugate in general. Substituting solutions (2.63)
into the third order equations (2.62) and expressing f cos(ω0T0+σT2) into its complex
form yield
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D2
0u13 + ω2

0u13 =
[
− iω0(2D2A1 + A1µ) + d(A2 − 2A1)− 3αA2

1Ā1 +
1

2
feiσT2

]
eiω0T0

− αA3
1e

3iω0T0 + c.c. (2.65)

D2
0u23 + ω2

0u23 =
[
− iω0(2D2A2 + A2µ) + d(A1 − 2A2)− 3αA2

2Ā2 +
1

2
feiσT2

]
eiω0T0

− αA3
2e

3iω0T0 + c.c. (2.66)

Any particular solutions of u13 and u23 produces secular terms which are propor-
tional to eiω0T0 unless we vanish them to obtain uniform expansions as

−iω0(2A
′

1 + µA1) + d(A2 − 2A1)− 3αA2
1Ā1 +

1

2
feiσT2 = 0

−iω0(2A
′

2 + µA2) + d(A1 − 2A2)− 3αA2
2Ā2 +

1

2
feiσT2 = 0 (2.67)

where the primes denote the derivatives with respect to T2. For solving equations
(2.67) we introduce the following polar form of the solutions

A1 = a1e
iθ1

A2 = a2e
iθ2 (2.68)

where an and θn are real functions of T2. Substituting solutions (2.68) into equa-
tions (2.77) and separating the results into real and imaginary parts we obtain

ω0(2a′1 − µ)a1 = da2 sin(γ1 − γ2) +
1

2
f sin(γ1) (2.69)

2ω0a1θ
′
1 = 2da1 − da2 cos(γ1 − γ2) + 3αa3

1 −
1

2
f cos(γ1) (2.70)

ω0(2a′2 − µ)a2 = da1 sin(γ2 − γ1) +
1

2
f sin(γ2) (2.71)

2ω0a2θ
′
2 = 2da2 − da1 cos(γ2 − γ1) + 3αa3

2 −
1

2
f cos(γ2) (2.72)

where

γ1 = σT2 − θ1

γ2 = σT2 − θ2 (2.73)

For the steady state responses a′1 = a′2 = γ′1 = γ′2 = 0. Hence it corresponds to
the solutions of the following system
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ω0µa1 = da2 sin(γ1 − γ2) +
1

2
f sin(γ1) (2.74)

2ω0a1σ = 2da1 − da2 cos(γ1 − γ2) + 3αa3
1 −

1

2
f cos(γ1) (2.75)

ω0µa2 = da1 sin(γ2 − γ1) +
1

2
f sin(γ2) (2.76)

2ω0a2σ = 2da2 − da1 cos(γ2 − γ1) + 3αa3
2 −

1

2
f cos(γ2) (2.77)

Solving the previous algebraic system numerically, figure 2.8 (a) shows the varia-
tion of identical amplitudes a1 and a2 as a function of the detuning parameter σ when
the frequency Ω is near the natural frequency ω0. Solid lines denote stable branches
and dashed lines represent the unstable ones. Figure 2.8 (b) shows the displacement
of each mass as function of frequency.

-1.0 -0.5 0.0 0.5 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

σ

{a
1
,a

2
}

Unstable

Stable

(a)

36.0 36.5 37.0 37.5 38.0 38.5 39.0
0.00

0.05

0.10

0.15

0.20

0.25

Ω

|u
1
|

Unstable

Stable

(b)

Figure 2.7: (a) Frequency response curve for Ω ' ω0. (b) Intensity response as a function
of frequency.

Figure 2.8: (a) Frequency response curve for Ω ' ω0. (b) Intensity response as a function
of frequency.

2.8.4 Multiple scale method coupled with standing waves

As in the multiple scales analysis, we suppose that the damping is weak so it can be
written as c

m
= εµ and a small coupling parameter kc

m
= εd with ε a small expansion

parameter to be a factor of ε smaller than the Duffing nonlinearity. In addition, to
ensure that the external excitation g has the ability to cause such weak oscillations
by having it enter the system at the same order as the physical effects, we write the
amplitude of the drive as f

m
= ε3/2F . The equations of motion can then be written

as following

ün + εµu̇n + ω2
0un − dε(un+1 − 2un + un+1) + αu3

n = ε3/2F cos(Ωt) (2.78)
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We expand the solutions u1 and u2 as a sum of standing wave modes decom-
position with slowly varying amplitudes [Buks 02]. The conditions at the end of
the system impose the nature of the standing wave modes. As we considered two
additional identical immobilized masses at each end, u0 and u3 and assuming

u0 = u3 = 0. (2.79)

The standing wave modes are then

un = sin(nqm) with qm =
mπ

N + 1
, n,m = 1 . . . 2. (2.80)

To solve the coupled nonlinear equations (2.78) analytically, we use a secular per-
turbation theory combined with a multiple scales analysis, taking the advantages of
the natural separation of time scales, governing the slow dynamics. This approach
was described in detail by Lifshitz and Cross [Lifshitz 10]. We expand the displace-
ment of the nth mass far from its equilibrium, with the expectation that it will act
at the order ε1/2 by writing the solution of the form [Lifshitz 03]:

un(t) = ε1/2

N∑
m=1

(Am(T ) sin(nqm)eiωmt + c.c.) + ε3/2u(1)
n (t) + . . . , n = 1, 2, (2.81)

where c.c. describes the complex conjugate and T = εt is a slow time variable
that authorizes the complex amplitude Am(T ) to vary slowly in time. Using the
following relation

Ȧn =
dAn
dt

= ε
dAn
dT
≡ εA′n (2.82)

and expending the proposed displacement solutions as

u1(t) = ε1/2

√
3

2
(A1e

iω1t + A2e
iω2t + c.c.) + ε3/2u

(1)
1 (t)

u2(t) = ε1/2

√
3

2
(A1e

iω1t − A2e
iω2t + c.c.) + ε3/2u

(1)
2 (t), (2.83)

their first and second order derivatives can be written as

u̇1(t) = ε1/2

√
3

2

(
(iω1A1 + εA′1)eiω1t + (iω1A2 + εA′2)A2e

iω2t + c.c.

)
+ ε3/2u̇

(1)
1 (t)

u̇2(t) = ε1/2

√
3

2

(
(iω1A1 + εA′1)eiω1t − (iω1A2 + εA′2)A2e

iω2t + c.c.

)
+ ε3/2u̇

(1)
2 (t)

(2.84)
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ü1(t) = ε1/2

√
3

2

(
(−ω2

1A1 + 2iω1εA
′
1)eiω1t + (−ω2

2A2 + 2iω2εA
′
2)A2e

iω2t + c.c.

)
+ ε3/2ü

(1)
1 (t)

ü2(t) = ε1/2

√
3

2

(
(−ω2

1A1 + 2iω1εA
′
1)eiω1t − (−ω2

2A2 + 2iω2εA
′
2)A2e

iω2t + c.c.

)
+ ε3/2ü

(1)
1 (t)

(2.85)

Substituting previous equations with the proposed solutions into the nonlinear
system term by term, up to the order ε1/2 we obtain

order ε1/2

√
3

2
A1(ω2

0 − ω2
1)eiω1t +

√
3

2
A2(ω2

0 − ω2
2)eiω2t = 0

√
3

2
A1(ω2

0 − ω2
1)eiω1t −

√
3

2
A2(ω2

0 − ω2
2)eiω2t = 0 (2.86)

this implies that the resonance frequency of the mth mode is equal to the natural
frequency as

ω1 = ω2 = ω0. (2.87)
Setting the frequency of the primary resonance to be an amount εΩD away from

the natural frequency as

Ω = ω0 + εΩD (2.88)
And writing cos(ω0 + εΩD) into its polar form we obtain at the order ε3/2 the

following two equations

order ε3/2

ü
(1)
1 + ω2

0u
(1)
1 =

√
3

2

[
− iω0

(
2(A′1 + A′2) + µ(A1 + A2)

)
− d(A1 + 3A2) +

1√
3
FeiΩDT

− α9

4

(
|A1|2A1 + |A2|2A2 + Ā1A

2
2 + Ā2A

2
1 + 2|A2|2A1 + 2|A1|2A2

)]
eiω0t

− α3
√

3

8

[
A3

1 + A3
2 + 3A1A

2
2 + 3A2A

2
1

]
e3iω0t + c.c. (2.89)

ü
(1)
2 + ω2

0u
(1)
2 =

√
3

2

[
− iω0

(
2(A′1 − A′2) + µ(A1 − A2)

)
− d(A1 − 3A2) +

1√
3
FeiΩDT

− α9

4

(
|A1|2A1 − |A2|2A2 + Ā1A

2
2 − Ā2A

2
1 − 2|A2|2A1 + 2|A1|2A2

)]
eiω0t

− α3
√

3

8

[
A3

1 − A3
2 + 3A1A

2
2 − 3A2A

2
1

]
e3iω0t + c.c. (2.90)
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On the right hand side of both equations we have secular terms that act to drive
the oscillators u(1)

1 and u
(1)
2 at their resonance frequencies. Therefore, we require

them to be vanished so that u(1)
1 and u(1)

2 remain finite to obtain



Eq1: iω0

(
2(A′1 + A′2) + µ(A1 + A2)

)
+ d(A1 + 3A2)

+α
9

4

(
|A1|2A1 + |A2|2A2 + Ā1A

2
2 + Ā2A

2
1 + 2|A2|2A1 + 2|A1|2A2

)
=

1√
3
FeiΩDT

Eq2: iω0

(
2(A′1 − A′2) + µ(A1 − A2)

)
+ d(A1 − 3A2)

+α
9

4

(
|A1|2A1 − |A2|2A2 + Ā1A

2
2 − Ā2A

2
1 − 2|A2|2A1 + 2|A1|2A2

)
=

1√
3
FeiΩDT

(2.91)
We may use the orthogonality of the modes by multiplying both equations Eq1

and Eq2 respectively by sin(q1) and sin(q2) and summing them as{
Eq1× sin(q1) + Eq2× sin(2q1)

Eq1× sin(q2) + Eq2× sin(2q2)
(2.92)

After doing so we find the amplitude equation of both amplitudes

2iω0
dA1

dT
+ iω0µA1 + dA1 +

9

4
α(|A1|2A1 + Ā2A

2
1 + 2|A2|2A1) =

1√
3
FeiΩDT

2iω0
dA2

dT
+ iω0µA2 + 3dA2 +

9

4
α(|A2|2A2 + Ā1A

2
2 + 2|A1|2A2) = 0 (2.93)

We try the steady state solutions of the form

A1(T ) = a1e
iΩDT

A2(T ) = a2e
iΩDT (2.94)

Where a1 and a2 are complex variables in function of T . By replacing the steady
state solutions (2.94) into the amplitude equations (2.93), we obtain equations for
the time-independent complex amplitudes a1 and a2

ω0(iµ− 2ΩD)a1 + da1 +
9

4
α(|a1|2a1 + 2|a2|2a1 + ā2a

2
1) =

F√
3

ω0(iµ− 2ΩD)a2 + 3da2 +
9

4
α(|a2|2a2 + 2|a1|2a2 + ā1a

2
2) = 0 (2.95)

In figure 2.9, Mathematica was used to plot the solutions for the response intensity
of two forced coupled mass-spring system as a function of the detuning parameter ΩD
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Figure 2.9: Response intensity of two resonators as a function of the detuning parameter
ΩD.

with the stability analysis. Blue and red colors indicate respectively stable and un-
stable solutions. Two additional stable solution branches appeared. However, when
returning to the proposed solution and plotting the displacement u1 as a function of
the frequency Ω (see figure 2.10), these branches join the resonant and non-resonant
branches.
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Figure 2.10: Frequenc response curve.

In this case and for the chosen physical parameters, the impact of the additional
multimodal solutions on the frequency response is not noticeable. In Chapter 4, we
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present the physical example of weakly coupled pendulums array, for which the ad-
ditional multimodal solutions are disconnected from the resonant and non-resonant
solution branches. The ANM with the HBM represent a powerful analysis tool for
nonlinear vibrating systems, however when dealing with weakly coupled nonlinear
oscillators it encounters several problems. We can summarize these problems by:
(i) convergence problems for dissipative systems, (ii) it fails to capture all branches
when they are separated, (iii) enable to provide the solution type in terms of modal
interactions and (iv) when having stable solution branches which are completely dis-
connected from the whole response curve, on must define multiple initial conditions
and collected the responses to form the whole response, especially for high number
of dofs as in Chapter 3. As the additional multimodal solution branches are not
distinguished visually from the resonant and non-resonant branches, we proceed in
the following section to use the basins of attraction as a powerful tool to investigate
their dynamics.

2.8.5 Basins of attraction

The basins of attraction can be used for qualitative as well as quantitative analysis
of the nonlinear dynamics robustness. In a nonlinear nanomechanical resonator,
Kozinsky et al. [Kozinsky 07] experimentally probe the basins of attraction of two
fixed points. Moreover, Sliwa et al. [Śliwa 12] investigated the basins of attraction
of two coupled Kerr oscillators. Furthermore, Ruzziconi et al. [Ruzziconi 13] studied
frequency response curves, behavior charts and attractor-basins phase portraits of a
considered NEMS constituted by an electrically actuated carbon nanotube.

In this section, the basins of attraction are used to investigate qualitatively the
trajectories of the system response, the robustness of the attractors and their prac-
tical implications, for the case of two coupled mass-spring oscillators under primary
resonance. They are performed in a classical way where the robustness is only re-
lated to the global size of the attractor by solving the nonlinear differential system
(2.93) after replacing the steady state solutions (2.94) and the complex values an
into αn + iβn.

Although the basins of attraction are usually plotted in the phase plane (un, u̇n),
we choose to represent them for a1 in Nyquist plane (α1, β1) while considering α1 = α2

and β1 = β2 for several frequencies as shown in figure 2.11. It shows the evolution
of the basins of attraction of a1 between resonant and nonresonant branches, with
additional distribution of the multimodal nonresonant solution branch for ΩD = 0.6
and ΩD = 0.7. Although, the distribution of the additional multimodal solutions is
narrow in the considered case, Chapter 3 present two different configurations, where
the distribution of the basins of attraction of the additional multimodal solutions is
important.
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(a) ΩD = 0.4 (b) ΩD = 0.5

(c) ΩD = 0.6 (d) ΩD = 0.7

Figure 2.11: Evolution of the basins of attraction for the first intensity response a1 with
α1 = α2 and β1 = β2 with respect to several detuning parameter in the Nyquist plane
(α1, β1).
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2.9 Conclusion

In this chapter, we presented a batch of computational methods for solving systems
of nonlinear second order differential equations. The classical direct time integration
methods define an easy numerical way to solve such system, although they are not
able to describe the whole dynamics of the system. They generally fail to reach
unstable solutions as the bifurcation points. In case the system is weakly damped,
the shooting method came to replace the direct integration ones as the time to reach
periodic solution could be extremely high. Shooting methods consist in stating by a
solution in the steady state regime ignoring the transient regime while taking into ac-
count the boundary conditions. Programing such method is more complicated than
the direct ones, however they reduce significantly the computational time. Among
the numerical frequency domain methods, the HBM coupled with the ANM is a
powerful tool to solve differential nonlinear systems, with the study of stability and
bifurcation. However, when dealing with large number of weakly coupled nonlinear
oscillators, this method encounters difficulties in convergence, in capturing all so-
lutions specially when having disconnected branches from the entire response. The
multiple scales analysis is a very useful method to analytically study weakly nonlinear
problems. In addition, combining this method with the standing wave decomposi-
tion, enables the capture of additional branches resulting from modal interactions,
the identification of their nature and the study of their robustness using the basins
of attraction.

36.6 37 37.4 37.8 38.2

0.05

0.1

0.15

0.2

0.25



u
1

 

 

	Direct integration

MS+SW Unstable

MS+SW Stable

HBM+ANM Stable

HBM+ANM Unstable

Figure 2.12: Comparison of frequency response curve between the direct time integration,
the multiple scales coupled with standing waves decomposition and the ANM with HBM
methods.
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A comparison between direct time integration method based on the Runge-Kutta
algorithm, the ANM with HBM method and the multiple scales method coupled
with standing wave modes decomposition is represented in figure 2.12. An excellent
agreement between these methods is remarkable while, highlighting the efficiency of
the analytical multiple scales method in displaying additional information’s in terms
of model interactions and bifurcation topology.

72 Ph.D. Thesis - D. Bitar



3
Collective dynamics of weakly

coupled nonlinear oscillators array
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3.1 Introduction

In this chapter, the collective dynamics of a periodic structure of coupled Duffing-
Van Der Pol (D-VDP) oscillators is investigated under simultaneous external and
parametric excitations. An analytico-computational model based on a perturbation
technique, combined with standing wave decomposition and the asymptotic numer-
ical method is developed for a finite number of coupled oscillators. The frequency
responses and the basins of attraction are analyzed for the case of small size arrays,
demonstrating the importance of the multi-mode solutions and the robustness in
terms of the distribution area of their basins of attraction.
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3.2 Motivations

Several researches were devoted to the nonlinear dynamics of coupled structures in
the presence of a single excitation. For instance, Nayfeh et al. [Nayfeh 83] studied
the response of Mdofs systems with quadratic nonlinearities to a harmonic paramet-
ric resonance. Perkins et al. [Hikihara 12] illustrated the beneficial effects that noise
can produce on the responses of an array of coupled nonlinear oscillators externally
excited. The dynamic behavior of a microbeam array subjected to parametric actu-
ation at low, medium and large dc-voltages has been investigated by Gutschmidt
et al. [Gutschmidt 12] using a continuum model. To possess rich dynamic be-
havior unreachable with uncoupled NEMS resonators, Buks and Rukes [Buks 02]
studied the mechanical characteristics of a parametrically excited beam resonators
array. Same results were proved qualitatively by Lifshitz et al. [Lifshitz 09] in-
volving a parametrically excited micromechanical resonators array. In addition,
Lifshitz et al. [Lifshitz 03] investigated the collective dynamics in periodic cou-
pled resonators in presence of nonlinearities up to the third order under paramet-
ric excitation. However few studies have been devoted to simultaneous resonances
[Plaut 86, Kacem 11a, Kacem 15, Nguyen 13] and they are mostly limited to single
or few dofs systems.

In this chapter, we developed a generic discrete model for the collective dynamics
of periodic structures of coupled D-VDP oscillators, with nonlinearities up to the
fifth order under simultaneous primary and parametric resonances, which is suitable
for several physical applications. The motivations behind considering the nonlinear
quintic coupling are detailed in Chapter 5. The main goal is to understand how non-
linearities influence the presence of simultaneous external and parametric excitations
and how they may be used to enhance and control modal interactions and bifurcation
topology transfer between coupled oscillators. The analytico-computational model is
based on the method of multiple scales coupled with standing wave modal decompo-
sition, transforming the nonlinear differential system into a set of coupled complex
algebraic equations which are numerically solved using the ANM enabling the con-
struction of resonance curves for a large number of dof. The cases of small size
resonator arrays have been analyzed in the frequency domain and it is shown that
the multi-mode solutions are stable over a wide frequency-range for a particular set
of design parameters. The complexity and the multivaludness of the response were
illustrated by a detailed study of its basins of attraction which proves theoretically
the robustness of the multi-mode branches.

3.3 One-dimensional array of coupled nonlinear os-
cillators
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3.3 One-dimensional array of coupled nonlinear oscillators

3.3.1 Equations of motion

The proposed model involves a finite degree of linearly and nonlinearly coupled D-
VDP oscillators, under primary and parametric excitations, as shown in Figure 3.1.
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Figure 3.1: A periodic nonlinear system of N+2 coupled D-VDP oscillators, under simul-
taneous primary and parametric excitations.

The corresponding set of coupled Equations of Motion (EoM) can be written in
the following form:

M ¨̃un −Kd

(
ũn+1 − 2ũn + ũn−1

)
+H cos(ωpt)ũn + C ˙̃un +K ũn + Ξ ũ3

n

+Ψ
[
(ũn − ũn+1)3 + (ũn − ũn−1)3

]
+ Φ

[
(ũn − ũn+1)5 + (ũn − ũn−1)5

]
+ ∆ ũ2

n
˙̃un

+Λ
[
(ũn − ũn+1)2( ˙̃un − ˙̃un+1) + (ũn − ũn−1)2( ˙̃un − ˙̃un−1)

]
= G cos(ωet̃) (3.1)

where ũn describes the deviation of the nth resonator from its equilibrium n =
0, · · · , (N + 1), with fixed boundary conditions ũ0 = ũN+1 = 0. ωp and ωe are
respectively the frequencies of the parametric and the external excitations of each
oscillator. For the parametric excitation, we consider the largest excitation effect
that occurs when the pump frequency ωp is close to twice the resonant frequency
of the oscillator. Therefore, we take ωp = 2ω0(1 + εΩD), where ω0 is the natural
frequency, ΩD is a detuning parameter and ε is a small non-dimensional expansion
parameter. In addition we set the external driving frequency of half the pumping
frequency as ωe = ωp

2
= ω0(1+εΩD). M is its effective mass, K = Mω2

0 is its effective
spring constant, Ξ and Ψ are respectively the nonlinear stiffness and the coupling
Duffing parameters, Φ the nonlinear quintic coupling parameter, C = Mω0

Q
is the

linear damping (Q is the quality factor), Kd = ΓK is the coupling spring constant,
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∆ and Λ are respectively the VDP damping and the nonlinear dissipative coupling.
H and G are the parametric and external excitation amplitudes respectively.

3.3.2 Normalization

For convenience and equation simplicity, we introduce the non-dimensional variables:

un =
ũn
ũD

, t = t̃ω0 (3.2)

where ũD = G
Cω0

is the dynamic displacement of the associated linear system
while neglecting the linear coupling.

Substituting the non-dimensional variables (3.2) into the EoM (3.1), we obtain
after dividing by MGω0

C

ün − Γ(un+1 − 2un + un−1) + 1
Q
u̇n + un + H

K
cos[2(1 + εΩD)t]un + ΞG2

MC2ω4
0
u3
n

+ ΨG2

MC2ω4
0
[(un − un+1)3 + (un − un−1)3] + ΦG4

MC4ω6
0
[(un − un+1)5 + (un − un−1)5]

+ ∆G2

MC2ω3
0
u2
nu̇n + ΛG2

MC2ω3
0
[(un − un+1)2(u̇n − u̇n+1) + (un − un−1)2(u̇n − u̇n−1)]

= C
Mω0

cos[(1 + εΩD)t]

(3.3)

The aim of this study is to present the influence of the modes localization on the
collective dynamics of an array of coupled nonlinear oscillators. Therefore, a study
of the linear natural frequency is required.

3.3.3 Linear study

Equation (3.3) describes a non-dimensional system of coupled D-VDP oscillators
subjected to simultaneous primary and parametric excitations. To determine the
natural frequencies and their eigenvectors, equation (3.3) can be written in matrix
form as

MÜ + CU̇ + KLU +H(t) U︸ ︷︷ ︸
Linear part

+FNL(U̇ , U)︸ ︷︷ ︸
Nonlinear part

= G(t), (3.4)

with the displacement vector U = [u1, u2, . . . , uN ]T , the excitation vector G(t) =
C

Mω0
cos[(1 + εΩD)t][1, . . . , 1]T , M = diag(1, 1, . . . , 1), C = 1

Q
∗ diag(1, 1, . . . , 1) ,

FNL(U̇ , U) is a nonlinear restoring force vector and
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KL =



1 + 2Γ −Γ

−Γ 1 + 2Γ −Γ 0
. . . . . . . . .

0 −Γ 1 + 2Γ −Γ
−Γ 1 + 2Γ


The eigenvalue problem associated to the linear system can be written as:

[KL − ω2
iM]ui = 0, i = 1, 2, . . . , N. (3.5)

The dimensionless eigenvalues ωi are represented in the following form for few
coupled oscillators:

N = 1 : ω1 =
√

1 + 2Γ

N = 2 : ω1 =
√

1 + Γ

ω2 =
√

1 + 3Γ

N = 3 : ω1 =

√
1−
√

2Γ + 2Γ

ω2 =
√

1 + 2Γ

ω3 =

√
1 +
√

2Γ + 2Γ

We may express all normal frequencies relative to the same non-dimensional nat-
ural frequency which is 1, so that

ωn =
√

1 + λnΓ (n = 1, . . . , N), (3.6)

where λn is the coefficient depending on the mode of vibration (As an example
for N = 2, λ1 = 1 and λ2 = 3). We suppose that the oscillators are weakly coupled;
so that Kd << K. Consequently, Γ << 1 and:

ωn ≈ 1 + ∆n (∆n =
λn
2

Γ << 1 for n = 1, 2, . . . ) (3.7)

This assumption leads to the creation of linear closed modes which permit to
study the effect of the mode localization on the collective dynamics. We proceed in
the following subsection to solve these coupled nonlinear differential equations using
the multiple time scales method combined with standing waves decomposition. This
method has been detailed in the previous Chapter 2, section 2.8.4 for two coupled
oscillators.

