Thèse soutenue

Développement de systèmes de microscopie par cohérence optique pour l'imagerie de la peau

FR  |  
EN
Auteur / Autrice : Jonas Ogien
Direction : Arnaud Dubois
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 30/11/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Établissement opérateur d'inscription : Institut d'optique Graduate school (Palaiseau, Essonne ; 1920-....)
Laboratoire : Laboratoire Charles Fabry / Biophotonique
Jury : Président / Présidente : Christophe Gorecki
Examinateurs / Examinatrices : Arnaud Dubois, Katharine Grieve, Audrey Bowden, Frédéric Pain
Rapporteurs / Rapporteuses : Paul Montgomery

Résumé

FR  |  
EN

La microscopie par cohérence optique (OCM) est une technique d'imagerie tomographique basée sur l'interférométrie en lumière blanche permettant d'imager les milieux biologiques à l'échelle microscopique. L'OCM est une méthode particulièrement adaptée à l'imagerie dermatologique, en particulier pour le diagnostic du cancer de la peau, car elle permet d'obtenir des images similaires aux images histologiques sans nécessiter d'effectuer de biopsie.Ces travaux de thèse portent sur le développement de la microscopie par cohérence optique pour l'imagerie de la peau, dans le but de fournir au dermatologue un outil d'imagerie compact, adapté à l'imagerie dermatologique in vivo, et permettant d'obtenir des images à la fois structurelles et fonctionnelles.Un dispositif de microscopie par cohérence optique plein champ (FF-OCM) compact, à éclairage par LED blanche, a tout d'abord été développé, permettant d'obtenir des images tomographiques à très haute résolution (0.7 μm × 1.8 μm) jusqu’à ∼200 μm de profondeur dans la peau. En utilisant une LED de haute puissance, des images de peau in vivo ont pu être obtenues.A partir de ce dispositif de FF-OCM, des méthodes d'imagerie fonctionnelle permettant de cartographier les écoulements sanguins (angiographie) ont été mises en oeuvre. Quatre méthodes, basées sur une analyse du signal interférométrique (temporelle ou fréquentielle), d'images de phase ou d'images d'amplitude ont permis d'imager de l'intralipide s'écoulant dans un modèle de capillaire sanguin.L'imagerie fonctionnelle polarimétrique a aussi été explorée en FF-OCM. Une optimisation du contraste des images polarimétriques a été obtenue en modifiant les composants polarisants d'un montage conventionnel de FF-OCM polarimétrique en fonction de l'échantillon imagé. Cette méthode a été testée sur un échantillon polarisant simple.Finalement, une nouvelle méthode d'OCM, la microscopie par cohérence optique confocale à éclairage « ligne » (LC-OCM) a été étudiée, dans le but de développer un système permettant d'imager la peau in vivo, avec une plus grande profondeur de pénétration dans les tissus que la FF-OCM. Ce système, combinant un filtrage interférométrique et un filtrage confocal, a permis d'obtenir des images de peau in vivo en coupe verticale et en coupe en face, avec une résolution spatiale similaire à celle de la FF-OCM, mais à une profondeur supérieure atteignant 300 μm.