
NN
T

:2
01

7S
AC

LE
03

2
Th

ès
e

de
do

ct
or

at

Computer-aided
design (CAD) tools for

bioproduction and biosensing
pathway engineering

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’Université d’Évry-Val-d’Essonne

École doctorale n°577 Structure et Dynamique des Systèmes Vivants (SDSV)
Spécialité de doctorat : Sciences de la Vie et de la Santé

Thèse présentée et soutenue à Jouy-en-Josas, le 7 décembre 2017, par

Baudoin Delépine

Composition du Jury :

Janet Thornton
Professeure, European Bioinformatics Institutes (European Molecular
Biology Laboratory)

Présidente

Stéphanie Heux
Directrice de recherche, INRA (LISBP, Université de Toulouse, CNRS) Rapporteure

Olivier Taboureau
Professeur, Université Paris Diderot (Inserm UMR-S 973) Rapporteur

David Vallenet
Chercheur, CEA (Laboratory of Bioinformatics Analyses for Genomics
and Metabolism)

Examinateur

Jean-Loup Faulon
Directeur de recherche, INRA (Micalis UMR 1319, AgroParisTech,
Université Paris-Saclay)

Directeur de
thèse

Pablo Carbonell
Chargé de recherche, The University of Manchester (BBSRC/EPSRC
SynBioChem Centre, MIB)

Co-directeur de
thèse





Abstract

Advances in systems and synthetic biology are fueling our ability to develop

successful metabolic engineering applications for the sustainable production

of bio-based chemicals. We can envision a future in which designer cells could

be engineered to transform any carbon source into any target compound. This

daunting task will be achieved by leveraging methods that proved themselves in

other engineering disciplines. Among those, the use of Computer Aided Design

(CAD) softwares is expected to reduce the amount of time and expert knowledge

needed to design de novo metabolic pathways. The first part of this thesis is

dedicated to our pathway prediction algorithm and its CAD implementations.

Most notably, we will present RetroPath2.0, a versatile reaction network predic-

tion framework focused on retrosynthesis that is built to be easily extensible

by the community. In the second part, we will highlight the interest of intra-

cellular biosensors for metabolic engineering and introduce SensiPath, a web

application that uses a reaction prediction engine to design biosensing circuits

for compounds for which no direct biosensors are known. Altogether, this thesis

proposes that bioCAD tools should focus on empowering users’ creativity and

encourage them to explore original applications.
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Résumé

Les récentes avancées en biologie des systèmes et en biologie synthétique con-

tribuent déjà au fleurissement d’applications en ingénierie métabolique visant

une bioproduction renouvelable de composés chimiques. Nous pouvons en-

trevoir un futur où des microbes seraient conçus à la carte afin de valoriser

n’importe quelle source de carbone en n’importe quel composé d’intérêt. Si

la route est longue avant l’accomplissement d’un tel objectif, son parcours de-

vrait en être grandement facilité par l’exploitation de méthodes d’ingénierie déjà

éprouvées dans d’autres disciplines. On s’attend entre autre à ce que l’utilisation

de logiciels de Conception Assistée par Ordinateur (CAO) diminue le temps et

l’expertise nécessaires à la construction de voies métaboliques n’existant pas

dans la nature. La première partie de cette thèse est dédiée à notre méthode de

prédiction de voies métaboliques et à ses implémentations. Nous décrivons tout

particulièrement RetroPath2.0, un outil de prédiction de réseaux de réactions

mettant l’accent sur les applications de rétrosynthèse, et qui est construit pour

être facilement extensible par la communauté. Dans la seconde partie, nous dé-

taillons l’intérêt des biosenseurs intracellulaires pour l’ingénierie métabolique et

introduisons SensiPath; une application web qui exploite un outil de prédiction

de réactions pour concevoir des circuits métaboliques permettant la biodétec-

tion de composés pour lesquels aucun biosenseur direct n’est connu. Dans

l’ensemble, cette thèse propose que les outils de bioCAO devraient permettre de

révéler la créativité de leurs utilisateurs et encourager l’exploration de nouvelles

applications.
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1Introduction

1.1 Metabolic engineering for a sustainable
chemistry

1.1.1 Concerns about the sustainability of synthetic
organic chemistry

Organic chemistry rose at the dusk of the 20th century from a descriptive science

to an engineering discipline that quickly contributed to the wealth of our society.

Advances in synthetic chemistry allowed the development of polymers and bioac-

tive compounds for which we have a direct or indirect usage every day of our life.

Fertilizers and pesticides secure our food production, synthetic drugs protect us

from misery, while plastics shape our world. However, concerns are rising about

the sustainability of this model, and the chemical industry, once cherished as the

promise of a better world, is now seen as a hazard for our society.

The attractiveness of synthetic chemistry was built on the development of meth-

ods to efficiently assemble small chemicals into more complex ones through

standardized sequences of transformations. The catalysts and solvents needed

for those transformations can be toxic [1], and even reactions reputed and appre-

ciated for the mild conditions they require use nonrenewable materials. Their

disposal and recycling is a challenge [2]. For instance, the widely used Sono-

gashira reaction that forms carbon-carbon bonds at room temperature uses

palladium, a catalyst that is already considered rare and expensive [3, 4].

At the root of organic chemistry’s success, commodity chemicals are building

blocks used as standard parts in numerous synthesis routes. Most of them are

produced from nonrenewable fossil carbon sources by the petrochemical indus-

try [5] at low-price and high-volume. With the rarefaction of oil reserves that can

be exploited at low-price, it is the very basis of the organic chemical industry

model that is threatened. However, not all commodity chemicals come from the

petrochemical industry and some of them, such as ethanol, are already isolated

from renewable sources [6].

1



1.1.2 Bioproduction and renewable carbon-source

There is much hope in the development of biorefineries, and ultimately their

contribution to the replacement of fossil carbon sources. Biorefineries transform

biomass coming from the agriculture industry into valuable compounds using

chemical, biological or a combination of technologies coming from both worlds

[5, 7]. State-of-the-art biorefineries mostly use edible biomass to produce a

small palette of commodity chemicals from microbes [8, 9]. The diversion of

arable lands and feedstock toward the chemical industry is raising concerns

about its putative impact on the prices for human (and animal) consumption,

and ultimately about the sustainability of this model. Moreover, the relative

high price of edible biomass compared to oil compromises the competitivity of

bioproduction for most commodity chemicals since they would require titers,

rates of production and yields that are still unreachable [10].

Consequently, wastes from the agriculture industry are regarded as a promising

alternative carbon-source. In that spirit, we assisted in the recent years to con-

siderable efforts to increase the conversion efficiency of lignocellulosic biomass

and other low-value carbon sources by microbes [7, 11] in order to unleash their

fantastic catalytic potential.

Enzymes are already used in the industry by synthetic chemists for their un-

matched catalytic capabilities [12, 13]. Indeed, enzymes benefit from a superior

stereoselectivity permitted by the conformation of their binding pocket [12, 14].

On the other hand, they are much more fragile and difficult to produce (extract

and isolate) than their synthetic catalysts counterparts. In that context, an attrac-

tive solution is to use living organisms to perform the synthesis, in which enzymes

and cofactors are naturally recycled, and then extract the desired product.

Semisynthesis is a common strategy that consists in initiating the synthesis from

a compound extracted and isolated from a biological source and complete the

synthesis with usual organic chemistry methods. Semisynthesis is particularly

relevant when the structure of a target compound is too complex for a compet-

itive total synthesis from commodity chemicals, and that a structurally similar

compound can be bioproduced by an enzymatic pathway (and extracted) at a

lower cost. This makes it a strategy of choice for the production of fine chem-

icals that have a high market demand for their special properties or structure.

For instance, the worldwide production of morphine is made in crops (opium

poppy, Papaver somniferum) despite the fact that more than 30 total chemical

synthesis routes are known for this compound [15]. Once isolated, morphine

2 Chapter 1 Introduction



Fig. 1.1: Concept of microbial cell factory. The hope carried out by metabolic engi-
neering is that, by the right set of genetic modifications, we would transform
bacteria so that they could consume any suitable carbon source and transform
it into any desirable chemical for our industry. This would be the guarantee of
a sustainable chemical production model. Extracted from [18].

can later be used as a platform and transformed into less addictive drugs such as

codeine [16].

The exploitation of crops is not exempt of limitations, be it to use them as a

carbon source or as a catalytic vessel. Like any industrial installation, biore-

fineries must be fed continuously along the year with a sufficient amount of

material respecting quality standards to meet profitability. This is hardly the

case for biomass, whose availability obviously spikes during harvest seasons and

is vulnerable to climatic events and, more broadly, to climate change [5]. The

same goes with semisynthesis, with the additional risks arising from an increase

susceptibility to political instabilities and pest catastrophes if the bioproduction

is made by specific plants with precise climate needs.

For those reasons, the development of synthetic processes able to tap into flex-

ible (renewable) carbon sources with a catalytic power equivalent to synthetic

organic chemistry is highly desirable as it would secure our supply of chemicals

[17]. Bacteria and yeasts are ideal candidates for that since they have already

proved themselves in biotechnological processes, and they can easily be mod-

ified by current genetic engineering tools (chassis organisms) to reach specific

production objectives.
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1.1.3 Development of microbial cell factories

Metabolic engineering [19] is a research field that vowed to transform cells into

factories by redirecting their resources toward the production of chemicals of in-

terest (Figure 1.1). Metabolic engineering significantly grew with the advances in

systems and synthetic biology that respectively provided the map to understand

metabolism and the tools to modify it. The hope carried out by the development

of metabolic engineering is that, by performing the right genetic modifications,

we could unchain cell’s productivity up to a profitable level by increasing their

titer, rate of production and yield [10] while being able to consume any carbon

source [20].

There is no definitive method to increase the production of a compound, for the

reason that organisms are complex systems and their enhancement needs to com-

promise between multiple objectives. Indeed, cells are already constrained by

their evolutionary history and inserting new objectives without breaking cells’ vi-

ability is a daunting task [10]. Importantly, it is not a matter of overproducing

every enzymatic step since that would end up in a misallocation of resources

(cofactors, amino acids, ribosomes) that could wreck metabolism by starving

other processes, or reach toxicity levels for intermediates or final compounds.

Modern metabolic engineering (sometimes called systems metabolic engineer-

ing) focuses more on balancing the whole metabolism toward the production

objective at the maximum of what the cell can take [21]. This includes but is

not limited to optimizing the carbon uptake, deleting competitive pathways,

improving product tolerance, designing regulation mechanisms, and of course

finding a proper producing pathway [22].

The fast paced advances of synthetic organic chemistry during the last century

was hallmarked by the total synthesis of emblematic chemicals, and this should

not come as a surprise that we assist nowadays to the same pattern in metabolic

engineering [22, 24, 25]. Jeong Wook Lee et al. [23] proposed to classify those

chemicals into four categories on the basis of whether they are known to be

naturally produced by unmodified organisms (natural vs. non-natural), and

whether the pathways proposed for the production were naturals (inherent),

reconstructed from natural enzymes (noninherent) or needed new enzymatic

activities (created). See also Figure 1.2. This classification sheds some light on the

degree of engineering that is required for the production of a compound, and the

advances metabolic engineering is making. The bioproduction of natural com-

pounds by inherent pathways is well-known and was exploited for centuries (fer-

mentations). The current challenge is to streamline the bioproduction through

noninherent pathways, both for natural and non-natural compounds, at a time
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Fig. 1.2: Classification of compounds produced by metabolic engineering. This simple classification in four
categories was proposed by Sang Yup Lee based on the degree of novelty that required the synthesis
of a compound. Natural compounds are those already produced by unmodified organisms, whereas
non-natural compounds are typically man-made. A producing pathway is said inherent if it did not
required the addition of new enzymes. A contrario, if the production required the addition of heterologous
enzymes (from other organisms) then it is said non-inherent. Pathways that required enzyme engineering
are classified as created since they can neither be truly inherent or non-inherent. Importantly, enzymatic
substrate promiscuity can be exploited to yield non-natural noninherent compounds. Extracted from [23].

when the first created activities are starting to get reported [26, 27] and protein

engineering can be used to alleviate bottlenecks. For instance, despite being a

natural opioid, the bioproduction of thebaine (a precursor of morphine) from the

central metabolism of Saccharomyces cerevisiae required the impressive design of

a pathway with 21 heterologous genes from plants and bacteria [28] (natural non-

inherent), and even required some enzyme engineering to prevent unfortunate

glycosylations. Another example is the bioproduction of 1,4-butanediol, a non-

natural commodity chemical, that required the insertion of only 5 heterologous

genes [29] in E. coli for its bioproduction (non-natural noninherent); the pathway

was subsequently optimized by enzyme engineering and reached commercial

viability.

Numerous proofs-of-concept exist in the literature but only few of them lead to

industrial applications due to the tremendous research efforts that are needed to

scale-up a promising pathway [30]. In this regard, the synthesis of artemisinic

acid in yeast is a remarkable scale-up success story. Artemisinic acid is a pre-

cursor of a medicine to treat malaria that was previously extracted from an herb

(Artemisia annua) at a prohibitive price for those who needed it the most. Its

proof-of-concept synthesis was kick-started by a private grant of $42 million,

and it took 8 more years before the first competitive titers (from 100mg/L to
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25g/L) were reported [31, 32]. Artemisinic acid is now produced at industrial

scale by this very process [33]. Similarly, despite being close to a titer of 20g/L,

the proof-of-concept synthesis of 1,4-butanediol (mentioned above) was still

too low to compete with petrochemical processes [29]. The Genomatica com-

pany increased further their process up to 110g/L by a round of modifications

including combinatorial mutagenesis on key enzymes to alleviate "enzyme-level

bottlenecks" [34]. This was the first example of a non-natural commodity chemi-

cal produced industrially in a cell factory able to compete with petrochemical

industry’s processes. This project relied heavily on in silico predictive tools since

its beginning, notably to predict promising pathways [29], which allowed the

authors to invest time and financial resources on the scale-up that took 5 years of

intense efforts [34].

It appears that, if the development of new cell factories is appealing to support

the sustainability of our chemical industry, the road ahead is still long before

we master the design of cells to fit our objectives. The development of new

metabolic engineering projects is expected to fasten by embracing methods that

have proven themselves in other engineering disciplines [10, 35]. Among those

methods, the use of computer aided design tools (CAD) should continue to rise.

In the next section, we will introduce some background information on de novo

pathway design, focusing on rational methods supported by CAD softwares.

1.2 Computer-aided pathway design

1.2.1 Earliest attempts and motivation to predict
enzymatic promiscuity

Early attempts to programmatically predict biological pathways relied on logic

programming and inference engines to generate new routes between source and

target metabolites [36–38]. Logic programming is indeed particularly well-suited

to develop artificial intelligence solutions to problems that can be framed in list

of constraints (rules, e.g. "A+B →C +D", "A and B are needed to produce C and

D") and statements (facts, "A is endogenous"). This view of the metabolism (that

ignores chemical structures and focus on stoichiometry information) gave birth

around the same time to the first metabolic networks analysis methods based

on linear optimization theory [39]. Constraints-based methods are still widely

popular today, such as Flux Balance Analysis and prediction of isotope labeling

experiments. Nonetheless, those methods generally assume that relationships

between reactions and metabolites are fully known, which is hardly the case due

to enzymatic promiscuity.
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Enzymatic substrate promiscuity is the ability that have enzymes to perform the

same catalytic activity on a variety of alternative substrates. Those chemicals

usually share some degree of structural similarity; either by having the same

overall aspect, sharing some groups, or some bonds [40]. The patchwork model

of enzyme evolution [41] proposes that the latent catalytic plasticity of enzymes

allowed organisms to gain versatile functions that eventually contributed to their

adaptability and that were ultimately selected and optimized at a later stage

[42, 43]. Enzymatic promiscuity is banal [40, 44] and already exploited to find

alternative catalysts for metabolic engineering applications [45], and to fill gaps

in metabolic models (underground metabolism) [46]. Importantly, promiscuous

enzymes can reach high catalytic efficiency despite their low substrate speci-

ficity [47, 48]. Moreover, both the activity and the specificity can be optimized

during directed-evolution experiments [49]. Nonetheless, it is difficult to get

information about alternative substrates of an enzyme without going back to

publications of enzymatic assays [50, 51]. Indeed, most enzyme databases record

only the main reaction that has the most efficient catalytic activity among those

that are known. Thus, it is necessary to model enzymatic promiscuity to assess

the full potential of enzymatic reactions for pathways predictions.

Synthetic organic chemists grew an interest for biochemical pathways to pre-

dict the outcome of synthetic compounds once metabolized [52]; especially for

medicines in biological tissue [53, 54], or pollutants in the environment [55]. The

former has obvious applications to predict drugs’ toxicity, but also in drug delivery

in order to design drugs specifically so that they could be activated by enzymatic

transformations (prodrugs) that occur only in some tissues [56]. Interestingly,

since the chemicals used for those analyses are typically xenobiotics, they were

absent from maps of metabolic networks and it was thus essential to model enzy-

matic promiscuity. The idea that a catalyst can perform the same transformation

over a wide range of similar substrates is trivial for organist chemists. As a matter

of facts, reactions are more often than not depicted with so-called Markush struc-

tures that allow side chains that do not take part in the reaction to be replaced by

"R groups" that are used as a wild card. This led to the popularization in biology

of generalist reaction rules that were already used to encode reactions in organic

chemistry.

1.2.2 Structure-based generalist reaction rules

Reaction rules are designed to abstract (bio)chemical reactions to predict (1) if a

catalyst would act on a given substrate(s), and if so, (2) what would be the result-

ing product(s). Reaction rules were originally defined by hard-coded heuristics

in reaction prediction softwares [52, 57]. It made it difficult to update the rules to
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take into account most recent knowledge about new reactions and exceptions

to those that were already known [58]. Consequently, a great deal of efforts was

made to create information systems that could easily be updated by human

curators.

Those efforts eventually culminated with the adoption of graph-based reaction

rules, most notably with the diversion of the SMARTS language that was originally

developed to provide an in-line notation for substructures [59]. SMiles ARbitrary

Target Specification language (SMARTS) is itself based on the Simplified Molecu-

lar Input Line Entry System (SMILES) that uses methods from graph theory to

depict a molecule in a simple ASCII string [60]. The main advantage of encoding

reaction rules in SMARTS is that it is a compact text data format that can easily

be read and used both by humans and any cheminformatic tookit. Reaction

rules can be defined as a graph transformation between two subgraphs (SMARTS)

encoding the changes occurring at the reaction center [61]: one SMARTS covering

the substructure common to all known substrates, and another one covering

the products. The former is used to filter only compounds that are believed to

work with the catalyst and thus is responsible for the modeling of enzymatic

promiscuity; while the latter provides the result of the transformation operated

by the reaction. Importantly, the Atom-Atom Mapping (AAM) between the two

SMARTS is mandatory to encode the actual transformation between the graph of

the substrate(s) and the graph of the product(s). Reaction SMARTS (also called

SMIRKS) were eventually used by softwares to predict metabolic reactions [55,

62–64] (see also Chapter 3). Others preferred to stay away from this language

while adopting the exact same idea of encoding a transformation by two mapped

subgraphs with in-house data format based on Bond Electron Matrix (BEM) [65],

Reaction-center Difference Match (RDM) patterns [66, 67], or other [68].

Both finding the Atom-Atom Mapping (AAM) and applying a transformation on a

graph are related to the difficult Maximum Common Substructure (MCS) prob-

lem, itself related to the graph isomorphism problem which is NP-hard and thus

computationally intensive [69]. Moreover, AAM is very sensitive to the quality

of input data that vary greatly between databases in practice (unequilibrated

reactions, missing chemical structure, redundancies). Those limitations moti-

vated the development of another class of structure-based reaction rules based

on vectors of chemical features that do not require any AAM or graph handling.

This approach was pioneered in biology by the work of Faulon and Carbonell on

"reaction signatures" (see Chapter 2) [70, 71] and followed by others with subtle

variations [72, 73]. Those methods have in common to encode compounds in a

vectors where each bit refers to the occurrence of overlapping substructures in

the compound (either paths or subgraphs, sometimes called atom environments

or fragments), much like the Extended Connectivity FingerPrint (ECFP) [74] that

8 Chapter 1 Introduction



are widely popular to perform compounds similarity calculation. From that defi-

nition we can see a reaction as a simple difference between the products and the

substrates vectors. The resulting vector summarizes the net changes occurring

during the reaction in term of chemical fragments; it is the reaction rule. A simple

addition on the vector associated to a putative substrate will give the correspond-

ing putative product that can then be found in database or regenerated from the

fragments. We will see that in more details in Chapter 2. Ultimately, those vectors

were used in yet another class of reaction prediction softwares that use machine

learning in place of rules [75].

