Dynamique asymptotique pour des équations de KdV généralisées L2 critiques et surcritiques
Auteur / Autrice : | Yang Lan |
Direction : | Frank Merle, Thomas Duyckaerts |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques fondamentales |
Date : | Soutenance le 02/06/2017 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....) - Laboratoire de mathématiques d'Orsay (1998-....) |
établissement opérateur d'inscription : Université Paris-Sud (1970-2019) | |
Jury : | Président / Présidente : Jean-Claude Saut |
Examinateurs / Examinatrices : Frank Merle, Thomas Duyckaerts, Jean-Claude Saut, Thierry Cazenave, Philippe Gravejat, Enno Lenzmann, Luis Vega | |
Rapporteurs / Rapporteuses : Thierry Cazenave, Philippe Gravejat |
Mots clés
Résumé
Dans cette thèse, nous étudions la dynamique à temps long des solutions des équations de KdV généralisées (gKdV) critiques et surcritiques pour la masse.La première partie de cette thèse est consacrée à la construction d’une dynamique explosive auto-similaire stable pour des équations de gKdV légèrement L2 surcritique dans l’espace d’énergie H1. La preuve repose sur le profil auto-similaire construit par H. Koch. Nous donner une escription précise de la formation des singularité près du temps d’explosion.La deuxième partie est consacrée à la construction de solutions explosive aux équations de gKdV légèrement L2 surcritiques avec plusieurs points d’explosion. L’idée clé est d’envisager des solutions qui se comportent comme une somme de bulles découplée, chaque bulle se comportent comme un solution auto-similaire explosent en un seul point. Nous utilisons les argument topologique classique pour s’assurer que chaque bulle explose en même temps. Ici, nous avons besoin de données initiales plus grande régularité pour contrôler la solution entre les différents points d’explosion.Enfin, dans la troisième partie, nous considérons les équations de gKdV L2 critiques avec une perturbation saturée. Dans ce cas, toute solution avec des données initiales dans H1 est toujours globale en le temps et bornée dans H1. Nous donner une classification explicite de la dynamique près du solitons. Sous certaines hypothèses de décroissance, il n’y a que trois possibilités : (i) la solution converge asymptotiquement vers une onde solitaire ; (ii) la solution reste dans un petit voisinage de la famille modulée de l’état fondamental, en s’étalant par de temps infiniment grande (Blow down) ; (iii) la solution quitte tout petit voisinage de la famille modulée de solitons.