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Résumé  

Cette thèse est dédiée à l’analyse systématique de l’espace chimique, et des relations structure-activité 

(SAR) en particulier. L’ouvrage présente des nouveaux protocoles d’analyse combinant des méthodes 

classiques et originales, dans le but d’analyser les SAR à l’échelle globale ainsi que locale. 

L’analyse globale des espaces chimiques repose sur la recherche des motifs structuraux privilégiés par 

cartographie topographique générative (GTM), ainsi que par analyse classique des « châssis » moléculaires. 

La cartographie a été ensuite couplée avec l’analyse de réseaux chimiques (CSN), permettant une transition 

de la vue globale vers l’analyse locale de SAR. L’optimisation mutiobjectif des propriétés de potentiels 

médicaments a été adressé par la méthode « star coordinates ». 

L’analyse locale des SAR inclut des nouvelles stratégies pour prédire les discontinuités dans le paysage 

structure-activité biologique, et une étude de l’impact de la structure sur l’ionisation des molécules. Des 

matrices SAR ont servi pour monitorer le progrès dans l’optimisation de nouveaux principes actifs 

Mots clefs : visualisation de l’espace chimique, SAR, GTM, CSN 

Shilva Kayastha 
 
 

 

Nouvelles méthodes d'analyse multi-échelle de 
l'espace chimique: visualisation de relations 
structure-activité et l'extraction des motifs 

structuraux 

Résumé en anglais 

This thesis presents studies devoted to aid in systematic analysis of chemical spaces, focusing on mining and 

visualization of structure-activity relationships (SARs). It reports some new analysis protocols, combining 

both existing and on-purpose developed novel methodology to address both large-scale and local SAR 

analysis.  

Large-scale analysis featured both generative topographic mapping (GTM)-based extraction of privileged 

structural motifs and scaffold analysis. GTM was combined with chemical space network (CSN) to develop 

a visualization tool providing global-local views of SAR in large data sets. We also introduce star 

coordinates (STC) to visualize multi-property space and prioritize drug-like subspaces.  

Local SAR monitoring includes new strategies to predict activity cliffs using support vector machine models 

and a study of structural modifications on ionization state of compounds. The SAR matrix methodology was 

applied to objectively evaluate SAR progression during lead optimization.  

Key words: chemical space visualization, SAR, GTM, CSN 
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R�esum�e de these en fran�cais

Introduction

Cette th�ese pr�esente plusieurs �etudes consacr�ees au d�eveloppement de nouvelles ap-

proches computationnelles pour l'analyse syst�ematique de donn�ees et �a la visualisa-

tion d'espaces chimiques. Les projets discut�es ici ont pour but de traiter di��erents

challenges rencontr�es lors de l'optimisation de compos�es ainsi que lors du proces-

sus de mise au point de m�edicaments. De plus, des analyses �a grande �echelle de

jeux de donn�ees de compos�es ont �et�e men�ees pour d�eceler des motifs structuraux,

ce qui pr�esente d'importantes implications pour concevoir de potentiels nouveaux

m�edicaments. Sept �etudes sont discut�ees dans cette th�ese, qui inclut trois domaines

principaux : la fouille de donn�ees, la visualisation et la pr�ediction. Plusieurs out-

ils ont �et�e utilis�es pour l'analyse de l'espace chimique, comme les matrices de re-

lations structure-activit�e (SAR matrix - SARM), la visualisation par star coordi-

nates (STC), les GTMs (generative topographic maps { ISIDA-GTM), ainsi que les

r�eseaux d'espace chimique (chemical space networks { CSNs). La m�ethode STC a

�et�e d�evelopp�ee et utilis�ee ici pour la premi�ere fois pour visualiser la distribution des

donn�ees dans l'espace chimique. Bien que les autres outils aient �et�e d�ej�a pr�esent�es

dans de pr�ec�edentes �etudes, nous avons d�emontr�e leur application dans di��erents

aspects de la d�ecouverte et de la conception de m�edicaments par ordinateur.

Cette th�ese est organis�ee en 9 chapitres. Le chapitre 1 introduit les concepts cl�es

et les m�ethodologies. Le chapitre 2 explore la diversit�e structurale et la distribution

de l'activit�e des squelettes structuraux (sca�olds) de l'univers actuel des compos�es

bioactifs. Dans le chapitre 3, nous d�emontrons l'application des GTMs pour d�e-

tecter les motifs structuraux privil�egi�es dans des classes de compos�es. Un outil de

visualisation de relations structure-activit�es �a deux couches, combinant les GTMs

et les CSNs, est pr�esent�e dans le chapitre 4. L'application du GTM-CSN pour d�e-
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tecter des sch�emas de relations structure-activit�e int�eressants dans de tr�es grands

jeux de donn�ees, y compris le jeu de donn�ees de criblage anti-malaria comprenant

plus de 13000 compos�es, est pr�esent�ee. Dans le chapitre 5, la pr�ediction avec succ�es

de pics d'activit�e (activity cli�s) via l'utilisation de la classi�cation par vecteurs de

supports et mod�eles de r�egression est discut�ee. Une analyse �a grande �echelle de

la distribution des �etats d'ionisation des compos�es bioactifs est pr�esent�ee dans le

chapitre 6. Le chapitre 7 introduit un outil pour la visualisation des compos�es dans

un paysage �a multi-propri�et�es. Un outil de diagnostic, utilis�e pour surveiller la pro-

gression des relations structure-activit�e (structure-activity relationship { SAR) lors

de l'optimisation de compos�es prometteurs, est introduit dans le chapitre 8. En�n,

le chapitre 9 comprend un r�esum�e ainsi que des conclusions.

Distribution de la diversit�e structurale et de

l'�echelle d'activit�e des sca�olds dans l'univers

actuel des compos�es bioactifs.

Le concept de squelette structural (sca�old) est appliqu�e en chimie m�edicinale pour

d�ecrire la structure de base des compos�es actifs et est rest�e assez populaire au cours

des ann�ees. Il a �et�e utilis�e dans des applications vari�ees, comme par exemple pour

chercher les sous-structures privil�egi�ees1 dans une famille de cibles donn�ees, ou pour

d�etecter des occurrences de sca�old-hopping2 (sortir d'un mod�ele structural donn�e)

dans des jeux de donn�ees de compos�es. Etant donn�ee l'augmentation du nom-

bre de nouveaux compos�es ajout�es dans l'univers actuel des compos�es bioactifs,

l'organisation syst�ematique et l'analyse de leurs motifs structuraux est devenue plus

complexe. Une �etude exhaustive a �et�e rapport�ee dans ces travaux, avec comme

but de d�eterminer de fa�con syst�ematique la diversit�e structurale des compos�es, de

fa�con globale mais aussi au niveau des cibles individuelles. Dans notre analyse,

nous avons utilis�e la d�e�nition du motif structural d�ecrite par Bemis-Murcko,3 et

un niveau d'abstraction suppl�ementaire a �et�e obtenu en g�en�erant des squelettes cy-

cliques (cyclic skeletons { CSKs). Les sca�olds et les CSKs ont �et�e extraits de

fa�con syst�ematique �a partir des compos�es dont les donn�ees d'activit�e pr�esentent

une con�ance �elev�ee dans la base de donn�ees ChEMBL version 18. Les sca�olds

et les CSKs ont �et�e assign�es �a des intervalles d'activit�e bas�es sur la distribution de
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l'intervalle d'activit�e des compos�es repr�esent�es par ces mêmes motifs structuraux et

CSKs. Des sca�olds structuralement di��erents sont fr�equemment apparus dans nos

analyses. Ils repr�esentaient des compos�es hautement actifs contre de nombreuses

cibles pharmaceutiques. Par cons�equent, il est probable que des s�eries de compos�es

structuralement distincts puissent être d�evelopp�ees a�n de rechercher des candidats

m�edicaments alternatifs pour ce type de cibles.

Analyse des �etats d'ionisation de compos�es bioact-

ifs, bas�ee sur la structure de la cible

L'�etat de charge des petites mol�ecules est une des propri�et�es les plus importantes,

qui d�etermine leur activit�e biologique et leur action en tant que m�edicament.

L'�etat d'ionisation des compos�es bioactifs peut changer en fonction du pH dans

di��erents environnements in vivo, ce qui, par cons�equent, a�ecte leurs pro�ls phar-

macologiques. Cette �etude se concentre sur les relations entre les �etats d'ionisation

des compos�es, la similarit�e structurale et l'activit�e. Les compos�es bioactifs ont �et�e

rassembl�es �a partir de jeux de donn�ees pr�esentant une con�ance �elev�ee dans la base

de donn�ees ChEMBL.4 Pour d�eterminer l'�etat d'ionisation d'un compos�e, deux types

de valeurs calcul�ees de constantes de dissociations (pKa) �etaient disponibles dans

ChEMBL. Les compos�es ont �et�e classi��es comme appartenant �a l'une des quatre

classes (IS-class) : acide, basique, neutre et zwitterionique. Pour �evaluer les rela-

tions structurales entre les compos�es de di��erentes IS-classes, les paires de mol�ecules

correspondantes ont �et�e calcul�ees (matched molecular pairs - MMPs). Une MMP est

d�e�nie comme une paire de compos�es qui se distinguent uniquement par l'�echange

d'une sous-structure, souvent nomm�e\transformation chimique". Le voisinage chim-

ique de chaque compos�e classi��e a �et�e d�etermin�e en prenant en consid�eration tous ses

partenaires de MMP dans un jeu de donn�ees cible. Les �etats d'ionisation pr�esentent

une distribution in�egale parmi les compos�es bioactifs. En majorit�e, les compos�es

bioactifs �etaient basiques ou neutres dans les conditions physiologiques. De plus, les

ensembles �a cible unique et les superfamilles cibles pr�esentent des di��erentes signi-

�catives d'�etats d'ionisation. En outre, une analyse MMP syst�ematique a r�ev�el�e que

des changements d'�etat d'ionisation apparaissent fr�equemment parmi les analogues

structuraux. Des analogues tr�es actifs et tr�es peu actifs di��erent souvent par rap-

port �a leurs IS-classes. Une pr�ef�erence notable envers une IS-classe sp�eci�que a �et�e

3



observ�ee dans les compos�es hautement actifs pour di��erentes cibles, ce qui nous a

o�ert un aper�cu utile pour la conception et l'optimisation de compos�es.

Suivi de la progression relation structure-activit�e

dans l'optimisation des têtes de s�erie

L'optimisation de têtes de s�eries (Lead Optimization - LO) vise �a transformer les

compos�es actifs s�electionn�es en candidats pour la recherche clinique au travers d'une

�evaluation it�erative d'analogues. Le proc�ed�e est multiparam�etrique par nature et est

largement dirig�e par des hypoth�eses et des r�egles empiriques variables, d�ependant de

l'exp�erience et de l'intuition des chimistes m�edicinaux. De plus, les projets de LO se

d�eroulent souvent sur une longue p�eriode, n�ecessitant des ressources substantielles

et g�en�erant des milliers de compos�es. N�eanmoins, il n'est pas rare qu'un projet LO

fasse face �a des blocages et soit en �n de compte arrêt�e. Il est donc hautement

d�esirable d'avoir �a disposition un outil de diagnostic ou une m�etrique pour guider

les chimistes m�edicinaux dans la progression du projet LO d'une fa�con objective.

Nous introduisons ci-apr�es un cadre de calcul bas�e sur les matrices de relations

structure-activit�e (Structure-Activity Relationship Matrix - SARM) pour surveiller

la progression de l'information sur les relations structure-activit�e (Structure-Activity

Relationships - SAR) au cours du temps. Des jeux de donn�ees �evolutifs ont �et�e

assembl�es �a partir de la ChEMBL et de deux projets di��erents de d�ecouverte de

m�edicaments, chez P�zer. Les SARMs ont �et�e g�en�er�ees pour chacun de ces jeux de

donn�ees �a di��erents moments dans le temps: SARM \existante", \�etendue" et \nou-

velle". Ces SARMs ont �et�e annot�ees �a l'aide de deux scores num�eriques : un score de

discontinuit�e bas�e sur la SARM (SARMDisc) et l'activit�e m�ediane de tous les com-

pos�es dans une SARM donn�ee. Les scores ont �et�e visualis�es dans des graphiques de

dispersion a�n de surveiller la distribution graphique des SARMs au cours du temps.

Nous avons d�ecouvert que les d�ecalages caract�eristiques des ensembles SARMs dans

les graphiques de dispersion indiquent une progression SAR positive, neutre ou n�ega-

tive. Au cours d'un projet de LO, une progression SAR est g�en�eralement observ�ee

quand des analogues sensibles au SAR et de plus en plus actifs sont cr�e�es. En prenant

toutes ces informations en compte, nous d�emontrons que les indicateurs SARM peu-

vent être utilis�es comme un outil de diagnostic pour surveiller la progression SAR

au cours du temps. Cette approche peut être utilis�ee pour distinguer la progression
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SAR de la redondance. Ces id�ees sont pr�ecieuses et devraient pouvoir appuyer le

processus de prise de d�ecision dans des projets de LO.

Figure 1: Repr�esentation sch�ematique illustrant le concept de surveillance de la progression SAR
au cours du temps en utilisant les SARMs.

D�etection et analyse de motifs structuraux priv-

il�egi�es �a l'aide des Generative Topographic Maps

(GTMs)

Le terme de sous-structure privil�egi�ee se r�ef�ere aux structures de base r�ecurrentes

dans les compos�es actifs contre une famille de cibles donn�ee, associ�ees avec leur ac-

tivit�e biologique. La recherche de sous-structures privil�egi�ees est d'une importance

particuli�ere lors de la conception de nouveaux compos�es bioactifs. Dans cette �etude,

nous d�emontrons l'application de Generative Topographic Maps5 (GTMs) pour ex-

traire des motifs structuraux privil�egi�es �a travers trois importantes superfamilles

cibles (les prot�eases, les kinases, et les r�ecepteurs coupl�es �a la prot�eine G). Une

GTM\universelle" pr�ec�edemment publi�ee,6 repr�esentant une carte de l'espace chim-

ique des compos�es drug-like, a �et�e utilis�ee dans notre analyse. Un paysage GTM est

compos�e de n�uds sur lesquels les compos�es sont projet�es, sur la base des valeurs

r�eelles d'association du compos�e �a chaque n�ud (responsabilit�es). Chaque compos�e

sera caract�eris�e par son vecteur de responsabilit�e. Pour identi�er des sous-ensembles

de compos�es pr�esentant des caract�eristiques structurales communes, les vecteurs de
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responsabilit�e ont �et�e convertis en une forme discr�ete appel�ee motif de responsabilit�e

(responsibility pattern { RP). Les RPs ont �et�e prioris�es comme \privil�egi�es" (PRP)

par rapport �a une superfamille cibles, s'ils caract�erisaient une grande fraction de

compos�es appartenant �a cette superfamille cibles mais que leur taux d'occurrence

global (dans ChEMBL) �etait signi�cativement plus bas. Les compos�es sp�eci�ques de

chaque PRP ont ensuite �et�e soumis �a une fragmentation bas�ee sur des r�egles retrosyn-

th�etiques (RECAP), pour extraire leur \noyau-RECAP". Une analyse visuelle des

noyaux-RECAP fr�equents a permis d'identi�er les \motifs structuraux privil�egi�es".

Ceci fournit une fa�con alternative d'extraire des sous-structures privil�egi�ees et �etend

l'approche classique centr�ee sur le motif structural.

Visualisation des relations structure-activit�e dans

des larges jeux de donn�ees de compos�es

En chimie m�edicinale, la comparaison des caract�eristiques structurales des compos�es

�a leur activit�e devient de plus en plus di�cile lorsque la taille du jeu de donn�ees

va au-del�a d'une simple s�erie d'analogues. Alors, la structure et l'activit�e doivent

être compar�ees �a travers un groupe de compos�es large et h�et�erog�ene. Pour ces

cas, nous proposons un outil de visualisation �a deux composantes, combinant une

variante des generative topographic maps (GTM) bas�ee sur des paires de compos�es

avec un r�eseau de l'espace chimique (CSN), pour faciliter l'analyse des SAR dans

des jeux de donn�ees grands et h�et�erog�enes. L'outil GTM a �et�e utilis�e dans notre

analyse pour apporter une vue \du satellite" globale des paysages d'activit�e. Celle-ci

a �et�e annot�ee, a�n d'identi�er des environnements locaux repr�esentant des zones

riches en information SAR. La couche suivante de notre outil de visualisation �etait

la projection CSN des r�egions prioris�ees de la GTM. Le CSN a fourni une fa�con

d'inspecter les communaut�es mol�eculaires contenant des informations sur les SAR,

et a aid�e �a r�esoudre ces r�egions au niveau des compos�es individuels et de leurs

relations. Notre sch�ema de visualisation GTM-CSN a �et�e appliqu�e �a des jeux de

donn�ees d'optimisation (contenant de 1645 �a 2202 compos�es) et �a des jeux de donn�ees

de criblage anti-malaria (contenant plus de 13000 compos�es). L'inspection visuelle

des paysages d'activit�e de la GTM a r�ev�el�e plusieurs r�egions d'int�erêt, avec des jeux

de donn�ees de criblage montrant des degr�es de discontinuit�e SAR bas par rapport

aux jeux de donn�ees d'optimisation. Les tendances SAR ont �et�e explor�ees via les
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CSNs, sur des �̂lots de SAR, pour analyser les modi�cations structurales r�esultant

en de changements d'activit�e. Dans notre �etude de preuve de concept, nous avons

d�emontr�e avec succ�es que l'approche propos�ee de GTM-CSN facilite l'analyse SAR

de grands jeux de donn�ees, et �etend encore le spectre actuel des outils de visualisation

de SAR disponibles.

Figure 2: Les RPs prioritaires pour les jeux de donn�ees de criblage anti-malaria sont montr�es
sur une GTM simpli��ee �a gauche. Pour les sous-jeux de donn�ees de compos�es correspondants, les
repr�esentations CSN avec une disposition constante ont �et�e g�en�er�ees. Les n�uds ont �et�e color�es en
fonction de l'activit�e des compos�es.

Visualisation de paysages �a multipropri�et�es pour

l'optimisation de compos�es

L'optimisation de compos�es repose sur des propri�et�es multiples et il est important,

mais souvent compliqu�e, d'atteindre un �equilibre entre elles. La m�ethode de visu-

alisation par star coordinates (STC) est appliqu�ee ici, pour aider �a comparer des

solutions num�eriquement �equivalentes, et pour identi�er les sous-espaces \drug-like"

dans l'espace des propri�et�es multidimensionnel. Un espace de descripteurs �a 14 di-

mensions, incluant l'activit�e des compos�es, a �et�e con�cu comme espace de r�ef�erence

pour l'optimisation multipropri�et�es. Un jeu de donn�ees de descripteurs chimique-

ment intuitifs a �et�e calcul�e, incluant les caract�eres hydrophobiques et aromatiques, la

complexit�e mol�eculaire, le potentiel de liaison hydrog�ene, la charge et les propri�et�es

de surface. L'int�erêt global d'un compos�e comme candidat bioactif peut être rendu

par une fonction �a multi-objectif (multi-objective function - MOF) de ses descrip-

teurs. La STC, en tant que technique de visualisation multidimensionnelle, arrange

les coordonn�ees (les descripteurs) dans des positions pr�ed�e�nies autour d'une orig-

ine commune au centre. La position de chaque compos�e d�epend de la valeur de

chaque descripteur. Quatre jeux de param�etres de poids pour chaque descripteur ot
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�et�e calibr�es, a�n de trouver les combinaisons qui permet �a de m�edicaments connus

d'être associ�es de mani�ere sp�eci�que �a des valeurs MOF elev�ees. Autrement dit, la

valeur de MOF est calibr�ee pour correspondre �a la \drug-likeness" d'un compos�e.

Une inspection visuelle d�etaill�ee des STC aide l'identi�cation des compos�es ayant

des propri�et�es similaires �a celles des m�edicaments. Les projections prioris�ees ayant

des r�eglages de poids similaires pour leurs descripteurs et partageant la plupart des

m�edicaments class�es au premier rang ont pr�esent�e des distributions de compos�es

distinctes dans l'espace de propri�et�es multidimensionnel. La visualisation STC est

compl�ementaire �a l'optimisation multidimensionnelle des propri�et�es des compos�es,

et aide �a di��erencier des solutions num�eriquement �equivalentes avec des param�etres

de propri�et�es similaires ou distincts.

Figure 3: Deux param�etres de poids pour les descripteurs, et leurs projections de coordonn�ees
star correspondantes sont visualis�ees et compar�ees, pour des ligands des r�ecepteurs alpha-2a adr�en-
ergiques.

Pr�ediction de pics d'activit�es en utilisant les mod-

�eles de machines �a vecteurs de support

Les pics d'activit�e (activity cli�s7 - ACs) sont form�es par des paires ou des groupes

de compos�es actifs, qui sont structuralement similaires mais pr�esentent de grandes

di��erences d'activit�e. Ils d�evoilent de petites modi�cations chimiques qui am�enent �a
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des e�ets biologiques profonds, et sont par cons�equent d'un tr�es grand int�erêt pour

la chimie m�edicinale. Deux nouvelles approches pour la pr�ediction par calcul des

AC ont �et�e bas�ees sur : (i) les graphes de r�eactions condens�es (condensed graphs

of reactions - CGRs) et (ii) la recombinaison de descripteurs mol�eculaires (plain

descriptor recombination - MQSPR). Le crit�ere de similarit�e structurale requis pour

les partenaires AC est l'existence d'un MMP constitu�e par ces mol�ecules (qui se

doivent donc être d'analogues proches di��erant uniquement par rapport �a un seul

substituant d'une { plus large { sous-structure commune). Un CGR repr�esente un

MMP comme une pseudomol�ecule, en encodant les partenaires de MMP dans un

seul graphe mol�eculaire. Dans les MQSPRs, les descripteurs, �a savoir le nombre de

fragments pour chaque compos�e du MMP, ont �et�e concat�en�es dans une empreinte

num�erique commune. Les paires de compos�es, encod�es par les CGRs et les MQSPRs

ont �et�e utilis�ees comme donn�ees d'entr�ee pour des mod�eles de classi�cation �a vecteurs

de support SVC et pour des mod�eles de r�egression �a vecteurs de support SVR. En

plus de la validation crois�ee classique �a p-fold (p=3) \item-out", deux sch�emas de

validation crois�ee plus avanc�es et plus stricts (\compound-out" et \both-out") ont

�et�e explor�ees. Dans le sch�ema \item-out", le tirage du tiers de tous les MMPs utilis�e

pour la validation est fait sans biais. Dans \compound-out", on denomine par tirage

al�eatoire un sous-ensemble de compos�es, et on garde toutes les MMPs auxquels

ceux-ci participent dans le test de validation (en s'assurant que ces compos�es ne

seront pas \vus"pendant le calibrage). Avec \both-out", aucun des compos�es faisant

partie du jeu de donn�ees d'entrainement des MMPs n'a �et�e utilis�e durant l'�etape

d'entrainement. Les mod�eles SVC ont r�eguli�erement atteint une haute performance.

Dans le cas de la r�egression, les mod�eles bas�es sur la MQSPR ont surpass�e les mod�eles

bas�es sur les CGRs. De plus, une baisse de performance signi�cative a �et�e observ�ee

lorsque les sch�emas de validation \compound-out" et \both-out" ont �et�e appliqu�es.

Une classi�cation pr�ecise des ACs a �et�e atteinte en utilisant les mod�eles SVM, sans

avoir besoin d'employer des noyaux sophistiqu�es. De plus, la r�egression SVM a

�et�e appliqu�ee avec succ�es, pour la premi�ere fois, pour pr�edire la directionnalit�e des

changements d'activit�e encod�es par les MMPs.
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Conclusions

Des m�ethodes computationnelles vari�ees ont �et�e pr�esent�ees dans cette th�ese, avec

une d�emonstration claire de leur application dans l'analyse de l'espace chimique.

Nos analyses ont exploit�e une abondance de compos�es structuralement distincts et

hautement actifs, d�ej�a disponibles pour de nombreuses prot�eines pertinentes en tant

que cibles pharmaceutiques, en se focalisant sur des �etudes de cas d'une relevance

maximale (�a partir des aspects li�es aux super-familles de cibles, �a des cibles sp�eci-

�ques, �a des propri�et�es syst�emiques - antipaludiques). En plus de la visualisation des

paysages d'activit�e de grands sets de donn�ees, les GTMs ont �et�e appliqu�ees ici pour

extraire des motifs structuraux privil�egi�es �a partir de compos�es appartenant �a dif-

f�erentes superfamilles cibles. Cette m�ethode de d�etection alternative pour d�etecter

les sous-structures privil�egi�ees est mise en �uvre sans connaissance pr�ealable de la

classi�cation pr�ealable des compos�es sur la GTM et s'�etend au-del�a de l'approche

classique centr�ee sur le motif structural. Une pr�ediction de la di��erence d'activit�e

sign�ee dans les pics d'activit�e a �et�e r�ealis�ee pour la premi�ere fois en utilisant des

mod�eles SVM. En outre, des outils discut�es ici tels que les SARMs et la STC o�rent

des conseils utiles aux chimistes m�edicinaux dans le cadre des projets d'optimisation

de compos�es. Ensemble, les m�ethodes con�cues ici repr�esentent une panoplie assez

compl�ete d'outils de drug design, en allant de l'analyse globale \�a vol d'oiseau" par

cartographie, �a l'analyse des discontinuit�es locales, �a l'optimisation multimodale.
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Chapter 1

Introduction

1.1 Chemoinformatics in Drug Discovery

Chemoinformatics is an interdisciplinary �eld whereby computational methods are

applied to tackle chemical problems. The term \chemoinformatics" was �rst intro-

duced in literature by Brown in 1998 as \the mixing of all the information resources

to transform data into information and information into knowledge for intended pur-

pose of making better decisions faster in the arena of drug lead identi�cation and

optimization".8 Despite being introduced as a relatively new term, many chemoin-

formatics approaches were initiated in 1960s and early 1970s.9 Moreover, the term

chemical informatics was used much earlier to describe the application of informat-

ics approaches to chemistry, albeit lacking speci�c focus on drug discovery.10 Later

Hann and Green pointed out that chemoinformatics is indeed a new name for an old

problem.11 At present, chemoinformatics covers a broad spectrum of computational

methodologies including, compound database mining, library design and optimiza-

tion, molecular similarity and diversity analysis, chemical structure and property

prediction to name a few.12 The studies presented in this thesis mainly focus on the

development and application of chemoinformatic approaches to address challenges

faced in modern drug discovery.

Drug discovery is a process of discovering and developing novel pharmaceutical

agents to treat a speci�c disease condition. It is a complex procedure involving

multiple stages and is carried out in the following sequence:
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1. Target selection: Drug discovery projects start with identi�cation of a suit-

able target, to which a drug molecule is able to bind and elicit a biological

response. Biological targets can range from proteins, genes to RNAs. Once

the target is identi�ed, it is validated using in vitro techniques or disease mod-

els.

2. Hit identi�cation: During this phase, compound screening assays are uti-

lized to identify hits, i.e., compounds that show speci�c biological activity

against the target of interest and whose activity is con�rmed upon re-testing.13

A variety of screening strategies exist which involve di�erent assay of com-

pound sets in high-throughput fashion.14

3. Lead optimization: Once hit series have been identi�ed, each of them are fur-

ther re�ned via synthetic exploration and subsequent testing to generate more

potent and selective compounds called leads. In addition, the absorption, dis-

tribution, metabolism, excretion, toxicity (ADMET) and other physicochem-

ical properties of lead molecules are tested to ensure a good balance between

their a�nity, selectivity and metabolic properties.14

4. Pre-clinical development: Compounds prioritized in lead optimization

stage undergo in vitro or in vivo tests during pre-clinical development, to

determine if they are suitable and safe to be administered to humans in the

next stage.

5. Clinical development: In this �nal stage of drug discovery, the candidate

compound that passed all of the previous phases are tested in human volunteers

via clinical trials. Experimental studies are carried out to explore the dose and

exposure levels tolerable by humans.15 Additionally, any adverse e�ects that

may arise through the use of the candidate compound is closely monitored in

patients.

After su�cient proof highlighting the safety and e�cacy of the candidate com-

pound has been gathered, it should be reviewed by appropriate regulatory body

before getting approval for marketing it as a new drug.

Drug discovery projects typically last for periods of 10-15 years costing over a

billion dollars.13 Development of a drug from the initial stage of target selection

through lead identi�cation and optimization to making it available in the market is
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thus a highly resource and time consuming process. Modern drug discovery process

has been making e�orts to minimize the time and costs of research and development

stages by incorporating a variety of techniques from chemoinformatics.16 One of

the major aims of chemoinformatics approaches focusing on drug discovery is to

understand the interaction between small molecules and their biological targets. By

uncovering the structural features that determine the biological activities of small

molecules, rational decisions can be made during lead optimization stage ultimately

paving a way to identi�cation of novel compounds with desired biological activities.

It should be noted that biological activity is only one of the many properties

of a compound that should be optimized to qualify as a successful drug candidate.

Given the multi-parametric nature of compound optimization, computational

multi-property optimization approaches have been used, attempting to reach a

reasonably good balance between drug-relevant properties of a compound. High

throughput screening techniques have generated huge amount of compound activity

data, expanding the current universe of bioactive compounds. Prioritizing sub-

spaces representing compounds with desired activities/properties in such a huge

chemical space is a rather daunting task. Data mining and visualization approaches

have therefore proven helpful in navigating through chemical spaces to explore and

ultimately identify promising drug candidates.

1.2 Molecular Representations

Molecular representations provide a way to encode structural features and properties

associated with a given molecule in an interpretable way. Molecular representations

vary in their complexity depending on the way they are derived and the amount of

information they capture. The simplest molecular representation is one-dimensional

(1D), such as the molecular formula. It can be used for determining the chemical

composition of a given molecule but this is not very informative. Molecular graphs

are two-dimensional (2D) representations of chemical structures, such that nodes

and edges correspond to atoms and bonds, respectively. The topology of a given

molecule, i.e., the connectivity of atoms and bonds, is clearly indicated in molec-

ular graphs. This information is translated into a computer-interpretable form by

connection table or linear notations. In addition to molecular topology, connection
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tables contain atom coordinates, their hybridization states and bond orders. Linear

notations like simpli�ed molecular input line entry speci�cation (SMILES)17 and

IUPAC international chemical identi�er (InChI)18 are strings of alphanumeric and

special characters constructed following prede�ned rules for representing molecular

structures. Due to their compact form, they have become more popular in recent

years, mainly for representing molecules in large databases. 2D molecular repre-

sentations are not capable of describing the spatial positions of atoms and bonds,

which determine molecule's steric and electronic properties. Three-dimensional (3D)

representations such as molecular surface and volume capture molecule's key con-

formational properties based on the spacial arrangements of the atoms.

1.2.1 Sca�olds

Sca�old represents structural backbone of a given molecule. The sca�old concept

is widely used in medicinal chemistry to describe core structures of bioactive com-

pounds.

Figure 1.1: Sca�olds and cyclic skeletons. For two exemplary sets of compounds, corre-
sponding sca�olds and CSKs are given. Compounds within a set represent structural analogs and
have a common sca�old, highlighted in blue and red for the left and right compound sets, respec-
tively. Further, both sca�olds give rise to a single CSK, thus indicating di�erent levels of chemical
abstraction, from compounds through sca�olds to CSKs.
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It provides an important means of structural organization and classi�cation of

compounds in large compound databases or screening libraries.19 Sca�olds are also

linked to their biological activity, often to search for privileged substructures or

identify sca�old hopping instances. Privileged substructures are de�ned as core

structures associated with compounds that are preferentially active against a speci�c

group of targets. Computational compound screening is largely motivated by sca�old

hopping, i.e., identi�cation of compounds with structurally distinct cores, but same

or similar activity. Sca�old is a rather loosely de�ned term and many di�erent

de�nitions of sca�old have been put forward.20 The most widely applied de�nition

was given by Bemis and Murcko, in which sca�olds are obtained from compounds

by removing all non-ring R-groups while retaining all ring structures and linker

fragments connecting two or more ring structures.3 A further chemical abstraction

called cyclic skeletons (CSKs), are obtained from sca�olds by converting all hetero

atoms to carbon and all bond orders to one (Figure 1.3).21

1.2.2 Matched Molecular Pairs

Matched molecular pairs (MMPs) are de�ned by a pair of compounds that only dif-

fer by structural modi�cation at a single site.22 MMP partners can hence be inter-

converted to one another by exchange of well-de�ned substructures, often termed

as chemical transformations (Figure 1.4). As outlined earlier, molecular similarity

is subjective and the outcome of similarity assessment heavily relies on the chosen

molecular representation. Studies have shown that SAR information of compounds

change when di�erent �ngerprint representations were used.23 Moreover, numerical

similarity metrics are not always chemically interpretable. MMPs have an intrin-

sic advantage over other molecular representations in this respect for more than one

reason. To assess structural similarity between compound pairs, the MMP-based ap-

proach does not require any prede�ned structural relationship. In addition, chemical

transformations can be limited to only small structural changes as seen in analog

series by introducing well-de�ned size restriction criteria. In contrast to numerical

similarity measures, MMP-based similarity is well-de�ned and chemically intuitive,

therefore making it easier for medicinal chemists to identify SAR patterns. In re-

cent years, MMP analysis has gained a lot of popularity and it has been used in

wide range of computational medicinal chemistry applications, mainly large scale

SAR analysis and visualization. MMP formalism has been applied for identi�cation
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of activity cli�s (vide infra), here termed as \MMP-cli�s", by replacing calculated

similarity metrics with well-de�ned substructure relationships.24

Figure 1.2: Matched molecular pairs. Two compounds participating in a matched molecular
pair are shown. Substructures highlighted in blue represent chemical transformation and the
remaining part of the molecules represents the core structure shared by both compounds.

Given the increasing interest in MMP analysis, a number of conceptually dif-

ferent algorithms have been introduced for identi�cation of MMPs from compound

data sets. One of the �rst algorithms for MMP generation was based on a prede-

�ned list of chemical transformations that was searched against all possible com-

pound pairs in a given data set.25{27 Despite low computational complexity of this

method, MMPs that were identi�ed were limited within those present in the prede-

�ned list. Maximum common substructure (MCS)-based algorithms overcome such

limitations by systematically enumerating all MMPs for a given compound set. In

this method, largest substructure shared by compound pairs are identi�ed as com-

mon cores whereas the remaining part of the structures are regarded as the chemical

transformations. Chemical modi�cations in MMP partners thus correspond to only

small structural modi�cations as a large part of their structure are shared as MCS.

MCS-based algorithms tend to be computationally expensive and are often combined

with clustering techniques and subsequent pruning of the data set, which might limit

its performance.28,29

A more recent approach follows a two-step procedure that requires fragmenta-

tion of molecules for MMP calculation. In the �rst step, data set compounds are

decomposed into well-de�ned fragments. The second step involves indexing of gen-

erated fragments and subsequent comparison and identi�cation of compound pairs

with common substructures. Fragmentation-based algorithms can be applied to very

large data sets and do not require huge computational resource like MCS-based ap-

proaches because each molecule is processed only once. A widely used fragmentation-

based MMP algorithm was introduced by Hussain and Rea.30 Molecules are �rst

fragmented by systematically deleting all non-ring single bonds between two non-
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hydrogen atoms, creating so-called single-cut fragments. The larger of the two frag-

ments is termed as \key" and the other one as \value". Combinations of two or three

single bonds are also used for generating double- and triple-cut fragments. Once

the fragments are generated, they are stored in an index table as key-value pairs.

Entries of the index table in which a single key has multiple values represent MMPs,

the key being the common substructure and value the chemical transformation. If

a key has more than two value fragments, the corresponding compounds form a

matched molecular series (MMS). The compounds in an MMS therefore must form

all possible MMP relationships among each other.

1.2.3 Molecular Descriptors

Substructure-based molecular representations like sca�olds and MMPs are chem-

ically intuitive and interpretable. Alternatively, molecules can be represented in

terms of numerical values called descriptors. Molecular descriptors are mathemati-

cal functions or models that represent measured or predicted properties associated

with molecules. A wide range of descriptors have been introduced,31{33 and can be

classi�ed as 1D, 2D or 3D molecular descriptors. 1D descriptors are simple as atoms

counts and molecular weight, which can be easily derived from molecular formula.

2D descriptors are mainly calculated from 2D molecular graphs such as topological

index and molar refractivity. 3D molecular descriptors like 3D pharmacophore keys

and molecular surface areas require 3D con�rmation of molecule.

It should be noted that the choice of descriptors depends on the task in hand,

since the importance of molecular features varies with respect to speci�c application.

Therefore, the descriptor selection should be done on a case-by-case basis.

In our studies, 2D descriptors originating from the following two software plat-

forms were used and are discussed in detail in the following.

� In silico design and data analysis (ISIDA) fragmentor:34 It is a soft-

ware developed as a part of ISIDA project for calculating molecular fragment

count descriptors based on a series of graph algorithms described in the book

Algorithmes de graphes.35 There are three major classes of ISIDA descriptors

developed so far:

1. substructural molecular fragments (SMF)36,37

2. fuzzy pharmacophoric triplets (FPT)38,39
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3. property-labelled fragments(IPLF)40

We used SMF and IPLF fragments generated with ISIDA fragmentor 2015.

Substructural molecular fragments enumerate the occurrence of fragments of

di�ering type and length within a molecule. The fragments can be categorized

into any of the following.

{ Sequences of successive atoms or/and bonds of a prede�ned length rep-

resenting shortest possible path between two given atoms.

{ Augmented atoms encoding the connectivity information of a selected

atom with its neighboring atoms or/and bonds to a given topological

distance (sphere).

{ Triplets, i.e. all possible combinations of three atoms in a molecular

graph along with the topological distances between them. For example,

the triplet formed by the atoms numbered 4, 7 and 12 of the molecular

graph in Figure 1.3 will yield a triplet N5C4O5, where distance between

atoms 4 and 7 is d(4,7)=5. Similarly, d(7,12)=4 and d(4,12)=5.

Figure 1.3 shows the substructural molecular fragments obtained from an

exemplary molecular graph.

IPLF descriptors also monitor counts of speci�c subgraphs of the molecule but

the vertices of the molecular graph that are employed for their calculation are

colored by properties of the atoms, mainly by pharmacophoric features and

electrostatic potential. An example of molecular graph coloration based on

pharmacophoric rules is given in Figure 1.4. Once atoms of the molecule are

annotated by a given feature, the program calculates fragment counts under

the desired fragmentation scheme (sequences, augmented atoms, etc).

� Molecular Operating Environment (MOE):41 MOE is a software package

that has integrated various tools facilitating drug discovery research including

ligand- and structure-based drug design, molecular modeling and simulations,

protein and antibody modeling, and pharmacophore discovery. QuaSAR de-

scriptor module available in MOE package allows users to calculate more than

four hundred 2D and 3D molecular descriptors that can be used for QSAR

modeling, similarity and diversity analysis or combinatorial library design.42
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Figure 1.3: ISIDA substructural molecular fragments. Shown are the substructural molec-
ular fragments and their counts generated from an exemplary molecule. Sequences of atoms and
bonds of length four between two di�erent atoms in the molecule (carbon and oxygen; carbon
and nitrogen) are given. Augmented atom fragments calculated at topological distances of one
(highlighted in green), two (purple) and three (orange) from the central nitrogen atom (red) are
shown.

2D QuaSAR descriptors include atom and bond counts (number of heavy

atoms, number of rotatable bonds, etc.), physico-chemical properties (molar

refractivity, atomic prolarizabilities, LogP, etc.), connectivity and shape in-

dices (atomic connectivity index, Kappa shape index, etc.) as well as several

pharmacophore and partial charge descriptors. In addition, 3D descriptors ac-

counting for potential energy, surface area, volume, shape, and conformation

dependent charge can also be calculated using QuaSAR module. Furthermore,

users have an option to de�ne their own custom descriptors in MOE.

Molecular �ngerprints, a subtype of molecular descriptors, are bit or integer

string representations of molecular structure and properties. They encode di�erent

2D and 3D molecular features in form of bit string representation indicating pres-

ence or absence of features or integer string recording their frequency of occurrence.
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Figure 1.4: Pharmacophoric graph coloration. Given are the pharmacophoric rules for
coloring atoms of an exemplary molecule prior to calculation of ISIDA property-labelled fragments.

Originally developed for substructure searching, a number of di�erent �ngerprint de-

sign have been introduced over the years that di�er in their complexity, composition

and length. One of the classical �ngerprints that are still in wide use across many

chemoinformatics applications are substructural �ngerprints. Also known as \keyed

�ngerprints", they are represented as a feature vector of �xed length, with each bit

position corresponding to a prede�ned structural fragment. One prime example of

substructural �ngerprint is molecular access system (MACCS)43 �ngerprints, which

contains 166 prede�ned structural keys.