All reaction rules do not encode enzymatic promiscuity to the same extent, some

being more generalist than others. For instance, BNICE models its rules after the

Enzyme Commission (EC) classification [76] that sorts enzymatic reactions by the

chemistry involved (e.g. oxidoreductases, transferase, etc.) and are typically very

generalists [65]. RetroPath adopts a more data-driven approach by automatically

generating rules from reaction databases and brings the additional feature to

enable users to choose the degree of promiscuity that should be allowed [70, 77].

This has a critical importance during the generation of metabolic spaces since

more generalist rules will produce more (putative) products that would in-turn

need to be evaluated in an iterative process to generate the metabolic space.

One can clearly see that this leads to a combinatorial explosion that needs to be

controlled by search algorithms or dealt with by throwing more computational

power at it.

1.2.3 From metabolic space generation to de novo
pathways design

Reaction rules can be used iteratively on known endogenous metabolites to re-

construct the metabolic network of specific organisms, or even the combined

metabolism of all organisms. As we have seen above, reaction rules can model

enzymatic promiscuity to palliate the lack of information we have on enzymes’

alternative substrates and unveil metabolism latent capabilities. This has ap-

plications to identify compounds from metabolome data (mass spectrometry)

[78, 79], fill gaps in metabolic models [46] and of course for the design of de

novo metabolic pathways [80]. Nonetheless, pathway design is not limited to the

ability to predict reactions in a metabolic space.

We must keep in mind that a chassis is not a blank state but already an inherently

complex system that will get perturbed by the implementation of new reactions.

Since this will eventually impact the pathway efficiency it should be taken into

account during the pathway design, and computed-aided design tools should
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Fig. 1.3: Interface of the first computer-aided design software dedicated to retrosyn-
thesis. This software was developed back in 1969 for synthetic organic
chemists by Corey and Wipke. Natural reactions catalyzed by enzymes were
outside its scope. Left: a user draws the compound he wishes to synthesize.
Right: input’s graphical user interface. Extracted from [57].

provide features in that direction. For instance, numerous CAD tools use the net

Gibbs free energy of putative pathways to assess their spontaneity and thus their

driving force [64, 65, 81]. Systems-level methods to predict maximum theoretical

yield are also quite often integrated into pathway prediction softwares [62, 82–

84]. Others tools take into account important parameters at the metabolite-level

influencing pathway and that are more difficult to estimate such as the toxicity of

intermediate metabolites [81]. We will not enter into the details of those features

but simply note that they are exploited to score predicted pathways and sort out

the most promising before the eyes of the user.

This highlights an important aspect of pathways CAD softwares that is that their

purpose is first and foremost to empower users to make pertinent design choices,

contrary to the notion that CAD software should provide definitive plug-and-

play answers. In that context, it appears that tools proposing to design novel

pathways between one source and one target compound may very well hinder

users’ creativity by enforcing too soon strong constraints (e.g. carbon source).

This becomes clearly a liability considering the fact that reaction databases are

incomplete and that missing a reaction can be the cause for missing a whole

pathway toward a target metabolite.

1.2.4 Retrosynthesis for an efficient navigation into the
metabolic space

Retrosynthesis is a rational method to find non-intuitive production routes to-

ward chemicals of interest that was first developed by organic and synthetic
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chemists. The Father of retrosynthesis analysis certainly is E. J. Corey as he

devoted his life’s work to rationalize organic synthetic chemistry and received

in 1990 the Nobel Prize in Chemistry for the "development of the theory and

methodology of organic synthesis" [85]. In his Nobel lecture [86], Corey defines

retrosynthesis analysis as: "a problem-solving technique for transforming the

structure of a synthetic target molecule to a sequence of progressively simpler

structures along a pathway which ultimately leads to simple or commercially

available starting materials for chemical synthesis". Thus, retrosynthesis is an

iterative backward process that starts from the target molecule and then explores

the chemical space until a suitable route toward a starting material is found. At

each step, reversed reactions determine the allowed next moves in the chemical

space, i.e. how to transform one compound into another. The chemical space

exploration is thus fueled by our understanding of chemical reactions.

The beauty of retrosynthesis is that this rather simple idea requires a massive

amount of expert knowledge to be successfully executed. This makes it a difficult

task even nowadays with the help of computers, not because the computational

power would be lacking, but because the underlying phenomenons are difficult

to predict and many data sources need to be aggregated together to summarize

the extend of current knowledge [58, 86, 87].

Naturally, many attempts have been made to automate retrosynthesis analysis

with computer-aided design (CAD) tools. The purpose of such tools, as with

any other CAD software, is to lower the amount of expert knowledge needed by

the user and ultimately to accelerate the development of new applications [35,

88]. As one might expect, the first attempts to leverage computational power for

retrosynthesis (in synthetic organic chemistry) were pioneered by Corey himself

in the late sixties [57] (see Figure 1.3). Interestingly, the challenges associated

to the development of a retrosynthesis CAD software were already the same

as the ones modern solutions are still facing [58, 89]; namely, the design of an

intuitive graphical user interface, the need for interconvertible chemical data

format, a way to deal reasonably with combinatorial complexity, and of course

the modeling of the chemical reactions themselves.

The concept of retrosynthesis analysis can be applied to biology and metabolic

engineering to find synthesis routes to be implemented in living organisms as

heterologous enzymatic pathways. The term of bioretrosynthesis (or retrobiosyn-

thesis) is used to emphasize that the retrosynthesis analysis takes place in a

metabolic engineering context and thus inherits from its advantages and limita-

tions. Obviously, available reactions are not the same for designing pathways in

prokaryotes, eukaryotes or in vitro; starting compounds are different too, since

compounds supplemented to the media would be subject to membrane perme-
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ability, etc. As of today, a great number of tools have been developed both by

research groups and companies to perform retrosynthesis analysis, and a large

portion of them are specialized in bioretrosynthesis [62, 68, 70, 81, 90–92].

We have seen that predicting enzymatic pathways is a complex task that re-

quires a massive amount of data and efficient algorithms to navigate through

the metabolic space. There is no reason to believe that metabolic and reaction

databases will ever be complete for information as difficult to collect as enzymes’

alternative substrates. This highlights the importance of reaction prediction

and in particular the importance of modeling enzymatic promiscuity that is at

the core of de novo pathway design. However, computer-aided pathway design

tools are not limited to the search of pathways for bioproduction applications,

and encouraging the development of new applications for reaction prediction

frameworks might be another path to contribute significantly to the advances

of metabolic engineering. We will exemplify this point in the second part of

this thesis with the description of a strategy to design metabolic circuits for the

biodetection of small chemicals. In the next section we will quickly introduce the

interest of intracellular biosensors focusing our efforts on metabolic engineering

applications.

1.3 Intracellular biosensors

1.3.1 Microbial systems for the detection of small
chemicals

All living systems need to monitor the fluctuations of their environment to bet-

ter fit the associated constrains by adapting their behavior and/or metabolism.

For instance, it is well-known that E. coli has a strong taste for D-glucose over

L-lactose, itself being preferred to D-xylose and other sugars as a carbon source

[93]. E. coli follows this utilization hierarchy to consume all of preferred sugar

before switching to second-choice in an "all-or-none" response. This mechanism

is orchestrated by a tight regulation of sugar assimilation pathways that was

fine-tuned by the evolution; some sugars are indeed easier to assimilate thus pro-

viding a competitive advantage. Consequently, microbes have the ability to sense

their carbon source and react by adapting their metabolism. The same could

be said for the detection of toxic compounds that triggers microbial counter-

measures such as the expression of transporters, or the detection of the level of

critical compounds such as cofactors to maintain their homeostasis within the

cells. Microbes have developed a variety of molecular mechanisms dedicated to
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the detection of small chemicals for the purpose of triggering a response at the

genetic level.

Allosteric transcription factors (aTF) are proteins that have the property to change

their affinity to DNA upon the transitional binding of an effector (detectable com-

pound) through an allosteric conformational shift. This shift can either promote

or decrease DNA-affinity on a specific motif (operator domain) that is part of

the promoter of the regulated operon. aTFs act on gene transcription either

by blocking the access of the RNA polymerase (repressors), or on the contrary

by stabilizing its binding (activators). For instance, AraC and XylR are both

(de)repressors aTFs that bind to their respective DNA operator in absence of their

effector, effectively preventing gene expression. In presence of their effector (ara-

binose and xylose), AraC and XylR adopt a DNA-free conformation that allows

gene expression. Transcription factors are the most recurrent regulation system

for bacteria, but other systems exist.

Riboswitches are RNA sequences in cis of an mRNA’s CDS able to regulate the

associated gene expression either at the transcription or translation level by a

variety of mechanisms, most notably by premature transcription termination or

by preventing translation initiation [94]. Riboswitches are considered by some to

be the first elements dedicated to regulation that appeared, presumably during

the RNA World [95]. Simple riboswitches have one expression platform able to

undergo a conformational switch triggering a gene expression regulation mech-

anism upon the binding of a chemical on a dedicated aptamer domain. This

simple architecture and the fact that we can efficiently find aptamer domain in

vitro using high-throughput techniques nourished tremendous research efforts

to give them new detection capabilities [96]. However, results for in vivo applica-

tions are still limited so far due to their detection limit that often falls in a toxic

range for living cells [97].

Two-component signal transduction systems have a membrane-bound histidine

kinase able to induce the autophosphorylation of a cytoplasmic response reg-

ulator upon the extracellular detection of a chemical. The regulator can then

bind DNA and achieve its purpose. While the particular feature of extracellular

detection can be interesting for compounds that cannot cross the membrane,

two-component systems are subject to a risk of cross-talk that limit their range of

applications [98].

We will see in more details how to find natural biosensors in Chapter 4. For now,

we will quickly acknowledge the existence of other kind of biosensors coming

from other disciplines.
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1.3.2 Other biosensors

The term of "biosensor" is widely used in several communities to describe dif-

ferent concepts, which can make it confusing. In biology, it usually refers to

a genetically encoded system able to detect chemicals, as we described in the

previous section. Importantly, biosensors are not limited to the detection of small

organic compounds and can also detect physical and biological states (e.g. oxida-

tive stress, light, DNA damage, etc.) [99]. The term is also used for applications

that aims at the detection of pathogenic bacteria by PCR directed against specific

DNA locii [100].

In the nanotech world, the term of biosensors is used for any sensor able to detect

biological material. Those sensors typically use an aptamer (DNA or RNA) bound

onto a surface (microchips, quartz, nanoparticules) and an apparatus able to

monitor mass loading by a change of physical properties (colorimetry, fluores-

cence, conductivity, resonance, etc.). For instance, a biosensors for cocaine has

been reported using an anti-cocaine DNA aptamer bound onto a quartz surface

monitored by an electromagnetic piezoelectric acoustic sensor [101].

Coming from physical chemistry, Föster Resonance Energy Transfer (FRET) phe-

nomenon states that two chromophores that are physically close enough and

with an overlapping absorption and emission spectra will transfer the absorbed

energy of one chromophore (donor) to another (acceptor), so that the other

would yield the energy in its own emission spectra. This can be exploited to make

biosensors by functionalizing the chromophores on an aptamer so that their

distance would be dependent of the binding of a chemical, and so would be the

FRET emission [102]. Interestingly, they can be genetically encoded when they

use fluorescent proteins [103, 104].

Finally, let us note that not all biosensors have a switch-like behavior and that

some are specifically designed to have a one-time action. This is the case of so-

called hammerhead ribozyme, a riboswitch that has the property to autocleave

in presence of its effector [105].

In this thesis, we will use the term of biosensor exclusively to refer to genetically-

encoded biological systems able to detect small organic compounds, like those

that we described in the previous subsection, with a special emphasis on allosteric

transcription factors (aTF).
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Fig. 1.4: Concept of whole-cell biosensor. The whole cell act as a detection device to
capt the signal (presence of the analyte, i.e. a compound) and transform it
into a measurable output, such as fluorescent proteins. Extracted from [106].

Fig. 1.5: Metabolic valve to balance between growth and production objectives.
Biosensors have been proposed to act on key points of the metabolism to
redirect cells resources from growth to the production objective. Extracted from [107].

1.3.3 The need for biosensors in metabolic
engineering

The usage of biosensors in synthetic biology and metabolic engineering ap-

plications is more and more prevalent and concentrated around three main

applications [108–111]:

• the design of whole-cell biosensors,

• dynamic regulation of heterologous pathways,

• high-throughput screening, eventually to achieve biosensor-driven adap-

tive evolution.

Whole-cell biosensors are cells, usually microbes, dedicated to the detection

and report of stimuli thanks to a molecular biosensing mechanism [112] and a
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Fig. 1.6: Selection of superproducers among a library of variants with biosensors.
Genetically encoded biosensors (such as allosteric transcription factors) can
be used with a reporter system to screen (top, fluorescent proteins) or select
(bottom, toxin/antitoxin systems) the right variants among a population of
cells. Extracted from [108].

reporter system [113] (see Figure 1.4). They are often proposed to report envi-

ronmental pollutant and biomarkers in medical analysis applications [106, 114,

115]. Their main advantage against other detection methods is that they directly

evaluate the bioavailability of tested compounds (if the biosensing mechanism is

intracellular); they are also renewable, cheap to produce, auto-replicable, and

can be functionalized to make portable devices for real-time detection of chem-

icals. Interestingly, whole-cell biosensors can easily be used as a platform for

the detection of multiple compounds of interest, either by using together strains

dedicated to the detection of one compound (in consortia or as independent

tests) [116], by implementing several responsive elements in the same strain, or

using a promiscuous responsive element [117]. However, whole-cell biosensors

still lack reproducibility and stability during long-term storage and transport

[106], which limits their usage for real-life applications. Their use on the field is

also constrained by the legislation related to genetically modified organisms.

Biosensors have been successfully exploited to regulate the flux of heterologous

pathways so that they would not consume cofactors too fast and impair cells

viability in the process. For instance, Zhang et al. reported a pathway toward

biodiesels in which the expression of key enzymes is controlled by acyl-CoA

availability (through fatty acids availability) in a negative-feedback fashion [118].

They reported a 3 fold increase of yield at 28% of the theoretical maximum, a

steadier production, a diminution of the accumulation of byproducts (acetic

acid), and a better plasmid integrity for the regulated system. The same idea was

tested with manonyl-CoA for the production of flavonoïds [119] and fatty acids

[120, 121]. Dahl et al. adopted a similar but more systemic approach to minimize

the impact of toxic intermediates in an amorphadiene producing pathway by

using the promoter of host’s native stress response system to regulate pathway’s

flux [122].
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Another strategy to improve yields with dynamic regulation is to use biosensors

to balance the utilization of the carbon source toward biomass or the production

of interest with so-called "metabolic valves" [123] (see Figure 1.5). Indeed, fast

population growth and fast production are both desirable traits for cells in a

bioreactor, but those objectives compete for the use of nutriments. An elegant

solution is to decouple growth and production and trigger the latter only once the

optimal cell density is reached [107]. Tan et al. implemented this idea by putting

key enzymes for glucose assimilation toward biomass under the control of an

inducible promoter. Once cells are supplemented with the relevant effector, it

blocks their growth and redirect carbon flux toward the bioproduction [124]. Oth-

ers prefer to use quorum sensing signals to automatically start the bioproduction

of interest once a satisfactory biomass is reached in the bioreactor [125].

Biosensors also have a central place in the development and optimization of

new bioproducing strains [126]. Indeed, not all enzymatic pathways have a

colored product or precursor that allows the utilization of colorimetric assays to

assess their efficiency and select the best producers, like it is the case for instance

for isoprenoid and carotenoids [127]. Classical detection methods (HPLC, mass

spectrometry) can always be used, but they do not work at the cell-level which is a

desirable trait for the high-throughput screening of libraries of variants. To tackle

that issue, genetically encoded intracellular biosensors able to detect a chemical

of interest have successfully been used to report the production efficiency by

linking it to cells’ growth [128] or the expression of a fluorescent reporter [129]

(see Figure 1.6). Modern fluorescence-activated cell-sorting (FACS) methods are

capable of ultra-high-throughput screening (HTS) in the order of 108 cells by

day. That makes them particularly attractive to sort large libraries of variants

from gene mining approaches [130], or directed evolution experiments [131].

For instance, Binder et al. used an aTF for the HTS of a mutant library to pick

best lysine producers and gain insights on the mutations that were needed at

the chromosomal level to improve the production [129]. HTS used conjointly

with a relevant biosensor can also be used to improve specific enzymes [132] and

pathways [133].

We have seen that a multitude of biosensors exists, both natural and synthetic, to

detect chemicals using a large palette of molecular mechanisms. The need for

biosensors is palpable in synthetic biology and metabolic engineering applica-

tions, and it is not always easy to find a ready-made sensor for one’s application

as we will see in Chapter 4. Hopefully, this quick introduction on biosensors and

what we already wrote about CAD reaction prediction softwares and metabolic

engineering advances paves the way to a clear understanding of the results pre-

sented in this thesis.
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1.4 Thesis structure

Part I – Retrosynthesis for metabolic engineering

The first part of this thesis is dedicated to the retrosynthesis tools developed in

the team. Their main function is the prediction of metabolic pathways for the

bioproduction of chemicals in microbes.

With Chapter 2, we will see in details the first version of the retrosynthesis algo-

rithm that was developed prior to my arrival in the team (RetroPath). Its algorithm

was used as a basis for the SensiPath project described in Chapter 5.

With Chapter 3, we will see our latest implementation of RetroPath in a version

that has the originality to be embedded in a third-party workflow management

software (KNIME) to allow for an easier access to retrosynthesis and other related

tasks for the metabolic engineering community.

Part II – Computer-aided design of sensing-enabling
metabolic pathways

The second part of this thesis exemplifies the use of reaction prediction frame-

works for other purpose than predicting bioproduction pathways. In our case, it

is the design of sensing-enabling metabolic pathways (SEMPs); short metabolic

circuits able to detect and report through enzymatic reactions and allosteric

transcription factors the availability of intracellular compounds. SEMPs are par-

ticularly appealing when no direct biosensors are known for the compounds of

interest.

With Chapter 4, we will review the strategies that can be leveraged to detect

specific chemicals within bacteria’s cytosol and trigger a genetic response.

With Chapter 5, we will present SensiPath, a webserver for the in silico computer-

aided design of SEMPs. SensiPath is powered by a brand new implementation of

the algorithm presented in Chapter 2 and backed up with a database compounds

known to be detectable by allosteric transcription factors.

Finally, with Chapter 6, we will see the validation of SensiPath’s algorithm with

the in vivo implementation of several new whole-cell biosensors.

18 Chapter 1 Introduction



Part I

Retrosynthesis for metabolic
engineering





2Extended Metabolic Space
Modelling

This work was published in Springer Protocols, Methods in Molecular Biology for

a volume on Synthetic Metabolic Pathways by Pablo Carbonell, Baudoin Delépine,

and Jean-Loup Faulon.

Only minor modifications have been introduced in the chapter below.

Full reference

Carbonell, P., Delépine, B., Faulon, J.-L. (2017). "Extended metabolic space mod-

eling". In: Michael Krogh Jensen, Jay D. Keasling, Synthetic metabolic pathways.

Methods and protocols. Methods in Molecular Biology, 1671. Springer.

Contribution

The methods discussed in this publication were first described in [71] and [81].

P.C. lead the project and B.D. assisted him in the preparation of the manuscript.

2.1 Abstract

Determining the fraction of the chemical space that can be processed in vivo

by using natural and synthetic biology devices is crucial for the development of

advanced synthetic biology devices. The extended metabolic space is a coding

system based on molecular signatures that enables the derivation of reaction

rules for metabolic reactions and the enumeration of all possible substrates and

products corresponding to the rules. The extended metabolic space expands

capabilities for controlling the production, processing, sensing and the release of

specific molecules in chassis organisms.
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2.2 Introduction

The set of chemical compounds that organisms can process and synthesize is

finite. Such finite set, however, is not fully known yet. Based on a model that

accounts for versatility of enzymatic reactions, we describe here a computa-

tional protocol to estimate the extent of such full metabolic space. The extended

metabolic space can be screened to list any possible biological circuit that can

be conceived, such as the ones that are used to produce, detect and process

chemicals.

To fully exploit the metabolic space, an essential requirement is having a through

knowledge of the metabolome associated with any given organism. However, ex-

perimental evidences from metabolomics analyses often show that with currently

known metabolites one cannot cover the ranges of masses found in actual sam-

ples, and consequently there is an impelling need of completing the metabolomes

and reactomes of interest for metabolic design [134, 135]. Furthermore, the

metabolic phenotype of an organism may vary upon different conditions such as

during different growth states leading to variations in the metabolite profile [136].

Besides such sources of uncertainty in samples, many unassigned peaks should

be due to promiscuous activities of enzymes not yet characterized because of the

lack of an appropriate description of the mechanisms of enzyme promiscuity.

