Stabilité d'une onde de gravité interne, analyse locale, globale et croissance transitoire.

par Gaétan Lerisson

Thèse de doctorat en Mécanique des fluides

Sous la direction de Jean-Marc Chomaz et de Sabine Ortiz Clerc.

Le président du jury était Emil Hopfinger.

Le jury était composé de Jean-Marc Chomaz, Sabine Ortiz Clerc, Pierre-Philippe Cortet, Michael Le Bars.

Les rapporteurs étaient Thierry Dauxois, Maurice Rossi.


  • Résumé

    Dans les océans profonds linéairement stratifiés, la déstabilisation des ondes de gravité internes est importante car elle contribue probablement au mélange turbulent et à la circulation thermohaline.À l'aide de simulations numériques directes, nous créons un faisceau d'onde interne progressive. Cette situation est équivalente à une onde produite par l'oscillation de la marée sur une topographie sous-marine. Nous retrouvons les résultats expérimentaux obtenus par cite{Bourget13} : le faisceau se déstabilise en un mode petite échelle. Nous regardons l'effet d'un écoulement horizontal moyen sur cette instabilité en prenant soin d'abaisser la fréquence de forçage afin de compenser l'effet doppler et de conserver localement la même onde. Un cas limite apparaît lorsque le forçage devient stationnaire, ce qui équivaut à une onde de sillage issue d'un écoulement constant au dessus d'une topographie.Les écoulements à petite vitesse voient une instabilité petite échelle similaire au cas marée alors que les écoulement intermédiaires restent stables. Les écoulements plus rapides (jusqu'au cas sillage) voient, par contre, une instabilité bien plus grande échelle que celle dans le cas marée. Cette sélection d'échelle est robuste aux variations du nombre de Froude, de Reynolds, de la taille du faisceau ou de l'angle de l'onde.Nous montrons que ces instabilités peuvent être décrites comme des triades résonantes et que les différentes échelles correspondent à différentes branches triadiques. Nous confirmons la présence de cas stables pour des vitesses intermédiaires en calculant les modes propres comme des modes de Floquet à l'aide d'un algorithme d'Arnoldi--Krylov, et en montrant qu'ils sont associés à des taux de croissance négatifs.Le cas sillage est instable et nous le stabilisons par une méthode deselective frequency damping cite{Akervik06} afin d'obtenir un écoulement de base stationnaire autour duquel nous calculons les perturbations optimales qui maximisent l'énergie totale à différents horizons temporels. Pour des horizons courts, la perturbation optimale est petite échelle alors que pour des horizons longs, elle est grande échelle et converge vers la solution non-linéaire obtenue précédemment. Les horizons courts voient une instabilité triadique petite échelle advectée par l'écoulement et les horizons longs développent une instabilité d'une branche triadique grande échelle capable de se maintenir dans le faisceau malgré l'écoulement.Nous interprétons cette sélection de mode par le biais de la théorie des instabilités absolue ou convective. Dans le cas de l'onde de sillage l'instabilité grande échelle est absolue alors que la petite échelle est convective (et domine la croissance transitoire puisque son taux de croissance local est supérieur). Les rôles s'inversent dans le cas marée et l'instabilité petit échelle devient absolue alors que la grande échelle est convective. Nous confirmons cette hypothèse en calculant la réponse impulsionnelle d'une onde plane monochromatique dans un domaine 2Dpériodique. L'évolution spatio-temporelle d'une perturbation localisée en temps et en espace montre la formation de trois paquets d'onde, chacun étant associé à une branche triadique que nous identifions par une extension de la théorie triadique prenant en compte un désaccordage cite{McEwan77} et permettant de calculer la vitesse de groupe des sommets des paquets. En calculant ensuite le taux de croissance absolu le long de rayons à x/t et z/t constant, nous validons notre hypothèse.

  • Titre traduit

    Stability of an internal gravity wave, local, global analysis and transient growth.


  • Résumé

    Internal gravity waves that exist in a continuously stratified fluid are particularly important in the ocean. They transport energy and are thought to generate turbulent mixing, which contribute to the deep ocean circulation.We generate an internal wave beam that propagates in a continuously stratified fluid with direct numerical simulations. This situation is equivalent to a tidal wave, where the tidal flow oscillates over a topography and generates a wave. Experimental results obtained by cite{Bourget13} are recovered, ie. the beam destabilizes into a small scale mode. We consider the effect of an horizontal mean flow on the instability and lower the forcing frequency in order to compensate for the doppler effect and to keep locally the same wave. A limit case appears when the forcing becomes stationary. This case is equivalent to a lee wave appearing when a stratified fluid flows over a topography.For small mean flow, small scale instabilities develop as in the tidal case. The beam then stabilizes at intermediate mean flows and destabilizes again for increasing flow speed. At this second threshold, down to the lee wave case, the instability is of much larger scale than for the tidal case. Varying the Reynolds number, the Froude number, the wave angle or the beam size doesn't affect the instability scale selection : a small scale instability in the tidal regime, and large scale instability in the lee regime.We show that the instability mechanism may be interpreted using the triadic instability. Scale selection corresponds to different branches of triadic resonance. We confirm the presence of a stability region for intermediate value of the mean advection velocity by computing the linear eigenmode as Floquet mode with an Arnoldi-Krylov technique and show that the leading eigenmode has a negative growth rate.In the lee wave, case the flow is unstable and a selective frequency damping method cite{Akervik06} is used to compute a steady base flow. We then implement a linear direct-adjoint method to compute the optimal perturbations that maximizes the total energy at different time horizons. At short time horizon, the optimal perturbation is small scale while at large time the perturbation switches to a large scale solution and converges to the large scale mode observed through the nonlinear simulations. Short time transients correspond to the small scale triadic instability advected by the flow whereas the long time large scale instability corresponds to large scale branch of the triadic instability that is able to sustain the flow.We propose an interpretation of the selection of these different instabilities in term of absolute and convective instability. In the case of the lee wave, the large scale instability is absolute whereas the small scale instability is convective (and dominates the short time transient growth because it has a larger local growth rate). When the mean flow is varied, the properties of small scale and large scale instabilities exchange: in the tidal case the short scale instability is absolute and the large scale convective. This conjecture is confirmed by computing the impulse response around a plane monochromatic internal gravity wave in an extended two dimensional periodic domain. The spatio temporal evolution of a perturbation localized in space and time points out the formation of three different wave packets corresponding to different branches of triadic instability. Using the triadic theory with finite detuning cite{McEwan77},we derive the group velocity at the maximum growth rate of the three different branches of triadic instability and find a good agreement with the velocity of the three wave paquet maxima in the impulse response. Analyzing the impulse response along rays, i.e. at x/t and z/tconstant, we compute the absolute growth rate along all possible rays and validate our conjecture.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.