Combinatorial �ngerprints encode topological connectivity information of

molecules and are generated by enumerating all possible paths through the molecule

at a prede�ned length. The connectivity pathways are then mapped to overlapping

(multiple) bit positions of the �ngerprint of �xed length using a hashing function.

In contrast to structural keys, hashed �ngerprints do not have one-to-one correspon-

dence of feature and bit positions, and thus are not chemically interpretable. Hashed

�ngerprints from Daylight Chemical Information Systems Inc.44 contain 1024 bits,

out of which typical organic molecules set between 50 to 400 bits.45 More recent

variants of combinatorial �ngerprints such as Molprint 2D46,47 and extended con-

nectivity �ngerprints (ECFP), capture layered atom environment of a given molecule

up to a prede�ned bond diameter. ECFP4 accounts for the connectivity of atoms

around each non-hydrogen atom of a molecule up to a four-bond diameter to de�ne

atom neighborhoods of increasing size. The length of these �ngerprints is not �xed

as atom environment calculations are molecule-speci�c.

Pharmacophore �ngerprints are derived from 2D molecular graph or 3D con-

formation of molecules and several variations of these �ngerprints exist. Pharma-

cophores are de�ned are parts of a molecule that are essential for its binding to the

receptor and are important determinants of their biological activity. Typical exam-

ples include, hydrogen bond donors and acceptors, hydrophobic centroids, aromatic
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rings, etc. Pharmacophore �ngerprints are based on two-, three-, or four-point phar-

macophore models that capture such pharmacophore features and their inter-feature

distances.

1.3 Molecular Similarity

Molecular similarity provides a way of grouping compounds based on their struc-

tural features, biological activity or physicochemical properties. It is a very popular

concept in chemoinformatics and drug discovery. Over the years, a steady growth

has been observed in a number of studies related to molecular similarity.46 It plays

a key role in lead discovery and compound optimization. Characterization of SAR

features requires similarity assessment measures in order to relate structure and

biological activity of compounds.

Evaluation of molecular similarity is subject to individual perspective. Chemoin-

formatic approach towards molecular similarity compares features of the molecules

globally, whereby quantitative readout of structural relatedness are used for appli-

cations such as large-scale structure activity relationship analysis (vide infra) and

similarity searching (vide infra).48,49 On the other hand, a medicinal chemist's per-

spective of molecular similarity focuses mainly on local features, such as speci�c

structural patterns that are important for biological activity. In addition, similarity

assessment is governed by intuition, knowledge and experience of medicinal chemists.

Equally experienced medicinal chemists may arrive at di�erent conclusions in prior-

itizing preferred compounds based on their features.50{52 Moreover, such similarity

comparison is heavily context-dependent and resulting analysis may di�er with re-

spect to the order in which the medicinal chemistry expert views the compounds.

Computational similarity assessment largely depends on the way in which

molecules are represented and the similarity metric used for calculation.53 More-

over, the degree of similarity is subject to structural diversity of compound class

being studied.53 Molecular similarity assessment is a two-step procedure that in-

volves �rst, choosing a molecular representation and secondly, applying a method

to to extract information encoded in such representations and determine similarity

between compounds. If molecules are represented in form of descriptor vectors then

a suitable similarity metric is used. In case of substructure-based molecular repre-

sentations, structural rules are de�ned to compare molecules. There is no standard
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or universally accepted method to represent molecular and chemical information,

and thus the choice of representation is task dependent.

1.3.1 Similarity Metrics

Molecular similarity between compounds represented as bit strings can be quanti�ed

by similarity metrics. A number of similarity metrics have been introduced thus far,

such as Tanimoto coe�cient (Tc), Dice coe�cient (Dc), Tversky coe�cient (Tv) and

Cosine coe�cient.53,54 Among them, Tanimoto coe�cient is the most widely used

similarity metric in chemoinformatics. If a and b represents the number of features

present in compounds A and B, respectively, and c is the number of features shared

by both, Tanimoto coe�cient between these two compounds is given by:

Tc(A;B) =
c

a+ b+ c
(1.1)

If two compounds do not have a single common feature, then Tc=0. As the

number of common features increases, the Tc value also increases. If two feature

sets are identical, then Tc=1. Therefore, the value of Tc similarity between two

compounds always falls in the interval [0,1]. However, one should keep in mind that

Tc=1 does not imply identical structures but only the presence of identical features

between two compounds.

Instead of similarity, sometimes dissimilarity is calculated as the complement

of similarity (i.e., dissimilarity = 1 - similarity). Smaller values of dissimilarity

coe�cient imply that two compounds are similar and vice versa. Euclidean distance,

Hamming distance and Soergel distance are some of the examples of dissimilarity

metrics.53,54

1.4 Structure-Activity Relationships

Structure-activity relationship (SAR) analysis represents a central theme in medici-

nal chemistry research, particularly for compound optimization e�orts. SAR aims to

establish relationship between structural features of compounds and their biological

activity or potency. Traditionally, exploration of SAR was done in a case-by-case

basis focusing on individual compound series and was highly subjective to chemi-

cal intuition and experience of the medicinal chemists. Conventional R-group tables
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were widely used as a qualitative means to record SAR patterns in analog series. An

R-group table assembles core and substituent information of active compounds along

with their potency in a tabular format to identify functional groups that might de-

termine speci�c biological activities. Other qualitative SAR analysis methods, like

similarity searching, involves assessment of whole-molecule similarity. In similar-

ity searching, known active compounds are used as queries to search and rank the

database compounds in decreasing order of their similarity to the query molecules.

The top ranking molecules are thus expected to have biological activity similar to

that of the query molecule.

Unlike similarity searching where all features are compared between query and

database compounds, quantitative SAR (QSAR) methods focus only on key features

of compounds that determine their biological activity. 2D and 3D QSAR studies

have been carried out for more than four decades for computational SAR modeling

and analog design.55,56 The major goal of QSAR modeling is to establish a relation-

ship between compound structures and their activity for a set of compounds with

known activity values. Models with good predictive performance are then applied to

predict potency of newly designed analogs. A major drawback of QSAR approach

therefore is that its applicability domain is limited to structural analysis of only

the immediate chemical neighborhood of the compound series which was used to

derive the relationship. It is often di�cult to achieve reliable predictions for test

compounds that di�er from the chemotypes used in model generation.

Clearly, both QSAR and similarity searching methods rely on the fundamental

aspect of similarity property principle (SPP), which states that \similar molecules

should have similar biological activities".57 Therefore, it is of utmost importance that

the molecular representation should be chosen such that higher structural similarity

between compounds also re
ect similar biological activity. The applicability domain

of QSAR and similarity searching methods is thus limited to SAR continuity,58,59 i.e.

gradual structural changes leading to gradual changes in biological activity. How-

ever, SAR landscape of a given data set may comprise of other SAR characteristics

that are not complaint with SPP intrinsic to QSAR and similarity search tools. SAR

discontinuity is one such phenomenon and it refers to the occurrence of small struc-

tural changes causing signi�cant e�ects in biological activity of compounds. Large

scale SAR analysis methods are designed to explore various SAR characteristics of a

given data set, including SAR continuity and discontinuity. Further, these methods
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are able to distinguish between di�erent local SAR environments that give rise to

global SAR heterogeneity.60 Therefore, large-scale SAR exploration are descriptive

rather than predictive in nature, mainly focusing on data mining and information

extraction from large data sets of several hundred to thousands of compounds.

Structure-activity similarity (SAS) map61 captures SAR characteristics of a given

data set in form of a 2D scatter plot. Each data point of SAS map corresponds to

a compound pair and axes represent structural similarity and potency di�erence

values between them. A schematic representation of an SAS map is given in Figure

1.5.

Figure 1.5: Strutcure-activity similarity maps. A schematic representation of SAS map
is given, highlighting regions characterized by di�erent SAR features. Each data point mapped
onto an SAS map represents a compound pair and x- and y- axis corresponds to their structural
similarity and potency di�erence measurements, respectively. Structural similarity criterion is
de�ned in terms of MMP. Exemplary compound pairs involved in each of the SAR features and
their potency measurements are shown. Activity cli� and smooth pairs are formed by structurally
similar (MMPs) compounds and the corresponding chemical transformations are highlighted in
red, yellow or green for weakly, moderately or highly potent compounds, respectively. Similarity
cli� forming compounds do not participate in MMP but have comparable potency values.

Depending on prede�ned similarity and potency di�erence thresholds, regions

of the map with varying information content can be identi�ed. \Activity cli�s"

shown at the upper right corner of the SAS map represent the extreme form of SAR
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discontinuity. Activity cli�s are de�ned by structurally similar compound pairs with

signi�cant di�erence in their potency,7 and hence provide an immediate access to

small structural changes that translate to signi�cant di�erences in activity. The

lower right quadrant is occupied by \smooth pair" compounds, representative of

SAR continuity and are essential for QSAR modeling and prediction. The lower left

regions of SAS maps correspond to \similarity cli�s", i.e., pairs of compounds with

high activity similarity but low structural similarity. Highly potent compound pairs

of these regions are of interest, mainly in search for structurally distinct compounds

with similar activity. \Featureless pairs", formed in the upper left region are less

interesting and represent compound pairs with low activity and structural similarity.

1.4.1 Machine Learning for SAR Analysis

Machine learning methods aim to develop computational models by learning from

the data to derive rules and make predictions. Machine learning algorithms such

as neural networks,62{64 decision trees,65 random forest,66 etc., have become in-

creasingly popular for developing SAR models. Apart from predicting novel active

molecules, these machine learning models have been applied for predicting physico-

chemical properties, compound classi�cation, and ligand-based virtual screening.

Support vector machines (SVMs)67 are one of the most widely used machine

learning methods in drug discovery and are able to perform comparably or even

better than other state-of-the-art machine learning techniques.68,69 Support vector

machines are supervised learning70 methods, originally introduced for binary

classi�cation of instances.71 The general idea is to introduce a maximum-margin

separating hyperplane in high-dimensional reference space in order to distinguish

objects belonging to di�erent classes.

SVM Classi�cation

Learning phase of SVM utilizes a set of training instances xi; yi; (i = 1; :::; n) with

xi 2 Rd being a feature vector and yi 2 f�1; 1g the class label (positive or negative)

of a training object i. A hyperplane H that best separates positive and negative

instances is de�ned by the normal vector w and bias b as follows:

H = fxj hxi; wi+ b = 0g (1.2)
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where, h�; �i is a scalar product.

Figure 1.6: SVM classi�cation SVM classi�cation is shown for separating two classes indicated
by red and green dots, respectively. The separating hyperplane (H) is shown as a solid black line
and two dotted lines parallel to it represents the margins. Support vectors (dots encircled in black)
lies either on the margin, within two margins or on the incorrect side of the separating hyperplane.
Incorrectly classi�ed data points are assigned higher values of slack variables (blue line).

An in�nite number of hyperplanes can be obtained for correct classi�cation of a

linearly separable training data. Out of them, SVM chooses the one that maximizes

the so called \margin", i.e., the distance between the hyperplane and the nearest

training instances. To ensure the correct classi�cation of all training instances by

the optimal hyperplane, following condition must be satis�ed:

yi(hxi; wi+ b) � 1 8 i (1.3)

The training examples (both positive and negative) that are closest to the hyper-

plane H is known as \support vectors". The distance between the \support vectors"

and the hyperplane is given by 1
jjwjj

. An optimal hyperplane thus maximizes 1
jjwjj

, or

conversely, minimizes jjwjj.

When the training data is noisy and not linearly separable, a direct solution to the

minimization problem cannot be obtained. In such cases, the constraints in Equa-

tion 1.3 are relaxed by introducing non-negative \slack variables" �i; i = 1; :::; n.
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The slack variables allow some of the support vectors to lie within the \margin" or

even move across the hyperplane towards the incorrect side. The larger the value of

slack variables, the higher is the misclassi�cation of the training examples. In order

to penalize the misclassi�cation of training data, a parameter C > 0 is introduced.

The resulting minimization problem is given as follows:

minimize:
1

2
jjwjj2 + C

X
i

�i (1.4)

subject to: yi(hxi; wi+ b) � 1� �i with �i � 0 8 i (1.5)

The optimization problem given in Equations 1.4 and 1.5 can be reformulated

using Lagrange multipliers,72 �i, as given below:

minimize: LD =
X
i

�i �
1

2

X
i;j

�i�jyi hxi; xji (1.6)

subject to: �iyi = 0 with 0 � �i � C 8 i (1.7)

The solution to above convex optimization problem is de�ned by an � that

uniquely determines the normal vector of the hyperplane as w =
P

i�iyixi. The

\support vectors" are assigned a non-zero �i and thus are the sole determinants of

the position of the hyperplane.

The �nal decision function to classify a given test object x is formulated as

follows:

f(x) = sgn

 X
i

�iyi hxi; xi+ b

!
(1.8)

The test set example x is classi�ed into positive or negative class, depending on

the values 1 or -1 as returned by the decision function, respectively. Figure 1.6

shows the schematic representation of SVM classi�cation.

SVM Regression

SVM regression, also known as support vector regression (SVR) is used for regres-

sion analysis to predict real values of the objects rather than their class labels.71

The training data is de�ned by fxi; yig(i = 1; 2; :::; n) where xi is a vector from
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the input space X and yi, a real number associated with it. SVR aims to derive a

function f(x) = hw; xi + b, such that the training data is closer to the output yi

with the deviation not exceeding �.73 The convex optimization problem is given by:

Figure 1.7: SVM regression Support vector regression is shown. Regression line (solid black
line) is �tted to the objects (orange dots). �-tube is shown by the region enclosed by the two dotted
parallel lines. Support vectors are encircled in black and lie either on the edge or outside of the
�-tube. Higher slack variables (blue line) are assigned to objects that go further away from the
�-tube.

minimize:
1

2
jjwjj2 + C

X
i

�
�i + �*i

�
(1.9)

subject to:

8>>><
>>>:
yi � hxi; wi � b � �+ �i

hxi; wi+ b� yi � �+ �*i

�i; �
*
i � 0

(1.10)

In SVR, two types of \slack variables", �i and �*i are used, for positive and

negative deviations from the real value of the data points. The Lagrange multipliers,

�i are used to reformulate the optimization problem as:

f(x) =
X
i

�
�i � �*

i

�
hxi; xi+ b (1.11)
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The deviations allowed by the two slack variables de�ne the so called an �-tube,

within which the training data points have (�i � �*
i) = 0. The support vectors of

SVR are associated with non-zero (�i��*
i) and lie outside of this tube as shown in

Figure 1.7.

1.5 Chemical Space Visualization

Chemical space represents the set of all chemically feasible compounds.74 The

systematic exploration of the chemical universe containing theoretically possible

molecules (1060)75 is an unfeasible task. However, relevant drug-like subspaces are

rather distributed over small regions of the chemical space and computational visu-

alization techniques are usually designed to focus on those regions. Unlike support

vector machine models, which have a typical black-box behavior, visualization tech-

niques are more intuitive and interpretable. Computational chemical space visual-

ization techniques can be mainly classi�ed into coordinate-based and coordinate-free

representations.

1.5.1 Coordinate-based representation

In coordinate-based representation, numerical descriptors are used to generate a

coordinate system onto which molecules are projected based on their descriptor

values. The proximity of molecules in this type of representation corresponds to

their similarity.

Activity landscape is one of the preferred coordinate-based models used for chem-

ical space visualization, mainly focusing on SAR analysis. It is graphical represen-

tation that systematically integrate structural similarity and potency di�erence be-

tween compounds to highlight distinct SAR features among compounds sharing same

speci�c biological activity.58 Activity landscape used in SAR analysis is derived from

chemical spaces, in which, distance relationships re
ect structural similarity between

compounds. Hence, compounds that are close to each other represent structural

analogs. The position of the compounds are annotated with potency information.

The underlying chemical space used in activity landscape modeling is gener-

ally high-dimensional, and thus statistical dimensionality reduction techniques such

as principal component analysis (PCA)74,75 and multidimensional scaling (MDS)76
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must be applied to generate interpretable 2D or 3D activity landscape. PCA gen-

erates a set of non-correlated vectors called principal components by orthogonal

transformation of the original multi-dimensional descriptor space. The resulting

principal components are ranked in decreasing order of the variance observed in the

original high dimensional space, i.e., the �rst principal component accounts for the

highest variability in the data than the succeeding ones. MDS is a technique for

non-linear mapping of data points from initial high dimensional space to a lower

dimension in a way that preserves the distance between objects in the original space

as much as possible. Although dimensionality reduction techniques are typically

accompanied by loss of information they are indispensable for the challenging task

of navigating through high dimensional chemical spaces.

3D activity landscape77 resemble actual geographical landscape, thus providing

an intuitive way to visualize activity landscapes. A high-dimensional �ngerprint-

based chemical space is �rst reduced to 2D space by applying PCA or MDS.

An activity surface is then added as a third dimension to the 2D projection and

colored based on the potency values of the compounds. Hence, signi�cant potency

di�erences between compounds can be clearly identi�ed in 3D activity landscape.

Depending on the underlying SAR characteristics of the compounds, activity

landscape can be either smooth and easily traversed, or may have rugged surfaces.

Continuous SARs correspond to smooth regions or gently rolling hills of activity

landscape. In contrast, SAR discontinuity is represented by rough regions of

activity landscape. Continuous and discontinuous SARs are not mutually exclusive,

and hence, they may also coexist. The combination of both continuous and

discontinuous phenotypes in a single data set is termed heterogeneous SARs. The

landscape resulting from heterogeneous SARs is further termed variable activity

landscape.78

Generative topographic mapping

Generative topographic mapping (GTM)5 is a probabilistic dimensionality reduc-

tion approach that has been applied for visualization as well as development of

predictive models. GTM was introduced by Bishop et al5 as a method that allows

non-linear mapping of objects from a multi-dimensional space to a 2D space. The

probabilistic topology preserving nature of GTM has made it a popular tool in

chemical space visualization and analysis. In addition, GTM-based predictive
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models have been successfully used for classi�cation and regression purposes.

Figure 1.8: Generative topographic mapping. Non-linear mapping of data points from multi-
dimensional data space to 2D latent space using GTM. A manifold is placed in original descriptor
space to capture the data probability distribution via an ensemble of Gaussian functions. The
Gaussian functions situated on the manifold are obtained by non-linear transformation y(x;W )
from the grid nodes in the latent space. The molecules, assigned with a speci�c probability to each
node of the manifold, are �nally projected onto the latent space for visualization.

The GTM algorithm places a two dimensional manifold akin of a \rubber sheet"

into an initial high-dimensional space populated by \frame set" compounds. The

manifold is twisted and turned in the original descriptor space to optimally accom-

modate a maximum of \frame set" compounds in order to reproduce the best data

distribution via simulated probability distribution function. This function comprises

an ensemble of Gaussian functions located at the nodes of a 2D grid related to the

manifold. The extent to which the manifold may be distorted is controlled by a set

of prede�ned parameters. The molecules are assigned with a speci�c probability to

each node of the manifold, which is then projected onto a 2D latent space repre-

senting the �nal GTM landscape. Unlike regular 2D landscapes, in case of GTM,

molecules are distributed such that each molecule is associated with one or more

nodes. Figure 1.8 presents a schematic representation of non-linear mapping using

GTM.

A responsibility matrix R(M;K) is calculated to record the probability of a given

molecule M being assigned to node K. It is also represented as the responsibility

of node K towards molecule M . Since a molecule is associated to one or more

nodes of a GTM, its responsibility is also distributed over several nodes and the

overall probability to �nd a molecule anywhere on the map is given by
P

R(M;K),
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which sums up to 1.0. Furthermore, a set of compounds S residing in node K is

de�ned by cumulative responsibilities ofK towards all of its members, i.e. �(S;K) =P
R(M;K). The cumulative responsibility is the node bound density distribution

of all members of a set of compounds and represents the fuzzy membership of these

compounds in a given node of GTM.

In the following, generation and validation of GTM manifold using ISIDA-GTM

tool34,79,80 is described in brief. A set of di�erent parameters govern the manifold

construction, including the choice of initial descriptor space, \frame set" compounds

and GTM setup parameters. As systematic exploration of all the parameter combi-

nations is computationally expensive, an evolutionary algorithm81 was used in our

studies to search for optimal parameter setting. A chromosome vector encodes all

required parameter settings as follows:

1. ISIDA descriptors de�ning initial high dimensional chemical space, each of

which was considered as a possible choice.

2. Number of radial basis functions (RBF) de�ning the manifold (varied between

4 and 30).

3. RBF width (varied between 0.2 and 2.5).

4. Regularization coe�cient (varied between 10-2 and 102).

5. Method of prediction (k-nearest neighbor or Bayesian modeling) to be used

for classi�cation models obtained from the manifold. The choice of prediction

method therefore does not a�ect the resulting manifold.

6. Frame set compounds de�ning the reference frame for �tting the manifold in

initial descriptor space.

The compounds in \frame set" are not labeled with any property annotation as

they are used only to de�ne regions of chemical space through which the manifold

traverses. It is reasonable to have more than one frame set such that the GTM

algorithm can span several relevant chemical space zones. The manifold construction

is therefore unsupervised as no information about the property of the \frame set"

compounds are taken into account.

Once the manifolds are obtained, they are validated using a di�erent set of

compounds termed \selection set". Instances in \selection set" are labeled with their

33



respective class labels (for classi�cation models) or property values (for regression

models). GTM-based models are generated for the \selection set" compounds and

conventional p-fold (p=3) cross validation is performed. The property value or class

label of one-third of the compounds in this set are predicted using models trained

on remaining two-third of the compounds. The prediction performance is evaluated

by calculating di�erent measures of accuracy for regression and classi�cation tasks.

In case of regression, root mean square error and cross validated determination

coe�cient are calculated.82

RMSE =

vuut nP
i=1

(predi � expi)
2

n
(1.12)

Q2 = 1�

nP
i=1

(expi � predi)
2

nP
i=1

(expi � exp)2
(1.13)

where, predi and expi are the predicted and experimental values of the ith com-

pound, n is the total number of compounds, and exp is the mean over all experi-

mental values.

Since, GTM-based classi�cation79,80 are only suitable for binary classi�cation of

given instances the balanced accuracy is determined as follows:

BA =
0:5 TP

TP + FN
+

0:5 TN

TN + FP
(1.14)

where, TP, TN, FP, and FN are true positives, true negatives, false positives,

and false negatives, respectively.

Average and standard deviation are calculated for root mean square deviation,

determination coe�cient, and balanced accuracy values originating from each cross

validation experiment. The �nal �tness score of the map is calculated by taking this

average score, penalized by the standard deviation.

Compound assignment to the nodes of GTM is de�ned by its responsibility vec-

tor. As GTM is complaint with neighborhood principle,83 compounds with similar

responsibility vectors lie close to one another in GTM landscape and have similar

values of the underlying molecular descriptors. A good quality GTM landscape
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can hence be used to identify and extract regions of chemical space where similar

compounds reside. These compounds should have similar values of responsibility

vector, which suggests grouping of compounds based on their responsibility vectors.

However, it is unlikely to �nd two or more compounds with identical responsibil-

ity vectors because they are real valued vectors. A cell-based partitioning of the

responsibility vector space is applied to cluster compounds with similar responsi-

bility vectors. Each responsibility vector is converted to a discretized form called

responsibility pattern (RP)84 as follows:

RP(M,K) = [10� R(M,K)+ 0:9] (1.15)

As such, if the responsibility of molecule M to node K is below 0.01, its con-

tribution to the RP is zero. Values larger than 0.01 are binned at intervals of 0.1,

increasing the contribution by +1 to the corresponding RP value. i.e. RP(M,K)

= 1 if 0:01 � R(M;K) < 0:11, RP(M,K) = 2 if 0:11 � R(M;K) < 0:21 and so

on. RPs thus provide an organizing principle for compounds on GTM as each RP

de�nes cluster of related compounds which can be further analyzed.

1.5.2 Coordinate-free representation

Coordinate-based representation su�ers from a number of caveats, including the

\curse of dimensionality".85 Application of dimensionality reduction techniques and

consequent loss of information is unavoidable to achieve interpretable low dimen-

sional representation of original high-dimensional chemical space. In contrast,

coordinate-free representation, as the name suggests do not require construction

of any coordinate system and dimensionality reduction methods. Inter-compound

distances in coordinate-free representation do not have any chemical meaning.

Network-like similarity graph (NSG)86 is a coordinate-free visualization tech-

nique that provides access to global and local SAR features in data sets. NSG

is similarity-based network representation, in which nodes correspond to individual

compounds that are connected by edges if prede�ned similarity criteria is met. Simi-

larity is measured by calculating Tanimoto54 coe�cient from molecular �ngerprints.

Nodes are colored with respect to the potency of the corresponding compounds.

Further, node size indicates a score accounting for local SAR discontinuity contri-

bution of the compound.86,87 Larger nodes therefore represent compounds whose
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potency value signi�cantly di�er from their immediate structural neighbors. An

extension of NSG was introduced to graphically visualize and identify \selectivity

cli�s", de�ned as pairs of structurally similar compounds with distinct selectivity

pro�les, i.e., selective for two di�erent targets.88 The nodes of selectivity landscape

are annotated by ratio of compound potency values against two targets under inves-

tigation. Further extensions of NSG include multi-target activity landscape89 and

molecular mechanism-based NSG.90

Bipartate matching molecular series (BMMS) graph91 is an SAR network based

on MMS relationships of a given data set. The network representation comprises

two types of nodes, key nodes and molecule nodes. Key nodes represent the MMP

core that is shared by a given MMS whereas individual compounds are represented

by molecule nodes and are color-coded according to their potency values. Molecule

nodes representing molecules of individual MMS are connected to the corresponding

key nodes. BMMS graph allows systematic organization of data set compounds

based on their substructural relationships and highlights disjoint subgraphs that

correspond to speci�c structural modi�cations revealing important SAR patterns.

In contrast to global SAR visualization, similarity potency tree (SPT)92 is

compound-centric representation, and hence, reveals local SAR features with re-

spect to a selected reference compound. SPT is a tree-like graph that incorporates

structural similarity and potency relationships among a set of structural analogs.

The root node of the tree structure corresponds to the reference compound and is

connected by edges to its nearest structural neighbors. The structural similarity to

the reference compound decreases towards the leaf nodes. Horizontal and vertical

graph reading of SPT facilitates meaningful interpretation of SAR information in

compound subsets.92

Coordinate-free representations capturing hierarchical substructure relationships

are based on molecular sca�olds. Intuitive network for structure-activity relation-

ship analysis (inSARa)93 is bipartite network representation like BMMS graph

that capture hierarchical maximum common substructure (MCS) relationships.

Layered skeleton-sca�old organization (LASSO) graph94 organizes compounds in

form of compound-sca�old-carbon skeleton hierarchy. BM sca�old and CSK are

generated for individual compounds. Compounds sharing the same BM sca�old are

organized into a pie chart, such that the slices of the pie are colored according to

the their potency. Further, topologically equivalent BMS (sharing a common CSK)
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are grouped together into boxes that are connected if they share a substructure

and layered in hierarchical fashion.94 AnalogExplorer, designed for graphical

exploration of large analog series, enables systematic organization and comparison

of structurally related or distinct analog series in heterogeneous data sets.95

Chemical Space Network

Chemical space network85 (CSN) was introduced by Maggiora and Bajorath in

2014 as a generalized form of similarity-based compound networks, with a principal

focus on visualization of biologically relevant chemical spaces.

Figure 1.9: Chemical space network. Chemical space network generated is shown. Nodes
correspond to compounds and are colored by their potency value going from red (weakly potent)
through yellow to green (highly potent). Compounds meeting prede�ned structural similarity
criteria are connected by edges.

In CSN, nodes represent compounds and edges indicate the similarity rela-

tionship between two nodes. If a prede�ned similarity relationship between two

compounds is ful�lled, the corresponding nodes are connected by an edge. Nodes

are annotated with compound potency. The CSNs that have been reported so

far di�er mainly with respect to the similarity criteria employed during their

construction. While numerical similarity measures such as Tanimoto coe�cient

were used to generate threshold CSN (THR-CSN),96,97 others utilized substructure-

based similarity assessment like MMP (MMP-CSN)97 and MCS (MCS-CSN).98

In THR-CSN, similarity between compounds are continuous numerical values and

edges are drawn if a prede�ned threshold criteria is met. In contrast, similarity

assessment in substructure-based CSN rather takes a binary form (similar vs. not
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similar) and is independent of threshold values. Therefore, substructure-based

CSN is more intuitive from medicinal chemistry perspective. The CSNs discussed

so far represent undirected networks, since the similarity measures are generally

symmetric in nature.85 A recently introduced TvMCS-CSN
99 utilizes a hybrid

similarity measure based on Tversky coe�cient54 and MCS to generate an asym-

metric variant of CSN. In another interesting extension of CSN, distance relations

in high-dimensional property spaces are transformed into similarity relations to

generate so-called trans-CSN.100

Structure-Activity Relationship Matrix

SAR matrix101 (SARM) resembles R-group table and organizes structural analogs

in matrix-like form based on MMP and MMS relationships. Is is designed for

e�cient extraction of SAR patterns from groups of structurally related bioactive

compounds of large data sets in chemically interpretable manner. SARM is

constructed following a two-step MMP generation procedure based on Hussain and

Rea30 fragmentation scheme.

Figure 1.10: SAR matrix SAR matrix data structure is shown. Rows and columns represent
MMS core and substituents, respectively. Colored cells represent real compounds present in the
data set and colored based on their potency value following the color scheme used in Figure 1.9.
Non-colored cells correspond to virtual compounds.

The �rst stage MMPs are generated by fragmenting all compounds and the

resulting key (MMP core) and value fragments are organized in an index table to

identify MMS. In the second stage, each MMP core obtained from the �rst round

of fragmentation is again subjected to MMP generation, giving rise to a second set

of key and value fragments (key' and value'). MMSs are then grouped together as
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\matching MMSs", if they share a common key'. The key' and value' of \matching

MMSs"are �nally arranged along the rows and columns of SARM, respectively. Each

row of a SARM represents an MMS with a unique core, each column represents a

substituent and each cell represents a compound. Cells can either correspond to

real compounds from the data set and are colored according to their potency or

virtual compounds that do not exist. The potency-based coloring of cells can also

be replaced by any other desired property of the compound.

1.6 Thesis Outline

This thesis comprises seven representative studies that are organized into individual

chapters as follows. Chapter 2 explores structural diversity of sca�olds obtained

from publicly available bioactive compounds. Structurally distinct sca�old combi-

nations were systematically extracted and their potency range distributions were

monitored globally as well as at individual target level. In Chapter 3, we demon-

strate the application of GTM to detect privileged structural motifs for three ma-

jor pharmaceutical target families. Responsibility pattern-based compound subsets

extracted from GTM landscape were prioritized in individual target families and

subjected to RECAP-fragmentation and subsequent visual analysis to identify priv-

ileged substructures. A two-layered SAR visualization tool, combining GTM and

CSN methodology is introduced in Chapter 4, with an application for detection of

interesting SAR patterns in very large and heterogenous data sets. GTM provided

access to the \global view" of the activity landscape from which regions of high SAR

information were extracted. SAR trends were explored in CSNs of SAR-informative

local molecular communities obtained from GTM to analyze structural modi�ca-

tions resulting in potency changes. In Chapter 5, SVM-based classi�cation and

regression models were used for predicting activity cli�s. In addition to predicting

activity cli� or non-cli� status of MMPs, the directionality of potency changes were

predicted. A large-scale analysis of ionization state distribution of bioactive com-

pounds is reported in Chapter 6. Ionization state preference across target sets and

target superfamilies were studied. Relationships between ionization state class and

potency of compounds were analyzed. Chapter 7 introduces star coordinates, a tool

for visualization of compounds in a multi-property landscape. Numerically equiva-

lent solutions arising from multi-objective optimization tasks were compared in star
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coordinates to identify drug-like subspaces in multi-dimensional property space. A

diagnostic tool to monitor SAR progression in lead optimization is introduced in

Chapter 8. SARMs were systematically generated for evolving sets of compounds

from public repositories and lead optimization settings. Further, SARMs were clas-

si�ed and annotated with two numerical scores to evaluate their SAR information

at di�erent time points. Finally, Chapter 9 summarizes the major outcomes of the

thesis with concluding remarks.
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Chapter 2

Structural Diversity and Potency

Range Distribution of Sca�olds

from Compounds Active Against

Current Pharmaceutical Targets

Introduction

The sca�old concept is popular in pharmaceutical research for describing the core

structure of active compounds. Two major areas in which sca�olds have been exten-

sively applied are privileged substructure identi�cation and sca�old hopping. Scaf-

folds are often associated with biological activity of compounds to determine core

structures that are essential to speci�cally bind to a given pharmaceutical target.

Such core structures can provide starting point for compound optimization. Another

interesting application of sca�olds is in identi�cation of structurally distinct active

molecules with similar potency. Drug discovery projects usually involve optimization

of multiple compound series. This is done mainly to ensure the availability of struc-

turally distinct candidate compounds sharing similar activity, in case one or more

compounds need to be discarded due to liability issues. Sca�old hopping techniques

are usually applied in such settings to extrapolate from a given structural series

to another with similar biological activity. The success of computational sca�old

hopping methods in part relies on the structural diversity of available sca�olds.

Given the increase in the number of compounds with reported structure-activity
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data, the systematic organization and analysis of their sca�olds has become more

challenging. In addition, researchers have de�ned sca�olds in many di�erent ways

and a concrete de�nition of sca�olds hardly exists. In our analysis, we have used

a widely applied sca�old de�nition by Bemis and Murcko, so-called BM sca�olds.

Assessing structural similarity between BM sca�olds is non-trivial given the varying

degree of structural relationships they may share. A pair of BM sca�olds that di�ers

only by a single hetero-atom is structurally more similar compared to the one that

di�ers by the number of rings. To account for di�ering levels of similarity among BM

sca�olds, a further abstraction of the structure was obtained by generating cyclic

skeletons (CSKs). A BM sca�old represents a set of structurally related compounds

and a CSK represents two or more topologically equivalent BMs. The hierarchical

organization of molecular structures from compounds to BM to CSKs, facilitated

comparison of structures at di�erent levels of abstraction.

A comprehensive sca�old survey has been reported in this work, with an aim

to systematically determine the structural diversity of compounds globally as well

as at individual target level. Sca�olds and CSKs were systematically extracted

from compounds with high-con�dence activity data in ChEMBL. Combinations of

structurally distinct CSKs and sca�olds were identi�ed following a set of well-de�ned

structural rules. Sca�olds and CSKs were assigned to potency intervals based on

the potency range distribution of compounds represented by them.
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Aim: Large numbers of biologically active compounds are available from which 
scaffolds (core structures) can be isolated and compared focusing on structural, 
potency and promiscuity criteria. Results: A computational analysis has been carried 
out to characterize all scaffolds and cyclic skeletons contained in currently available 
compounds from medicinal chemistry sources. Compounds active against hundreds 
of pharmaceutical targets were found to contain many structurally distinct scaffolds 
and cyclic skeletons. For given targets, these scaffolds often represent highly potent 
compounds. Conclusion: There is an abundance of scaffold diversity among specifically 
active compounds indicating that many pharmaceutically relevant proteins are highly 
permissive small molecular targets. These findings have several implications for drug 
discovery and design.

Scaffold analysis
The scaffold concept is applied in medici-
nal chemistry to describe core structures 
of active compounds [1]. Scaffolds can be 
defined in different ways and the term is 
often rather loosely used in literature [1]. 
According to a widely applied definition fol-
lowing a molecular hierarchy [2], scaffolds are 
defined as follows: “The scaffold is obtained 
from a compound by removal of all (nonring) 
R-groups while retaining all ring structures and 
linker fragments between ring structures.”

From these so-called Bemis-Murcko (BM) 
scaffolds (also termed frameworks), following 
the original publication [2], one can further 
abstract from chemical structure by generat-
ing so-called cyclic skeletons (CSKs)  [3], 
defined as follows: “The CSK is obtained 
from a scaffold by converting all heteroatoms to 
carbon and setting all bond orders to one.”

BM scaffolds might display very differ-
ent structural relationships, in other words, 
they might be structurally distinct or very 
similar (e.g., only distinguished by a single 
heteroatom in a ring or a bond order). This 
wide spectrum of scaffold structures and 
their varying relationships often complicates 
the assessment of scaffold diversity [1]. As a 

further abstraction from scaffolds, CSKs 
are, by definition, topologically distinct 
(although they also span a wide range of 
structural relationships). According to the 
underlying molecular hierarchy, each unique 
BM scaffold represents a set of compounds 
(sharing the same scaffold) and each CSK a 
set of topologically equivalent scaffolds. A 
BM scaffold or CSK is often designated a 
chemotype, another term used in medici-
nal chemistry to describe a compound class 
with a specific core structure (which is also 
rather loosely applied).

The popularity of the scaffold concept 
in medicinal chemistry can at least in part 
be attributed to the search for privileged 
substructures [4] or target class-directed 
masterkeys [5], in other words, core struc-
tures that preferentially interact with a 
given target family such as serine proteases 
or kinases. Such privileged structural motifs 
are typically explored at the level of molecu-
lar scaffolds. Another popular application 
of the scaffold concept is the scaffold 
hopping exercise [6] that has become a 
hallmark of virtual screening efforts [7,8]. 
Scaffold hopping refers to the ability of com-
putational methods to recognize specifically 

For reprint orders, please contact reprints@future-science.com



Figure 1. Levels of chemical abstraction and analysis workflow. (A) Levels of chemical abstraction. The hierarchical 
relationship between CSKs, scaffolds and compounds is illustrated. The CSK layer considered in our analysis 
consists of CSK combinations, the scaffold layer of scaffold combinations and the compound layer of compound 
pairs. A combination of SD CSKs often covers multiple scaffolds. Similarly, a combination of structurally distinct 
scaffolds can represent multiple compounds. In this example, the CSK combination covers three distinct scaffolds 
and six compounds that form two scaffold combinations and nine compound pairs. 
comb.: Combinations; cpds: Compounds; CSK: Cyclic skeleton; poss.: Possible; pot: Potency; SD: Structurally 
distinct; SS: Structurally similar.
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active compounds with different scaffolds; in other 
words, to extrapolate from a given structural series or 
class and identify another sharing similar activity. A 
variety of computational and chemical scaffold hop-
ping approaches have been introduced  [8,9]. These 
include, for example, computational pharmacophore 
and shape searching or fingerprint methods to iden-
tify compounds with core structures that are increas-
ingly dissimilar to those of given reference molecules. 
If no computational methods are applied in medicinal 
chemistry, scaffold hopping is mostly attempted on 
the basis of prior knowledge or chemical intuition. 
The assessment of the scaffold hopping potential of 
computational methods is also affected by the wide 
spectrum of structural relationships among scaf-
folds  [9]. For example, many formal scaffold hops 
might involve very similar structures (and are hence 
much easier to facilitate than others).

Key terms

Scaffold: Representation of the core structure of a 
compound. Scaffolds can be generated in different ways, 
for example, by removal of R-groups from compounds 
or by following retrosynthetic rules. The term is often 
synonymously used with framework.

Cyclic skeleton: A further abstraction from scaffolds. 
Cyclic skeletons are derived from scaffolds by converting 
all heteroatoms to carbon and setting all bond orders to 
one.

Chemotype: Defined here as a chemical core structure 
representing a class of compounds.

Privileged substructures/masterkeys: Rationalized 
in medicinal chemistry as core structures that are 
recurrent in compounds active against a given target 
family. Privileged structural motifs are thought to exhibit 
selectivity for a target family, but not specificity for 
individual family members.
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Different methodologies have been introduced 
for the organization and graphical analysis of scaf-
fold populations following molecular hierarchies 
including scaffold trees and hierarchical graph 

representations [10–12]. Among these are approaches to 
explore structure–activity relationships (SARs) at the 
level of scaffolds and predict new active compounds 
[11–13]. Furthermore, scaffold surveys have been carried 

Figure 1. Levels of chemical abstraction and analysis workflow (cont.). (B) Analysis workflow for an exemplary 
target set. The analysis workflow is reported using neurokinin 1 receptor ligands as an example. The number 
of compounds, scaffolds and CSKs is reported. Furthermore, the number of CSK and scaffold combinations that 
satisfy (white) or do not satisfy (gray) different filtering criteria is given. Structurally similar CSK combinations and 
CSK combinations representing pairs of compounds with at least tenfold potency difference were excluded. In 
addition, scaffold combinations representing less than eight compound pairs were not further considered. Finally, 
combinations formed by scaffolds representing compounds in low potency intervals were excluded from the 
analysis (see the methodological sections for further details). Numbers of all CSK and scaffold combinations that 
were considered for further analysis are reported in double bordered boxes. 
comb.: Combinations; cpds: Compounds; CSK: Cyclic skeleton; poss.: Possible; pot: Potency; SD: Structurally 
distinct; SS: Structurally similar.
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out for organic molecules [14], bioactive compounds [15] 
and drugs [16–18] and to compare different chemi-
cal libraries [19,20]. In one of these studies, scaffolds 
were isolated from sets of compounds that were active 
against different targets [15]. In this case, for 70 targets, 
50 or more scaffolds were found in known ligands, 
hence providing a first view of scaffold diversity among 
specifically active compounds.