3.3.4 Derivation of the amplitude equation

The linear damping coefficient is the physical parameter that allows us to use the
multiple times scales perturbation approach. We therefore assume it to be small, by
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expressing it as 1
Q

= ε2η treating ε as a small expansion parameter. This limit is well
verified for targeted applications where Q ≥ 50. We also require that the Duffing
and Van-Der-Pol nonlinearities to be a factor of ε smaller than the linear force, or
equivalently by taking the leading order in un to be of the order of ε

1
2 , and expressing

Γ = 1
2
ε2γ. In addition, we choose to take the parametric excitation amplitude to

scale as the damping, i.e. we set H
K

= ε2h. To ensure that the external excitation g
has the ability to cause such weak oscillations by having it enter the system at the
same order as the physical effects, we write the amplitude of the drive as C

Mω0
= ε5/2g.

On the other hand, as un is proportional to GQ for a regular linear resonance, with
un to be of order ε

1
2 and Q, of order ε−2 thus G has to be of order ε5/2. To insure

that the nonlinear cubic terms have the ability to cause weak oscillations, we write
them with the following corresponding scaling so they inter into the system at the
same range as the physical impacts

ΨG2

MC2ω4
0

= εψ,
ΞG2

MC2ω4
0

= εξ,
∆G2

MC2ω3
0

= εδ,
ΛG2

MC2ω3
0

= ελ

and
ΦG4

MC4ω6
0

= φ. (3.8)

The normalized, scaled differential system becomes

ün − ε2 1
2
γ(un+1 − 2un + un−1) + ε2h cos[2(1 + εΩD)t]un + ε2ηu̇n + un + εξu3

n

+εδu2
nu̇n + εψ[(un − un+1)3 + (un − un−1)3] + φ[(un − un+1)5 + (un − un−1)5]

+ελ[(un − un+1)2(u̇n − u̇n+1) + (un − un−1)2(u̇n − u̇n−1)] = ε
5
2 g cos[(1 + εΩD)t]

(3.9)

To calculate the nonlinear response of each simultaneously excited oscillator, we
use the method of multiple scales. We express the solution as a sum of standing wave
modes with slowly varying amplitudes. As we consider two additional fixed masses
labeled 0 and N + 1 at each end u0 = un+1 = 0, the standing wave modes are then:

un = sin(nqm) with qm =
nm

N + 1
, m = 1 . . . N (3.10)

To investigate the EoM analytically, we use a multiple scale analysis combined
with secular perturbation theory, with the expectation that the displacement of the
nth mass far from its equilibrium will act at the order of ε

1
2 , by writing the solution

of the form:

un(t) = ε
1
2

N∑
m=1

(Am(T ) sin(nqm)eiωmt + c.c.) + ε5/2u(1)
n (t) + · · · , n = 1, ..., N, (3.11)

where T = ε2t is a slow time variable, that authorizes the complex amplitude
Am(T ) to vary slowly in time and c.c. describes the complex conjugate. (A.2)
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3.3 One-dimensional array of coupled nonlinear oscillators

Replacing the proposed solution (3.11) into the normalization EoM (3.9) up to
the order ε3/2 as listed in Appendix (A.2). At the order of ε1/2, we get the linear
dispersion relation, given by

ω2
m = 1, m = 1 . . . N. (3.12)

Therefore, at the order of ε
5
2 we gets N equations of the form:

ü(1)
n + u(1)

n =
∑
m

(mthsecular term)eit + other terms (3.13)

To apply the solvability condition allowing to get the system for the slowly chang-
ing magnitudes Am(T ), we require to vanish all secular terms that act to drive the
coupled oscillators u(1)

n at their resonance frequencies. Thus, we obtain the equations
for the slowly varying amplitudes Am(T ), where we benefit from the orthogonality
of the modes by multiplying the secular terms by sin(nqm) and summing over n.
Therefore, the mth secular term coefficient can be written as

2i
dAm
dT

+ 2γ sin2(
qm
2

)Am +
h

2
A∗me

2iΩDT + iηAm +
1

4

∑
j,k,l

(iδ + 3ξ)AjAkA
∗
l ∆

(1)
jkl;m

+4 sin(
qm
2

)
∑
j,k,l

sin(
qj
2

) sin(
qk
2

) sin(
ql
2

)(3ψ + iλ)AjAkA
∗
l ∆

(2)
jkl;m

+40i φ sin(
qm
2

)
∑

j,k,l,o,p

sin(
qj
2

) sin(
qk
2

) sin(
ql
2

) sin(
qo
2

) sin(
qp
2

)AjAkAlA
∗
oA
∗
p ∆

(3)
jklop;m

=
g

(N + 1)
eiΩDT

N∑
n=1

sin(nqm),

(3.14)

Ignoring initial transients, and assuming that the nonlinear terms in the equation
are sufficient to saturate the growth of the instability, we try a steady-state solution
of the form

Am = ame
iΩDT (3.15)

Substituting equation (3.15) into the differential system (3.14) of amplitude, we
obtain the required equation for the fixed complex amplitudes am.
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(iη − 2ΩD)am + 2γ sin2(
qm
2

)am +
h

2
a∗m +

1

4

∑
j,k,l

(iδ + 3ξ)akaja
∗
l ∆

(1)
jkl;m

+4 sin(
qm
2

)
∑
j,k,l

sin(
qj
2

) sin(
qk
2

) sin(
ql
2

)(3ψ + iλ)akaja
∗
l ∆

(2)
jkl;m

+40i φ sin(
qm
2

)
∑

j,k,l,o,p

sin(
qj
2

) sin(
qk
2

) sin(
ql
2

) sin(
qo
2

) sin(
qp
2

)akajala
∗
oa
∗
p ∆

(3)
jklop;m

=
g

(N + 1)

N∑
n=1

sin(nqm),

(3.16)

Before starting our investigations, we should note that the second member of
equations (3.16) is proportional to the sum of standing wave modes, which is null
for all even mode modes regardless of the number of coupled pendulums considered.
Therefore all even modes a2n are not excited after modes projection, as they possess
null trivial solutions. In addition, if we consider that whenever for a given mode
m, ∆

(1)
mmm;j = ∆

(2)
mmm;j = ∆

(3)
mmmmm;j = 0 for all j 6= m, then a Single Mode (SM)

solution branch can exist with am 6= 0 and aj = 0. Thus, the only SM solution can
exist for the first mode a1 in the case of two coupled oscillators, where its amplitude
takes the form of a single driven Duffing oscillator response.

3.3.5 Numerical solutions

Equation (3.16) is a complex algebraic system, with a large number of variables and
nonlinearities up to the fifth order. Analytical solutions for this type of equations
are either too large or simply do not exist. In this case, the only possibility is to
solve it numerically, using a conventional method. Mathematica can be used to solve
the system for two coupled oscillators, including stability analysis. This method
is based on prediction-correction algorithms, such as the Newton-Raphson scheme
which is the most popular way to solve a nonlinear structural problem. In general
such algorithms are successful for determining nonlinear solution branches in a step-
by-step manner, with a load control, a displacement control or an arc-length control
but they have two disadvantages: the first one, is that they are time-consuming
comparing to a linear problem and the second one is the difficulty of automatization
of the continuation process.

Therefore, a graphical interactive software named ManLab [MAN 10] has been
used for the continuation of branches of solutions of equations (3.16) by an alterna-
tive method, which is called the Asymptotic Numerical Method (ANM) [Azrar 93,
Cochelin 94] is to write the algebraic equations of the form R(U) = 0, where U is
a vector of n + 1 unknowns and R a vector of n smooth equations that must be
analytical. The ANM is a perturbation technique which consists in expanding the
unknown vector U as a formal power series of a path parameter. It presents several
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3.3 One-dimensional array of coupled nonlinear oscillators

advantages: it provides continuous solutions, the continuation is very robust, and the
control of the step length is automatic and always optimal. ManLab provides lin-
ear stability analysis for equilibrium points of dynamical systems with an automatic
bifurcation detection. This method and its application to our nonlinear differential
system (3.14) is detailed here after.

3.3.5.1 Cartesian transformation

To use the ANM, equation (3.14) is transformed to its cartesian form by defining the
amplitude as Am = (αm + iβm)eiΩDT . As a result, we obtain the following general
equations, for which the unknowns are real:

α′m(T ) = −η
2
αm + ΩDβm +

h

4
βm − γ sin[

qm
2

]2βm

α′m(T )− 1

8

∑
j,k,l

[
δ(αjαkαl + αjβkβl) + 3ξ(αjαkβl + βjβkβl)

]
∆

(1)
jkl;m

α′m(T )− 2 sin (
qm
2

)
∑
j,k,l

sin(
qj
2

) sin(
qk
2

) sin(
ql
2

)

[
λ(αjαkαl + αjβkβl)

α′m(T ) + 3ψ(αjαkβl + βjβkβl)

]
∆

(2)
jkl;m

α′m(T )− 20 φ sin (
qm
2

)
∑

j,k,l,o,p

sin(
qj
2

) sin(
qk
2

) sin(
ql
2

) sin(
qo
2

) sin(
qp
2

)

[
αjαkαlαoβp

α′m(T ) + 2 αjαkβlβoβp + βjβkβlβoβp

]
∆

(3)
jklop;m

(3.17)

and
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β′m(T ) = − g

2(N + 1)

N∑
n=1

sin(nqm)− η

2
βm − ΩDαm +

h

4
αm + γ sin[

qm
2

]2αm

α′m(T )− 1

8

∑
j,k,l

[
3ξ(αjαkαl + αjβkβl)− δ(αjαkβl + βjβkβl)

]
∆

(1)
jkl;m

α′m(T ) + 2 sin (
qm
2

)
∑
j,k,l

sin(
qj
2

) sin(
qk
2

) sin(
ql
2

)

[
3ψ(αjαkαl + αjβkβl)

α′m(T )− λ(αjαkβl + βjβkβl)

]
∆

(2)
jkl;m

α′m(T )− 20 φ sin (
qm
2

)
∑

j,k,l,o,p

sin(
qj
2

) sin(
qk
2

) sin(
ql
2

) sin(
qo
2

) sin(
qp
2

)

[
αjαkαlαoαp

α′m(T ) + 2 αjαkαlβoβp + αjβkβlβoβp

]
∆

(3)
jklop;m

(3.18)

The steady-state motions occur when α′m = β′m = 0, which corresponds to the
singular points of equations (3.17) and (3.18). With these two equations, the stability
of fixed points is easy to implement.

3.3.5.2 Quadratic recast

The key point of the ANM lies in the quadratic recast of equations (3.17) and (3.18)
by introducing the following set of auxiliary variables,

α2
i = ci size N
α4
i = c2

i = ei - -
β2
i = di - -
β4
i = d2

i = fi - -
αiαj = gi,j for i 6= j - N(N−1)

2

βiβj = hi,j for i 6= j - -
cicj = ri,j for i 6= j - -
didj = si,j for i 6= j - -
cidj = ti,j - N2

ckgi,j = vk;i,j - N2(N−1)
2

dkgi,j = wk;i,j - -
ckhi,j = xk;i,j - -
dkhi,j = yk;i,j - -
gi,jgk,l = z1i,j;k,l - NC4

hi,jhk,l = z2i,j;k,l - -
gi,jhk,l = z3i,j;k,l - N2(N−1)2

4

(3.19)
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These transformations lead to the following quadratic system

R(U) = L0 + L(U) +Q(U ,U) = 0 (3.20)

where R is a vector of 1
3
N4 + N3 + 13

6
N2 + 7

2
N equations, L0 is a constant

vector, L(·) and Q(·) are respectively the linear and quadratic operators with respect
to U . U = (α,β, c,d, e,f , g,h, r, s, t,v,w,x,y, z1, z1, z3,ΩD)T is the vector of
1
3
N4 +N3 + 13

6
N2 + 7

2
N+1 unknowns, in which α,β, c,d, e,f , g,h, r, s, t,v,w,x,y,

z1 , z2 and z3 are vectors, as

α = {α1, α2, · · · , αi, · · · , αN}
β = {β1, β2, · · · , βi, · · · , βN}
c = {c1, c2, · · · , ci, · · · , cN}
d = {d1, d2, · · · , di, · · · , dN}
e = {e1, e2, · · · , ei, · · · , eN}
f = {f1, f2, · · · , fi, · · · , fN}
g = {g1,2, g1,3, · · · , g1,N , · · · , gi,i+1, · · · , gi,N , · · · · · · , gN−1,N}
h = {h1,2, h1,3, · · · , h1,N , · · · , hi,i+1, · · · , hi,N , · · · · · · , hN−1,N}
r = {r1,2, r1,3, · · · , r1,N , · · · , ri,i+1, · · · , ri,N , · · · · · · , rN−1,N}
s = {s1,2, s1,3, · · · , s1,N , · · · , si,i+1, · · · , si,N , · · · · · · , sN−1,N}
t = {t1,1, t1,2, · · · , t1,N , · · · , ti,1, · · · , ti,N , · · · , tN−1,1, · · · , tN,N}
v = {v1;1,2, v1;1,3, · · · , v1;i,j, · · · , vk;1,2, vk;1,3, · · · , vk;i,j, · · · }
w = {w1;1,2, w1;1,3, · · · , w1;i,j, · · · , wk;1,2, wk;1,3, · · · , wk;i,j, · · · }
x = {x1;1,2, x1;1,3, · · · , x1;i,j, · · · , xk;1,2, xk;1,3, · · · , xk;i,j, · · · }
y = {y1;1,2, y1;1,3, · · · , y1;i,j, · · · , yk;1,2, yk;1,3, · · · , yk;i,j, · · · }
z1 = {z11,2;1,2, z11,2;1,3, · · · , z11;i,j, · · · , z1k,l;1,2, z1k,l;1,3, · · · , z1k,l;i,j, · · · }
z2 = {z21,2;1,2, z21,2;1,3, · · · , z21;i,j, · · · , z2k,l;1,2, z2k,l;1,3, · · · , z2k,l;i,j, · · · }
z3 = {z31,2;1,2, z31,2;1,3, · · · , z31;i,j, · · · , z3k,l;1,2, z3k,l;1,3, · · · , z3k,l;i,j, · · · }

(3.21)

Substituting the auxiliary variables given in equation (3.19) into the real dif-
ferential equations and replacing the nonlinear cubic and quintic terms into there
quadratic form as given in Appendix A.4, systems (3.17) (3.18) can be rewritten as
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α′m = 0 −η
2
αm + h

4
βm − γ sin[ qm

2
]2βm +ΩDβm +Qαm

β′m = − g
2(N+1)

N∑
n=1

sin(nqm) −η
2
βm + h

4
αm + γ sin[ qm

2
]2αm −ΩDαm +Qβm

0 = 0 + ci − a2
i

0 = 0 + ei − c2
i

0 = 0 + di − b2
i

0 = 0 + fi − d2
i

0 = 0 + gi,j − aiaj
0 = 0 + hi,j − bibj
0 = 0 + ri,j − cicj
0 = 0 + si,j − didj
0 = 0 + ti,j − cidj
0 = 0 + vk;i,j − ckgi,j
0 = 0 + wk;i,j − dkgi,j
0 = 0 + xk;i,j − ckhi,j
0 = 0 + yk;i,j − dkhi,j
0 = 0 + z1i,j;k,l − gi,jgk,l
0 = 0 + z2i,j;k,l − hi,jhk,l
0 = 0 + z3i,j;k,l − gi,jhk,l
M(U ′)︸ ︷︷ ︸
R(U)

−g2(N + 1)dan = 1N︸ ︷︷ ︸
L0

η2βm + h/4αm + γ sin[qm/2]2αm︸ ︷︷ ︸
L(U)

−ΩDαm +Qmda︸ ︷︷ ︸
Q(U,U)

(3.22)
where Qαm

and Qβm are respectively the quadratic transformations of nonlinear
cubic and quintic terms in equations (3.17) and (3.18).

3.3.5.3 Stability analysis

Different algorithms are implemented in ManLab in order to analyze the linear stabil-
ity of dynamical systems. Two stability computation methods are proposed depend-
ing on the type of the solution under study and on the selected algorithm: frequency
domain or time-domain. The latter has been used to analyze the stability of fixed
points in order to identify the stable multi-mode solution branches. This algorithm
relies on the computation of the Jacobian matrix JT , of equations (3.17) and (3.18).
The linear stability analysis consists in computing the eigenvalues of the Jacobian
matrix at each point of analysis. If any of the eigenvalues has a positive real part,
then the current point is unstable. When following a branch that is, at first stable, a
bifurcation can be detected when one of the eigenvalues crosses the imaginary axis.
This analyze uses three additional functions J0, JL and JQ as

JT = J0 + JL+ JQ (3.23)
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where J0 is a constant matrix, JL is a linear operator and JQ a quadratic
operator on the variables given in Ustab = {α,β, c,d, g,h, b,ΩD} which is the
variables vector of size N2 + 3N + 1, where b is a vector of N2 bi,j = αiβj variables.
From a practical point of view, one can easily recast the equations of motion of
nonlinear periodic structures with respect to the proposed model and hence one can
use the procedure detailed above as a robust solving tool.

3.4 Examples and discussions

In order to target various periodic structure-based systems, the numerical simulations
have been performed with two sets of design parameters listed in Table 3.1. The first
one contains the Duffing coupling term and the nonlinear damping for each oscillator
while the second one involves the VDP coupling and the nonlinear cubic stiffness.
Indeed, the two configurations can illustrate respectively an array of coupled levitated
magnets and a periodic structure of coupled micro or nano-beams.

Moreover, the external excitation G has been chosen sufficiently high in order to
generate nonlinear frequency responses for which the displacement at resonance is
beyond the critical Duffing amplitude, while the value of the parametric excitation
H has been adjusted in order to increase the interactions between both resonances
(primary and parametric) and enrich the resulting collective dynamics.

Table 3.1: Design parameters for the corresponding periodic structure depicted in Figure
3.1

Parameters Design 1 Design 2
C(Kg.s−1) 0.001 0.01
M(Kg) 0.01 0.01

K(N.m−1) 40 40
∆(Kg.m−2.s−1) 50 0

Ψ(N.m−3) 5000 0
Ξ(N.m−3) 0 800

Λ(Kg.m−2.s−1) 0 6
Φ(N.m−5) 0 0

Γ 0.001 0.001

3.4.1 Two coupled nonlinear resonators

As a first step, we started by solving the coupled equations (3.16) with N = 2 for
the first design, in order to provide some qualitative and quantitative explanations
dealing with the collective nonlinear dynamics of small arrays of periodic structures
which can be extended for large periodic lattices. For two coupled oscillators, we
have:

q1 =
π

3
and q2 =

2π

3
.
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The coupled algebraic equations have been solved numerically using Mathematica,
for several values of ΩD inside the frequency range where the whole dynamic response
is represented and the stability of the different branches have been performed based
on the eigenvalues of the Jacobian matrix of the differential system (3.14) computed
numerically for each point.

3.4.1.1 Primary resonance
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Figure 3.2: (a) Response intensity of two resonators as a function of the detuning parameter
ΩD, under primary resonance (G = 0.08), for the first design parameters. (b) Zooming in
and highlighting the responses areas. Black curves indicate stable solutions. The Single
and Double-Mode solution branches are labeled SM and DM respectively.

In this subsection, we are interested in the collective nonlinear dynamics of the
coupled oscillators under primary resonance (G = 0.08). By solving numerically
the resulting system, the overall collective response of the array can be plotted with
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respect to the detuning parameter ΩD. With two resonators, there are regions in
frequency where three stable solutions can exist. The single mode (SM) of the first
intensity corresponds to the forced frequency response of a single Duffing oscillator,
and for the second one to a null trivial solution. Remarkably, the double mode (DM)
contains two added stable branches as we can see in Figures 3.2 (a) and (b). By
zooming over a precise frequency range, we can easily remark that we have a modal
interaction and bifurcation topology transfer between these two coupled oscillators.
Although, these branches are stable, it is hard to reach them experimentally, because
their basins of attraction are very narrow. Consequently we extend the investigations
to the case of simultaneous primary and parametric excitations, seeking for additional
properties.

3.4.1.2 Simultaneous primary and parametric resonances

In order to illustrate the complexity of the collective dynamics for the considered
periodic structure, the case of simultaneous resonances is numerically investigated
for G = 0.1 and H = 7. Figure 3.3 displays the intensity responses, as a function
of the detuning parameter ΩD and remarkably, for the first intensity response, an
elliptical branch was added due to the parametric excitation.
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Figure 3.3: Response intensity of two coupled oscillators as a function of the detuning
parameter ΩD, under simultaneous primary and parametric resonances (G = 0.1, H = 7),
for the first design parameters. The Single and Double-Mode solution branches are labeled
SMi and DMi respectively, with i ∈ {1, 2}

In addition, with a small change in the excitation amplitudes (G = 0.08 and
H = 11), we can obtain up to four solutions for a given frequency for the first
intensity response, as shown in Figure 3.4. The frequency response plotted in Figure
3.5, represents the time and space average of the square of the oscillator displacement.

I =
1

N

N∑
n=1

< u2
n >, (3.24)
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where the angular brackets denote time average, using the fact that for N = 2,
I = 3

2
(|a1|2+|a2|2). The multivaluedness of the response curve due to the nonlinearity

has a significance from the physical point of view because it leads to jump phenomena
which are localized at the bifurcation points. In addition, the DM has an important
amplitude and it is stable over a wide frequency range, which implies significant
modal interactions due to nonlinearities.
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Figure 3.4: Response intensity of two coupled oscillators as a function of the detuning
parameter ΩD, under simultaneous primary and parametric resonances (G = 0.08, H =
11), for the first design parameters. SMRB1 and SMRB2 are Single Mode Resonant
Branches due respectively to primary and parametric resonances, SMNRB and DMNRB
are respectively Single and Double Mode Non Resonant Branches.
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Figure 3.5: (a) Averaged response intensity defined in equation 3.24. (b) Zooming and high-
lighting over a region which contains up to four stable solutions. Branch labels correspond
to those in Figure 3.4.
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3.4.1.3 Basins of attraction

In this subsection, the basins of attraction are used to investigate qualitatively as
well as quantitatively the trajectories of the system response, the robustness of the
attractors in terms of large basins distribution and their practical implications, for the
case of two coupled D-VDP oscillators under simultaneous primary and parametric
resonances. The analyzes are performed in a classical way where the robustness is
only related to the global size of the attractor. Although the basins of attraction are
usually plotted in the phase plane (un, u̇n), we choose to represent them in different
diagrams for convenience regarding the adopted solving procedure leading to the
differential equations (3.17) and (3.18). The initial conditions αi(0) and βi(0) have
been bounded by −|ai| and |ai| which can be identified on the response intensity
curves.

SM

DM

SMRB2

DMNRB

SMNRB

SMRB1

SM

DM

(a) β1(0) = β2(0) = 0 (b) α1(0) = α2(0) = 0

Figure 3.6: Distribution of the basins of attraction for the two responses |a1|2 (at the top)
and |a2|2 (in the bottom) for ΩD = 0.255 in the planes (α1(0), α2(0)) and (β1(0), β2(0)).
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SM

DM

SMRB2

DMNRB

SMNRB

SMRB1

SM

DM

(a) α2(0) = 0.06, β2(0) = 0.09

(b) α2(0) = 0.006, β2(0) = 0.09

(c) α2(0) = 0.02, β2(0) = 0.03

Figure 3.7: Distribution of the basins of attraction for the two responses |a1|2 (on the
left) and |a2|2 (on the right) in the Nyquist plane (α1, β1), for a fixed detuning parameter
Ω = 0.255.
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As a first step, the case ΩD = 0.255 is considered. It corresponds to a multistable
response with four attractors for the first intensity and two for the second one.
Figures 3.6 (a) and (b) display the basins of attraction plotted respectively in the
planes (α1(0), α2(0)) for β1(0) = β2(0) = 0 and (β1(0), β2(0)) with α1(0) = α2(0) = 0.
Remarkably, these curves show that the basins of attraction are symmetric with
respect to α2(0) = 0 and β2(0) = 0 and thus, one can investigate their distribution in
the Nyquist plane (α1(0), β1(0)), while setting random positive values of α2(0) and
β2(0).

