Thèse soutenue

Transport optimal et diffusions de courants
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Xianglong Duan
Direction : Yann Brenier
Type : Thèse de doctorat
Discipline(s) : Mathématiques fondamentales
Date : Soutenance le 21/09/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Centre de mathématiques Laurent Schwartz (Palaiseau, Essonne)
Jury : Président / Présidente : Guillaume Carlier
Examinateurs / Examinatrices : Yann Brenier, Virginie Ehrlacher, Daniel Han-Kwan, François-Xavier Vialard
Rapporteurs / Rapporteuses : Didier Bresch, Athanasios Tzavaras

Résumé

FR  |  
EN

Les travaux portent sur l'étude d'équations aux dérivées partielles à la charnière de la physique de la mécanique des milieux continus et de la géométrie différentielle, le point de départ étant le modèle d'électromagnétisme non-linéaire introduit par Max Born et Leopold Infeld en 1934 comme substitut aux traditionnelles équations linéaires de Maxwell. Ces équations sont remarquables par leurs liens avec la géométrie différentielle (surfaces extrémales dans l'espace de Minkowski) et ont connu un regain d'intérêt dans les années 90 en physique des hautes énergies (cordes et D-branes).Le travail se décompose en quatre chapitres.La théorie des systèmes paraboliques dégénérés d'EDP non-linéaires est fort peu développée, faute de pouvoir appliquer les principes de comparaison habituels (principe du maximum), malgré leur omniprésence dans de nombreuses applications (physique, mécanique, imagerie numérique, géométrie...). Dans le premier chapitre, on montre comment de tels systèmes peuvent être parfois dérivés, asymptotiquement, à partir de systèmes non-dissipatifs (typiquement des systèmes hyperboliques non-linéaires), par simple changement de variable en temps non-linéaire dégénéré à l'origine (où sont fixées les données initiales). L'avantage de ce point de vue est de pouvoir transférer certaines techniques hyperboliques vers les équations paraboliques, ce qui semble à première vue surprenant, puisque les équations paraboliques ont la réputation d'être plus facile à traiter (ce qui n'est pas vrai, en réalité, dans le cas de systèmes dégénérés). Le chapitre traite, comme prototype, du curve-shortening flow", qui est le plus simple des mouvements par courbure moyenne en co-dimension supérieure à un. Il est montré comment ce modèle peut être dérivé de la théorie des surfaces de dimension deux d'aire extrémale dans l'espace de Minkowski (correspondant aux cordes relativistes classiques) qui peut se ramener à un système hyperbolique. On obtient, presque automatiquement, l'équivalent parabolique des principes d'entropie relative et d'unicité fort-faible qu'il est, en fait, bien plus simple d'établir et de comprendre dans le cadre hyperbolique.Dans le second chapitre, la même méthode s'applique au système de Born-Infeld proprement dit, ce qui permet d'obtenir, à la limite, un modèle (non répertorié à notre connaissance) de Magnétohydrodynamique (MHD), où on retrouve à la fois une diffusivité non-linéaire dans l'équation d'induction magnétique et une loi de Darcy pour le champ de vitesse. Il est remarquable qu'un système d'apparence aussi lointaine des principes de base de la physique puisse être si directement déduit d'un modèle de physique aussi fondamental et géométrique que celui de Born-Infeld.Dans le troisième chapitre, un lien est établi entre des systèmes paraboliques et le concept de flot gradient de formes différentielles pour des métriques de transport. Dans le cas des formes volumes, ce concept a eu un succès extraordinaire dans le cadre de la théorie du transport optimal, en particulier après le travail fondateur de Felix Otto et de ses collaborateurs. Ce concept n'en est vraiment qu'à ses débuts: dans ce chapitre, on étudie une variante du «curve-shortening flow» étudié dans le premier chapitre, qui présente l'avantage d'être intégrable (en un certain sens) et de conduire à des résultats plus précis.Enfin, dans le quatrième chapitre, on retourne au domaine des EDP hyperboliques en considérant, dans le cas particulier des graphes, les surfaces extrémales de l'espace de Minkowski, de dimension et co-dimension quelconques. On parvient à montrer que les équations peuvent se reformuler sous forme d'un système élargi symétrique du premier ordre (ce qui assure automatiquement le caractère bien posé des équations) d'une structure remarquablement simple (très similaire à l'équation de Burgers) avec non linéarités quadratiques, dont le calcul n'a rien d'évident.