In this study, we have systematically extracted scaf-
folds and CSKs from compounds with high-confidence 
activity data available in ChEMBL [21,22], the major pub-
lic repository of compounds from medicinal chemistry 
sources. Well-defined structural relationships between 
CSKs and scaffolds were explored and combinations 
of structurally distinct CSKs and scaffolds were iden-
tified. The potency range distribution of compounds 
represented by scaffolds and corresponding CSKs hier-
archy was determined and scaffolds/CSKs were assigned 
to corresponding potency intervals. Our analysis has 
revealed that structurally distinct scaffolds representing 
highly potent compounds frequently occur for unex-
pectedly large numbers of pharmaceutical targets, which 
has several implications for drug discovery and design.

Compound data mining
Our analysis was facilitated with in-house written Perl 
and Python scripts for compound retrieval and scaf-
fold/CSK generation and KNIME workflows [23,24] for 
scaffold/CSK analysis. From ChEMBL (version  17), 
compounds with activity annotations for human tar-
gets were assembled and organized into individual 
targets sets (with each set consisting of all compounds 
active against a given target). We have only considered 
compounds with precisely defined assay-independent 
equilibrium constants (K

i
 values) reported at the high-

est confidence level (ChEMBL confidence score 9). 
Compounds with multiple activity annotations for the 
same target were only selected for further analysis if all 
values fell within one order of magnitude (then, the 
average potency value was calculated as the final activity 
annotation). Depending on its degree of promiscuity, 
a compound might be assigned to multiple target sets.

From all qualifying compounds, BM scaffolds were 
isolated and for all scaffolds, the corresponding CSKs 
were generated. Only target sets containing at least 
ten different BM scaffolds were retained for further 

analysis. On the basis of these selection criteria, a total 
of 72,254 compounds with activity against 317 dif-
ferent targets were obtained (forming 317 target sets). 
These compounds yielded a total of 31,638 scaffolds 
and 20,536 CSKs over all target sets (counting mul-
tiple occurrences) and comprised 16,899 and 8704 
unique scaffolds and CSKs, respectively. Out of all 
31,638 scaffold instances, 22,067 (69.7%) represented 
only a single active compound while the remaining 
9571 scaffolds represented multiple compounds (on 
average, 5.2 compounds per scaffold). Furthermore, 
of all 20,536 CSKs, 15,300 (74.5%) represented a 
single scaffold and the remaining 5236 CSKs multiple 
scaffolds (on average, 3.1 scaffolds per CSK).

Scaffold & cyclic skeletons combinations
For all scaffolds and CSKs, pairwise comparisons were 
systematically carried out and all possible combinations 
of different scaffolds (scaffold layer) and CSKs (CSK 
layer) were obtained, as illustrated in Figure 1A. Each 
CSK combination covered varying numbers of scaffold 
combinations. Each scaffold in a given combination 
was required to yield a different CSK. The resulting 
scaffold and CSK layer contained a total of 4,837,969 
and 2,325,241 unique scaffold and CSK combina-
tions, respectively. Figure 1B summarizes the analysis 
protocol and provides a representative example. 

Structural relationships
We focused our analysis on structurally distinct scaf-
folds and CSKs. Hence, all enumerated CSK combina-
tions were evaluated according to predefined structural 
rules, as illustrated in Figure 2. Differences in topology 
and ring numbers, substructure relationships and CSK 
size restrictions were considered as criteria to identify 
combinations of structurally distinct CSKs. Combi-
nations of different CSKs were categorized as ‘struc-
turally distinct’ or ‘structurally similar’. The latter 
category was not further explored in our analysis. 

Two CSKs were considered to be structurally distinct 
if they contained different number of rings and if they 
were not involved in a substructure relationship (i.e., 
a CSK was not a substructure of another). CSKs with 
substructure relationships were only considered struc-
turally distinct if the size (number of carbon atoms) of 
one CSK was at least twice the size of the other CSK, 
as illustrated in Figure 2. In addition, CSKs/scaffolds 
consisting of only a 6-membered ring (e.g., benzene) 
were removed because of their very large frequency of 
occurrence. By definition, combinations of structurally 
distinct CSKs meeting these criteria exclusively cov-
ered combinations of structurally distinct scaffolds. 
Because all structural comparisons were carried out in 
a pairwise manner, CSK and scaffold pairs represented 

Key terms

Scaffold hopping: Term introduced in the context of 
computational (virtual) compound screening to describe 
the ability of computational methods to identify specifically 
active compounds containing different scaffolds.

Promiscuity: Defined as the ability of small molecules to 
specifically interact with multiple biological targets.



Figure 2. Identification of structurally distinct cyclic skeleton combinations. Shown are two structurally similar 
(A↔B, A↔C) and two structurally distinct cyclic skeleton combinations (A↔D, A↔E). The underlying structural 
rules are summarized.
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the basic data unit for our analysis. Pairs of structur-
ally distinct CSKs or scaffolds according to the crite-
ria detailed above are designated in the following as 
‘structurally distinct pairs’.

A total of 1,737,599 structurally distinct CSK and 
4,340,548 scaffold combinations were obtained from 
compounds active against 315 targets.

Potency range assignment
For each CSK and scaffold, potency values from all cor-
responding compounds were assembled and the CSKs 
and scaffolds were assigned to potency intervals cover-
ing the entire potency range populated with preselected 
ChEMBL compounds. Each CSK and scaffold was 
assigned to potency intervals into which at least one of 
its compounds fell. Hence, a CSK and scaffold might 
be assigned to different intervals, and counted several 
times, depending on the potency distribution among its 
compounds. Often, multiple compounds represented by 
a CSK or scaffold were observed to fall into the same 
potency range. Out of all 31,638 scaffolds, approximately 
80% represented compounds falling into a single potency 

interval. The remaining 6465 scaffolds represented com-
pounds with potency values falling into multiple inter-
vals, with the number of intervals ranging from two 
to ten. In addition, of all 20,536 CSKs, approximately 
69% covered compounds in a single potency interval, 
and the remaining 6433 CSKs represented compounds 
with potency values in multiple intervals (with the num-
ber of intervals again ranging from two to ten). This 
global distribution resulted from summarizing potency 
range assignments that were separately carried out for 
each individual target set. In Table 1, the potency range 
distribution of compounds, scaffolds and CSKs over all 
target sets is reported. As can be seen, large numbers of 
CSKs and scaffolds were assigned to the submicro- to 
subnanomolar potency subrange, in particular, into the 
intervals ranging from [7–8) to [9–10), because of the 
represented highly potent compounds.

Structurally distinct CSK & scaffold 
combinations with similar potency
Next, CSK and scaffold combinations were assigned 
to potency intervals. For each CSK or scaffold 
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combination, corresponding compounds were required 
to have potency values within one order of magnitude 
(less than tenfold potency difference). The mean 
potency of all qualifying compounds represented by a 
pair of CSKs or scaffolds was calculated to assign the 
pair to a potency interval. A total of 1,079,281 structur-
ally distinct CSK and 2,422,712 scaffold combinations 

with similar potency were identified. These combina-
tions accounted for 62.1 and 55.8% of all structurally 
distinct CSK and scaffold combinations, respectively.

The number of compound pairs represented by each 
structurally distinct scaffold combination was also 
determined. Scaffold combinations representing at 
least eight compound pairs were frequently observed. 

Table 1. Potency range distribution.

Potency range Number of CPDs  Number of scaffolds Number of CSKs Number of TIDs

[12–13) 5 4 4 4

[11–12) 62 49 47 24

[10–11) 551 368 301 81

[9–10) 3819 2292 1777 196

[8–9) 13,142 7094 5142 264

[7–9) 18,696 10,089 7352 293

[6–7) 18,249 10,341 7792 310

[5–6) 13,053 7629 5972 301

[4–5) 3531 2241 1831 229

[3–4) 907 584 489 131

[2–3) 153 101 88 32

[1–2) 69 44 32 9

[0–1) 17 14 11 5

The table reports the global potency range distribution of compounds, scaffolds, CSKs and TIDs. A potency interval [X-Z) includes all pK
i
 values 

Y, with X ≤ Y < Z. Compounds, CSKs and scaffolds were counted multiple times if they occurred in multiple target sets and/or multiple potency 
intervals. Scaffolds and CSKs were assigned to a given interval if there was at least one corresponding compound with a pK

i
 value falling into 

the interval. A target set was assigned to a given interval if it contained at least one compound with a pK
i
 value falling into the interval.

CPD: Compound; CSK: Cyclic skeleton; TID: Target set.

Table 2. Distribution of structurally distinct cyclic skeleton/scaffold combinations.

Potency range Number of CSKs Number of 
SD_CSK_Cs 

Number of 
scaffolds

Number of SD_
Scaffold_Cs 

Number of 
TIDs

[12–13) 4 2 4 2 2

[11–12) 44 55 51 67 8

[10–11) 540 2111 669 3386 51

[9–10) 3286 45,637 4484 84,621 158

[8–9) 7763 216,479 11,247 443,507 236

[7–8) 1,1240 428,702 16,534 890,000 266

[6–7) 12,066 478,902 17,122 973,618 290

[5–6) 9180 266,303 12,306 486,939 272

[4–5) 3788 28,596 4845 45,075 192

[3–4) 637 1741 777 2478 85

[2–3) 83 172 95 229 11

[1–2) 29 67 34 91 4

[0–1) 4 2 6 4 2

The table reports the potency range distribution of SD_CSK_Cs and SD_Scaffold_Cs and the CSKs and scaffolds involved in these 
combinations. For each potency interval, the number of TIDs with at least one SD_CSK_C (and hence at least one SD_Scaffold_C) falling into 
the interval is given. 
CSK: Cyclic skeleton; SD_CSK_C: Structurally distinct CSK combination; SD_Scaffold_C: Structurally distinct scaffold combination;  
TID: Target set.



Figure 3. Targets with comparable distribution of cyclic skeleton combinations. For two exemplary target sets 
(ligands of the neurokinin 1 and 2 receptor), the number of compounds, CSKs as well as SD_CSK_Cs is given. In 
addition, the number of overlapping compounds and CSKs is given. The distribution of SD_CSK_Cs over the global 
potency range (pKi intervals) is reported in bar plots. 
cpds: Compounds; CSK: Cyclic skeleton; SD_CSK_C: Structurally distinct CSK combination; TID: Target set.
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In total, 259,101 of such combinations were identified 
in 238 target sets.

Table 2 reports the potency range distribution of 
all combinations over all target sets (the analysis was 
again separately carried out for each individual target 
set). Essentially, the entire global potency range was 
populated with varying numbers of structurally dis-
tinct CSK and scaffold combinations. The majority of 
combinations fell into the intervals ranging from [5–6) 
to [8–9) (submicromolar range).

High-potency CSK & scaffold combinations
Table 2 also reveals the presence of many combinations 
in the submicro- to subnanomolar potency intervals 
from [7–8) to [9–10). A total of 690,818 structur-
ally distinct CSK and 1,418,128 scaffold combina-
tions were identified in these intervals as high-potency 

combinations, which represented compounds active 
against 269 targets. From these combinations, a total of 
13,138 CSKs and 19,932 scaffolds were obtained. Thus, 
there were surprisingly large numbers of scaffolds avail-
able for many targets that represented highly potent 
compounds. In 40.3% of all scaffold combinations, the 
median potency for both scaffolds was at least submi-
cromolar (i.e., pK

i
 of 7 or greater; pK

i
 represents the 

logarithmic value of the equilibrium constant). These 
scaffold combinations were detected in 259 target sets.

Figure 3 shows the potency range distribution of 
structurally distinct CSK combinations for exemplary 
target sets (i.e., antagonists of the related neurokinin 
1 and 2 receptors). These sets were of moderate size 
consisting of 256 and 212 compounds, respectively. 
Differences in the potency range distribution become 
immediately apparent. For neurokinin receptor 2, most 



Figure 4. Structurally distinct scaffold combination (see facing page). An example of a structurally distinct 
scaffold combination (SD_Scaffold_C) from an adenosine A2a receptor ligand set is shown. The number of 
qualifying compound pairs (occurrences) yielding this combination is reported. In addition, for each scaffold, 
the number of compounds involved in this SD_Scaffold_C and their median potency is given. Representative 
compounds are shown. The scaffolds are highlighted. 
cpds: Compounds; SD_Scaffold_C: Structurally distinct scaffold combination; TID: Target set.
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of the CSK combinations were assigned to low-potency 
intervals. By contrast, for neurokinin receptor 1 most 
combinations fell into high-potency intervals. For 
example, 845 combinations represented compounds in 
the nano/subnanomolar interval [9–10). These combi-
nations involved 58 CSKs that represented 78 scaffolds 
and 154 compounds.

Table 3 reports the target sets containing the largest 
numbers of high-potency CSKs. All of these sets con-
sisted of compounds active against various G-protein-
coupled receptors. Other target sets with large numbers 
of high-potency CSKs included, for example, serine 
proteases and potassium channels. Figure 4 shows an 
example of a high-potency scaffold combination for 
ligands (antagonists) of the adenosine A2a receptor. 
These two structurally distinct scaffolds represented 
36 and 16 compounds, respectively, yielding median 
potency values in the low nanomolar range.

Furthermore, 117,436 scaffold combinations were 
identified in 187 target sets that were found at least 
eight times in compounds with high potency (i.e., 
pK

i
 of 7 or greater). These combinations contained a 

total of 13,016 scaffolds (representing multiple counts 
for different potency intervals). Most of the scaffold 
combinations (100,835) occurred in a single target set 
(i.e., the compounds represented by a given scaffold 
were only active against a single target). Only 7628 
combinations were detected in multiple (2–5) target 

sets. Figure 5 shows examples of dual-target scaffold 
combinations. For example, the scaffold combina-
tion in Figure 5A represented 42 compounds that were 
antagonists of the nociceptin and μ-opioid receptors. 
These compounds formed 301 pairs shared by these 
two target sets. The compound pairs displayed a dif-
ferent potency distribution for the two targets because 
they had overall higher (low nano- to subnanomolar) 
potency against the nociceptin receptor. Comparable 
observations were made for the scaffold combination 
in Figure 5B that represented 91 pairs of 32 antagonists 
shared by the serotonin 2A and 2B receptors.

Conclusion
We have carried out a comprehensive analysis of CSKs 
and scaffolds from the currently available spectrum 
of bioactive compounds, following the compound-
scaffold-CSK hierarchy. Scaffolds and CSKs were 
calculated to represent core structures of compounds. 
The major goal of our study has been to systematically 
determine how structurally diverse compounds with 
specific target activities are and how difficult it might 
be to identify different compound classes with a desired 
target activity. Our analysis is not the first scaffold sur-
vey reported, but probably the most comprehensive one 
to date. Moreover, at least two criteria set it apart from 
previous studies. First, we have focused the analysis on 
CSKs and scaffolds that are structurally distinct on 

Table 3. Top ten target sets with largest numbers of high-potency cyclic skeletons.

Target name Number of  
SD_CSK_Cs 

Number of CSKs Number of  
SD_CSK_Cs [HP]

Number of CSKs 
[HP] 

Histamine H3 receptor 89,453 512 75,285 475

μ-opioid receptor 81,862 537 48,582 410

Κ-opioid receptor 73,473 516 44,639 392

Dopamine D2 receptor 98,936 556 40,241 380

Serotonin 1a (5-HT1a) receptor 52,035 381 38,068 341

Cannabinoid CB2 receptor 75,477 462 40,806 334

δ-opioid receptor 63,472 468 33,559 326

Dopamine D3 receptor 52,374 419 31,373 321

Adenosine A2a receptor 101,474 543 27,539 306

Adenosine A3 receptor 80,068 482 29,238 297

Reported are the top ten target sets (represented by target names) with largest numbers of CSKs in high-potency intervals ([HP]) involved in 
the formation of SD_CSK_Cs, in other words, from [7–8) to [12–13). For each target set, the total number of CSKs and SD_CSK_Cs across 
the entire potency range and the number of CSKs [HP] and SD_CSK_Cs [HP] are reported.
CSK: Cyclic skeleton ; HP: High potency; SD_CSK_C: Structurally distinct CSK combination.
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Figure 5. Structurally distinct dual-target scaffold combinations. Two structurally distinct scaffold combinations (SD_Scaffold_Cs) are 
shown that represent compounds with dual-target activity. For each target set, the number of qualifying compound pairs (occurrences) 
and compounds involved in these pairs is reported. The overlap between these sets (compounds and pairs with dual-target activity) is 
given in white boxes. In addition, the target-dependent potency range (pKi) distribution of all compound pairs is reported (bottom). 
Dual-target SD_Scaffold_Cs originate from the (A) nociceptin/μ-opioid receptor and (B) serotonin 2A/2C receptor ligand sets. 
SD_Scaffold_C: Structurally distinct scaffold combination; TID: Target set.
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the basis of topological, substructure relationship and 
molecular size criteria. Second, we have assigned CSKs 
and scaffolds to potency intervals on the basis of the 
compounds they represent. In addition, we have exclu-
sively used high-confidence activity data and (assay-
independent) equilibrium constants as potency mea-
surements to ensure a high level of data integrity. From 
more than 70,000 qualifying compounds with activity 
against more than 300 targets, a pool of approximately 
17,000 unique scaffolds and approximately 9000 CSKs 
was obtained. The scaffold-to-CSK ratio was low, only 
approximately 2:1, indicating the presence of many dif-
ferent scaffolds. However, it was unknown how many of 
these scaffolds (and CSKs) might structurally be simi-
lar or analogous. By focusing the analysis on pairs of 
structurally distinct CSKs and scaffolds, we have iden-
tified 1,079,281 CSK and 2,422,712 scaffold pairs rep-
resenting compounds active against 315 targets. These 
structurally distinct pairs yielded a total of 20,272 
and 31,116 CSKs and scaffolds, respectively (multiple 
counts for different target sets). Thus, there were unex-
pectedly large numbers of scaffolds and CSKs involved 
in the formation of structurally distinct pairs for a large 
number of targets. These findings indicated that many 
pharmaceutical targets were capable of interacting with 
highly diverse compounds. For scaffolds and CSKs 

from structurally distinct pairs, the scaffold-to-CSK 
ratio was approximately 1.5:1, thus even smaller than 
the ratio calculated for target sets (see above). More-
over, when analyzing the potency range distribution of 
CSKs and scaffolds, we found that many structurally 
distinct scaffold pairs represented highly potent com-
pounds. Although one might perhaps expect that struc-
turally diverse compounds active against a given target 
might often be weakly potent (assuming that only a 
limited number of compounds could be optimized to 
yield high potency), the results of our analysis provide 
a different picture. In fact, we have found that multi-
ple high-potency CSKs and scaffolds originating from 
structurally distinct pairs were available for 269 targets 
with, on average, 74 scaffolds per target. Each of these 
scaffolds represented, on average, 2.2 compounds, typi-
cally with potency in the nanomolar range. Thus, for 
the majority of targets, high-potency scaffolds were 
detected that were structurally distinct from others.

Taken together, the results of our analysis make it pos-
sible to draw several conclusions. Many pharmaceutically 
relevant proteins are excellent small molecular targets for 
which structurally distinct and highly potent compounds 
are already available. Hence, it is likely that structurally 
distinct compound series can be developed as alternative 
drug candidates for such targets. Furthermore, scaffold 
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hopping exercises are likely to yield novel compounds 
in many instances. If a variety of structurally distinct 
scaffolds representing active compounds already exists, 
it should not be too difficult to identify additional ones. 
Moreover, the availability of limited compound infor-
mation for targets might not necessarily mean that they 
are poor small molecular targets (although this might 
also be true depending on the particular target). For 
many popular drug targets, biologically relevant chemi-
cal space is most likely not yet comprehensively explored. 
Hence, more chemical diversity would need to be con-
sidered in trying to identify novel chemical entities for 
targets for which only one or a few active chemotypes are 
currently available. There should be more structurally 
diverse active compounds to identify.

To aid in further analysis all scaffold sets and related 
information are freely available from the authors upon 
request.

Future perspective
Analyzing compound activity data following the 
compound-scaffold-CSK hierarchy makes it possible 
to explore core structures of bioactive compounds and 
their structural relationships. Furthermore, activity 
data can be taken into consideration. An increasing 
level of structural abstraction is required to assign com-
pounds to structural classes and organize them with 
respect to biological activities. Therefore, a systematic 
scaffold and CSK organization also provides a basis for 
the annotation of core structures with other biologi-
cal properties, in addition to potency and the genera-
tion of bio-chemical profiles of scaffolds with defined 
structural relationships. For example, metabolic sta-
bility, availability, pharmacokinetic and/or toxicology 
data might be collected for compounds represented by 
structurally distinct scaffolds sharing the same spe-

cific activity. The generation of such high-level pro-
files might aid in the selection of preferred compound 
classes for given targets. This should provide interest-
ing opportunities for future research, especially in the 
pharmaceutical industry where a wealth of biological 
and pharmacological data is typically available (as 
opposed to academia). Annotated compound-scaffold-
CSK hierarchies should provide valuable resources for 
compound selection and design, especially in light of 
our findings that many pharmaceutical targets are 
capable of recognizing structurally distinct compounds. 
Hence, a search for alternative compound classes with 
desirable property profiles might often be a meaning-
ful approach in the course of discovery projects. In 
addition, another opportunity for future research is 
provided by attempting to systematically complement 
a structural organization of scaffolds with chemical 
reaction information. This is an important aspect for 
compound development because molecular hierarchies 
generated in the context of scaffold analysis usually do 
not take reaction information into account. It follows 
that scaffolds often have different synthetic accessibil-
ity. Thus, complementing molecular hierarchies with 
reaction information should be an important step 
forward for the practice of medicinal chemistry.

It is conceivable that the scaffold-CSK universe 
representing currently explored biologically relevant 
chemical space could be integrated with high-level 
bio-chemical profiles, reaction schemes and target as 
well as structure–activity relationship information to 
yield advanced ontologies for future pharmaceutical 
research; a fairly ambitious, but not unrealistic goal.
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Executive summary

Compound data mining
•	 A comprehensive analysis of cyclic skeletons (CSKs) and scaffolds in current bioactive compounds has been 

carried out.
Scaffold & CSK combinations
•	 Structural rules have been formulated and applied to focus on structurally distinct pairs of CSKs and scaffolds.
•	 For hundreds of pharmaceutical targets, large numbers of structurally distinct CSK and scaffold combinations 

have been identified.
Potency range assignment
•	 In many instances, structurally distinct CSKs and scaffolds represented highly potent compounds.
•	 On the basis of these findings, many targets are permissive to structurally diverse highly potent compounds.
High-potency scaffold & CSK combinations
•	 A limited number of promiscuous scaffolds have been identified that yield highly potent compounds with 

activity against multiple targets.
Conclusion
•	 For many targets, it should be possible to evolve structurally distinct compound series into highly potent 

candidates.
•	 Computational scaffold hopping exercises might often be less challenging than generally assumed.
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Summary

A computational framework to characterize all sca�olds and cyclic skeletons from

currently available bioactive compounds and analysis of their structural relationships

and potency distribution has been presented. A total of 72,254 qualifying compounds

with activity against 317 targets served as an initial pool from which 31,638 sca�olds

and 20,536 CSKs were extracted. 69.7% of sca�olds represented a single compound

and 74.5% of CSKs represented a single sca�old, providing a strong evidence that

most of the sca�old and CSKs are not extensively explored. Each sca�old and CSK

was assigned to potency intervals into which at least one of its compound fell. Most

of them fell in high potency ranges, indicating the availability of many sca�olds

derived from highly potent compounds.

All possible combinations of di�erent sca�old and CSKs were generated and

structural rules were de�ned to identify\structurally distinct pairs". Structural rules

were based on comparisons of topology, ring numbers and substructure relationships

with size restrictions. A total of 4,340,548 and 1,737,599 structurally distinct scaf-

fold and CSK combinations were obtained, respectively. Individual \structurally

distinct pair" was also assigned to potency intervals, if corresponding compounds

had less than tenfold di�erence in their potency. A qualifying pair thus represents

an instance of structurally distinct series of compounds sharing similar activity, a

typical sca�old hopping instance. Of all the structurally distinct sca�old and CSK

combinations reported above, 55.8% and 62.1%, respectively had similar potency,

and thus, supposed to be of high sca�old hopping potential. Furthermore, 1,418,128

structurally distinct sca�old and 690,818 CSK combinations fell in high potency

intervals of submicro- to subnanomolar ranges, i.e., from 7 pKi to 9 pKi.

My major contributions to this work have been de�ning the structural rules

for �ltering structurally distinct sca�old combinations and identifying compounds

represented by them, globally as well as in individual targets. Also, I have carried

out the frequency and potency distribution analysis of structurally distinct sca�old

combinations.

Our analysis clearly indicates the existence of a large number of structurally

diverse sca�olds representing highly potent compounds active against many phar-

maceutical targets. The development of structurally distinct compound series to

search for alternative drug candidates for such targets thus most likely will yield
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successful outcome. In the next chapter, we will focus on another important appli-

cation of sca�old concept, identi�cation of privileged substructures.
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Chapter 3

Privileged Structural Motif

Detection and Analysis Using

Generative Topographic Maps

Introduction

Privileged substructures represent the core structural unit found frequently among

compounds active against a given target family and hence are believed to play a ma-

jor role in their biological activity. They are thought to be selective towards a given

target family but show promiscuity within members of the target family. Identi�ca-

tion of privileged substructures in a group of compounds provides useful insight into

understanding the underlying molecular interactions responsible for their biological

activity. Because of the target family-speci�c nature of privileged substructures,

they can serve as promising starting points in design of novel active compounds for

a given target. The search for privileged substructures has therefore gained a lot of

interest over the years in compound library design and drug discovery.

Several methods have been applied for identi�cation of privileged substructures

and a number of privileged sca�olds have so far been reported for drugs as well

as natural products. Most of the earlier studies were sca�old-centric, and focused

mainly on exploring molecular core structures or sca�olds. However, with continu-

ous increase in the number of newly synthesized compounds, single molecular frame-

work might not be su�cient to de�ne the entire target-family-privileged structure.

Further, drugs or bioactive compounds have several functional as well as pharma-
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cophoric groups that contribute to the total free energy of drug-receptor complex,

consequently a�ecting their activity. Sca�olds that were designated as \privileged"

were often also found to be active against targets from other families as more com-

pounds containing these sca�olds were synthesized and tested. It can be reasoned

that instead of a single sca�old, a group of structurally related or speci�cally substi-

tuted similar sca�olds might be associated with molecules preferentially interacting

with a given target family.

In this study, we demonstrated the application of GTM to prioritize compounds

representative of target superfamilies and subsequently extract privileged structural

motifs from them. Compounds projected onto GTM landscape were grouped to-

gether in the same or nearby nodes if they were structurally related, i.e., if they

have similar responsibility vectors. Regions of the map that were preferentially

populated by compounds active against speci�c target superfamily were extracted

to explore any common substructures they shared. One of the major goals of the

current study is to assess GTM from medicinal chemistry viewpoint in its ability

to highlight emerging SAR patterns. A signi�cant di�erence of this approach from

most of the traditional sca�old-based techniques is that motifs here were extracted

directly from compound clusters obtained from GTM without any prior knowledge

of their classi�cation.
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and Alexandre Varnek*,‡

†Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische
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ABSTRACT: Identification of “privileged structural motifs” associated with specific
target families is of particular importance for designing novel bioactive compounds.
Here, we demonstrate that they can be extracted from a data distribution
represented on a two-dimensional map obtained by Generative Topographic
Mapping (GTM). In GTM, structurally related molecules are grouped together on
the map. Zones of the map preferentially populated by target-specific compounds
were delineated, which helped to capture common substructures on the basis of
which these compounds were grouped together by GTM. Such privileged structural
motifs were identified across three major target superfamilies including proteases,
kinases, and G protein coupled receptors. Traditionally, the search for privileged
structural motifs focused on scaffolds, whereas motifs were detected here without
prior knowledge of compound classification in GTMs. This alternative way of navigating medicinal chemistry space further
extends the classical, scaffold-centric approach. Importantly, detected motifs might also comprise fuzzy sets of similar scaffolds,
pharmacophore-like patterns, or, by contrast, well-defined scaffolds with specific substituent patterns.

1. INTRODUCTION

The concept of “privileged substructures” was originally
introduced by Evans,1 referring to core structures that are
recurrent in compounds active against a given target family and
therefore associated with that biological activity. Privileged
substructures are thought to be selective toward a given target
family but not individual family members. Compound library
design focusing on such target family-directed structural motifs
would be promising for identifying novel active compounds. The
search for privileged structures has therefore remained popular
over the years in library design and drug discovery. Most of the
earlier studies directly focused on exploring molecular core
structures or scaffolds, and a number of privileged scaffolds have
been proposed for drugs and natural products. However,
privileged scaffolds were often also found to be active against
targets from other families as increasing numbers of compounds
containing the scaffold were synthesized and tested. From a
mechanistic perspective, it is plausible to attribute a privileged
status not to a single scaffold but rather to a group of structurally
related scaffolds, hence representing a structural motif by a large
ensemble that also covers some variations.2 In addition to
classical scaffold-based analysis, approaches using decision trees3

have also been employed to identify substructures that
distinguish actives from inactives within a given compound
collection.4,5 In the current study, we report the application of
GTM6 to prioritize compounds from a large pool of target family

selective sets and subsequently identify privileged substructural
motifs on the basis of these compounds.
GTM is a machine learning method that allows nonlinear

mapping of a set of molecules from a multidimensional chemical
space to two-dimensional space for its visualization and analysis.
The grid defines a GTM-based landscape and comprises a
number of nodes onto which compounds are projected. In
addition to chemical space visualization, GTM has been
successfully used to build and optimize predictive models for
classification and regression analysis. The GTM-based models
have revealed performance levels comparable to other state-of-
the-art machine learning methods such as support vector
machines,7 naiv̈e Bayes8 classifiers, or random forests.9 As an
extension of the GTMmethodology, Stargate GTM (S-GTM),10

has been introduced to bridge between descriptor and activity
spaces and enable mapping of compounds from one space into
the other.
In our analysis, “universal” GTMs11 obtained from an

evolutionary map-growing procedure were used, as further
discussed below. These maps represented a subset of GTMs built
using an initial set of ISIDA molecular descriptors.12−14 So far,
reported proof-of-concept studies have focused on quantitative
validation of active vs inactive discriminatory power of GTM
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models for diverse biological targets not related to any of those
used for map fitting. This work continues the external validation
effort by assessing, for targets from different superfamilies, the
ability of the maps to discriminate between ligand classes.
Another major goal of the present work is analyzing GTM from a
medicinal chemistry perspective and assessing emerging
structure−activity relationships.
The GTM-based approach enabled prioritization of regions in

chemical space that were most representative of a given target
family and provided the opportunity to directly map compounds
and compare their assignment to individual nodes. Mapping
aided in the prioritization of compounds primarily directed
against a given target family and provided a basis for the
subsequent extraction and visualization of key structural patterns
akin to privileged substructures.

2. MATERIALS AND METHODS
2.1. Compound Data Sets. Our web server for virtual

screening15 was updated with the ChEMBL16 release 20 entries,
serving as a large compound background set for analyzing ligands
of different target superfamilies highlighted in various activity
class landscapes (vide inf ra). Specifically, subsets of compounds
with well-defined activity (Ki and/or IC50) values against human
targets were assembled from ChEMBL. Target and family
information was curated by combining the classification schemes
of ChEMBL and UniProt.17 Compounds with no information
concerning the year of entry into the database were discarded.
This resulted in a total of 152,274 compounds active against 1464
targets.
2.2. Generative Topographic Mapping. GTM is a

method of nonlinear mapping of data points from a multidimen-
sional chemical space to a two-dimensional space. The
probabilistic topology-preserving characteristic of GTM has
made it a popular tool for data analysis and chemical
visualization. Furthermore, it has been used to build successful
classification and regression models. The algorithm inserts a two-
dimensional “rubber sheet”-like manifold into the initial
descriptor space in order to reproduce the best data by a
simulated probability distribution function. The latter is
represented by an ensemble of Gaussian functions located at
the nodes of a two-dimensional grid related to the manifold.
Distortion of the manifold is controlled within the limits of a
predefined set of parameters. Finally, the molecules are projected
with a given probability onto each node of the manifold which
then is then projected onto a two-dimensional latent space in
which a molecule is associated with one or more nodes.
For each moleculeMmapped onto GTM, a probability matrix

R(M, K) is calculated which gives the probability ofM residing in
node K, i.e., the responsibility of node K toward molecule M.
Generally, the responsibility of a molecule may be distributed
across several nodes. The overall probability to see a molecule
anywhere on the map, i.e., ΣKR(M, K) is always equal to 1.0.
The set of compounds S residing in a node K is represented by

cumulated responsibilities of K toward all of its members, ρ(S,K)
= ΣM∈SR(M, K). It represents the density distribution or fuzzy
membership of compounds in a set in a particular node of GTM.
Here, ρ(S,K) defines the node-bound density distribution of the
compound set S.
2.3. GTM Generation and Validation. The manifolds used

in this work have been developed and validated previously. In this
section, we provide a brief reminder of earlier reported
methodology. An in-house ISIDA-GTM10,18−20 tool was used
to build the maps and to develop GTM-based classification

models. An evolutionary algorithm-based approach was
implemented in order to optimize the parameters required for
GTM setup as reported.2,11 The chromosome vector encoded
the current choice of operational parameters. These are a type of
ISIDA descriptors,12−14,21 number of nodes, number of radial
basis functions (RBF) defining the manifold, and their width, the
regularization coefficient. In addition, a set of compounds called
“frame set” is also included in the chromosome, which defines the
reference frame for fitting the manifold. Construction of the
manifold is done in an unsupervised way, meaning the “frame
set” compounds need not be labeled with specific properties. The
“frame set” compounds thus only span the relevant chemical
space. Several “frame sets” were therefore used to allow the
algorithm to span different chemical space zones and select the
best quality maps. In order to assess the quality of the maps, a
GTM-based regression model was generated for a separate set of
compounds called “selection sets” that are labeled with
experimental property values (here, pKi values). For each
selection set, the model produces a cross-validated (3-fold)
prediction of the property. The predicted values were then
compared to their experimental values, and cross-validated
determination coefficient Q2 is obtained. The mean of all set-
specific Q2

finally served as the score to assess the fitness of the
map.
Finally, five maps with good fitness scores were sent to the last

stage, whereby they were validated using an external set of
compounds called “challenge sets”. This validation step was
carried out to see if new compounds can be well projected onto
the generated maps. Two-thirds of the “challenge sets” is used to
train the model, i.e., color the map by their property to build the
activity color map (ACM). The remaining one-third was then
used as a test set, whereby they are classified as active or inactive
using the approach reported in ref 18. The process was repeated
three times, so that each “challenge set”molecule gets a predicted
class value. The final prediction was taken as the one that was
obtained in at least two of the three iterations. A cross-validated
balanced accuracy was calculated by comparing predicted and
actual classes of the compounds in “selection sets”. The maps
with higher cross-validated balanced accuracy values were able to
achieve a larger number of correctly predicted properties and
were prioritized as good quality maps. Maps 2, 3, and 5 have been
selected for this work.

2.4. “Universal” GTMs for General, Polypharmacolog-
ically Competent Mapping of Drug-Like Space. Previously
published “universal” GTMs resulted from a quest to develop
consensus GTMs with “polypharmacological competence”, i.e.,
the ability to render, on the same map, multiple property
landscapes associated with diverse biological activities. The
construction of a maptechnically, fitting of its manifold
(“rubber sheet”) in the original descriptor spaceis an act of
unsupervised machine learning. Manifold construction relies on
a “frame set” of compounds (marketed drugs, biological
reference compounds, compounds from various databases like
ChEMBL, PubChem,21 and ZINC22) chosen such as to span a
maximum of the relevant drug-like chemical space zones, without
the need to know or specify other experimental properties.
Subsequently, supervised generation of property-specific models
can be achieved by “coloring” the map by various properties or
activities associated with specific compound series. The latter are
called “selection sets”, which are not mandatorily overlapping
with frame sets. Eventually, these “colored” activity23 or
classification11 landscapes are challenged to serve as predictors
for external compounds co-localizing on them.
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The central idea behind the conception of “universal” maps
was thus to select, using an evolutionary algorithm,24 those
manifolds which passed a maximum of colored landscape-based
predictive tests.11 Selection was done out of a large number of
possible manifolds, built in one of 39 eligible ISIDA descriptor
spaces12−14,25 with differently sized node grids.
Finally, the top five mapscorresponding to five descriptor

spaces given in Table 1produced by the evolutionary
algorithm were selected and used for predictions.

The predictive challenges mainly involved testing the ability of
high scoring GTMs to classify active vs inactive compounds for
>400 targets, discriminating ligands based on their preferred
target family, and comparing chemical space coverage for related
targets, yielding encouraging results. Taken together, the findings
suggested that “universal” GTM successfully integrated property
distributions with the “geography” of 2D chemical space
projections. Further, they are capable of handling large data
sets. In an earlier study, ∼1.47 million compounds were mapped
onto the universal GTM.11 The present work mainly aims
following additional external validation tests of the mapsto
heuristically analyze the medicinal chemistry “knowledge”
behind this in silico view of drug-like chemical space.
2.5. GTM-Based Classification Models. A validation

aspect not fully addressed previously is the ability of universal
maps to discriminate between ligand sets associated with specific
target families and other families belonging to the same
superfamily. This “family within superfamily” classification is a
more challenging task than the previously validated separation of
ligand sets for different superfamilies.
Therefore, for each target family within its respective

superfamilyaccording to the ChEMBL ontologyavailable
ligands were grouped together in “family sets”. For example, the
tyrosine kinase (TK) family set regroups all inhibitors having a
reportedKi or IC50 value for at least one human tyrosine kinase in
ChEMBL. For each superfamily composed of N target families
(only families with associated family set sizes of >50 distinct
compounds were retained), all N(N − 1)/2 pairwise interfamily
discrimination challenges were performed, using a standard 3-
fold cross-validation scheme. The current pair of family sets was
merged into a “color” set where members of either family set
were given different class labels 1 or 2. Should the same

compound be active against targets from both families, it would
appear twice in the color set, with both labels, indicating a
genuine overlap of the family-specific chemical space zones.
Iterative “coloring” of an activity class landscape by two-thirds of
the color set was followed by predictive assignment of class labels
of the left-out one-third of the color set compounds, with a
correct prediction meaning that class separation was effective.
Representative families and the number of associated com-
pounds are given in Table 2.

Classification landscapes were colored to distinguish regions
of the map corresponding to two given classes (red for class “‘1”;
blue for class “2”). The node color of the classification landscape
was determined by the class with the majority of compounds
assigned to a given node. The class label of a test compound is
then extrapolated from the nodes onto which their responsibility
distribution will “position” it. Model performance was evaluated
by balanced accuracy calculated as follows:

=
+

+
+

BA
0.5 TP

TP FN
0.5 TN

TN FP
where, TP, TN, FP, and FN are true positives, true negatives,
false positives, and false negatives, respectively.

2.6. Privileged Responsibility Patterns. Each compound
mapped onto a GTM is characterized by its responsibility vector.
Compounds with similar responsibility vectors are positioned
close to each other in the map, complying with the neighborhood
principle,23 and have similar values of initially calculated chemical
descriptors. Responsibility vectors are real-value vectors, and the
chance of finding two or more molecules with strictly identical
responsibility vectors is very low. A straightforward method to
regroup compounds with nearly identical responsibilities is cell-
based clustering in responsibility vector space, i.e., tessellating the
responsibility vector space into a grid of cubic “cells” and
assuming compound members of a same cell being representa-
tives of a common responsibility pattern (RP). Thus, the RP of
the compound can be instantly determined by rounding up26 its
responsibility vector. Compounds that have common responsi-
bility patterns are clustered together in the map and provide a
basis to further analyze groups of related compounds.
In our analysis, an RP was considered “privileged” by a target

(super)family if it characterized a large fraction of compounds
belonging to that target (super)family and if its global occurrence
rate in the “default” set of compounds was significantly lower.