Our group has addressed the issue of complexity by proposing a tradeoff solution

based on molecular signatures [137]. Our molecular signature codes for changes

in atom bonding environments where the reaction is taking place. The advantage

of the signature method is that the reaction rules describe the changes in the

environments of the atoms belonging to the catalytic center of the reactions,

and the size of the environment (named diameter) can be tuned to control the

combinatorial explosion of possible compounds. Moreover, reaction signatures

are robust to unbalanced reactions and can be created automatically without

the need of any atom-atom mapping. The signature representation has shown

itself to be specially well-suited for modeling the mechanisms of enzyme promis-

cuity [138], paving by these means the way towards engineering innovation in

metabolic networks. Either through directed evolution [139] or random selec-

tion [140], latent capabilities present in enzymes as modeled by the extended

metabolic space can be potentially enhanced in order to optimize the desired

activity and eventually implemented as a biological part containing a metabolic

circuit.

Here, we describe the necessary steps in order to generate an extended metabolic

space and how to compute all viable routes within the extended space that
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determine a viable pathway connecting a desired target to the chassis organism

(Fig. 2.1).

2.3 Materials

Materials for the described computational protocols consist basically of datasets

obtained from public databases and processing software.

• A metabolic database of reference covering chemical structures and reac-

tions. Metanetx [141] is a consensus database that reconciliates multiple

databases.

• Models of metabolism for chassis organisms. Biomodels [142] and BiGG

[135], among others, are databases containing genome-scale models for

most commonly used organisms.

• Software to compute molecular signatures, which are specialized type of

topological chemical descriptors. Molsig [137], among others, is an open-

source package that provides such capabilities.

• Matrix manipulation software such as octave, matlab, scipy, R, etc.

• Computation of elementary modes. Efmtool [143] provides both a Java and

matlab-based efficient implementations.

• Software for chemical manipulation. Some of the most popular implemen-

tations are RDKit, Marvin, CDK, KNIME (Table 2.1).

2.4 Methods

2.4.1 Computation of molecular signatures

The first step to generate an extended metabolic space is to encode all compounds

of a metabolic database in a format that will allow the subsequent encoding of

enzymatic reactions. We propose here to showcase the important steps that

should be kept in mind through the use of one of the available encoding methods,

the molecular signature [137] (see Note 1).
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Choose a target:

From external metabolic database:

Molecular & reaction signatures conversion

Choose a target & a chassis

Scope of target

Pathway enumeration

Iterative products enumeration
Apply reactions until no new
compounds are generated:

Select relevant reactions
from target to chassis:

Extract paths:

Identify endogenous compounds:

compounds reactions

target

endogenous (chassis)

extented metabolic space

①

②

③

④

⑤

heterologous pathways

heterologous

Fig. 2.1: Steps involved in the construction of the extended metabolic space. The
1st step consists of converting compounds and reactions into molecular sig-
natures. The 2nd step enumerates new products by an iterative algorithm
applied to the reaction signatures. The 3rd step consists on choosing a target,
i.e., a reaction or a compound, and a chassis organism. The 4th step deter-
mines the metabolic scope linking the chassis to the target. Finally, the 5th
step enumerates all viable pathways connecting the chassis to the target.
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Tab. 2.1: A selection of software tools for modeling in the extended metabolic space.

Name Keyword Comment

Stand-alone softwares
Cytoscape Graph visualization Cytoscape can be used to manually ex-

plore and visualize the EMS [144]
efmtool Elementary flux Computation of elementary flux

modes [143]
KNIME Workflow Knime propose to create automatic

processes (“workflow”) through a
drag-n-drop interface of small tasks
(“node”). It is useful for reproducibility
of data analysis [145]

MarvinSketch Chemical editor ChemAxon’s chemical editor. Use-
ful to visualize compounds and
reactions, especially to manu-
ally inspect difficult cases. URL:
http://www.chemaxon.com

MolSig Molecular signatures Compute molecular signa-
tures from MDL MolFile. URL:
http://molsig.sourceforge.net/

Python libraries
COBRApy Constraints-based models A constraint-based steady-state simu-

lation analysis for genome-scale mod-
els [146]

NetworkX Graph exploration NetworkX has an intuitive interface
and an extensive documentation. It is
a good solution to handle the conver-
sion of the EMS into standard graphs
format, or to programmatically ex-
plore the EMS.

RDKit Chemoinformatic toolbox RDKit makes it very easy to handle
chemical structures, especially to stan-
dardize compounds.
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1. Initially gather compounds from a metabolic database. This database must

have structural data for compounds and reactions, and ideally be linked to

a whole-cell model (see Note 2).

2. Check compounds for incomplete structural data. Some compounds can

be defined with incomplete Markush structure or wildcard atoms. Those

compounds typically stand to define classes of compounds (e.g. "an alco-

hol") and should be removed since they cannot be interpreted through the

molecular signatures algorithm used in this protocol.

3. Standardize compounds. Molecular signatures encode directly molecular

graphs from a MDL MolFile input. Users must ensure that compounds

(resp., chemical groups) that should be considered identical have the same

molecular graph (resp., sub-graph) (see Note 3).

a) Neutralize or remove charges. As much as possible, chemical groups

should be represented with the same protonation state to prevent

different tautomeric forms. One can either use heuristics to add or

remove hydrogen when necessary or simply remove all charges from

the compound dataset.

b) Choose one conjugated form by compound. This is particularly im-

portant for aromatic compounds, which could appear under different

kekulé forms in the database. A good solution is to explicitly use

aromatic bonds in the molecular graph description.

c) Use a consistent hydrogen representation, either implicit or explicit.

4. To compute the signature of a chemical compound, we need initially to

consider its molecular graph. Let G(V ,E ) be the molecular graph associated

with some chemical compound C and let a ∈V (b ∈ B) be an atom (bond)

of G . The atomic signature of atom a of diameter d , dσ(a), is a canonical

representation of the sub-graph of G spanned by its vertices at a maximum

distance of d/2 from a. From a chemical point of view,this corresponds to

a circular fragment of the compound centered on d .

5. The molecular signature of a molecular graph G of diameter d associated to

C , dσ(a), is defined as the list of all atomic signatures of diameter d (one by

atom). Therefore, a molecular signature is a list of overlapping molecular

fragments.
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6. Depending on the diameter d , a molecular fingerprint can show degener-

acy, i.e. a same molecular signature can represent more than one molecular

graph G , much like a chemical formula can correspond to several com-

pounds.

7. Based on previous definitions, the computation of the molecular signature

involves two steps:

a) Choose a diameter to encode enzymatic promiscuity. To some ex-

tent, enzymes have the ability to process additional reactants that

are structurally similar to the known ones. In a context where it is

important to maximize the number of reactions in order to get more

leads, modeling promiscuity can reveal itself to be a critical feature

(see Note 4). We recommend starting with a diameter of 12 and to go

lower (down to 4) if no satisfying solution can be found.

b) Compute molecular signatures. The MolSig software [137] computes

molecular signatures starting with compounds in MDL MolFiles for-

mat, which can be easily retrieved from metabolic and chemical

databases or converted from other equivalent formats (see Note 5).

2.4.2 Computation of reaction signature

The step following the encoding of compounds is the encoding of reactions into

reaction signatures. Reaction signatures should be understood as an exchange of

fragments. Unlike other reaction models, reaction signatures do not need any

atom-atom mapping to be computed, nor do they need reaction to be balanced

(see Note 6).

1. Let R be a reaction for which all substrates {Si , i ∈ [1,n]} and products

{P j , j ∈ [1,m]} are encoded in molecular signatures, respectively {dσ(Si ), i ∈
[1,n]} and {dσ(P j ), j ∈ [1,m]}. The reaction signature is defined as follows

(see Note 7):
dσ(R) =

m⋃
j=1

dσ(P j )−
n⋃

i=1

dσ(Si )

2. Thus, dσ(R) is the difference in term of atomic signatures (i.e. molecu-

lar fragments) occurring during a reaction; created (resp. consumed or

needed) fragments being positives (resp. negatives). In this context, the

diameter d corresponds to the reacting moieties and their neighboring
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Fig. 2.2: Reaction signature of an aspartate transaminase (EC 2.6.1.1, d=4). Panel
(a) shows the structure of the compounds involved in the original reaction
(aspartate + 2-oxoglutarate → oxaloacetate + glutamate). Fragment (atomic
signature) that are kept in reaction signature are circled (dashed line) and its
center marked by a grey dot. Moities outside of the circle are allowed to vary
under a enzymatic promiscuity hypothesis (d=4). Panel (b) shows the atomic
signatures and resulting reaction signature (d=4). Fragments involved in the
reaction signature are highlighted (bold) in molecular signatures. Note that
several fragments by compound can end up in the reaction signature, even if
that is not the case here.

atoms (the environment), hence the possibility to tune the degree of the

enzymatic promiscuity hypothesis by increasing or decreasing d (Fig. 2.2).

2.4.3 Products enumeration

Once reactions have been encoded into reactions signatures, they can be applied

to compounds to predict potential products under the enzymatic promiscuity

hypothesis.

1. Let DB be a database binding compounds signatures to their respective

molecular graphs.

2. Let dσ(R) be the molecular signature associated to a reaction R, and

{dσ(S′
i ), i ∈ [1,n]} a set of candidate substrates potentially reacting together.

3. Under the enzymatic promiscuity hypothesis determined by d , we predict

that R can process any candidate substrate dσ(S′
i ), i ∈ [1,n] if:
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a) if the signatures of candidate substrates include all fragments con-

sumed by R:

{x ∈d σ(R), x < 0} ⊆
n⋃

i=1

dσ(S′
i )

b) and the predicted product(s) signature(s) dσ(P ′) correspond to some

previously known compound(s) in DB, with (see Note 8):

dσ(P ′) =
n⋃

i=1

dσ(S′
i )+d σ(R)

4. Being able to model enzymatic promiscuity assumes that reaction signa-

tures can be used with other substrates than the ones in the native reaction.

In turn, alternative substrates produce new products. Those compounds

may be absent from the metabolic space, i.e., the set of known metabo-

lites. Therefore reaction signatures extend the metabolic space by linking

potentially new compounds to the metabolism (see Note 9).

2.4.4 Chassis modeling in the extended metabolic
space

In the previous sections we have described the protocol that allows extending

the metabolic space. When the extension is applied to a metabolic network

consisting of all known metabolic reactions, we arrive at the full description

of all available metabolic capabilities. Some of these capabilities are going to

be common to several groups of organisms, such as reactions in the central

metabolism, while others like secondary metabolism will be specific to some

groups. In applications such a biotechnology, the organism that is engineered

is known as the chassis organism and often the objective will be to expand the

natural capabilities of the chassis by introducing heterologous enzymes. In this

section we will describe how to model the chassis organism as a subset of the

extended metabolic space.

1. The extended metabolic space of diameter d , denoted by Md , represents

all the possible compounds C and allowed transformations (reactions) R

between compound as spanned by the enumerated reactions computed

by following the method described.

2. A chassis is a subset of the extended metabolic space Od ⊂ Md that cor-

responds to the extended metabolic network of an organism at signature
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diameter d . A chassis is defined by the set of nominal reactions annotated

for the enzymes present in the organism.

3. The list of nominal metabolic reactions for a given organism can be com-

piled from databases such as KEGG [147], MetaCyc [148], BiGG [135],

BRENDA [51], etc. The choice of one database over the others depend

on several factors:

a) The degree of curation of the model;

b) The free and open availability of the model;

c) The way the model is going to be analyzed, i.e., network analysis,

steady-state simulation or simply as a reference list of metabolites

and reactions (see Note 10).

4. In silico organism models showing a good degree of accuracy and repro-

ducibility are currently available for many industrial strains, including

Escherichia coli, Saccharomyces cerevisiae or Bacillus subtilis. They can be

generally downloaded in SBML format [149].

5. In order to determine Od , each reaction in the reference model is aug-

mented with the set of enumerated reactions of the chassis in the extended

metabolic space, resulting in an extended model (see Note 11).

2.4.5 Computing the scope

The next step in modeling in the extended metabolic space is to have an under-

standing of the design space for a given target metabolic activity. In other words,

we want to compute the metabolic scope connecting some target reaction to the

chassis. To that end, we provide in this section some relevant definitions and a

two-step procedure that allows the determination of the metabolic scope.

1. A minimal pathway is defined as any set of reactions connecting the chassis

to the target that are minimal:

a) They form a viable production pathway in terms of precursors avail-

ability;

b) All reactions are essential, i.e., the removal of any reaction renders

non-viable the pathway (see Note 12).
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2. Based on that definition, the metabolic scope is defined as follows: given

an initial set of source metabolites S (the chassis) and a final set of target

metabolites T , the scope is the set of enzymes that are at least involved in

one minimal pathway connecting elements of T to the source S , i.e., the

scope should contain only enzymes that are at least essential for establish-

ing one of the metabolic pathways. In order to compute the scope for a

given compound, a two-step procedure can be applied, as described in the

following.

3. Reduction of the extended metabolic space to the reachable space of reac-

tions. It consists of the following steps:

a) A compound is defined as reachable if there exists a reachable reac-

tion that can produce it, i.e., a reaction for which all substrates are

available.

b) Start from the set of initial compounds S and iteratively find newly

reachable compounds.

c) The process stops when no new reachable compounds are found.

d) Build a graph to keep track of which reactions produced each com-

pound.

4. Backward determination of the scope. It consists of the following steps:

a) Start from the target compound(s) T . For each reaction that can

produce the target compound(s), add it to the scope.

b) Recursively apply the same procedure on each substrate of the reac-

tion.

c) The recursion stops when initial compounds S are reached.

2.4.6 Enumerating pathways

Once the extended metabolic scope has been determined, we should be inter-

ested in enumerating all viable metabolic pathways connecting the source to

the target. This turns out to be a computationally complex problem that can be

solved through several approaches [150]. We describe here a solution based on

the computation of elementary flux modes [151] (see Note 13). EFMs are the set
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of minimal pathways that are non-trivial solutions to the steady-state equation

whose combination can describe any possible path in the network (see Note

14).

1. Define the augmented metabolic space formed by the union of the reac-

tions in the chassis and in the scope (Fig. 2.3a).

2. Construct a stoichiometric matrix where each row corresponds to a com-

pound and each column to a reaction of the previous augmented metabolic

spaces and the value of each cell is the stoichiometric coefficient (Fig. 2.3b).

3. Remove all rows representing initial compounds (see Note 15).

4. Remove all rows representing compounds that are produced by a reaction

but never used in any other.

5. Merge identical columns by deleting redundant columns and renaming

the remaining column with the names of all reactions (see Note 16).

6. Add an additional column to create a flux out for the target compound.

7. Several toolboxes exist that allow efficiently computing the elementary

modes (Fig. 2.3c). For instance efmtool [143] provides an efficient imple-

mentation that can either run in matlab or in Java.

8. Expand resulting elementary modes into the pathway solutions by enumer-

ating all combinations of merged reactions in each elementary mode (Fig.

2.3d).

2.4.7 Design in the extended metabolic space

We have described in previous sections step-by-step methods that generate ex-

tended metabolic spaces for a) global metabolic capabilities; b) chassis organ-

isms; c) organisms augmented with desired target activities. From here, resulting

extended models can be used in multiple engineering biology applications, from

production of chemicals to their sensing and regulation. Some of the main appli-

cations developed to date in extended metabolic spaces include the following:

1. Engineering of heterologous pathways for the production of a desired

chemical in a chassis organism. In order to select enzyme sequences for

each enzymatic step in the pathway for the most promising routes in the
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R1	 R2-3	 R4	 R5	 T	
C22	 1	 0	 -1	 0	 0	

C23	 0	 1	 -1	 -1	 0	

C31	 0	 0	 1	 1	 -1	

EM1	 1	 1	 1	 0	 1	

EM2	 0	 1	 0	 1	 1	

R1	 R2	 R3	 R4	 R5	

P1	 1	 1	 0	 1	 0	

P2	 1	 0	 1	 1	 0	

P3	 0	 1	 0	 0	 1	

P4	 0	 0	 1	 0	 1	

A)	 B)	

C)	 D)	

C11	 C12	 C13	 C14	 C15	 C16	

R1	 R2	 R3	

C21	 C22	 C23	

R4	

C31	

	EXTENDED	CHASSIS	

TARGET	

R5	EMS	

R1	 R2	 R3	 R4	 R5	

C11	 -1	 0	 0	 0	 0	

C12	 -1	 0	 0	 0	 0	

C13	 0	 -1	 0	 0	 0	

C14	 0	 -1	 0	 0	 0	

C15	 0	 0	 -1	 0	 0	

C16	 0	 0	 -1	 0	 -1	

C21	 1	 0	 0	 0	 0	

C22	 1	 0	 0	 -1	 0	

C23	 0	 1	 1	 -1	 -1	

C31	 0	 0	 0	 1	 1	

Fig. 2.3: Example of pathway enumeration in the extended metabolic space. Panel
(a) shows the scope graph connecting compounds in the extended chassis
(C11, C12, C13, C14, C15, C16) to target compound C31 through reactions
R1, R2, R3, R4 and intermediate compounds C21, C22, C23 in the extended
metabolic space (EMS). Panel (b) displays the equivalent stoichiometric ma-
trix. Grayed columns and rows are discarded in the enumeration, as described
in the enumeration protocol. Panel (c) shows the reduced matrix used for
enumeration, containing an additional reaction T for the selected target com-
pound. The enumeration algorithm found two elementary modes EM1 and
EM2. Panel (d) shows the resulting 4 pathways solution P1 to P4 after ex-
pansion of topological equivalent reactions. Pathways P1 and P2 involve 3
reactions, while pathways P3 and P4 involve 2 reactions.
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extended metabolic space, a pathway ranking function needs to be defined.

The approach is described in detail in the retrosynthetic RetroPath protocol

[152] and a demonstration of the application of such protocol is shown in

the XTMS web service [81].

2. Development of novel biosensors based of metabolic pathways. Metabolic

pathways that transform a target compound into a detectable compound

allow the expansion of the observable extended metabolic space [71]. Such

application has been demonstrated through the SensiPath web service

[153].

2.5 Notes

1. Molecular signatures are an efficient and intuitive way to model metabo-

lites. They are similar to the well-known Extended Connectivity FingerPrint

(ECFP) topological fingerprint, which summarizes compounds in lists of

circular molecular fragments.

2. Chemical structures and reactions can be found in multiple formats. Reac-

tions are often defined in a database-specific flat-file where reactants are

referenced by their compound identifier. Most of the time, you will find a

file in MDL SDF or MOL format binding the compound identifiers to their

respective structures. Other interchangeable formats are usually available

such as SMILES and InChI. Inter-conversion between formats using stan-

dard software such as Open Babel [154] yields to equivalent representations

of the compound. A sanity check can help to ensure that they all refer to

the same compound. This will eventually filter out wrong annotations.

3. Before being converted into molecular signatures, molecular graphs do not

need to represent chemically valid compounds in term of valence, charges,

etc. The important point is that compounds (moieties) that should be

considered identical according to the final application share the same

molecular graph (subgraph). Of course, those simplifications introduced

at the compound encoding step must be kept in mind while interpreting

the results.

4. Putative enzymes promiscuity can be modeled through molecular signa-

tures given an appropriate diameter. Obviously, as we lower the diameter,

the stronger is the promiscuity hypothesis and the riskier are the predic-

tions.
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5. Molecular signatures can take into account stereo-chemistry, which is

particularly appealing when working with enzymes. Nonetheless, if stereo

information is considered, it is important to ensure that it is available (and

valid) for most of the compounds, otherwise compounds with and without

stereo information will be perceived differently through signatures.

6. Metabolic databases contain generally a substantial portion of reactions

that are not stoichiometrically-balanced. Reactions signatures can be

computed for reactions that are not need strictly balanced input reaction.

Nonetheless, working with balanced reactions is always recommended and

is a sign of a well-curated database.

7. This mathematical expression simply states that the reaction signature is

the set formed by the difference between product signatures and reactions

signatures. Intuitively, can be understood as the chemical groups that are

transferred or transformed through the reaction.

8. Multi-substrate reactions are difficult to handle with the proposed equation.

Indeed, testing all compounds with a reaction would take N m tries, where

N is the total number of compounds in the database and m the number of

substrates anticipated for that reaction. A more practical option is to allow

promiscuity for only one substrate at a time, therefore limiting the number

of trials to N ∗m. A complementary approach is to allow promiscuity only

for non-cofactors compounds.

9. This feature is particularly desirable to untap enzymes full potential in

metabolic engineering applications since it can find unexpected synthesis

route.

10. There is a basic difference between the information that is required in the

model in order to design heterologous metabolic pathways and to estimate

steady-state fluxes. In the former case, the most essential information is

the knowledge about the metabolites that are endogenous to the organism

and therefore can be used as precursors in the heterologous pathway. In

the latter case, the accuracy of the stoichiometric relationship between

those reactions that directly influence the pathway is required, while partial

knowledge about upstream reactions with low influence into the pathway

can be tolerated.

11. The extended metabolic space of the model of an organism provides useful

information in order to discover previously unidentified routes and to fill

gaps in present models.
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12. Pathway minimality is a heuristic condition based on reducing metabolic

burden in the cell (a pathway with less number of enzymes should be more

tolerated by the cell because it potentially imposes less stress).