SM

DM

SMRB2

DMNRB

SMNRB

SMRB1

(a) ΩD = 0.07 (b) ΩD = 0.16

(c) ΩD = 0.19 (d) ΩD = 0.25

Figure 3.8: Evolution of the basins of attraction for the first intensity response with α2(0) =
0.01, β2(0) = 0.02 with respect to the detuning parameter in the Nyquist plane.

When the first response jumps between SMRB1, SMRB2 and SMNRB, the second
one is stabilized on the SM and a similar correspondence exists between the double
modes as shown in Figure 3.7. This results in an interesting transfer of basins of
attraction topologies between both responses with respect to the type of branches
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described in Figure 3.4. Thus, one can restrict the analysis to the attractor robustness
of the double mode of |a1|2.

Then, the basins of attraction of the first response are plotted in the Nyquist plane
while varying the detuning parameter ΩD to track the evolution of the attractor
topology when the oscillators are going from a bistable to a multistable state, as
shown in Figure 3.8. For instance, |a1|2 displays two stable resonant solutions for
ΩD = 0.07. At the considered detuning parameter, the basins of attraction of SMRB1
are larger than those of SMRB2 due to the difference in the frequency distances
separating the corresponding solutions and the bifurcations points B1 and B2. For
ΩD = 0.16, another stable solution is added, It is located on the non-resonant branch
of the single mode and its basins of attraction take a small domain in the Nyquist
plane as shown in Figure 3.8 (b).
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DMNRB

SMNRB

SMRB1

(a) H=11

(b) H=8.5 (c) H=6

Figure 3.9: Evolution of the basins of attraction for the first intensity response with α2(0) =
0.05, = β2(0) = 0.02 and Ω = 0.255 with respect to the parametric excitation amplitude in
the Nyquist plane.
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The basins of attraction of the double mode take place in Figures 3.8 (c) and (d)
and their size increases and becomes significantly large for ΩD = 0.19 with respect
to the attractor size of the non-resonant branch which is almost null for ΩD = 0.25.
Although these lower branches are very close as shown in Figure 3.4 for |a1|2, they
do not have the same nature and this is proved regarding the frequency response of
|a2|2, which justifies the large differences in their attractor topologies.

Figure 3.9 displays the distribution of the basins of attraction of |a1|2 in the
Nyquist plane for Ω = 0.255 and three different parametric excitation amplitudes.
When H is decreased from 11 to 6.7, the number of stable solutions decreases for
the considered detuning parameter at which it is not possible to intercept SMRB2.
Indeed, a large part of the basins of attraction of SMRB2 for H = 11 is taken by
the double mode for H = 8.5. Moreover, if we decrease the parametric excitation
amplitude down to H = 6.7, the oscillator becomes bistable and can switch solution
between the double mode and the non-resonant branch of the single mode. Never-
theless, the double mode is more robust, since its basins of attraction represent more
than 50% of the whole domain of initial conditions. In practice, the attractor topol-
ogy can be tuned with respect to the parametric excitation in order to enlarge the
basins of attraction of the double mode and obtain an interesting collective dynamics
very well adapted for nonlinear energy localization.

Finally, to prove the robustness of the double mode, a quantitative study has
been made, based on a random sampling. It consists in solving sequentially the
differential equations (3.17) and (3.18) by allowing the initial conditions to be random
at each iteration. Of 100 000 sampled initial conditions, the double mode occurs
47%. Interestingly, the basins of attraction of the double mode are large, which
demonstrates the attractor robustness. Consequently, once functionalized in term
of nonlinearity, the proposed periodic structure can be exploited for jumps-based
sensing techniques [Kumar 11, Kumar 12, Nguyen 15].
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3.4.2 Three coupled nonlinear resonators

𝐃𝟏𝟏

𝐃𝟏𝟐

𝐃𝟏𝟑

𝐃𝟏𝟒

𝐓𝟏𝟐

𝐓𝟏𝟏

𝐓𝟏𝟑

Unstable

Double Mode

Triple Mode

𝐁𝟏

−0.1 −0.09 −0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0
0

1

2

3

4

5

x 10
−3

Ω
D

|a
1|2

Triple	Mode

𝐓𝟐𝟑

𝐓𝟐𝟏

𝐓𝟐𝟐

Unstable

Triple Mode

Double Mode

DM

𝐁𝟐

−0.1 −0.09 −0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0

1

2

3

4

5

6

7

8

9

x 10
−3

Ω
D

|a
2|2

Triple	Mode

𝐃𝟑𝟒

𝐃𝟑𝟏

𝐃𝟑𝟐𝐃𝟑𝟑

𝐓𝟑𝟏

𝐓𝟑𝟐

𝐓𝟑𝟑

Unstable

Double Mode

Triple Mode

𝐁𝟑

(a)

−0.1 −0.09 −0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0
1

2

3

4

5

6

7

8

9

x 10
−4

Ω
D

|a
3|2

Triple	Mode

(b)

Figure 3.10: (a) Response intensity of three coupled oscillators as a function of the detuning
parameter ΩD, under simultaneous primary and parametric resonances (G = 0.4, H = 20),
for the second design parameters. The Double and Triple Mode solution branches are
denoted by: Dij and Tkl for i ∈ {1, 3}, j ∈ {1, 2, 3, 4} and k, l ∈ {1, 2, 3} and respectively.
DM corresponds to the trivial null solution of equation (3.16), for N = 3 and m = 2. (b)
Zooming and highlighting over a region that contains multimode solution branches that are
completely disconnected from all other branches.
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Figure 3.10 displays the response intensity of three coupled oscillators as a function of
the detuning parameter ΩD, under simultaneous parametric and external excitations
(H = 20 and G = 0.4), for the second set of design parameters given in Table
3.1. The curves show the squares of the amplitudes of the three different modes,
where DM corresponds to the trivial null solution of equation (3.16), for N = 3 and
m = 2. Remarkably, all solutions of |a2

1| and |a2
3| are multimodal. The Double and

Triple mode solution branches, result from the coupling between the first and third
oscillators, and the three coupled oscillators respectively. They are denoted by: Dij
and Tkl for i ∈ {1, 3}, j ∈ {1, 2, 3, 4} and k, l ∈ {1, 2, 3}. Thus, in this case the
periodic structure is completely driven by the collective dynamics due to the modal
interactions between the nonlinear oscillators. This is illustrated in Figure 3.11,
where we plotted the average response intensity, defined in equation (3.24), which is
I = 4

3
(|a2

1|+ |a2
2|+ |a2

3|) for N = 3.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Ω
D

R
es

po
ns

e

TMTMTMTM

DDDDMMMM

TMTMTMTM

DDDDMMMM

DDDDMMMM

DMDMDMDM

(a)

−0.25 −0.2 −0.15 −0.1 −0.05 0

2

4

6

8

10

12

14

16
x 10

−3

Ω
D

R
es

po
ns

e

TM

DM

R
e
s
p
o
n
s
e

Ω

(b)

Figure 3.11: (a) Averaged Response intensity defined in equation (3.24). (b) zooming and
highlighting over a region that contains up to five stable solutions. DM and TM denote the
branches due to Double and Triple Modes respectively.

In addition, it is noticeable that each bifurcation point due to a multi-modal solu-
tion on |a2|2 has a correspondence on the two other intensity responses (for instance,
B1 B2 and B3), which proves that the bifurcation topology transfer is general for
any number of oscillators. Moreover, there are multimode solution branches that
are completely disconnected from all other branches. Among them, two Triple Mode
solutions localized in the detuning interval [-0.107, 0.007].
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Figure 3.12: Distribution of the basins of attraction for the three responses |a1|2, |a2|2 and
|a3|2 for ΩD = 0.46 in the Nyquist plane (α1(0), β1(0)), with the random initial conditions
α2(0) = 0.06, β2(0) = 0.48, α3(0) = 0.38 and β3(0) = 0.39.

These curves were plotted to underline the large number of solution branches
even for a small number of coupled oscillators. Indeed, the intensity responses of
|a2

1| and |a2
3| are highly multistable with up to seven stable non-trivial solutions

for a given frequency (four double mode and three triple mode solutions). For the
configuration, when ΩD = 0.46, the distributions of the basins of attraction for the
three intensity responses are plotted in Figures 3.12 (a) and (b) in the Nyquist plane
(α1(0), β1(0)), for random initial conditions α2(0) = 0.06, β2(0) = 0.48, α3(0) = 0.38
and β3(0) = 0.39. We remark that |a1|2 and |a3|2 have the same basin distribution
and a transfer of basins of attraction topology exists between the three oscillators
with respect to the solution branch nature. Furthermore, the probability of reaching
the triple mode solution branches is about 32% and their robustness can be adjusted
with respect to the design parameters.
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It is notable in the basins of attraction figures that most fractal parts are negligible
with respect to the compact parts of the attractors which implies good agreements
with the dynamical integrity of the system [Soliman 89]. Nevertheless, for large
arrays of oscillators, the fractal parts will increase due to the important number
of multi-modal solution branches, and therefore, the dynamical integrity [Rega 05,
Lenci 08b, Rega 08] must be analyzed by choosing the right definition of safe basin,
choosing an appropriate integrity measures to qualify its magnitude and investigating
the basins evolution for varying system parameter.

3.5 Summary

The collective nonlinear dynamics of periodic nonlinear oscillators was modeled for
specific discrete systems of coupled D-VDP oscillators with fifth-order nonlinearity,
under simultaneous primary and parametric excitations. A semi-analytical method
suitable for nonlinear localized modes problems in perfectly periodic oscillators array
has been considered for D-VDP systems. The model is hybrid combining analytical
and computational methods and precisely based on the secular perturbation theory
with the standing wave decomposition and the asymptotic numerical continuation
technique.

The cases of two and three coupled oscillators were investigated in several config-
urations, where we demonstrate the complexity of the resulting nonlinear frequency
curves in terms of modal interactions and bifurcation topology transfer. The com-
plex response curves were shown to emphasize the large number of nontrivial solution
branches, even for a small number of coupled oscillators. This can serve as a hint
of the important number of multimodal solutions, expected for large number of os-
cillators. Besides, when the number of coupled oscillators increases, the collective
dynamics becomes more complex with a large number of bifurcation points and mul-
timodal interactions over a wide frequency range. Finally, the basins of attraction
have been analyzed, precisely in the multistability domain which confirms the ro-
bustness of the multi-mode solutions.

In practice, the nonlinearity can be functionalized in such periodic structures
in order to generate particular collective dynamics suitable for several applications.
Indeed, the model can be used as a design tool in order to increase the number
of bifurcations for jump-based multiple mass sensing in micro and nanotechnology
or obtaining a large number of stable branches for energy scavenging or trapping
applications. Moreover, the stability of these branches can be tuned in the frequency
domain for ultra-wide bandwidth filters. For the upcoming chapters, various physical
applications can be modeled as coupled nonlinear oscillators array, where they are
organized into two chapters, according to their coupling type (linear/nonlinear): 1
and 2D arrays of linearly coupled pendulums under harmonic external excitation in
Chapter 4, as well as 1D NEMS array under parametric excitation and 2D granular
particles array under harmonic base excitation in Chapter 5.
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4
Nonlinear oscillators arrays with

weakly linear coupling
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4.1 Introduction

As previously shown in Chapter 3, complex nonlinear phenomena such as the modal
interactions, bifurcations and basins of attractions topology transfers have been ob-
tained in weakly coupled nonlinear oscillators. Toward a better understanding of
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the complex phenomena involved, arrays of axially aligned pendulums with linear
torsional coupling are studied as famous example of linearly coupled nonlinear oscil-
lators. The following section is mainly devoted to the study of 1D array of coupled
pendulums under harmonic external excitation. The model was extended to in-
vestigate the collective dynamics of periodic nonlinear two-dimensional 2D array of
coupled pendulums under harmonic base excitation, where the coupled differential
equations governing the nonlinear vibrations are solved using an analytical-numerical
solving procedure similar to the one employed in 1D arrays.

4.2 1D array of coupled pendulums

4.2.1 Introduction

The mechanical pendulum is used to represent classical example to study nonlinear
dynamics, which dates back at least five decades. Back to those dates, major contri-
bution were made by Galileo who discovered that the period of swing of a pendulum
is independent of its amplitude, Huygens who invented the first pendulum clock was
the first to derive the formula for the period of an ideal pendulum and Foucault
known for his demonstration of the Foucault pendulum, a device demonstrating the
effect of the Earth’s rotation. Despite the fact that numerous studies have been made
about pendula dynamics, researchers are still active in this research area, including
complex dynamics, simple harmonic and subharmonic motions [Skalak 60], coupled
pendulums [Marlin 68], experimental studies [Blackburn 87], chaos [de Paula 06], vi-
bration control [Anh 07] and analytical and numerical studies [Lenci 08a].

Section 1.4.1 in Chapter 1 is devoted to highlight the high number of researches
encountered to study the nonlinear dynamics and the complex phenomena in cou-
pled pendulums arrays. Despite the fact that we are interested in studying the
nonlinear dynamics in periodic arrays, a system of few dofs, enable analytical solu-
tions for a better understanding of the physical phenomena involved. For instance,
Fradkov et al. [Fradkov 07] developed a model for two-pendulum system and ob-
tained from numerical solutions that both in- and anti-phase synchronizations are
possible, depending on the initial conditions. The dynamics of the two-pendulum
system has been investigated numerically and experimentally, due to the exhibited
rich dynamical phenomena [Huynh 13, Witelski 14]. In addition, the synchroniza-
tion phenomenon of two rotating parametric pendulums attached to common elastic
support under harmonic excitation has been studied theoretically and experimen-
tally [Najdecka 15]. For a three dofs autoparametric system with two connected
pendulums, Sado et al. [Sado 10] showed that for this type of system one mode
of vibration might excite or damp another one. Although the dynamics of coupled
nonlinear pendulums was thoroughly investigated in the frequency and time-space
domains, there is a real need to perform profound analysis of the collective dynamics
of such systems in order to identify practical relations with the nonlinear energy
localization phenomena in terms of modal interactions and bifurcation topologies.
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4.2.2 Equation of motion of nth pendulum

𝑘

𝑚

𝜙𝑛

𝑔

𝑥

𝑦

𝑙

F cos(Ωτ)

𝑙

𝑘 𝑥

𝑦

𝜙
𝑛

m  𝑔

F cos(Ωτ)

Figure 4.1: A chain of externally excited equidistant pendulums sharing a common axle.
Each pendulum consist of a rigid rod, attached perpendicularly to the axle with a mass at
the end. k represents the linear coupling torque constant. Each pendulum is subjected to
an external harmonic excitation Fcos(Ωτ) and φn is the angle between the nth pendulum
and the downward vertical.

Figure 4.1 shows the theoretical model of an array composed by an horizontal axle,
containing N identical pendulums separated by an equal distance. Each pendulum
n is attached perpendicularly to the axle, with a mass m and length l, φn is the
rotational dof of the pendulum measured from its stable equilibrium position. The
pendulums numbers "n" and "n + 1" are connected together by a linear torsional
spring k. Each pendulum is subjected to an external excitation Fcos(Ωτ).

The kinetic energy T of the system can be expressed as

T =
1

2

N∑
n=1

m(ẋ2
n + ẏ2

n). (4.1)

Where (xn, yn) represents the Cartesian coordinates system of the nth pendulum
and the dot denotes the derivative with respect to time, xn and yn are given as

xn = l sinφn, yn = l cosφn. (4.2)
by substituting equation (4.2) into equation (4.1) the kinetic energy becomes

T =
1

2

N∑
n=1

ml2φ̇2
n. (4.3)
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The potential energy V of the system can be written as

V =
N∑
n=1

mgl(1− cosφn) +
1

2

N−1∑
n=1

k(φn+1 − φn)2. (4.4)

Where g represents the acceleration due to gravity. The dissipation energy D of
the system is given by

D =
1

2

N∑
n=1

αl2φ̇2
n, (4.5)

where α is the viscous damping coefficient. The Lagrange equations can be writ-
ten in the following form

d

dτ
(
∂L

∂φ̇n
)− ∂L

∂φn
= − ∂D

∂φ̇n
+Qn n = 1, . . . , N, (4.6)

With L the Lagrangian operator defined by L = T − V and Qn relative to
external forces. Substituting equations (4.3), (4.4) and (4.5) into the Lagrange’s
equation (4.6) leads to the following differential equation of the nth pendulum

ml2φ̈n + αl2φ̇n +mgl sin(φn)− k(φn−1 − 2φn + φn+1) = F cos(Ωτ) n = 1, . . . , N,
(4.7)

(a) (b)

Figure 4.2: (a) Response frequency for one pendulum (N=1) using direct time integration
method between the full nonlinear problem (4.7) and the one obtained after applying Taylor
series (4.11). (b) Comparison between sin(φ) and its Taylor series φ− 1

6φ
3 as a function of

the rotational amplitude φ up to 1.4 Rad.
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which represents a system of coupled nonlinear equations, subjected to an har-
monic external excitation. Figure 4.2 (a) shows the comparison of the response
frequency of one pendulum (N=1) using direct time integration method between the
full nonlinear problem (4.7) and the one obtained after applying Taylor series (4.11),
for the design parameters listen in Table 4.1. equation (4.11) gives a good approxi-
mation of the full nonlinear integration for which the error does not exceed 3%. This
result is confirmed in Figure 4.2 (b) where we compare the function sin(φ) and its
Taylor series as a function of the rotational amplitude φ up to 1.4 rad.

4.2.3 Normalized equations

For convenience and equation simplicity, the following nondimensional variables are
introduced:

t = ω0τ θn =
φn
φD

where φD =
Fω0

αgl
, Q =

ω0m

α
and ω0 =

√
g

l
(4.8)

Then, we obtain the following nondimensional system of equations

θ̈n +
1

Q
θ̇n +

1

φD
sin(φDθn)− k

mgl
(θn−1 − 2θn + θn+1) =

α

ω0m
cos(

Ω

ω0

t) n = 1, 2, . . .

(4.9)
Equation (4.9) represents the normalized nonlinear differential system of a cou-

pled pendulum array, where each pendulum is subjected to an external harmonic
excitation. Although this equation can be solved numerically to provide standard
reference, the branches resulting from the collective dynamics in the frequency do-
main can’t be identified in terms of modal interactions and bifurcation topologies. To
do so, in the following section, we are interested in an analytical solving procedure,
enabling the identification of the solution branches type. Therefore, the full model
will be replaced by a truncated one valid for small rotational motion.

4.2.4 Solving procedure

As we are interested in small rotational motion, we would expect to get a satisfactory
approximation by expanding the nonlinear term sin(φDθn) into its Taylor series up
to the third order by writing

sin(φD θn) ≈ φD θn −
1

6
φ3
D θ3

n. (4.10)

If we replace this approximation in the exact normalized differential equation
(4.9), we get the following approximate equation

θ̈n +
1

Q
θ̇n + θn −

k

mgl
(θn−1 − 2θn + θn+1)− 1

6

F 2

α2gl3
θ3
n =

α

ω0m
cos(

Ω

ω0

t). (4.11)
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In order to create linear closed modes enabling the study of the collective dy-
namics, one must choose physical parameters verifying the localization assumption
introduced in the previous section. To do so, we suppose that the pendulums are
weakly coupled, so that

k << mgl (4.12)

We shall solve equations (4.11) using the multiple-scale perturbation theory, by
introducing the appropriate parameters and setting the external frequency an amount
εω0ΩD away from the resonant frequency, so they can contribute to the amplitudes
equations.

1

Q
= εc,

k

mgl
=

1

2
εγ,

1

6

F 2

α2gl3
= ξ and

α

ω0m
= ε

3
2f. (4.13)

We express the solution of equations (4.9) as a sum of standing-wave modes with
slowly varying amplitudes, with fixed boundary conditions (θ0= θN+1= 0)

θn(t) = ε
1
2

N∑
m=1

(Am(T ) sin(nqm)eit + c.c.) + ε
3
2 θ(1)
n (t) + · · · , n = 1, · · · , N, (4.14)

where T = εt is a slow time variable.Following the same solving procedure em-
ployed in the previous chapter for 1D arrays, the complex amplitudes differential
system is given by

2i
dAm
dT

+ icAm + 2γ sin2(
qm
2

)Am −
3

4
ξ
∑
j,k,l

AjAkA
∗
l ∆

(1)
jkl,m =

f

N + 1
eiΩDT

N∑
n=1

sin(nqm)

(4.15)
where the system of complex amplitudes am is

(ic− 2ΩD)am + 2γ sin2(
qm
2

)am −
3

4
ξ
∑
j,k,l

ajaka
∗
l ∆

(1)
jkl,m =

f

N + 1

N∑
n=1

sin(nqm) (4.16)

The differential system (4.15) of rotational dof φn(t) has been replaced using per-
turbation calculations by a time independent mode amplitudes am system of coupled
complex equations. All that remains, in order to study the collective dynamics of
an array of coupled pendulums as a function of the original design parameters, is to
solve these algebraic coupled complex equations.

4.2.5 Numerical and analytical studies

For the rest of the paper we will consider the design parameters listed in the following
Table 4.1, which satisfies the modes localization assumption given in equation (4.12).
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4.2 1D array of coupled pendulums

Table 4.1: Design parameters for the corresponding periodic structure depicted in Figure
4.1

Parameters m (Kg) g (m.s−2) l (m) k (N.m) α (Kg.s−1) F (N.m)

Values 0.25 9.81 0.062 0.0009 0.16 0.01

Note that, since the considered system is periodic and since we expressed the
solution as a sum of standing wave modes with slowly varying amplitude (4.14),
nearly symmetric responses were obtained. Thereby, for the rest of the paper we
choose to plot the intensity responses of the rotational dofs |φi| for n ∈ 1, . . . ,
E(N+1

2
).

4.2.5.1 Three coupled pendulums

In order to investigate the modal interactions and their effects on the nonlinear dy-
namics of a periodic coupled pendulums chain, we consider the case of three coupled
pendulums under periodic external harmonic excitation. Before doing so, one must
verify qualitatively as well as quantitatively with a brute numerical simulation the
validity and the reliability of the proposed analytical-numerical method.
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Figure 4.3: Rotational dofs of three coupled pendulums as a function of frequency for
the design parameters listed in Table 4.1. Comparison between a direct time integration
method using Runge-Kutta which is employed to solve the approximate differential system
(4.7), and the semi-analytical method.

Concerning numerical simulations, a direct time integration method using Runge-
Kutta algorithme has been employed in order to solve the approximate differential
system (4.7). However, the resulting algebraic nonlinear system (4.16) of the em-
ployed analytical procedure has been solved using a Newton-Raphson algorithm in

Ph.D. Thesis - D. Bitar 105



Nonlinear oscillators arrays with weakly linear coupling

Mathematica. For several values of the detuning parameter ΩD inside the frequency
range, Mathematica represents whole dynamic responses. The stability of the differ-
ent solution branches has been performed based on the Eigen values of the Jacobian
matrix of the differential system (4.15) computed numerically for each point. Figure
4.3 shows the rotational dofs of three coupled pendulums as a function of frequency
for the design parameters listed in Table 4.1. The error between both methods rise
to 5% on the lower branches. As perturbation methods are well adapted to small
damped nonlinear systems; the error decrease by decreasing the damping coefficient.

Direct time integration methods present an easy implementation procedure to
plot nonlinear frequency response curves, considering a numerical step-by-step pro-
cedure. However, once the multistability domain is reached, jump phenomena may
occurs according to the initial conditions that have been taken into account. Conse-
quently, these methods may not give enough information about the global dynamics
of the system, particularly the bifurcation behavior where they generally fail to cap-
ture unstable solutions and they are not able to identify the nature of multimode
branches anyhow. In addition, they are time consuming, since they require highly
computational time especially when considering strongly nonlinear high order sys-
tems subjected to weak damping.

The employed perturbation technique is based on expanding the periodic solution
in the form of a power series in order to obtain an approximate analytical solution
of the system. It allows a detailed study regarding the stability, the type of solution
branches in term of modal interactions and bifurcation topology transfer. Thus,
the proposed solving procedure is robust and efficient to investigate the collective
dynamics of weakly coupled nonlinear periodic structures.