Table 1. Top Five Universal GTMs and Underlying
Descriptor Spacesa

map descriptors size #RBF
RBF
width

1 pharmacophore-colored atom-centered ISIDA
fragment counts, based on sequences of atoms and
bonds of fixed length, covering first and second
coordination sphere

40 16 1.0

2 CVFF force field type colored ISIDA counts of atom
pairs at 1−5 bonds apart, including interposed
bond information

32 19 0.9

3 as above, but without bond information 39 17 1.1

4 ISIDA pharmacophore-colored counts of atom pairs
found at 1−5 bonds apart, including information on
bonds nearest to terminal atoms

32 17 0.6

5 ISIDA pharmacophore triplets, with edges of
topological distances 3 and 4

40 15 0.2

aReported are the descriptor space and size of the top five universal
maps obtained from an evolutionary optimizer. The size refers to the
number of nodes defining the edge length of the square grid
representing the GTM. Also reported is the size of the grid locating
the radial basis functions (#RBF) and its width.

Table 2. Target Family-Based Compound Data Setsa

superfamily target family abbreviation #CPDs

proteases serine proteases Ser 7585
metallo proteases Mmp 4131
cysteine proteases Cys 3227
aspartic proteases Asp 3068
threonine proteases Thr 165

kinases serine threonine kinases SerThr 10,804
tyrosine kinases Tyr 9907
PI3/PI4 kinases PI3/4 1982

GPCRs short peptide receptors Sho 14,472
monoamine receptors Mon 14,101
lipid-like ligand receptors Lip 7613
nucleotide-like receptors Nuc 5811
chemokine receptors Che 5042

aReported is the composition of compound data sets assembled for
three target superfamilies.
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Here, the default set serving as the source for these occurrence
frequency baselines were the above-mentioned 152,274 (152 K)
CHEMBL compounds with high-quality activity data. In this
study, RPs privileged toward three superfamilies (protease,

GPCR, kinase) were identified following a sequence of steps
carried out using the KNIME27 data analytics tool. The 152 K
reference compound set was mapped (using map2 and map3,
respectively, Table 1) and compound RPs were extracted. Rarely

Figure 1. Performance of GTM classification models. The bar chart reports 3-fold cross-validated balanced accuracy of the GTM-based models in
classification of (a) protease inhibitors, (b) kinase inhibitors, and (c) GPCR ligands. The performance of maps 2, 3, and 5 are represented by color-coded
bars.
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occurring RPs seen in <50 compounds were not considered for
further analysis. This resulted in a total of 96,405 and 90,977
compounds represented by 367 and 448 responsibility patterns
in map2 and map3, respectively. The fraction of compounds
belonging to an RP out of all the compounds mapped onto the
GTM was calculated as the global fraction:

_ =f global (RP)
number of compounds matching RP

total compounds in map

Further, a local fraction f_local (RP, SF) was defined as the
ratio of compounds active against target superfamily SF that was
characterized by RP.

_

=

f local (RP, SF)
number of compounds in SF, matching RP

total compounds in SF

Finally, a “privilege” factor was calculated as follows, increasing
values of which meaning that RP is privileged by superfamily SF.

= _ _f fPF local (RP, SF)/ global (RP)

For each target superfamily, the top 10 RPs in the descending
order of their privilege factor were designated as PRPs. PF values
varied in the range of 3.2−3.4 (GPCRs), 3.7−7.0 (kinases), and
7.1−9.0 (proteases).
2.7. Privileged Structural Motif Detection from PRPs.

Compounds sharing a same map-specific, abstract RP will likely
contain some common underlying human-interpretable chem-
ical structural motif. This does not necessarily mean that they
share a common scaffold but might have a set of similar scaffolds
and perhaps also share some of the substituents around the
common scaffold(s). If an RP is privileged by the above-given
definition, i.e., if it is a PRP, then its underlying structural motif
also inherits the “privileged” status. The process of unveiling the
structural motif behind a PRP is thus translating the map-
encoded information into plain human knowledge, and ideally,

this knowledge shall be complementary to what humans can
learn by direct reasoning in terms of substructure. Our search for
the common structural motif in each privileged RP-specific
compound involved their systematic fragmentation followed by
visual inspection. Compounds were subjected to fragmentation
based on retrosynthetic (RECAP) rules using an in-house java
tool based on the OpenEye28 chemistry toolkit. The RECAP
fragmentation scheme involves systematic cleavage of the bonds
of compounds that represent predefined chemical reactions and
results in RECAP core and the corresponding substituent. As
such, a compound may be fragmented in more than one way
(following different RECAP rules) and hence may give rise to
more than one core and fragment combination. The number of
unique RECAP cores resulting from fragmentation of com-
pounds in a given PRP depends on their structural diversity.
Further, a single RECAP core can represent one or multiple
compounds of PRP. Any RECAP core that occurred in more
than one compound of a given PRP was designated as a
“frequent” RECAP core. Visual analysis of the frequent RECAP
cores was performed to identify common substructures. Such a
substructure was designated a “Privileged Structural Motif”
(PSM) shared by a majority of compounds within a given PRP.

3. RESULTS AND DISCUSSION

3.1. Analysis Concept. Compound locations on the two-
dimensional grid of nodes representing a GTM are defined by
responsibility vectors. Compounds with similar responsibility
vectors are expected to be related. Formally, responsibility
vectors were converted into a discretized form called a
responsibility pattern (RP), with compounds having the same
RP being members of a same cluster in a map.2 RPs were
examined for a “privileged status” with respect to a given target
family, and the top 10 representative patterns were privileged
responsibility patterns (PRPs). Regions of the map pointing at
PRPs were delineated, and corresponding compounds were
extracted. Finally, substructures that frequently occurred in

Figure 2. Classification landscapes of protease inhibitors. Shown are the classification landscapes for inhibitors of five protease families. Each map
separates regions predominantly occupied by protease inhibitors (blue; class “2”) from those populated by other ChEMBL compounds (red; class “1”).
The color intensity reflects the density of compounds, and empty nodes are rendered nearly transparent. Relative predominance of compounds is
indicated using the following color spectrum: red (class “1”); orange, yellow, green, blue (class “2”).
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molecules representing PRPs were designated as privileged
structural motifs if possible and further analyzed.
PRPs self-adaptively focus on the optimal “resolution” needed

to define privileged structural motifs. Sometimes, the common
signature of all members of a PRP is, indeed, a privileged
substructure or scaffold, but more often, it is a set of similar,
interchangeable scaffolds or, more general, a pharmacophore
pattern compatible with several, distinct carrier scaffolds.
Assessing the privileged status of RPs is a straightforward

statistical exercise, but privileged structural motifs must be
defined. Unlike in a chemist’s viewpoint, however, targets do not
adhere to the scaffold-centric view of ligands; rather, they
recognize compounds carrying various substituents. Accordingly,

going beyond scaffold analysis, it is challenging in compound
activity prediction to a priori suggest complex structural motifs
such as the ones highlighted by GTMs, which are selected on the
basis of their propensity to quantitatively explain a broad
spectrum of structure−activity data. Herein, identified PRPs and
the associated privileged structural motifs focus the analysis on
the most relevant structural patterns, going a step further than it
is possible based upon the facile, scaffold-centric view of the
structure−activity relationships.

3.2. Performance of Target Family Classification
Models. Figure 1 shows the classification performance reported
as cross-validated balanced accuracy for three universal GTM.
The settings used for each map are given in Table 1. Inhibitors of

Figure 3. Specificity of PRP compounds toward target families. The bar charts show distribution of compounds containing PRPs for proteases (top),
kinases (middle), and GPCRs (bottom). Individual target families are represented by color-coded bars.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00128
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

F



Figure 4. Privileged structural motifs. Given are the regions of GTM (map2) where compounds containing privileged structural motifs of (a) protease
inhibitors, (b) kinase inhibitors, and (c) GPCRs are localized. In each case, a frequent RECAP core is shown that represents an individual PRP and
contains a privileged structural motif highlighted in blue.
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different protease families were overall well separated with 3-fold
cross-validated balanced accuracy ranging from 0.6 to 0.85.
These findings matched expectations. Better than random
separation levels were mandatory, whereas perfect separation
of target family ligands is not a realistic expectation since cross-
family ligands are available. A partial overlap of family-specific
chemical space zones may be a natural consequence of cross-
family “promiscuity” and not necessarily a classification model
failure. Separation performance displayed only limited data set
dependence. Threonine protease inhibitors were an exception
because they were poorly predicted across all three maps. This
was due to the small size of this data set (comprising only 165
compounds) compared to the other protease families (for which
the sets were an order of magnitude larger). The problem was
due to compound set size imbalance in the context of aggressive
3-fold cross-validation: when the set of threonine protease
inhibitors was merged as class 1 members into a “color set”where
the number of class 2 members belonging to the other target
families wasmuch larger, random splitting into two-thirds vs one-
third led to subsets that were perfectly balanced with respect to
class 2 compounds but unbalanced with respect to the much
smaller number of class 1 examples. Without cross-validation, the
threonine protease inhibitors occupied a well-defined series of
activity “islands” on the map within the background of the entire
ChEMBL database (Figure 2).
Classification of serine/threonine vs tyrosine kinase inhibitors

was overall more challenging than the other two kinase family
pairings, with cross-validated balanced accuracy of 0.67. By
contrast, GPCR classification models reached balanced accuracy
scores as high as 0.88 and had an overall cross-validated balanced
accuracy of at least 0.75. Map2 and map3 performed equally well
throughout most of the classification trials and outperformed
map5. Accordingly, fragments annotated with force field scores
were preferred as descriptors over pharmacophore triplets for
classification of inhibitors and ligands of the three target
superfamilies. The results from classification models clearly
indicate that the universal maps used here were able to separate
regions of chemical space populated by compounds specific for
individual target families.
Figure 2 shows classification landscapes for the five protease

families obtained frommap2. Each map distinguishes the regions
of the landscape that are densely populated by compounds active
against the respective protease family (blue; class “2”) in contrast
to the rest of the ChEMBL compounds (red; class “1”).
The patches of yellow/green indicate the areas where the two

classes overlapmeaning that ligands associated with a given
target family have very near neighbors in ChEMBL not associated
with the same family. In this context, “associated” means that a
compound has been tested against at least one family member in
dose−response experiments. Therefore, there are possible
implications. The existence of nonassociated neighbors provides
an opportunity for virtual screening, unless these compounds
were found to be inactive in primary screens or at least not
interesting enough to justify a dose−response measurement
follow-up.
The presence of several dark blue zones shows that protease-

specific compounds were clustered together in the map, visually
illustrating the good predictive power of classification models. As
expected, positions of blue regions in each of the five maps were
distinct and indicated the presence of target family-specific
clusters of compounds. Serine proteases occupied a larger area of
the landscape compared to other family-directed compounds

because they represented the largest group and covered more
than 40% of all protease inhibitors.

3.3. Responsibility Patterns Privileged by Target
Superfamilies. The following reports the analysis of the RPs
selected for their high privilege scores with respect to either of
the three superfamiliesproteases, kinases, and GPCRs. Albeit
the RPs were, as mentioned, picked for their superfamily-related
privilege scores, further analysis will show that they often
“spontaneously” regroup ligands of specific target families within
the large superfamilyactually, an expected result, with
retrospect to the robust target family separation scores obtained
in quantitative validation, above.
Compound and target family distributions among PRPs of

protease, GPCR, and kinase inhibitors are monitored in Figure 3.
The bar plots for proteases indicate uneven distribution of PRPs
across inhibitors, ranging from 50 compounds for PRP1 to 1007
for PRP5. It was an interesting observation that the majority of
compounds for a given PRP were active against a single target
family, with few exceptions such as PRP5 and PRP10. Further,
PRPs of kinase inhibitors were dominated by compounds
belonging to one of the three kinase families. Actually, more than
99% of the kinase inhibitors displayed activity against some
representative of these three target families, which explains these
observations. The dominance of a single family for individual
PRPs was not the rule for the kinase superfamily, in contrast to
proteases where patterns were mostly family specific and GPCRs
where all patterns were family specific. All GPCR ligands with
PRP1 to PRP5 targeted the short peptide GPCR family, whereas
the majority of ligands for PRP6 and PRP7 were active against
nucleotide-like receptor GPCRs. For GPCRs and proteases, the
maps tended to show the existence of a privileged superfamily-
specific chemical subspace emerging as the union of an
essentially disjoint family-specific PRPs.
The kinase superfamily also defined a dedicated chemical

space zone, which was, however, less clearly subdivided into
family PRPs. This might result from the fact that mostbut not
allcurrently available kinase inhibitors are directed against the
ATP cofactor binding site, which is largely conserved across the
Tyr and Ser/Thr kinase families (and also bears resemblance to
ATP binding sites in other proteins). As a consequence, subsets
of ATP site-directed kinase inhibitors tend to be promiscuous
and frequently inhibit multiple kinases. Out of all the kinase
inhibitors included in our study, 9.2% inhibited at least three
targets and 73.5% were active against single kinase. The finding
that PRPs displayed specificity toward particular target families
provided corroborating evidence that grouping of active
compounds on GTM based on their RPs was meaningful.
Compounds associated with an PRP are likely to have similar
features and therefore would most likely bind to the same or
related targets.

3.4. Analysis of Extracted Privileged Structural Motifs.
The approach to subject active compounds to RECAP
fragmentation and subsequently visually analyze frequent
RECAP cores led to identification of several structural motifs
linked to privileged patterns. Figure 4 shows RECAP cores
containing privileged structural motifs mapped onto GTM
(map2) from which the PRPs were extracted. The RECAP cores
shown in Figure 4 are representative examples of most frequent
cores extracted from compounds associated with given PRPs,
with the common, strictly conserved part, the “privileged
structural motif” (PSM) being highlighted in blue. In clear, this
means that compounds within the given PRP all strictly conserve
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Figure 5. continued
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Figure 5. (a) Privileged structural motifs of protease inhibitors. (b) Privileged structural motifs of kinase inhibitors. (c) Privileged structural motifs of
GPCR ligands. Shown are the most frequent RECAP cores for each PRP of protease inhibitors with the associated PSM highlighted in blue next to
exemplary compounds illustrating the relevance of the PSM for inhibition. These exemplary compounds include classical types of inhibitors and drugs.
The last column is left blank if no such exemplary compound containing a given PSMwas selected and discussed in the text. If the reference compounds
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the highlighted privileged structural motif and are otherwise
structurally very similar to the nonhighlighted moieties.
Figure 5 shows for each highlighted PSM exemplary

compounds from the medicinal chemistry literature, if available.
These compounds include “classical” inhibitors that are
characteristic for specific target and current drugs. Thus, in
these cases, compounds of high medicinal chemistry relevance
were available that contained signature motifs identified by
responsibility patters. We emphasize that many active com-
pounds contain the core identified in our analysis. However, the
exemplary compounds shown in Figure 5 represent selected
“highlights” from the practice of medicinal chemistry that further
support the potential of GTM-based responsibility pattern
analysis. We also note that same PSM may occur in more than
one responsibility pattern (privileged or not); therefore, the
“reference” compounds picked from the literature may, but must
not, be a representative of the PRP used to highlight the PSM.
When this is the case, the reference compound will be marked by
an asterisk. Frequent RECAP cores for each target family PRP
(designated as P_PRP, G_PRP, and K_PRP) contained
structural motifs known to often occur in bioactive compounds.
The frequent RECAP cores for the top 10 PRPs of each family
are provided in Table S1 of the Supporting Information.
Except for P_PRP3, all highlighted structural motifs from

protease PRPs represented more than 70% of the protease
inhibitors for the respective PRP. P_PRP 1 and 6 characterized
known protease inhibitor types acting as chelating agents for the
catalytic Zn2+ ion in the active site of metalloproteinases.29

Hydroxamate-based inhibitors such as ilomastat30 and prinoma-
stat31 were among the first generation of matrix metal-
loproteinase inhibitors, whereas Ro 28-2653 exemplified an
inhibitor class based on the barbituric acid scaffold.32

Furthermore, RECAP cores of P_PRP 2 and 3 included lysine
and arginine residues and heterocyclic-substituted ketones,
providing an activated warhead for irreversible protease

inhibition. These basic aliphatic motifs are highly common
among inhibitors of thrombin-like serine proteases, for example,
in argatroban, an approved competitive thrombin inhibitor.33

Thrombin-like enzymes display a primary substrate specificity for
basic amino acids in the P1 position, i.e., the amino acid N-
terminal of the scissile peptide bond. The corresponding residues
such as arginine are recognition elements for the interaction with
the S1 binding pocket.34

P_PRP5 included a variety of peptide nitriles. Serine and
cysteine proteases are predestinated to be inhibited through a
covalent bond with the inhibitor because these proteases operate
via a covalent mode of catalysis. Accordingly, peptidomimetic
compounds with a carbonitrile moiety in place of the scissile
peptide bond were widely investigated as serine or cysteine
protease inhibitors and shown to form imidates and thioimidates,
respectively.35 Saxagliptin36 and vildagliptin, approved anti-
diabetic drugs, are representative examples of dipeptidyl
peptidase-4 inhibitors.37 Balicatib was developed as a potent
inhibitor of the cysteine protease cathepsin K38 but failed in
clinical trials. Isophthalamides were represented in PRP8 and
known to be inhibitors of memapsin 2,39 an aspartic protease
involved in Alzheimer’s disease. GRL-8234 displays an exemplary
three-winged isophthalamide with its three substituents
interacting specifically with the S3, S2, and S1 pockets of
memapsin 2.40

Furthermore, PRPs of kinases were also associated with typical
inhibitor scaffolds. For K_PRP1, a class of pyrazolo[3,4-
d]pyrimidine derivatives exemplified dual inhibitors for Src and
Abl tyrosine kinases.41 Co-crystallization of pyrazolopyrimidines
bound to protein kinases indicated a mode of action, which was
based on a specific disruption of a glutamine−lysine interaction,
resulting in an inactive conformation of the kinases.42 The
highlighted structural motif was contained in 99% of molecules
defined by K_PRP1. K_PRP2 consists of halogenated 2-amino-
5-aryl-3-benzyloxypyridines. Kinases are activated by the

Figure 5. continued

are actually members of the PRP, they are highlighted by an asteriskotherwise, they map to some other RP supporting the current PSM or they were
not within the data set analyzed herein.

Figure 6. Privileged and other common structural motifs for PRP7 of GPCR ligands. The privileged structural motif and three other common motifs
derived from G_PRP7 are given with their frequency of occurrence in compounds with G_PRP7 membership.
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phosphorylation of the activation loop, which acts as an
autoinhibitor in its dephosphorylated state.43 The potency and
selectivity of crizotinib, approved for the treatment of nonsmall
cell lung carcinoma, results from key interactions within the
lipophilic pocket of its target. The (R)-methylbenzyloxy moiety
of crizotinib binds to the activation loop and stabilizes the
dephosphorylated state. Thus, the kinase remains inactive.44

Isothiazoles, as represented in K_PRP9, have been investigated
toward their inhibitory potential on MEK1, a serine/threonine
specific protein kinase.45

Moreover, the strategy of modifying natural peptide hormones
as inhibitors of GPCRs was exemplified by the RECAP cores
associated with of G_PRP1 and 3.46 A bicyclo[3.1.0]hexyl urea
series was reported for its inhibitory potential against melanin-
concentrating hormone receptor-1,47 whereas arylpiperazines
with a dipeptide substitution showed inhibitory activity against
melanocortin-4 receptors.48 The bicyclic adenine core and the
ribose ring, presented in G_PRP7, are key features of adenosine
receptor agonists. UK-432097 was developed as a highly selective
adenosine A2A receptor agonist and was later discontinued from
clinical trials.49 G_PRP10 was associated with fragments of
sulfonamides connected to a tricyclic (aza)naphthalene scaffold.
The acylsulfonamide MF498 is an example for an E-type
prostanoid receptor 4 inhibitor.50

The structural motifs that are discussed above were found to
be most ubiquitous among individual PRP members. As
mentioned earlier, they might be found in all or only a subset
of PRP-represented molecules. The frequency of their
occurrence given in Figure 5 ranged from 38.8% (P_PRP8) to
as high as 100% (P_PRP1, 2, and 6). On a closer look, it was
observed that the compounds that lacked the highlighted
structural motifs often contained very similar motifs. Figure 6
lists other commonly seen structural motifs of G_PRP7
compounds that were either substructures of the identified
privileged motif or had minor structural differences.
Although the privileged structural motif represented nearly

half of the compounds in G_PRP7, it is evident that replacement
of oxygen by a sulfur atom in the ribose ring of this motif gives
rise to another motif representing 18.6% of the compounds.
Furthermore, another new motif obtained by entirely replacing
the ribose ring with bicyclo[3,1,0]hexane accounts for 25.5% of
all the compounds.
3.5. Evolution of Privileged Patterns in ChEMBL. As

demonstrated, privileged structural motifs identified by our
methodology were frequently reported in medicinal chemistry
literature to be specific for an inhibitor type and, in a number of
instances, were also found in approved drugs. We reasoned that it
would also be interesting to examine how these structural motifs
might have evolved in ChEMBL. This would be helpful to
determine at what stage of chemical exploration inhibitors
containing these specific structural motifs occurred. Therefore,
for each PRP associated with a privileged structural motif, the
occurrence of corresponding compounds in ChEMBL was
monitored on a time course (Figure 7). It is evident that P_PRP5
experienced much interest in protease inhibitor research because
the majority of inhibitors reported over the past decade included
P_PRP5-associated motifs. Also, most of the compounds with
P_PRP2 and 3 were reported in single year (2006 for P_PRP2)
or two years (2005 and 2008 for P_PRP8), but their popularity
decreased in subsequent years.
Although kinase research dates back to the early 1980s, rapid

exploration of kinase inhibitors occurred more recently
beginning in 2004. Interestingly, compounds with isothiazole,

as represented by K_PRP9, which are the most extensively
explored kinase inhibitors, were reported in 2006. In case of
GPCRs, compounds associated with individual PRPs were
continuously explored and reported over time. GPCR ligands
containing arylpiperazine (G_PRP3) and adenosine derivatives
(G_PRP7) have been particularly popular candidates for
compound design over the past few years.

4. CONCLUSIONS
Althoughmany studies have been carried out in the past to search
for and describe privileged structural motifs, they were mostly
scaffold-centric. We have addressed the task of target-family
specific pattern detection in molecules using universal GTMs,
which currently are among the polypharmacologically most
competent 2Dmapping representations of drug-like space. In the
present work, accurate target family-based classification of
inhibitors and ligands of three major super families (protease,
kinase, and GPCR) was carried out to further externally validate
the use of universal GTMs. Classification tasks consistently
returned cross-validated balanced accuracy (BA) levels well
above random classification, with the exception of a single small
data set for which cross-validation led to substantial size
imbalance.
Compound location on GTMs was defined on the basis of

their responsibility vectors, and thus compounds with similar
responsibility vectors were expected to be related. Responsibility
patterns, a discretized from of responsibility vectors, can be used
for rapid clustering of related compounds. A frequency analysis-
based prioritization of responsibility patterns was done in the
quest for PRPs that were much more frequent within actives of a
given target superfamily than within the entire compound
background universe.
RECAP fragmentation permitted the identification of frequent

cores, and the subsequent medicinal chemistry analysis of

Figure 7. Evolution of PRPs in ChEMBL. Shown are heat maps
representing the frequency of compounds containing privileged
structural motifs monitored in ChEMBL over time. Cells are color-
coded according to compound numbers using a spectrum from white to
light blue to dark blue.
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individual PRP compounds led to the detection of privileged
structural motifs that are very often characteristic of target family
directed compounds, thus lending credence to the medicinal
chemistry relevance of RP and PRP exploration on the basis of
GTMs. Such motifs were reported in medicinal chemistry
literature to be characteristic features of active compounds and
even approved drugs. The results have shown that the GTM-
based approach was suitable to prioritize compound clusters that
were indeed representative of a target family. Universal GTMs
might thus be considered to represent a reasonably educated
“expert system” for medicinal chemistry capable of generating a
detailed view of key compound classes, without any a priori focus
on the nature of privileged structural motifs. Although a single
RECAP core was often sufficient to detail the structural motif
associated with a given PRP, patterns reconciling several related
RECAP cores were also detected. This might be particularly
useful when analyzing very large compound collections where
visual inspection of individual molecules is nontrivial.
Furthermore, we have shown that grouping of compounds
based on RPs and PRPs goes beyond classical scaffold-based
clustering because GTMs account for relationships between
similar scaffolds. In cases where PRPsmatchedmultiple scaffolds,
they were typically distinguished by only small chemical
modifications. Taken together, these findings demonstrate that
GTMs accounted for a spectrum of patterns, scaffolds, and
privileged structural motifs that were characteristic of com-
pounds active against individual target families.
Two key benefits of the GTM-based view of privileged

“patterns” could be delineated:

1. Out of the many possible compound clustering
approacheswhich often tend to produce highly
diverging clustering schemesthis is one of the rare
which can be objectively defended on the basis of the
excellent behavior of the underlying maps in quantitative
classification and regression models. The maps used here
have been extensively shown to support predictive, robust
activity and class “landscapes”with respect to a plethora of
different bioactivities and target class associationsboth
in previous work and in the present article. Therefore,
compound clusters as presented by responsibility patterns
are not just “some” way to regroup compounds together,
given some descriptor space, dissimilarity metric, and
clustering algorithm. They are produced by a mapping
scheme evolved in order to be, and quantitatively proven
to be, neighborhood behavior-compliant, which is rarely
the case in clustering exercises. Furthermore, as GTMs are
“fuzzy” counterparts of Kohonen maps, of tunable
fuzziness, they are intrinsically able to mimic any results
that might have been obtained by this “classical” and
widely accepted approach.

2. No human preconceptions are at the basis of the
highlighted patterns. Checking the “privileged” status of
a structural motif is, per se, a trivial taskin as far as,
however, a human agent considers checking the status of
that particular pattern. That is the key reason for the
popularity of the privileged scaffold approach: there is a
relativelylimited set of scaffolds to browse through and
to check, one by one, the privileged status of each
(provided there is agreement upon the definition of the
“scaffold” concept, for which several competing paradigms
coexist). Browsing through all the imaginable structural
patterns, e.g., sequentially asking all possible questions,

such as “is 1-aminoalkyl-substituted benzindole/imidazole
a privileged motif?” is practically not feasible. Yet, as in the
example above, the key structural motif causally related to
activity will most likely transcend the artificial scaffold/
substituent distinction, or the GTM-driven clustering has
the merit to propose key motifs out of the virtual infinity of
possibilities. RECAP analysis has been used in order to
inspect the content of the RP clusters according to the
conventional substructure-based medicinal chemistry
viewpoint and showed that these include, as already
discussed, both scaffold and substituent moieties or
regroup similar scaffolds into a same pattern if relevant.
It is not claimed herein that the highlighted patterns need
to be mechanistically relevant, but their relevance reposes
on the proven neighborhood behavior compliance, as
mentioned above.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jcim.7b00128.

Table S1 reports frequent RECAP cores for the top 10
privileged responsibility patterns of protease, kinase, and
GPCR. Raw data (compound SMILES, molecular
descriptor files) are available upon request. (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: bajorath@bit.uni-bonn.de (J.B.).
*E-mail: varnek@unistra.fr (A.V.).

ORCID
Dragos Horvath: 0000-0003-0173-5714
Jürgen Bajorath: 0000-0002-0557-5714
Alexandre Varnek: 0000-0003-1886-925X
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
S.K. thanks the Region Alsace for a Ph.D. fellowship. We are
grateful to OpenEye Scientific Software, Inc., for the free
academic license of the OpenEye Toolkits.

■ ABBREVIATIONS:
RP = Responsibility Pattern; PRP = Privileged Responsibility
Pattern; RECAP = Retrosynthetic Combinatorial Analysis
Procedure; GTM = Generative Topographic Map; SAR =
Structure−Activity Relationship; PSM = Privileged Structural
Motif

■ REFERENCES
(1) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger,
R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; et al.
Methods for Drug Discovery: Development of Potent, Selective, Orally
Effective Cholecystokinin Antagonists. J. Med. Chem. 1988, 31, 2235−
2246.
(2) Klimenko, K.; Marcou, G.; Horvath, D.; Varnek, A. Chemical Space
Mapping and Structure-Activity Analysis of the ChEMBL Antiviral
Compound Set. J. Chem. Inf. Model. 2016, 56, 1438−1454.
(3) Rokach, L.; Maimon, O. Data Mining with Decision Trees: Theory
and Applications; World Scientific: Singapore, 2014.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00128
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

M



(4) Rusinko, A.; Farmen, M. W.; Lambert, C. G.; Brown, P. L.; Young,
S. S. Analysis of a Large Structure/Biological Activity Data Set Using
Recursive Partitioning 1. J. Chem. Inf. Comput. Sci. 1999, 39, 1017−1026.
(5) Young, S. S.; Hawkins, D. M. Analysis of a 29 Full Factorial
Chemical Library. J. Med. Chem. 1995, 38, 2784−2788.
(6) Bishop, C. M.; Svenseń, M.; Williams, C. K. GTM: The Generative
Topographic Mapping. Neural Comput. 1998, 10, 215−234.
(7) Hearst, M. A.; Dumais, S. T.; Osuna, E.; Platt, J.; Scholkopf, B.
Support Vector Machines. IEEE Intell. Syst. their Appl. 1998, 13, 18−28.
(8) John, G. H.; Langley, P. Estimating Continuous Distributions in
Bayesian Classifiers. In Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence, Montreal, Quebec, Canada, August
18−20, 1995, pp 338−345.
(9) Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5−32.
(10) Gaspar, H. A.; Baskin, I. I.; Marcou, G.; Horvath, D.; Varnek, A.
Stargate GTM: Bridging Descriptor and Activity Spaces. J. Chem. Inf.
Model. 2015, 55, 2403−2410.
(11) Sidorov, P.; Gaspar, H.; Marcou, G.; Varnek, A.; Horvath, D.
Mappability of Drug-like Space: Towards a Polypharmacologically
Competent Map of Drug-Relevant Compounds. J. Comput.-Aided Mol.
Des. 2015, 29, 1087−1108.
(12) Ruggiu, F.; Marcou, G.; Varnek, A.; Horvath, D. ISIDA Property-
Labelled Fragment Descriptors. Mol. Inf. 2010, 29, 855−868.
(13) Varnek, A.; Fourches, D.; Horvath, D.; Klimchuk, O.; Gaudin, C.;
Vayer, P.; Solov’ev, V.; Hoonakker, F.; Tetko, I. V.; Marcou, G. ISIDA-
Platform for Virtual Screening Based on Fragment and Pharmacophoric
Descriptors. Curr. Comput.-Aided Drug Des. 2008, 4, 191.
(14) Varnek, A.; Fourches, D.; Solov’Ev, V.; Klimchuk, O.; Ouadi, A.;
Billard, I. Successful ″in Silico’’Design of New Efficient Uranyl Binders.
Solvent Extr. Ion Exch. 2007, 25, 433−462.
(15) Strasbourg Virtual Screening Web Server. http://infochim.u-
strasbg.fr/webserv/VSEngine.html (accessed July 1, 2016).
(16) Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.;
Hersey, A.; Overington, J. P.; et al. ChEMBL: A Large-Scale Bioactivity
Database for Drug Discovery. Nucleic Acids Res. 2012, 40, D1100−
D1107.
(17) Wu, C. H.; Apweiler, R.; Bairoch, A.; Natale, D. A.; Barker, W. C.;
Boeckmann, B.; Magrane, M. The Universal Protein Resource
(UniProt): An Expanding Universe of Protein Information. Nucleic
Acids Res. 2006, 34, D187−D191.
(18) Gaspar, H. A.; Marcou, G.; Horvath, D.; Arault, A.; Lozano, S.;
Vayer, P.; Varnek, A. Generative topographic mapping-based classi-
fication models and their applicability domain: application to the
biopharmaceutics drug disposition classification system (BDDCS). J.
Chem. Inf. Model. 2013, 53 (12), 3318−3325.
(19) Kireeva, N.; Baskin, I. I.; Gaspar, H. A.; Horvath, D.; Marcou, G.;
Varnek, A. Generative Topographic Mapping (GTM): Universal Tool
for Data Visualization, Structure-Activity Modeling and Dataset
Comparison. Mol. Inf. 2012, 31, 301−312.
(20) ISIDA Fragmentor software, Laboratoire de Cheḿoinformatique,
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Figure 3.1 provided as the supporting information of the publication reports

the frequent RECAP cores for the top ten PRPs of protease, kinase and GPCR. It

should be noted that RECAP cores presented in Figure 5 of the publication are a

subset of the ones shown in Figure 3.1.

Figure 3.1: Frequent RECAP cores. The most frequent RECAP cores represented in top 10
PRPs of individual target superfamily (protease, kinase, and GPCR).

Summary

A conceptually di�erent approach to privileged substructure extraction has been

reported herein using GTM. Universal GTM was used in our analysis to map an ini-
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tial pool of 152,274 compounds from ChEMBL, from which the most representative

compound subsets were extracted for each of the three major target superfamilies

(protease, kinase, and GPCR). GTM-based classi�cation models were generated

to assess the ability of universal GTM to discriminate ligands of di�erent families

within a single superfamily. Classi�cation performance was consistently better than

random in all cases (balanced accuracy range: 0.6 to 0.85) except for threonine

protease inhibitors, which had low balanced accuracy due to its smaller set size

compared to other proteases. Accurate target family-based classi�cation suggested

that the GTM-based approach was suitable to prioritize compound clusters that

were representative of a target family.

A GTM landscape consists of a squared grid of \nodes" onto which compounds

are projected, on the basis of fuzzy compound to node association scores (responsi-

bilities). Each compound mapped onto a GTM is characterized by its responsibility

vector and structurally related compounds tend to have similar responsibility vec-

tors. In order to identify compound subsets representing common structural features,

responsibility vectors were converted into a discretized form called responsibility

patterns. Responsibility patterns were prioritized as \privileged" (PRP) towards a

target superfamily if they characterized a large fraction of compounds belonging to

that target superfamily but their global occurrence rate in the entire set of com-

pounds (152,274 ChEMBL compounds) was signi�cantly lower. Quantitatively, this

was done by calculating privileged factor score for individual responsiblity pattern

and assigning \privileged" status to the top ten scoring RPs for a given target su-

perfamily. Regions of GTM pointing to PRP were delineated and corresponding

compounds were extracted. Interestingly, majority of PRPs of protease and GPCR

were target-speci�c, i.e., all compounds within a PRP belonged to single target fam-

ily. However, all of the PRPs of kinase inhibitors represented at least two kinases.

PRP-speci�c compounds were subjected to fragmentation based on retrosyn-

thetic rules (RECAP), giving rise to a RECAP-core and substituent for individual

compound. This was followed by visual analysis of frequent RECAP-cores to iden-

tify \privileged structural motifs". Privileged structural motifs detected from our

methodology were reported in medicinal chemistry literature as characteristic fea-

tures of active compounds and even approved drugs.

Our study provides a dual-purpose application of \universal GTM":

(i) external validation of universal GTM-based models by assssing their ability to
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discriminate between ligand classes for targets from di�erent superfamilies.

(ii) analysis of GTM from medicinal chemistry perspective by assessing emerging

SAR patterns. We applied GTM to delineate and prioritize regions of chemical space

that were most preferred by compounds active against a given target superfamily.

This paved a way to directly focus such compound subsets and subsequently extract

privileged structural motifs from them. Our approach emphasizes on the idea that

privileged substructures need not necessarily be de�ned in terms of a single molecular

framework but might comprise fuzzy sets of similar sca�olds or pharmacophore-like

patterns.

My major contributions to this work have been identifying PRPs for individ-

ual target superfamilies based on compound distribution and frequency analysis in

universal GTMs and subsequently fragmenting the compounds within each PRP

following RECAP rules. Further, I have analyzed the speci�city of PRP compounds

towards di�erent target families within a given superfamily and monitored the evo-

lution of PRPs in ChEMMBL.

Herein, we presented the application of GTM to prioritize compound clusters

that are representative of a given target family and to extract of meaningful struc-

tural patterns relating to their biological activity. The probabilistic dimensionality

reduction technique provided by the GTM algorithm also serves as an interesting

platform for high-dimensional data visualization. In the next chapter, GTM has

been utilized as a tool to visualize SAR patterns in large data sets, which is another

major domain of SAR analysis.
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Chapter 4

From Bird's Eye Views to

Molecular Communities:

Two-Layered Visualization of

Structure-Activity Relationships

in Large Compound Data Sets

Introduction

SAR analysis, a central task in medicinal chemistry is traditionally carried out on a

case-by-case basis, i.e., focusing on one compound series at a time.102 However, the

task becomes increasingly challenging when the data set size grows beyond individ-

ual analog series.103{106 In such cases, structure and activity need to be compared

across a large and heterogeneous group of compounds, often making it nearly im-

possible to systematically capture all structure-activity relationships. Large-scale

SAR explorations are generally accomplished using visualization tools. Activity

landscape58,106,107 represents a prime example of SAR visualization tool, and many

di�erent forms of landscape views have been proposed over the years to analyze

SAR features, mainly, activity cli�s.7,107,108 Identi�cation of activity cli� forming

compound pairs in data sets provide a valuable information for compound design

and optimization. Activity cli�s are formed by structurally similar compounds with
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signi�cant potency di�erences, a principal characteristic of SAR discontinuity.78,87

Regions of SAR discontinuity comprise compound subsets forming activity cli�s,

and thus, provide the most SAR-information.

In this study, we present a two-component visualization approach that combines

a compound pair-based variant of GTM5 with CSN85,109 to facilitate SAR analysis in

large and heterogeneous data sets. CSNs, originally introduced to represent biologi-

cally relevant subspaces of the chemical space, have been extended in various ways to

visualize local SAR environments.22,24,97,109,110 However, in case of increasingly large

data sets, network representations generally become di�cult to navigate. GTM, on

the other hand, has proven to be a very powerful tool, with ability to map millions of

compounds and visualize their activity landscapes. Global (low-resolution) activity

landscape visualization provided by GTM enables identi�cation and prioritization

of SAR informative regions. The local (higher-resolution) CSN projection of prior-

itized regions could be used to inspect molecular communities responsible for SAR

discontinuity and further resolve these regions at the level of individual compounds

and their relationships.

Materials and Methods

Three Ki-based compound data sets were assembled from compound optimization

e�orts from BindingDB111 database, including kappa opid receptor (KOR), adeno-

sine a3 receptor ligands (AAR), and factor Xa inhibitors (FXA) with 1645, 1862,

and 2202 compounds, respectively. These sets were comparably larger than others

with high-con�dence activity data and yielded 10,104, 9575, and 14,493 transforma-

tion size-restricted MMPs, respectively. If multiple Ki measurements were available

for a given compound, geometric mean of all available values was taken as the �nal

potency measurement, provided all values fell within the same order of magnitude.

A large antimalarial screening set (AMS)112 containing 13,176 compounds with con-

�rmed inhibitory activity in malarial parasite growth assays and available XC50 value

was selected. XC50 is a high-throughput screening parameter for potency, which

maybe considered as an estimator of IC50 value for antimalarial compounds.
112 The

antimalarial screening set yielded a total of 37,008 MMPs. MMPs formed between

two weakly potent (pXC50 < 6.5) from screening set compounds were not of much

relevance from an SAR perspective, and thus, were discarded in our analysis.
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So far, GTM landscapes were generated only for individual compounds and an-

notated based on the their molecular properties or biological activity.79,80,82 Com-

pound pair-based GTMs were constructed for the �rst time, using MMPs as the

mapping items rather than individual compounds. For each compound data set,

transformation size-restricted MMPs were systematically generated using in-house

implementation of Hussain and Rea30 algorithm based on OEChem toolkit.113 Fol-

lowing size restriction criteria was applied in MMP calculation to limit the chemical

modi�cation to that of an analog series: core structures were required to have at

least twice the size of exchanged substituents, the size di�erence of exchanged frag-

ments was limited to at most eight non-hydrogen atoms, and the maximal size of an

exchanged fragment was set to 13 non-hydrogen atoms.24

ISIDA fragment count descriptors37,40 were calculated for compounds partici-

pating in MMPs. MMPs were then encoded as single descriptor vector obtained by

concatenating fragment counts of individual MMP partners. Concatenation involved

combining the sum and di�erence vectors obtained by calculating the sum and ab-

solute di�erence of the counts of individual fragment descriptors, respectively.114

Concatenated descriptor vectors were used as an input for an evolutionary algo-

rithm81 required to optimize descriptor combinations and GTM set-up parameters

to generate the GTM manifold for pair-based maps. GTM-based classi�cation mod-

els were built on the basis of MMPs annotated with potency di�erences as positive

and negative instances. Positive class was represented by MMP partners with at

least two orders and one order of magnitude potency di�erence for compound opti-

mization and screening sets, respectively. The negative instances of these compound

sets included pairs with less than two orders or one order of magnitude di�erence

in their potency, respectively. The classi�cation models were validated using 3-fold

cross-validation, which was repeated thrice after reshu�ing the MMPs in the set.

