Thèse soutenue

Vers une modélisation des grands plans d’organisation de l’embryon d'Arabidopsis thaliana
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Élise Raphaëlle Laruelle
Direction : Jean-Christophe Palauqui
Type : Thèse de doctorat
Discipline(s) : Biologie
Date : Soutenance le 24/03/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences du végétal : du gène à l'écosystème (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut Jean-Pierre Bourgin (Versailles ; 2010-....) - Mathématiques et Informatique Appliquées  du Génome à l'Environnement (Jouy-en-Josas, Yvelines)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Christophe Godin
Examinateurs / Examinatrices : Jean-Christophe Palauqui, Christophe Godin, Arezki Boudaoud, Françoise Monéger, Thomas Blein, Patrick Lemaire
Rapporteurs / Rapporteuses : Arezki Boudaoud, Françoise Monéger

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Au cours du développement embryonnaire, la plupart des éléments de la plante sont mis en place. Ce processus donne lieu à un embryon mature qui possède toutes les caractéristiques d'une jeune plantule. Ces étapes se déroulent durant les premiers stades du développement et sont associées à un changement de forme, ou morphogenèse. Ces deux processus sont stéréotypés chez Arabidopsis thaliana.Au cours du développement embryonnaire, l'embryon passe d'une forme globulaire avec une symétrie radiale, à un embryon en forme de cœur avec une symétrie bilatérale. Ces changements sont basés sur des événements de croissance différentielle et de divisions cellulaires avec des orientations particulières de la surface de division dans l'embryon, des mécanismes qui sont étroitement régulés et sous le contrôle de facteurs moléculaires. Si certaines caractéristiques des stades de développement sont connues, comme le nombre de cellules ou encore des événements moléculaires, d'autres comme le changement de symétrie et l’acquisition d'une forme, qui est spécifique de l'embryon, n'ont pas encore été étudiées. Pour comprendre l'origine de la forme de cœur, une description multi-échelle et une quantification précises des changements de forme ont été réalisées. Pour cela une collection pré-existante d'image embryons fixés à différents stades du développement, a été enrichie de 47 embryons pour couvrir le développement embryonnaire précoce sur 8 générations cellulaires. Chaque embryon de la collection a été numérisé en 3D et ses cellules segmentées. À partir de ces images, une filiation cellulaire de l'embryon et des données de description de l'organisation des cellules ont été générées.L'évolution des paramètres mesurés montre un changement progressif de la forme qui démarre de manière très précoce et bien avant que des modifications morphologiques ne soient supposées. Pour suivre l'évolution de traits caractéristiques de la forme et l'attribuer à des dynamiques cellulaires particulières, des mesures sur les événements de division et de croissance cellulaire ont été calculées. Des modifications de croissances cellulaires apparaissent très précocement alors que l'embryon n'est encore que globulaire. Les caractéristiques des divisions changent également, les plans de division passent d'une orientation stéréotypée à une orientation variable. Malgré la variabilité, des comportements similaires apparaissent au cours des générations cellulaires mais également au sein des différents précurseurs des tissus et organes de l'embryon.La variabilité des divisions observées est questionnée à travers la recherche de règles simulées à l'aide d'un modèle stochastique 3D de partitionnement volumique. En testant une règle de minimisation stochastique de l'aire de la surface de partition, l'ensemble des orientations des plans de division observés ont pu être reproduites dans les formes observées et avec une répartition du volume donnée. L'hypothèse d'une règle stochastique basée sur la géométrie cellulaire et la minimisation de l'aire de la surface est envisagée, mais les générations avancées laissent entrevoir l'action progressive d'une autre contrainte sur la mise en place du plan de division. L'ensemble du phénotypage devrait définir de bonnes bases pour mieux comprendre les facteurs moléculaires qui régulent les mécanismes cellulaires de division et de croissance impliquée dans la mise en place de la forme de cœur de l'embryon.