13. Metabolic networks are formally modeled as hypergraphs for pathway

enumeration. Basically, the availability of each substrate is required in

the reaction in order to produce the product. That creates some level of

complexity higher than in classical graph pathway enumeration algorithm.

Moreover, standard graph approaches do not consider stoichiometry. The

stoichiometric approach, in turn, based on linear algebraic decomposition

provides an easier analytic approach.

14. Pathway enumeration based on elementary flux modes can become com-

putationally intractable for highly connected networks such as central

metabolism. However, in cases where we want to produce some heterol-

ogous compound in a chassis organism, pathways are generally almost

linear and the elementary flux mode enumeration remains tractable. The

enumeration of elementary flux modes can be also expressed as a dual

problem using minimal cut sets.

15. We remove all initial compounds in the chassis, as we already know that

they are available. Products of reactions in the scope consuming the initial

compounds will be kept for the enumeration.

16. Identical columns represent routes that are topologically equivalent. In

order to make the enumeration algorithm more efficient, we remove du-

plicated columns. However, for the final enumeration we should list each

topologically equivalent reaction as an alternative pathway.
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Highlights

• State-of-the-art Computer-Aided Design retrosynthesis solutions lack open

source tools and easiness of use

• We propose RetroPath2.0 a modular and open-source workflow to perform

retrosynthesis

• RetroPath2.0 computes reaction network between Source and Sink sets of

compounds

• RetroPath2.0 is distributed as a KNIME workflow for desktop computers

• RetroPath2.0 is ready-for-use and distributed with reaction rules

3.1 Abstract

Synthetic biology applied to industrial biotechnology is transforming the way

we produce chemicals. However, despite advances in the scale and scope of

metabolic engineering, the research and development process still remains costly.

In order to expand the chemical repertoire for the production of next generation

compounds, a major engineering biology effort is required in the development of

novel design tools that target chemical diversity through rapid and predictable

protocols. Addressing that goal involves retrosynthesis approaches that explore

the chemical biosynthetic space. However, the complexity associated with the

large combinatorial retrosynthesis design space has often been recognized as

the main challenge hindering the approach. Here, we provide RetroPath2.0, an

automated open source workflow for retrosynthesis based on generalized reac-

tion rules that perform the retrosynthesis search from chassis to target through

an efficient and well-controlled protocol. Its easiness of use and the versatility

of its applications make this tool a valuable addition to the biological engineer’s

desk. We show through several examples the application of the workflow to

biotechnological relevant problems, including the identification of alternative

biosynthetic routes through enzyme promiscuity or the development of biosen-
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sors. We demonstrate in that way the ability of the workflow to streamline ret-

rosynthesis pathway design and its major role in reshaping the design, build,

test and learn pipeline by driving the process toward the objective of optimizing

bioproduction. The RetroPath2.0 workflow is built using tools developed by the

bioinformatics and cheminformatics community, because it is open source we

anticipate community contributions will likely expand further the features of the

workflow.

3.2 Introduction

Despite the increasing number of small molecules that are bioproduced, the

research and development process (R&D) is still costly and rather slow. For in-

stance, the metabolic engineering of artemisinic acid is claimed to have taken

more than 130 person-years and about 10 years to complete [32, 156]. Among the

challenges that industrial biotechnology is facing to deliver sustainable solutions

are 1) the reduction of R&D costs and 2) the bioproduction of a wider palette of

compounds. To address these challenges, computational/experimental strate-

gies where alternative metabolic pathways are first designed and assessed before

being built and tested have been proposed (see reviews [22, 35, 80, 157]). While

some computationally-driven strategies make use of known metabolic reactions

albeit not necessarily in the same species [158, 159] others allow to design path-

ways that encompass novel reactions not stored in metabolic databases, these

latter tools make use of retrosynthesis algorithms [29, 62, 92, 159–162].

Retrosynthesis algorithms take as input a set of metabolites, for instance the

metabolites in a growth medium or the metabolites of a chassis strain model, and

the set of target compounds to bioproduce. Ideally the target compounds could

be any molecule in the chemical space. The algorithms generate retrosynthesis

networks linking the target compound(s) (the source) to the metabolites of the

chassis strain (the sink) through reactions.

Such retrosynthesis networks should be further processed to map or extract infor-

mation relevant for the biological application. For instance, some algorithms can

be applied to enumerate pathways [150] and rank them based on several criteria

including enzyme availability and performance, product and intermediate com-

pound toxicities [163] or the theoretical yield of the desired compound [62, 81,

90, 92]. Interestingly, retrosynthesis networks exploitation is not strictly limited

to retrosynthesis. Applications have been proposed to predict biodegradation

routes [66, 164, 165] in order to identify unknown compounds from the under-

ground metabolism [79], to predict the transitions of labelled atoms in metabolic
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networks [166, 167], and to design biosensing circuits for compounds for which

no direct biosensors are known [153]. The main difference of the aforementioned

applications lies in the definition of source and sink compounds sets; the current

paper focuses on retrosynthesis but our solutions still stand for other applications

requiring network generation.

One issue users of retrosynthesis-based solutions are facing is that algorithms

and underlying data have not been fully documented and released. In most cases,

authors provided fine-tuned webservers [62, 79, 81, 162] often filled with pre-

generated data that focuses on some exemplar cases. Based on this information,

it is difficult for users to grasp methods’ limitations, to improve them, or to exploit

them for different uses. At a time when open-data principles gain more and more

traction [168–170] we believe this lack of flexibility should be overcome.

In this spirit, we developed the RetroPath2.0 workflow on the KNIME analytics

platform [145] to answer the need for a modular and easy-to-use tool to predict

reaction networks. Workflows have several advantages over scripting languages.

A graphical user interface allows for rapid test and prototyping, even for users

with little to no knowledge in programing. For instance, parallelization of tasks

is inferred from workflow topology and does not need any special library or

technical knowledge from the user. Once configured, workflows are readily

deployable on all platforms where KNIME can be installed. KNIME workflows

are popular in cheminformatics to prepare and analyse data, as shown by the

number of extensions maintained by users in this field [145, 171]. Thus, metabolic

engineers benefit from a large panel of tools to analyse the chemical diversity

and features of their data. As a matter of fact, RetroPath2.0 was developed using

only community tools. We foresee it will make the workflow easier to modify and

at the very least a good proof of concept of what can be done with workflows.

The current paper provides for the first time a simple workflow encompassing

the main steps of the retrosynthesis process. We hereby review the main steps of

retrosynthesis algorithms in order to demystify their use and shed light on the

shortcomings of current tools [29, 62, 92, 159–162]. We then outline our proposed

solution through several applications in metabolic engineering and biosensor

engineering. RetroPath2.0 is available in supplementary along a set of reaction

rules and some classic metabolic engineering examples to test RetroPath2.0

features.

3.3 Theoretical background
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3.3.1 Encoding reaction as reaction rules

The first challenge that retrosynthesis algorithms have to address is linked to the

way reactions are encoded. Most retrosynthesis algorithms are based on reaction

rules, but other strategies exist to encode reactions [172, 173]. A reaction rule

generally depicts the change in bonding patterns when transforming a set of

substrates (reactants) into a set of products. For retrosynthesis applications, rules

are reversed such that one computes the substrates from the products.

Several solutions have been proposed to code for reaction rules, namely Bond-

Electron (BE) matrices [174], reaction SMARTS [59], RDM patterns [66], and

reaction signatures [137]. Examples of coding systems are illustrated in Figure 3.2.

We highlight below some key concepts to understanding reaction rule encoding

in a retrosynthesis context.

Enzymatic promiscuity

Reactions for retrosynthesis applications should be modelled with a controlled

degree of generalization for their substrates and products. Indeed, reaction rules

containing a full description of substrates and products chemical structures

cannot be applied on new compounds. This is the case for classic metabolic

models and database and their lack of generalization prohibits the generation of

novel pathways. The use of generalized chemical transformations is required in

order to be able to predict new metabolic transformations. Such predictions are

necessary since reaction databases are not complete [50, 51] and side enzymatic

activities are often underestimated.

This lack of knowledge on alternative enzymatic activities is currently a critical

limiting factor for metabolic engineering since it has been estimated that 37% of

E. coli K12 enzymes have a promiscuous activity for other substrates structurally

similar to their main known substrate [44]. In order to be able to generate new

metabolic transformations (and new compounds) one thus needs to use general-

ized reactions to model enzymatic promiscuity, i.e. rules that can be applied to

different substrates, and eventually on compounds absent from the databases.

For instance, BNICE [79, 161, 162] and SimPheny [29] use a collection of reaction

rules that, as depicted in Figure 3.2, can be applied to any ketones (including

oxaloacetate) since their encoding is focused on the reaction centre.
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[H][#7]([H])-[#6](-[#6]-[#6]-[#6](-
[#8])=O)-[#6](-[#8])=O.[#6,#1]-[#6]
(-[#6,#1])=O>>[#8]-[#6](=O)-[#6]-
[#6]-[#6](=O)-[#6](-[#8])=O.[H][#7]
([H])-[#6](-[#6,#1])-[#6,#1]
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SymPheny rule

[#6,#1]-[#6](-[#6,#1])=O>>
[H][#7]([H])-[#6](-[#6,#1])-[#6,#1]

D Reaction signature (d=4)

Substrates signatures:
2.0 [O]([C]([C]=[O]))
2.0 [O](=[C]([C][O]))
1.0 [N]([C]([C][C]))
1.0 [C]([C]([C][N])[O]=[O])
1.0 [C]([C]([C])[O]=[O])
1.0 [C]([C]([C])[C]([O]=[O])[N])
1.0 [C]([C]([C])[C]([O]=[O]))
1.0 [C]([C]([C])[C]([C][N]))
2.0 [O]([C]([C]=[O]))

2.0 [O](=[C]([C][O]))
1.0 [O](=[C]([C][C]))
1.0 [C]([C]([C]=[O])[O]=[O])
1.0 [C]([C]([C]=[O])[C]([O]=[O]))
1.0 [C]([C]([C])[O]=[O])
1.0 [C]([C]([C])[C]([O]=[O])=[O])

Products signatures:
2.0 [O]([C]([C]=[O]))
2.0 [O](=[C]([C][O]))
1.0 [O](=[C]([C][C]))
1.0 [C]([C]([C]=[O])[O]=[O])
1.0 [C]([C]([C])[O]=[O])
1.0 [C]([C]([C])[C]([O]=[O])=[O])
1.0 [C]([C]([C])[C]([O]=[O]))
1.0 [C]([C]([C])[C]([C]=[O]))

2.0 [O]([C]([C]=[O]))
2.0 [O](=[C]([C][O]))
1.0 [N]([C]([C][C]))
1.0 [C]([C]([C][N])[O]=[O])
1.0 [C]([C]([C][N])[C]([O]=[O]))
1.0 [C]([C]([C])[O]=[O])
1.0 [C]([C]([C])[C]([O]=[O])[N])

-1 [C]([C]([C])[C]([C][N]))
-1 [C]([C]([C]=[O])[C]([O]=[O]))
 1 [C]([C]([C])[C]([C]=[O]))
 1 [C]([C]([C][N])[C]([O]=[O]))

Reaction signature = Products signatures – Substrates signatures

Fig. 3.2: Example of reaction rules. A. Generalised reaction rules for the transaminase 2.6.1.1. B and C. BNICE
rules and SimPheny rules were extracted from [161] and [29]. These are the only rules with EC number
2.6.1. In both cases the rules are represented by SMARTS strings. D. The reaction signature rule was
computed using the MolSig package, d represents the signature diameter. See [137] for definition and
examples of signatures.

Identification of the reaction centre

The simplest way of controlling a degree of abstraction for reaction substrates is to

encode the reactions around its centre. This requires compiling the list of atoms

that belong to the reaction centre, i.e. atoms that change their configuration when

the reaction is applied (panel B in Figure 3.3). Atoms changing configuration are

those attached to bonds that are broken, formed, or are changing order, as well

atoms for which charge and stereochemistry is changing when the reaction is

taking place.

Reaction rules used in retrosynthesis generally require a solved Atom-Atom Map-

ping (AAM, see panel A in Figure 3.3) between the atoms of the substrates and

those of the products to identify the reaction centre of the reaction [55, 66, 90, 92,

175]. The AAM problem is equivalent to the Maximum Common Substructure, or

the subgraph isomorphism problem which turns out to be NP-hard [69]. Avoid-

ing the use of AAM to generate rules is nevertheless possible in some cases, as it

was originally shown by a previous version of the RetroPath algorithm based on

fingerprint subtraction [71] (see Figure 3.2).

Importantly, if encoding the reacting centre is necessary, it may not be sufficient

to properly define a reaction catalysed by an enzyme since other atoms far from

the reacting centre could be involved in the ligand binding as well. To palliate this
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Fig. 3.3: RetroPath2.0 rules and corresponding SMARTS for reaction 2.6.1.1 at various diameters. A. Full reac-
tion 2.6.1.1 with atom mapping. B. The list of broken bonds (-1) and bonds formed (+1) is given by their
atom numbers. C. The corresponding SMARTS for the component modelling promiscuity on L-glutamate:
Substrate + Oxaloacetate = Product + 2-Oxoglutarate. D. The corresponding SMARTS for the component
modelling promiscuity on oxaloacetate: Substrate + L-Glutamate = L-Aspartate + Product. C and D. Rules
are encoded as reaction SMARTS and characterized by their diameter (∞ purple, 4 blue or 0 green), that is
the number of bonds around the reaction centre (atoms 6, 10 and 14, 19) defining the atoms kept in the
rule. This allow for a controlled and flexible modelling of enzymatic promiscuity. Note that for the case of
2.6.1.1 the co-product is always the same (C: L-aspartate; D: 2-oxoglutarate) but that is not always the case,
depending on the connectivity of the atoms belonging to the reaction centre.
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problem, the definition of the reacting centre is extended to neighbour atoms,

either systematically at a predefined bond-distance (diameter, panel C and D

Figure 3.3) or based on expert-knowledge.

Systematic rule generation

Reaction rules can be computed in principle by processing the set of reactions

stored in metabolic databases. However there are some difficulties associated

with this task. Exhaustive rules generation is certainly another major challenge

for retrosynthesis. We can distinguish two main philosophies to systematically

encode enzymatic reactions.

The first approach consists in encoding a small set of generalist rules guaranteed

by a model to cover all possible classes of reactions. According to the Enzyme

Commission (EC) nomenclature all reactions that belong to the same third level

EC number should follow the same chemistry, while the fourth and last level is for

disambiguation [76]. Both SimPheny and BNICE use the third EC number level

to guide their reaction encoding effort. SimPheny [29] has 50 manually curated

reaction rules, and the number of rules of BNICE systems are of the same order;

86 for [161], 198 for [79], 722 for [162]. This approach is well-suited for manual

curation, since even if the number of reactions to annotate is rather small, it

is supposed to be exhaustive in terms of the involved chemistry. Nonetheless,

relying on EC numbers often requires adding exceptions since some reactions at

the third level of EC numbers do not share any common substructure and thus

cannot be expressed by the same rule. For instance, the carbon-halide lyases

class (EC 4.5.1.*) is composed of five fourth level reactions which all remove a

chlorine atom, but some reactions also remove a primary amine from a substrate

and replace it either by a double bonded carbon, a hydrogen, an oxygen atom or

a more complex functional group (Figure 3.4). Their number of substrates and

products also varies. Clearly, these reactions cannot be encoded using a single BE

matrix, a reaction signature, or an intelligible reaction SMARTS. Another need for

exceptions arises from the fact that many reactions have no EC number assigned

by the Commission [76].

The second approach, which is more data-driven, is to automatically compute

rules for all available metabolic reactions by selecting only the atoms belonging

to a sphere of fixed diameter around the reaction centre. This is the approach

adopted by the workflow proposed in this paper, RetroPath [70, 81], and others

[64, 69, 176]. Ideally, the diameter used should directly be linked to known

promiscuity of an enzyme’s sequence. In our experience, a diameter of 6-8 (see

3.7.1 for a detailed discussion on diameter selection and promiscuity) is generally
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Fig. 3.4: Reactions rules for EC class 4.5.1.-. Hydrogen are omitted for simplicity thus
O stands for H2O, Cl for HCl and N for NH3. The last rule (R6) does not apply
4.5.1.2 and 4.5.1.4 since in addition to the removal of chlorine these reactions
also involved removal of nitrogen. This figure was originally in Supplementary.

a good trade-off to cover known reactions’ specificity with a reasonable amount of

promiscuity predictions (see Section 3.5.1 for an evaluation of rules performance

for promiscuity classification and [70, 177]. Using the procedure outlined in the

caption of Figure 3.3, when applied to the MetaNetX database [141] the number

of rules returned is between 6,900 and 19,000 depending on the parameters used

to model enzymatic promiscuity (diameter) for the 31,527 reactions stored in

MetaNetX (MNXR identifiers, v.2.0). Interestingly, not only multiple generated

rules can belong to the same EC class, but also a same rule can correspond

to several EC classes. For instance, at diameter 4, three EC numbers (2.6.1.1,

2.6.1.17, 2.6.1.67) from three distinct reactions (resp. MNXR32641, MNXR32641,

MNXR31792) are associated to the same rule depicted in Figure 3.2D (promiscuity

on oxaloacetate, MNXM42).

Cosubstrates, cofactors and coproducts

Another challenge for retrosynthesis algorithms is the need to handle reactions

processing multiple substrates and/or multiple products. Dealing with multi-

substrate reactions requires more computational resources in order to model

enzymatic promiscuity for each combination of promiscuous substrates (Figure

3.3).

For these purposes, cosubstrates and coproducts that are currency cofactors

(such as water, CO2, ATP, NADP, etc.) can be ignored from the rules under the
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Tab. 3.1: Retrosynthesis networks generation tools.

Reaction rules
calculation

Rules coverage Number of
rules

Reaction rule
specificity

Multiple prod-
uct & substrates

Enzyme se-
quence search

Combinatorial
complexity

Availability

SimPheny (BioPath-
way Predictor) [29]

Computed from
3rd EC level fol-
lowed by manual
curation

All metabolic re-
actions

50 Fixed No No Controlled by
network and
molecules
size

No

BNICE [162] Automated from
KEGG followed
by manual cura-
tion

All metabolic re-
actions

722 Fixed Yes No Controlled by
network size

Web server

PathPred [159] Automated from
the KEGG RPAIR
database

Xenobiotic
degradation and
biosynthesis
of secondary
metabolites

853 (degra-
dation) 1126
(biosynthe-
sis)

Fixed No No Controlled by
similarity

Web server

GEM-Path [62] Computed from
3rd EC level

All metabolic re-
actions

443 Fixed Yes No Controlled
by similarity
and thermo-
dynamics

No

METEOR [160] Knowledge-
based expert
system (Lhasa
Ldt.)

All metabolic re-
actions?

357 Fixed No? No Controlled by
“reasoning”
rules

Commercial

Reverse Pathway En-
gineering (THERESA)
[92]

Automated from
the BioPath
database (Molec-
ular Networks
GmbH)

All metabolic re-
actions

3,516 refer-
ence reac-
tions

Fixed Yes Comparative
genomics

Manual com-
pound selec-
tion

Commercial

RetroPath [71] Automated com-
putation on
MetaCyc

All metabolic re-
actions

between
3,000 (d=4)
and 5,000
(d=14)

Variable, con-
trolled by
diameter

Yes Post-process
using machine
learning

Controlled by
diameter

Web server

RetroPath2.0 (this
study)

Automated com-
putation on
MetaNetX

All metabolic re-
actions

between
6,900 (d=2)
and 19,000
(d=16)

Variable, con-
trolled by
diameter

Yes Embedded us-
ing sequence
clustering

Controlled by
diameter and
enzyme score

Open source

assumptions that they are available in the cell and that there is no gain for ret-

rosynthesis analysis in modelling promiscuity on them. However, information

about cofactors participating in reactions should not be discarded since they

could be used at a later stage to sort pathways by their efficiency in terms of

cofactor exchange and the burden they impose on central metabolism.

Nonetheless, even if we ignore currency metabolites in the rules, around a third

of metabolic reactions still remains multimoleculars (see 3.7.2). Our practical

solution is to model enzymatic promiscuity for only one substrate at a time,

meaning that for any multi-substrate reaction “A + B → C + D”, alternatives sub-

strates A’ and B’ are never tested together to limit the combinatorial complexity.

RetroPath2.0 follows this solution as we encode one rule per reference substrate

(for components “A → C + D” and “B → C + D”) as shown in Figure 3.3. Oth-

ers embrace combinatorial complexity (Figure 1B and D) or simply ignore all

cosubstrates (Figure 1C).