The model performance was evaluated by the �tness score calculated as the mean of

the cross-validated balanced accuracy of each cross-validation experiment, penalized

by their standard deviation.

After classi�cation models were generated, all MMPs from a given data set was

projected on the corresponding pair-based GTM for visualization. It should be

noted that the classi�cation models built in the current work was not intended

for further predictive purposes. They were generated to ensure the neighborhood-

behavior compliance of the selected GTMs and to use them as an SAR analysis
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tool.

The concept of responsibility pattern-based binning of items mapped onto a GTM

landscape is applied herein to group MMPs on the selected pair-based GTMs. For

each responsibility pattern, an SAR discontinuity score was calculated as follows:

SARDisc(RP ) =

mP
i

mP
i;j>i

jpoti � potjj

N
8 i; j !MMP (4.1)

where i and j are compounds forming an MMP, poti and potj are their respective

potencies, m is the total number of compounds, and N the total number of MMPs

for the RP. SARDisc(RP ) is reminiscent of the discontinuity score component of

the SAR index87 and accounts for all pairwise potency di�erences between com-

pound pairs forming an MMP associated with a given RP. The score is high for

RPs associated with structural analogs having large potency variations. Pair-based

GTMs were colored on the basis of RP-speci�c SAR discontinuity scores.

Compounds inhabiting individual RP were extracted to generate MMP-CSNs

in which pairwise substructure relationships between MMPs could be intuitively

followed through network representation. Nodes of MMP-CSNs corresponded to

compounds and were connected by edges if they formed pairwise MMP relation-

ships.97 In addition, nodes were colored by potency of the compound they represent

using continuous color spectrum from red (lowest potency in the data set) over yel-

low (intermediate) to green (highest potency). MMP-CSNs were built using Java

software and the Java universal network/graph framework (JUNG)115 and their lay-

out was generated using the Fruchterman-Reingold algorithm,116 which organizes

similar objects into clusters and separates clusters for display in a force-directed

manner. MMP relationships that were associated with a given RP were highlighted

in corresponding RP-speci�c MMP-CSN to provide local SAR views.

Results and Discussion

Two-layered visualization approach, combining GTM and CSN representations, was

introduced herein to facilitate SAR exploration in increasingly large compound data

sets. The �rst layer was provided by pair-based GTMs, representing global or bird's

eyes views of activity landscapes. Regions of the map pointing to high SAR dis-
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continuity, i.e., SAR-informative zones were identi�ed and compounds populating

them were extracted. Prioritized compounds were analyzed in detail at the level of

individual compounds in MMP-CSNs.

Figure 4.1 shows best performing pair-based GTMs for three compound op-

timization sets and one antimalarial screening set, colored by SAR discontinuity

scores. The GTM set-up parameters and descriptors used to build these maps are

detailed in Table 4.1.

Data

set

Descriptors Size Num.

RBF

RBF

width

BA

KOR IIRA{P-1-6: ISIDA counts of atom centered fragments

based on sequences of atoms of �xed length, covering

the �rst and sixth coordination sphere

24 12 1.1 0.76

FXA IAB-PH-P-2-6: ISIDA pharmacophore annotated counts

of atom pairs found two to six bonds apart, including

information about bonds nearest to terminal atoms

26 11 1.4 0.71

AAR IIRA{P-1-6: ISIDA counts of atom centered fragments

based on sequences of atoms of �xed length, covering

the �rst and sixth coordination sphere

29 11 1.1 0.71

AMS IIA{P-1-3: ISIDA counts of atom centered fragments

based on sequences of atoms, covering the �rst and third

coordination sphere

27 13 2.5 0.73

Table 4.1: Descriptors and parameters of top-scoring GTMs. For the best GTMs obtained
for each data set, selected descriptors and balanced accuracy (BA) resulting from an evolutionary
optimizer are reported. In addition, \Size" refers to the number of nodes de�ning the edge length
of the square grid representing the GTM. Furthermore, the number of radial basis functions (Num.
RBF) and their width are reported.
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Figure 4.1: GTM projections. For all compound data sets, GTM 2D maps with RPs colored by
SAR discontinuity score are shown. The maps were based on classi�cation models. As indicated in
the color spectrum, increasing transparency indicates decreasing compound density of RPs. Maps
were colored using a continuous spectrum from red (lowest discontinuity score) through yellow and
green (intermediate) to blue (highest score). (a) KOR, (b) FXA, (c) AAR, (d) AMS.
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RPs of KOR were evenly distributed across the map unlike those of FXA and

AAR, which were notably clustered and separated from each other. Maps of AMS

sets were characterized by a low degree of SAR discontinuity, which could be at-

tributed to presence of many weakly potent hits with di�erent structures. Never-

theless, nodes representing high SAR discontinuity were observed in the upper right

corner of the map. In each of the maps, di�erent SAR environments were clearly

distinguishable and several zones of high SAR discontinuity could be spotted. This

provided enough evidence of the ability of pair-based GTMs to di�erentiate between

regions of varying local environments.

In order to prioritize responsibility patterns, their SAR discontinuity scores were

monitored for all compound data sets, as shown in Figure 4.2. Only RPs associated

with at least 10 compounds were taken into account as smaller subsets of compounds

are not very SAR informative. In each set, RPs with discontinuity score of at least

one standard deviation above the mean of the distribution were prioritized for CSN

analysis.

Figure 4.2: SAR discontinuity of RPs. Shown is the distribution of RPs over SAR disconti-
nuity scores (SARDisc) for the four compound sets. RPs reaching or exceeding a SARDisc value
of one sigma above the mean of each distribution are shown on a gray background.

Compounds representing prioritized RPs were used to generate RP-speci�c
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MMP-CSNs, thus shifting the focus of our analysis from pair-based display to indi-

vidual compounds and their pairwise structural relationships. Further, the change

from GTM to CSN allowed transition from global views that helped to pre-select

compound subsets of interest to more localized SAR views in which these compounds

could be scrutinized in more detail. Since MMP-CSNs were generated exclusively for

compound subsets speci�c to a given RP, they were easy to navigate and interpret.

Figure 4.3 compares CSNs of compound subsets from top-scoring RPs of each

data set and illustrates how local SAR environments were distinguished. For KOR,

CSN 1 and 2 contained densely connected central clusters of di�erently colored

nodes corresponding to structurally very similar compounds with large potency vari-

ations (Figure 4.3a), indicating highly discontinuous and SAR-informative subsets

of active compounds. By contrast, CSN 3 was characterized by the presence of

many compounds with comparable intermediate potency and one weakly potent

compound that was similar to many others (Figure 4.3a). This constellation also

gave rise to a high discontinuity score, due to many pairwise comparisons involving

the weakly potent analog, but was much less SAR-informative than the compound

clusters in CSN 1 and 2. The CSNs for FXA in Figure 4.3b also revealed di�erent

SAR characteristics. CSN 1 contained many pairs of compounds with moderate

potency variations, which did not convey useful SAR information and one cluster

with compounds having large potency variations. However, this cluster was only

sparsely connected, indicating the presence of only partly similar compounds, which

is also limited SAR information. More informative clusters were observed in CSN

2, which contained only relatively few compounds, and especially in CSN 3. This

CSN contained weakly similar compounds, but also a densely connected cluster with

SAR-informative compounds. Comparable observations were made for AAR CSNs

shown in Figure 4.3c. Here, prioritized local SAR environments also di�ered in

their composition and characteristics, with decreasing SAR information content from

CSN 1 (two densely connected clusters of comparable size) over CSN 2 (one densely

connected cluster) to CSN 3 (none). Moreover, despite the prevalence of typical

screening hits, AMS also contained small subsets of compounds with high SAR in-

formation content, as revealed by the CSNs in Figure 4.3d. The identi�cation of

these SAR islands within the screening data background and their characterization,

as further discussed below, was straightforward using GTM-CSN analysis, which we

considered an encouraging �nding.
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Figure 4.3: GTM-CSN views. RPs shown on a simpli�ed GTM map were prioritized on
the basis of SAR discontinuity. For corresponding compound subsets, CSN representations with
constant layout were generated in which nodes were colored by compound potency. Comparison of
these CSNs made it possible to distinguish between di�erent local SAR environments. The orders
of CSNs indicate decreasing SAR discontinuity scores of corresponding RP. (a) KOR, (b) FXA,
(c) AAR, (d) AMS
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MMP-CSNs of high-priority RPs were interactively navigated to search for

analog series displaying interesting SAR patterns. For each of these series of

analogs, structural modi�cations leading to potency variations can be explored as

shown in Figure 4.4. Representative structures from KOR set in Figure 4.4a

focus on a substitution site in a series of analogs where the introduction of bromo-

and chloro- benzamides increased potency compared to the reference compound,

whereas pyridinecarboxamides reduced potency by at least one order of magnitude.

Similar observations were made for di�erent R-groups in FXA (Figure 4.4b) and

AAR structures (Figure 4.4c). Examples of AMS set in Figure 4.4d shows

that the presence of phenyl, substituted phenyl, and bulky alkyl groups at the

designated substitution site led to increase in potency, whereas the introduction of

small substituents such as methyl or ether groups resulted in weakly potent analogs.
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Figure 4.4: SAR-relevant chemical changes. For exemplary analogs from CSNs of prioritized
RPs, chemical modi�cations (transformations) are shown that led to increases or
decreases in potency.

Conclusions

In this study, a two-component visualization tool to explore SAR patterns in large

and heterogeneous data sets has been introduced. The challenge associated with

SAR analysis in data sets containing multiple series of compounds has be addressed

by �rst combining a global and local views of the activity landscape. The global

view guided the analysis by pointing towards areas of interest, in our case, SAR dis-

continuous zones. Once desired SAR-informative regions were delineated, they were

analyzed in greater detail in high-resolution local views provided by CSN representa-

tions. Since CSN were focused towards prioritized compound subsets characterized

by high discontinuity scores, it was much easier to navigate and identify interesting

SAR patterns. In our proof-of-concept study, the GTM-CSN approach was applied

to compound optimization and screening data sets. GTMs capable of di�erentiating

between di�erent local SAR environments, from which compound subsets inhabit-

ing SAR-informative regions were captured and projected onto MMP-CSNs. CSNs

further helped to resolve these regions at the level of individual compounds and

their relationships. Above all, our �ndings suggest that the combined visualiza-

tion approach proposed by GTM-CSN provides a meaningful extension to currently

available SAR visualization techniques.
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My major contributions to this work have been identifying MMPs formed by

ligands active against individual targets and encoding them as single descriptor vec-

tor based on ISIDA fragment counts of each MMP partner. My contributions also

include generation of compound pair-based GTM classi�cation landscapes, extrac-

tion of RPs pointing to SAR discontinuous regions, and generation of RP-speci�c

MMP-CSNs.

Activity cli�s represent the most prominent features of activity landscapes and

is an attractive concept for large-scale SAR analysis. Activity cli�s have thus been

extensively studied by applying data mining as well as visualization methods. In the

next chapter, computational models for predicting activity cli�s have been discussed.
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Chapter 5

Prediction of Activity Cli�s Using

Condensed Graphs of Reaction

Representations, Descriptor

Recombination, Support Vector

Machine Classi�cation, and

Support Vector Regression

Introduction

Activity cli�s are de�ned by pairs of structurally similar compounds with signi�cant

potency di�erence. As such, they represent extreme discontinuity in SAR landscape.

They are of paramount importance in SAR exploration as rich source of SAR infor-

mation since they reveal small chemical modi�cations that lead to signi�cant change

in biological activity of compounds.

Two fundamental aspects need to be considered while de�ning an activity cli�,

i.e., the structural similarity and potency di�erence assessment criteria. Numeri-

cal measures of structural similarity, such as, Tanimoto coe�cient, calculated using

molecular �ngerprints is widely used for determining structural similarity between

activity cli� partners. However, calculated similarity heavily relies on the type of
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molecular �ngerprints as well as the similarity metric applied. Furthermore, numer-

ical similarity values are not always easily interpretable from medicinal chemistry

point of view. In contrast, MMPs provide a chemically intuitive means to assess

structural similarity between compounds. Since, compounds forming an MMP dif-

fer by chemical change only at a single site, relating structural changes to potency

is relatively easier. More recently, transformation size-restricted MMPs have been

applied as structural similarity criterion in activity cli� formation, giving rise to

so-called MMP-cli�s. We have applied MMP-based de�nition of activity cli� in this

study.

Activity cli�s have been extensively explored and many studies have been re-

ported so far, mainly focusing on mining of activity cli�s in compound data set

and their graphical representations. Predictions of small structural modi�cations

that result in large shifts of biological activity could yield signi�cant inferences for

compound design and optimization. However, only a few studies have attempted to

predict if a given pair of structurally similar compounds form an activity cli� or not.

Attempts made so far in this direction have employed machine learning methods

such as, support vector machines or random forests. In this study, we have followed

two di�erent approaches to represent MMPs - condensed graph of reaction, origi-

nally developed for modeling chemical reactions and plain descriptor recombination,

a strategy used for QSPR modeling of nonadditive mixtures. Single descriptor vec-

tors encoding individual MMPs were derived from these representations and given as

an input for support vector machine models. Support vector classi�cation was used

for predicting activity cli�/non-cli� status, whereas support vector regression mod-

els predicted the direction of the potency increase or decrease of a given compound

pair.
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ABSTRACT: Activity cliffs (ACs) are formed by structurally similar
compounds with large differences in activity. Accordingly, ACs are of high
interest for the exploration of structure−activity relationships (SARs). ACs
reveal small chemical modifications that result in profound biological effects. The
ability to foresee such small chemical changes with significant biological
consequences would represent a major advance for drug design. Nevertheless,
only few attempts have been made so far to predict whether a pair of analogues
is likely to represent an ACand even fewer went further to quantitatively
predict how “deep” a cliff might be. This might be due to the fact that such
predictions must focus on compound pairs. Matched molecular pairs (MMPs), defined as pairs of structural analogs that are only
distinguished by a chemical modification at a single site, are a preferred representation of ACs. Herein, we report new strategies
for AC prediction that are based upon two different approaches: (i) condensed graphs of reactions, which were originally
introduced for modeling of chemical reactions and were here adapted to encode MMPs, and, (ii) plain descriptor
recombinationa strategy used for quantitative structure−property relationship (QSPR) modeling of nonadditive mixtures
(MQSPR). By applying these concepts, ACs were encoded as single descriptor vectors used as input for support vector machine
(SVM) classification and support vector regression (SVR), yielding accurate predictions of AC status (i.e., cliff vs noncliff) and
potency differences, respectively. The latter were predicted in a compound order-sensitive manner returning the signed value of
expected potency differences between AC compounds.

■ INTRODUCTION

Activity cliffs (ACs) are formed by pairs or groups of active
compounds that are structurally similar or analogous and have
large differences in potency.1,2 Accordingly, the application of
specific molecular similarity and potency difference criteria is of
critical relevance for a consistent assessment of ACs.1,2

Tanimoto similarity using various molecular fingerprints3,4

has typically been calculated to define ACs structurally.1 More
recently, the matched molecular pair (MMP) formalism5,6 has
also been applied as a similarity criterion for AC formation. An
MMP is defined as a pair of compounds that are only
distinguished by a chemical change at a single site,5 i.e. the
exchange of a substructure, often termed a chemical trans-
formation.7 On the basis of MMPs with predefined trans-
formation size restrictions, which generally limit MMPs to pairs
of structural analogs,8 ACs have been defined as pairs of
compounds that form a transformation size-restricted MMP
and have a potency difference of at least 2 orders of magnitude,
leading to the introduction of MMP-cliffs.8 This chemically
intuitive MMP-based definition of ACs is particularly relevant
for AC analysis in medicinal chemistry where ACs are of prime
interest as sources of structure−activity relationship (SAR)

information,2 given their “small chemical changelarge
biological effect” phenotype. In addition, in drug design and
chemical informatics, ACs are also of considerable interest as
test cases for potency prediction and SAR analysis methods,
especially given the intrinsic similarity of AC compounds.
Moreover, the ability to predict ACsor the directionality of
potency changes for AC partnerswould have high potential
for practical applications aiming at the identification of novel
potent compounds. Different from conventional compound
activity predictions, focusing on ACs presents us with the
challenge to predict compound pairs, rather than individual test
compounds. This requires the design and implementation of
new prediction schemes for machine learning, which may
explain why only a few attempts have been made thus far to
predict ACs. Initially, random forests,9 i.e. arrays of decision
trees, were applied to predict ACs in compound data sets.10

Specifically, random forest models were trained to predict if a
test compound would form ACs with other data set
compounds, yielding moderately accurate predictions.10 Fur-
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thermore, particle swarm optimization,11 a population-based
global search technique mimicking coordinated (social) swarm
formation and behavior, was applied to search data sets for ACs
formed within groups of structurally similar compounds.12

Moreover, support vector machine (SVM) classification13,14

was used to predict ACs (MMP-cliffs) and distinguish them
from non-ACs (MMPs encoding small potency differences).15

These SVM predictions were enabled through the introduction
of specifically designed kernel functions that utilized MMP core
and transformation information and yielded overall accurate
predictions.15 Finally, in a conceptually related study, it was
attempted to predict the direction of MMP-associated potency
changes16 using SVM regression,17 an extension of SVM
classification to predict numerical activity values. Apart from
these studies, no other AC predictions have so far been
reported.
In order to model properties related to MMPs, different

strategies can be considered. For example, special “MMP
kernels” might be designed, as reported previously,15,16 to
facilitate predictions using kernel methods; alternatively, more
simplistic procedures to encode MMPs as various molecular
descriptor vectors might be envisioned, which would make it
possible to apply any other machine learning methods. The
latter strategy represents the focal point of the current work.
Herein, we present AC prediction models based upon two

different MMP representations using (i) descriptors derived
from condensed graphs of reaction (CGR), which were
originally introduced for modeling of chemical reactions,18,19

and (ii) plain descriptor recombination−a strategy used for
QSPR modeling of nonadditive mixtures.20 Both of these
strategies were applied to ultimately encode MMPs as vectors
of a variety of fragment descriptors that are applicable to regular
molecular graphs as well as CGRs. The resulting descriptor
vectors provided the basis for SVM classification and SVR
following a variety of advanced modeling strategies. The
methodological framework for these AC predictions is detailed
in the following and the results of test calculations are reported.

■ CONCEPTS, METHODS, AND MATERIALS
Activity Cliffs. For our analysis, ACs were defined as MMP-

cliffs,8 i.e. compound forming a transformation size-restricted
MMP having a potency difference of at least 2 orders of
magnitude (100-fold). Compound pairs with potency differ-
ences between one and 2 orders of magnitude are generally not
considered ACs.2 Hence, they should best be excluded from
classification of ACs vs non-ACs. Furthermore, in classification,
boundary effects can be controlled by excluding such
compound pairs and defining non-ACs to be represented by
MMPs with compounds having a potency difference of less
than 1 order of magnitude (10-fold). This strategy was applied
herein for AC vs non-AC classification where these class-labeled
instances should be considered as discrete potency difference
states rather than a continuum. However, for regression
modeling, as detailed below, compound pairs across all potency
difference ranges including one to 2 orders of magnitude were
used (representing a departure from conventional AC
definitions). MMPs were generated using in-house implemen-
tation of the algorithm by Hussain and Rea7 by limiting
fragmentation to single exocyclic bonds and applying the
following transformation size restrictions.8 Specifically, the
MMP core was required to be of at least twice the size of
exchanged substructures that were not permitted to be larger
than 13 heavy atoms and differ by more than eight heavy atoms.

Applying these size restrictions generally produces MMPs that
represent typical analogs.8

Compound Data Sets. The compound data sets were the
same as used in the previous SVM-based prediction of ACs.15

This made it possible to directly compare the results for the AC
classification reported herein with the previous SVM-based
classification, as detailed below. Compounds active against
seven different targets were assembled from BindingDB.21

These seven selected Ki value-based target sets were selected to
yield large numbers of MMP-cliffs formed by compounds with
at least 10 μM potency. If more than one Ki measurement were
available for a compound, the geometric mean of available
values was calculated as the final potency annotation, provided
all the values fell within the same order of magnitude;
otherwise, the compound was discarded. Table 1 reports the

composition of the data sets used herein, which included five
different sets of enzyme inhibitors and two sets of receptor
ligands containing between 58 and 2202 compounds.

Modeling Strategies. Categorical and quantitative (re-
gression) modeling were carried out. The categorical approach
calibrated binary predictors able to return 1 if an MMP was
predicted to be an AC and 0 otherwise. This categorical
approach was considered “order-independent (OI)” because
the result did not depend on the order in which the two
members of an MMP were presented. By contrast, quantitative
regression is more challenging as it requires predicting by how
much the potency of the first compound of the MMP differs
from the one of the second. Therefore, these predictions are
“order-dependent (OD)”. The methodological summaries
provided in the following are complemented by detailed
descriptions provided as Supporting Information.

Representing MMPs as Condensed Graphs of Re-
action. CGRs represent an effective way to synthetically
characterize a chemical transformation using a single molecular
graph including both conventional bonds (e.g., single, double,
aromatic, etc.) and “dynamical” bonds characterizing chemical
transformations.18 Formal “pseudo bond orders” are assigned
to reflect the nature of the change, i.e., breaking or forming a
bond or changing the bond order. Therefore, a CGR captures
within a single graph all information required to specify a given
reaction or, more generally, chemical transformation. There-
fore, MMP formation can also be effectively encoded using
CGRs, as illustrated in Figure 1a. The CGR contains two
“dynamical bonds” that capture the transformation leading to
cliff formation. Typically used SMILES or SMARTS22

representations of MMPs were converted into CGRs using a

Table 1. Compound Data Sets, MMP, and AC Statisticsa

data set CPDS MMPs ACs
non-AC
MMPs

Factor Xa inhibitors (fxa) 2202 14493 1161 10108
Thrombin inhibitors (thr) 2037 9585 1103 6390
Cathepsin b inhibitors (catb) 150 681 120 451
Kappa opioid receptor ligands
(kor)

1645 10104 649 7190

Adenosine A3 receptor ligands
(aa3)

1862 9575 681 6752

Calpain 2 inhibitors (cal2) 121 1206 387 718
Janus kinase inhibitors (jak2) 58 366 109 186
total 8075 46010 4210 31795
aThe composition of the data sets, resulting numbers of MMPs,
activity cliffs, and qualifying noncliff MMPs are reported.
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dedicated in-house java tool based upon the ChemAxon
Application Programming Interface.23 The java tool also
regenerates the structures of the compounds forming the cliff
and retains core and substituent information. For descriptor
calculation (vide infra), structures were standardized using a
web server for virtual screening24 (see the Supporting
Information for further details).
Descriptor Calculation. Descriptor vectors encoding

MMPs captured in CGRs must be compliant with the order
independency or dependency. Therefore, the classification and
regression models require separate descriptor sets. ISIDA
Fragmentor25,26 was used to generate a large pool of alternative
fragment descriptors for modeling via context-dependent
fragmentation of input structures. These descriptors included
sequences of circular fragments with or without specifying
chemical bonds, defining dynamical bonds, or marking atoms
with special status.25 Well performing descriptor sets for
classification and regression were selected using evolutionary
model optimization procedures (vide infra).
Descriptors for OI-classification models were extracted from

order-independent condensed graphs (OICG). These con-
tained two dynamical bonds of same type, with marked head
atoms.
For OD-regression, two distinct strategies were used to

generate descriptors for OD-regression approaches:

(i) Descriptors were derived from specific OD condensed
graphs (ODCG). In this case, explicit inclusion of bond
information was mandatory because the order of
substituents may only be inferred from dynamical bond
orders.

(ii) Descriptors were also generated following QSPR
strategies20 for nonadditive mixtures. These are derived
from regular ISIDA fragment descriptor sets for two
individual MMP compounds. Figure 1b illustrates
concatenation of descriptors for MMPs. The descriptor
vector is depicted in a fingerprintlike representation in
which each element counts the occurrence of a specific
fragment. The first part of the concatenated descriptor is
given by the sum of the corresponding fragment counts

for MMP compounds and, hence, represents the entire
MMP including its core and transformation. In addition,
the second part reports the difference between the
fragment counts and thus accounts for the trans-
formation. It should be noted that resulting descriptors
are order-dependent (the difference part will change
signs when the order of the MMP compounds is
reversed).

Model Building. For each ISIDA fragmentation scheme,
property-descriptor matrices were generated for compound
data sets. The property value in the first column of these
matrices was either the potency difference Δ per se or the
categorical “AC status” (i.e., cliff vs no cliff). In the OD case for
regression, property−descriptor matrices systematically enum-
erated MMPs with alternative ordering (see the Supplementary
Methods for further details).
The evolutionary optimizer27 of the libsvm SVM library28 was

used to search for optimally cross-validated predictive models
for each modeling strategy applied to each of the seven
compound data sets. The method simultaneously optimizes
descriptor set selection (out of provided candidate descriptor
files) and operational parameters of SVM models, including
kernel choice (out of standard libsvm options: linear, third-
order polynomial, radial basis function, and sigmoid kernels).
All OICG-derived fragmentation schemes were permitted to
compete in a Darwinian quest for top validating classification
models. Regression models were challenged in two distinct
ways based only on MQSPR descriptors or ODCG-based
fragment counts as competitors (see the Supporting
Information).
The fitness function used to prioritize modeling protocols

described above intrinsically relies on conventional p-fold
“item-out” cross-validation. At every instance, 1/p of the entire
MMP set is kept aside for validation of a model trained on the
remaining (p − 1)/p parts of the data. At p = 3, the cross-
validation exercise used to evaluate model fitness is also
repeated several (here, five) times, after reshuffling, in order to
render its outcome independent of the actual regrouping of
MMPs for training and test. However, MMPs left out for

Figure 1. Alternative MMP representations. (a) CGR representation of an MMP. Broken and formed dynamical bonds and corresponding
transformations are colored red and blue, respectively. Considering the order-dependence of dynamical bond deletion and formation results in two
alternative CGRs. (b) Concatenated MMP descriptor vector for a pair of compounds A and B. The first vector elements, numbered from 1,
represent the sum of compound vectors, while the differences are stored, in elements with indices beyond 20 000 (an arbitrary offset chosen to be
larger than the dimension of the compound vector space). The first populated difference element is 20 011, because previous fragments 1, 4, and 7
are equally numerous in both compounds.
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prediction may nevertheless consist of two compounds that
were present in some other MMPs of the training set; although
not together, orfor OD regression modelsnot in the same
order.
Thus, while the “item-out” cross-validation results reported

in this paper will be the ones obtained at model selection stage,
a further, “advanced” scheme was considered, including
“compound-out”29 and “both-out” validation strategies. Figure
2 shows a workflow summarizing this advanced cross-validation
(AXV) procedure, which indirectly manages the MMP set
partition by directly controlling the status of individual
compounds. AXV was applied to top selected models, using
descriptor sets and libsvm operational parameter setups
resulting from the evolutionary procedure. At any time, roughly
one-fifth of the involved compounds are (stochastically)
marked as kept-out, which triggers the implicit exclusion of
all MMPs containing at least one of these compounds from the
local training set. Such MMPs will be redirected to “compound-
out” or “both-out” test sets, depending on whether only one or
both of their constituents are tagged as kept-out. Note that
keeping one-fifth of the compounds out typically results in two-
thirds of all MMPs being assigned to training, while the
remaining one-third is split between “compound-out” and
“both-out” test sets.
To further analyze the predictive ability of the models,

boundaries were defined in descriptor space as a hyper-
parallelepiped to delineate applicability domains (AD).
Boundaries were set by using the minimum and maximum
descriptor values of the training sets instances. Since the
descriptor space was defined by the structural fragments of
compounds, ADs corresponded to so-called fragment control
applicability domain.30

Control calculations for regression were carried out using
random forest (RF) modeling9 using a protocol following an
approach for prediction of MMP-encoded property changes.31

For RF calculations, the R32 package randomForest33 was
used. For training, an MMP was represented as the difference in
values of a set of 51 2D numerical descriptors31 calculated with
the Molecular Operating Environment (MOE)34 andas an
additional descriptorthe absolute potency value of the first

compound in the MMP.31 Potency differences between MMPs
were used as dependent variables. Regression models were
derived for terminal leaf nodes of RF trees that were then used
to predict potency differences for test MMPs. For RF
generation, the number of trees was set to 400. For all other
randomForest parameters, default settings were used.

Performance Evaluation. Balanced accuracy (BA) and F-
scores were calculated for classification and the root-mean-
square error (RMSE) of AC potency differences for regression.
An MMP might have been assigned “compound-out” or “both-
out” status, respectively, more than once during cross-validation
cycles with varying prediction results, given the stochastic
procedure that is steadily reshuffling the subset of kept-out
compounds. Therefore, each prediction was included in BA or
RMSE calculations after weighing by the inverse of the number
of occurrences of the MMP in the given set: Let EMMP

set be the
number of times a given MMP was assigned to the external set
∈ {compound-out, both-out}. In addition, let recorded
predictions be PMMP

set (k), k = 1. . . EMMP
set . Given the experimental

value PMMP
expt , the contribution of a given MMP to the cross-

validated RMSE over set is

=
∑ −= P k P

E
ERR (set)

[ ( ) ]k
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which results in a global RMSE of:
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MMP 1 MMP

2

set

set
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where Nset represents the global number of MMPs present at
least once in set.
For classification, consider an MMP being predicted A times

in its correct class, whereas the remaining EMMP
set − A prediction

attempts were incorrect. Therefore, this MMP will contribute a
fractional increment of f = A/EMMP

set to the count of correct
predictions. Thus, if this MMP represents an AC, the true
positive (TP) count will be incremented by f, while the false
negative (FN) count will be increased by 1 − f. Otherwise
(noncliff), increment f will be added to the true negative count

Figure 2. Advanced cross-validation. The workflow illustrates the AXV scheme, based on (maximally) 10 cycles of 5-fold stochastic leaving out of
individual compounds. The current “kept-out” compound list unambiguously defines the status of each MMP, which may be either a training set
member (none of its compounds among the left-out) or assigned to one of the test sets, in order to be predicted by a local model guaranteed not to
have encountered (one or both) of its compounds at training stage.
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(TN) and 1 − f to false positives (FP). Balanced accuracy
(BA), precision, recall, and F-scores were then calculated as
follows:

=
+

+
+

BA
0.5TP

TP FN
0.5TN

TN FP (4)

=
+

Pprecision( )
TP

TP FP (5)

=
+

recall(or true positive rate, TPR)
TP

TP FN (6)

= × ×
+

P
P

Fscore 2
TPR
TPR (7)

■ RESULTS AND DISCUSSION
MMP and Activity Cliff Statistics. As reported in Table 1,

the compound data sets used herein yielded large numbers of
MMPs, ranging from 366 (for 58 janus kinase inhibitors) to
14 493 (for 2202 factor Xa inhibitors) as well as significant
numbers of ACs, ranging from 109 to 1161. In addition, the
numbers of MMPs with potency differences within 1 order of
magnitude (non-AC MMPs) are reported, ranging from 186 to
10 108, which served as negative training instances. Thus, many
more noncliffs (a total of 31 795) than ACs (a total of 4210)
were available for model building and predictions, consistent
with the observation that ACs are generally rare in sets of active
compounds.1,2 In addition to the requirement to focus
predictions on compound pairs, the AC vs noncliff unbalance
of the data sets presented another challenge for machine
learning.
Performance of Order-Independent Classification

Models. F-scores and BA were calculated to evaluate the
predictions of classification models. Figure 3 compares model
performance for different cross-validation strategies. Further-
more, the results are compared to SVM classification using the
special MMP kernel designed for AC predictions, as reported
previously.15 Detailed prediction statistics are reported in
Tables S1 and S2 of the Supporting Information. From Figure
3, it is evident that the classification models reached
consistently high performance levels with F-scores close to or
greater than 0.8 comparable to our previous AC predictions.15

The performance was slightly lower for the stricter compound-
out and both-out strategies than item-out cross-validation, as
one might expect.
Given that the MMP data sets contained many more non-

ACs than ACs, resulting in imbalanced composition, “balanced
accuracy” (see Concepts, Methods, and Materials) was
calculated throughout for predictions using classification
models and all data sets. In addition, we have also separately
monitored retrieval rates for ACs and non-ACs, as reported in
Table 2. Technically, the rate of correct prediction of ACs,
which count as “true positives” according to our classification
mode, equals the recall factor in eq 6, also called “sensitivity”,
whereas the rate of correct prediction of non-ACs represents
the “specificity” (referring to “true negatives”). For all cross-
validation strategies, the specificity for predicting non-AC pairs,
which dominated the composition of the data sets, was
consistently higher than 90%. Given the dominance of non-AC
pairs (ACs are generally rare2), these accuracy levels were not
unexpectedly high for SVM-based classification.15 However,
sensitivity was generally lower, as one also might expect in light

of data imbalance (Table 2a−c), and the challenging
“compound-out” and “both-out” AXV scenarios had a marked
impact on it. Under most challenging cross-validation
conditions, sensitivity ranged from 55.0% to 91.5%. Encourag-
ingly, for three data sets, the separately monitored AC retrieval
rate was greater than 80% and for three others, it was ∼64−
66%. It was consistently lowest for kappa opioid receptor
ligands (59.7−55.0%) and highest for calpain 2 inhibitors
(93.4−91.5%). Item-out calculations yielded F-scores compa-
rable to those obtained for the MMP kernel. Note, however,
that MMP kernel calculations were originally reported in the
context of a more lenient 10-fold item-out cross-validation
scheme, compared to the repeated three-layered scheme used
here. Thus, CGR representations of MMPs are well-suited for
AC predictions, the practical importance of this result being not
as much a gain in terms of statistical performance, but the
intrinsic simplicity of the CGR-based approach, alleviating the
need to employ specialized kernel functions.
We note that target-dependent variations in the accuracy of

AC classifications are expected for at least two reasons. First,
target-specific compound sets may have varying degrees of
imbalance, a general phenomenon affecting AC predictions;
second, activity predictions are in general compound class-
dependent and this dependence also applies to ACs that are
formed in a compound class- and target-dependent manner.

Performance of Order-Dependent Regression Mod-
els. Going beyond AC classification, two strategies were
applied to build regression models. Figure 4 reports the
performance of regression models including ODCG-based
(Figure 4a) and MQSPR descriptor-based models (Figure 4b).
Detailed prediction statistics are reported in Table S3 and S4 of
the Supporting Information. In the case of regression, the mean

Figure 3. Performance of classification models. The bar chart reports
F-scores for the OICG-based classification models (obtained in 3-fold
cross-validation) and the, previoulsy reported,15 MMP kernel-based
classification models (obtained in 10-fold cross-validation). The item-
out, compound-out, and both-out cross-validations are represented by
color-coded bars.
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RMSE value for the evolved “top” models was calculated as the
final performance measure. Figure 4 shows that the RMSE
values of the MQSPR-based regression models, ranging from
0.34 to 0.45 for item-out, was much lower compared to
ODCG-based models, ranging from 0.54 to 0.68 for item-out.
Thus, for regression analysis, predicting the directionality of
potency changes encoded by ACs, the MQSPR MMP
descriptors were clearly preferred, yielding overall reasonable
performance. However, unlike OI classification models (vide

supra), regression models witnessed a significant performance
decrease in AXV. This may be partly due to the artifact of
having considered the two order-dependent (C1, C2) and (C2,
C1) MMPs as independent “items” in item-out XV. Indeed,
(C1, C2) might have been predicted by a local model featuring
the “mirror image” (C2, C1) within its training set. Statistically,
this happens in two cases out of three, while in one case both
(C1, C2) and (C2, C1) would have been together in the test set.
This scenario is impossible with OI-approaches, where it is
guaranteed that compounds in a left-out pair would never
appear together within the local training set. Thus, if regression
seems much more vulnerable to the encounter of completely
novel test instances than classification, this may be partly due to
the fact that “item-out” XV results are overly optimistic.
Even if the very precise estimation of an activity shift is not

within reach of these OD-regression models, they nevertheless
remain useful. For example, accuracy of prediction of the sign of
activity changenot accounted for OI-modelsis excellent,
even in the challenging “both-out” AXV scenario: at worst
(factor Xa inhibitors), in only 4% of the situations featuring an
activity increase of absolute magnitude above 0.5, the predicted
potency difference failed to return the correct sign.
Furthermore, important data set-dependent differences were
observed. For example, in the case of calpain 2 inhibitors,
prediction errors under challenging cross-validation conditions
were much larger than for cathepsin b inhibitors or adenosine
A3 receptor ligands.
In Figure 4c, the performance of the ODCG- and MQSPR

descriptor-based regression models is compared to a previously
reported RF modeling approach carried out as a control. The
results show that the SVR models generally yielded lower
RMSE values than the RF models, an exception being both-out
ODCG-based SVR and RF where the RMSE value distribution
were comparable. Furthermore, the boxplots reveal that
MQSPR-based SVR performed overall better than ODCG-
based SVR.
Figure 5 addresses the question of the accuracy of predictions

of the particularly “deep” ACs. For this purpose, prediction
accuracy (here, item-out cross-validated RMSE) was specifically
monitored over a series of increasingly restricted subsets of
MMPs corresponding to ACs with larger potency differences
than a moving potency difference threshold. This threshold
scanned the range between zero (all MMPs, global RMSE
reported) to 4.0 (specific RMSE for the few “deepest” ACs
reported), with a step size of 0.5. As can be seen, prediction
accuracy was significantly reduced with increasing potency
differences. However, Figure 5 also emphasizes that very deep
ACs were extremely rare. For example, the cathepsin b data set
was the second smallest under study. The left-most extreme
point reports the RMSE for only 15 ACs with logarithmic
potency differences equal to or larger than 3.5. The other
problematic case was the kappa opioid receptor data set, which
represented a genuine challenge in terms of modelability, also
yielding poor classification results. With these two exceptions,
reductions in prediction accuracy were not dramatic for
MMPs/ACs with increasing potency differences. In general,
prediction of rare instances is most challenging for machine
learning and typically error-prone.

Effects of the Fragment Control Applicability Domain
on Model Performance. Predictive models were derived
within the boundaries of training set instances in descriptor
space, delineating applicability domains for predictions. Since
the underlying descriptor space was defined by ISIDA fragment

Table 2. Classification Performance of ACs vs non-ACsa

(a) Item-out XV

data set
no.
ACs

% correct ACs
(sensitivity)

no.
non-
ACs

% correct non-
ACs (specificity)

Factor Xa
inhibitors

1161 70.69 10108 97.74

Thrombin
inhibitors

1103 69.74 6390 95.94

Cathepsin b
inhibitors

120 84.40 451 97.44

Kappa opioid
receptor ligands

649 59.70 7190 97.17

Adenosine A3
receptor ligands

681 67.39 6752 97.66

Calpain 2
inhibitors

387 93.37 718 95.14

Janus kinase
inhibitors

109 92.46 186 92.94

(b) Compound-out XV

data set
no.
ACs

% correct ACs
(sensitivity)

no.
non-
ACs

% correct non-
ACs (specificity)

Factor Xa
inhibitors

1161 69.10 10108 97.65

Thrombin
inhibitors

1103 67.87 6390 95.71

Cathepsin b
inhibitors

120 82.86 451 97.09

Kappa opioid
receptor ligands

649 57.34 7190 97.13

Adenosine A3
receptor ligands

681 65.41 6752 97.51

Calpain 2
inhibitors

387 92.62 718 94.71

Janus kinase
inhibitors

109 89.65 186 92.01

(c) Both-out XV

data set
no.
ACs

% correct ACs
(sensitivity)

no.
non-
ACs

% correct non-ACs
(specificity)

Factor Xa
inhibitors

993 66.29 8785 97.57

Thrombin
inhibitors

973 64.01 5519 95.61

Cathepsin b
inhibitors

105 80.95 391 97.11

Kappa opioid
receptor ligands

567 55.00 6250 96.94

Adenosine A3
receptor ligands

607 64.44 5924 97.44

Calpain 2
inhibitors

341 91.45 624 94.30

Janus kinase
inhibitors

85 84.20 156 91.48

aReported are the percentage of correctly predicted ACs and non-ACs
for OICG-based classification models and item-out XV. “% correct”
gives the percentage of correctly classified instances.
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descriptors, items containing fragment counts that do not
respect the boundaries observed for training instances are
technically “outside” the “bounding box” delimiting the
chemical space zone that served for model training. Therefore,
one may “trust” only predictions of items inside this bounding
box. In order to check whether such selective prediction would
actually lead to improved accuracy, the AXV procedure was also
employed to monitor, for each predicted MMP, any violations
of training set-based bounding boxes. Interestingly, however,
this was not the case. Tables 3, 4, and 5 report F-scores and
RMSE values, with and without removal of AD violators. For all
compound sets, the F-score of the classification models
remained either unchanged or displayed only a marginal
increase (ranging from 0 to 0.06) when the AD filtering was
applied. Similar observations were made for the regression
models. Only in one instance, i.e. cathepsin b inhibitors, a
notable reduction in prediction errors occurred due the AD
criterion. Thus, confinement within the bounding-box tested
here was not a major determinant of predictive performance.
Robust prediction accuracy was retained outside the AD, i.e.