Symbolic computations were performed in order to solve the complex algebraic
system (4.16) for three coupled pendulums (N = 3) under external excitation, based
on prediction-correction algorithms. The natural dimensionless eigenfrequencies of
the associated linear system are ω1 = 1.0017, ω2 = 1.0059 and ω3 = 1.01. In addition,
the generalized modal forces vector XTF is [0.017, 0,−0.029], which means that the
second mode is not excited and does not contribute to the dynamic responses.

In Figures 4.4 (a), we show the solutions for the response intensity of three cou-
pled pendulums under external excitations, as a function of frequency. Branches
labeled DMi represent the Double Mode solutions branches involving the excitation
of odd modes (a1 6= 0, a3 6= 0 and a2 = 0), where TMj represent the Triple Mode
solutions generated by all modes collectively. For three coupled pendulums all solu-
tion branches are multimodal where we can obtain up to six stable solutions for a
given frequency. Note that each bifurcation point due to a multimodal solution has
a correspondence on the two other intensity responses. These curves were plotted to
underline the large number of stable solution branches, even for a small number of
coupled pendulums.
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Figure 4.4: (a) Response intensity of three coupled pendulums under external excitation as
a function of frequency. Solid curves indicate stable solutions and dashed curves indicate
unstable solutions. DMi represent Double Modes solution branches, generated by the first
and the thirst mode where the second one is null. TMj are the Triple Mode solution
branches involved by exciting all modes respectively. (b) Basins of attractions of these
responses for f = 1.83Hz in the Nyquist plane (α1(0), β1(0)) and random variable α2 = 0.1,
β2 = 0, α3 = 0.5 and β3 = −0.3. Each color reflects the distribution of a specific multimodal
solution.
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Figure 4.5: Rotational dof as a function of frequency of three coupled pendulums, where all
pendulums are excited with external forces, where we zoom and highlight overs a couple of
multimodal areas. Black, red and gray curves represent the full model, the reduced order
model (The reduction basis contains odd modes only) and the stable branches.
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(a) (b)

Figure 4.6: (a) Rotational dof as a function of frequency of six coupled pendulums, where
all pendulums are excited with external forces. Blue curves represent the full model and
the Red curves represent the reduced order model (The reduction basis contains odd modes
only). (b) Modal intensities of odd modes for the case of six coupled pendulums under ex-
ternal excitation after model order reduction as a function of frequency. Red, blue and gray
curves represent the contribution of the TM solution branches in the frequency responses
as Resonant (R), Non-Resonant (NR) and stable branches.
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As the number of multimodal solution branches is important, we analyze each
single branch separately to explore the practical appearance of each attractor. There-
fore, we make use of the basins of attraction to demonstrate the robustness of
these solutions. Figure 4.4 (b) show the basins of attraction in the Nyquist plane
(α1(0), β1(0)) for f = 1.83Hz and a random configuration of initial conditions
α2(0) = 0.1, β2(0) = 0, α3(0) = 0.5 and β3(0) = −0.3. We can notice that we
have basins of attraction topology transfer between odd modes |a1|2 and |a3|2 with
respect to the solution branch nature, due to the modal interaction between them.
In addition, the distribution of the DM solution branches corresponds to the distri-
bution of the null trivial solution of |a2|2.

In addition, as the even modes are not excited a Reduced Order Model (ROM)
approach considering odd modes only has been proposed in order to reduce the CPU
time. Figure 4.5 shows the rotational dofs φn as a function of frequency compar-
ing results obtained when considering the full model and when applying the ROM
approach. For a single pendulum the response intensity corresponds to a forced fre-
quency response of a single Duffing oscillator, however for the three weakly coupled
pendulums, we observe additional solution branches resulting from the interaction
between localized modes. Starting from the response intensities plotted in Figure
4.4, to the rotational dofs given in Figure 4.5, one can remark that the multimodal
solutions were distributed in the multistability domain in a manner to join either
resonant or non-resonant branches.

Applying the proposed ROM approach goes to be cancelling the 2nd mode (a2 =
0), therefore the rotations dofs consist only of DM solutions. The comparison between
both approaches shows that the DM solutions capture almost all branches, while
the TM (Full model) contributes with additional separated branches for the second
rotational dof only. Consequently, as the absence of the 2nd mode maintains the
dominant dynamics without significant loss of accuracy compared to the full model
and in order to reduce the CPU time, we propose to exclude it from the projection
basis.

4.2.5.2 Six coupled pendulums

For larger number of coupled pendulums, symbolic computations become time-
consuming, especially when visualizing the whole dynamics of the responses including
the unstable branches. We may use an appropriate time integration procedure in or-
der to solve the ordinary differential system (4.15), which is based on the fourth-order
Runge Kutta integration method, allowing us to identify the nature of the branches
with a low of computational time compared to the case when treating the initial
differential system.

For the case of six coupled pendulums (N = 6), the natural dimensionless
eigenfrequencies of the associated linear system are: ω1 = 1.00117, ω2 = 1.00446,
ω3 = 1.0092, ω4 = 1.01447, ω5 = 1.01922 and ω6 = 1.0225. The generalized modal
forces vector XTF is [0.0234, 0, 0.0067, 0,−0.0025, 0], which means that the even
modes are not excited after projecting on the standing wave modes. Then, the re-

110 Ph.D. Thesis - D. Bitar



4.2 1D array of coupled pendulums

sponses will take the form of a combination of two different types of modes: Triple
Mode (TM) resulting from the interaction between odd excited modes and sextuple
mode (6thM) solution branches which is driven by the excitation of all modes col-
lectively. As applying the ROM approach consists in writing the odd modes only in
the reduction basis, all solution branches in the frequency responses each rotational
dof will be of TM type.

Figure 4.6 (a) shows the rotational dofs as a function of frequency for six weakly
coupled pendulums, where each pendulum is excited with an external force. Blue
curves represent the full model (TM+6thM) and the Red curves represent the ROM
(TM). Results of this model reduction show that the modal reduction preserves
the accuracy of the full model in the prediction of all responses. Nevertheless, as
the multimodal TM solutions join either resonant or non-resonant branches, further
informations about the modal responses are required.

Therefore, we calculate the square of amplitudes of the odd modes in order to see
the contribution of each triple mode solution branch in the rotational dof. Figure
4.6 (b) shows the response intensities of the odd modes as a function of frequency.
Dark and light green curves represent the solutions that contribute as a Resonant
(R) and Non-Resonant (NR) branches in the rotational dofs respectively. Remark-
ably, compared to the case of three coupled pendulums, the number of multi-modal
solutions increases with up to eight possible solutions for a given frequency, for the
case of six coupled pendulums even after applying the ROM approach. In addition,
we can see that the multimodal solutions are distributed half-wave between R and
NR in the rotational dofs.

4.2.5.3 N coupled pendulums

For N weakly coupled pendulums, where each of these pendulums is subjected to
an external harmonic excitation, the dimensionless eigenfrequencies of the associated
linear system can be expressed as: ωm = 1 + εm and the odd modes are not excited
and do not contribute to the dynamic responses. The multi-mode solution branches
of the corresponding response intensities are generated either by the excitation of
odd modes or by all modes collectively. Then, a ROM approach based on using
the even modes only can be applied, reducing the CPU time, while preserving the
accuracy of the full model. In addition, the symmetry of the pendulums array leads
to identical dynamics behavior of pairs of dofs (φi, φN+1−i). As the number of coupled
pendulums increases, the number of multi-modal solution branches increases and the
system becomes more complex.

Figure 4.7 shows the rotational dofs of twelve coupled pendulums as a function
of frequency, where the ROM approach was applied by only writing the odd modes
in the reduction basis. The symmetry of the array of pendulums leads to identical
dynamics behavior of six pairs of dof (φ1, φ12), (φ2, φ11), (φ3, φ10), (φ4, φ9), (φ5, φ8)
and (φ6, φ7). The response frequencies ofN coupled pendulums have similar-trending
curves, where the multimodal solutions join either R or NR branches in the rotational
dofs. In order to highlight the benefits of treating large number of degrees-of-freedom
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and extract some interesting features, a study of basins of attraction in the phase
portrait can be performed for a given frequency in the multistability domain.

Figure 4.7: Rotational dof as a function of frequency of twelve coupled pendulums, where
all pendulums are excited with external forces. Curves represent the reduced order model
where the reduction basis contains odd modes only (6 modes).
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4.2.5.4 Basins of attraction analysis

Figure 4.8 displays the basins of attractions of |φ1| for f = 1.83Hz in the phase por-
trait (φ1(0), φ̇1(0)) for three, four, five and six coupled pendulums simultaneously.
Red and blue colors denotes respectively the Resonant (R) and the Non-Resonant
(NR) branches of the frequency response of the first dof |φ1|. As shown by the se-
quence of graphs, the distribution of the basins of attraction of the resonant branches
(Red areas) increases slightly while increasing the number of coupled pendulums. Al-
though, the study of basins of attraction in term of amplitude (R/NR) is important,
we need to investigate the relationship between the type of these amplitudes and the
nature of contributed modes.

(a) Three coupled pendulums (N=3) (b) Four coupled pendulums (N=4)

(c) Five coupled pendulums (N=5) (d) Six coupled pendulums (N=6)

Figure 4.8: Basins of attraction of |φ1| for f = 1.83Hz in the phase portrait (φ1(0), φ̇1(0))
for three, four, five and six coupled pendulums. Red and blue colors indicate respectively
the Resonant (R) and the Non-Resonant (NR) branches in the frequency response of the
first dof |φ1|.
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(a) Three coupled pendulums (N=3) (b) Four coupled pendulums (N=4)

(c) Five coupled pendulums (N=5) (d) Six coupled pendulums (N=6)

Figure 4.9: Basins of attraction of |φ1| for f = 1.83Hz in the phase portrait (φ1(0), φ̇1(0))
for three, four, five and six coupled pendulums. Each color corresponds to different types
of mode and branch, they are illustrated in Table 4.2.

Table 4.2: Color palette to distinguish the solutions in terms of type of mode and branch.

Color 4
Mode DM DM TM TM QM QM 5M 5M 6M 6M
Branch R NR R NR R NR R NR R NR

Figure 4.9 shows the evolution of the basins of attractions in terms of type of
branch and nature of mode of |φ1| for f = 1.83Hz in the phase portrait (φ1(0), φ̇1(0))
for three, four, five and six coupled pendulums simultaneously. Table 4.2 shows the
color palette, where each color is related to a specific type of branche. DM , TM ,
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QM , 5M and 6M are respectively the Double, Triple, Quadruple, Quintuple and
Sextuple Modes.

From the previous diagrams, the basins of attractions of the DM are larger for
N = 3 than for N = 4. Moreover the distribution of the TM in the case of three
coupled pendulums (N = 3) covers small areas compared to the case of N = 5;
this distribution decreases for six coupled pendulums. Remarkably, the distribution
of multimodal solution branches generated by all modes simultaneously increases
while increasing the number of coupled pendulums. This can serve as a hint of the
important distribution of resonant multimodal solutions, expected for large number
of coupled pendulums.

4.3 2D pendulums array

4.3.1 Introduction

Taking into account the considerable work in the literature devoted to analyze the
richness of the nonlinear dynamical effects found in an array of coupled oscillators,
2D systems are expected to present additional dynamics phenomena not realizable in
the 1D ones. Recently, the first analysis of a 2D array of coupled pendulums proposed
a computational model to study the nonlinear dynamics of such system under para-
metric excitation [Jallouli 15]. As seen in the previous section, modes localization in
periodic nonlinear pendulums array exhibit a rich and complex collective dynamics.
Hence, the primary motivation to study the collective dynamics in 2D periodic lat-
tices is to explore the modes localization phenomenon taking into account different
coupling linear and nonlinear stiffness parameters in the x and y directions. For a
qualitative understanding of their effects on the modal interactions, the bifurcation
topology, the responses bandwidth and the vibrational amplitude. The present sec-
tion investigate the collective dynamics of periodic nonlinear 2D monoatomic lattices
under external excitations which are modeled as spring-mass lattices. The coupled
differential EOMs are solve using an analytical-numerical approach similar to the one
employed in the previous section. Taking into account the considerable work in the
literature devoted to analyze the richness of the nonlinear dynamical effects found in
an array of coupled pendulums [Vyas 01], 2D systems are expected to present addi-
tional dynamics phenomena not realizable in the 1D case. Recently, the first analysis
of a 2D array of coupled pendulums proposed a computational model to study the
nonlinear dynamics of such system under parametric excitation [Jallouli 15].

4.3.2 Problem Formulation

Figure 4.10 shows the discrete model of 2D coupled N×M - pendulums subjected to
harmonic horizontal base excitation. The system is composed of N equidistant axles
An. Each axle has M equidistant pendulum “i, j” attached perpendicularly to the
axle and designed as a uniform rod of length l and mass m fixed at the end. φi,j is its
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rotational dof from its stable equilibrium position. Pendula “i, j”and “i+ 1, j”, “i, j”
and “i, j+1” are connected respectively by torsional and linear springs kx and ky. The
periodic system is subjected to harmonic horizontal base excitation y = y0 cos(Ωτ),
with fixed boundary conditions φi,M+1 = φi,0 = φN+1,j = φ0,j = 0. Figure 4.10(b)
shows a front of view of system 4.10.

(a)

ϕ𝑖,𝑗−1 ϕ𝑖,𝑗

𝑦 = 𝑦0𝐶𝑜𝑠(Ω𝜏)

ϕ𝑖,𝑗+1

∆𝑗, 𝑗+1

𝑦

𝑧

𝑙 𝑙 𝑙𝑔

mmm

𝑘𝑦 𝑘𝑦 𝑘𝑦

𝑘𝑥

(b)

Figure 4.10: (a) 2D array of coupled pendulums subjected to horizontal harmonic base
excitation. (b) Front view of the system

The kinetic energy T of the system can be expressed as

T =
1

2

N∑
i=1

M∑
j=1

m(ẏ2
i,j + ż2

i,j) (4.17)

where (yi,j, zi,j) represents the Cartesian coordinates of the pendulum {i, j}, given
as

yi,j = y + l sinφi,j, zi,j = l cosφi,j, (4.18)

and the dot denotes typically the derivative with respect to time. Substituting
Eq. (4.18) into Eq. (4.17) the kinetic energy becomes

T =
1

2

N∑
i=1

M∑
j=1

m
(
l2φ̇2

i,j + 2l cos(φi,j) ẏ φ̇i,j + ẏ2
)
. (4.19)

The potential energy of such a problem can be written as:
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V =
N−1∑
i=1

M−1∑
j=1

{
1

2
kx
(
(φi+1,j − φi,j)2 + (φi−1,j − φi,j)2

)
+

1

2
ky
(
∆2
j,j+1 + ∆2

j−1,j

)
+mg

(
l − l cos(φi,j)

)}
, (4.20)

where g represents the acceleration of gravity and ∆j,j+1 the distance between
pendulums {i, j} and {i, j + 1}, which can be written as

∆j,j+1 = l(sin(φi,j+1)− sin(φi,j)). (4.21)

The Lagrange equations of motion can be written in the following form

d

dτ
(
∂L

∂φ̇i,j
)− ∂L

∂φi,j
= Qi,j for i = 1, . . . , N and j = 1, . . . ,M (4.22)

with L the Lagrangian operator defined by L = T − V , Qi,j = αl2φ̇i,j represents
the generalized forces applied to the pendulum {i, j} and α the viscous damping
coefficient. Substituting equations (4.19) and (4.20) into the Lagrange equation
(4.22), we obtain the equation of motion of each pendulum {i, j}

ml2φ̈i,j + αl2φ̇i,j +mgl sin(φi,j) + kx(2φi,j − φi−1,j − φi+1,j)

+kyl
2 cos(φi,j)(2 sin(φi,j)− sin(φi,j−1)− sin(φi,j+1))

= mly0Ω2 cos(φi,j) cos(Ωτ) (4.23)

By expanding sin(φi,j) and cos(φi,j) into Taylor series up to the third and first
order respectively, the equations (4.23) can be written as:

ml2φ̈i,j + αl2φ̇i,j + kx(2φi,j − φi−1,j − φi+1,j) +mgl(φi,j − 1
6
φ3
i,j)

+kyl
2(2φi,j − φi,j−1 − φi,j+1)− kyl2

6
(2φ3

i,j − φ3
i,j−1 − φ3

i,j+1)

= mly0Ω2 cos(Ωτ) (4.24)

Since we are interested in weakly coupled parameters in both x and y directions,
the third order expansion related to the linear coupling parameter in the y direction
is considered to be negligible.

4.3.3 Dimensionless equations

For convenience and equation simplicity, the following nondimensional variables are
introduced:

Ph.D. Thesis - D. Bitar 117



Nonlinear oscillators arrays with weakly linear coupling

θi,j =
φi,j
φD

, t = ω0τ, (4.25)

where φD = my0Ω2

αlω0
is the dynamic displacement of the associated linear system,

Q = ω0m
α

and ω0 =
√

g
l
represents the natural frequency of pendulum “i, j”. Af-

ter dropping Eqs. (4.25) into Eq. (4.24) and dividing by α
m2ly0ω0Ω2 , we obtain the

following nondimensional system of equations

θ̈i,j + 1
Q
θ̇i,j + θi,j + kx

m g l
(2θi,j − θi−1,j − θi+1,j) + ky l

m g
(2θi,j − θi,j−1 − θi,j+1)

−1
6
(m y0 Ω2

α l ω0
)2 θ3

i,j = α
m ω0

cos( Ω
ω0
t) for i = 1, . . . , N and j = 1, . . . ,M (4.26)

Equation (4.26) describes a 2D monoatomoc lattice consisting of an arrangement
of identical unit cells assembled together to form the whole structure, where each unit
cell adjoins four neighbors via linear springs kx

mgl
and kyl

mg
in the x and y directions

respectively and subjected to harmonic horizontal base excitation. For boundary
condition, we suppose that we have fixed identical systes in both directions, where
we define 2(N +M + 2) extra variables and set them to zero as θ0,j = θN+1,j = θi,0 =
θ0,M+1 = 0.

4.3.4 Linear study

To determine the natural frequencies and their eigenvectors, equation (4.26) can be
written in matrix form as

Ü + CU̇ + KLU︸ ︷︷ ︸
Linear part

+KNL(Θ)︸ ︷︷ ︸
Nonlinear part

= F (t), (4.27)

where Θ = [θ1,1, θ1,2, . . . , θ1,M , . . . , θi,1, θi,2, . . . , θi,M , . . . ] is the N×M-dimensional
variable vector, C the damping matrix, F (t) = α

mω0
cos[ Ω

ω0
t][1, . . . , 1]T the excitation

vector, KNL(Θ) the nonlinear stiffness vector and

KL =



K1 −K2

−K2 K1 −K2 0
. . . . . . . . .

0 −K2 K1 −K2

−K2 K1

 (4.28)

where
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K1 =



1 + 2kx
mgl +

2kyl
mg − kyl

mg

− kyl
mg 1 + 2kx

mgl +
2kyl
mg − kyl

mg 0
. . . . . . . . .

0 − kyl
mg 1 + 2kx

mgl +
2kyl
mg − kyl

mg

− kyl
mg 1 + 2kx

mgl +
2kyl
mg


(4.29)

and K2 = kx
mgl

IM with IM the identity matrix. The eigenvalues ωi,j are represented
in the following form for few coupled oscillators in contact:

N = 1,M = 1 : ω1,1 =

√
1 +

2kx
mgl

+
2kyl

mg

N = 2,M = 1 : ω1,1 =

√
1 +

kx
mgl

+
2kyl

mg

ω2,1 =

√
1 +

3kx
mgl

+
2kyl

mg
(4.30)

We may express all normal frequencies relative to the same non-dimensional ref-
erence frequency which is 1, so that

ωi,j =

√
(1 + λi

kx
mgl

+ γj
kyl

mg
) (i = 1, . . . , N and j = 1, . . . ,M), (4.31)

where λi and γj are the coefficients depending on the mode of vibration (As an
example for N = 1 and M = 1, λ1 = 2 and γ2 = 2). For weak linear coupling, we
suppose that kx << mgl and ky << mg

l
, consequently, kx

mgl
<< 1 and kyl

mg
<< 1 and:

ωi,j ≈ 1 +
1

2
λi

kx
mgl

+
1

2
γj
kyl

mg
(i = 1, . . . , N and j = 1, . . . ,M). (4.32)

This assumption leads to the creation of linear closed modes which permits to
the influence of the modes localization on the collective dynamics of a 2D pendulums
array. In the following section, we will proceed to solve the normalized equivalent
differential system (4.26) using a perturbation technique based on the multiple time
scales combined with the standing waves decomposition as presented in Chapter 2,
section 2.8.4.
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4.3.5 Semi-analytical approach

The multiple scales method coupled with standing wave decomposition is employed as
an approximate analytical solution to solve the coupled nonlinear differential systems.
The main advantages of the present approach are the capacity of handling weakly
coupled nonlinear systems, which permits to visualize all physical responses branches
and their properties in terms of modal interactions and bifurcation topology transfer.
Therefore, we rescale the variables appearing in the equation (4.26) as follows and
set the external frequency an amount εω0ΩD away from the resonant frequency

1

Q
= εη,

kx
mgl

=
1

2
εγx,

kyl

mg
=

1

2
εγy, −

1

6
(
m y0 ω

2

α l ω0

)2 = ξ,
α

m ω0

= ε
3
2f. (4.33)

In order to calculate the responses of each pendulum, we expand θi,j(t) as a sum
of standing-wave modes with slowly varying amplitude, suitable for weakly coupled
2D nonlinear lattices as described in detail in the previous chapter.

θi,j(t) = ε1/2

N∑
r=1

N∑
p=1

(Ar,p(T ) sin(nqr) sin(mdp)e
it + c.c.)

+ε3/2θ
(1)
i,j (t) + · · · , i = 1, ..., N and j = 1, ...,M (4.34)

where T = εt is a slow time variable, that authorizes the complex amplitude
Ar,p(T ) to vary slowly in time. Since we proposed fixed boundary conditions, the
possible wave components qr, dp can be given as{

qr = rπ
N+1

, r = 1, ..., N

dp = pπ
M+1

, p = 1, ...,M
(4.35)

After replacing the proposed solution (3.11) into the equation of motion, we can
get at the order of ε

3
2 , N ×M equations of the form:

θ̈
(1)
i,j + θ

(1)
i,j =

∑
r

∑
p

(r, pthsecular term)eit + other terms (4.36)

We must eliminate the N ×M secular terms so that θi,j(t) remains finite which
allows us to determine the equations for the slowly varying amplitudes Ar,p(T ). To
extract the equations for these amplitudes, we make use of the orthogonality of the
modes, by multiplying the r, pth secular term by sin(nqr) sin(dqp) and summing over
n and m. We find that the equation of the r, pth amplitude Ar,p(T ) is given by:

2idAr,p

dT
+ iηAr,p +

3ξ

16

∑
i,k,l

∑
j,s,o

Ai,jAk,sA
∗
l,o∆

(1)
ikl;r∆

(1)
jso;p

+2(γxsin
2( qr

2
) + γysin

2(dp
2

))Ar,p = 2f
(N+1)(M+1)

∑
n,m

sin (nqr) sin (mdp)e
iΩDT(4.37)
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Ignoring initial transients, and assuming that the nonlinear terms in the equation
are sufficient to saturate the growth of the instability, we try a steady-state solution
of the form

Aj,p = aj,pe
iΩDT (4.38)

Substituting equation (4.38) into the differential system (4.37) of amplitude, we
obtain the required equation for the fixed complex amplitudes aj,p.

2iΩDar,p + iηar,p + 2(γx sin( qr
2

)2 + γy sin(dp
2

)2)ar,p

+ 3ξ
16

∑
i,k,l

∑
j,s,o

ai,jak,sa
∗
l,o∆

(1)
ikl;r∆

(1)
jso;p =

2f

(N + 1)(M + 1)

∑
n,m

sin (nqr) sin (mdp)(4.39)

The complexity of the nonlinear algebraic system (4.39), limits the possibility to
solve it analytically even for few coupled pendulums. We may use the appropriate
time integration procedure in order to solve the differential system (4.37) numerically,
which implements a version of the fourth-order Runge Kutta integration method.

4.3.6 Numerical simulations

Table 4.3: Design parameters for the corresponding periodic structure depicted in figure
4.10

Parameters m (Kg) g (m.s−2) l (m) α (Kg.s−1) y0 (m.s−2) kx(N.m) ky(N.m)

Design 1 25.10−2 9.81 62.10−3 16.10−2 5.10−4g 10−5 kx/l
2 = 26.10−4

Design 2 - - - - - 5.10−3 10−2

In order to study the collective dynamics of the 2D periodic structure, two dif-
ferent configurations were proposed in Table 4.3, which highlights the influence of
linear coupling on the nonlinear behavior in terms of frequency range and vibration
amplitude.