3.3.2 Building (retrosynthesis) reaction network

In all algorithms listed in Table 3.1, retrosynthesis maps are constructed by apply-

ing reaction rules in an iterative fashion starting from a source set of compounds

until the molecules in a sink set of compounds are found in the map. In the

context of metabolic engineering, if the rules are applied in a forward manner,

the source set is composed of the native metabolites of the chassis strain and the
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sink set are the molecule we wish to produce. If the rules are applied in a reverse

manner then the source set are the molecules to be produced and the sink set are

the metabolites of the chassis. One bottleneck that all algorithms face is compu-

tation complexity due to the combinatorial explosion of the number of reactions

predicted from the rules. This is true regardless of whether the reactions are

applied in a forward or reverse manner. As an example, let us assume we wish to

perform retrosynthesis for some FDA approved drugs in E. coli. In the reaction list

we have at our disposal there is one for reversed hydro-lyases (i.e. reversed 4.2.1).

According to [161] the rule for that reversed reaction is R1C(=O)C(R2)=C(R3)R4

+ O-R5 →R1C(=O)C(R2)-C(R3)(R4)OR5, where R5 can be C, H, O, and S and all

other Rs can be any atoms. Assuming R1C(=O)C(R2)=C(R3)R4 is the main sub-

strate (our drug target) and O-R5 the cosubstrate, 68 FDA approved drugs from

DrugBank contain the first substructure. If we restrict the cosubstrate to be in

the E. coli model iJO1366 then 653 metabolites out of 810 compounds in the

model contain the second substructure, while 50,810 compounds from MetaNetX

will pass the substructure test. Taking Vitamin C as an example of a DrugBank

compound that passes the substructure filter, one finds 1,883 unique products

when applying the reversed rule 4.2.1 to Vitamin C and E. coli metabolites and

343,177 products when the cosubstrate is in MetaNetX. There are more products

than substrates because for some substrates the reversed rule 4.2.1 applies to

more than one location.

As already mentioned, for a given retrosynthesis target one needs to apply all

rules to the target, all rules to the products obtained by application of the re-

versed reactions to the target, and so on until a predefined stop condition occurs

(often the number of iterations). Clearly, if reaction rules generate more than

1,000 products even with 50 rules the problem starts to be challenging -if not

impossible- to manage computationally after 2 or 3 iteration steps.

Strategies are needed in order to cope with that complexity. RetroPath proposes a

solution where reactions are scored according to their ability to retrieve enzyme

sequences catalysing substrate to product transformations. Reactions below a

predefined score are removed from the retrosynthesis map. For any given reaction

the sequence scores are computed by machine learning using a technique that

we developed earlier. The model is trained on all known pair "enzyme sequence"

x "(substrate, product)" using Support Vector Machines [177] or Gaussian Pro-

cesses [178]. GEM-Path [62] proposes another strategy where for each reaction

the substrates are accepted if they are similar enough to the substrates of the

reference reactions.

We detail in the next sections a new implementation of RetroPath to predict reac-

tion networks and perform retrosynthesis among other applications. RetroPath2.0
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Fig. 3.5: RetroPath2.0 KNIME workflow. A. Main panel view (left) and input configuration window (right) that
allow the user to set up parameters. B. Inner view of the "Core" node where the computation takes place.
The "Source, Sink..." and "Rules" nodes parse the source, sink and rules input files provided by the user
and sanitize data so that it can be processed by downstream nodes. The outer loop ("Source" loop) iterates
over each source compounds, while the inner loop ("Length" loop) allows to iterate the process up to
a maximum number of steps predefined by the user. The nodes (i) "FIRE", (ii) "PARSE", (iii) "UPDATE
SOURCE..." and (iv) "BUILD" are sequentially executed at each inner iteration. Respectively, they (i) apply
all the rules on source compounds, (ii) parse and sanitize new products, (iii) update the lists of source and
sink compounds for the next iteration and (iv) merge results that will be written by the node "Write global
results". Once the maximum number of steps is reached (or no new product is found), the "Compute
scope" node identify the scope linking each source to the sink compounds, then these results are written
by the node "Write per source results". Only the main nodes involved in the process are shown.

addresses the challenges listed above with a special attention to remaining easy

to use and modifiable by end users, unlike tools developed so far. In that sense,

both the encoding of reactions into generalized rules and the actual use of those

rules to predict new reactions depend strictly on resources developed by the

community.

3.4 Methods

The workflow proposed in this section can a priori be used to all systems pre-

sented in Table 3.1 to construct retrosynthesis maps as long as reaction rules

can be coded by reaction SMARTS. As examples, we provide such set of rules

extracted from the SimPheny, BNICE and RetroPath systems.
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Our computational methods make use of in-house algorithms [71], RDKit rou-

tines [@1] and KNIME nodes [145]. They have been implemented in the form

of a KNIME workflow -called RetroPath2.0- (Figure 3.5) that we provide in the

supplementary materials, in addition of sets of rules, examples, and useful data

files.

3.4.1 Reaction rules

RetroPath2.0 uses reaction SMARTS to encode reactions. It is a SMIRK-like reac-

tion rules [59] format defined by RDKit and is mostly compatible with other tools

(see Figure 3.2).

Collected reaction rules

Rules for SimPheny and BNICE were extracted from [29] and [161] respectively,

and manually entered by using Chemaxon Marvin Sketch software products

(15.5.18, 2015, http://www.chemaxon.com). For each rule atom mapping was

calculated by Marvin Sketch and the resulting rules were stored in SMARTS format

as in Figure 3.3.

Generated reaction rules

We used MetaNetX version 2.0 [141] as the reference database for metabolic

reactions that we encoded in rules. MetaNetX is a meta-database that compiles

into a single reference namespace both reactions and metabolites extracted from

main metabolic databases such as KEGG, Metacyc, Rhea or Reactome. Reactions

can contain many substrates and many products. We performed an Atom-Atom

Mapping (AAM) using the tool developed by [179] on all MetaNetX reactions

(Figure 3.3A). We filtered out transports reactions and those involving compounds

with incomplete structures (class of compounds, R-groups, etc.). Stereochemistry

was removed.

Multiple substrates reactions were decomposed into components (panel C and D

in Figure 3.3). There are as many components as there are substrates and each

component gives the transformation between one substrate and the products.

Each product must contain at least one atom from the substrate according to

the AAM. This strategy enforces that only one substrate can differ at a time from

the substrates of the reference reaction when applying the rule (see section 2.1.1

enzymatic promiscuity modelling).
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Next step consisted in computing reactions rules as reaction SMARTS for each

component. We did it for diameters 2 to 16 around the reaction centre (panels C

and D in Figure 3.3) by removing from the reaction components all atoms that

were not in the spheres around the reaction centre atoms.

We extracted more than 24,000 reaction components from MetaNetX reactions,

each one of those leading to a rule at each diameter (from 2 to 16).

We provide in Supplementary a subset of 14,300 rules for E. coli metabolism, both

in direct and reversed direction. The rules were selected based on the MetaNetX

binding to external databases and the iJO1366 whole-cell E. coli metabolic model

[180].

3.4.2 Building (retrosynthesis) reaction networks
between two pools of compounds using the
RetroPath2.0 workflow

The RetroPath2.0 workflow essentially follows an algorithm proposed by some of

us [43]. After removing all source compounds already in the sink set, the workflow

applies the rules to each of the compounds of the source set. For each compound,

the products are computed using the RDKit KNIME nodes [@1]. Products are

standardised and duplicates are merged. All pairs substrate-product are added to

the growing network along with the reaction rules linking them.

In the next iteration, the set of products becomes the new source set. However,

before iterating, the workflow removes from the new source set all compounds

that belong to the sink (as these are already solutions and there is no need to iter-

ate) and the workflow adds the product set to the sink in order to avoid applying

reactions on the same products during subsequent iterations. Consequently, the

workflow computes only the minimal routes between source and sink, i.e. routes

in which all reactions are essential for their viability, and thus minimizes the num-

ber of enzymes to be added to a chassis strain when implementing the pathways.

This feature can be ignored by not specifying a sink for the first iteration.

The RetroPath2.0 workflow iterates until a predefined number of iterations is

reached or until the source set is empty. The final produced graph is composed

of the list of links between substrates and products annotated with their corre-

sponding reaction rule. Products belonging to the sink are annotated as such.
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Note that the iterative process can reveal itself to be quite computationally de-

manding. To tackle this issue, RetroPath2.0 has a feature to bias the reaction

space exploration toward compounds generated by trusted rules, using a rule-

wise penalty score. If too many compounds are generated and need to be handled

at once, only a predefined number of compounds with the lowest penalties ac-

cording to their generating rules are kept in the new-source of the following

iteration. Of course, both the definition of the penalty and maximum number

of compounds to keep are critical and fall within the responsibility of the user.

As described next, the rules we provide are scored to optimize in vivo pathway

feasibility by penalizing rules associated to enzymatic reactions with inconsistent

sequence annotation.

3.4.3 Score rules by enzyme sequence consistency

Predicted reactions in the final graph generated by the RetroPath2.0 retrosynthe-

sis workflow need to be associated with enzyme sequences in the final engineer-

ing of the pathways. The selection of such sequences should look for a trade-off

between the specificity of the reaction rule and the information available in en-

zyme databases for the reaction through the EC classification. Whereas the EC

classification has traditionally provided a hierarchical numerical classification

of enzyme-catalysed reactions to progressively describe reactions in finer detail,

RetroPath2.0 introduces a similar hierarchical classification that is controlled by

the diameter used in rule generation. In some cases the diameter of the reaction

rule found by the RetroPath2.0 workflow might be high, i.e. highly specific to that

reaction. However, it often occurs that there is no annotated enzyme sequence

for the rule. In order to find some candidate sequences, we look into reactions

that are close according to the EC hierarchy for each EC class containing at least

one instance of the rule at given diameter. Traversing both rules diameter hier-

archy and the underlying EC classes allows the selection of plausible sequence

candidates for each reaction rule.

We compiled the set of Uniprot sequence identifiers annotated for reactions

by looking at the cross-link annotations in MetaNetX for Rhea and MetaCyc

databases. In total 208,980 sequences from 5,388 organisms were associated to

7,793 reactions. At a given diameter of the rule, we iteratively assigned sequences

to rules. First, reactions with annotated sequences were collected for each gener-

ated rule. Since a rule can represent one or more reactions at a given diameter,

sequences coming from different reactions sharing the same rule were aggregated

into a single set for that rule. These direct annotations only provided a partial

coverage for the total rules in the database. For instance, at diameter d = 8, there

were 7,898 orphan rules, i.e. rules that were generated from reactions lacking
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sequence annotation (Table 3.2). Similarly, there were 6,280 orphan reactions at

diameter d = 8. In order to increase the coverage, we considered the EC class of

the reaction when such information was available. Sequences associated with

reactions sharing strictly the same EC class were combined together. Adding

together such annotations for the same EC class fixed issues related to partial

annotations for the less common reactions. In that way, the number of orphan

rules was significantly reduced to 1,719, which is approximately a 13% of the total

rules. Similar ratios were observed for reactions.

For the orphan rules having no sequence annotation after considering the EC

class of the reactions, we followed the strategy of reducing the specificity of the EC

class by reducing the number of digits. In other words, if a rule had no annotation

based on the EC class at 4 digits, we looked at reactions that shared same EC class

at 3 digits with one reaction associated with the rule and so on until we found

sequence annotations. Notably, a sharp decrease on the number of orphan rules

already occurred at the level of three digits of the EC class. The remaining orphan

rules, less than 1%, was eventually annotated once we reduced the specificity

from 3 digits down to 1 digit in the EC class.

We should emphasize that in the procedure described below, sequence annota-

tions that merged multiple EC classes sharing same initial digits were only used

for those cases where no sequence information was available at higher EC class

levels. This annotation from higher to lower specificity in the set of sequences

associated with the rules depending on known sequences allowed us to score the

rules. A rule that has associated sequences with low diversity should in general

correspond to cases where the sequence information is highly specific to that

rule. As the diversity of sequences increases the specificity of those sequences to

their associated rules becomes lower. We evaluated such degree of specificity by

considering the degree of clustering of the sequences associated with the rules.

Clustering of the sequences was performed by using Cd-hit [181]. According with

this algorithm, our database of 208,980 amino-acid sequences was clustered into

22,221 clusters for a similarity threshold of 0.5. We used a penalty score for the

rules based on the number of sequence clusters nr ule contained in the sequences

selected for a given rule:

scor e(r ul e) = log10(nr ul e ) (3.1)

where the logarithm is applied for regularization. A penalty score of 0 implies

high specificity, as this means that all sequences belong to a single cluster, while

high penalty scores imply multiple clusters and therefore low specificity in the

sequence annotation.
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Tab. 3.2: Assignment of sequences to rules at different diameters and using decreas-
ing EC class level of specificity. Orphan SMARTS and reactions at a given EC
level are the only ones that are considered for sequence assignment at a lower
level. This table was originally in Supplementary.

Diameter EC level SMARTS Orphan SMARTS Reactions Orphan reactions

2 8210

3680

13782

3259
4 655 823
3 47 86
2 5 12
1 0 0

4 10501

5141

13782

4377
4 1058 1280
3 61 90
2 15 25
1 0 0

6 12573

6806

13782

5593
4 1466 1661
3 72 96
2 16 25
1 0 0

8 13855

7898

13782

6280
4 1719 1918
3 73 97
2 16 25
1 0 0

10 14772

8603

13782

6611
4 1836 1863
3 76 99
2 16 25
1 0 0

12 15460

9134

13782

6874
4 1936 1846
3 76 94
2 16 25
1 0 0

14 15867

9433

13782

7007
4 1975 1856
3 77 98
2 16 25
1 0 0

16 16227

9741

13782

7159
4 2025 1811
3 79 72
2 16 24
1 0 0
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3.4.4 Enumerating pathways between two pools of
compounds

The lists of pathways linking (i) a pool of source compounds to (ii) a pool of sink

compounds are computed running an algorithm we developed earlier [71]. This

algorithm consists of the following steps for a given source compound:

1. Compute the scope, a subset of predicted reactions between the sink com-

pounds and the set of source compounds. The scope represents the set

of compounds and reactions that are involved in at least one pathway. It

is computed in a two steps search. First the forward step starting from

source compounds finds all reachable compounds that are producible

through reactions. Secondly the backward step starting from the sink com-

pound adds to the scope all reactions that can be involved in at least one

producible-pathway.

2. Build the stoichiometric matrix. The stoichiometric matrix describes the di-

rected subnetwork involving the set of compounds and reactions identified

at the scope step, starting from the source compounds.

3. Enumerate elementary flux modes. An elementary mode corresponds to a

minimal unique set of reactions that

a) verified the stoichiometric constraints of the network and

b) is able to carry non zero-fluxes at the system’s steady-state [182]. In

order to efficiently compute elementary modes, stoichiometric ma-

trix dimension is generally reduced through lossless compression.

Only enumerated flux modes linking source compounds to the sink

compound are kept in order to form the final list of pathways. These

three steps are performed iteratively for each source compound.

RetroPath2.0 computes the scope for each queried compound. It can be visu-

alized and explored to retrieve the pathways thanks to ScopeViewer, a humble

web-application that we provide in Supplementary. Note that the provided work-

flow does not explicitly extract the pathways and does not rank them. Yet, we pro-

vide at https://github.com/brsynth/rp2paths a separate utility program

“RP2paths” allowing one to enumerate pathways from the results generated by

RetroPath2.0.
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3.5 Results

We validated our set of rules with RetroPath2.0 by checking that they were able to

reproduce the known metabolic space, and that they could be used to perform

reaction classification. The capability of RetroPath2.0 to perform retrosynthesis

was confronted to in vivo experiments by counting the number of bioproduction

pathways found for targets extracted from a database of metabolic engineering

successes. We also emphasized the versatile usage of RetroPath2.0 by an original

application to design biosensors (see 3.7.3).

3.5.1 Rules validation

The quality of the output of the workflow depends largely on feeding it with the

proper set of reaction rules. Some authors [29, 161] have published sets of rules

that already constitute an initial test bed. We collected those in addition of a set

of SMARTS rules that we compiled for all reactions of the last E. coli whole-cell

model [180] based on MetaNetX cross-references. Those rules are available in

Supplementary. All rules were checked to ensure they could be used with the

workflow and yield at least one product.

Coverage of known metabolic space

In order to check the potency of the rules, i.e. that they could indeed be used

to predict reactions, we tried to retrieve all reference reactions of MetaNetX

from the rules. We compared three dataset of monosubstrate rules according

to their origin: SimPheny [29], BNICE [161] and RetroPath2.0. To make a fair

comparison we selected from all MetaNetX reactions a subset of 13,000 reactions

having an associated EC number and a structure for all its compounds (SimPheny

and BNICE rules are based on EC numbers). We extracted from those 6,000

substrates and 7,000 products (MetaNetX identifiers) excluding cofactors. For

each rule dataset, all rules were applied on the set of substrates using the workflow

with default parameters. We counted the number of products that could be

regenerated and the number of generated compounds that were referenced in

MetaNetX.

Remarkably given the number of rules considered, 34% of MetaNetX products

were recovered by SimPheny rules (50), and 41% by BNICE rules (86). They

respectively generated 75,400 and 59,000 compounds, among which 5% and 7%

could be found in MetaNetX and are thus connected to a biological database.

Since RetroPath2.0 rules were generated from MetaNetX data we expected a
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better coverage over the products. This was indeed the case with 96% recovered

products from MetaNetX’s reactions. The few missed products originated from

reactions that could not be encoded in rules due to atom-atom mapping issues.

Additionally, 63% of the 17,500 compounds generated by RetroPath2.0 are new

to MetaNetX, which highlights the capability of our rule dataset to generate a

reasonable amount of new compounds.

The fact that RetroPath2.0 rules generates less compounds than the other tested

sets of rules is explained by the differences in term of diameter used. RetroPath2.0

uses a flexible diameter, which by default ranges from 16 to 2, decreasing if

no rule can be used on a substrate at higher diameters. This has for effect to

prioritize more conservative results (higher diameter) while ensuring that broader

promiscuity are tested as a last resort (lower diameter). The few missed products

originated from reactions that could not be encoded in rules due to atom-atom

mapping issues. Overall, product coverage shows us that RetroPath2.0 rules are

able to reproduce most of MetaNetX products, hence most of what is known of

the metabolic space.

RetroPath2.0 rules for reaction classification

We evaluated the ability of our rules to perform automated reaction classification.

To that end, reactions in the database that contained EC class annotations were

grouped into their corresponding EC class at the third level. We then computed

the similarity between reactions based on the signature content of their rules. For

a given diameter d , each rule was decomposed into its elementary signatures [71]

and similarity between two given reactions R1 and R2 was computed by means of

the Jaccard similarity coefficient T d (R1,R2) applied to the two reaction rules:

T d (R1,R2) = |σd (R1)∩σd (R2)|
|σd (R1)∪σd (R2)| (3.2)

The previous expression ranges between 0 (minimum similarity) and 1 (max-

imum similarity) and has been often applied to compute similarity between

compounds or even reaction that are described by binary fingerprints (EC-BLAST

[62, 159, 176]. The advantage and main difference of using rules with a selectable

diameter is that we can compute the Jaccard similarity coefficient in function

of the diameter d . That generates a sequence of monotonically decreasing simi-

larities starting from 0 up to the maximum diameter of the reactants. Similarity

of two reactions at diameter 0 contains the basic information about common

patterns of bonds that were broken or formed in the two reactions. As we ex-
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tend similarity to higher diameters, information becomes more specific to the

substrates and products involved in each reaction.

In order to capture efficiently this feature of diameter dependence for Jaccard

similarities between rules, we defined a global similarity parameter between reac-

tions S(R1,R2) extended to a diameter range [0,d ] as an exponentially increasing

weighted sum of the Jaccard similarity coefficients:

S(R1,R2) =
∑n+1

k=1 J k−1(R1,R2)ka∑n+1
k=1 ka

(3.3)

where a is a regularization parameter.

For each reaction in the database, we computed its corresponding rule and

similarities based on a diameter range from 0 to 8. In total, rules were computed

for 13,782 reactions contained in the database. We used a = 2 as regularization

parameter.

We then tested the discriminant ability of using such reaction global similarity

measure for reaction classification. Our tests were performed using the R package

ROCR. We created a positive and negative set for each EC class. The positive set

was formed by the set of reactions annotated for this EC class. A balanced training

set was then built by randomly selecting from the negative set. For each EC class

containing at least 10 data points, as well as for the total set of balanced training

set we computed the area under the ROC curve (AUC), resulting in an overall

AUC of 0.884 for diameter d = 8 (Fig. 3.6). Such performance values are slightly

higher than the ones obtained by EC-BLAST [176] by using fingerprint-based

similarities, showing the ability of the rules as reaction classifiers.

Score vs. specificity

The ability of substrate generalization of SMARTS rules can potentially be used to

assess enzyme specificity. Enzyme specificity is an important factor that needs

to be considered for metabolic pathway engineering. Moreover, several studies

have shown that enzymes that can catalyse multiple reactions or can process

multiple substrates have more evolvability capabilities than specific enzymes [44,

46, 183, 184]. Such property can be approached through our rules as they provide

a means for representing chemical transformations for generalized substrates.

