Caliste-MM : a new spectro-polarimeter for soft X-ray astrophysics - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2017

Caliste-MM : a new spectro-polarimeter for soft X-ray astrophysics

Caliste-MM : un nouveau spectro-polarimètre pour l'astrophysique des rayons X mous

Résumé

Performing X-ray polarimetry of astrophysical sources could provide precious insight into the properties of the emitting objects, for example the geometry of pulsars accretion disks, magnetic field inside the core of supernovae remnants or measurement of black holes spin. These fundamental observations are today impossible due to the missing performance of X-ray polarimeters.The use of the photo-electric effect to perform spectro-polarimetry in the energy band of 1 keV to 15 keV appears to be like a much better approach than the use of Bragg diffraction or Thomson scattering. Performing polarimetry with the photo-electric effect relies on the measurement of the ejection direction of the photo-electron, which is modulated by the polarization direction of the incoming light. In order to reconstruct the photo-electron track, a detector allowing the photo electrons to recoil far enough is needed. Gaseous detectors are naturally perfect candidates. This PhD thesis focusses on the development and the characterization of a soft X-ray spectro- polarimeter of a completely new design : Caliste-MM. It consists of a gaseous detector called piggyback Micromegas associated with a miniature 3D readout electronics baptized Caliste. The main innovation of this detector comes from the fact that its readout electronics is located outside the gaseous medium. The charges created inside the piggyback diffuse in a resistive layer spread on a solid ceramic plate that closes the detector. The Caliste records the signal of the charges in the resistive layer through the ceramic and a small air layer by capacitive induction. The detector is composed of two completely independent parts : the piggyback where the X-ray conversion and amplification takes place, and the Caliste for the recording of the signal. These two parts can then be developed independently. Moreover the electronics are protected from sparks thanks to the resistive layer of the piggyback.The detailed characteristics of the detector are studied such as the shape of the events, the gain and the energy resolution. Analytical models are compared to the obtained results in order to explain the physical phenomena responsible for the topology of the recorded events. Different strategies to improve the reconstruction of the photo-electrons are explored including for example finer pitched readout electronics, low pressure and the use of lighter gases such as Neon or Helium.Finally, thanks to the measurements performed on the 100% linearly polarized beam of the Mtrologie line of the SOLEIL synchrotron facility, the modulation factor of the detector has been measured at different energies ranging from 6 keV to 12 keV. A measurement of the modulation factor of 92% at 8 keV proves the high potential of this new spectro-polarimeter and the interest into its innovative design.
Effectuer des mesures de polarimétrie des rayons X provenant de sources astrophysiques permettrait d’obtenir de nombreuses informations sur les objets émetteurs : géométrie des disques d’accrétion de pulsars, champ magnétique au cœur des restes de supernovæ ou encore détermination du spin des trous noirs. Ces informations fondamentales sont pour l’instant inaccessibles à cause de l’absence de polarimètres X performants.L’utilisation de l’effet photoélectrique pour effectuer de la mesure spectro polarimétrique des rayons X mous dans la bande d’énergie de 1 keV à 15 keV apparaît comme une approche bien plus adaptée que l’utilisation de la diffraction de Bragg ou de la diffusion Thomson. La polarimétrie par le truchement de l’effet photoélectrique repose sur la mesure de la direction d’éjection du photoélectron, laquelle est modulée par la direction de polarisation de la lumière incidente. Il s’agit alors de construire un détecteur permettant un recul suffisant des photoélectrons afin de reconstruire leurs traces, et les détecteurs gazeux sont par nature des candidats idéaux. Cette thèse traite du développement et de la caractérisation d’un spectro-polarimètre `a rayons X-mous d’un genre entièrement nouveau : Caliste-MM. Il consiste en un détecteur gazeux, le piggyback Micromegas associé à une électronique de lecture miniature baptisée Caliste. L’une des principales innovations de ce détecteur tient au fait que son électronique de lecture est située en dehors du milieu gazeux. Les charges créées dans le piggyback diffusent dans une couche résistive répandue sur une céramique venant fermer le détecteur gazeux. Le module électronique Caliste enregistre le signal qui se répand dans la couche résistive à travers la céramique et une fine lame d’air par couplage capacitif. Le détecteur est ainsi composé de deux parties complètement indépendantes : conversion de la lumière et amplification par le piggyback, et lecture du signal par le Caliste. Les deux peuvent alors être développées indépendamment l’une de l’autre, l’électronique étant protégée des étincelles développées dans le détecteur grâce à la couche résistive du piggyback.Les caractéristiques détaillées du détecteur sont étudiées et présentées : forme des évènements, gain, résolution en énergie, ainsi que la variation de ces caractéristiques avec les différents paramètres du détecteur. Des modèles analytiques sont comparés aux résultats obtenus afin d’expliciter les phénomènes physiques responsables de la topologie des évènements enregistrés. Les différentes méthodes pour obtenir une trace reconstructible issue de photoélectrons sont aussi étudiées : utilisation d’une électronique de lecture plus finement pixélisée (utilisant ainsi pleinement le concept d’électronique découplée), test en basse pression ou utilisation de gaz légers comme l’Hélium ou le Néon.Enfin, grâce à des mesures effectuées sur le faisceau 100% polarisé de la ligne Métrologie du synchrotron SOLEIL, le facteur de modulation du détecteur est mesuré et présenté à différentes énergies de 6 à 12 keV. Une mesure du facteur de modulation de 92% à 8 keV prouve le grand potentiel de ce nouveau spectro-polarimètre et l’intérêt de son concept innovant.
Fichier principal
Vignette du fichier
77687_SERRANO_2017_archivage.pdf (37.84 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-01723432 , version 1 (05-03-2018)

Identifiants

  • HAL Id : tel-01723432 , version 1

Citer

Paul Serrano. Caliste-MM : a new spectro-polarimeter for soft X-ray astrophysics. Instrumentation and Methods for Astrophysic [astro-ph.IM]. Université Paris Saclay (COmUE), 2017. English. ⟨NNT : 2017SACLS594⟩. ⟨tel-01723432⟩
237 Consultations
85 Téléchargements

Partager

Gmail Facebook X LinkedIn More