For the case of 2 × 2 coupled pendulums (N = 2,M = 2) and for the first de-
sign parameters listed in Table 4.3, the natural dimensionless eigenfrequencies of the
associated linear system are very close to 1. In addition, as we considered ky = kx

l2
,

the linear springs are expected to act the same way. Figures 4.11 show the re-
sponse intensities as a function of the detuning parameter ΩD. The Single Mode
(SM) solution branches corresponds to the trivial solution of the system (4.37) with
A1,2 = A2,1 = A2,2 = 0. The multimodal solutions DM and QM are generated by
the coupling between two and all modes respectively. These curves were ploted to un-
derline: first the effect of modes localization on the high number of solution branches
for a given frequency and second the identical contribution of the non-excited modes
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on the responses. Although, the advantages of modes localization, considering small
coupling parameters does not affect the system’s rotational dof. Figure 4.12, displays
the rotational dof of 2×2 coupled pendulums under harmonic horizontal base excita-
tion as a function of frequency, which corresponds to a single forced Duffing oscillator.
In addition, all multimodal solution branches are distributed between resonant and
non-resonant branch, hence it’s complicated to identify their contribution.

Figure 4.11: Response intensity of 2 × 2 coupled pendulums as a function of frequency,
under harmonic horizontal base excitation for the first set of design parameters listed in
table 4.3.
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Figure 4.12: Rotational dof as a function of frequency of 2 × 2 coupled pendulums, under
harmonic horizontal base excitation for the first set of design parameters listed in table 4.3

Figure 4.13: Response intensity of 2 × 2 coupled pendulums as a function of frequency,
under harmonic horizontal base excitation for the second set of design parameters listed in
table 4.3.
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We decide to increase linear coupling parameters in such a manner to preserve
the localization phenomena. Therefore, we consider the second design parameters
listed in Table 4.3, so that the natural dimensionless eigenfrequencies of the associ-
ated linear system are ω1,1 = 1.0331, ω1,2 = 1.0336, ω2,1 = 1.0989 and ω2,2 = 1.0994.
Figure 4.13 shows the response intensities of 2 × 2 coupled pendulums. Unlike to
the first case, linear springs kx and ky play different roles. In particular, the multi-
modal solution branches resulting from the interaction between A1,1 and A2,1 or A2,2

present larger frequency range and their bifurcation point B2 exceeds the one that
corresponds to the non-resonant branch of the SM (B1). In addition, in regards to
the system’s rotational dof represented in figure 4.14, multimodal solution branches
present additional features distinct from those presented by a single forced Duffing
oscillator (larger bandwidth and higher vibration amplitude).

Figure 4.14: Rotational dof as a function of frequency of 2 × 2 coupled pendulums, under
harmonic horizontal base excitation for the second set of design parameters listed in table
4.3

4.4 Summary

Pendulums arrays were modeled as weak linearly coupled nonlinear oscillators in
order to study their collective dynamics. The choice of the physical parameters
ensuring sufficiently weak substructure coupling, leads to strongly modes localiza-
tion for perfectly periodic arrays. A semi-analytical method suitable for nonlinear
localized modes problems has been considered, based on a perturbation technique,
combined with a standing wave decomposition, transforming the normalized differen-
tial systems into a set of coupled complex algebraic ones. In addition, the validity of
the proposed semi-analytical method has been verified, and its role in identifying the
type of the solution branches has been highlighted. The resulting systems have been
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numerically solved and plotted as a function of frequency to highlight the complexity
and the multivaludness of the responses. High number of multimodal solutions has
been obtained for few number of coupled pendulums, resulting from the excitation
of several modes collectively.

For 1D array of coupled pendulums under harmonic external excitation, the ro-
bustness of the additional multimodal solution branches has been proved with a
classical study of their basins of attraction, as well as the bifurcation topology trans-
fer. Identical dynamical behavior between frequency responses, resulting from the
symmetry of the array has been identified. In addition, we notice that the multi-
modal solutions are distributed in a manner to join either resonant or non-resonant
branches. A model order reduction approach ROM has been applied to solve large
periodic arrays of coupled oscillators under external forces which helps reducing the
CPU time. It is based on projecting on odd modes, while maintaining the domi-
nant dynamics of the responses without significant loss of accuracy compared to the
results of the full model.

In addition, the model has been extended to study the collective nonlinear dy-
namics of a 2D periodic array of coupled pendulums under harmonic horizontal base
excitation. For few coupled pendulums, the resulting complex system has been nu-
merically solved for two different configurations, highlighting the impact of linear
coupling parameters in both directions on the complexity and the multivaludness of
the responses.

Remarkably, the distributions of the basins of attraction of the resonant branches
and the multimodal solutions governed by all modes simultaneously increase while
increasing the number of coupled pendulums. In practice, this model could be used as
a design tool to tune the number of multimodal solutions and increase the possibility
to reach resonant branches.

Ph.D. Thesis - D. Bitar 125



Nonlinear oscillators arrays with weakly linear coupling

126 Ph.D. Thesis - D. Bitar



5
Nonlinear oscillators arrays with

weakly nonlinear coupling
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5.1 Introduction

Unlike the previous chapter, this one is devoted to investigate the collective dynamics
of nonlinear oscillators with weak nonlinear coupling. In this interest, we present
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two physical applications. The first one represents an array of electrostatically cou-
pled nanobeams subjected to parametric excitation. The nonlinear coupling terms
arise from the electrostatic and dissipative forces acting between NEMS resonators.
The second example is a 2D periodic granular particles array subjected to compres-
sive loadings and a harmonic base excitation, where each particle is coupled with
fixed-fixed uniform beam and the nonlinear dynamics is governed by the Hertzian
contact.

5.2 NEMS array

5.2.1 Introduction

External potentials and geometric effects in MEMS resonators possess strong and
easily reachable nonlinearities which requires further investigations of the coupling,
stability, nonlinearity and reliability [Zhang 07b]. For instance, nonlinear dynamic
characteristics of microbeam-based resonant sensors in MEMS were investigated nu-
merically and experimentally [Zhang 07a, Mestrom 08, Zhang 05, Ghayesh 13]. Re-
cently, Tajaddodianfar et al.[Tajaddodianfar 16] used the homotopy analysis method
(HAM) in order to derive approximate analytical solutions for the nonlinear fre-
quency response of MEMS/NEMS resonators characterized by the general Duffing
equation having quadratic and cubic nonlinearities. Besides, electrostatically actu-
ated microresonators are adequate for parametric excitation that attracted a consid-
erable attention in the past few years because of its interesting properties of signal
amplification [Carr 00] and noise squeezing [Rugar 91]. For instance, Zhang et al.
[Zhang 02] presented the effect of the cubic mechanical stiffness and electrostatic
stiffness in changing the dynamic behavior of the oscillator response when excited
parametrically while Rhoads et al. [Rhoads 06b, Rhoads 06a] investigated the non-
linear response of resonant microbeam systems with purely-parametric electrostatic
actuation.

A significant part of Roukes et al. work [Kozinsky 06, Villanueva 13, Matheny 13]
involved deeper and detailed understanding of NEMS nonlinearities origins and
the resulting limitation for sensing applications. Knowing that, the smaller the
structures, the sooner nonlinearities occur which in turns must be taken into ac-
count in terms of high order nonlinearities [Kacem 11c, Kacem 10], Kacem et al.
[Kacem 09b, Kacem 11b] presented and validated a compact and analytical model
of an electrostatically driven clamped-clamped beam, under primary resonance and
accounting the principal nonlinearities with cubic-quintic terms. Particularly, they
demonstrated the physical meaning of the fifth order nonlinearity, based on the ex-
perimental observation of mixed hardening/softening effects in MEMS [Kacem 09a].
Moreover, they studied experimentally the sensitivity of hysteresis suppression to
high order nonlinearities in an externally driven MEMS beam at large amplitudes
[Kacem 11d]. They also investigated analytically and experimentally the benefits of
a superharmonic excitation on the primary resonance of a microresonator by sub-
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jecting the nonlinear oscillator to simultaneous slow and fast excitations, where they
showed how the bifurcation topology of an undesirable unstable behavior is mod-
ified when the resonator is simultaneously actuated at its primary and superhar-
monic resonances. Recently, hysteresis suppression was demonstrated in the case
of a nanocantilever with electrostatic actuation and piezoresistive sensing while the
sensor dynamics is stabilized thanks to a nonlinear resonance [Kacem 15].

Section 1.4.2 in chapter Chapter 1 is devoted to study the nonlinear dynamics of
coupled MEMS/NEMS arrays. In this study, we model the collective dynamics of
an electrostatically actuated, parametrically driven nonbeams array, while including
the main sources of nonlinearities up to the fifth order.

5.2.2 Equations of motion

We consider an array of N doubly clamped silicon nanobeams with identical material
properties, where the excitation and damping forces are located at the midspan of the
resonators, polarized by a DC voltage Vdc and subject to an alternative AC voltage
Vac at the frequency Ω̃. b denotes the nanoresonator width, h is its thickness, g is
the separation distance between the beams width and L represents the length of the
beam (see Fig. 5.1).

Figure 5.1: Array of N clamped-clamped silicon Micro- or Nano-beams actuated by an
electric load S. Gutschmidt et al. Nonlinear Dyn. (2012).

We may use a system of coupled ODEs that captures the important physical
aspects that are required to model one dimensional array of parametrically driven
coupled nanomechanical beams. A typical coupled resonators array is described after
an appropriate scaling by a dimensionless coupled equations of motion of the form:

ÿn + εµẏn + yn + εξy3
n + ε[Γ +H cos(2(1 + εΩD)t)](yn−1 − 2yn + yn+1)

+εψ[(yn − yn−1)3 + (yn − yn+1)3] + εδ[(yn − yn−1)5 + (yn − yn+1)5]

+ελ[(yn − yn−1)2(ẏn − ẏn−1) + (yn − yn+1)2(ẏn − ẏn+1)] = 0
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where yn describes the single degree of freedom of the nth beam, giving it displace-
ment from equilibrium, with n = 1 . . . N , as we consider two additional fixed beams
at the ends of the array y0 = yn+1 = 0. There are three different forces acting on the
resonators: the mechanical, the electrostatic and dissipative forces. ξ is the nonlinear
mechanical term resulting from midplane stretching and µ is the linear damping co-
efficient acting on the nth respective nanobeam. The electrostatic coupling between
nearest-neighbor beams generates several nonlinearities, as the parametric excitation
where H defines its amplitude and ΩD the detuning parameter, the electrostatic cu-
bic and quintic nonlinearities are denoted by ψ and δ respectively. λ denotes the
VDP coupling generated by the dissipative coupling forces.

As typical NEMS resonators has high quality factors, we define a small expansion
parameter εµ where ε << 1 and µ of order unity. We express the driving amplitude
as εH, with H of order unity to be at the same order as the linear damping. To
ensure that the nonlinear terms have the ability to cause weak oscillations, we write
them with corresponding scaling to get them in the system at the same range as the
physical impacts.

5.2.3 Complex amplitude equations

To calculate the nonlinear response of each parametrically excited beam, we use
the method of multiple scales, where we express the solution as a sum of standing
wave modes with slowly changing magnitude, by writing the displacement of the nth
nanobeam far from its equilibrium of the form:

yn(t) =
N∑
m=1

(Am(T ) sin(qm)eit + c.c.) + εy(1)
n (t) + · · · n = 1, ..., N (5.1)

By substituting solution (5.1) term by term into the differential EoM we obtain up
to the order ε a system that after applying the solvability condition and vanishing
all secular terms, we get the following differential system for the slowly changing
magnitudes Am(T )

−2idAm

dT
− iηAm + 2H sin2( qm

2
)A∗me

2iΩDT − 3ξ
4

∑
j,k,l

AjAkA
∗
l ∆

(1)
jkl,m + 4Γ sin2(

qm
2

)Am

−4(iλ+ 3ψ) sin( qm
2

)
∑
j,k,l

SjSkS
∗
l ∆

(2)
jklop,m − 40δ sin(

qm
2

)
∑

j,k,l,o,p

SjSkSlS
∗
oS
∗
p∆

(3)
jklop,m = 0

(5.2)

with Sv = sin( qv
2

)Av. Trying the steady-state solution of the form Am(T ) =
ame

iΩDT which oscillate at half the parametric resonance into the equations (5.2) of
time varying amplitudes, we obtain a system of complex time-independent ampli-
tudes
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[2ΩD + 4Γ sin2(
qm
2

)− iη]am −
3ξ

4

∑
j,k,l

ajaka
∗
l ∆

(1)
jkl,m + 2H sin2(

qm
2

)a∗m

−4(iλ+ 3ψ) sin(
qm
2

)
∑
j,k,l

TjTkT
∗
l ∆

(2)
jklop,m − 40δ sin(

qm
2

)
∑

j,k,l,o,p

TjTkTlT
∗
o T
∗
p∆

(3)
jklop,m = 0

(5.3)

with Tv = sin( qv
2

)av. In order to obtain the overall collective response of an
array of electrostatically coupled nanobeams, we proceed in the coming paragraph
to investigate the complex algebraic system (5.3). These equations are complex with
a high number of parameters and nonlinearities up to the fifth order, which are
difficult or even impossible to solve analytically.

5.2.4 Nonlinear responses to parametric excitation

Table 5.1: Model parameters of the nanobeams array illustrated in Figure 5.1

Parameters L (µm) g (µm) h (nm) b (µm) Q Vac (mV ) Vdc (mV )

Design 1 11.5 0.215 150 0.2 50 12 0.1
Design 2 20 1 250 0.5 50 0.75 0.75

In order to study the nonlinear dynamics of coupled oscillators, we start by solving
the complex algebraic equation analytically. By expressing each amplitude by am =
|am|eiΦm , taking the magnitude squared of both separated sides and the intensity
|am|2 of the nontrivial responses as all positive roots, the SM solution branches
satisfies the following equation:

1

4 sin4( qm
2

)

[(3

4
ξ∆(1)

mmm,m + 12ψ sin(
qm
2

)∆(2)
mmm,m

)
|am|2 + 40δ sin(

qm
2

)∆(3)
mmmmm,m|am|4

−4Γ sin2( qm
2

)− 2ΩD

]2

+

[
η + 4λ sin( qm

2
)∆

(2)
mmm,m|am|2

]2

= H2

(5.4)
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(a) (b)

(c) (d)

Figure 5.2: (b) Frequency responses of two coupled nanobeams under parametric excitation
for the first set of design parameters. Dashed curves represent unstable solutions. The only
elliptical SM solution of the analytical equation (5.4) represented in blue for the second
mode amplitude. DM and TM multimodal solution branches are represented in red and
green respectively. (a) Zooming and highlighting the multimodal interactions and bifurca-
tion topology transfer between both modes amplitudes. (c) The average response intensity,
defined in equation (5.5) for two coupled oscillators and the first design parameters.

Beside the SM solutions, additional ones may exist but are hard to find analyt-
ically as the complex algebraic system (5.3) has a large number of variables with
high nonlinearity up to the fifth order. Consequently, ManLab [MAN 10] has been
employed for iterative continuation and bifurcation investigations of the nonlinear
system as described in detail in Chapter 3.

We start with the dynamical analysis of two electrostatically coupled nanome-
chanical beams under parametric excitation. Figures 5.2 (a) (b) show the steady
state responses when considering design 1 described in Table 5.1. The dynamic re-
sponses were plotted for a gap g = 215 nm while the nanobeam thickness is h = 150
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nm. In this case, the beam thickness and the gap width are almost equal, thus
the electrostatic coupling parameters are of the same importance as the mechani-
cal Duffing term. Figures 5.2 (a) (b) show the amplitudes of both symmetric and
anti-symmetric modes (|a1|2 and |a2|2 respectively) as a function of ΩD. Full lines
indicate stable solutions and dashed curves represent unstable responses, with blue
and red lines represent single mode S1 and double mode S2 solution branches re-
spectively, while black straight lines corresponds to the trivial null solution of (5.4).
Note that as |A1|2 is excited after modes projection, its single mode takes the shape
of a single Duffing oscillator with cubic and quintic nonlinearities under parametric
excitation. The competition between hardening and softening behaviors leads to a
mixed nonlinear behavior and the possibility to get range of frequency where four
steady-state responses can be obtained. In addition, the excitation of both modes
collectively driven by the coupling between the nanobeams and the localization of
the normal modes gave birth to three additional stable branches (Labeled Double
Mode DM). In Figure 5.2 (c) we zoom to highlight the multimodal interactions and
bifurcation topology transfer between both mode amplitudes.

Figure 5.3: Square of modes amplitudes of two-nanobeams system under parametric exci-
tation with respect to ΩD for the 2nd model parameters. The elliptical SM branches (S1 &
S2) solutions of the equation (5.4) for m=1 and 2 respectively.

We define the time and space average of the square of the beam motion as

I =
1

N

∑
n=1

N < y2
n > . (5.5)

Chevrons <> denote the average over time, which is I = 3
2
(|a1|2 + |a2|2) for

two-beams system. Figure 5.2 (d) shows the square of modes amplitudes of two-
nanobeams system under parametric excitation. Hysteresis effects are observed with
high number of steady-state responses for a given frequency with few coupled beams.
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(a) (b)

(c) (d)

Figure 5.4: (a)-(b) Basins of attraction distribution for both amplitudes |a1|2 and |a2|2
respectively in the Nyquist plane (Re(a1(0)), Im(a1(0))) for Re(a2(0)) = 0.2, Im(a2(0)) =
−0.2 and ΩD = 0.06. (c) Distribution of the Basins of attractions in terms of modes type:
blue and yellow represent SM and DM respectively. (d) The average response intensity,
defined in equation (5.5) for two coupled oscillators and the second design parameters.
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Figure 5.5: Response intensities of three coupled nanobeams under parametric excitation,
for the second design parameters listed in Table 5.1. Solid and dashed lines indicate stable
and unstable steady-state solutions respectively. Black, blue, red and green represent trivial,
SM, DM and TM solution branches respectively.

Contrary to what have been treated before, we choose to decrease the electro-
static coupling parameters by considering a gap width which is greater than the
beam thickness as given in for the design 2 in Table 5.1. Figure 5.3 represents the
steady state responses, where the top and the bottom graphs show the amplitude of
the symmetric and antisymmetric modes respectively with respect to the detuning
parameter ΩD. Solid curves indicate stable responses and dashed curves represent
unstable solution branches. Particularly, blue curves represent SM responses (S1 and
S2), solution of equation (5.4), involving the excitation of one mode only when all
the others are null. We should underline the fact that, considering a gap greater than
the nanobeam thickness, the coupling parameters (Linear, Dissipative and electro-
static third and fifth Duffing terms) are negligible compared to the Duffing parameter
generated by the mechanical nonlinearity, which implies a hardening behavior while
maintaining the elliptical shape of a single parametrically excited Duffing oscillator.
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Moreover, additional stable DM solution branches are obtained. We can distinguish
between our study from Lifshitz et al. [Lifshitz 03] work, with the following differ-
ences: the consideration of the electrostatic cubic and quintic duffing coupling terms
and the linear damping coefficients that are acting of each beam.

With two beams we can obtain regions in frequency where three stable solutions
can exist. For instance, for ΩD = 0.06, we plot the basins of attractions in the
Nyquist plane (Re(a1(0)), Im(a1(0))) with Re(a2(0)) = 0.2 and Im(a2(0)) = −0.2
for the first and the second amplitudes in addition to the distribution of modes type.
Figures 5.4 (a) (b), show modal interactions and bifurcation topology transfer be-
tween both amplitudes: when the first amplitude is null the second one reaches a SM
and vice versa; then, both amplitudes reach a DM branch together. In addition, the
distribution of the DM is large and robust so its corresponding branch can be reached
experimentally for a specific choice of initial conditions (See yellow distribution in
Figure 5.4 (c)).

In term of average, Figure 5.4(d) shows the response frequency for two-nanobeams
system under parametric excitation for the 2nd set of model parameters. The multi-
valudness of the response curve leads to complex jump phenomena which is located
at the bifurcations despite the small number of coupled oscillators.

Figure 5.5 shows the frequency curves of three electrostatically coupled nanobeams
under parametric excitation, for the 2th model parameters. We should note that, for
three coupled oscillators the only elliptical SM solution branch is related to the sec-
ond mode (Blue curve), whose exact analytical solution is given by equation (5.4)
for m = 2. Red curves refer to three additional DM solution branches which are
stable over a wide frequency range. These branches occur when ∆

(1)
mmm,i = ∆

(2)
mmm,i =

∆
(3)
mmmmm,i = ∆

(1)
mmm,j = ∆

(2)
mmm,j = ∆

(3)
mmmmm,j = 0, for all i, j 6= m and i 6= j. In

addition, we find three Triple Mode (TM) responses (Green curves), resulting from
the excitation of all three modes collectively. We highlight the high number of non-
trivial solution branches obtained with few coupled oscillators, where we can get five
stable responses in a specific frequency range. For high number of coupled beams we
expect to find enormous number of complex nonlinear solutions.

The following investigations considered the basins of attractions as a qualitative
tool for detecting the trajectories of the attractors, their type and their practical in-
volvement for three parametrically driven, electrostatically coupled nanobeams. The
analysis were performed in the Nyquist plane (Re(a1(0)), Im(a1(0))) for a detuning
parameter ΩD = 0.16 in the multistability domain with five attractors for the first
and third amplitudes, and four for the second one, while setting Re(a2(0)) = −0.1,
Re(a3(0)) = −0.05, Im(a2(0)) = Im(a3(0)) = 0.

Figure 5.6 shows the evolution of the basins of attraction in term of modes type,
while decreasing the gap width from 1 µm to 0.9 µm. As shown by the sequence
of graphs, the distribution of the basins of attraction of the single and triple modes
increase contrary to the trivial and the DM solutions, by slightly decreasing the gap
width.
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(a) g=1 µm (b) g=0.98 µm

(c) g=0.96 µm (d) g=0.94 µm

(e) g=0.92 µm (f) g=0.9 µm

Figure 5.6: Evolution of the basins of attraction in terms of modes type while decreasing
the gap width. The basins are plotted in the Nyquist plane (Re(a1(0)), Im(a1(0))), for
the case of three coupled beams, the second set of design parameters listed in Table 5.1,
Re(a2(0)) = −0.1, Re(a3(0)) = −0.05, Im(a2(0)) = Im(a3(0)) = 0 and the detuning
parameter ΩD = 0.18.
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(a) l=20 µm (b) l=19.5 µm

(c) l=19 µm (d) l=18.5 µm

Figure 5.7: Evolution of the basins of attraction in terms of response intensity of the first
amplitude while decreasing the length of the beams. The basins are traced in the Nyquist
plane (Re(a1(0)), Im(a1(0))), for the case of three coupled beams, the second set of model
parameters, Re(a2(0)) = −0.1, Re(a3(0)) = −0.05, Im(a2(0)) = Im(a3(0)) = 0 and the
detuning parameter ΩD = 0.18.

Figure 5.7 shows the evolution of the basins of attraction in term of response
intensity for a given frequency in the multistability domain of the first amplitude
while decreasing the length of the beams. The basins are plotted in the Nyquist
plane (Re(a1(0)), Im(a1(0))), for the case of three coupled beams, the second set
of design parameters listed in Table 5.1, Re(a2(0)) = −0.1, Re(a3) = −0.05 and
Im(a2(0)) = Im(a3(0)) = 0. For ΩD = 0.18, |a1|2 can reach up to 5 stable solutions
according to the chosen initial conditions. In Figure 5.7 (a) we can clearly see that
all multimodal solutions are accessible for the chosen initial conditions. Decreasing
the length of the beam from 20 µm to 18.5 µm while conserving the same initial
conditions, affects the electrostatic coupling terms while conserving the mechanical
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nonlinearities. We should note that, the red distribution which represents the upper
TM solution for the first amplitude disappears for a slight decrease in the beam
length, and has been replaced by the distribution of one of the DM solution (green
part). Circumstantially, we prove that we should consider the nonlinear electrostatic
coupling terms even if they are small, as they play an important role in having
complex phenomena.