The level of generalization of reactions and ultimately of their associated enzyme

sequences could be therefore quantified using our rules. As described in Methods,

one can define a specificity score by assessing the level of generalization of both

the reactions and sequences having such reactions at a given rule diameter.
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Fig. 3.6: Receiving operating characteristic curves (ROC) curves for the rules of
RetroPath2.0 of diameter d = 8. This figure was originally in Supplementary.

Fig. 3.7: Box plot comparing the distribution of reaction scores for specialist and
generalist enzymes in E. coli. This figure was originally in Supplementary.
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The algorithm traverses both the reaction and sequence space in order to score

reaction specificity and more specific rules get lower scores.

To evaluate the ability of the score to represent enzyme specificity, we have

analysed a reference set of enzymes in E. coli that have been classified as either

specific or generalist, i.e. if they can catalyse one or multiple reactions [44].

For each gene, we took their associated reactions in the EcoCyc database [185].

Each reaction was mapped into their associated rule at several diameters d. The

resulting scores for each gene were then aggregated. We mapped in total 787 E.

coli genes, with 602 specific vs. 185 generalist enzymes, respectively.

Notably, the scores computed in that way, as shown in Figure 3.7, displayed the

ability to differentiate between these two groups of enzymes, (t = -6.5144, p-value

of 2.3e-10 for a Welch’s two sample t-test), with specific enzymes receiving lower

ranking. We should note that the classification between specific vs. non-specific

enzymes depends on the actual knowledge and degree of detail in the description

of the reactions in the reference organism and therefore the list of generalist

enzymes should be updated as long as new activities are discovered [46]. For

instance, we observed a clear outlier in the set of specific enzymes that received

a high score based on rules and therefore we should expect wider specificity. This

was the case of gene phoA, b0383, alkaline phosphatase EC 3.1.3.1. It turned out

that this enzyme has been reported to have wide specificity [186] in agreement

with the high score.

3.5.2 Workflow validation and applications

We tested the reaction network prediction features of RetroPath2.0 workflow with

two applications. The typical prediction of bioproduction pathways (see below),

and the prediction of small biosensing metabolic circuits for biomarkers (see

3.7.3).

Coverage of bioproduction pathways

The Learning Assisted Strain EngineeRing (LASER) database is a repository for

metabolic engineering strain designs [187]. It stores more than 600 successful

metabolic engineering designs [188] that have been manually curated from the

literature. Those examples are particularly appealing for testing retrosynthesis

features since they include an ideal dataset of authentic positive examples of

bioproduction pathways, sometimes involving heterologous enzymes. We ex-

tracted all compounds targeted for production described in the LASER database

(release f6ce080a8993) and used them to assess the ability of RetroPath2.0 to find
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retrosynthesis pathways for real-life applications when used with all the rules

from MetaNetX.

The structures of the target compounds were inferred from their name by query-

ing PubChem and ChemSpider. 160 compounds targeted for bioproduction were

extracted from LASER. To complete further this dataset, we extracted 68 com-

pounds (MBE dataset) published in Metabolic Engineering in 2016 (volumes 33

to 38), a period not covered by LASER. These two datasets contained 203 distinct

compounds once merged together based on their structure (standard InChI).

Furthermore, we removed E. coli endogenous compounds that were used as

our “sink”. Finally, 146 distinct compounds were collected to serve as “source”

compounds.

Compounds from E. coli were extracted from iJO1366 whole-cell model [180]

and MetaNetX cross-references. We ignored compounds that belong to so-called

“blocked pathways” which are by definition impossible to produce or consume at

steady-state in a metabolic model. Such compounds do not constitute a proper

source (or sink) for retrosynthesis applications because reactions explaining com-

pound availability in the chassis could be missing. We performed a flux variability

analysis to identify them. Overall, we collected 962 MetaNetX identifiers of com-

pounds belonging to E. coli that we provide in Supplementary along with their

structure (InChI).

All results were generated with a maximum of five retrosynthesis iterations and

a timeout of three hours per target on a recent desktop computer. This puts us

in realistic operational conditions for users that might have access to modest

computational resources. Given those constraints, we successfully found at least

one pathway for 81% of the targets (119/146), i.e. a set of reactions allowing

the production of the target compound exclusively from E. coli endogenous

metabolites. Interestingly, we found more than one pathway in most of the cases

(104/119).

One of such compounds for which several pathways was found is styrene. Styrene

is a building block used in the fabrication of plastics [189]. LASER references

one pathway for the bioproduction of styrene from phenylalanine with heterolo-

gous enzymes in E. coli [190, 191] and in S. cerevisiae [192]. RetroPath2.0 found

this pathway (Figure 3.8, in red) along with five alternative one from E. coli

endogenous compounds: 3-phenylpropionic acid, phenylacetaldehyde, and

phenylpyruvic acid (Figure 3.8, resp. F, G, and H).

Another non-natural example for which several pathways were found is tereph-

thalic acid (TPA). TPA is a non-natural commodity chemical widely-used for its
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ability to form synthetic fibres, and ultimately in the fabrication of polyesters

such as PET. TPA is traditionally produced from p-xylene by synthetic chemistry

processes [193]. The p-xylene can eventually come from lignocellulosic biomass,

making the TPA a bio-based compound in such cases [189]. Interestingly, two

enzymatic bioproduction pathways have been reported for TPA, and they follow

the same chemical transformations as the ones from synthetic chemistry [193];

one from p-xylene [194] in Burkholderia genus, and another from p-toluic acid in

Comamonas testosterone [195]. RetroPath2.0 retrieved those routes and proposed

alternative shorter paths from endogenous E. coli compounds such as phenylala-

nine, phenylpyruvic acid, and 3-phenylpropionic acid (Fig. 3.9, resp. K, P, and M).

To the best of our knowledge, those pathways have never been implemented in

vivo.

Those results highlight the interest of RetroPath2.0 for retrosynthesis applica-

tions. As an additional example, see also the pathways predicted toward ethylene

glycol (Figure 3.10). RetroPath2.0 is able to reproduce validated pathways and to

propose new ones, both for natural and non-natural compounds. All results are

provided in Supplementary.

3.6 Discussion

The RetroPath2.0 workflow is a versatile reaction network tool, built to be modular

enough to answer most metabolic engineering needs. RetroPath2.0 takes as input

a first set of compounds (the source), a second set of compounds (the sink) and a

set of reaction rules (see Figure 3.5). The workflow produces a network linking the

source set to the sink set, where each link in the network correspond to a reaction

rule. The RetroPath2.0 workflow runs under the KNIME analytics platform and is

available in Supplementary Material.

The choice of source, sink and rule sets depends on the application. For instance,

if one wishes to find all possible synthesis routes that can be engineered for a

target compound, then the source set will be the target, the sink will be the set

of metabolites of the chassis strain, and the rules will be the reversed form of all

known metabolic reactions (cf. 3.5.2). If one is interested in finding pathways to

be engineered to degrade a given xenobiotic, the source set will be the xenobiotic,

the sink set can be composed of those metabolites in the central metabolism of a

chassis strain and the rule set could comprise all known catabolic reactions. In

the same vein, one can find sensing-enabling pathways with the set of known

detectable compounds as sink, the set of target compounds to detect as source,

and by using the forward rules (cf. 3.7.3 for the detection of biomarkers). Finally if
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Fig. 3.8: Enumerated pathways for the production of styrene. Each pathway is depicted by a distinct colour.
Pathway referenced in [190] is in red (D-B-A). Compounds are represented by their structures, and
reactions by their EC numbers. Styrene and sink compounds are surrounded by a solid line, intermediates
by a dashed line. A: styrene; B: phenylacrylic acid; C: styrene oxide; D: phenylalanine; E: 3-phenyllactic acid; F: 3-phenylpropionic acid; G: phenylacetaldehyde; H:
phenylpyruvic acid. Cofactors have been removed for clarity; the whole scope is available in Supplementary.
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Fig. 3.9: Enumerated pathways for the production of the non-natural compound terephthalic acid (TPA, com-
pound A) from E. coli. Each pathway is depicted by a distinct colour. Pathway referenced in [194] is in teal
blue (T-S-Q-O-H-C-A). Compounds are represented by their structures, reactions by their EC numbers.
TPA and sink compounds are surrounded by a solid line, intermediates by a dashed line. Reactions with
unknown EC number according to MetaNetX are referenced by their MetaNetX ID. A: terephthalic acid; B: benzoic acid; C:
4-formylbenzoic acid; D: benzaldehyde; E: benzoyl-CoA; F: phenylacrylic acid; G: terephthaldehyde; H: p-hydroxymethyl benzoic acid; I: 3-phenylserine; J: 2-succinylbenzoyl-
CoA; K: phenylalanin; L: 3-phenyllactic acid; M: 3-phenylpropionic acid; N: 4-(hydroxymethyl)benzaldehyde; O: p-toluic acid; P: phenylpyruvic acid; Q: p-tolualdehyde; R:
1,4-benzenedimethanol; S: 4-methylbenzyl alcohol; T: p-xylene. Cofactors have been removed for clarity; the whole scope is available in Supplementary.
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Fig. 3.10: Enumerated pathways for the production of ethylene glycol. Each pathway is depicted by a distinct
color. The final step of the pathway engineered in [92] is in red (B, A). Enzymatic step 1.13.12.19 is also
known as RXN-12538 (MetaCyc) and R09784 (Kegg). Compounds are represented by their structures,
and reactions by their EC numbers. Ethylene glycol and sink compounds are surrounded by a solid line,
others by a dashed line. Cofactors and currency metabolites (such as NADPH, NADH, water, proton,
dioxygen) have been removed for clarity. This figure was originally in Supplementary. Involved compounds: ethylene
glycol (A), glycolaldehyde (B), ethylene oxide (C), ethylene (D) and oxoglutarate (E).
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Tab. 3.3: Examples of metabolic pathways enabling the detection of prostate cancer biomarkers. The fourth
column indicates the sample type (Serum, Urine, Metastasic Tissue) and if the biomarker has been found
to be up or down regulated compared to a controlled sample of the same type. References for enzymes
were taken from MetaNetX and references for transcription factor were taken from the SensiPath server
[153]. Figure 3.11 illustrates the scope of sarcosine. This table was originally in Supplementary.

Biomarker Metabolic Reaction Effector(s)
References: Sample (S), Enzyme (E),
Transcription-Factor (TF)

Hippuric acid Benzoic acid, Glycine

S: Urine down-regulated (Struck-Lewicka et
al., 2015)
E: hippurate hydrolase (3.5.1.32)
TF: benzoate BenR [196], glycine GcvR [197]

Kynurenine Glycine

S: Serum, Urine, Tissue up-regulated [198]
E: kynurenine-glyoxylate aminotransferase
(2.6.1.63)
TF: GcvR [197]

Sarcosine Glycine, H2O2
S: Serum, Urine, Tissue up-regulated [198]
E: sarcosine oxydase (1.5.3.1)
TF: glycine GcvR [198], H2O2: OxyR [199]

N-acetyl-aspartate H2O2
S: Serum, Urine, Tissue up-regulated [198]
E: aspartate oxydase (1.4.3.16)
TF: OxyR [199]

Pipecolate H2O2
S: Serum, Urine, Tissue up-regulated [198]
E: pipecolate oxydase (1.5.3.7)
TF: OxyR [199]

Cholesterol H2O2
S: Serum, Urine, Tissue down-regulated [198]
E: chlolesterol oxydase (1.1.3.6)
TF: OxyR [199]

L-Sorbose H2O2
S: Urine down-regulated [200]
E: sorbose oxydase (1.1.3.13)
TF: OxyR [199]

Creatinine
Urea, H2O2 and glycine via
sarcosine

S: Serum, Urine, Tissue down-regulated [198]
E: creatininase (1.1.3.13) followed by creatine
amidinohydrolase (3.5.3.3)
TF: urea NtcA [201], glycine GcvR [197], H2O2:
OxyR [199]
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Fig. 3.11: Example of a scope obtained for sarcosine. All the products of the path-
ways are transcription factor effectors (i.e. in the sink file, green squares).
Reactions are given by their EC numbers. This figure was originally in Sup-
plementary.

one wishes to know all possible compounds that can be produced with a chassis

strain when adding heterologous enzymes, the source set is composed of the

metabolites of the chassis strain, the sink set can be either empty or a set of

compounds in a vendor catalogue, and the rule set should cover all reactions

that could occur in the chassis strain, including heterologous enzymatic ones.

Moreover, any other applications where the problem can be framed into source,

sink and rule sets can be processed by the workflow including problems where

compounds are not metabolites and reactions are not metabolic reactions.

The most critical feature of a reaction network prediction system is certainly how

the reactions are encoded and from where this knowledge was extracted. In our

case, we choose to adopt a reaction encoding based on SMARTS, a widely ac-

cepted compound query language [59] that was already used successfully in such

context [80]. Unlike most rule-based reaction prediction systems, RetroPath2.0

rules are not built around the Enzyme Commission nomenclature, but rather

from an automatic translation of enzymatic reactions extracted from databases,

which we believe offers a refined view of enzyme’s capabilities.

We showed that our rules were able to classify reactions and that our set of rules

extracted from MetaNetX had a good coverage over the known reactome. A good

part of the reactions that were not covered were actually reactions involving

compound classes (e.g. "an alcohol"), which were removed during the rule
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generation steps. This type of generalized reactions were, in turn, represented in

our set through our unique way of encoding reactions as generalized rules. One

substantial improvement could probably be met by constraining the atom-atom

mapping and reaction centre identification steps based on the exploitation of

additional knowledge on the reaction and the associated enzyme. For instance by

using the known alternative substrates associated to a single enzyme sequence

or the EC number assignation.

Evaluating the coverage of a reaction database is interesting in order to assert the

coverage of the known reactome by a given set of rules, but it cannot be used to

assert the efficiency of a retrosynthesis tool. Indeed, the coverage of a reaction

database depends mainly on the database from which the rules were inferred and

how exhaustive the cross-links are between those two. Ideally, we would desire a

set of rules being able to recover all known biochemical reactions. It means that

anything less than 100% coverage shows that the set of rules is incomplete and

that more data could have been aggregated. Note that in this work we focused

our efforts on MetaNetX for the sake of simplicity but it is clear that more data

can be imported from other databases such as BRENDA [51].

To the author’s opinion, a better indicator of retrosynthesis tools efficiency should

be found in the coverage of known pathways realized in a metabolic engineering

context. This is precisely what we did using the LASER database as a reference

for examples of successfully engineered metabolic pathways. In that way we pro-

vided a comprehensive overview of the capabilities of our tool in order to identify

metabolic engineering solutions to bioproduction for well-studied cases. The

main source of misprediction that we observed in our analysis came from cases

in which additional compounds absent from E. coli metabolism were needed

to perform the synthesis. Indeed, we performed all computations within five

iterations from E. coli, with target compounds that were not necessarily produced

in this chassis, nor at five enzymatic steps; moreover, some substrates could be

supplemented in the media of the chassis organism. For instance, the synthesis

of morphine is described for Saccharomyces cerevisiae in [202] by two pathways

at three and four steps from thebaine. Thebaine is not naturally present in E.

coli metabolism thus absent from the sink we used. Consequently, this example

has no scope at five steps and was counted as mispredicted. Once thebaine is

supplemented in the sink, RetroPath2.0 can generate a scope with both pathways.

Note that thebaine was already predicted before being added to the sink, and

that doing so only allowed RetroPath2.0 to use this compound as a valid starting

point for synthesis instead of continuing further the retrosynthesis.

Importantly, not all predicted pathways can be readily implemented in E. coli. In-

deed, translation of in silico models into in vivo experiments require much more
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constraints to be satisfied, some of those being hardly predictable. To name but a

few, enzyme sequence availability, chassis ability to fold the enzymes, kinetics,

intermediate compounds toxicity, and overall pathway induced stress on the cell

should all be checked before going any further. In this context, RetroPath2.0 can

be seen as a base on which everyone is invited to build new features in order to

further improve its metabolic space exploration abilities.

Exploiting chemical diversity in order to gain access to the large catalogue of nat-

ural and non-natural chemical resources is arguably one of the most important

goals for biotechnology applications. By extending metabolic capabilities of en-

zymes, applications in metabolic engineering, biosensors and synthetic circuits

can be greatly enlarged and diversified. To that end, RetroPath2.0 brings to the

community a flexible and scalable open source platform with unique metabolic

design capabilities. For the first time, we allow the systematic application of a full

set of validated and standardized reaction rules that can be expressed with a se-

lectable level of specificity. Such representation, which parallels the versatility of

enzyme promiscuity, allows an in-depth exploration of latent abilities of natural

enzymes.

The excellent coverage of the workflow along with its proved ability for recover-

ing both known pathways and putative alternative candidate pathways show its

power as an engineering tool. For that reason, we have no doubt that the tool

will be received as a valuable addition to the toolbox for engineering biology.

Moreover, community contributions to the workflow will likely expand further

the features of the tool, even beyond metabolic design. In summary, we believe

that the ability of RetroPath2.0 to rationalize and standardize design steps of bio-

logical engineering that have been traditionally performed manually by trial and

error, constitutes a major contribution towards the development of automated

workflows across the whole design, build, test and learn cycle.

3.7 Supporting information

3.7.1 Reaction rule diameter and promiscuity recovery

Reaction diameter is a parameter related to enzyme promiscuity. In this note,

we investigate the ability of the reaction rules to recover promiscuity in func-

tion of the diameter. We have performed several tests on the reference list of

promiscuous enzymes in E. coli [44] (see Section 3.5.1 of the manuscript).
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Test 1. Does using a reaction diameter recover all the known examples of
promiscuity for any enzymes?

We looked at the coverage of the rule for the total number of annotated reactions

in the promiscuous enzymes. As shown in the Figure 3.12 (red line), at low

diameter, the coverage is quite high (above 90%), i.e. most of the promiscuous

reactions annotated for one gene are recovered by the rule. As the diameter

increases the coverage decreases to 85%.

Test 2. What reaction diameter is best?

In order to answer this question, we should consider the specificity of the rules,

i.e. how specific is a rule to the enzyme? Figure 3.12 shows the percentage of

rules that appear annotated for a single enzyme depending on the diameter.

Rules at low diameter are sometimes shared by more than one promiscuous

enzyme (around 20% of the cases), whereas rules become more specific for one

single enzyme at higher diameters (d > 6). Taking into account this result and

the previous one about reaction recovery, we think that a good trade-off between

coverage and specificity is for diameters between 6 and 8.

Test 3. If the reaction diameter is too small (too general) are false positives
predicted?

Enumeration of reaction rules can generate a large list of pairs of substrate-

products, especially at low diameters. Depending on each enzyme sequence and

on the experimental conditions, the expressed enzyme might display more or less

affinity toward the substrates and more or less level of efficiency for some of the

reactions. Therefore some predicted reactions might be false positives depending

on the selected enzyme sequence. For instance, phenylalanine ammonia-lyases

(PAL) EC 4.3.1.24 often also show tyrosine ammonia-lyase (TAL) EC 4.3.1.23

activity. Both of them can be encoded through the same reaction rule at low

diameters. Whether the selected enzyme will show PAL, TAL or both activities

will depend on the chosen enzyme sequence. This is a problem that needs to be

addressed through enzyme design rather than retrosynthesis.

Concerning general trends, our previous answer showed that at low diameters

there are some rules that are shared by more than one enzyme. More precisely, at

diameter d = 4, 62% of enzymes had reaction rules with no false positives, 74% of

enzymes had at most one false positive (a reaction in the dataset predicted by the

rule that is not annotated for the enzyme). At diameter d = 8, these percentages
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Fig. 3.12: Specificity of rules vs. promiscuity recovery in function of diameter. Rules specificity is calculated as
percentage of gene-specific rules (solid black line), which represents the percentage of the total rules
at a given diameter that are associated with a single gene in Escherichia coli. Promiscuity recovery is
calculated as rule gene-reaction coverage (red dotted line), which represents the average maximum
percentage of reactions associated with a gene that are covered by a rule at the given diameter. This
figure was originally in Supplementary.

were of 78% and 88%, respectively. These results suggest again that a good choice

for recovering promiscuity is a diameter around d =8.

3.7.2 Details about multimolecular rules

Nonetheless, there are still many metabolic reactions that are multimolecu-

lar, even after removing currency cofactors. MetaNetX version 2.0 (110,000

compounds after canonicalization and 31,527 reactions) comprise 42% of reac-

tions that remains multimolecular after removing currency cofactors. Metabolic

databases such as MetaCyc or KEGG do identify main substrates and products,

albeit not in all cases, and 29% of reactions in MetaCyc have multiple main sub-

strates and 27% have multiple main product and 15% have both. A good example

of such reactions are transaminases (EC class 2.6.1). There are 178 reactions in

that class in MetaCyc, most of them involving two substrates and two products.