ACs and non-ACs represented by MMPs with previously
unobserved novel structural information were well predicted, an
encouraging finding for AC classification and regression.

■ CONCLUDING DISCUSSION
Although activity cliffs are extensively studied in medicinal
chemistry and chemical informatics, few attempts have thus far
been reported to systematically predict them using machine
learning. In this study, the condensed graph of reaction
formalism, which was originally developed for reaction
modeling, was adopted to represent MMP-based ACs as a
single graph. In addition, descriptor recombination was applied.
Both approaches led to the representation of MMPs/ACs as
single descriptor vectors as input for machine learning. ACs
were accurately classified using SVM modeling, without the
need to employ sophisticated kernels. In addition, SVR
regression was successfully applied, for the first time, to predict
the directionality of potency changes encoded by MMPs/ACs.
The ability to correctly predict these changes has definite
potential for virtual screening-type practical applications. For

Figure 4. Performance of regression models and control calculations. The bar charts report RMSE values for (a) ODCG-based regression and (b)
MQSPR descriptor-based regression models The item-out, compound-out, and both-out cross-validations are represented by color-coded bars. (c)
Performance of the ODCG- and MQSPR descriptor-based regression models compared to RF models in box plot representations.
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example, the compound pair-based approach can be applied to
directly search for highly potent compounds, which falls outside
the applicability domain of similarity searching. For this
purpose, compound pairs are systematically assembled with
known weakly potent molecules and test compounds and
regression models as derived herein applied to predict the
directionality and magnitude of associated potency changes.
Predicted large-magnitude ACs then contain test compounds
that are candidates for high potency. Although this work was
based on innovations concerning the chemoinformatic treat-

ment of MMPs, i.e. their conversion into CGRs and analogy to
MQSPR, respectively, there was no need to develop novel,
dedicated descriptors. Irrespective of modeling strategies,
ISIDA fragment descriptors yielded satisfactory results. Another
interesting observation was that binary AC vs non-AC
discrimination was essentially possible for MMPs having one
or even both compounds never encountered at the model
training stage. This means that the approach did not only learn
from compound pairs (Ci, Cj) presented at the training stage in
order to extrapolate the behavior of so-far not encountered
compound combinations, but made it possible to extrapolate to
novel structures. By contrast, regression approaches resulted in
increased prediction errors when challenged to predict pairs
featuring one or two compounds never encountered before.
However, this increase might at least in part be linked to the
strategic decision to consider MMPs with permuted compound
order as two distinct items upon training. Since in item-out XV
a given MMP might have served for training the model that
predicted its “mirror image”, the baseline item-out XV statistics
might be too optimistic. This issue was not analyzed in depth
here, since the overall quality of the model should always be
taken from the most challenging validation experiment, i.e.
AXV results. These were sufficiently accurate to foresee very
large (>2 orders of magnitude) alterations in activity, and well
suited to predict the sign of the activity shift. It is noted that the
OI-classification and OD-regression model were completely
independent, but could be carried out in a consensus fashion
where the prediction of the former would be used to judge the

Figure 5. Regression performance for MMP subsets with increasing
potency differences. Prediction error (item-out XV RMSE, on Y axis)
is monitored with respect to subsets of MMPs having an experimental
potency difference (absolute value) exceeding or equal to a moving
threshold value scanning the range from 0 to 4.0, with a step of 0.5.
The X axis reports (log scale) the relative fraction of MMPs
represented by the respective subsets. Every dot on the plot
corresponds to a given threshold value. From the right to the left,
the threshold value is increasing and MMP subset fraction decreasing.
The right-most point at threshold zero represents 100% of the MMPs
of a data set and thus reports the global RMSE. For some of the target
sets, the left-most point corresponds to a potency difference threshold
of 3.5, because there were none, or too few, MMPs with potency
differences ≥4.0 for calculation of statistically meaningful RMSE
values.

Table 3. Effects of Applicability Domains on Classification
Modelsa

F-score (compound-
out) F-score (both-out)

data set
without
AD

with
AD

without
AD

with
AD

Factor Xa inhibitors 0.73 0.73 0.71 0.71
Thrombin inhibitors 0.70 0.71 0.68 0.69
Cathepsin b inhibitors 0.85 0.90 0.84 0.90
Kappa opioid receptor ligands 0.61 0.61 0.58 0.59
Adenosine A3 receptor
ligands

0.69 0.70 0.68 0.69

Calpain 2 inhibitors 0.92 0.92 0.91 0.92
Janus kinase inhibitors 0.88 0.92 0.84 0.91
aReported are F-scores for classification models and different cross-
validation schemes in the presence and absence of applicability
domains.

Table 4. Effects of Applicability Domain on ODCG-Based
Regression Modelsa

RMSE (compound-
out) RMSE (both-out)

data set
without
AD

with
AD

without
AD

with
AD

Factor Xa inhibitors 0.75 0.73 0.95 0.91
Thrombin inhibitors 0.85 0.83 1.05 1.03
Cathepsin b inhibitors 0.88 0.70 1.14 0.92
Kappa opioid receptor ligands 0.82 0.81 1.02 1.01
Adenosine a3 receptor ligands 0.73 0.72 0.90 0.89
Calpain 2 inhibitors 1.04 0.99 1.36 1.23
Janus kinase inhibitors 0.76 0.75 1.04 0.98
aReported are RMSE values for ODCG-based regression models and
different cross-validation schemes in the presence and absence of
applicability domain.

Table 5. Effects of Applicability Domain on MQSPR
Regression Modelsa

RMSE (compound-
out) RMSE (both-out)

data set
without
AD

with
AD

without
AD

with
AD

Factor Xa inhibitors 0.64 0.64 0.82 0.82
Thrombin inhibitors 0.69 0.67 0.88 0.8
Cathepsin b inhibitors 0.66 0.52 0.83 0.68
Kappa opioid receptor ligands 0.62 0.61 0.77 0.75
Adenosine a3 receptor ligands 0.58 0.57 0.72 0.73
Calpain 2 inhibitors 0.84 0.74 1.04 0.99
Janus kinase inhibitors 0.74 0.68 0.91 0.79
aReported are RMSE values for MQSPR descriptor-based regression
models and different cross-validation schemes in the presence and
absence of applicability domain.
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pertinence of the latter; unless the OI-classification would
predict the MMP to be an AC, any large potency difference
returned by regression should be subject to caution.
Taken together, the results reported herein broaden the

methodological spectrum for AC prediction and establish SVR
for the prediction of AC-encoded potency alterations. The
ability to predict potency changes of large magnitude among
structurally analogous compounds should be of interest for a
variety of drug design applications.
One of the major conclusions of this work is that QSPR-type

modeling of ACs is readily accessible. Technologies such as
CGR or plain descriptor recombination strategies, such as used
in MQSPR, are versatile enough to support both order-
dependent and -independent approaches and complement
more complex kernel-based methods for order-independent
modeling.
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Supporting Information

In the following, a detailed explanation of descriptor calculation and model

generation have been described.

Rendering MMPs as condensed graphs of reaction (CGR)

A CGR captures within a single, connex graph all the relevant information that

is present in the classical, multi-partner representation of a chemical process.

Furthermore, this strategy is not limited to rendering actually feasible chemical

transformations - any \alchemical" transformation can be described in this way,

which makes the CGR technology well suited to represent MMPs. Formally, an

MMP represents a \transformation" in which a substituent is \broken o�" from the

core and \replaced" by another. Previous MMP selection and curation work117

resulted in input �les rendering MMPs as a triplet of SMARTS of the core, �rst,

and second substituent \radicals". Free valences in both core C and substituents

S1, S2 were formally represented as bonds to the \Any" query atom \*", meaning

that the initial MMP information was given as (C � �; S1� �; S2� �), understood

to describe the pair of compounds (C � S1; C � S2). A dedicated java tool based

on the ChemAxon API118 for the handling of molecular structures has been written

in order to convert above-mentioned SMARTS triplicates into condensed graphs in

SDF format. It will create two dynamical bonds between the anchor atom of the core

and each connecting atom of S1 and S2, respectively. By default, the tool operates

in \OD" mode: being sensitive to the order of triplicates (C � �; S1 � �; S2 � �)

it will conventionally assign the C � S1 bond a \forming" status, whilst C � S2

is de�ned as a \breaking" bond. Reversely, upon input of (C � �; S2 � �; S1 � �),

the \symmetric" condensed graph S1�(breaking bond)�C�(forming bond)�S2

would be generated. In OI mode, however, both of the dynamical bonds will be

given \forming" status, so that the same CG, S1� (forming bond) � C � (forming

bond) � S2 will be generated irrespective of ordering of the input triplet. Note

that the java tool also assigns mapping numbers (it \marks", as will be stated

in current terminology) to the three key atoms in the CG: the core anchor is

mapped as #1, the connector in the �rst and second fragments become #2 and

#3, respectively. Also, note that as a \byproduct" of the creation of the CG, the

mentioned java tool will also regenerate the two structures of individual compounds
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(C � S1; C � S2), in which core and substituent anchors are being marked as

well. These individual compounds were subjected to the customary standardization

procedure on the basis of the virtual screening database of the Strasbourg web

server.119 As input compounds were already preprocessed, many standardization

steps (salt and organometallics removal, size �lters, etc.) are not relevant here.

However, conversion of nitro/nitroxides to split charge representations, and \basic"

ChemAxon aromatization after conversion into the ChemAxon preferred tautomeric

form did produce relevant changes in some structures. Note that condensed

graphs could not have been standardized in this way, for they would have been

rejected as \irregular" molecules, but since the input fragments were already care-

fully curated, this problem will have no impact on descriptor calculation (vide infra).

Descriptor calculation

All descriptor sets used here were issued from various fragment counting strategies

supported by the very 
exible ISIDA fragmentor tool. This program allows to con-

trol the type of fragments to be counted (sequences or augmented atom fragments),

the coloring of the atoms (from default coloring by atomic symbol to pH-dependent

pharmacophore or force �eld typing) to toggle the choice of including or ignoring

the nature of the chemical bonds, to speci�cally focus on dynamical bonds and/or

provide a special status to marked atoms. All these options are relevant in the

current context. As the fragmentor tool supports so many degrees of freedom,

a wealth of di�erent fragmentation schemes were used in a context-dependent

manner, in order to provide large pools of candidate descriptor spaces - for both

classi�cation and regression problems. Out of these pools of candidate descriptor

spaces, the best suited for predictive model building will be singled out during the

evolutionary SVM model optimization process.

In the following, only the general principles used to de�ne the proposed

context-speci�c fragmentation scheme pools will be given. Note that all structures,

pertaining to all target-speci�c data sets were �rst joined together into unique

molecular �les submitted to fragment counting. In this way, the total number

of distinct fragments found in these structures can be monitored, for each of

the initially envisaged fragmentation schemes. Since a key parameter in de�ning

fragmentation schemes is setting the boundaries for the smallest and respectively

largest fragments to count, upper boundaries producing fragment-rich schemes with
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more than F (15,000, unless otherwise stated) distinct fragments were discarded.

Fragmentation schemes including bond type information are intrinsically more

fragment-rich than the ones focusing only on atoms, and will have to stick to smaller

upper size boundaries. Upper size (-u option in fragmentor tool) was subject to a

scan, steadily increasing it until the threshold of resulting distinct fragment was

attained: the most fragment-rich scheme immediately below that threshold was kept.

Order-independent fragmentation schemes

Descriptors for OI-classi�cation models were extracted from ordering-independent

condensed graphs (OICG). These contain two dynamical bonds of same type,

and the head atoms of these bonds are marked. Since both of these strategies

to single out the changing moiety in the MMP are equivalent, using the marked

atom 
ag (-m option in fragmentor tool) for fragmentation would not help to

capture any additional information not already highlighted by the presence of the

dynamical bond. Fragmentation schemes exploiting the dynamical bond status

were thus envisaged, using options to enumerate all the fragments in the OICG (-d

0 option in fragmentor tool), and the alternative choice (-d 1 option in fragmentor

tool) to count only the fragments containing at least one dynamical bond. In

order to fully exploit dynamical bond information, we privileged fragmentation

schemes explicitly accounting for bond orders (\AB" type according to fragmentor

nomenclature), which means that fragments C-C-C-C and C-C-(forming bond)-C-C

will be considered as distinct descriptor elements (and the former will not count

unless the -d 0 option is used). Note that, if the user chooses to ignore bond

orders, then above fragments will be fused into one common category CCCC,

irrespective of the single, multiple or dynamical nature of the bonds between

the carbons. \A" type fragments with option -d set to 0 treat the OICG as a

regular molecule. Nonetheless, except for situations when one of the substituents

of the MMP is a plain H atom, not explicitly monitored in this approach, the

peculiar topology of the core atom with one \valence" more than customarily, may

su�ce to create a speci�c \signature" in terms of fragment counts, so that the key

information about the CG may not be lost albeit the dynamical nature of the bonds

is ignored. Furthermore, when the -d option is set to 1 in an \A" type fragmentation

scheme, only fragments containing dynamical bonds count, even though bonding

information is not explicit. In this scenario, the \CCCC" count will report the total
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number of confounded C-(dynamical bond)-C-(dynamical bond)-CC, C-(dynamical

bond)-CCC and CC-(dynamical bond)-CC fragments, all while ignoring all the

CCCC sequences not shared between the core/substituents. In terms of atom

coloring, CG-based descriptors cannot bene�t from any elaborate atom typing

scheme, such as pharmacophore or force �eld type assignment.40 In the context of

chemically senseless bond orders and/or core atoms with valence over
ow, atom

typing tools would invariably fail. Furthermore, the pharmacophore type of the

core anchor may actually change within the MMP - a protonable secondary amine

(cation, H bond donor) may convert into aniline N (H bond acceptor) or an amide

N (featureless). Therefore, CG-based fragmentation schemes exclusively employed

element type symbols for atom labels.

Order-dependent fragmentation schemes

Two distinct strategies were used to generate descriptors for OD-regression

approaches:

1. Ordering-dependent condensed graphs (ODCG): In this scheme as well both

-d 0 and -d 1 option were explored, with atom symbols as labels. Unlike previ-

ous case, explicit inclusion of bond information using \AB" type of fragments

is mandatory here because the order of substituents may only be read from

the dynamical bond orders. \A" type fragments based on ODCGs would be

intrinsically order-independent, thus inappropriate. Also it should be noted

that marked atoms may acquire special status in the ISIDA fragment counting

process (-m 3 option in fragmentor tool). The tool only distinguishes between

unmarked and marked atoms, but ignores the actual mapping labels: atoms

marked 1, 2 and 3 can be di�erentiated as being\special"in contrast to all other

atoms of the CG, but the ISIDA fragmentor tool would not further distinguish

between core and substituent anchors. Thus, the \marked atom" fragmenta-

tion strategy, which originally did not encode substituent order was actually

toggled in\AB" fragment types to provide an alternative \point of view" to the

key atoms (marker atom descriptor spaces include a \m" label in their names).

The compulsory inclusion of bond order information and the presence of two

distinct types of dynamical bonds mechanically lead to a signi�cant increase,

at similar fragment size boundaries, of the number of possible fragments in

ODCG descriptors, when compared to OICG. In this particular context, frag-
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ment size boundaries were not systematically scanned, but \borrowed" from

the AB-type OICG fragmentation schemes that were most successful in classi-

�cation models. Even with the most conservative estimates for upper fragment

sizes, the total number of fragments emerging from ODCGs rapidly exceeded

the customary threshold of F=15,000. With ODCGs, fragmentation schemes

generating up to F=30,000 distinct fragments were allowed.

2. Descriptors based on MQSPR strategy: Here, the 39 usual fragmentation

schemes known, from previous experience6 to be instrumental in successfully

solving various QSPR problems were used as departure basis for the design of

candidate descriptor �les. These fragmentation schemes were declined in two

versions, without (default) and with consideration of the marked atoms (heads

of the core-substituent bond, in each molecule). The latter version produced

larger fragment numbers, and schemes exceeding the F threshold of 15,000

were discarded. Then, the generated molecular fragment �les were used to

build up MQSPR descriptor vector D(C � S1; C � S2), by concatenating, for

each MMP, the sum and respectively di�erence of the descriptor vectors of the

two participating compounds C � S1 and C � S2. Formally, considering that

the total number of fragments produced by the current scheme is f, then:

Di(C � S1; C � S2) =

8<
:Di(C � S1) +Di(C � S2) 8 1 � i � f

Di(C � S1)�Di(C � S2) 8 f � i � 2f
(5.1)

where, Di(C � S1; C � S2) is the concatenated value of the sum and di�erence

part of the MQSPR descriptor vector for fragment i. The �rst part of the vector

D(C�S1; C�S2), i.e., the summation is obviously invariant to the ordering of the

compounds in the MMP, whereas the di�erence section values change sign upon

inversion of the order of compounds in the pair.

Model building procedures

In the former order-dependent case (regression), property-descriptor matri-

ces systematically enumerated both formal pairs corresponding to swapped

compound ordering: �(C � S1; C � S2) :: D(C � S1; C � S2) and

��(C � S1; C � S2) :: D(C � S2; C � S1), respectively. In classi�cation

calculations, MMPs with intermediate potency di�erence scores were discarded,
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in order to avoid misclassi�cation artefacts due to such borderline items. The

evolutionary optimizer of libsvm-based SVM models was then used to search for

optimally cross-validating predictive models, for each of the seven target-speci�c

data sets and each modeling strategy. This was envisaged in order to avoid prema-

ture convergence of the evolutionary procedure towards one family of descriptors,

i.e., failure to su�ciently sample the other alternative. Preliminary simulations

showed that the default 3,000 evolutionary generations would not be needed for the

discovery of good predictive models in this context. This number was changed to

400. The model �tness criterion is based on 3-fold\item-out" cross-validation, which

was repeated 12 times, after data reshu�ing. Note that, in regression models, this

leave-item-out cross-validation ignores the special relationships between the pair of

items corresponding to swapped compound orders. Leaving both such pairs out,

simultaneously, versus having them split up between training and left-out tiers are

both possible, in randomly occurring scenarios. For each of the 12 cross-validation

trials, the cross-validated correlation coe�cient (Q2) or balanced accuracy are

determined for regression or classi�cation models, respectively. The mean of

these 12 values, penalized by twice their standard deviation, represents the chosen

�tness function, i.e., the predictive power of the SVM model at given parameters

(descriptor set, kernel type, cost, gamma, etc.).

A posteriori, controlled model cross-validation and applicability do-

main assessment

After completion of above-mentioned evolutionary simulations, and for each of

the explored target-speci�c compound set, a list of best models, were ordered

by their �tness scores. From these lists, entries based on the same descriptor

spaces already encountered in even �tter solutions were discarded, and the top

four to ten models (or all qualifying) - each best in its descriptor space - were

kept for in-depth \compound-out" and \both-out" cross-validation strategies, and

monitoring of the impact of applicability domain �lters on these cross-validation

results. The following stochastic cross-validation procedure was assigned and a


owchart showing the steps is given in Figure 2 of the publication.

1. The list of all compounds involved in the MMPs of the current target-speci�c

series is established. This will serve as a pool for random sampling of left-

out compounds, without replacement. Let the total number of compounds
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involved be C.

2. At the current iteration, an approximate number of C/5 compounds are ran-

domly picked from the pool. Since this picking is without replacement, once

the number of molecules still in the pool drops below C/5, all will be picked

and the empty pool will be reinitialized to the full set of C compounds, in view

of future iterations.

3. For each MMP of the series, if none of the pair members �gure amongst the

currently picked compounds, then the MMP is moved to the training set. If,

by contrast, only one of the pair members �gures amongst the picked, this

MMP will be dispatched to the \compound-out" test set. Eventually, if the

MMP is a combination of two picked members, it will be registered within

the \both-out" test set. Note that, unlike in the point-out cross-validation at

model building, both entries associated to a swapped compound pair will be

always be assigned to the same set.

4. With the current training set as de�ned above, the SVM model - using the

operational parameters found by the evolutionary algorithm - is then retrained.

5. The applicability domain of this model is de�ned by a\bounding box", a hyper-

parallelepiped in descriptor space, bounded by the minimal and respectively

maximal descriptor values encountered within training set compounds. Note

that if any given fragment i is absent in training compounds, then the bounding

box limits with respect to axis i will be (0,0) - any other item with a non-zero

value for Di would be counted as a violator of the bounding box.

6. The trained model is applied, independently, to \compound-out" and \both-

out" test sets, and predictions for the therein present MMPs are redirected to

speci�c output �les, in view of separate statistical evaluation of the prediction

pro�ciency of both scenarios.

7. The compliance of test set MMPs with the currently established bounding

box is checked, by counting the number of violations (number of descriptor el-

ements falling outside the allotted ranges). This number of violations is stored,

in order to enable determination of speci�c statistical parameters for the pre-

diction cases that were AD-compliant, where \compliance" can be de�ned in
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terms of tolerated number of violations. Here, statistics will be reported at

zero violations (strict compliance) and any number of violations (which is the

baseline prediction quality, in absence of AD considerations).

Iterations continue until, ideally, all the MMPs have acquired, at least once,

the \both-out" validation status. Since the stochastic procedure might take very

much time until this desideratum is ful�lled, it was decided to stop it after ten

complete \cycles", where a cycle was de�ned to begin every time the empty pool of

compounds needed to be reset to the initial list. Eventually, predictions associated

with compound-out and both-out con�gurations, and annotated by AD compliance,

were processed in order to calculate the associated RMS Errors (RMSE) of potency

di�erences (regression) and balanced accuracy and F-scores (classi�cation).

Data set Model F-score (item-out) Mean F-score

(item-out)

Factor Xa inhibitors Model 1 0.77 0.74

Model 2 0.77

Model 3 0.76

Model 4 0.74

Model 5 0.71

Model 6 0.72

Model 7 0.70

Thrombin inhibitors Model 1 0.75 0.72

Model 2 0.76

Model 3 0.71

Model 4 0.71

Model 5 0.71

Model 6 0.69

Model 7 0.70
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Cathepsin b inhibitors Model 1 0.89 0.87

Model 2 0.88

Model 3 0.89

Model 4 0.86

Model 5 0.88

Model 6 0.84

Model 7 0.81

Kappa opoid receptor ligands Model 1 0.79 0.74

Model 2 0.78

Model 3 0.77

Model 4 0.72

Model 5 0.71

Model 6 0.69

Model 7 0.67

Adenosine A3 receptor ligands Model 1 0.82 0.79

Model 2 0.81

Model 3 0.81

Model 4 0.79

Model 5 0.77

Model 6 0.77

Model 7 0.77

Calpain 2 inhibitors Model 1 0.96 0.92

Model 2 0.94

Model 3 0.92

Model 4 0.92

Model 5 0.89

Model 6 0.90

Model 7 0.90

Janus kinase inhibitors Model 1 0.96 0.90

Model 2 0.94

Model 3 0.92

Model 4 0.92

Model 5 0.89

Model 6 0.90

Model 7 0.90

Table 5.1: F-score of OICG based classi�cation models. The table reports the F-scores of
individual OICG-based classi�cation models with item-out XV and the consensus F-score over all
models.
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Data set Model Balanced accuracy

(item-out)

Mean balanced

accuracy (item-out)

Factor Xa inhibitors Model 1 0.86 0.84

Model 2 0.85

Model 3 0.85

Model 4 0.83

Model 5 0.83

Model 6 0.82

Model 7 0.82

Thrombin inhibitors Model 1 0.84 0.82

Model 2 0.84

Model 3 0.83

Model 4 0.82

Model 5 0.82

Model 6 0.81

Model 7 0.81

Cathepsin b inhibitors Model 1 0.93 0.90

Model 2 0.92

Model 3 0.92

Model 4 0.91

Model 5 0.91

Model 6 0.89

Model 7 0.85

Kappa opoid receptor ligands Model 1 0.82 0.78

Model 2 0.81

Model 3 0.80

Model 4 0.77

Model 5 0.77

Model 6 0.75

Model 7 0.74

Adenosine A3 receptor ligands Model 1 0.84 0.82

Model 2 0.84

Model 3 0.83

Model 4 0.81

Model 5 0.81

Model 6 0.81

Model 7 0.81
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Calpain 2 inhibitors Model 1 0.97 0.94

Model 2 0.95

Model 3 0.94

Model 4 0.94

Model 5 0.92

Model 6 0.92

Model 7 0.92

Janus kinase inhibitors Model 1 0.94 0.92

Model 2 0.94

Model 3 0.93

Model 4 0.92

Model 5 0.91

Model 6 0.92

Model 7 0.91

Table 5.2: Balanced accuracy of OICG based classi�cation models. The table reports
the balanced accuracy of individual OICG-based classi�cation models with item-out XV and the
consensus balanced accuracy over all models.

Data set Model RMSE (item-out) Mean RMSE

(item-out)

Factor Xa inhibitors Model 1 0.52 0.55

Model 2 0.53

Model 3 0.53

Model 4 0.56

Model 5 0.57

Thrombin inhibitors Model 1 0.61 0.66

Model 2 0.62

Model 3 0.64

Model 4 0.70

Model 5 0.72

Cathepsin b inhibitors Model 1 0.57 0.67

Model 2 0.61

Model 3 0.63

Model 4 0.65

Model 5 0.67

Model 6 0.73

Model 7 0.81
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Kappa opoid receptor ligands Model 1 0.57 0.59

Model 2 0.58

Model 3 0.59

Model 4 0.63

Adenosine A3 receptor ligands Model 1 0.55 0.59

Model 2 0.60

Model 3 0.60

Model 4 0.62

Calpain 2 inhibitors Model 1 0.61 0.68

Model 2 0.64

Model 3 0.65

Model 4 0.64

Model 5 0.73

Model 6 0.72

Model 7 0.75

Janus kinase inhibitors Model 1 0.40 0.54

Model 2 0.39

Model 3 0.44

Model 4 0.45

Model 5 0.51

Model 6 0.65

Model 7 0.88

Table 5.3: RMSE of ODCG based regression models. The table reports the RMSE values
of individual ODCG-based regression models with item-out XV and the consensus RMSE over all
models.

Summary

This study further extends the current spectrum of methodologies for prediction of

activity cli�s. Compound pairs forming MMPs were encoded either as condensed

graphs or by descriptor recombination (MQSPR). ISIDA fragment count descrip-

tors were calculated for each of these representations to serve as an input for the

support vector machine models. In addition, two di�erent modeling strategies were

explored in this work. Categorical (order-independent) strategy were used to build

SVC models for predicting activity cli�/non-cli� status of a given compound pair.

On the other hand, SVR models based on quantitative (order-dependent) model-

ing strategy was introduced as the �rst approach for predicting directional potency
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changes in MMPs. In addition, advanced cross-validation schemes were applied to

evaluate model performance under stringent conditions of leaving either one or both

of the test set MMP compounds out of the training phase. As expected, the perfor-

mance of both SVC and SVR models were a�ected in advanced cross-validation, with

SVR models showing relatively much larger decrease in their performance compared

to SVC. Nevertheless, even under strict cross-validation conditions our predictive

models yielded satisfactory results, indicating their ability to extrapolate to novel

structures not observed during training stage.

My major contributions to this work have been generating GTM-based classi�-

cation models for selected data sets and evaluating model performance for activity

cli�s and non-cli�s under item-, compound-, and both-out cross validation scenarios.

Biological activity is undoubtedly an important compound property governing

successful interaction of drugs and targets. However, activity alone is not the sole

determinant of the e�cacy of resulting candidate compound and several other prop-

erties need to be simultaneously optimized alongside activity during compound op-

timization. In the next chapter, we analyze ionization state of bioactive compounds,

one of the cardinal parameters a�ecting pharmacological pro�le of compounds.
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Chapter 6

Target-based Analysis of

Ionization States of Bioactive

Compounds

Introduction

The ionization state of a compound in
uences several important physicochemical

properties, ultimately a�ecting their biological activity and drug-action. Majority

of currently available drugs are ionized under physiological conditions, with an es-

timation of 75% of weak bases and 20% of weak acids among them. As such, the

charge state of drug molecules is altered by the variation in pH levels in their sur-

roundings. This in turn a�ects their properties in vivo, such as drug permeability,

that determines the possibility of their di�usion across di�erent cellular membranes.

Moreover, the charge state of compounds at varying pH conditions greatly a�ects

the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs.

Because of their impact on various biopharmaceutical and pharmacokinetic prop-

erties of compounds, considerable amount interest has been placed in exploring

ionizaion pro�les of drugs and bioactive compounds. Comparison between the ion-

ization state of drugs and screening hits have revealed that ionizable groups such as

carboxylic acids and aliphatic amines are signi�cantly underrepresented in screening

sets. Furthermore, notable di�erences in charge state distribution across di�erent

target superfamilies as well as among individual families within a given superfamily.

The current study presents an extensive analysis of ionization state pro�les of
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publicly available bioactive compounds from high-con�dence activity sets. The

prime focus of this work is to investigate relationships between compound's ion-

ization states, structural features and potency. MMP formalism was used for the

�rst time to determine ionization states in chemical neighborhood of bioactive com-

pounds, to understand the e�ect of structural transformations on charge state of

compounds. Ionization state distribution was monitored globally and among highly

potent compounds. Further, charge state preferences of compounds active against

speci�c target families were studied.
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A systematic analysis of ionization states of current bioactive compounds is presented. Ionization states

were related to biological activities on the basis of high-confidence activity data. The majority of bioactive

compounds were found to be basic or neutral under physiological conditions. In addition, chemical neigh-

borhoods of active compounds frequently contained analogs with different ionization states that were

activity-conservative. However, a variety of targets were identified that displayed clear preferences for spe-

cific ionization states in compounds active against them. In this context, notable differences in the distribu-

tion of ionization states were detected for compounds active against different target superfamilies. Further-

more, under physiological pH, differences in ionization states of active compounds were tolerated by many

targets. However, in a number of instances, ionization states of highly and weakly potent compounds

active against the same target were found to be distinct, providing guidelines for compound design and

optimization.

Introduction

The charge state of small molecules is a major determinant
of biological activity and drug action.1–5 It has been estimated
that the majority of drugs are partly ionized under physiologi-
cal conditions.1 A convincing perspective has also been pro-
vided on the critical role compound ionization states play at
different stages of pharmaceutical development.3 Importantly,
differences in the pH in various cellular compartments or
extracellular environments can modulate ionization states of
active compounds, alter their properties in vivo, and affect
pharmacological profiles. A refined charge state profile of oral
drugs indicated that nearly 80% of them contained ionizable
groups, while only ~12% were neutral.3 In addition, acid/base
profiles of drugs directed against major target classes (includ-
ing proteases, kinases, G protein coupled receptors, and vari-
ous ion channels) were studied and notable differences
between these profiles were identified as well as differences
between individual target families comprising a given class.4

Furthermore, the ionization states of drugs and screening
compounds were compared. It was found that drugs
contained a much higher proportion of both carboxylic acid
groups and aliphatic amines than compounds from various

sources available for screening, indicating that many com-
pounds in screening collections might lack relevance for drug
discovery, given the prevalent charge states of drugs.4

In a recent extensive analysis of publicly available com-
pound data,5 acidic and basic bioactive compounds and
drugs were compared and the influence of ionization states
on a variety of calculated or observed physico-chemical and
pharmacological properties was studied. For this purpose,
acids and bases were classified as compounds that were pro-
ton donors and acceptors, respectively, and at least 50% ion-
ized under physiological pH of 7.4 (calculated using the Hen-
derson–Hasselbalch equation6). Major conclusions from this
work included that weak bases containing N-heterocycles are
frequent among drugs and that their physico-chemical and
pharmacological properties are by and large tolerable, that
strongly basic compounds should best be avoided due to
unfavourable properties, and that acids are under-
represented in drugs but should merit further consideration.5

In addition to their thorough analysis of drugs, Charifson
and Walters also analyzed the activity distribution of bioac-
tive compounds with different ionization states across cell-
based assays and of compounds tested in at least 20 assays.
It was found that acidic compounds were generally less active
in cellular assays than compounds with other charge states
and that basic compounds were overall less selective than
acidic or neutral ones.5

Herein we also report a large-scale analysis of bioactive
compounds with respect to ionization states, albeit with dif-
ferent focal points. Our analysis primarily focuses on
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relationships between compound ionization states, structural
similarity, and potency and exclusively uses high-confidence
activity data.

Methods

Small molecules can generally be classified according to ioni-
zation states as bases, acids, neutral compounds, or zwitter-
ionic molecules.1,5 The dissociation constant (Ka) is an equi-
librium constant determining ionization states. Commonly
used is the logarithmic form of the dissociation constant (pKa),
defined as the negative decadic logarithm of Ka Ĳ−log10Ka).
To account for acidic and basic properties of small mole-
cules, two different pKa types are considered including the
acidic pKa (A_pKa) and the basic pKa (B_pKa). Following this
distinction, A_pKa is defined as the pKa for the most acidic
group in a given molecule whereas B_pKa is defined as the
pKa for the most basic group. For all compounds analyzed
herein, calculated values of A_pKa and B_pKa were extracted
from the ChEMBL database7 (version 19).

Compounds were assigned to four ionization state classes
(IS-classes) including basic, acidic, neutral, and zwitterionic
compounds on the basis of A_pKa and B_pKa values relative
to the physiological pH of 7.4, following the approach of
Charifson and Walters.5 Accordingly, compounds with an
acidic or basic group were classified as acids or bases, respec-
tively, if they were more than 50% ionized at pH 7.4. In addi-
tion, compounds containing acidic and basic groups were
classified as acids if the acidic group was more than 50% ion-
ized and the basic group less than 50%, as bases if the basic
group was more than 50% ionized and the acidic group less
than 50%, and as zwitterionic compounds if both groups
were ionized more than 50%. Furthermore, compounds were
classified as neutral if acidic and/or basic groups were both
ionized less than 50% under physiological pH. If A_pKa and
B_pKa values were not available for a compound, it was not
assigned (NA).

From ChEMBL (version 19), compounds active against
human targets at the highest confidence level (confidence
score 9) were extracted for which assay-independent equilib-
rium constants (Ki values) were available as potency measure-
ments. Compounds with multiple measurements for the
same target were only considered if all values fell within the
same order of magnitude. Then the geometric mean of these
was calculated as the final potency annotation. If multiple
stereoisomers of a compound with potency within one order
of magnitude were available, the compound was retained. All
qualifying compounds were organized in individual activity
classes (target sets). A total of 719 Ki-based target sets were
obtained comprising 80 776 compounds.

To assess structural relationships between active com-
pounds, matched molecular pairs (MMPs)8 were calculated.
MMPs consist of pairs of compounds that are only distin-
guished by a structural change at a single site (chemical
transformation).8,9 Size restrictions were introduced to limit
transformations to small structural modifications.10

Accordingly, the size (number of heavy atoms) of the shared
MMP core had to be at least twice the size of each of the
exchanged substructures. In addition, the size of each trans-
formation fragment was limited to a maximum of 13 heavy
atoms and the difference between the exchanged fragments
to eight heavy atoms.10 For each target set, transformation
size-restricted MMPs were systematically calculated using an
in-house implementation of the algorithm by Hussain and
Rea8 utilizing the OEChem toolkit.11 MMPs involving NA com-
pounds were omitted from further analysis. Furthermore, tar-
get sets yielding fewer than 50 MMPs were excluded. A total
of 338 419 MMPs were obtained that exclusively involved a
total of 66 871 IS-class compounds from 290 different target
sets.

For each classified compound, its chemical neighborhood
was determined by combining all of its MMP partners (struc-
tural analogs) within a target set and three neighborhood cat-
egories (CATs) were defined as follows: (I) all neighbors, (II)
only a subset of neighbors, or (III) none of the neighbors
belonged to the same IS-class as the reference compound.

Results and discussion
Compound ionization state class distribution

Fig. 1 reports the IS-class assignment for all qualifying bioac-
tive compounds with available high-confidence activity data
(only 8.4% of all compounds could not be assigned to one of
the four IS-classes, due to missing pKa values). Consistent
with previous findings that many drugs are weak bases under
physiological conditions, we also determined that bases were
prevalent among bioactive compounds (39.2%). Interestingly,
however, a comparable proportion of bioactive compounds
was neutral (38.6%), regardless of their activity. Considering
the entire potency range, only 3.5% and 10.3% of active com-
pounds were zwitterionic and acidic, respectively. The
observed global distribution over IS-classes was essentially
mirrored by a subset set of 39 783 compounds with a potency
of at least 100 nM (with relative class deviations <2%).

Chemical neighborhood analysis

We then systematically explored the chemical neighborhoods
of compounds in all IS-classes through MMP calculations.

Fig. 1 Ionization state class distribution. Reported is the class
distribution for all 80 776 qualifying compounds (solid bars) and a
subset of 39 783 compounds with a potency of at least 100 nM or
higher (striped bars).
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The majority of MMPs (86.4%) were formed between com-
pounds belonging to the same IS-class. Hence, most struc-
tural analogs of classified compounds had conserved ioniza-
tion states. However, many compounds had at least one or a
few structural analogs belonging to a different IS-class. We
found that 68.8% of all neighborhoods consisted of com-
pounds with conserved ionization states, while 28.7% of the
neighborhoods contained one or more compounds belonging

to a different IS-class than the reference molecule. In addi-
tion, in 2.5% of the neighborhoods, all compounds belonged
to IS-classes different from the reference molecule. Hence,
about one third of all neighborhoods were heterogeneous in
their IS-class composition. However, these frequently occur-
ring differences in ionization states were activity-conservative.
Fig. 2 shows exemplary compound neighborhoods of differ-
ent composition.

Fig. 2 Chemical neighborhoods. The figure shows the IS-class composition (red, acidic; blue, basic; white, neutral; dual colored, zwitterionic) of
exemplary chemical neighborhoods of category (CAT) I–III with inhibitors of different carbonic anhydrase isoforms (TIDs report ChEMBL target set
IDs). Functional groups (acidic, red; basic, blue) ionized at physiological pH are depicted in bold and highlighted. ChEMBL compound ID and IS-
classes are given.
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Ionization state class distribution over activity classes and
target superfamilies

We next determined the distribution of IS-classes over target
sets. Target sets with fewer than 10 compounds or more than
20% unclassified (NA) compounds were excluded from this
analysis. In nearly 90% of 351 qualifying target sets, more
than half of the compounds belonged to the same IS-class
and in 40%, more than 80% belonged to the same class.
Hence, although compound neighborhoods were frequently
found to be heterogeneous in their ionic state composition,
as discussed above, many target sets displayed a strong ioni-
zation state preference. In most cases, basic or neutral com-
pounds dominated. This can also be seen in Table 1 that
reports the top 20 target sets (comprising at least 200 com-
pounds) having the highest percentage of compounds
belonging to the same IS-class. The ranking contains many
different G protein coupled receptors (GPCRs), but also trans-
porters and proteases. In addition to basic compounds,
strong preferences for neutral (e.g., vanilloid receptor ligands)
and acidic compounds (e.g., prostaglandin D2 receptor 2
ligands) were also observed.

Target sets were also organized into superfamilies and the
IS-class distribution of their ligands was determined, as
reported in Fig. 3. Clear trends were observed. For example,
50% of available enzyme inhibitors and 36% of membrane
receptor ligands were neutral. While enzyme inhibitors
displayed a balanced distribution of acidic (15%) and basic
(20%) compounds, membrane receptor ligands showed a
notable preference for basic (46%) over acidic compounds
(8%). Furthermore, 67% of all compounds active against
transporters were bases. Moreover, 50% and 26% of ion
channel ligands were basic and neutral compounds, respec-
tively, whereas only 3% of them were acids. Thus, there were

marked differences in ionization state preferences for com-
pounds active against different target superfamilies.