5.3 2D granular particles lattice

5.3.1 Introduction

The study of granular particles as an application of a 2D periodic nonlinear lattice
was motivated by several reasons. For instance, we can mention the simplicity of
their constructions (multidimensional systems) and their applicability to engineering
(passive vibration damping for example), the ability to tune their dynamic response
from linear to weakly and strongly nonlinear by changing the amount of static com-
pressive load. In addition, their great controllability of the assembly, where the
periodicity leads to dispersion which ends to the creation of solitary waves by the
presence of nonlinearity of defects. In Chapter 1 we reported the state of the art
of the studies related to multidimensional granular crystal lattices. In this section,
we are interested in a novel 2D periodic structure of compressed granular particle
and subjected to horizontal base excitation. Before doing so, we will introduce the
contact between spherical particles, then present the origin of the nonlinearities in
1D array to end up studying the collective nonlinear dynamics in the 2D lattice.

5.3.2 Contact of spheres

Figure 5.8: Contact between two spheres

Considering two different spheres 1 and 2 of radii R1 and R2 compressed with
static forces F, as showed in Fig.5.8. E1 and E2 represent the young’s modulus for
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spheres 1 and 2 and v1 and v2 are the Poisson’s ratios, respectively. The maximum
contact pressure at the center of the circular contact area is given by [Hertz 99]

Pmax =
3F

2πa2
. (5.6)

a is the radius of the contact area given by:

a =
3FR

4E

1/3

(5.7)

where E represents the contact modulus defined by

1

E
=

1− v2
1

E1

+
1− v2

2

E2

(5.8)

And R the effective radius given by

1

R
=

1

R1

+
1

R2

. (5.9)

The current approach of both spheres centers δ0 (The overlap deformation) is
related to the maximum contact pressure by

δ0 =
a2

R
=

3

√
9F 2

16RE2
. (5.10)

5.3.3 1D periodic array of granular particles

Figure 5.9: 1D array of N spheres of radius R in contact, compressed by a static force F0

at both ends and securing the initial displacement δ0 between neighboring centers.

Considering the case of a statically compressed 1D monoatomic granular crystal
composed of N identical elastic spherical particles as shown in Figure 5.9. Each
sphere has R as radius with E and ν the Young’s modulus and the Poisson’s ratio
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respectively. The contact elastic force Fi,i+1 between two adjacent particles is given
by

Fi,i+1 = Ai,i+1[∆i,i+1]
ni,i+1

+ (5.11)

where ni,i+1 = 3
2
and Ai,i+1 is defined as

Ai,i+1 = A =
E
√

2R

3(1− ν2)
. (5.12)

[∆i,i+1]
3
2
+ represents the relative displacement of their centers. [∆i,i+1]+ which takes

the value of ∆i,i+1 if ∆i,i+1 > 0 and 0 when ∆i,i+1 ≤ 0; which signifies that there is no
force between separated particles. Assuming that the chain is subjected to constant
static force F0 applied to both ends and neglecting any dissipation, the dynamics
displacement ui of the ith particle can be described by the following differential
system

müi = A(δ0 + ui−1 − ui)3/2 − A(δ0 + ui − ui+1)3/2 (5.13)

where m is the mass of each sphere and δ0 = (F0

A
)2/3 representing the initial

displacement between neighboring particles.

5.3.4 2D periodic structure

5.3.4.1 Equations of motion

Consider a 2D periodic structure of identical unit cells subjected to harmonic hori-
zontal base excitation as given in Figures 5.10(a). Each unit cell consists of spherical
particle of mass M = 4

3
πR3ρs, with R the radius and ρs its volumetric mass density.

Each particle is coupled with two uniform beams of mass m = bhLρb with width
b, height h, Length L and moment of Inertia I = bh3

12
. All ends are subjected to

compressive forces F0x and F0y in both directions x and y respectively 5.10(c). The
periodic system is subjected to harmonic horizontal base excitation ÿ(τ). The main
advantage of adding two uniform beams is the ability to control the linear stiffness
specific for each mass in a manner to exceed the linear coupling between spheres and
ensure the closed linear modes. In addition, the beams helps maintaining the contact
between spheres even before applying the pre-compressive loads in both directions.
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(a) (b)

(c)

Figure 5.10: (a) 2D periodic nonlinear lattice of spheres in contact under compression and
subjected to horizontal base excitation. (b) A view of the system from the top. (c) Unit
cell i, j.

For boundary conditions, we suppose that we have fixed identical systems in both
directions, where we define 2(N + M + 2) extra variables and set them to zero as:
u0,j = uN+1,j = ui,0 = u0,M+1 = 0. The displacement of the i, jth sphere from its
equilibrium position in the initially compressed chain is defined by ui,j as

meqüi,j + kequi,j + cx(u̇i,j − u̇i−1,j) + cx(u̇i,j − u̇i+1,j)

+cy(u̇i,j − u̇i,j−1) + cy(u̇i,j − u̇i,j+1)

−A([δ0x + ui−1,j − ui,j]3/2 − [δ0x + ui,j − ui+1,j]
3/2)

−A([δ0y + ui,j−1 − ui,j]3/2 − [δ0y + ui,j − ui,j+1]3/2) = −meqÿ (5.14)
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where meq = M + 13
35
m is the equivalent mass of the two-beams-sphere system,

keq = 192EbI
L3 is the equivalent beam linear stiffness with Eb the Young modulus of

the beam. cx = ξxmeqω0 and cy = ξymeqω0 are the damping coefficients in the x
and y directions respectively with ξx and ξy the damping ratios. ω0 =

√
keq
meq

is the

natural frequency. The radius of the elliptical contact area is A = Es

√
2R

3(1−ν2
s )

where Es
and νs are respectively the Young modulus and the Poisson ration of each spherical
particle. δ0x = F0x

A
and δ0y = F0y

A
are the static overlays and Y0 = meqΩ

2y0 is the
harmonic base excitation amplitude (y(τ) = y0cos(Ωτ)).

5.3.5 Weakly nonlinear regime

To approximate the fully nonlinear equations of motion system (5.14), a power series
expansion of the forces can be taken. For dynamical displacements with amplitude
much less than the static overlay (dynamic displacement have small amplitudes rel-
ative to those due to static load), i.e.

|ui−1,j − ui,j
δ0x

| << 1 and |ui,j−1 − ui,j
δ0y

| << 1 (5.15)

For dynamical displacements with small amplitudes relative to those due to static
load, an equivalent spring-mass system can be constructed as shown in Figure 5.11,
where a power series expansion was calculated in order to obtain the following i, jth
particle equivalent equation of motion.

meqüi,j + kequi,j − cx(u̇i−1,j − 2u̇i,j − u̇i+1,j)− cy(u̇i,j−1 − 2u̇i,j − u̇i,j+1)

−kx(ui−1,j − 2ui,j + ui+1,j)− ky(ui,j+1 − 2ui,j + ui,j+1)

−k2x[(ui−1,j − ui,j)2 − (ui,j − ui+1,j)
2]− k2y[(ui,j−1 − ui,j)2 − (ui,j − ui,j+1)2]

+k3x[(ui−1,j − ui,j)3 − (ui,j − ui+1,j)
3] + k3y[(ui,j−1 − ui,j)3 − (ui,j − ui,j+1)3]

= −meqÿ

= Y0cos(Ωτ) (5.16)

The parameters appearing in equation (5.16) can be written as follows

• Coupling spring constants: kx = 3
2
Aδ

1/2
0x and ky = 3

2
Aδ

1/2
0y .

• Coupling quadratic parameters: k2x = 3
8
Aδ
−1/2
0x and k2y = 3

8
Aδ
−1/2
0y .

• Coupling cubic parameters: k3x = 1
16
Aδ
−3/2
0x and k3y = 1

16
Aδ
−3/2
0y .
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i, j

kx

ky

i-1, j i+1, j 

i, j-1 

i, j+1 

meq

k3y

k3𝑥

c𝑥

c𝑦

keq

y0 Cos(τ t)

Figure 5.11: An equivalent 2D Mass-Spring system.

Equation (5.16) describes a system of Duffing oscillators linearly coupled by kx
and ky in the x and y directions respectively and subjected to harmonic horizontal
base excitation.

5.3.6 Normalized equations

It proves convenient to define the following scaled dimensionless variables:

τ = ω0t xi,j =
ui,j
uD

(5.17)

where uD = Y0

2(cx+cy)ω0
is the dynamic displacement of the associated linear system

while neglecting the linear coupling with Q = meqω0

2(cx+cy)
. By replacing these variables

into the equations of motion and dividing by Y0ω0meq

2(cx+cy)
, we obtain the following nondi-

mensional system:

ẍi,j + xi + ξx(−ẋi−1,j + 2ẋi,j − ẋi+1,j) + ξy(−ẋi,j−1 + 2ẋi,j − ẋi,j+1)

−Rx(xi−1,j − 2xi,j + xi+1,j)−Ry(xi,j−1 − 2xi,j + xi,j+1)

−β2x[(xi−1,j − xi,j)2 − (xi,j − xi+1,j)
2]− β2y[(xi,j−1 − xi,j)2 − (xi,j − xi,j+1)2]

+β3x[(xi−1,j − xi,j)3 − (xi,j − xi+1,j)
3] + β3y[(xi,j−1 − xi,j)3 − (xi,j − xi,j+1)3]

= −2(ξx + ξy) cos( Ω
ω0
t) (5.18)

The parameters appearing in equation (5.18) are:
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ξx = cx
meqω0

, ξy = cy
meqω0

, Rx = kx
keq+2kx+2ky

, Rx = kx
keq+2kx+2ky

, β2x = k2xY0

2(cx+cy)ω3
0meq

,

β2y = k2yY0

2(cx+cy)ω3
0meq

, β3x =
k3xY 2

0

4(cx+cy)ω4
0meq

and β3y =
k3yY 2

0

4(cx+cy)ω4
0meq

(5.19)

In order to create liner closed modes, allowing to study the effects of modes
localization on the collective dynamics one must take into account the following
assumptions

Kx << keq + 2kx + 2ky and Ky << keq + 2kx + 2ky (5.20)
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Figure 5.12: (a) 1D chain of spherical particles under compression. (b) Response frequen-
cies.

In the following section, we will proceed to solve the normalized equivalent dif-
ferential system (5.18) using a perturbation technique. Before doing so, we should
underline the fact that∣∣∣∣k2x

k3x

∣∣∣∣ = 6 δ0x << 1 and
∣∣∣∣k2y

k3y

∣∣∣∣ = 6 δ0y << 1 (5.21)

Therefore, the quadratic nonlinearities are much smaller than the Duffing cou-
pling parameters, thereby their nonlinear effects are considered negligible. This re-
sult is verified in Figure 5.12 where we calculated the displacement of two spheres in
contact under compression load, with and without the quadratic nonlinearities.

5.3.7 Analytical-numerical approach

We introduce the parameters listed in equation (5.22) and set the external frequency
an amount εω0ΩD away from the resonant frequency, whereby they contribute to the
equations of amplitude.
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ξx = 1
2
εηx ξx = 1

2
εηx Rx = 1

2
εΓx Ry = 1

2
εΓy and 2(ξx + ξy) = ε3/2g(5.22)

Applying the method of multiple scales combined with the standing waves de-
composition as given in the previous in Chapter 3, we obtain the following system
of N ×M coupled nonlinear equations
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In solving equations (5.23), we write the periodic steady state solution as Ar,p =
ar,pe

iΩDT , we obtain the following complex amplitudes ar,p.
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These complex algebraic equations which define the time independent mode am-
plitudes are the main result of the perturbation analysis applied to the normalized
equivalent differential system. In order to study the collective dynamics of the weakly
coupled 2D periodic structure, we start by solving the algebraic system for a set of de-
sign parameters listed in Table 5.2 which satisfies the modes localization assumption
given by equation (5.20).

5.3.8 Results and discussions

Before starting our investigations we should note the following statements. First,
the second member of the equation (5.24) is proportional to the sum of standing
waves, which is null for all i,j modes where at least one position is even. For a single
direction (N = 1, or M = 1), the general periodic structure is reduced to an array
of coupled oscillators.
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Configuration (×10−3) ηx ηy Γx Γy β3x β3y g
1 8 8 16 16 29 29 16
2 − − − − 15 15 −
3 − 4 − 10 5 19 12
4 − 1.8 − 7 2 20 9.8

Table 5.2: Design parameters for the corresponding periodic structure depicted in Figure
5.11

Figure 5.13: Response intensities of two weakly coupled oscillators under harmonic base
external excitation as a function of the detuning parameter ΩD, for the first set of design
parameters listed in table 5.2.

Particularly, for two coupled complex algebraic equations, we used Mathematica
to solve them numerically, where the stability has been performed based on the
eigenvalues of the Jacobian matrix of the differential system (5.23) for each point.
Figure 5.13 displays the intensity responses of two weakly coupled oscillators (N = 1,
M = 2), as a function of the detuning parameter ΩD for the first design parameters
listed in Table 5.2. Black, orange and gray curves indicate the Single Mode (SM),
Double Mode (DM) and the unstable solution branches respectively. SM solutions
are generated by the null trivial solution a1,2 = 0, where a1,1 corresponds to a single
forced Duffing oscillator. Contrary to the previous results, the SM solutions lose their
stability through a pitchfork bifurcation. Similar results were obtained by Touzé et al.
[Touzé 02] were they calculated analytically the instability zone of the SM solution
branch for the case of two coupled Duffing oscillators under harmonic excitations.
The stable solution becomes the coupled one DM, involving the excitation of both
modes collectively. With two weakly coupled oscillators we can obtain up to three
stable solutions for a given frequency. Hence, for 2D periodic structures we expect
additional complex phenomena not obtained for one dimensional array.

Therefore, we study the case of 2 × 2 weakly coupled oscillators, for several
design parameters. Starting by the case where we consider the same linear and
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nonlinear coupling parameters in both directions. Figure 5.14 shows the squares
of the amplitudes of the different modes as a function of the detuning parameters
for the second design parameters in Table 5.2. DMi,j represent the Double Mode
solution branches generated by two different modes and QM is the Quadruple Mode
involved by the excitation of all modes collectively.

Note that the mode localization has interesting effects on the response intensities
with additional multimodal solutions that share the same frequency range with bi-
furcation topology transfer. In addition, as we choose identical coupling parameters,
a1,2 and a2,1 become symmetric and interact in the same manner with a1,1. Moreover,
the Triple Mode (TM) solution branches are missing in this case, as the non-excited
modes a1,2, a2,1 or a2,2 are pairwise symmetric.
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Figure 5.14: Response intensities of 2 × 2 weakly coupled oscillators under harmonic base
external excitation as a function of the detuning parameter ΩD, for the second set of design
parameters listed in table 5.2.

By choosing different linear and nonlinear coupling parameters, we calculate the
response intensities for the third design parameters and we plot them in Figure 5.15.
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Remarkably, the DM solution branches are being separated, with additional narrow
multimodal solution branches. In addition by decreasing the coupling parameters in
the y direction, the DM1,1;1,2 and QM move away from the resonant branch in |A1,1|2
and their frequency range decreases.
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Figure 5.15: Response intensities of 2 × 2 weakly coupled oscillators under harmonic base
external excitation as a function of the detuning parameter ΩD, for the third set of design
parameters listed in table 5.2.

For the fourth set of design parameters, the coupling in the y direction is highly
decreased. The responses intensities plotted in Figure 5.16 show that the small
solution branches join together in one DM1,1;1,2 branch heading in the direction of
the non-resonant branch of |A1,1|2, While the response intensity of |A2,1|2 takes an
elliptical form.
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Figure 5.16: Response intensities of 2 × 2 weakly coupled oscillators under harmonic base
external excitation as a function of the detuning parameter ΩD, for the fourth set of design
parameters listed in table 5.2.

5.4 Summary

In this chapter, we investigated the collective dynamics of nonlinearly coupled oscil-
lators for two applications. The first one is devoted to study electrostatically coupled
nanobeams array under parametric excitation, the collective dynamics has been in-
vestigated while taking into account the fifth order nonlinear terms. The complexity
of the resulting dynamic behavior has been shown, with the appearance of the compe-
tition between hardening and softening behaviors for two coupled nanoresonators. In
addition, for three coupled nanobeams we can obtain up to five stable solutions for a
given frequency, where the basins of attraction have been investigated in the Nyquist
plane proving the robustness of the multimodal solution branches. In practice, when
the device is used in sensing applications, it is possible to exploit the nonlinearities
for the improvement of its sensitivity. The bifurcation topology transfer phenomenon
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5.4 Summary

can also be exploited in order to simplify the control of NEMS-based gas sensors.
On the other hand, the study of the collective dynamics of a periodic 2D granular

particles array has been studied under a harmonic base excitation, where the nonlin-
earity is generated by the Hertzian contact law and the applied compressive loads.
Complex nonlinear dynamical phenomena with high number of stable multimodal
solution branches has been observed, by coupling each particle with two uniform
beams allowing the creation of linear closed modes. Unlike the previous physical
applications, the choice of the physical parameters can affect the stability of the
system, particularly a part of the SM resonant branch.

Several research were devoted to investigate the localization phenomenon whether
in pendulums, MEMS/NEMS or granular particles arrays. However, they were lim-
ited to the study of a single excitation. Hence, the following Chapter 6 is devoted
to study the ILMs in simultaneously driven, damped weakly coupled nonlinear os-
cillators, where solitary solutions can be found based on the nonlinear Shrödinger
equation.
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6
Intrinsic localized modes
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6.1 Introduction

The collective nonlinear dynamics represents an interesting phenomenon that can be
encountered in the arrays of weakly coupled nonlinear oscillators. Previous chapters
were devoted to the study of the collective dynamics for several physical applica-
tions, highlighting the complexity of the responses, the high number of multimodal
solutions and other features. The current chapter will focus on a different type of
nonlinear behavior, namely Intrinsic Localized Modes (ILMs), also known as Discrete
breathers (DBs) or solitons.

In the theory of waves in nonlinear periodic structures, spatial nonlinear localiza-
tion is one of the most important properties encountered in nonlinear normal modes,
providing a link between these modes and solitary solutions. It can be generated ei-
ther by an extrinsically imposed disorder as in the case of the Anderson localization or
by the interaction between the inherent nonlinearities of the resonators. The localiza-
tion represents an interesting phenomenon in engineering science, which can occur in
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periodic structures when the wave-function amplitude of the oscillating modal shape
is localized in space and decays exponentially. This phenomenon has inspired innova-
tive studies in physics and motivated researchers over many years to explore in depth
its effects and consequences. Voluminous studies on mode localization in discrete and
continuous periodic nonlinear systems exist in engineering physics using appropriate
analytical and numerical techniques. ILMs have been observed in Josephson junc-
tions coupled arrays [Trías 00, Binder 00], antiferromagnet [Schwarz 99, Sato 04],
optics [Lederer 08, Sukhorukov 03], photonics [Sievers 88, Christodoulides 04], and
atomic lattices [Bickham 93]. ILMs received a lot of attention in micromechanical
resonators arrays [Sato 03c, Sato 03b], Kenig et al. [Kenig 09b] studied the ILMs in
arrays of parametrically driven nonlinear oscillators with application to MEMS and
NEMS systems. For granular crystals chains, it has been shown that the interplay of
periodicity, nonlinearity driving and asymmetry allows the exploration of localization
phenomena including solitons and DBs [Huang 93, Theocharis 10, Chong 13].

The following Nonlinear Schrödinger (NLS) equation is used to describe the non-
linear envelop waves as a fundamental model in the previous and other physical
applications

iψt + ψxx ± β|ψ|2ψ = 0 (6.1)

In 1972, Zakharov et al. [Zakharov 72] solved the NLS equation, demonstrating
the inerrability and existence of soliton solutions using the Inverse-Scattering Method
(ISM). Using the same method, Ablowitz et al. [Ablowitz 73] solved Sine-Gordan
(SG) equation given by

θtt − θxx = sin(θ), (6.2)

and showed that it admits two soliton solutions called kink and anti-kink.
The stability and the bifurcation of the solitons solutions of the damped-driven SG

equation in the NLS approximation have been studied analytically by [Terrones 90].
The Parametrically driven, Damped NLS (PDNLS) equation can be written as fol-
lows

iψt + ψxx + 2ψ|ψ|2 = he2itψ∗ − iγψ (6.3)

where ∗ denotes the complex conjugate. Exact soliton solutions ψ− and ψ+ of the
PDNLS equation were found analytically by Barashenkov et al. [Barashenkov 91].
In addition, they demonstrated that in the dissipative case, ψ− solution is unstable
for all damping and driving parameters, while ψ+ is stable in certain regions. Later,
Bondila et al. [Bondila 95] obtained the attractor chart of equation (6.3) on the
(γ, h)-plane, identifying stability, period-doubling and quasiperiodic transitions to
chaos regions. An approximate analytical expression for the localized solution of the
PDNLS equation with positive nonlinear damping, was constructed by Kenig et al.
[Kenig 09b].

The externally driven damped NLS equation which can be written as

154 Ph.D. Thesis - D. Bitar



6.2 Derivation of the amplitude equation

iψt + ψxx + 2ψ|ψ|2 = −iγψ − geiΩt (6.4)

may describe small amplitude breathers of the long Josephson junction, an ac-
driven damped SG system or a ferromagnet axis. For zero damping (γ = 0),
Barashenkov et al. [Barashenkov 89] derived the exact soliton solutions. For γ > 0,
they demonstrated that contrarily to the PDNLS solutions, ψ+ is unstable for all γ
and h, while ψ− is stable for certain regions. Later, they constructed the existence
and stability chart for its soliton solution on the plane of the forcing amplitude g
and the dissipation coefficient γ [Barashenkov 96].

As shown in Chapter 3, section 3.4.1, for two coupled oscillators under primary
resonance, we obtained two small stable regions in the additional multimodal so-
lutions, which are hard to find experimentally. However, when adding parametric
excitation the system dynamics gains in richness, with additional stable branches over
a large frequency range. This remarkable feature motivated the study of ILMs in
periodic lattices of nonlinear resonators under simultaneous excitations. The method
of multiple scales is employed in order to transform the dimensionless coupled non-
linear equations of motion of the periodic array into a damped driven NLS equation.
Exact stationary soliton solutions of the undamped driven NLS equation are de-
rived, while the damped one is numerically solved using the continuous analog of
the Newton method. Several numerical simulations have been performed in order to
highlight the additional value of employing both external and parametric excitations
simultaneously on the stability of localized solutions.

6.2 Derivation of the amplitude equation

The normalized equation of motion of an array of coupled D-VDP oscillators up
to the third order, under simultaneous external and parametric excitation can be
written in the following form

ün − 1
2
ε

1
2D(un+1 − 2un + un−1) + εγ̂u̇n + un + εĥ cos

[
2(1 + εΩ)t

]
un

+λ̂
[
(un − un+1)2 d

dt
(un − un+1) + (un − un−1)2 d

dt
(un − un−1)

]
+ η̂u2

nu̇n

+δ̂
[
(un − un+1)3 + (un − un−1)3

]
+ ξ̂u3

n = ε
3
2 ĝ cos

[
(1 + εΩ)t

]
(6.5)

The same equation was obtained in Chapter 3, equation (3.9) with different scal-
ing and different coefficients nomenclature. These changes can be resumed as follows

δ −→ η̂ γ −→ D η −→ γ̂ (6.6)

ψ −→ δ̂ ΩD −→ Ω ξ −→ ξ̂ (6.7)

As the resonators are collectively oscillating at almost the same frequency, we
write the displacement of the nth resonator as [Kenig 09b]:
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un = ε
1
2 [ψ̂(X̂n, T̂ )ei(t−πn) + c.c.] + ε

3
2u(1)

n (t, T̂ , X̂n) + · · · n = 1, ..., N, (6.8)

with c.c. representing the complex conjugate, T = εt and X̂n = ε
1
4n are slow

temporal and spatial variables. Writing the continuous variable X̂ in place of X̂n

and replacing the displacement solution (6.8) into the normalized equation of motion
term by term up to order ε

3
2 we obtain:

u̇n = ε
1
2

[(
ε
∂ψ̂

∂T̂
+ iψ̂

)
ei(t−πn) + c.c.

]
+ ε

3
2 u̇(1)

n , (6.9)

ün = ε
1
2

[(
ε2 ∂

2ψ̂

∂T̂ 2
+ 2iε

∂ψ̂

∂T̂
− ψ̂

)
ei(t−πn) + c.c.