Cofactors in 2.6.1 reactions are glutamate and oxoglutarate in 51% of the cases,

but other cofactors are found such as oxaloacetate, 2-oxobutanoate, oxoglutara-

mate, oxooctonal, glyoxylate, pyruvate, glutamine, oxosuccinamate, or butamine.
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Clearly reactions of class 2.6.1 admit multiple substrates and products and they

all vary from one reaction to another, thus these reactions cannot all be coded as

monomolecular transformations (R1C(=O)R2 → R1C(NH2)R2) in the way that

is done in [29] nor they can be coded in the form Glutamate + R1C(=O)R2 →
Oxoglutarate + R1C(NH2)R2, (where R1 and R2 can be C or H) as done in [161].

Another issue that retrosynthesis algorithms need to overcome is to handle mul-

tiple products when the reactions are reversed (as they should be in any retrosyn-

thesis process). Indeed when a reaction proceeds forward one assumes that the

substrates are readily available and this is generally the case when moving down

through a metabolic pathway, where the substrates of any given reactions are the

products of upstream reactions. In retrosynthesis, the products become the sub-

strates of the reversed reaction, and these substrates are not necessarily known.

To illustrate this issue let us consider the reversed reaction T +P → S, where T

is our retrosynthesis target. T is known but not P , in principle we should apply

the rule to any compound P of the chemical universe (since P is not necessarily

a known metabolite). This solution is of course not practical. To palliate this

issue, RetroPath do not reverse multiproduct reactions but construct an extended

metabolic space using reaction rules fired on the metabolites chassis strains. The

other retrosynthesis algorithms do not explicitly address this issue, albeit mono

product reactions can certainly be reversed, and in principle, all SimPheny rules

can be used for retrosynthesis purposes.

As summarized in Table 3.1, SimPheny [29] does not deal with multiple sub-

strates and products as all rules are monomolecular, BNICE in [161] handles

partially the problem, as 70 out of 86 reactions are multimolecular but only 4

reactions have multiple substrates different than cofactors (compared to 35%

in MetaNetX). GEM-Path and RetroPath work with rules handing multiple sub-

strates and multiple products, thus reflecting better the complexity of metabolic

reactions. Nonetheless, RetroPath allows only one substrate at a time to undergo

promiscuity modelling so that reaction prediction remains tractable.

3.7.3 Detection of biomarkers through metabolic
circuits

Asides from metabolic engineering, reaction network prediction algorithms can

also be used to develop whole-cell biosensors. Typical synthetic biosensors [203]

currently being developed comprise systems capable of sensing a small molecule

generally though allosteric interactions with RNA aptamers (e.g. riboswitches)

or transcription factors [114] that upon sensing will express a reporter gene.

In the context of medical diagnostics based on biomarkers detection the main
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advantages of synthetic cell-based technologies over abiotic detection based

on purified antibodies, nucleic acid hybridization, or metabolomics analysis

are lower cost, improved stability, and the possibility to be ultimately used as a

personal home healthcare device.

However, as of today, typical whole-cell biosensors are triggered by no more

than half a dozen input signals. To palliate this shortcomings, we have recently

proposed a method to expand the range of biologically detectable biomarkers by

systematically engineering sensing enabling metabolic pathways (SEMP) [153,

196], i.e., metabolic pathways that transform non-detectable chemicals into

molecules for which sensors already exist. The SEMP method has been suc-

cessfully benchmarked to engineer biosensors that detect pollutants, drugs and

biomarkers such as benzoic acid and hippuric acid [196].

Here we investigate the use of RetroPath2.0 to search for all prostate cancer

biomarkers that could potentially be detected using E. coli as a sensing device.

Prostate cancer biomarkers were retrieved from the Human Metabolome Database

(HMDB) and scanned literature to select biomarkers in various physiological flu-

ids: serum [198, 200, 204, 205], urine [198, 200, 206–208], and tissue [198, 200,

209, 210]. The above references gave a final list of about 800 small molecule

biomarkers. Because engineered in E. coli we removed all E. coli native metabo-

lites, we also removed duplicates and biomarkers that could not be found in

HMDB because of ambiguous names. The resulting sanitized set was composed

of 421 biomarkers (provided in supplementary materials).

RetroPath2.0 was run taking as source all (non-E. coli) prostate cancer biomark-

ers, and as sink a list of 500 effector molecules known to either activate or inhibit

transcription factors (extracted from [153]). SEMPs were generated by enumerat-

ing pathways linking source to sink in a single iteration by firing rules computed

from MetaNetX (provided in supplementary materials).

Among the 421 biomarkers, we found 27 biomarkers directly detectable by tran-

scription factors, and 415 pathways enabling the transformations of 164 different

biomarkers into 76 different effectors. Some of these results are presented in

Table 3.3.

Notable amongst the biosensor listed in Table 3.3 are H2O2 and glycine that are

detectable by the native E. coli transcription factors OxyR and GcvR, respectively

[197, 211], and benzoate for which biosensors have already been built in E. coli

[196] (detailed results are provided in the supplementary materials). Interestingly

several biomarkers could be transformed into the same effector, thus enabling
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the integration of multiple biomarker signals into a unique detectable biosensor.

Those results highlight the versatile use that a generic retrosynthesis and reaction

network prediction algorithm such as RetroPath2.0 can have.

3.7.4 Description of supplementary data

Last version of the workflow can be downloaded at https://www.myexperiment.
org/workflows/4987.html. The supplementary data are hosted by Metabolic

Engineering.

RetroPath 2.0 workflow

RetroPath2.0 is provided as a KNIME workflow (RetroPath2.0.knwf file). KNIME

and RetroPath2.0 installation procedures are described in RetroPath2.0_installation.pdf.

Tutorial & examples

The RetroPath2.0_tutorial.pdf file can be used as a starting point for beginning

with RetroPath2.0. It is a step-by-step tutorial describing how to use the tool

through basic retrosynthetic examples. Data for examples are in the tutorial_data

folder.

Scope Viewer

The Scope Viewer is a modest tool dedicated to the visualization of scope files

outputted by RetroPath2.0. It is available in the scope_viewer folder.

Set of SMARTS rules

Several sets of SMARTS rules are provided in the data/rules subfolder. Files knime-

ready-rules_mnx-all-forward_ECOLI-iJO1366.csv and knime-ready-rules_mnx-

all-reverse_ECOLI-iJO1366.csv are subsets of SMARTS rules we generated from

reactions available in the MetaNetX database. Both subsets correspond to the E.

coli metabolism for diameters 2 to 16 (see main text). The first set contains rules

in the direct direction ([...]-forward-[...].csv file) while the second contains rules

in the reverse direction (for retrosynthesis, [...]-reverse-[...].csv file). Extracted

rules for BNICE (mono- and bi-substrate rules) and Sympheny are also provided.

All provided sets of rules are ready to be used with RetroPath2.0.

3.7 Supporting information 73

https://www.myexperiment.org/workflows/4987.html
https://www.myexperiment.org/workflows/4987.html


Set of compounds from E. coli metabolism

The data/ecoli-iJO1366-mnx-compounds.csv file contains the list of compounds

that we extracted from the E. coli iJO1366 whole-cell model and MetaNetX cross-

references. See main text for details.

Coverage of bioproduction pathways

Generated results are provided in the results/bioproduction_pathways folder.

The bioproduction_pathways/LASER_MBE subfolder contains results regarding

the compounds extracted from the LASER database and Metabolic Engineering

papers published in 2016 (see main text for details). The laser.csv and mbe.csv files

provide details on each compound (input subfolder). Scope (*_scope.json file),

enumerated pathways (*.png and pathways.csv files), and structures of involved

compounds (chemical_structures.csv file) are listed in the pathways subfolder for

each tested compound that leads to at least one pathway.

The bioproduction_pathways folder does also contain the whole scope computed

for styrene (styrene_scope subfolder) and terephthalic acid (TPA subfolder) that

are respectively shown by figure 3.8 and 3.9 of the paper. These scopes can be

generated again using the source (source.csv), sink (sink.csv) and rule (rules.csv)

sets that belong to each folder.

Detection of biomarkers through metabolic circuits

Data are provided in the results/detectable_biomarkers folder. The source file is

composed of prostate cancer metabolites. The sink file comprises effectors (small

molecules) activating of inhibiting 5 transcription factors. Transcription factors

are not provided but can easily be retrieved by entering the InChIs of the effectors

in the SensiPath web server [153]. Table 3.3 in the main text was generated from

results extracted in the file result.csv (res folder). The .csv and .json files attached

to each biomarkers comprise a lower number of pathways than in the result.csv

file, the reason is that in the former case pathways are enumerated only when all

the products of the pathways are in the sink.
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Part I: conclusion &
perspectives

Part I summarizes the efforts that have been undertaken during this thesis to give

biological engineers a clear understanding of the retrosynthesis tools they could

use to design metabolic pathways.

In Chapter 2, we detailed a protocol to create an Extended Metabolic Space (EMS),

i.e. a network of all the metabolites that can be synthesized or consumed by enzy-

matic reactions under a certain degree of enzymatic promiscuity. This approach

has several original features that deserved to be highlighted.

First, we use a vector-based description to encode compounds (molecular sig-

nature) and reactions, and that has several interesting consequences. Reaction

rules do not require the use of an Atom-Atom Mapping (AAM) step and are thus

more robust to poor quality data (unequilibrated reactions, missing structures,

etc.). Moreover, searching for a valid alternative substrate or applying a reac-

tion are simple additions of vectors that are faster to execute than graph-editing

operations [72].

Second, our protocol is essentially a two-steps process to create and then explore

the metabolic space: (i) the forward enumeration gives the EMS as a graph link-

ing chemicals (nodes) by reactions (edges); it can also be seen as an exhaustive

database of predicted reactions, much like what has been done in MINEs [79]

and ATLAS [162]. (ii) the EMS is transformed into a stoichiometry matrix rep-

resentation that benefit from efficient search algorithms to perform the actual

retrosynthesis analysis (backward search). However, this two-step process loses

most of its interest if users are interested only in a bunch of pathways and not

by the whole EMS. Indeed, a lot of computational power is lost during step (i)

by wandering in pathways that may have no interest for the user and that may

even be based on false promiscuity assumptions. Moreover, if for any reason

a target compound is absent from the EMS (or disconnected) at step (ii), then

finding a pathway would require the reconstruction of a whole new EMS under
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relaxed conditions (such as a stronger enzymatic promiscuity hypothesis). This

realization motivated us to develop a retrosynthesis tool that would be easier to

adapt and that could be dedicated to end-users that are interested mostly in the

study of a few pathways.

In Chapter 3, we presented a new version of RetroPath that is embedded in a

third-party workflow management software (KNIME). As we discussed, the main

interest of workflows is that they allow end-users to easily build on existing fea-

tures, which ultimately extend the range of their applications. We have seen

through several examples how RetroPath2 could be used to perform retrosyn-

thesis analysis and more original applications such as the design of biosensing

circuits, a subject that we will discuss in more details in Part II.

RetroPath2 has several important conceptual differences from its first version and

the method we described in Chapter 2. The most remarkable change is without

any doubt the utilization of SMARTS to encode reactions instead of molecular

signatures. Molecular signatures have many advantages but are more difficult to

handle than SMARTS for non-expert users [137]. Moreover, SMARTS are becom-

ing a standard to encode reaction rules since they have been used successfully in

the recent years to make metabolic pathway prediction by several independent

groups [62, 64, 212]. However, SMARTS can suffer from some ambiguity while

encoding resonance structures, stereochemistry, and organometallic bonds (in

heme). Consequently, alternative ways to encode reactions (and compounds) are

still under active development and are expected to be more flexible to describe

chemical reactions [213].

Let us note here that several groups attempted to use machine learning to predict

pathways. The main trend is to use machine learning conjointly with a set of

generalist rules in order to learn which rule to apply on a chemical to find a suit-

able pathway. This has been shown in organic chemistry using Support Vector

Machine classifier [75], Kernel Density Estimation [67], and neural network [214,

215]. In those cases, the use of machine learning is used to reduce the combina-

torial complexity of the pathway search and not to predict reaction mechanism.

On the contrary, Baldi’s group tried to predict reaction mechanism using an

orbital electron model to describe chemicals with a set of rules describing the

flux of electrons that would occur during a reaction [63, 172]; again the machine

learning is used to chose which rule to apply, but those rules are at a much finer

grain than what we have discussed so far. It is still unclear what added-value

machine learning has to offer in comparison to graph exploration heuristics for

metabolic pathway prediction. Graph search algorithms have the merit to have

their underlying choice mechanism explicitly written (and thus debatable) unlike

machine learning models where the choices depend on the intricacies of the
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learning dataset. Being able to backtrack and correct prediction errors is arguably

an essential feature for expert systems, especially at a time when user trust comes

at a high price.

Strangely enough, it seems that the use of computer aided pathway design is

still rather limited, aside from collaborations with groups expert in this field.

Computer-aided pathway design tools are more often cited by other CAD tools

and reviews than actual users. This could indicate that user-demand is not met

yet and that there is still place for improvements and research in retrosynthesis.

The same phenomenon was observed in synthetic organic chemistry and was

attributed to a lack of trust from end-user into both the software’s results and

its added-value capabilities compared to the work of a skillful chemist [58, 89,

216].

Obviously, the trust in CAD predictions should grow progressively with the ac-

cumulation of successful in vivo validations reported in the literature and by

the industry. However, most pathway prediction softwares do not assess their

predictions with new in vivo experiments and often propose the re-discovery of

few examples of pathways that are naturals or that were reported by others. If

those examples are necessary to show-case softwares capabilities they constitute

by no means a serious statistical evaluation and could contribute to the lack of

user trust. Following that idea, the interest of modeling enzymatic promiscuity to

discover new enzymatic activities is rarely put to trial in in vivo experiments [29,

217, 218], and the same goes with the prediction of pathways efficiency.

This trust problem is not new in bioinformatics and has been tackled more than

once, most notably in structural bioinformatics. For instance, the CASP (Critical

Assessment of protein Structure Prediction) is a friendly competition that pro-

poses every few years a series of challenges for stuctural bioinformatics groups

interested into the modeling of proteins structures [219]. Recently discovered 3D

structures are kept secrets while the primary sequences are sent to the competi-

tors. To participate, they must provide a predicted 3D model that gets evaluated

at the end of the competition with the release of experimental data. The same

kind of "scientific Olympics" exist for the prediction of PRotein Interactions

(CAPRI) [220], gene Function Annotation (CAFA) [221], biological text-mining

(BioCreative), sequence assembly (Assemblathon), and many more [222]. Instead

of punctual assessments, others proposed a platform for a Continuous Auto-

mated Model EvaluatiOn (CAMEO) of methods related to the 3D structure, model

quality, contact residue and ligand binding site using daily newly deposited data

in the Protein Data Bank [223]. We could transpose the exact same concept of

"community computational challenge" [224] to models in systems biology and

metabolic engineering [225, 226] to assess the quality of pathway and enzymatic
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promiscuity predictions tools. As a matter of fact, Salis’s team that is responsible

for the RBS calculator, a predictive model of translation initiation rate, recently

embraced this idea of continuous tests by implementing the first automated

test system for gene expression models [227]. We believe a critical assessment of

reaction network prediction softwares would greatly benefit the field by providing

a fair comparison of such expert systems, which would ultimately encourage

users’ trust in the results provided by those softwares.

Another trust issue comes from the fact that biological engineers are not only

experts in their own field but also at searching information in the scientific

literature (and on the Internet); tasks that are not so trivial for a software. Failing

at reporting available information is obviously a problem for the efficiency of

CAD programs but maybe more importantly it is also a breach in the trust of its

users. Gathering information is a difficult task not only because databases are

incomplete and not always up to date with the literature, but also because we

assist nowadays to the multiplication of primary data sources. For instance, since

2012 four new databases have emerged to store xenobiotic degradation pathways

(MetaPath [228], enviPath [229], XMetDB [230], MetaTox [231]), a task that was

pioneered by UM-BBD in 2003 [232] and was last updated in 2010 [233]. Each of

those databases may contain reactions that are not reported somewhere else and

that might be essential for some application.

It is inspiring to see so many efforts to gather data about reactions, but on the

other hand it is saddening that the community did not succeed yet to systemati-

cally deposit such data in a centralized repository under a recognized authority.

A great example to follow would be the one of PubChem (NCBI), a database of

chemicals that propose other databases to deposit their data as "Substances" and

then proceed to canonicalize and cross-link them under a "Compound" identi-

fier [234]. The result is that virtually all known chemicals are on PubChem and

are easy to query both for humans and softwares, which makes the latter much

more able to shine by their features instead of their capacity to import data from

multiple sources. We could imagine a similar strategy for metabolic reactions or

reaction rules using already well-established infrastructures such as Rhea, the

reaction database from the European Bioinformatics Institute [235]. In the end,

the creation of a centralized deposition service for reactions would reduce the

cost of record curation efforts and favor the completeness of reaction data for

CAD softwares. This would ultimately increase the quality of their predictions

so that nothing a user could do by himself would be out of the capabilities of an

automated software, hence contributing to build user trust.
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sensing-enabling metabolic pathways
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4.1 Highlights

• Transcription factors represent a starting material of choice to build new

biosensors

• Evolution and rational design are making advances toward tailor-made

transcriptions factors

• Metabolism indirectly expands the scope of chemicals that can be detected
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4.2 Abstract

Bacteria rely on allosteric transcription factors (aTFs) to sense a wide range of

chemicals. The variety of effectors has contributed in making aTFs the most

used input system in synthetic biological circuits. Considering their enabling

role in biotechnology, an important question concerns the size of the chemical

space that can potentially be detected by these biosensors. From digging into

the ever changing repertoire of natural regulatory circuits, to advances in aTF

engineering, we review here different strategies that are pushing the boundaries

of this chemical space. We also review natural and synthetic cases of indirect

sensing, where aTFs work in combination with metabolism to enable detection

of new molecules.

4.3 Introduction

Allosteric transcription factors (aTFs) responding to chemicals have an intimate

link with the history of molecular biology since the unraveling of the lac operon.

The chemical diversity that they can sense is now considered critical for the de-

velopment of a wide range of biotech applications. In addition to being central

in the standing efforts to develop biosensors monitoring environmental pollu-

tants [112], aTFs are now enabling synthetic biology applications in the medical

field as well [237, 238]. They are also becoming critical in metabolic engineering

where they enable high-throughput screening of strains producing added-value

chemicals [128, 239] and optimization of metabolic pathways through dynamic

regulation of the expression of key enzymes [120]. Advances is these fields should

accelerate as synthetic circuits are becoming more and more predictable, modu-

lar and scalable [240] but the limited diversity of chemical inputs is a bottleneck

in the development of applications. The list of well-characterized aTFs is regu-

larly increasing to tackle this issue [241] but the needs are not met yet. While

synthetic biologists dream about tailor-made aTFs, such ability will require a

deep understanding of how they work and evolve in nature.

Here we showcase recent approaches aiming at broadening the scope of chem-

icals that can induce aTFs. Several other reviews are available for more details

concerning the applications of aTFs in biotechnology [109] or comparison of

aTFs to other types of sensors [110].
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4.4 Mining allosteric transcription factors in
nature

In nature, aTFs evolved to recognize a multitude of chemicals such as antibiotics,

primary or secondary metabolites, quorum sensing molecules, or man-made

pollutants. Decades of effortful individual characterization regularly expanded

the known frontiers of the chemical space within reach of these proteins. This

knowledge is now organized and regularly updated in several databases where

couples of aTF-effectors can be found [242–245]. BioNemo for instance compiles

almost a hundred xenobiotic-responding aTFs that are the fruits of a very recent

evolution as most of these molecules have appeared in the environment since

the industrial chemistry era [244]. Many lessons about aTF families, mechanisms,

and evolutionary potential have been learned on the way, thoroughly reviewed

by De Lorenzo et al. [246] in the case of xenobiotic sensing.

Most of the natural sensing abilities remain probably uncharted as effectors are

unknown for the majority of sequenced aTFs. A promising strategy consists in

using comparative genomics to identify the binding sites of an aTF on the genome

and thus predict its target genes which allow reconstruction of the regulon [247].

By assessing the function of the regulated metabolic pathway, known metabolites

can be proposed as potential effectors for the aTF. This kind of approach has been

demonstrated both with members of the LacI family [247] and of the ROK family

[248].

With some aTFs, for instance those belonging to the large TetR-family, genetic

context alone can be sufficient to make educated guesses about the effectors.

Most aTFs from this family have their genes divergently oriented and less than

200 base pair away from the genes that they regulate [249]. Recently, predictions

drawn from this feature have been coupled with phylogenomics to propose

candidate effectors that were successfully validated experimentally. After building

a relational tree organizing thousands of sequences from TetR-family members

in subfamilies, Cuthbertson et al. [250] incorporated all known effectors on the

tree and observed that similar effectors would cluster with the same subfamilies.

Given the important diversity of effectors recognized by TetR- family members,

the predictive aspect of such relational tree could be a powerful tool to identify

new couples of aTF-effectors from the hundreds of thousands of TetR sequences

available in databases.