Potency range distribution of ionization state classes

Finally, the potency range distribution of IS-classes was stud-
ied in detail for all target sets. Although there were no signifi-
cant differences between the global IS-class distributions of
all bioactive compounds and a subset of highly potent com-
pounds, as reported above (and shown in Fig. 1), we detected
57 target sets with notable differences in IS-class distribu-
tions between weakly (pKi ≤ 6; WP) and highly potent (pKi ≥
7; HP) compounds. These 57 target sets primarily belonged

Table 1 Target sets with ionization state class dominancea

Target ID Target name # Cpds Dominant IS-class

5071 Prostaglandin D2 receptor 2 468 99% acidic
4794 Vanilloid receptor 253 97% neutral
259 Melanocortin receptor 4 1217 92% basic
264 Histamine H3 receptor 2023 92% basic
1898 Serotonin 1b (5-HT1b) receptor 364 92% basic
335 Protein-tyrosine phosphatase 1B 243 91% acid
344 Melanin-concentrating hormone receptor 1 846 90% basic
4644 Melanocortin receptor 3 350 90% basic
4608 Melanocortin receptor 5 268 88% basic
1983 Serotonin 1d (5-HT1d) receptor 359 87% basic
1800 Corticotropin releasing factor receptor 1 473 84% neutral
222 Norepinephrine transporter 1010 84% basic
232 Alpha-1b adrenergic receptor 290 84% basic
228 Serotonin transporter 1337 83% basic
2492 Neuronal acetylcholine receptor protein alpha-7 subunit 253 83% basic
238 Dopamine transporter 867 81% basic
3798 Calcitonin gene-related peptide type 1 receptor 349 81% neutral
1916 Alpha-2c adrenergic receptor 295 80% basic
2954 Cathepsin S 375 80% neutral
210 Beta-2 adrenergic receptor 241 80% basic

a The top 20 target sets (with ChEMBL IDs) with highest percentages of compounds belonging to the same IS-class are reported.

Fig. 3 Compound IS-class distribution over target superfamilies.
Reported is the IS-class distribution (red, acidic; blue, basic; white,
neutral; dual colored, zwitterionic) of ligands of four target superfam-
ilies (plus “Other”). For each superfamily, the percentage of active
compounds belonging to each category is given. Compounds classified
as NA are not shown.
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to three superfamilies (enzymes, membrane receptors and
transporters). The majority of the targets belonged to enzyme
inhibitors (28) followed by membrane receptors (19). Only
two targets were transporters. The IS class distribution of HP
and WP compounds in these target sets displayed significant
differences. In 27 enzyme inhibitor sets, more than 80% of
the HP compounds were zwitterionic (and less than 20% of
WP compounds were zwitterionic), whereas for the majority
of membrane receptors, the percentage of HP zwitterionic
compounds was less than 20%. The structures of the HP
and WP compound sets for specific IS-classes and superfam-
ilies were mostly distinct, because the overlap in scaffolds12

between these sets of compounds rarely exceeded 5%. In
addition, the sets of HP and WP compounds had high
intra-set diversity, because each scaffold represented on
average only one to two different compounds. In Fig. 4,

representative examples for these 57 target sets are shown.
Fig. 4A reports the IS-classes of neurokinin 2 receptor antag-
onists. Among the highly potent ligands, there was a clear
preference for basic over neutral compounds, whereas the
trend was reversed for weakly potent compounds where neu-
tral species were found to dominate. In Fig. 4B, a notable
enrichment of basic compounds among weakly potent
urokinase-type plasminogen activators is observed. In this
case, highly potent compounds had different ionization states
(which was rather unusual). Furthermore, Fig. 4C shows a
reversal in the distribution of acidic and neutral compounds
among highly and weakly potent inhibitors of inosine-5′
monophosphate dehydrogenase 2, corresponding to observa-
tions made for basic and neutral compounds in Fig. 4A. Fur-
thermore, Fig. 4D shows that basic compounds were fre-
quently observed among weakly potent coagulation factor XI

Fig. 4 IS-class changes over potency ranges. For four exemplary target sets (with targets belonging to different families), the IS-class distribution
(red, acidic; blue, basic; white, neutral; dual colored, zwitterionic) for highly potent (HP, pKi ≥ 7) and weakly potent (WP, pKi ≤ 6) compounds is
shown. The number of compounds in different IS-classes falling into the intermediate potency interval is also given. Target IDs: (A) 2327, (B) 3286,
(C) 2002, and (D) 2820.
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inhibitors, whereas highly potent inhibitors were zwitterionic,
without an exception.

Conclusions

We have carried out a large-scale analysis of calculated ioni-
zation states in bioactive compounds and their distribution
across different targets and families that complements and
further extends previous investigations. Ionization states in
chemical neighborhoods of bioactive compounds were deter-
mined across different potency ranges, setting our analysis
apart from previous studies. Furthermore, different from
earlier studies that strongly (but not exclusively) focused on
drugs, we comprehensively analyzed currently available spec-
trum of bioactive compounds and exclusively based our anal-
ysis on carefully selected high-confidence activity data. Our
results reveal the presence of an uneven global distribution
of ionization states across the bioactive compounds, the
majority of which were basic or neutral under physiological
conditions. Individual target sets were found to display sig-
nificant differences in preferred ionization states. Similar
observations were made for different target superfamilies.
Systematic MMP analysis revealed that changes in ionization
states frequently occurred among structural analogs. More-
over, potency range-dependent differences in the distribution
of ionization states were detected in a variety of target sets.
We found that ionization states of highly potent compounds
were often different from weakly potent ones. In a number of
cases, weakly potent compounds were predominantly basic,
while different ionization states were observed among highly
potent ones. In other instances, weakly potent compounds
were mostly neutral, whereas highly potent compounds were
charged. Thus, for a variety of targets, preferred ionization
states characteristic of highly potent compounds can be iden-

tified. The presence of preferred ionization states in highly
potent compounds for different targets provides valuable
guidelines for compound design and optimization.
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Summary

A comprehensive analysis of ionizatoin states of currently available bioactive com-

pounds from one of the largest public repositories has been reported. Ionization state

of compounds was determined based on two di�erent types of calculated dissociation

constant values: acidic pKa and basic pKa, de�ned as the pKa for the most acidic

and the most basic group in the molecule, respectively. Compounds were classi�ed

into one of the four ionization state classes: acidic, basic, neutral and zwitterionic,

based on their acidic and basic pKa values. The analysis was carried out on a to-

tal of 80,776 compounds, meeting high-con�dence activity criteria, obtained from

719 targets in ChEMBL. Transformation-size restricted MMPs were systematically

calculated for each compound set to account for structural relationships between

compounds of di�erent ionization state classes. The chemical neighborhood of each

classi�ed compound was determined by considering all of its MMP partners within

a target set. Three neighborhood categories were de�ned if all neighbors (CAT I),

only a subset of neighbors (CAT II) or none of the neighbors (CAT III) belonged to

the same ionization state class as the reference compound.

Our analysis revealed that the proportion of basic and neural compounds were

comparable, and in total, they covered nearly 80% of all bioactive compounds. The

chemical neighborhood analysis showed that one third of all neighborhoods had

heterogeneous ionization states, i.e., the charge state of the reference and the neigh-

borhood compounds di�ered. For majority of target classes, compounds showed

strong preference towards basic or neutral ionization state. In addition, target su-

perfamilies also displayed signi�cant di�erence in charge states distribution of the

compounds. Detailed analysis of potency distribution of ionization state classes indi-

cated marked di�erences between weakly and highly potent compounds with respect

to their ionization states.

My major contributions to this work include analyzing global and target-based

distribution of ionization states of compounds and MMP-based chemical neighbor-

hood analysis of compounds belonging to same or di�erent IS-classes.

As previously outlined, compound optimization is a multifactorial process, and

ionization state is just one of the several factors a�ecting the \drug-likeliness" of a

given compound. In the next chapter, computational optimization of multiple drug-

relevant properties of compounds have been carried out, followed by visualization
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of prioritized solutions corresponding to drug-like subspaces of multi-dimensional

property space.
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Chapter 7

Visualization of Multi-property

Landscapes for Compound

Selection and Optimization

Introduction

SAR is undoubtedly the most explored theme in medicinal chemistry and chemoin-

formatics. Although, traditional SAR analysis is done in a case-by-case basis the

surge in the amount of compound data requires SAR analysis to be carried out on

a large-scale in diverse data sets. Large-scale SAR analysis is thus usually com-

plemented by visualization techniques such as activity landscapes. Several 2D and

3D activity landscapes have been extensively discussed in the Chapter 1. The fun-

damental characteristic of most of the activity landscapes is that only biological

activity is considered as the sole feature of compounds. However, compound opti-

mization is dependent on several other biologically relevant properties, which need

to be optimized simultaneously. Navigation and visualization of compound distribu-

tion in multi-dimensional property spaces are usually di�cult, and even more chal-

lenging is to identify drug-like subspaces in them. Computational multi-property

compound optimization tasks generally result in more than one optimal solutions.

It is not straightforward to di�erentiate and hence choose the globally best combina-

tion of the given set of objectives. Moreover, it is often di�cult to �nd a chemically

intuitive rationale to the proposed solution of a multi-property optimization prob-

lem. This study introduces a method to visualize multi-property landscapes and
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complement multi-objective optimization by allowing graphical analysis of resulting

solutions. Furthermore, the method can be used for comparative analysis of nu-

merically equivalent solutions and prioritize them for identifying compounds with

drug-relevant properties for further optimization.
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Abstract Compound optimization generally requires

considering multiple properties in concert and reaching a

balance between them. Computationally, this process can

be supported by multi-objective optimization methods that

produce numerical solutions to an optimization task. Since

a variety of comparable multi-property solutions are usu-

ally obtained further prioritization is required. However,

the underlying multi-dimensional property spaces are typ-

ically complex and difficult to rationalize. Herein, an

approach is introduced to visualize multi-property land-

scapes by adapting the concepts of star and parallel coor-

dinates from computer graphics. The visualization method

is designed to complement multi-objective compound

optimization. We show that visualization makes it possible

to further distinguish between numerically equivalent

optimization solutions and helps to select drug-like com-

pounds from multi-dimensional property spaces. The

methodology is intuitive, applicable to a wide range of

chemical optimization problems, and made freely available

to the scientific community.

Keywords Compound optimization � Activity
landscapes � Structure–property relationships � Multi-

objective optimization � Multi-property landscapes �
Visualization

Introduction

The exploration of structure–activity relationships (SARs) in

large and structurally heterogeneous compound data sets is

strongly supported by SAR visualization methods [1]. The

concept of activity landscapes (ALs) [2] provides integrated

views of compound similarity and activity relationships and

has been applied for SAR visualization [1, 2]. Several

approaches to the design of two- (2D) and three-dimensional

(3D) ALs have been introduced that typically consider

activity as the sole compound property. Exemplary 2D AL

designs include simple ‘‘structure–activity similarity (SAS)

maps’’ [3] that plot structural similarity against activity

similarity on the basis of pairwise comparisons of data set

compounds and, in addition, various network representa-

tions. For example, the ‘‘network-like similarity graph’’

(NSG) [4] has been an original network-based AL design in

which nodes represent compounds and edges pairwise (fin-

gerprint) similarity relationships. Nodes in NSGs are anno-

tated with potency and numerical SAR score information.

Another more recent design has been ‘‘intuitive networks for

structure–activity relationship analysis’’ (inSARa) [5] in

which reduced graphs of active compounds are used to

determine their maximum common substructures (MCSs).

TheseMCSs are then represented as nodes that are connected

by edges indicating hierarchicalMCS relationships. Original

compounds are then assigned to corresponding MCSs and

represented as a second node category, i.e., compound nodes

colored by potency. MCS-based visualization methods have
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also been introduced to organize individual compound series

and elucidate SAR patterns [6–8]. In addition to network

representations, tree-like structures have been designed to

graphically organize compound series and study SAR trends

in chemical neighborhoods [8, 9]. Several network- [7] or

tree-like [8, 9] visualizations can be rationalized as local 2D

ALs because they predominantly or exclusively focus on

individual compound series (rather than structurally

heterogeneous data sets).

Going beyond global or local 2D representations, the

design of 3D ALs can be approached in different ways.

Given a 2D representation of structural similarity rela-

tionships, an intuitive way of generating a 3D AL is adding

a biological response surface as a third dimension. This

typically requires extrapolation of a hypersurface from

sparsely distributed compound activity values, which has

been accomplished by adapting the kriging method from

geostatistics [10]. An alternative approach to 3D AL design

is subjecting a high-dimensional chemical descriptor space

to dimension reduction to obtain a 3D view, as exemplified

by the ligand induced structure–activity relationship dis-

play (LiSARD) [11]. Compound positions in this space can

then be annotated with activity information.

Chemical space visualization is not confined to AL

views. Rather, different visualization techniques have also

been introduced to generalize chemical space display

including, for example, similarity-based compound net-

works [12] and molecular layout algorithms [13] for

smaller data sets, projections from high-dimensional

descriptors spaces based on principal component analysis

for large (or very large) data sets [14, 15], and generative

topographic mapping (GTM) [16]. GTM was designed to

project from high-dimensional feature spaces onto latent

2D space representations in which points (nodes) corre-

spond to normal probability distributions derived from the

original data space that determine the mapping of com-

pounds to the latent space. As such, GTM does not rep-

resent an AL view as conventionally defined.

Returning to the AL concept, we emphasize two of its

cardinal features: firstly, it is activity-centric (i.e., activity is

considered as a single structure-related property); secondly,

it is descriptive in nature (i.e., ALs are used to analyze SARs

but not predict active compounds). Both of these features

limit the applicability of AL representations for compound

optimization, which typically is a multi-objective task.

During iterative optimization, multiple biologically relevant

compound properties are considered in combination with

activity, focusing on the key question,which compound(s) to

make next [17]. In the practice of medicinal chemistry, this

process is predominantly driven by chemical experience and

intuition, although it can also be supported by computational

means. In computational chemistry, multi-property opti-

mization is typically attempted using evolutionary

algorithms [18–20] or property-weighted objective func-

tions [20], often in combination with Pareto ranking [19, 20]

of numerical solutions. These multi-objective methods

usually produce reasonable numerical solutions of opti-

mization tasks but are not expected to find the globally best

solution. Multi-objective optimization typically produces a

variety of comparable solutions and it is often difficult to

further differentiate between them and rationalize charac-

teristic features in multi-dimensional property space.

Herein, we introduce an approach to visualize multi-

property landscapes, further extending the AL concept, and

graphically analyze solutions of property-weighted objec-

tive functions. The methodology makes it possible to fur-

ther differentiate between numerically equivalent

optimization solutions and prioritize them for specific tasks

by viewing them in a multi-dimensional data set context.

Materials and methods

Compound data selection

In order to model compound optimization processes, data

sets were assembled that consisted of two types of com-

pounds active against the same target: bioactive compounds

from medicinal chemistry sources and approved drugs.

Bioactive compounds were extracted from ChEMBL [21]

(version 20). Only compounds with reported direct interac-

tions (i.e., target relationship type ‘‘D’’) against human tar-

gets at the highest assay confidence level (i.e., confidence

score 9) and precisely defined equilibrium constants (Ki

values) were considered. Compounds with multiple Ki

measurements for the same target were retained if all

reported values fell within the same order of magnitude. In

this case, the arithmetic mean was calculated as the final

potency annotation. Approved small molecule drugs with

specific target annotations were assembled from DrugBank

[22] (version 4.1). To ensure that potency information was

available for all drugs and bioactive compounds considered

in the analysis, only drugs were retained for which high-

confidence activity measurements were available in

ChEMBL.All qualifying compounds and drugswith activity

against the same target were organized into target-based

compound sets. Each target set was required to contain at

least 100 bioactive compounds and at least 10 approved

drugs. Table 1 summarizes the composition of six target sets

satisfying the above criteria assembled for our analysis.

Multi-dimensional property space

A multi-dimensional property space was generated using

14 descriptors accounting for different molecular proper-

ties relevant for chemical optimization, as summarized in
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Table 2. Properties represented by 13 calculated descrip-

tors included, among others, hydrophobic and aromatic

character, molecular complexity, hydrogen bonding

potential, charge, and surface properties. In addition,

compound potency (pKi; negative decadic logarithm of the

equilibrium constant) was used as a descriptor. Experi-

mental pKi values for data set compounds were taken from

ChEMBL (version 20). The descriptor a_ringR (fraction of

ring atoms in a molecule) was calculated with the aid of the

OpenEye toolkit [23] and the remaining 12 descriptors

were calculated using the Molecular Operating Environ-

ment (MOE) [24]. This 14-dimensional feature space was

designed as a reference space for exemplary multi-property

optimization. The feature set selected for our proof-of-

concept investigation can of course be replaced by any

other number of calculated descriptors and/or experimen-

tally determined properties, depending on the specific

optimization tasks.

Property space projection and optimization

Compound subsets with preferred feature value combina-

tions were selected from multi-dimensional feature space.

Therefore, compound distributions in 14-dimensional fea-

ture space were projected onto a one-dimensional space. A

projection of the data was obtained by multiplying an

n 9 p data matrix, X, with n sample points in p dimen-

sions, with a p 9 d projection matrix, A (here with p = 14

and d = 1). Accordingly, the projection of compound i was

given by the formula: vali ¼
Pp

j¼1 wjvj, where vj (from X)

was the value for descriptor j and wj (from A) the weight

given to descriptor j [25]. The value of this projection was

used as the multi-objective function (MOF) value for

numerical optimization of a compound subset selection.

Values of the 13 numerical descriptors were scaled rela-

tive to the observed pKi range to ensure that no descriptors

numerically dominated the value distributions.

Table 1 Data sets combining

bioactive compounds and

approved drugs

Target ID Target name Bioactive CPDs Drugs

231 Histamine H1 receptor 572 25

1867 Alpha-2a adrenergic receptor 453 23

210 Beta-2 adrenergic receptor 355 19

2035 Muscarinic acetylcholine receptor M5 282 14

4302 P-glycoprotein 1 242 49

4605 Small intestine oligopeptide transporter 181 14

For the six target-based data sets, the ChEMBL target ID, number of bioactive compounds (CPDs), and

approved drugs are reported

Table 2 Descriptors

No. Name Definition Property Unit

1 a_acc Number of hydrogen bond acceptors Hydrogen bonding Integer

2 a_aroR Fraction of aromatic ring atoms Aromaticity Percentage

3 a_don Number of hydrogen bond donor atoms Hydrogen bonding Integer

4 a_ringR Fraction of ring atoms Molecular complexity Percentage

5 b_rotR Fraction of rotatable bonds Flexibility Percentage

6 chiral_u Number of chiral centers Stereochemistry Integer

7 Fcharge Sum of formal charges Charge Integer

8 logP(o/w) Log of octanol/water partition coefficient Hydrophobicity Log unit

9 logS Log of aqueous solubility Solubility Log (mol/L)

10 PEOE_VSA_FHYD Fractional hydrophobic van der Waals surface area Surface property Percentage

11 PEOE_VSA_FPNEG Fractional negative polar van der Waals surface area Surface property Percentage

12 PEOE_VSA_ FPPOS Fractional positive polar van der Waals surface area Surface property Percentage

13 Pot Potency (pKi) Activity Log (M)

14 Weight Molecular weight Molecular size Da

The set of 14 descriptors used for feature space generation is listed and defined
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Optimization was guided by maximizing the MOF value.

Therefore, a systematic search was performed using four

different weight values for each descriptor {-1.0, -0.33,

0.33, 1.0}.All 414 (*270millions) possible projectionswere

systematically explored. The weighting scheme chosen for

our analysis can be easily exchanged for different properties

and optimization tasks. The search procedure is not depen-

dent on a specific methodology or strategy. Descriptor

weights can be obtained using alternative approaches

including, among others, regression techniques. If the

number of features becomes too large for an exhaustive

search, stochastic search strategies can also be applied.

Compounds were ranked based on their MOF value and

the top 20 compounds were analyzed. Projections were pri-

oritized based on the number of approved drugs within the

top 20 ranking. In prioritized set of projections, MOF value

corresponded to our drug-likeness model of compounds

meaning that compounds with higher MOF values had

properties similar to approved drugs. Thus, projections with

a significant enrichment of drugs among top-ranked com-

pounds were considered to originate from drug-like sub-

spaces representing favorable multi-feature combinations.

Our current analysis scheme is focused on the exploration of

drug-like subspaces for the generation of which reference

sets of known drugs are essential. However, compound ref-

erence sets with other characteristic properties of interest can

be used for mapping and derivation of descriptor weights.

Visualization of projections

For the visualization of individual projections, the Star

Coordinate (STC) [26] representation was adopted from

computer science. STC is a multi-dimensional visualization

technique that arranges coordinates in predefined positions

sharing the same origin at the center. The position of a

compound in the STC visualization was dependent on the

position of each coordinate (descriptor) and the values of

the compound for each coordinate.

More formally, the position of compound i in the STC

visualization was given by the formula: i~¼
Pp

j¼1 vjd
~
j,

where d~j represented the position of descriptor j and vj the

value for descriptor j. The position of descriptor j was

calculated as follows: its weight obtained from MOF

optimization provided the y-axis value. Along the x-axis,

all descriptors were ordered lexicographically and given

incremental values between -1 and 1 to distribute them

evenly. Figure 1a shows a schematic STC visualization for

an individual compound. For a given projection, the STC

visualization provides a 2D representation of the data set

distribution in multi-dimensional property space. STC for

multi-property space display was implemented in-house in

Java based upon the JUNG library [27].

STC visualization was complemented by the Parallel

Coordinate (PAC) [28] representation, another multi-di-

mensional visualization technique from computer science

that organizes features (descriptors) on parallel axes. Each

axis represents all possible values for a descriptor, ranging

from the minimum (top of the axis) to the maximum value

(bottom). Compounds are then represented as lines that

traverse all descriptor axes at positions corresponding to

the value for each descriptor. Figure 1b shows an exem-

plary PAC representation. The molecular PAC represen-

tation was also implemented in-house in Java. STC

visualizations of projections were generated to further

differentiate numerically comparable optimization solu-

tions and view subsets of top-ranked compounds in the

context of global data distributions from multi-dimensional

feature space.

For comparison, principal component analysis (PCA) of

unweighted and weighted descriptor spaces was carried out

using R [29] and the first and second principal components

(PCs) were used to generate conventional PC plots.

Because these plots generate a two-dimensional view of

multi-dimensional data that maximize the original vari-

ance, they are often used to represent high-dimensional

spaces. However, their primary goal is the generation of an

uncorrelated view with maximum variance and hence the

visualization might not be chemically informative.

dA

dB dC

dD

dE

Star Coordinates

A

B

C

D

E

1

Parallel Coordinates

0 0 0 00

1 1 1 11
A B C ED

0.33

0.5

0.14

0.25

0.20

(a) (b)

Fig. 1 Star and parallel coordinates. a A schematic STC represen-

tation for a single compound (gray dot) and five descriptors (A–E).

Gray arrows represent descriptor vectors forming the star coordinate.

Red arrows (dA to dE) represent weighted vectors obtained by

multiplying the descriptor value of the compound with the corre-

sponding vector. The position of the compound is determined by the

sum of all weighted vectors (indicated by blue arrows for dB to dE).

b An exemplary PAC plot for the same compound. Descriptors (A–

E) are assigned to parallel horizontal lines. The red line traces the

descriptor values of the compound

J Comput Aided Mol Des

123

Author's personal copy



Results and discussion

Methodological principles

The simultaneous consideration of multiple properties

beyond potency is a requirement of compound optimiza-

tion in medicinal chemistry. Therefore, the activity-centric

AL concept, which is useful for SAR exploration, might

be further extended to rationalize multi-property land-

scapes. Analyzing multi-dimensional property spaces

generally is a complicated task, which is typically

addressed using dimensionality reduction. The basic idea

underlying the methodology introduced herein was to

visualize compound distributions in multi-property space

in which numerical optimization is carried out. Multi-

property optimization carried out in the context of our

analysis was guided by the use of approved drugs as

internal standards. Compound rankings based upon pro-

jections with a significant enrichment of drugs at top

ranked positions were thought to originate from drug-like

subspaces in multi-dimensional property space. Thus,

highly ranked data set compounds had property combi-

nations comparable to drugs and were thus considered

preferred candidates for selection and further optimization

efforts. A known conundrum of numerical multi-objective

optimization is that typically a variety of high-scoring

solutions are obtained that are difficult to distinguish.

Therefore, it was attempted to visualize compound dis-

tributions underlying best projections to analyze rankings

within the data set context and further differentiate them.

These visualizations were designed to provide a detailed

view of multi-property landscapes, as discussed in the

following.

Multi-property landscape display

The STC representation provides the core visualization of

multi-property space. Figure 2 illustrates how an STC

view is obtained for a model compound set from

descriptor weights and multi-dimensional coordinates. For

a given projection, the STC visualization provides a 2D

view of the underlying compound distributions in multi-

dimensional property space. Figure 3a shows an exem-

plary STC visualization for an actual compound data set

and a given projection. In addition, Fig. 3b shows the

corresponding PAC view and Fig. 3c the top five com-

pounds from the ranking. The five compounds have

similar chemical structure. Hence, MOF value ranking

likely includes a similarity-property principle component.

At the top of the STC view, the drug-like subspace is

delineated by the subset of highly-ranked compounds

including 13 drugs, with the majority of compounds being

clearly separated from the prioritized subspace (Fig. 3a).

Similarity relationships between compounds in STC views

were substantially different from those in high-dimen-

sional space (on average 21.5 % nearest neighbors over-

lap). Comparable average overlap values (12.8–25.2 %)

were obtained for other STC views shown in Fig. 5b, d.

The corresponding PAC representation reveals which

descriptor contributions dominate the projection (Fig. 3b).

For some descriptors, values of highly ranked compounds

significantly differed (e.g., a_acc, logP(o/w)), whereas

their values were narrowly confined in other cases (e.g.,

a_don, a_ringR, b_rotR). Moreover, largely distinct value

ranges of a few descriptors were observed for highly

ranked molecules compared to many other bioactive

compounds (e.g., a_ringR, b_rotR), which strongly con-

tributed to the separation. Thus, the PAC representation

complements the STC visualization by identifying prop-

erty settings that distinguish compounds in drug-like

subspaces from others and evaluating relationships

between descriptor settings. Thus, PAC representations

can be used to study feature correlation patterns. For

example, the line traces in Fig. 3b reveal a negative

correlation between the a_ringR and b_rotR descriptors.

Finally, PAC also provides a visual representation of the

original high-dimensional space, as it displays all

descriptor values for each compound. Therefore, the PAC

representation is independent of specific projections and

helpful to analyze the STC view.

Multi-property optimization

We next carried out a systematic multi-property opti-

mization as a basis for practical applications of the newly

introduced visualization approach. The set of chemically

intuitive features selected for our conceptual investigation

can be replaced by any other calculated or experimentally

determined compound characteristics relevant for opti-

mization tasks. For the multi-objective function contain-

ing our 14-descriptor set with four possible weights per

descriptor, a systematic search of all possible projections

from multi-dimensional space was carried out. Each

projection yielded a MOF value for any bioactive com-

pound and drug based on which a ranking was generated.

More than 270 million weight combinations were ana-

lyzed and prioritized based on the number of drugs in the

top 20 compound ranking. For all data sets, drug

enrichment was only detected in a small subset of pos-

sible weight combinations, as shown in Fig. 4. Hence,

delineation of subspaces populated with drugs required

very specific multi-parameter settings, as one should

expect. Nonetheless, for the different data sets, there were

between 20 and *500 projections that yielded maximum
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drug enrichment (between nine and 18 drugs for the

different sets), as also shown in Fig. 4. Thus, these pro-

jections represented equivalent numerical optimization

solutions. The corresponding compound rankings covered

most drugs in the data sets (43–95 %; on average 70 %)

but only a small fraction of bioactive compounds

(3–16 %; on average 8 %) mapping to drug-like sub-

spaces. Furthermore, many projections producing maxi-

mum drug enrichment had very similar weight

combinations. However, projections with very different

combinations (descriptor contributions) were also found.

Therefore, solutions with maximal drug enrichment hav-

ing similar or distinct weight combinations were further

analyzed through visualization. The successful delineation

of specific drug-like subspaces for all data sets indicated

that the search procedure took compound similarity rela-

tionship implicitly into account.

Visualization of projections and comparison

of compound distributions

A large number of STC representations were generated for

different data set projections. Figure 5 shows exemplary

comparisons. In Fig. 5a, two projections with distinct

descriptor weight combinations are shown for beta-2

adrenergic receptor ligands that produced large drug

enrichment (and shared 11 of 13 drugs in their top 20

rankings). Figure 5b compares the STC representations of

these projections. The compound distributions differed

significantly for these two projections representing

numerically equivalent optimization solutions. This might

be expected because distinct weight combinations charac-

terized these projections. Although both projections dis-

played significant drug enrichment, projection 1 clearly

separated top ranked compounds from others and also

A B C D E

1 0.33 0.50 0.14 0.25 0.20

2 0.88 0.93 0.97 0.80 0.53

3 0.35 0.61 0.89 0.50 0.74

4 0.85 0.88 0.64 0.35 0.54

5 0.60 0.01 0.21 0.30 0.38

6 0.95 0.16 0.38 0.50 0.29
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Fig. 2 Star coordinate

representation of multi-

dimensional compound data.

For a model data set comprising

six compounds with five

different properties, the

generation of an STC view is

illustrated. Descriptor positions

and compound 1 correspond to

Fig. 1a. Descriptor positions

resulted from lexicographical

ordering along the horizontal

axis combined with weight

settings for a given projection

(with a descriptor weight

combination shown in the inset).

Compound positions resulted

from matrix calculations shown

at the bottom and summation of

descriptor contributions

(pathway calculations). For two

exemplary compounds, 1 and 3,

pathways are traced. Compound

rank positions increase along

the vertical axis
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Top ranked drug compounds Top ranked  bioac�ve compounds

Other drug compounds Other bioac�ve compounds

Star Coordinates Parallel Coordinates

Weight
Pot

PEOE_VSA_FPPOS
PEOE_VSA_FPNEG

PEOE_VSA_FHYD
logS

logP(o/w)
FCharge
chiral_u

b_rotR
a_ringR

a_don
a_aroR

a_acc

(a) (b)

(c)

Rank CPD ID Structure

1 1146

2 2303613

3 74632

4 1415

5 00567

Ranked list of compounds

Fig. 3 Views of a multi-property landscape. Compound distributions

of small intestine oligopeptide transporter ligands (ChEMBL target

ID 4605) for a given projection were displayed using a STC and

b PAC representations. In the STC representation, points represent

individual compounds and color-coding distinguishes drugs (cyan)

and bioactive compounds (orange). Top ranked molecules are

depicted with a black border. In addition, shading of compounds

indicates their rank, from dark colors (high rank, beginning at rank

21) to light colors (low rank). In the PAC representation, descriptors

are assigned to vertical evenly spaced lines (spanning their value

ranges) and compounds are depicted as lines (horizontal traces)

color-coded as in (a). c The top five compounds from the ranking of

the projection including two drugs (4 and 5). Orange and cyan

compound (CPD) IDs correspond to ChEMBL and DrugBank IDs,

respectively
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spread the compound data set across the property space,

providing a clear view of compounds in increasingly large

distances from the prioritized subspace. By contrast, in

projection 2, the bulk of the data set was concentrated in a

small region of property space and the separation of highly

ranked and other compounds was only marginal. Hence,

the property settings of projection 2 rendered data set

compounds much more similar in multi-dimensional

property space than the settings of projection 1, as clearly

revealed by STC visualization. Therefore, for the selection

of candidate compounds for chemical optimization efforts

focusing on drug-like subspace, preference would be given

to projection 1.

In Fig. 5c, two projections with similar descriptor

weights are shown for alpha-2a adrenergic receptor ligands

that yielded large drug enrichment (and shared seven of

eight drugs among the top 20 compounds). Figure 5d

shows the STC visualizations of these projections.

Although the weight combinations were very similar, the

compound distributions were distinct, contrary to expec-

tations, as further discussed below.

For comparison with STC, Fig. 5e shows PC plots (us-

ing the first and second PC) of the unweighted descriptor

space and weighted descriptor combinations of projections

1 and 2. In unweighted descriptor space, PCA did not yield

a separation of drugs and bioactive compounds. Moreover,

the PC plots of projection 1 and 2 were very difficult to

interpret and remained essentially inconclusive. By con-

trast, the STC representations of projection 1 and 2 in

Fig. 5d reveal a clear separation of top ranked and other

data set compounds, but with different characteristics. The

STC view of projection 1 shows that many data set com-

pounds including remaining drugs were located proximal

to the prioritized subspace, while only a small number of

lowly ranked compounds were far removed from it.

However, the STC view of projection 2 in Fig. 5d reveals a

significant spread of the compounds across multi-dimen-

sional property space (similar to projection 1 in Fig. 5b)

including the majority of drugs, although the weight set-

tings of projection 1 and 2 were comparable. In the case of

projection 2, the STC view also shows that the drug-like

subspace was less well-defined than in other cases, with

many drugs (including two highly ranked ones) located

distantly from many top ranked compounds. From these

STC views, individual compounds can be easily selected

for further analysis. Taken together, the STC visualizations

provided a well-resolved picture of compound distributions

in multi-dimensional property space for otherwise very

similar projections.

Concluding remarks

High-dimensional property spaces for compound opti-

mization or data set analysis are generally difficult to

represent and navigate. While the potency-centric AL

concept has substantially contributed to graphical SAR

exploration, especially for larger and structurally hetero-

geneous data sets, little efforts have thus far been made to

visualize multi-dimensional property landscapes that

combine activity with other optimization-relevant proper-

ties. Typically, dimension reduction techniques such as

PCA are applied to evaluate feature contributions in multi-

dimensional space. Different types of graphical analysis are

expected to aid in the rationalization of multi-dimensional

property spaces. Therefore, a visualization methodology

for multi-dimensional property spaces has been developed,

as reported herein. Our analysis was based upon the gen-

eration of drug-like subspaces in chemical space, which

takes molecular similarity relationships implicitly into

account. However, it would also be feasible to focus an

analysis explicitly on selected distance relationships in

chemical space (or generate subspaces for compound ref-

erence sets with other characteristic properties).

Our study introduces the STC and PAC concepts,

adapted from computer graphics, to the medicinal chem-

istry community. STC/PAC visualization of compound

data is designed to complement multi-objective optimiza-

tion, provide access to multi-dimensional data distribu-

tions, and aid in compound selection. For a given

Fig. 4 Numerical comparison of projections. A projection was

created for each weight value setting of the multi-objective function

containing 14 descriptors and the number of drugs within the 20 top

ranked compounds was determined. The graph reveals the number of

weight combinations yielding largest numbers of highly-ranked drugs

across the different target sets (colored by target IDs given in

Table 1)
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Fig. 5 Visualization of projections. Exemplary projections are visu-

alized and compared. In (a) and (b), two projections generated for

beta-2 adrenergsic receptors (ChEMBL target ID 210) are shown. The

corresponding top 20 rankings contained 13 drugs each (11 of which

were the same). a Compares the weight combinations (settings) for

these projections and b their STC visualizations. Points represent

individual compounds and are color-coded according to Fig. 3a. In

(c) and (d), two projections generated for alpha-2a adrenergic

receptor ligands (ID 1867) are shown. The corresponding top 20

rankings contained eight drugs each (seven of which were the same).

c Compares the weight combinations (settings) for these projections

and d their STC visualizations. In (b) and (d), STC visualizations

were scaled to the same value ranges. e PCA-based data set

projections (using the first two PCs) with unweighted descriptors

(top, drugs colored cyan and bioactive compounds gray) and

weighted descriptors from projection 1 (middle) and 2 (bottom) taken

from (c). PCA plots of projections are color-coded as in (d)
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projection and compound ranking, the STC visualization

provides a 2D representation of a compound distribution in

multi-dimensional property space and views highly ranked

compound subsets in the data set context. In addition, the

PAC representation compares individual property contri-

butions and identifies property settings that distinguish

highly ranked compounds from others. We have demon-

strated that STC visualizations help to differentiate

numerically equivalent optimization solutions with similar

or distinct property settings. The data sets used herein are

made freely available [30].
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Summary

We have presented a proof-of-concept study demonstrating the application of star

coordinates to visualize projections arising from multi-property optimization and

parallel coordinates to compare relationships among underlying descriptors. A 14-

dimensional space comprising a set of chemically intuitive descriptors including com-

pound potency was designed as a reference space for exemplary multi-property op-

timization. Bioactive compounds and drugs were projected from multi-dimensional

to one-dimensional space using multi-objective function. A systematic search was

performed by using four di�erent weights for each descriptor to �nd the combina-

tion that maximizes the the function value, based on which compounds were ranked.

Projections with maximum number of drugs on top were further prioritized. The

multi-objective function hence corresponded to drug-likeliness of compounds. Star

coordinates was used to visualize individual projections. Although comparable drug

enrichment was obtained for distinct descriptor weight combinations, star coordinate

visualization revealed signi�cant di�erence in their compound distribution in multi-

property landscape. Further, projections with similar descriptor weight settings and

sharing most of the top ranked drugs also had distinct compound distribution in

multi-dimensional property space. Descriptor correlation were analyzed in parallel

coordinate plots, whereby descriptor values of drugs and bioactive compounds could

be compared.

I have contributed to the implementation of STC visualization tool, mainly for

generating the ranked list of compounds based on their MOF values.

Computational multi-property optimization methods are mostly employed in

compound library design or in search for drug-like subspaces in chemical space.

However, in practical lead optimization scenario, medicinal chemists mainly focus

on deciding the next compound to be synthesized. The ultimate success or failure

of a given project depends on the compounds comprising the lead series. In the fol-

lowing chapter, we present the application of SAR matrix data structure to quantify

SAR progression during lead optimization with an aim to guide medicinal chemists

for better decision making.
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Chapter 8

Monitoring the Progression of

Structure-Activity Relationship

Information during Lead

Optimization

Introduction

Lead optimization involves synthetic exploration of selected active compounds com-

prising lead series to improve their drug-relevant properties. It is during this stage

of drug discovery that prioritized compounds are transformed into pre-clinical drug

candidates via iterative analog evaluation. Compound optimization, as we have

discussed already is highly challenging, taking into consideration its multiparame-

teric nature. Apart from improving potency of compounds, a balance needs to be

reached among multiple properties, that would ultimately render a given compound

drug-like. Although computational multi-property optimization methods have been

developed, they are mostly popular in guiding compound library design or reduc-

ing the multi-property space to focus on drug-like subspaces. Medicinal chemists

involved in lead opmimization projects are typically less interested in solutions pro-

posed by multi-property optimization approaches. This might be partly due to the

fact that such solutions cannot be easily interpreted in terms of chemical reasoning

and is rather vague from medicinal chemistry perspective.

The decisions made in the course of re�ning a given set of analogs are largely
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based on the experience and chemical intuition of the medicinal chemists leading the

lead optimization projects. In addition, lead optimization projects generally last for

several years, during which hundreds and thousands of compounds are synthesized

and immense amount of resources are expended. It cannot be easily predicted if a

given lead series will ultimately give rise to a successful clinical candidate or not.

In many cases, projects might even need to be terminated. It is therefore highly

desirable to have a method that can objectively assess the progression of a lead

optimization project. Nevertheless, only few computational approaches have been

developed to these ends. Among them are the similarity network-based evaluation

of SAR progression, in which compound communities comprising SAR rich and 
at

SAR characteristics could be spotted. More recently, a statistical framework to

calculate risk associated with a given compound series was proposed.

In this study, we apply SAR matrices (SARMs) as a diagnostic tool to eval-

uate the progression of SAR information in lead optimization data sets. SARMs

generated at di�erent time points of evolving data sets, termed here as indicator

SARMs, capture structural relationships among analogs. Median potency and SAR

discontinuity scores calculated for individual indicator SARMs were used as metrics

to evaluate positive, negative or neutral SAR progression.
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Dilyana Dimova,§ and Jürgen Bajorath*,§

†Center of Chemistry Innovation & Excellence, WorldWide Medicinal Chemistry, Pfizer PharmaTherapeutics Research &
Development, Eastern Point Road, Groton, Connecticut 06340, United States
‡Computational Sciences CoE, WorldWide Medicinal Chemistry, Pfizer PharmaTherapeutics Research & Development, 610 Main
Street, Cambridge, Massachusetts 06340, United States
§Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Dahlmannstr. 2,
Rheinische Friedrich-Wilhelms-Universitaẗ, D-53113 Bonn, Germany

ABSTRACT: Lead optimization (LO) in medicinal chemistry is largely
driven by hypotheses and depends on the ingenuity, experience, and
intuition of medicinal chemists, focusing on the key question of which
compound should be made next. It is essentially impossible to predict
whether an LO project might ultimately be successful, and it is also very
difficult to estimate when a sufficient number of compounds has been
evaluated to judge the odds of a project. Given the subjective nature of LO
decisions and the inherent optimism of project teams, very few attempts have been made to systematically evaluate project
progression. Herein, we introduce a computational framework to follow the evolution of structure−activity relationship (SAR)
information over a time course. The approach is based on the use of SAR matrix data structures as a diagnostic tool and enables
graphical analysis of SAR redundancy and project progression. This framework should help the process of making decisions in
close-in analogue work.