]
+ ε

3
2 ü(1)

n , (6.10)

Expanding un±1 into its Taylor series at X̂ up to the second order it can be
written as

un±1 = −ε
1
2

[(
ψ̂ ± ε

1
4
∂ψ̂

∂X̂
+
ε

1
4

2

∂2ψ̂

∂X̂2

)
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]
+ ε

3
2u

(1)
n±1, (6.11)

un+1 − un + un−1 = −ε
3
2
∂2ψ̂

∂X̂2
ei(t−πn) + c.c., (6.12)

ε cos
[
2(1 + εΩ)t

]
un =

1

2
ε

3
2 ψ̂∗eiΩT̂ ei(t+πn) + O(e3it) + c.c, (6.13)

cos
[
(1 + εΩ)t
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= −1

2
ε

1
2 ei

Ω
2
T̂ ei(t−πn) + c.c, (6.14)

u̇nu
2
n = ε

3
2 i|ψ̂|2ψ̂ei(t−πn) + O(e3it, e3iπn) + c.c, (6.15)

u3
n = 3ε

3
2 |ψ̂|2ψ̂ei(t−πn) + O(e3it, e3iπn) + c.c, (6.16)

[(un − un+1)3 + (un − un−1)3] = ε
3
2 48|ψ̂|2ψ̂ei(t−πn) + O(e3it, e3iπn) + c.c, (6.17)
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[(un − un+1)2(u̇n − u̇n+1) + (un − un−1)2(u̇n − u̇n−1)] =ε
3
2 16i|ψ̂|2ψ̂ei(t−πn)wwhitewhitewhitehite

+ O(e3it, e3iπn) + c.c.
(6.18)

where O(e3it, e3iπn) are rapidly oscillating terms with 3 and 3π are the temporal
frequency and the spatial wave number respectively. Although, the EoMs (6.5) are
trivially satisfied at the order ε1/2, one must satisfy a solvability condition at the
order ε3/2 by vanishing all terms proportional to ei(t−πn) so that u(1)

n remains finite.
Then, we obtain the following partial differential equation (PDE) defining the slow
dynamics of the resonators amplitudes

2i
∂ψ̂

∂T̂
+
[(

48δ̂+3ξ̂
)

+i
(
η̂+16λ̂

)]
|ψ̂|2ψ̂+

1

2
D
∂2ψ̂

∂X2
+iγ̂ψ̂− ĥ

2
ψ̂∗e2iΩT̂ = − ĝ

2
eiΩT̂ (6.19)

Using the following scaling parameters

ψ̂ =
√

2Ω

48δ̂+3ξ̂
ψ, X =

√
D
2Ω
X, T̂ = 2

Ω
T, η̂ + 16λ̂ = 48δ̂+3ξ̂

2
η, γ̂ = Ωγ,

ĥ = 2Ωh, ĝ = 2Ω
√

2Ω

48δ̂+3ξ̂
g, (6.20)

equation (6.19) can be transformed into a normalized form

i
∂ψ

∂T
= − ∂

2ψ

∂X2
− iγψ − (2 + iη)|ψ|2ψ + hψ∗e2iT − geiT (6.21)

In order to obtain an autonomous PDE, we replace ψ by ψeiT

i
∂ψ

∂T
= − ∂

2ψ

∂X2
+ (1− iγ)ψ − (2 + iη)|ψ|2ψ + hψ∗ − g (6.22)

Equation (6.22) is a generic form of the nonlinear time dependent Schrödinger
equation, including both external and parametric driving forces beside the linear and
nonlinear damping parameters.With γ = η = 0 and η = 0 we call equation (6.22) the
Conservative or Dissipative Simultaneously Driven NonLinear Schrödinger equations
(CSDNLS) or (DSDNLS) respectively.

6.3 Soliton solutions

6.3.1 Exact analytical soliton solutions of the PDNLS equa-
tion

Barashenkov et al. [Barashenkov 91] found the exact time-independent soliton solu-
tions of the PDNLS equation (6.22) (for η = 0), which can be written as
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Ψ±(X) = A±e
−iΘ± sech[A±(X −X0)], (6.23)

where X0 is an arbitrary position of the soliton, A± > 0 and

A2
+ = 1 + (h2 − γ2)1/2, 2Θ+ = arcsin(γ/h)

A2
− = 1− (h2 − γ2)1/2, 2Θ− = π − arcsin(γ/h) (6.24)

The pair of solitons solutions ψ+ and ψ− exist when h is greater than γ. Barashenkov
et al. [Barashenkov 91] showed that the soliton solution ψ− is unstable for all values of
h and γ, while ψ+ is stable in certain parameters range. Bondila et al. [Bondila 95]
represented the attractor chart of the PDNLS equation solitons solutions on the
(γ, h)-plane as shown in figure 6.1. Below the lowest straight line h = γ, the trivial
solution ψ ≡ 0 is the only attractor, while above the uppermost line h =

√
1 + γ2

it becomes unstable. The Hopf bifurcation is represented by the line 1, where below
and to the left of this curve stable stationary solutions exist.

Figure 6.1: Attractor chart of the PDNLS equation as constructed by Bondila et al.
[Bondila 95] on the (γ, h)-plane. Below the lowest straight line h = γ, the trivial solu-
tion ψ ≡ 0 is the only attractor, while above the uppermost line h =

√
1 + γ2 it becomes

unstable. The Hopf bifurcation is represented by the line 1, where below and to the left of
this curve stable stationary solutions exist.

6.3.2 Approximate analytical soliton solutions for η > 0

For positive nonlinear damping (η > 0), Kenig et al. [Kenig 09b] constructed an
approximate analytical expression for the localized solution of the full damped, para-
metrically driven NLS equation (6.22) (with g = 0). It is based on writing a function
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of the same form as Ψ± given in equation (6.23), with time dependent A and Θ,
which is given by

ψapp(X) = a+e
−iθ+ sech[a+(X −X0)] (6.25)

with

a2
± =

1− γη̃ ±
√
h2(1 + η̃2)− (γ + η̃)2

1 + η̃2
, (6.26)

which has to be positive and

h cos(2θ±) = a2
± − 1, (6.27)

h sin(2θ±) = γ + η̃a2
±. (6.28)

Where (a+, θ+) and (a−, θ−) are respectively a stable and a saddle nodes. The
saddle-node bifurcation point of these solutions occurs at

hsn =
γ + η̃√
1 + η̃2

, where η̃ =
2

3
η (6.29)

for γη̃ < 1. An eventual approximation of the nth resonator displacement un can
be obtained after replacing equation (6.25) into equation (6.8)

un(t) ' 2

√
2εΩ

3
a+ sech

[
a+

(√
2εΩ

D
n−X0

)]
× cos

(
(1 + εΩ)t− πn− θ+

)
(6.30)

In figure 6.2 (a), we plot the scaled analytical approximation (6.25), in the pres-
ence of nonlinear damping, while figure 6.2 (b) shows the approximation of the
displacements according to the number of dofs n.
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Figure 6.2: (a) The approximate soliton solution (6.25) of equation (6.22) (with g = 0). (b)
Scaled analytical approximation (6.30) for the resonators displacement. The parameters
are γ = 0.75, η = 0.25, h = 0.9, D = 0.25, Ω = 46.174, ε = 0.005, X0 = 34.5 and N = 201.
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6.3.3 Exact analytical solitary solutions of the CSDNLS equa-
tion

As a first step, searching for the ground state which has the form of a localized
(in space) exact solutions. Given a real solution ψ(x, t) for the following CSDNLS
equation (γ = η = 0):

iψT + ψXX −Hψ + 2ψ|ψ|2 = −g, (6.31)

with H = (1 +h). Each ψ̃(X,T ) = kψ(kX, k2T ) is also a solution, corresponding
to g̃ = k3g and H̃ = k2H. Consequently, any solution to equation (6.31) is character-
ized, up to a simple scaling, by a single combination f = gH−3/2 [Barashenkov 89].

They found two different soliton solutions of equation (6.31) of the form:

ψ±(X) = ψ0(1 +
2 sinh2 α

1± coshα cosh(AX)
), (6.32)

Where f is the monotonously decreasing function of h and g defined as [Jallouli 17]:

f =
g

(1 + h)3/2
=

√
2 cosh2 α

(1 + 2 cosh2 α)3/2
. (6.33)

f being a monotonically decreasing function , α is uniquely determined by h and
g. ψ0 is the asymptotic value of both ψ− and ψ+ solitons:

ψ±(X)→ ψ0 as |X| → ∞ (6.34)

Finally, A has the meaning of "half the area" of both solitons ψ− and ψ+ and is
equal to

A = 2ψ0 sinhα =
1

2

∫
(ψ±(X)2 − ψ2

0)dX, (6.35)

ψ0 is real and positive:

ψ0 =
1√

2(1 + 2 cosh2 α)
=

(
g

4(1 + h)3/2 cosh2 α

)1/3

(6.36)

We should note that these solutions exist for α ∈ [0,∞] or for f =
g

(1 + h)3/2
∈

[0,
√

2/27 ' 0.2722] in terms of excitations amplitudes. Figure 6.3 shows the domain
of existence of α according to the different values of the driving forces h and g.
Figure 6.4 shows the evolution of the solitary solutions ψ± of the CSDNLS equation
according to α.
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Figure 6.3: Domain of existence of α according to the driving forces h and g.

Figure 6.4: Undamped solitary solution ψ+ and ψ− of the SDNLS equation for several
values of α.
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6.3.4 Numerical solutions of the DSDNLS equation

For positive linear damping coefficient (γ > 0, η = 0), equation (6.22) is solved
numerically using the continuous analog of the Newton method (also known by the
variable iteration step Newton method) [Gavurin 58, Galántai 00, Allgower 12]. To
solve the PDE (6.22) numerically, we write it on its finite difference form on the
discretized domain [−L/2, L/2] as

E(ψ) = 0, (6.37)

ψ = (ψ1, ψ2, . . . , ψN+1) discretized solution, with ψn = ψ(Xn), Xn = −L
2

+n∆X,
∆X = L

N+1
and E = (E1, E2, . . . , EN+1) is a nonlinear operator defined as follows

En =
ψn+1 − 2ψn + ψn−1

(∆X)2
−ψn+2|ψn|2ψn+iγψn−hψ∗n+g; for n = 1 . . . N (6.38)

and

E0 =
−3ψ0 + 4ψ1 − ψ2

2∆X
EN+1 =

ψN−1 − 4ψN + 3ψN+1

2∆X
. (6.39)

This can be obtained using the finite difference approximations for both differen-
tial operators ψXX and ψX and satisfying the boundary conditions ψX(±L/2) = 0.
The basic concept of the continuous analog Newton’s method is to introduce an addi-
tional growing variable τ , in such a manner that ψ satisfies the following differential
equation

d

dτ
E(ψ(τ)) +E(ψ(τ)) = 0, (6.40)

with the initial conditions

ψ(0) = ψ(0). (6.41)

ψ(0) is considered to be the exact solitary solutions of the SDNLS equation with
no damping. As E(ψ(τ)) −→

τ→+∞
0, ψ(∞) satisfies equation (6.37).

ψ(k+1) = ψ(k) −∆τ (k+1)

(
∂E

∂ψ

)−1

ψ=ψk

E(ψk) where k = 1, 2, . . . (6.42)

∆τ (k+1) = τ (k+1) − τ (k) is selected in order to minimize the following residual

δ(k) = max
1≤n≤N

{
|ReEn(ψ(k))|, |ImEn(ψ(k))|

}
(6.43)

In order to implement the variable iteration step Newton method, we start by
choosing a pair (g, h) of parameters in the domain of existence [0, 0.2722]. Equation
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(6.33) is used to determine the unique α for the chosen (g, h), and we start our
continuation using the exact solitary solutions (6.32) as an approximation for γ =
0.01. Then, we calculate the numerical solution (6.42) for the same g, h and γ = 0.01
and keep advancing along the path until convergence is achieved and residual (6.43)
is minimized. After, we chose the obtained numerical solution for γ = 0.1 as an
approximation for the (g, h) pair with γ = 0.02, and the process repeated until the
Newtonian iterations creased to converges for the desired damping parameter γ.

These calculations were performed on the interval (−L/2, L/2), where the solitons
solutions decay slowly in space (ψ±(±L/2) = 0). Finally, for a given ∆x, the obtained
ψ is used as a boundary condition for T = 0 to solve the DSDNLS equation (6.22)
numerically, using a Runge-Kutta algorithm while setting ψT = 0.

Figure 6.5: Existence and stability diagram for the soliton solutions of the externally driven
damped NLS equation as constructed by Barashenkov et al. [Barashenkov 89] on the plane
of both forcing amplitude g and dissipation coefficient γ. They showed that contrarily to
the PDNLS soliton solutions, ψ+ is unstable for all forcing amplitude g and dissipation
coefficient γ. In figure 6.5, blue color indicates the stability region of ψ−, while in the pink
region ψ− exist and unstable.

Barashenkov et al. [Barashenkov 96] constructed the existence and stability chart
for the soliton solutions of the externally driven, damped NLS equation given in figure
6.5. They showed that contrarily to the PDNLS soliton solutions, ψ+ is unstable for
all forcing amplitude g and dissipation coefficient γ. In figure 6.5, blue color indicates
the stability region of ψ−, while in the pink region ψ− exists and it is unstable.
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6.4 Numerical simulations and interpretations

In this section we are interested in solving numerically the DSDNLS equation (6.22)
with zero nonlinear damping (η = 0) for several sets of parameters. According to the
existence and stability diagram (6.5) of the externally driven, damped NLS equation
constructed by Barashenkov et al [Barashenkov 96], the lower straight line g = 2

π

define an approximation for the lower boundary of the domain of existence of ψ±
soliton solutions. Choosing three different pairs of parameters in this region (+ 1),
(• 2) and (? 3). For the first two pairs of parameters, ψ± do not exist for h = 0.
However, the effect of adding a certain amount of parametrical driving force, might
change the expectations.

Therefore, starting by adding an amount of 0.165 to h for the first point (+ 1)
and calculating the numerical solutions of the DSDNLS equation. The top figures
in 6.6 show the real and imaginary parts of ψ± at T = 0, the middle ones show the
Temporal response of their imaginary parts over time until convergence, while (e)
and (f) show the evolution of their absolute values square |ψ±|2 over time and space.
Remarkably, both solitons solutions do not only exist but there is one that is stable
which is ψ+, while the second one ψ− decays to zero.

In addition for the second pair of parameters (• 2) and for h = 0.05, figure
6.7 shows that similarly both localized solutions exist except that their stability is
reversed, whereby ψ+ decays to zero while ψ− is stable. For the third point (? 3), we
kept the same damping parameter γ = 0.3 while increasing the external parameter
g. For these parameters ψ+ does not exist while ψ− exists and decay to zero over
time as shown in figure 6.8. However, replacing h by the same amount of g = 0.15,
numerical simulations given in figure 6.9 show that both localized solutions exists
and converge for the same stable solution.

Now choosing the pair of parameters of the fourth point (∗ 4) in the blue region of
figure 6.5. For these parameters and for h = 0, ψ+ does not exist while ψ− is stable as
shown in figure 6.10. In contrast, when adding a parametric excitation h = 0.25, both
localized solutions ψ± exist as unexpected interesting results are revealed. Firstly,
figure 6.11 shows that ψ− loses its stability and oscillates periodically in time, as
shown in the temporal solution and phase portrait curves. In addition, Figures
6.12 (a) and (c) show that the initial transient gives rise to the formation of three
solitons ψ+, where the middle one decays to 0 and the two others are not perfectly
periodic. Barashenkov et al. [Barashenkov 96] demonstrated that the stability of
solitary solutions is very sensitive to the interval length. Therefore, increasing L to
100 which corresponds to N = 501 dofs, the localized solutions are given in figure
6.12. It is noteworthy that the number of solitons solutions increases up to 6, in
addition to their stabilization. Note that before reaching the steady state, several
pairs of solitons emerges into one.

The last configuration in figure 6.5 corresponds to the fifth point (◦ 5) in the pink
region where ψ+ does not exist and ψ− is unstable and represents a spatio-temporal
chaos as shown in figure 6.13 (a) for h = 0. Figure 6.13 shows the evolution of the
localized solution |ψ−|2 over time for several values of h. We can see that adding a
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parametric excitation to the system enables to avoid the collapse of spatiotemporal
chaos.

(a) Real and imaginary parts of ψ+ (b) Real and imaginary parts of ψ−

(c) Temporal response of Im(ψ+) (d) Temporal response of Im(ψ−)

(e) Evolution of |ψ+|2 over time (f) Evolution of |ψ−|2 over time

Figure 6.6: (+ 1) γ = 0.1, g = 0.05, h = 0.165 and L = 40.
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(a) Phase portrait of ψ+ (b) Phase portrait of ψ−

(c) ψ+(X) at T = 200 (d) ψ−(X) at T = 200

(e) Evolution of this |ψ+|2 over time (f) Evolution of this |ψ−|2 over time

Figure 6.7: (• 2) γ = 0.3, g = 0.05, h = 0.3 and L = 40.
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Figure 6.8: Evolution of |ψ−|2 over time for (? 3) γ = 0.3, g = 0.15, h = 0 and L = 40.

(a) Evolution of |ψ±|2 over time (b) ψ±(X) at T = 200

Figure 6.9: (? 3) γ = 0.3, g = 0.15, h = 0.15 and L = 60.

Figure 6.10: (∗ 4) γ = 0.3, g = 0.232, h = 0 and L = 100.
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(a) Temporal response of Im(ψ+) (b) Phase portrait of ψ−

(c) Evolution of |ψ−|2 over time (d) 3D plot |ψ−|2

Figure 6.11: (∗ 4) γ = 0.3, g = 0.232, h = 0.25 and L = 40.
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(a) 3D plot |ψ+|2 for L = 40 (b) 3D plot |ψ+|2 for L = 100

(c) Evolution of |ψ+|2 over time for L = 40 (d) Evolution of |ψ+|2 over time for L = 100

Figure 6.12: (∗ 4) γ = 0.3, g = 0.232, h = 0.25.
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(a) h = 0 (b) h = 0.075

(c) h = 0.15 (d) h = 0.225

Figure 6.13: Evolution of |ψ+|2 solution over time for the pair of parameters (◦ 5) γ = 0.1,
g = 0.232 and L = 40.

6.5 Conclusion

We investigated the intrinsic localization in a one dimensional array of weakly coupled
D-VDP oscillators under simultaneous parametric and external excitations. The
multiple scales method was employed in order to transform the differential system
into an amplitude shrödinger equation to describe the spatio-temporal dynamics of
the system. The state of art of the soliton solutions for the PDNLS equation with and
without damping were given. For zero dissipation, the analytical soliton solutions of
the simultaneously driven NLS equation were determined. The DSDNLS equation
was numerically solved as a boundary value problem over an interval of length L,
using the continuous analog Newton’s method for zero nonlinear damping.

Several simulations on different pairs of parameters were performed, based on the
existence and stability domain of the externally driven, damped NLS equation. It
has been shown that adding an amount of parametric driving force enables the mod-
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ification of the existence and stability chart of the localized solutions and thus avoid
spatiotemporel chaos and extend the stability domain according to the linear damp-
ing. Therefore, the combination between parametric and the external excitations,
helps tuning the existence and stability of solitons solutions.

In practice, and since the damping parameter is often imposed by the system, this
study can serve as a predicting numerical tool; allowing the control of the existence
and stability of localized solutions by the simultaneous driving forces to localize
energy or avoid energy localization.

Ph.D. Thesis - D. Bitar 171



Intrinsic localized modes

172 Ph.D. Thesis - D. Bitar



Conclusions

Summary

This thesis has detailed the importance of periodic systems and their use in engi-
neering devices and physical sciences. The methods employed and the interesting
phenomena encountered in linear periodic arrays are given. From linear to nonlinear
periodic arrays, complex dynamical phenomena not found in the linear systems may
arise. Several physical applications can be modeled as coupled nonlinear oscillators
arrays, which can be grouped into two different categories; which are the nonlinear
oscillators arrays with weakly linear and nonlinear coupling. Localization is an im-
portant phenomena that can be encountered in weakly coupled quasi periodic linear
arrays or weakly coupled perfectly periodic nonlinear arrays.

Firstly, various analytical and numerical methods suitable to investigate the non-
linear dynamics of periodic arrays are detailed. The time integration method, is
an easy classical numerical solving procedure, generally fails to capture unstable so-
lutions and bifurcation points. In addition, for weakly damped systems, shooting
methods succeed to replace the direct time integration method and reduce the com-
putational time. However, this later is much more complicated to program. The
ANM coupled with HBM is a powerful tool to solve weakly nonlinear systems, by
writing the nonlinear system in its quadratic form. However, this method presents
several difficulties when dealing with an important number of weakly coupled dofs.
Particularly, it may not converges, as we should provide several initial points and
gather the curves specially when having disconnected branches. Finally, the multiple
scales perturbation technique coupled with the standing waves decomposition, gives
an analytical resolution of the weakly coupled nonlinear system. In addition, it is
able to identify the modal interactions and the bifurcation topologies.

The collective dynamics of a general model of weakly coupled nonlinear D-VDP
oscillators up to the fifth order nonlinearity has been proposed and modeled under si-
multaneous primary and parametric resonances. The multiple scales method coupled
with standing waves decomposition has been employed, transforming the nonlinear
differential system into a complex algebraic one, which was solved numerically using
the ANM after applying a quadratic transformation. With nonlinearities up to the
third order, the cases of two and three coupled oscillators were investigated for sets
of parameters. We have shown that adding a parametric excitation to externally
excited system improve its stability with additional stable branches over a large fre-
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quency range. In addition, for few coupled oscillators, we obtain complex response
intensities with a high number of multimodal solutions, which can serve as a hint
for the high number of additional solutions for a high number of dofs. Besides, the
study of basins of attraction showed a large distribution in the Nyquist plane for the
additional multimodal solutions, which validates the robustness of their attractors.

For periodic nonlinear oscillators with weak linear coupling, pendulums arrays
represent a famous example in mechanics, which can be described by the SG equa-
tion. The collective dynamics of weakly coupled pendulums arrays, has been stud-
ied under external excitation. As the coupling is sufficiently weak, the multimodal
solutions are distributed on the frequency responses between the resonant and non-
resonant branches. In addition and since all even odd modes are excited after modes
projection, a ROM approach has been applied in order to solve the EOMs for a
high number of rotational dofs. It is based on projecting on odd modes, while main-
taining the dominant dynamics of the responses without significant loss of accuracy
compared to the results of the full model. In addition, when the number of coupled
pendulums increases, the distribution of resonant branches increases.

From 1D to 2D periodic arrays of weakly coupled pendulums, the same solving
procedure was employed to study the differential system under a harmonic base
excitation. We have shown that the complexity of the responses depends on the
linear coupling parameters in both directions. Indeed, when these parameters are
different, additional features distinct from those presented in a single array may arise.
Particularly, we find multimodal solutions distinguishable from the whole response
with larger bandwidth and higher vibration amplitude.

We presented two applications that can be modeled as a periodic nonlinear ar-
ray with weak nonlinear coupling. An array of electrostatically coupled nanobeams,
under parametric excitation where we considered the fifth order electrostatic cou-
pling parameters. The mixed hardening-softening behavior was highlighted, for few
coupled nanobeams, regarding to the considered physical parameters.

A 2D periodic granular particles under pre-compression loads in both directions
was modeled as a nonlinear oscillators arrays with weak nonlinear coupling governed
by the Hertzian contact between particles. In addition, we have ensured the linear
closed modes assumption by proposing additional uniform beams coupled to each
particle.

Finally, we were interested in determining the ILMs in weakly coupled oscillators
arrays under simultaneous parametric and external excitations. The multiple scales
method was employed in order to transform the differential nonlinear system into an
amplitude NLS equation. The analytical solitary solutions have been found for the
undamped system, while the dissipative one was solved numerically using the analog
Newton’s method with the solitary solution as an initial guess. We have investi-
gated the influence of simultaneous excitations on the stability of localized solutions.
Remarkably, the addition of parametric excitation not only gives additional stable
multimodal branches as seen in Chapter 3, but it helps also expanding the existence
and stability domain of soliton solutions according to the linear damping.
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While this thesis developed a general model for studying the collective dynamics
of weakly coupled nonlinear oscillators under simultaneous primary and parametric
excitations to functionalize the localization phenomena, several research lines arising
from this work should be pursued.

Deterministic model For large arrays, one must find a reduction method dif-
ferent from the one based on the projection on odd modes in order to reduce the
computational time. In regards to the basins of attraction, the dynamical integrity
must be analyzed by choosing the right definition of safe basin [Rega 08], choosing
appropriate integrity measures to qualify its magnitude and investigating the basins
evolution for varying system parameters. Nevertheless, when dealing with high num-
ber of dofs, one must rely on different criteria allowing to prove the robustness of the
additional multimodal solutions. Therefore, probabilistic data analysis tools can be
used to explore and visualize high-dimensional data and allow a qualification obser-
vation and relationship discovery such as the principal component analysis (PCA)
[Jolliffe 02], k-means clustering [Likas 03], Self-organizing maps (SOM) [Kaski 97] or
else.

Otherwise, in order to analyze the nonlinear dynamics of an array of electrostat-
ically coupled nanobeams under simultaneous primary and parametric excitations,
the proposed model should be extended to investigate the collective dynamics in a
diatomic array of weakly coupled nonlinear oscillators.

Uncertainty propagation and robustness analysis Concerning uncertainties,
a collaborative work in progress with a Ph.D. student colleague explores the benefits
of uncertainties on the collective dynamics of weakly coupled nonlinear oscillators
under external excitation [Chikhaoui 16]. Nonetheless, one should add the paramet-
ric excitation to the system and examine the effects of the combination between the
simultaneous excitations and uncertainties.

Regarding the 2D periodic granular crystal lattice and since we added in pur-
pose the coupled uniform beams to produce linear closed modes, one must establish
rigorous parametric studies for the design and implementation of an experimental
prototype. Thus, in order to investigate the behavior of the complex system, a ro-
bust parameter optimization must be developed including sensitivity analysis and
uncertainties qualifications.

ILMs Despite the results obtained regarding ILMs, several challenges remain, such
as constructing a stability chart for the DSDNLS equation, finding the transition
between the continuous solutions and the physical displacements, identifying the
localized solutions in simultaneously driven, damped, quasi-periodic nonlinear arrays
and finally determining the ILMs in a 2D periodic nonlinear arrays. In practice, we
aim to implement an experimental setup such as nonlinear oscillator arrays under
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magnetic levitation [Abed 16]. Under appropriate conditions, such process can use
solitons to canalize the energy injected into the system following a path defined by
an ILM. Each mode determines the type of transduction and its location to convert
this canalized vibration energy into electrical one.
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A.1 The ANM Functions in ManLab

File: L0.m

function [L0] = L0(obj,H,Neq)
H = obj.H;
Neq = obj.Neq;

L0=zeros(Neq*(2*H+1),1);

L0(9) = f;
L0(10) = f;
end

File: L.m

function [pL] = pL(U,mu,ome0)
H = obj.H;

pL=zeros(6,1);

pL(1) = U(3);
pL(2) = U(4);
pL(3) = -(om0^2+2*d)*U(1)-mu*U(3)+d*U(2);
pL(4) = -(om0^2+2*d)*U(2)-mu*U(4)+d*U(1);
pL(5) = U(5);
pL(6) = U(6);
end
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File: Q.m

function [pQ] = pQ(U,V,Gamma)
H = obj.H;

pQ=zeros(6,1);

pQ(3) = -alpha*U(1)*V(5);
pQ(4) = -alpha*U(2)*V(6);
pQ(5) = U(1)*V(1);
pQ(6) = U(2)*V(2);
end

function [pM] = pM(U)
pM=zeros(6,1);

for i = 1:4
pM(i) = U(i);

end
end

File: JT.m

function [DT] = JT(obj,Ustab)

DT =

[0, 0, 1, 0;
0, 0, 0, 1;

−om0ˆ2− 2 ∗ d− 3 ∗ alpha ∗ Ustab(1)ˆ2, d, −mu, 0;
d, −om0ˆ2− 2 ∗ d− 3 ∗ alpha ∗ Ustab(2)ˆ2, 0, −mu]

end

File: J0.m

function [D0] = J0(obj,Ustab)

D0 =
[0, 0, 1, 0;
0, 0, 0, 1;

−om0ˆ2− 2 ∗ d, d, −mu, 0;
d, −om0ˆ2− 2 ∗ d, 0, −mu]
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end

File: JL.m

function [DL] = JL(obj,Ustab)
DL = zeros(4);
end

File: JQ.m

function [DQ] = JQ(obj,Ustab,Vstab)

DQ =

[0, 0, 0, 0;
0, 0, 0, 0;

−3 ∗ alpha ∗ Ustab(1) ∗ V stab(1), 0, 0, 0;
d, −3 ∗ alpha ∗ Ustab(2) ∗ V stab(2), 0, 0]

end

A.2 Explicit equations of the solution expansion into
the EoM

Substituting the proposed solution (3.11) into the normalized, scaled EOM (3.9)
term by term. Up to the order ε

5
2

u̇n(t) = ε1/2

N∑
m=1

sin(nqm)([ε2A′m + iωmAm]eitc.c.) + ε5/2u̇(1)
n (t), (A.1)

ün(t) = ε1/2

N∑
m=1

sin(nqm)([−ω2
mAm + 2iωmε

2A′m]eit + c.c.) + ε5/2ü(1)
n (t), (A.2)

ε2(un+1 − 2un + un−1) = −4ε5/2

N∑
m=1

sin2(
qm
2

) sin(nqm)(Ame
iωmt + c.c.), (A.3)
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[(xn − yn−1)5 + (yn − yn+1)5]

εu2
nu̇n = 4ε5/2

∑
j,k,l,o,p

sin
qj
2

sin
qk
2

sin
ql
2

sin
qo
2

sin
qp
2

(A.4)

εu2
nu̇n

{
+ sin

[
−qj + qk + ql + qo + qp

2

]
sin[n(−qj + qk + ql + qo + qp)]

εu2
nu̇n

{
+ sin

[
qj − qk + ql + qo + qp

2

]
sin[n(qj − qk + ql + qo + qp)]

εu2
nu̇n

{
+ sin

[
qj + qk − ql + qo + qp

2

]
sin[n(qj + qk − ql + qo + qp)]

εu2
nu̇n

{
+ sin

[
qj + qk + ql − qo + qp

2

]
sin[n(qj + qk + ql − qo + qp)]

εu2
nu̇n

{
+ sin

[
qj + qk + ql + qo − qp

2

]
sin[n(qj + qk + ql + qo − qp)]

εu2
nu̇n

{
+ sin

[
−qj − qk + ql + qo + qp

2

]
sin[n(−qj − qk + ql + qo + qp)]

εu2
nu̇n

{
+ sin

[
−qj + qk − ql + qo + qp

2

]
sin[n(−qj + qk − ql + qo + qp)]

εu2
nu̇n

{
+ sin

[
−qj + qk + ql − qo + qp

2

]
sin[n(−qj + qk + ql − qo + qp)]

εu2
nu̇n

{
+ sin

[
−qj + qk + ql + qo − qp

2

]
sin[n(−qj + qk + ql + qo − qp)]

εu2
nu̇n

{
+ sin

[
qj − qk − ql + qo + qp

2

]
sin[n(qj − qk − ql + qo + qp)]

εu2
nu̇n

{
+ sin

[
qj − qk + ql − qo + qp

2

]
sin[n(qj − qk + ql − qo + qp)]

εu2
nu̇n

{
+ sin

[
qj − qk + ql + qo − qp

2

]
sin[n(qj − qk + ql + qo − qp)]

εu2
nu̇n

{
+ sin

[
qj + qk − ql − qo + qp

2

]
sin[n(qj + qk − ql − qo + qp)]

εu2
nu̇n

{
+ sin

[
qj + qk − ql + qo − qp

2

]
sin[n(qj + qk − ql + qo − qp)]

εu2
nu̇n

{
+ sin

[
qj + qk + ql − qo − qp

2

]
sin[n(qj + qk + ql − qo − qp)]

εu2
nu̇n

{
+ sin

[
qj + qk + ql + qo + qp

2

]
sin[n(qj + qk + ql + qo + qp)]

}
εu2

nu̇n

{
× {AjAkAlAoApe5it + 5AjAkAlAoA

∗
pe

3it + 10AjAkAlA
∗
oA
∗
pe
it + c.c.},

(A.5)
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A.2 Explicit equations of the solution expansion into the EoM

εu3
n =

ε5/2

4

∑
j,k,l

sin(nqj) sin(nqk) sin(nql)(Aje
iωjt + c.c.)(Ake

iωkt + c.c.)(Ale
iωlt + c.c.)

εu2
nu̇n =

ε5/2

4

∑
j,k,l

{
sin[n(−qj + qk + ql)] + sin[n(qj − qk + ql)] + sin[n(qj + qk − ql)]

εu2
nu̇n − sin[n(qj + qk + ql)]

}
{AjAkAlei(ωj+ωk+ωl)t + 3AjAkA

∗
l e
i(ωj+ωk−ωl)t + c.c.},

(A.6)

εu2
nu̇n =

ε5/2

4

∑
j,k,l

{
sin[n(−qj + qk + ql)] + sin[n(qj − qk + ql)] + sin[n(qj + qk − ql)]

εu2
nu̇n − sin[n(qj + qk + ql)]

}
(Aje

iωjt + c.c.)(Ake
iωkt + c.c.)(iωlAle

iωlt + c.c.),

ε[(un − un+1)3 + (un − un−1)3]

εu2
nu̇n = 4ε5/2

∑
j,k,l

sin
qj
2

sin
qk
2

sin
ql
2

{
sin

[
−qj + qk + ql

2

]
sin[n(−qj + qk + ql)]

εu2
nu̇n + sin

[
qj − qk + ql

2

]
sin[n(qj − qk + ql)] + sin

[
qj + qk − ql

2

]
sin[n(qj + qk − ql)]

εu2
nu̇n + sin

[
qj + qk + ql

2

]
sin[n(qj + qk + ql)]

}
εu2

nu̇n{AjAkAlei(ωj+ωk+ωl)t + 3AjAkA
∗
l e
i(ωj+ωk−ωl)t + c.c.},

(A.7)

ε[(un − un+1)2(u̇n − u̇n+1) + (un − un−1)2(u̇n − u̇n−1)]

εu2
nu̇n = 4ε5/2

∑
j,k,l

sin
qj
2

sin
qk
2

sin
ql
2

{
sin

[
−qj + qk + ql

2

]
sin[n(−qj + qk + ql)]

εu2
nu̇n + sin

[
qj − qk + ql

2

]
sin[n(qj − qk + ql)] + sin

[
qj + qk − ql

2

]
sin[n(qj + qk − ql)]

εu2
nu̇n + sin

[
qj + qk + ql

2

]
sin[n(qj + qk + ql)]

}
εu2

nu̇n(Aje
iωjt + c.c.)(Ake

iωkt + c.c.)(iωlAle
iωlt + c.c.),

(A.8)
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A.3 ∆ Kronecker functions

The three ∆ functions in Equation (5.23) are defined in terms of Kronecker deltas
as

∆
(1)
jkl;m = δ−j+k+l,m − δ−j+k+l,m − δ−j+k+l,2(N+1)−m

∆
(1)
jkl;m + δj−k+l,m − δj−k+l,m − δj−k+l,2(N+1)−m

∆
(1)
jkl;m + δj+k−l,m − δj+k−l,m − δj+k−l,2(N+1)−m

∆
(1)
jkl;m − δj+k+l,m + δj+k+l,2(N+1)−m − δj+k+l,2(N+1)+m

(A.9)

∆
(2)
jkl;m = δ−j+k+l,m + δ−j+k+l,−m + δ−j+k+l,2(N+1)−m

∆
(1)
jkl;m + δj−k+l,m + δj−k+l,−m − δj−k+l,2(N+1)−m

∆
(1)
jkl;m + δj+k−l,m + δj+k−l,−m − δj+k−l,2(N+1)−m

∆
(1)
jkl;m + δj+k+l,m − δj+k+l,2(N+1)−m − δj+k+l,2(N+1)+m

(A.10)

∆
(3)
jklop;m = J−j+k+l+o+p + Jj−k+l+o+p + Jj+k−l+o+p + Jj+k+l−o+p

∆
(1)
jklop;m + Jj+k+l+o−p +K−j−k+l+o+p +K−j+k−l+o+p +K−j+k+l−o+p

∆
(1)
jklop;m +K−j+k+l+o−p +Kj−k−l+o+p +Kj−k+l−o+p +Kj−k+l+o−p

∆
(1)
jklop;m +Kj+k−l−o+p +Kj+k−l+o−p +Kj+k+l−o−p + Lj+k+l+o+p,

(A.11)

where
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A.4 Nonlinear cubic and quintic stiffnesses terms into quadratic

J−j+k+l+o+p = δ−j+k+l+o+p,m + δ−j+k+l+o+p,−m − δ−j+k+l+o+p,2(N+1)−m

K−j+k+l+o+p − δ−j+k+l+o+p,2(N+1)+m + δ−j+k+l+o+p,4(N+1)−m

K−j−k+l+o+p = δ−j−k+l+o+p,m + δ−j−k+l+o+p,−m − δ−j−k+l+o+p,2(N+1)−m

K−j+k+l+o+p − δ−j−k+l+o+p,2(N+1)+m + δ−j−k+l+o+p,m−2(N+1)

Lj+k+l+o+p = δj+k+l+o+p,m − δj+k+l+o+p,2(N+1)−m − δj+k+l+o+p,2(N+1)+m

Kj+k+l+o+p + δj+k+l+o+p,4(N+1)−m + δj+k+l+o+p,4(N+1)+m

(A.12)

A.4 Nonlinear cubic and quintic stiffnesses terms into
quadratic

N∑
j,k,l

αjαkαl∆
(n)
jkl;m =

∑
j

α3
j∆

(n)
jjj;m + 3

∑
j,k

αjα
2
k(1− δj,k)∆

(n)
jkk;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m +

∑
j,k,l

αjαkαl(1− δj,k)(1− δj,l)(1− δk,l)∆(n)
jkl;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m =

∑
j

αjcj∆
(n)
jjj;m + 3

∑
j,k

αjck(1− δj,k)∆(n)
jkk;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m +

∑
j,k,l

αjgk,l(1− δj,k)(1− δj,l)(1− δk,l)∆(n)
jkl;m, (A.13)

N∑
j,k,l

αjαkβl∆
(n)
jkl;m =

∑
j,k

βjα
2
k∆

(n)
jkk;m +

∑
j,k,l

βjαkαl(1− δk,l)∆(n)
jkl;m

N∑
j,k,l

αjαkβl∆
(n)
jkk;m =

∑
j,k

βjck∆
(n)
jkk;m +

∑
j,k,l

βjgk,l(1− δk,l)∆(n)
jkl;m

(A.14)
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N∑
j,k,l,o,p

αjαkαlαoβp ∆
(n)
jklop;m

N∑
j,k,l

αjαkαl =
∑
j,k

βjα
4
k∆

(n)
jkkkk;m + 4

∑
j,k,l

α3
jαkβl(1− δj,k)∆

(n)
jjjkl;m

N∑
j,k,l

αjαkαl + 3
∑
j,k,l

βjα
2
kα

2
l (1− δk,l)∆

(n)
jkkll;m

N∑
j,k,l

αjαkαl + 6
∑
j,k,l,o

βjαkαlα
2
o(1− δk,l)(1− δk,o)(1− δl,o)∆

(n)
jkloo;m

N∑
j,k,l

αjαkαl +
∑
j,k,l,o,l

αjαkαlαoαp(1− δj,k)(1− δj,l)(1− δj,o)(1− δj,p)(1− δk,l)

N∑
j,k,l

αjαkαlαoαp +
∑

j,k,l,o,p

βjαkαl(1− δk,o)(1− δk,p)(1− δl,o)(1− δl,p)(1− δo,p)∆(n)
jklop;m

N∑
j,k,l

αjαkαl =
∑
j,k

βjek∆
(n)
jkkkk;m + 4

∑
j,k,l

βlvj;j,k(1− δj,k)∆(n)
jjjkl;m

N∑
j,k,l

αjαkαl + 3
∑
j,k,l

βjrk,l(1− δk,l)∆(n)
jkkll;m

N∑
j,k,l

αjαkαl + 6
∑
j,k,l,o

βjvo;k,l(1− δk,l)(1− δk,o)(1− δl,o)∆(n)
jkloo;m

N∑
j,k,l

αjαkαl +
∑
j,k,l,o,l

αjzk,l;o,p(1− δj,k)(1− δj,l)(1− δj,o)(1− δj,p)(1− δk,l)

N∑
j,k,l

αjαkαlαo
∑

j,k,l,o,p

βjαk(1− δk,o)(1− δk,p)(1− δl,o)(1− δl,p)(1− δo,p)∆(n)
jklop;m

(A.15)
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A.4 Nonlinear cubic and quintic stiffnesses terms into quadratic

N∑
j,k,l,o,p

αjαkαlαoαp ∆
(3)
jklop;m

N∑
j,k,l

=
∑
j

α5
j∆

(3)
jjjjj;m + 5

∑
j,k

αjα
4
k(1− δj,k)∆

(3)
jkkkk;m

N∑
j,k,l

+ 10
∑
j,k

α3
jα

2
k(1− δj,k)∆

(3)
jjjkk;m

N∑
j,k,l

+ 15
∑
j,k,l

αjα
2
kα

2
l (1− δj,k)(1− δj,l)(1− δk,l)∆

(3)
jkkll;m

N∑
j,k,l

+ 10
∑
j,k,l

α3
jαkαl(1− δj,k)(1− δj,l)(1− δk,l)∆

(3)
jjjkl;m

N∑
j,k,l

+ 10
∑
j,k,l,o

αjαkαlα
2
o(1− δj,k)(1− δj,l)(1− δj,o)(1− δk,l)(1− δk,o)(1− δl,o)∆

(3)
jkloo;m

N∑
j,k,l

+
∑

j,k,l,o,p

αjαkαlαoαp(1− δj,k)(1− δj,l)(1− δj,o)(1− δj,p)(1− δk,l)

N∑
j,k,l

αjαkαlαoαp +
∑
j,k,l,o,l

(1− δk,o)(1− δk,p)(1− δl,o)(1− δl,p)(1− δo,p)∆(3)
jklop;m

N∑
j,k,l

=
∑
j

αjej∆
(3)
jjjjj;m + 5

∑
j,k

αjek(1− δj,k)∆(3)
jkkkk;m

N∑
j,k,l

+ 10
∑
j,k

αjrj,k(1− δj,k)∆(3)
jjjkk;m

N∑
j,k,l

+ 15
∑
j,k,l

αjrk,l(1− δj,k)(1− δj,l)(1− δk,l)∆(3)
jkkll;m

N∑
j,k,l

+ 10
∑
j,k,l

αjvj;k,l(1− δj,k)(1− δj,l)(1− δk,l)∆(3)
jjjkll;m

N∑
j,k,l

+ 10
∑
j,k,l,o

αjvo;k,l(1− δj,k)(1− δj,l)(1− δj,o)(1− δk,l)(1− δk,o)(1− δl,o)∆(3)
jkloo;m

N∑
j,k,l

+
∑

j,k,l,o,p

αjzk,l;o,p(1− δj,k)(1− δj,l)(1− δj,o)(1− δj,p)(1− δk,l)

N∑
j,k,l

αjαkαlαoαpαjαk(1− δk,o)(1− δk,p)(1− δl,o)(1− δl,p)(1− δo,p)∆(3)
jklop;m (A.16)
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N∑
j,k,l,o,p

αjαkαlβoβp ∆
(3)
jklop;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m =

∑
j,k

α3
jβ

2
k∆

(3)
jjjkk;m +

∑
j,k,l

α3
jβkβl(1− δk,l)∆

(3)
jjjkl;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m + 3

∑
j,k,l

βjα
2
kα

2
l (1− δk,l)∆

(3)
jkkll;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m + 3

∑
j,k,l,o

αjα
2
kβlβo(1− δj,k)(1− δl,o)∆

(3)
jkklo;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m +

∑
j,k,l,o

αjαkαlβ
2
o(1− δj,k)(1− δk,l)(1− δj,l)∆

(3)
jkloo;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m +

∑
j,k,l,o,l

βjβkαlαoαp(1− δj,k)(1− δl,o)(1− δl,p)(1− δo,p)∆(3)
jklop;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m =

∑
j,k

αjti,k∆
(3)
jjjkk;m +

∑
j,k,l

αjxj;k,l(1− δk,l)∆(3)
jjjkl;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m + 3

∑
j,k,l

βjtk,l(1− δk,l)∆(3)
jkkll;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m + 3

∑
j,k,l,o

αjxk;l,o(1− δj,k)(1− δl,o)∆(3)
jkklo;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m +

∑
j,k,l,o

αjwo;k,l(1− δj,k)(1− δk,l)(1− δj,l)∆(3)
jkloo;m

N∑
j,k,l

αjαkαl∆
(n)
jkl;m +

∑
j,k,l,o,l

αjz3k,l;o,p(1− δj,k)(1− δl,o)(1− δl,p)(1− δo,p)∆(3)
jklop;m

(A.17)

same to
N∑
j,k,l

βjβkβl∆
(n)
jkl;m,

N∑
j,k,l

αjβkβl∆
(n)
jkl;m,

N∑
j,k,l,o,p

αjαkβlβoβp ∆
(3)
jklop;m,

N∑
j,k,l,o,p

αjβkβlβoβp ∆
(3)
jklop;m and

N∑
j,k,l,o,p

βjβkβlβoβp ∆
(3)
jklop;m with n ∈ {1, 2}.
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Dynamique collective des réseaux périodiques non-linéaires
faiblement couplés

Bien que la dynamique des réseaux périodiques non-linéaires ait été investiguée dans les do-
maines temporel et fréquentiel, il existe un réel besoin d’identifier des relations pratiques avec le
phénomène de la localisation d’énergie en termes d’interactions modales et topologies de bifurca-
tion. L’objectif principal de cette thèse consiste à exploiter le phénomène de la localisation pour
modéliser la dynamique collective d’un réseau périodique de résonateurs non-linéaires faiblement
couplés.

Un modèle analytico-numérique a été développé pour étudier la dynamique collective d’un
réseau périodique d’oscillateurs non-linéaires couplés sous excitations simultanées primaire et param-
étrique, où les interactions modales, les topologies de bifurcations et les bassins d’attraction ont
été analysés. Des réseaux de pendules et de nano-poutres couplés électrostatiquement ont été
investigués sous excitation extérieure et paramétrique, respectivement. Il a été démontré qu’en
augmentant le nombre d’oscillateurs, le nombre de solutions multimodales et la distribution des
bassins d’attraction des branches résonantes augmentent. Ce modèle a été étendu pour investiguer
la dynamique collective des réseaux 2D de pendules couplés et de billes sphériques en compression
sous excitation à la base, où la dynamique collective est plus riche avec des amplitudes de vibra-
tion plus importantes et des bandes passantes plus larges. Une deuxième investigation de cette
thèse consiste à identifier les solitons associés à la dynamique collective d’un réseau périodique et
d’étudier sa stabilité.

Mots clés: réseaux périodiques, oscillateurs non-linéaires, dynamique collective, couplage
faible, interactions modales, bassins d’attraction, localisation d’énergie, solitons.

Collective dynamics of weakly coupled nonlinear periodic
structures

Although the dynamics of periodic nonlinear lattices was thoroughly investigated in the fre-
quency and time-space domains, there is a real need to perform profound analysis of the collective
dynamics of such systems in order to identify practical relations with the nonlinear energy localiza-
tion phenomenon in terms of modal interactions and bifurcation topologies. The principal goal of
this thesis consists in exploring the localization phenomenon for modeling the collective dynamics
of periodic arrays of weakly coupled nonlinear resonators.

An analytico-numerical model has been developed in order to study the collective dynamics of
a periodic coupled nonlinear oscillators array under simultaneous primary and parametric excita-
tions, where the bifurcation topologies, the modal interactions and the basins of attraction have
been analyzed. Arrays of coupled pendulums and electrostatically coupled nanobeams under ex-
ternal and parametric excitations respectively were considered. It is shown that by increasing the
number of coupled oscillators, the number of multimodal solutions and the distribution of the basins
of attraction of the resonant solutions increase. The model was extended to investigate the collec-
tive dynamics of periodic nonlinear 2D arrays of coupled pendulums and spherical particles under
base excitation, leading to additional features, mainly larger bandwidth and important vibrational
amplitudes. A second investigation of this thesis consists in identifying the solitons associated to
the collective nonlinear dynamics of the considered arrays of periodic structures and the study of
their stability.

Keywords: Periodic lattices, nonlinear oscillators, collective dynamics, weak coupling, modal
interactions, basins of attraction, localization phenomenon, solitons.
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