■ INTRODUCTION

Lead optimization (LO) aims to transform selected active
compounds into clinical candidates through iterative close-in
analogue evaluation and is one of the most important
challenges in the practice of medicinal chemistry.1 To date,
the multiparametric LO process1 has been largely driven by a
combination of hypotheses and empirical rules that vary based
on chemical intuition and experience. The key question faced
by medicinal chemists during LO is which compound(s) should
be made next, and educated guesses about suitable chemical
modifications typically provide the basis for generating
analogues and advancing LO projects.
In addition to improving compound potency and selectivity,

other properties that are also considered during optimization
include solubility, permeability, metabolic stability, and
bioavailability. Balancing multiple compound properties in the
course of lead optimization is a significant challenge that
strongly depends on the specifics of the therapeutic applications
and compound classes under study.
Given the multiparametric nature of LO, computational

approaches focusing on multiobjective optimization have been
developed to aid compound design.2,3 These methods often
employ desirability functions or probability estimates to model
and balance multiple drug-relevant properties and select
computationally designed candidate compounds with preferred
property profiles.3 However, it is probably fair to say that
advanced multiobjective optimization is more popular in library
design efforts or in limiting an area of property space on which

to focus rather than practical LO, where the pivotal which
compound should be made next question rules day-to-day efforts.
LO projects often require long periods of time and a large

amount of resources. It is not uncommon for hundreds or
thousands of compounds to be generated over the course of
several years by project teams pursuing multiple lead series,
often while facing many roadblocks along the way. In light of
this situation, it is difficult to objectively assess LO progression.
If a project faces roadblocks, then there is always hope that the
next compound(s) might present a breakthrough. This
optimism might carry a LO project for a long period of time,
and the more time and effort that are expended on it, the more
difficult it typically becomes to let go and terminate a project
due to limited success. It is therefore not surprising that
medicinal chemistry leaders are equally concerned about
positive, neutral, or negative project progression and that
questions such as how many more compounds do we need to
make in close-in analogue space until we reach a go/no-go
decision are common place in industry. Accordingly, metrics to
assess and quantify LO project progression in a more objective
manner are highly desirable. However, only small advances
have thus far been made to conceptualize and implement such
metrics for the practice of medicinal chemistry.
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Although many computational methods for compound
design and activity prediction are available, only very few
attempts have been reported to computationally evaluate LO
progression, a task that principally differs from compound
design. For example, structure−activity relationships (SARs)
contained in evolving compound data sets have been
monitored in molecular network representations annotated
with activity information as well as using three-dimensional
activity landscape models.4 In similarity-based compound
networks, positive SAR progression over time is reflected by
the formation of compound communities rich in SAR
information, whereas lack of progression is indicated by
increasing numbers of compounds populating flat SAR
regions.4 Comparison of networks generated at different time
points of a project provides a qualitative view of SAR
progression. However, the interpretation of SAR networks is
not trivial for non-experts.
Furthermore, in a recent investigation, a statistical framework

for assessing LO progress has been introduced.5 For multiple
LO parameters, the risk associated with a compound set is
quantified from value distributions as the deviation from
desired threshold values, and the global risk is obtained by
combining all parameter contributions. During the LO process,
the risk is expected to be minimized. Risk as a function of
(temporal) project progression can be graphically analyzed in
different ways, and key compounds making the largest
contributions to risk minimization can be identified.5 Pros of
this statistical approach include the ability to monitor multiple
properties, individually or in concert, and that it quantifies risk;
cons include the requirement of the approach to define
property thresholds and that it does not take structural
information or relationships as parameters into account (for
similarity or diversity assessment, additional computational
methods must be employed). Therefore, it is not designed for
systematic SAR exploration. In another recent investigation, LO
attrition analysis has been introduced6 to classify compounds
according to the number of LO criteria they meet. For this
purpose, (project-specific) preferred ranges of numerical
properties must be defined and expressed as binary yes/no
queries, and the number of compounds meeting an increasing
number of queries is determined. Attrition curves are generated
by plotting compound count vs parameter count (i.e., x
compounds meet y parameters) and used to evaluate LO
success.6 As presented, the approach does not include a
temporal component to monitor progress. For a given LO set,
the attrition curves are suitable to provide a global view of
compound quality. Further analyses performed thus far do not
capture the totality of SAR information content for available
analogues but, rather, debate the merits of each compound
individually.
In this study, we introduce a conceptually different method

for the evaluation of SAR progression during LO. The SAR
matrix (SARM) data structure7,8 originally developed for
elucidation of SAR patterns in analogue series7 has been
adapted as an indicator of SAR information content for
temporal analysis of LO data sets. SARM ensembles are
calculated for evolving data sets and scored to quantify their
SAR information content. In addition, matrices are classified
according to the structural information they capture, which
makes it possible to monitor the expansion of existing
compound series as well as the introduction of structural
novelty during LO in close-in analogue space. SARM
distributions are graphically analyzed, and changes in

distributions over time reveal SAR progression or a lack of
progression. Indicator SARMs can also be annotated with
multiple properties, and changes in property profiles can be
monitored. Since SARMs exhaustively dissect compound sets in
a systematic manner, it is envisioned that the wealth of SAR
information during LO might be revealed through an analysis
of SARM ensembles over a time course.

■ EXPERIMENTAL SECTION
SARM Generation. SARMs are generated after subjecting

compound sets to two-stage matched molecular pair (MMP)
generation.7,8 A MMP is defined as a pair of compounds that differ
only by a structural modification at a single site.9 MMPs are efficiently
generated by systematic fragmentation of exocyclic single bonds in
compounds (permitting single, double, and triple cuts) and collection
of core structures and associated substituents in index tables.10

In the first step, MMPs are generated for all compounds. In the
second step, which is uniquely applied for SARMs, all core structures
resulting from the first round of fragmentation are again subjected to
MMP generation. Compounds forming MMPs from the first step are
organized as matching molecular series (MMSs). A MMS is defined as
a series of compounds that share the same core and have different
substituents at a single site (representing an extension of the MMP
concept).11 It follows that compounds comprising an MMS must form
all possible pairwise MMPs. Each MMS is represented as the shared
core plus the set of distinguishing substituents. Core MMPs from the
second round of fragmentation then identify all structurally analogous
cores (differing only by a change at a single site). Each SARM contains
a unique subset of MMSs with structurally analogous cores. In the
matrix, each row represents an MMS with a unique core (and each
column represents a substituent). As a consequence of systematic
MMP fragmentation, compounds typically participate in multiple
MMSs and occur in multiple SARMs. The ensemble of SARMs
generated from a compound set captures all possible analogue
relationships. As shown in Figure 1A, SARMs are reminiscent of
conventional R-group tables. Each cell represents a unique
combination of a core and substituent resulting from the
fragmentation (including virtual compounds that have not yet been
generated). Cells can be annotated with property information, for
example, they can be color-coded according to compound potency, as
also illustrated in Figure 1A.

Following the protocol outlined above, SARMs were generated with
a Java program utilizing the OEChem toolkit.12

SAR Evaluation. The SAR information contained in a SARM was
quantified by calculating two different values: the median potency of
all compounds comprising the SARM and a matrix-based SAR
discontinuity score (Figure 1B). SAR discontinuity is high when
structurally similar or analogous compounds have significant potency
variations.13 Such compounds typically reveal SAR information. A SAR
discontinuity score quantifying this information was first introduced by
systematically accounting for pairwise potency differences between
compounds meeting a predefined similarity criterion.13 For SAR
monitoring, we defined a SARM-based discontinuity score
(SARM_Disc)

_ =
∑ ∑ | − |

∀ →>

N
i jSARM Disc

pot pot
, MMPi

m
j j i
m

i j,

where i and j are compounds in a SARM that form an MMP, m is the
total number of SARM compounds, N is the total number of MMPs
contained in the SARM, poti is the potency of compound i, and potj is
the potency of compound j. For each SARM, the SARM_Disc value
was calculated.

Graphical Analysis. SARM distributions were analyzed in
scatterplots of median potency vs SARM_Disc scores. In addition,
trend plots were generated from SARM distributions to separately
monitor the progression of potency and SARM_Disc scores over time.
Trend plots were obtained by fitting potency and SARM_Disc values
averaged at different time intervals to a linear function.
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Public Domain Data Sets. Compounds and activity data were
taken from ChEMBL14 (version 20). To assemble data sets evolving
over time, compounds for proof-of-concept studies active against
human targets at the highest confidence level (ChEMBL confidence
score 9) with reported direct binding interactions (ChEMBL
relationship type D) and IC50 values as potency measurements were
considered. For all preselected compounds, publication dates were
recorded. A qualifying target-based data set was required to contain
compounds reported in increments over a period of at least 5
subsequent years (for each year, a new compound subset had to be
available), with a minimum of 50 compounds available in the first year.
Four data sets meeting these criteria were assembled, as reported in
Table 1.
LO Data Sets. In addition to ChEMBL sets, two LO data sets

originating from two different drug discovery projects at Pfizer were
studied. Each project team pursued two different chemical series. In
each case, one of the series was deemed to be a successful chemical
series because the project team was able to identify and nominate
preclinical candidate(s), and the second was an unsuccessful series
from which no candidate compound was nominated. The first target
protein was an enzyme, which was pursued as a biological target for a
neurodegenerative indication. The end point for potency in this
project was inhibitory activity assessed in a direct enzymatic assay.
Although the project team also evaluated other properties during LO,
for the purposes of this study, the primary potency end point was used
to monitor SAR progression. The second target was also an enzyme,
and downregulation of the activity of this enzyme was targeted for an
inflammation indication. Also in this case, the end point for potency
was inhibitory activity in an enzymatic assay. A series definition used
by the project team was added to each compound. IC50 values for both
projects were converted to logarithmic units. For temporal analysis,
dates when compounds were first registered internally were
determined and used for monitoring SAR progression. Details of the
LO data sets are reported in Table 2.

■ RESULTS AND DISCUSSION

Concept of Indicator SARMs. SARMs were originally
developed for a completely different purpose than for
monitoring SAR progression during LO, i.e., to systematically
organize analogue series, elucidate SAR patterns for structurally
related series, suggest virtual compounds, and predict their
activity.8 In Figure 1A, a small model SARM formed by six

compounds (two MMSs) is shown on the left, and a slightly
larger SARM (seven compounds, two MMSs) is shown on the
right, which also contains a virtual compound (non-colored
cell). We reasoned that several characteristics of SARMs might
render them suitable for monitoring SAR progression:

(1) SARMs systematically extract all analogue relationships
from compound sets. If LO sets contain multiple series,
then SARMs not only organize these series as MMSs but
also detect all structural relationships among them. Each
SARM contains a unique subset of MMSs with related
core structures, regardless of the origin of these structural
relationships.

(2) SARMs can be easily annotated with compound
properties that can then be analyzed based upon the
structural organization provided by SARMs.

(3) Depending on the structural relationships contained in a
compound data set, varying numbers of SARMs are
obtained. This is illustrated in Table 1, which reports
compound and SARM statistics for the public domain
data sets. Since LO sets are typically centered on single
or multiple lead series, they tend to produce large SARM
ensembles, thus enabling statistical analysis of SARMs
and SARM-associated properties. As a rule-of-thumb, the
number of SARMs obtained for structurally homoge-
neous data sets is often roughly comparable to the
number of data set compounds (Table 1).

Given these characteristics, we introduced three modifica-
tions to SARMs specifically for the purpose of SAR progression
analysis:

(1) SARMs were iteratively calculated for evolving com-
pound data sets at different time points. Thereby, SARM
ensembles were obtained that systematically captured all
structural relationships between existing and new
compounds.

(2) For the analysis of these ensembles, SARMs were
classified into three categories including existing,
expanded, and new SARMs. Existing SARMs were not
modified through the addition of new compounds,

Table 1. ChEMBL Compound Data Sets and SAR Matricesa

first year last year

ID target name years no. cpds no. SARMs no. cpds no. SARMs

1908 cytochrome P450 11B1 2006−2013 68 7 464 206
4015 C−C chemokine receptor type 2 2006−2011 124 182 836 1365
344 melanin concentrating hormone receptor 1 2005−2010 259 329 990 1086
3468 caspase-7 2005−2014 61 13 232 125

aFor each data set, the ChEMBL ID and target name are reported as well as the time period (years) over which the growth of the data set was
monitored using SARM ensembles. In addition, the compound composition (no. cpds) and corresponding SARM statistics (no. SARMs) are
provided for the first and last years of each time period.

Table 2. Pfizer LO Data Sets and SAR Matricesa

first year last year

LO targets and sets years no. cpds no. SARMs no. cpds no. SARMs

neurodegenerative series 1 2010−2014 10 1 431 672
series 2 2010−2015 46 49 125 128

inflammation series 1 2011Q1−2012Q3 20 5 88 93
series 2 2010Q2−2010Q4 18 9 78 43

aFor each LO set, the time period (years) is reported over which the growth of the corresponding compound series was monitored using SARM
ensembles. Q means quarter. In addition, the compound composition (no. cpds) and corresponding SARM statistics (no. SARMs) are provided for
the first and last intervals of each time period.
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whereas expanded SARMs were obtained when new
compounds form structural relationships with already
available compounds (as is the case when new analogues
are generated for an existing series). Figure 1A illustrates
the process of SARM expansion. A new compound
complements one of the two MMSs contained in the
matrix on the left, leading to the generation of an
expanded SARM on the right. Moreover, if newly added
compounds introduced structural novelty, i.e., if they
formed novel MMSs, then new SARMs were obtained.

(3) For SAR monitoring, SARMs were annotated with two
properties, including compound potency and the newly
introduced SARM-based SAR discontinuity score
(SARM_Disc), as illustrated in Figure 1B. For each
SARM, the median potency and the SARM_Disc score
were calculated. A high SARM_Disc score indicated the
presence of structural analogues with significant potency
variations. This situation corresponded to high SAR
information content of a SARM because it encoded
structural changes that significantly affected potency
(different from SARMs that exclusively consisted of
weakly or highly potent analogues). Taken together,
median potency and SARM_Disc made it possible to
prioritize matrices for SAR monitoring. From a SAR
information perspective, progress during LO is generally
made when SAR-sensitive analogues are obtained
including increasingly potent compounds during the
course of the project. Following our analysis concept, this

is reflected by the generation of SARMs with high
median potency and high SARM_Disc scores (as an
inflection point during the course of the project), as
revealed by time-dependent analysis of matrix distribu-
tions.

SARM distributions were recorded in scatterplots of median
potency vs SARM_Disc, as schematically represented in Figure
1B (bottom). Preferred SARMs with high median potency and
high discontinuity scores mapped to the upper right quadrant
of these plots.
The original SARM approach was focused on exploring

individual matrices and the compound information that they
contained, as discussed above. Because we did not consider the
content of individual SARMs for monitoring SAR progression
but studied SARM distributions with respect to property values
over time, matrix ensembles generated for our current analysis
were termed indicator SARMs.

Graphical SARM Distribution Analysis. Figure 2A
summarizes the principles of time-dependent indicator SARM
analysis. SARM ensembles were calculated for an evolving data
set following each addition of a compound subset and classified
according to the compounds and structural relationships that
they captured. The resulting SARM distributions were
monitored over time in scatterplots reflecting their SAR
information content. Figure 2B shows exemplary progression
trends. At the top, positive SAR progression is illustrated. In
this case, matrix populations grew over time through the
addition of new SARMs and, to a lesser extent, expanded

Figure 1. SARM, expansion, and characterization. (A) In the SARM, each row represents a matching molecular series (MMS), i.e., a series of
compounds that have a common core (shown left from the row) and are distinguished only by a substituent at a single site (top of each column).
Each cell represents an individual compound (unique combination of a core and substituent), either a known data set compound (colored by
potency using a continuous spectrum from (lowest) red to (highest) green) or a virtual compound (an as of yet unexplored combination of a core
and substituent; non-colored cell). All MMSs contained in a given SARM have related cores that are distinguished only by a structural change at a
single site. The matrix on the left was expanded through the addition of a new compound that was detected to match the core of one of the MMSs
contained in this matrix. The resulting expanded matrix is shown on the right (the substituent of the new compound is highlighted in blue). (B)
Exemplary SARMs with varying SAR information content. SARMs were characterized by calculating their median compound potency and the
SARM_Disc score (see text). Accordingly, the SARM_Disc score of a SARM is high if the structurally related compounds comprising the SARM
have large potency variations. Therefore, SARM_Disc scores serve as an indicator of SAR information content. As can be seen (and easily
rationalized), median potency does not per se correlate with SARM_Disc. The three exemplary SARMs are shown in a scatterplot of median potency
vs SARM_Disc. The scatterplot is divided into four quadrants. SARMs with high information, such as matrix 2 in this example, map to the upper
right quadrant.
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SARMs. A gradual shift of SARM distributions toward the
upper right quadrants of the scatterplots was observed,
revealing a steady increase in SAR information and the
generation of increasingly potent compounds. By contrast,
the example at the bottom illustrates (undesired) negative SAR
progression characterized by the occurrence of expanded and
new SARMs with low median potency and low discontinuity
scores and the absence of an upward shift of SARM
distributions over time. Positive and negative SAR progressions
can also be visualized in trend plots (shown on the right of
Figure 2B) that are derived from the SARM distributions by
fitting linear models and separately monitoring potency and

SARM_Disc progression over time. The trend lines were fitted
to data averaged over time intervals. Ideally, in the case of
positive SAR progression, these trend lines should have positive
slopes.

Monitoring SAR Progression. Applying the approach
summarized in Figure 2, SAR progression was monitored for
different types of compound sets.

Public Domain Compound Sets. The four compound data
sets from ChEMBL represented prototypic compound sets
evolving over time and were generated to mimic LO sets by
combining compounds active against different targets taken
from the scientific literature (only high-confidence activity data

Figure 2. Monitoring SAR progression. (A) Schematic representation illustrating the concept of monitoring SAR progression over time using
SARMs. Newly synthesized compounds (shown on a white background) are added in time intervals to evolving lead optimization sets (gray
background), and SARMs are systematically calculated at each time point. Matrix representation is according to Figure 1. SARMs calculated at each
time point are retained and compared to newly derived matrices. For visualization purposes, not all compounds and SARMs are shown. Distributions
of SARMs are monitored in scatterplots of median potency vs SARM_Disc in which each SARM is represented as a color-coded dot. Dots with black
border correspond to SARMs shown above the scatterplots. For temporal analysis, three categories of SARMs are distinguished: existing (colored
gray), expanded (cyan), and new SARMs (magenta). Existing (old) matrices are not modified through the addition of newly synthesized compounds.
Expanded SARMs evolve from existing matrices through the addition of analogues that further extend currently available MMSs. New SARMs
contain new MMSs and capture previously unobserved structural relationships due to the addition of novel structures. (B) Two sets of SARM
scatterplots are shown and color-coded as in panel (A). Comparison of SARM scatterplots makes it possible to follow SAR progression on a time
course and judge the success of lead optimization (LO) efforts. For example, a desirable LO profile (top; positive SAR progression) would display a
shift of matrix distributions over time toward the upper right quadrant of the scatterplot (characterized by the presence of high median potency and
high SARM_Disc), with an enrichment of new SARMs. By contrast, the scatterplots at the bottom display negative progression of SAR over time
because the matrix distribution shifts toward the bottom left quadrant (characterized by the presence of low median potency and low SARM_Disc).
On the right, trend plots are shown obtained from indicator SARM distributions by fitting average potency and SARM_Disc scores of new matrices
(magenta) for each year to linear functions. Trend lines monitor the development of SARM_Disc and potency for an indicator SARM category over
time.
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were taken into consideration for compound selection).
Because selected compounds originated from a variety of
literature sources, these sets were structurally more heteroge-
neous than typical LO sets, thus presenting a challenge for a
proof-of-concept assessment of indicator SARM analysis. These
four data sets are made freely available as an open-access
deposition.15

Figure 3 shows the distribution of indicator SARMs obtained
from the data sets over a period of six subsequent years. The
median potency and SARM_Disc scores of SARMs were
plotted and colored according to their matrix category.
Figure 3A reports the temporal analysis of inhibitors of

cytochrome P450 11B1. This set contained 464 compounds
but yielded only 206 SARMs (Table 1), indicating structural
heterogeneity. Nonetheless, interesting SAR trends were
detected. From 2006 to 2011, added inhibitors often
represented new analogue series (MMSs), resulting in a
gradual increase in the number of new SARMs (magenta)
during this period. In 2011 and especially 2013, a larger number
of expanded SARMs (blue) was observed, indicating follow-up
investigations on existing series. Between 2011 and 2013, a shift
of expanded and new SARMs toward the upper right quadrant

of the plots was observed, revealing overall promising SAR
progression.
The set of C−C chemokine receptor type 2 ligands in Figure

3B was much larger (836 compounds) than the cytochrome
P450 11B1 inhibitor set and ultimately yielded 1365 SARMs
(resulting in high-density scatterplots). Between 2006 and
2008, a shift of the SARM distributions toward the right of the
plots was observed. During subsequent years, the distributions
became increasingly dominated by a large number of new
SARMs with high median potency (in addition, SARM
expansion was also observed). Thus, many novel series
containing highly potent compounds became available,
reflecting successful compound design efforts. A different
picture emerged for ligands of melanin-concentrating hormone
receptor 1 in Figure 3C, the largest data set (990 compounds)
producing 1086 SARMs. In 2005, the distribution was
dominated by new SARMs (resulting from structurally novel
compounds not available during the preceding year). In 2006,
many SARMs were expanded, reflecting follow-up chemistry
efforts, and the distribution shifted toward higher potency and
discontinuity scores, indicating SAR progression. However,
during 2007 and 2008, the number of new and expanded

Figure 3. Indicator SARM distributions over a time course. Scatterplots are shown for four public domain data sets that were incrementally
assembled over different years on the basis of compound publication dates. The SARM representation is according to Figure 2. In addition, dotted
lines at potency values of six and eight log units differentiate SARMs with high, intermediate, or low median potency. (A) Cytochrome P450 11B1
inhibitors, (B) C−C chemokine receptor type 2 ligands, (C) melanin-concentrating hormone receptor 1 ligands, and (D) caspase-7 inhibitors.
Compound and SARM statistics for the monitored time periods are provided in Table 1. We note that active compounds were available in each case
prior to the first year monitored in a scatterplot. For compounds available in the preceding year, SARMs were calculated and used as a reference
ensemble to generate classified SARMs for the first year of the monitored period.
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SARMs declined, indicating reduced chemistry efforts. Another
boost in novel active compounds was detected in 2009, which
further increased median potency. However, there was
essentially no matrix expansion in 2010, and the number of
new SARMs also declined again. Hence, in this case, different
intervals of strong and weak SAR progression were detected.
Figure 3D monitors the smallest of the four data sets, consisting
of 232 inhibitors of caspase-7, that yielded a total of only 125
SARMs. Although the number of SARMs was small in this case,
their temporal distributions revealed an obvious trend. During
2005 and 2006, a limited number of inhibitors and SARMs
became available, and expanded SARMs were first detected in
2007. However, between 2009 and 2014, an increasing number
of SARMs was found to map to the upper left quadrant of the
plots, characterized by the presence of low median potency and
high discontinuity, resulting from the addition of more and
more weakly potent compounds to a small number of highly
potent ones. Thus, in this case, negative SAR progression was
observed.
Figure 4 reports trend plots for new and expanded SARMs

generated from the distributions in Figure 3. Especially for very
large SARM ensembles, trend lines that separately monitor
potency and discontinuity help to better understand character-
istics of SAR progression, although they are only approximate.
Figure 4A confirms the conclusions drawn from SARM
distribution analysis for the cytochrome P450 11B1 inhibitor
set. The median potency and discontinuity score of new
SARMs were increasing, and potency of expanded SARMs also

increased. The only exception to overall positive SAR
progression was the observed decrease in discontinuity of
expanded SARMs, which likely resulted from the increasing
number of analogues of existing series having comparable
potency. Furthermore, Figure 4B also reveals a clear example of
positive SAR progression, consistent with SARM distribution
analysis, for the large set of C−C chemokine receptor type 2
ligands. In this case, median potency and discontinuity
increased for all SARMs or remained essentially constant at a
high level (i.e., discontinuity of expanded SARMs). Figure 4C
reflects overall limited SAR progression for the set of melanin-
concentrating hormone receptor 1 ligands, as discussed, and
Figure 4D displays negative trends for caspase-7 inhibitors.
Here, a strong decline of median potency was detected for new
SARMs, which was accompanied by an increase in disconti-
nuity. Although this observation might be puzzling at a first
glance, it can be easily rationalized as resulting from the
presence of analogues with decreasing potency in SARMs also
containing highly potent compounds. Furthermore, for a small
number of expanded SARMs, potency increased only slightly
and discontinuity remained at a low level.
Taken together, temporal distribution analysis of indicator

SARMs from exemplary target-based compound sets evolving
over time detected clear differences in SAR progression, hence
providing support for the underlying methodological concept.
Next, actual LO data sets originating from drug discovery were
investigated. Such data sets are currently not available in the
public domain.

Figure 4. Trend plots of expanded and new indicator SARMs according to Figure 2B derived from the data distributions in Figure 3. (A)
Cytochrome P450 11B1 inhibitors, (B) C−C chemokine receptor type 2 ligands, (C) melanin-concentrating hormone receptor 1 ligands, and (D)
caspase-7 inhibitors. Trend lines separately monitor the development of median potency and SARM_Disc scores over time for a given category of
indicator SARMs.

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.5b01428
J. Med. Chem. XXXX, XXX, XXX−XXX

G



LO Data Sets. Two LO sets from different Pfizer drug
discovery projects were investigated. Each project team pursued
two different chemical series per target. In each case, one of the
series was considered to be successful because the project team
was able to nominate preclinical candidate(s) from this series,
and the other series was unsuccessful, yielding no candidate
compounds. Table 2 provides a description of these LO sets.
Figure 5 shows the distribution of indicator SARMs obtained

over a period of 4 to 5 years for the neurodegenerative target
and 3 to 7 quarters for the inflammation target. Figure 5A
monitors the SAR progression of series 1 of the neuro-
degenerative project. This set ultimately yielded 672 SARMs for
431 compounds (Table 2), indicating structural homogeneity.
In 2010, LO efforts on this series started with 10 analogues
active in the micromolar range contained in a single SARM.
Figure 5A reveals that there was consistent positive SAR
progression for series 1. Starting in 2012, new and expanded
SARMs were detected, and there were clear breakthroughs in
2013 and 2014, yielding highly potent compounds in
increasingly informative SAR environments. On the basis of
SAR monitoring, LO on series 1 was a highly promising project,
consistent with its ultimate success. Similar trends were not
observed for series 2 in Figure 5B, although there was much
more compound and SAR information available initially than

that for series 1. LO efforts on series 2 started with 46
compounds, and a total of 125 inhibitors were evaluated over a
period of 6 years. However, the project team was unable to
break a potency barrier with this chemical series. Although
matrix expansion occurred during the first 3 years, no notable
SAR progression was detected, and in 2014, it was evident that
the LO project faced a roadblock.
The comparably small series of inflammation inhibitors in

Figure 5C,D with, ultimately, 88 and 78 compounds,
respectively, also exhibited rather different SAR progression.
Series 1 in Figure 5C displayed very positive SAR trends with
significantly increasing SAR information content and com-
pound potency already detectable during the first two time
intervals. By contrast, very little SAR progression was observed
for series 2 in Figure 5D from the second to the third quarter of
2010, but no further progression was observed during the
fourth quarter. Thus, SAR monitoring contrasts these two
series of inflammation inhibitors, and it is easy to reconcile why
series 1 was ultimately successful and series 2 was not.
The trend plots for these LO sets in Figure 6 strongly

support conclusions drawn from indicator SARM distribution
analysis. The successful series 1 of neurodegeneration inhibitors
in Figure 6A and inflammation inhibitors in Figure 6C
displayed an increase in all trend lines for new and expanded

Figure 5. Indicator SARM distributions over a time course for LO sets. Scatterplots are shown for two LO data sets that were assembled from Pfizer
project team data on the basis of project progression information. (A) Neurodegenerative target, series 1, (B) neurodegenerative target, series 2, (C)
inflammation target, series 1, and (D) inflammation target, series 2. Compound and SARM statistics for the monitored time periods are provided in
Table 2. Series 1 in (A) and (C) represented successful project progressions from which compounds were nominated as candidates for preclinical
studies. By contrast, series 2 in (B) and (D) represented unsuccessful project progressions from which no compounds were nominated.
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matrices. By contrast, the unsuccessful series 2 of neuro-
degeneration inhibitors in Figure 6B was characterized by
decreasing trend lines for expanded matrices, reflecting negative
SAR progression of close-in analoging attempts and diverging
trend lines for new matrices, with an increase in SAR
information content resulting from the addition of new but
only weakly potent compounds that could not be further
optimized. Moreover, the series 2 of inflammation inhibitors in
Figure 6D displayed essentially flat SAR characteristics
throughout.
On the basis of the comparisons reported in Figures 5 and 6,

successful LO series of neurodegeneration and inflammation
inhibitors were clearly distinguished from unsuccessful series.
Analysis of indicator SARM distributions would have made it
possible to predict the lack of SAR progression for the latter
series during the course of LO.

■ CONCLUSIONS

Lead optimization is a largely hypothesis-driven process that
depends mainly on medicinal chemistry experience and
intuition. Only few efforts have thus far been made to
rationalize this process and assess LO progress. Efforts in this
direction are highly desirable to support decision making
because it is very difficult to predict the ultimate outcome of

LO campaigns and control the number of compounds to be
evaluated before meaningful conclusions can be reached. In this
study, we have introduced a computational framework to
monitor the progression of SAR information content during
LO over a time course. The SAR matrix data structure, which
was originally developed for a completely different purpose, i.e.,
the elucidation of SAR patterns in related analogue series and
compound prediction, was adapted as a diagnostic tool to
evaluate SAR progression. This was accomplished by
generation of SARM ensembles for compound sets evolving
over time, classification of SARMs based on the compounds
they contain, and characterization of their SAR information
content. SAR information contained in individual SARMs was
quantified on the basis of a newly introduced matrix
discontinuity score combined with median potency calcu-
lations. Characteristic shifts of SARM ensembles in scatter plots
were found to indicate positive, neutral, or negative SAR
progression and revealed significant differences between target-
based compound sets. Analysis of SARM distributions was
complemented by trend plots designed to summarize SAR
progression over time. Our proof-of-concept investigations
show that SARM ensembles are capable of detecting differences
in SAR progression in compound sets of distinct composition.
As a diagnostic tool, they can be used to distinguish SAR
progression from redundancy, i.e., when increasing numbers of

Figure 6. Trend plots for LO sets showing expanded and new indicator SARMs derived from the data distributions in Figure 5. (A)
Neurodegenerative target, series 1, (B) neurodegenerative target, series 2, (C) inflammation target, series 1, and (D) inflammation target, series 2.
Trend lines separately monitor the development of median potency and SARM_Disc scores over time for a given category of indicator SARMs.
Series 1 in (A) and (C) represented successful chemical series and displayed positive SAR progression with an increase in both median potency and
SARM_Disc scores. Series 2 in (B) and (D) represented unsuccessful chemical series, which displayed negative SAR progression for expanded
SARMs with a decrease in median potency and SARM_Disc scores and essentially flat SARs for new SARMs.
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compounds are made that do not add novel SAR information
or further improve potency. Application of the approach to
actual LO sets from drug discovery projects revealed very clear
SAR trends over time for series that were ultimately successful
or unsuccessful. Such insights are valuable in project decision
making. Taken together, the results reported herein suggest
that indicator SARMs should merit further investigation in LO
assessment. Since the SARM data structure can be easily
annotated with different molecular properties, multiple
parameters can be monitored.
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Summary

SARMs, originally introduced to analyze structural relationships between analogs

and identify SAR patterns in data sets, have been applied in our study for the

purpose of determining the progression of SAR information in lead optimization

projects. Modi�cations were introduced to SARMs to account for their SAR infor-

mation content. Four evolving data sets were assembled from ChEMBL and two

drug discovery projects at P�zer. Each of the lead optimization sets from P�zer

comprised two series, a successful one for which a clinical candidate compound was

proposed and an unsuccessful one with none of the compounds quali�ed as clini-

cal candidate. SARM ensembles were obtained for each of these sets at individual

time points and then classi�ed into three categories: existing, expanded and new

SARMs. An existing SARM was not modi�ed by addition of new compounds and

was present in the previous time point. An expanded SARM resulted when new

structural analogs were added to an already existing series. New SARMs arose

when completely new analog series were formed. SAR information in a given in-

dicator SARM was quanti�ed by calculating meadian potency of all compounds

contained in it and SARM-based SAR discontinuity score. Progress of SAR infor-

mation during lead optimization corresponds to generation of SARMs with high

SAR discontinuity score and median potency during the time course of the project.

These two scores were used to graphically monitor SAR progression in scatterplots

generated for each time point. Characteristic di�erence in SAR progression was ob-

served in two exemplary data sets from ChEMBL. Further, clear distinctions could

be made between successful and unsuccessful series obtained from lead optimization

projects. Taken together, we demonstrate that indicator SARMs can be utilized as

a diagnostic tool to monitor SAR progression over time. The approach can be used

to distinguish SAR progression from redundancy. These insights are valuable and

should support the process of decision making in lead optimization projects.

My major contributions to this work include pre-processing SAR matrix �les for

temporal analysis and generating the scatterplot distribution of classi�ed SARMs

for individual time points.
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Chapter 9

Conclusions and Perspectives

Computational exploration of chemical spaces is multifaceted and several approaches

already exist that have been applied to rationalize the chemical universe and extract

meaningful patterns. The current chemical universe comprises a vast amount of

compounds covering a wide range of structural features and molecular properties.

It therefore represents a valuable resource to derive further insight into composi-

tion and distribution of compounds in the space as well as relationships between

their features. To tackle the challenges faced during analysis of the huge amount of

data in chemical spaces, a variety of computational methods have been developed.

Among these are methods for SAR analysis that are of prime interest in medici-

nal chemistry and chemoinformatics. This thesis work is dedicated to developing

new computational approaches for large-scale chemical space analysis, speci�cally

focusing on visualization and predictions of SAR features. Additionally, methods to

systematically extract and analyze structural patterns from target-speci�c data sets

from publicly available compound repositories have been presented.

The �rst representative study (Chapter 2 ) provided an extensive sca�old sur-

vey from bioactive compounds reported so far in literature. The major goal of this

analysis was to systematically capture structurally distinct sca�old and CSK combi-

nations to assess the structural diversity among bioactive compounds in ChEMBL.

Moreover, the potency range distribution of compounds representing such struc-

turally diverse combinations of sca�olds and CSKs were determined. Our analysis

has revealed an abundance of structurally diverse and highly potent pairs of com-

pounds targeting many pharmaceutically relevant proteins. This �nding supports

future research directed towards identifying novel structural compound classes as an
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alternative to currently available compound series. GTM-based extraction of priv-

ileged structural motifs for major target families in ChEMBL was the aim of our

next study (Chapter 3 ). This approach extended traditional sca�old-based de�nition

of privileged substructures and demonstrated the application of GTM to prioritize

compound clusters and subsequently detect structural motifs privileged towards spe-

ci�c target superfamilies from those clusters. GTM-based clustering of compounds

provided the evidence of its ability to delineate regions of chemical space that were

preferentially occupied by compounds belonging to individual target superfamilies.

The substructures obtained from our methodology were subjected to careful visual

inspection and identi�ed as motifs present in speci�cally active compounds as well

as approved drugs.

Large-scale SAR analysis are often accomplished by employing visualization tech-

niques. A two-component visualization tool combining coordinate-based GTM and

coordinate-free CSN representations was introduced (Chapter 4 ). This combined

approach facilitated smooth transition from global views of SAR landscape to local

views of speci�c molecular communities characterized by interesting SAR patterns.

The prominent feature of our global-local visualization technique is its ability to han-

dle large and heterogeneous data sets. Prediction of activity cli� is one of the least

explored territories of SAR analysis. We have applied machine learning methods to

derive computational models for activity cli� prediction (Chapter 5 ). Alternative

representations of MMPs, based on condensed graph of reactions and descriptor

recombination were used as an input to support vector machine models. Success-

ful classi�cation and regression models were obtained for predicting whether a given

MMP formed an activity cli� and signed potency di�erence between MMP partners,

respectively.

Ionization state of compounds play a crucial role in their biological activity as

well as other important drug relevant properties. A large-scale analysis of calculated

ionization states of publicly available bioactive compounds was performed emphasiz-

ing primarily on their charge state distribution across di�erent potency ranges and

chemical neighborhoods (Chapter 6 ). Global distribution of charge states showed

that majority of bioactive compounds were either neutral or basic under physiolog-

ical condition and within individual target sets, families and superfamilies notable

di�erences in preferred ionization states were observed. Majority of chemical neigh-

borhoods of bioactive compounds retained their charge sates and only in one-third
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of the neighborhoods they varied. Highly potent compounds in most of the target

sets showed preference towards a particular ionization state.

In the remaining part of the thesis, methodologies developed to address major

challenges in compound optimization have been highlighted. Computational multi-

property optimization algorithms that are applied to reach a balance between various

drug-relevant properties of compounds often produce more than one equally optimal

solution. A visualization framework employing star and parallel coordinate repre-

sentations was developed to complement multi-objective optimization tasks (Chap-

ter 7 ). Star coordinates allowed visualization of optimized projections, whereby

compound distribution in multi-dimensional property space is projected onto 2D.

We demonstrated that start coordinates aid in di�erentiating numerically equiva-

lent solutions arising from similar or di�erent property settings. Lastly, we utilized

SAR matrix data structure for determining the SAR progression in lead optimiza-

tion data sets (Chapter 8 ). SAR matrices were generated for evolving data sets,

each matrix was then scored based on SAR discontinuity and median potency of

their compounds. Graphical analysis of plots generated using these two scores were

indications for positive, negative or neutral SAR progression.

Taken together, this thesis work has introduced new methodological develop-

ments for systematic analysis of chemical spaces, with major focus on large-scale

SAR analysis. Additionally, new methods of chemical space visualization have been

introduced that allow prioritization of desired subspaces to aid compound design

and optimization e�orts in drug discovery.

Even though a substantial amount of insights have been gained through meth-

ods developed so far to analyze the vast chemical space, we believe that further

extensions and enhancement of the existing methodologies and introduction of novel

techniques are nevertheless necessary. In the following, we will discuss about the

major limitations of existing methods as well as an outlook for future perspectives.

While thousands of molecular descriptors are available for visualizing compounds

in high-dimensional chemical space, analyzing, and modeling their SAR character-

istics, they o�er only limited interpretation from medicinal chemistry point of view.

Moreover, most of the graphical SAR analysis methods are descriptive in nature. Us-

ing such approaches, it is rather di�cult to address the most common situation faced

in medicinal chemistry practice, i.e., decision about the next compound to be syn-

thesized. Despite chemically intuitive nature of substructure-based graphical SAR
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analysis approaches, only very few of them could directly assist in compound design.

Since, the main goal of chemoinformatics is implementing computational methods

to solve chemical problems, speci�cally in our case, to tackle the challenges of drug

discovery, it is important that the methods could be easily applied in practice by

medicinal chemists. One of the possibilities to do so would be combined approaches

that integrate the power of molecular descriptors in handling large amount of SAR

data with chemical intuitiveness of substructure-based methods. The two-layered

SAR visualization tool based on GTM and CSN methodologies presented in this

thesis work is an example of such approach. The feature of CSN that allows to

interactively navigate through chemical space by focusing on individual compounds

represented as nodes that can be associated with their structures is relatively more

interesting from a chemist's perspective compared to mathematical models with

black-box characteristics. However, such SAR networks are still considered to be

complicated for medicinal chemists who are accustomed to work with R-group table

like views. On the other hand, given the increasing amount of SAR data, it would be

indispensable for chemists to use graphical SAR analysis methods. Therefore, future

direction of SAR research should implement tools that are practical, interpretable

and easily accessible by medicinal chemists.
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