A more direct way to dig into natural diversity is to use a screening method for

substrate-induced gene expression (SIGEX). SIGEX begins with the systematic
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Fig. 4.1: Schema of the dual selection employed while screening allosteric transcrip-
tion factor (aTF) variants. Top panels represent targeted molecular state in
presence or absence of the investigated effector. The graphs represent the
distribution of fluorescence intensity among a population of variants with the
gates that must be used to select the cells exhibiting the appropriate response.
The first step of selection (left) aims at eliminating aTF that lost the ability to
repress their cognate promoter. Instead of fluorescence-based cell sorting, this
step can also be replaced by a selection on the basis of the ability to repress
expression of a toxic protein [252]. The second step (right) aims at selecting
aTF induced in presence of the effector.

cloning of fragments from metagenomic libraries into an operon-trap vector

containing a promoter-less fluorescent protein. Fragments containing an aTF and

associated promoter can be isolated by fluorescence-based screening in presence

of potential effectors. This approach regularly yields new characterized aTFs by

screening environmental DNA extracted from contaminated areas [251]. Because

the chemical space recognized by nature is rapidly evolving at the contact of the

human civilization, these approaches tapping directly into this rich diversity will

probably continue to be a first line solution to the lack of biosensors.

4.5 Engineering the sensing scope

The regulatory function of aTFs makes them suitable for high-throughput screen-

ing protocols aiming to isolate variants induced by new chemicals. Importantly,

aTF redesign experiments necessitate a dual screening strategy to avoid selecting

inactivated or non-inducible mutants (Figure 4.1). When structures of the aTF

are available (ideally co-crystallized with effectors) to guide the process, such

screenings coupled with mutagenesis methods can be sufficient to isolate aTF

able to recognize new chemicals [253–255].

While aTFs are composed of modules such as ligand-binding domain (LBD), DNA-

binding domain (DBD) and linker domain, an important difficulty to engineer

them resides in their interdependency to ensure allostery of the protein [256].
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Fig. 4.2: Recent examples and chemical structures of new effectors yielded by various aTF redesign strategies.
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Changes in conformation induced by an effector must propagate successfully

in the protein to change its affinity to DNA and this propagation can easily

be disrupted by mutations. Counterintuitive lessons have been learned, for

instance through the observation that mutations outside the LBD could lead to

important changes in effector specifity. Nonetheless, allostery can be preserved

through careful engineering guided by expert knowledge. For example, shuffling

LBD and DBD from members of the same family have been demonstrated with

the LacI/GalR family [257, 258]. This approach could yield more functional

chimeras since a new database containing structural and mutagenesis data is

now available to help predicting allosteric positions in this family [259]. Hopefully,

the knowledge gained about maintenance of allostery in such chimeras will help

engineering LBD recognizing new chemicals in a modular way.

However, in most cases, the wiring diagram of allostery is not known and an aTF

must be considered as a fragile whole. Consequently, mutagenesis efforts should

not be targeted at subdomains but ideally cover the whole sequence. This put a

major limit on the chances of fruitful explorations since mutagenesis campaigns

are bound by the transformation efficiency of bacteria (108). In this context,

computational design tools can be used to reduce the design space. By helping

the identification of amino acids playing roles in binding, specificity or allostery,

these tools can define priority targets on which mutagenesis efforts should be

focused. Several recent successes suggest that these approaches outperform

random mutagenesis at altering effector specificity.

For instance, despite lacking an experimentally determined structure, Jha et al.

[260] used structural bioinformatics tools to model the aTF PobR, and performed

docking experiments that identified 16 important residues in the predicted LBD.

The authors then used a "natural drift" heuristic in which they restricted them-

selves to one mutation by identified codon, and used the BLOSUM62 substitution

matrix to keep only the most naturally observed substitutions. After flow cytom-

etry screening, they found several hits with gain of function for induction by

their target chemical. These variants had around ten mutations compared to the

native sequence, covering most of the predicted positions.

Taylor et al. [252] proposed an end-to-end workflow for redesigning aTF speci-

ficity and compared several strategy to explore variants space, including compu-

tational design, random and targeted mutagenesis. They notably took advantage

of a full-length single amino-acid substitution scanning of the LacI aTF to dis-

cover positions away from the LBD involved in allostery and specificity. Protein

design approaches leveraging such mutational scanning data are considered

to have an important potential [256, 261, 262]. The authors challenged their

computational design abilities by developing biosensors for four chemicals with
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Tab. 4.1: Examples of indirect sensing via metabolism.

Host Sensed compound Intermediates Regulator (organism) Ref.
E. coli (natural) Lactose Allolactose LacI [264]
Thauera aromatica (natural) Toluene Benzylsuccinate TutBC [265]
Mycobacterium tuberculosis (natural) Cholesterol Cholest-4-en-3-one; 3-oxocholest-4-en-26-oyl-CoA KstR [266]
Mycobacterium smegmatis (natural) Cholesterol Cholest-4-en-3-one; 3-oxo-4-cholestenoic acid KstR [267]
Paracoccus sp. (natural) L-Gluconate L-5-Ketogluconate; D-Idonate LgnR [268]
Azoarcus sp. (natural) 3-Methylbenzoate 3-Methylbenzoyl-CoA MbdR [269]
Sphingobium sp. (natural) Ferulate Feruloyl-CoA FerR [270]
Rhodopseudomonas palustris p-Coumarate p-Coumaroyl-CoA CouR [271]
Comamonas testosteroni (natural) Benzoic acid Benzoyl-CoA GenR [272]
Thermus thermophilus (natural) Phenylacetic acid Phenylacetyl-CoA PaaR [273]
E. coli (synthetic) Salicylaldehyde Salicylate NahR (Pseudomonas) [274]
E. coli (synthetic) Lindane 1,2,4-Trichlorobenzene XylR (Pseudomonas putida) [130]
E. coli (synthetic) 2-Chloro-4-nitrophenol Chloro-1,4-benzoquinone; chlorohydroquinone LinR (Sphingomonas paucimbilis) [196]
E. coli (synthetic) Cocaine Benzoic acid BenR (Pseudomonas putida) [196]
E. coli (synthetic) Parathion 4-Nitrophenol DmpR (Pseudomonas sp.) [196]
E. coli (synthetic) Hippuric acid Benzoic acid BenR (Pseudomonas putida) [196]
E. coli (synthetic) 3-Hydroxypropionate(3HP) 3HP-CoA; acrylyl-CoA; propionyl-CoA; 2-methylcitrate PrpR (E. coli) [275]
E. coli (synthetic) 3-Hydroxypropionate(3HP) 3HP-CoA; acrylyl-CoA; acrylate AcuR (Rhodobacter sphaeoides) [275]

increasingly dissimilar structures from the natural LacI effectors. Interestingly,

they stressed the importance of a last step of ‘activity maturation’ consisting

of making chimeras of good variants in terms of induction with good variants

in terms of narrow specificity. This strategy allowed them to lose the natural

induction by IPTG while maintaining the newly developed induction by their

target chemicals.

An ambitious approach consists in performing part of the screening in silico. This

is a daunting task and expert knowledge of tools initially developed in other areas

such as drug design is necessary. One difficulty is that straightforward docking

of effectors on in silico variants to predict sequences with increased affinity

is usually futile. Indeed, affinity does not necessarily correlate with induction

abilities, and lower affinity can translate in higher induction abilities. Despite

these difficulties, De Los Santos et al. [263] recently used several co-crystallized

structures of the well characterized aTF QacR as starting point and performed an

in silico screening to modify QacR specificity to recognize vanillin. They tested the

best predictions with a cell-free screening protocol and obtained a few positive

hits. Remarkably, the structure of vanillin is completely different from the known

effectors of QacR (Figure 4.2). Although the cell-free in vitro screening selected

aTFs variants that turned out to be toxic in vivo, this framework could become

an important source of new biosensors in the coming years if it proves adaptable

to other aTFs and chemicals.

4.6 Regulation via indirect sensing

Both synthetic biologists and natural organisms can take advantage of indirect

sensing through metabolism to expand the chemical space detectable by aTF.

Chemicals that can be transformed in situ by enzymes into aTF effectors are

able to induce a response at the genetic level (Figure 4.3). Therefore, filling

a need for a biosensor toward a particular chemical can sometimes be done
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Fig. 4.3: Examples of synthetic and natural sensing-enabling metabolic pathways (SEMP). A. Computer-aided
design can leverage biochemical reaction databases to construct synthetic routes that transform a chemical
of choice into a known allosteric transcription factor (aTF) effector. B. In addition to the enzymes required
for production of 3-hydroxypropionate (3HP), enzymes able to transform 3HP into detectable molecules
were implemented in E. coli. These two alternative SEMP allowed monitoring of 3HP via two different
aTF. SEMP 2 exhibited the best response to 3HP and was therefore used to help the high-throughput
optimization of 3HP bioproduction process. C. The lac operon necessitates the secondary activity of b-
galactosidase to transform lactose into the natural effector of LacI, allolactose. D. The specific regulation of
the anaerobic degradation pathway of 3-methylbenzoate in Azoarcus sp. (1) The induction of the operon
starts with derepression of the nested promoter controling specifically the CoA-ligase which in turn
increase the pool of the effector 3-methylbenzoyl-CoA. (2) When the effector reach higher concentrations,
the rest of the operon is transcribed and the catabolism is initiated.
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more simply by chemically modifying the target molecule than by engineering

the specificity of aTF. Thanks to the immense reservoir of known biochemical

reactions, many sensing-enabling metabolic pathways (SEMP) can be designed

to transform nondetectable molecules into detectable ones. Engineered bacteria

harboring such proper combination of enzymes and transcription factors have

seen their sensing abilities extended to previously non-detectable molecules

such as lindane [130], salicylaldehyde [274] or cocaine [196] to name a few. In

the context of metabolic engineering, this strategy has recently enabled the

monitoring of 3-hydroxypropionate (3HP) to speed up the development of a

biobased production process. Because of the lack of aTF able to sense 3HP,

Rogers and Church [275] developed two alternative SEMP connected to PrpR

or AcuR that allowed combinatorial testing of fermentation conditions (Figure

4.3 b). Systematic design of SEMP has been achieved by leveraging metabolic

pathway databases, databases of known aTF effectors and retrosynthetic pathway

design tools, leading to the development of 5 new whole cell biosensors [196]. A

webserver is now available to the community to predict SEMP for chemicals on

demand [153].

In nature, a growing number of SEMP-like motifs have been recently reported

(Table 4.1). The reasons why indirect sensing is selected by evolution in some

cases are not understood yet. The lac operon for instance is induced indirectly in

presence of lactose only after its transformation into allolactose by a secondary

activity of b-galactosidase (Figure 4.3 c). This secondary activity and the LacI

aTF have been shown to be strictly co-selected [276] thus raising the question of

the advantage of this SEMP motif over an evolution of LacI toward direct sensing

of lactose. Another example of regulation motif with occurrence among several

bacteria able to detect aromatics consists in using aromatic CoA-thioesters as

effectors. In the case of 3-methylbenzoate sensing by Azoarcus sp. this SEMP

has been well characterized and shine some lights on the type of effects these

motifs can have on the genetic response profile. Juarez et al. [269] observed that

the CoA-ligase producing the bona fide effector molecule is under the control

of two promoters, one controlling the whole multi-enzyme degradation operon

and a second one which is nested in the operon to add a second layer of control

specifically on this enzyme. Both promoters are equally essential for growth in

3-methylbenzoate and they are both regulated by the same aTF, MbdR, but their

induction kinetics and dynamic range appear different. When put in presence of

3-methylbenzoate, the expression of the CoA-ligase is first induced moderately

without the rest of the operon. This leads to an increase of the 3-methylbenzoyl-

CoA pool in a positive feedback fashion, ultimately triggering the expression of

the whole degradation operon through induction of its main promoter (Figure 4.3

d). Positive feedbacks are usually associated with interesting effects in response

to signal and such exchanges between the metabolic and the genetic layers sup-
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port the growing view of metabolism taking part in the computations performed

by cells [277]. How much SEMP motifs actually play a role in computing signals is

unclear. The reflexion could be fueled by studies demonstrating that rich biologi-

cal behaviors such as linearization of dose-response can emerge at the metabolic

level without requiring genetic circuits [278]. Understanding the effects of SEMP

motifs could even shed light on regulatory circuits essential in pathogenesis of

bacteria such as Mycobacterium tuberculosis where the sensing of cholesterol is

also mediated by several enzymatic steps [266, 267].

4.7 Conclusion

The methods described in this review represent promising progress toward "on

demand" aTFs, however, they still require important expertise and efforts. Be-

cause the range of applications extends over many disciplines, one issue is that

laboratories with such expertise in aTFs are often not the same as laboratories

facing the needs to detect new chemicals and they do not necessary know on

which relevant target molecules to focus their efforts. An era of synthetic biology

was therefore dominated by applications inspired by the availability of bioparts.

A new paradigm is emerging where applications are instead inspired directly by

problems but this will necessitate minimizing the needs for expert knowledge

through standardized methods of biosensor development.

While different methods may lead to functional biosensors for the same chem-

ical, the overall cost and efforts involved can vary considerably. It is therefore

recommended to wisely choose the most appropriate method considering each

new target chemical. If an aTF detecting a structurally similar molecule can be

found in databases, evolution protocols are probably the fastest approach. In

other cases, the most appropriate approach can be determined by considering

the nature of the chemical, itself being usually related to the field of application.

For example, environmental monitoring applications typically need biosensors

for xenobiotics that are already in contact with microbial communities in the

environment. Mining exposed metagenomes seems therefore more straightfor-

ward than engineering approaches. Because aTFs may evolve subsequently to

enzymes, indirect sensing through metabolism is an alternative when environ-

mental exposure is too recent for aTFs to be found. For instance, Product-Induced

Gene EXpression (PIGEX) approaches using aTFs detecting likely metabolites

from the target chemical can yield new enzymes from metagenomes and create

SEMP biosensors at the same time [279–281].
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A substantial part of metabolic engineering efforts is focused on bioproduc-

tion of natural products of secondary metabolisms. Biosensors enabling high-

throughput screening of strains have chances to be immediately identified by

mining microbiomes in contact with these products [282]. On the contrary

metabolic engineering for xenobiotic production might require development of

biosensor de novo through more sophisticated engineering approaches. Luckily

the field of metabolic engineering is motivated by the promise of short term

industrial applications, and is therefore becoming the biggest contributor of new

biosensors. It is likely that approaches to develop tailor-made biosensors will be

further improved and standardized through this driving force and will in turn

benefit to other fields.

Some fundamental knowledge may also be gained on the way, as in the case of

indirect sensing via SEMP. Whether the role of SEMP is simply limited to sensing

in nature, or whether metabolism enables some level of computation will require

further investigation but synthetic biologists will certainly follow such discoveries

if additional design principles can be unraveled.
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5SensiPath: computer-aided
design of Sensing-enabling
metabolic Pathways
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Sensing-Enabling Metabolic Pathway

Fig. 5.1: Concept of sensing-enabling metabolic pathway.

This work was originally published in Nucleic Acids Research web server issue

and authored by Baudoin Delépine, Vincent Libis, Pablo Carbonell and Jean-Loup

Faulon.

Only minor modifications have been introduced in the chapter below.
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istry, single-compound query). All authors contributed to the preparation of the

manuscript.

5.1 Abstract

Genetically-encoded biosensors offer a wide range of opportunities to develop

advanced synthetic biology applications. Circuits with the ability of detect-

ing and quantifying intracellular amounts of a compound of interest are cen-

tral to whole-cell biosensors design for medical and environmental applica-

tions, and they also constitute essential parts for the selection and regulation

of high-producer strains in metabolic engineering. However, the number of

compounds that can be detected through natural mechanisms, like allosteric

transcription factors, is limited; expanding the set of detectable compounds is

therefore highly desirable. Here, we present the SensiPath web server, acces-

sible at http://sensipath.micalis.fr. SensiPath implements a strategy to

enlarge the set of detectable compounds by screening for multi-step enzymatic

transformations converting non-detectable compounds into detectable ones.

The SensiPath approach is based on the encoding of reactions through signature

descriptors to explore sensing-enabling metabolic pathways, which are putative

biochemical transformations of the target compound leading to known effec-

tors of transcription factors. In that way, SensiPath enlarges the design space by

broadening the potential use of biosensors in synthetic biology applications.

5.2 Introduction

Synthetic biology and metabolic engineering applications often require as part of

their design a way to assess the presence or to quantify the amount of a compound

of interest. Genetically-encoded biosensors such as riboswitches and allosteric

transcription factors offer the possibility to control the expression of a gene of

choice. This feature makes them valuable for many applications [109, 110] such

as pollutant monitoring or high-throughput screening of optimized strains and

enzymes [283–285], as expression of reporter genes like fluorescent proteins

can be linked to the concentration of the compound of interest. Moreover, the

ability of these biosensors to provide input at the genetic level opens the way

to more complex downstream signal processing and actuation [286]. Examples

of applications of such circuits range from threshold activation in presence of

pathological concentration levels of biomarkers [287] to the creation of a feedback

control motif leading to yield improvement for a chemical producing strain

[120].
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There is thus a critical need for biosensors, but it appears that current strategies

for finding new biosensors may not be sufficient to answer all the needs. Although

remarkable progress has been made in the field of genetically encoded biosensor

design [252, 260, 288] and genome mining [289], the number of chemicals that can

be detected is still limited and thus constitute a bottleneck in the development of

synthetic biology applications.

New strategies of biosensing can be considered to tackle this issue. One of

them relies on indirect sensing by transforming the molecule of interest into

a detectable one. Such strategy has been successfully used with the help of

enzymes to transform a key metabolite such as L-tyrosine [290] or L-DOPA [291]

into pigments and thus allowing high-throughput screening of overproducers.

The same strategy can also be employed to transform the molecule of interest

into a molecule for which a genetically-encoded biosensor is available [130, 275].

We recently demonstrated that this approach could be attempted in a systematic

fashion by combining information on the available biosensors and automatic

design of enzymatic networks. This led to the development of five new whole-cell

biosensors for pollutants (parathion, 2C4NP), biomarker (hippuric acid) and

drugs (cocain, nitroglycerin) [196].

In order to open this untapped source of biosensors for synthetic biologists, we

hereby present SensiPath (http://sensipath.micalis.fr), a web-based tool

assisting the design of sensing-enabling metabolic pathways (SEMPs). SensiPath

will serve users wishing to perform cell-mediated detection of a compound when

no direct-sensing solution is feasible. The primary objective of SensiPath, thus,

is to enlarge the number of detectable compounds for synthetic biology appli-

cations. The algorithms we implemented to simulate biochemical reactions are

derived from the well- tested RetroPath [71]. It notably allows to take advantage of

enzymatic promiscuity, i.e. the ability that enzymes have to process structurally

similar substrates, thus yielding more results. SensiPath is built from a compre-

hensive list of more than 100 000 compounds and 87 000 reactions from four

metabolic databases, covering most of the known metabolism. We also collected

a large dataset of more than 500 detectable compounds for which intracellular

biosensors exist from several gene expression regulation databases, focusing our

search on allosteric transcription factors.

5.3 Material and Methods

Figure 5.2 shows an overview of how SensiPath works, the details are exposed

in the following subsections. SensiPath is based on a comprehensive internal
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Fig. 5.2: SensiPath flowchart. Users query a target compound (blue), either as an ex-
ternal database identifier or as a standard InChI. Target is processed to gather
reachable compounds through enzymatic reactions; detectable compounds
are annotated (green). Results are displayed both as (a) the set of pathways
leading to recognized detectable compounds; and (b) the whole computed
graph around the target.

database of biochemical reactions and compounds encoded as chemical signa-

tures. Once a compound query is submitted, it performs a search in order to

find a match against all the enzymatic reactions that we have collected in our

database. The search is carried out in order to predict reachable compounds from

the target. This search generates a metabolic graph at up to two enzymatic steps

away from the target, in which nodes are compounds and edges are reactions.

Detectable compounds are identified and annotated by a score of similarity based

on searching against the list of known detectable compounds in the database.

For later reference, all SensiPath sources in its current online version are available

on FigShare (https://dx.doi.org/10.6084/m9.figshare.3144616.v1) in

addition of our list of detectable compounds (https://dx.doi.org/10.6084/
m9.figshare.3144715.v1).

5.3.1 Source databases

SensiPath predictions are based on imported data from metabolic and gene

expression regulation databases. We gathered data from multiple sources to

cover most of available knowledge in current databases.

Reactions

Known biochemical reactions were extracted from main common reaction databases

(Rhea (v66, http://www.rhea-db.org) [292], MetaCyc (v19.1, http://metacyc.
org) [293], BRENDA (v15.2, http://www.brenda-enzymes.info) [51] as well
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as from a more specialized database, the Biocatalysis/Biodegradation Database

(http://eawag-bbd.ethz.ch, accessed in December 2015) [233]. We consid-

ered only reactions for which structures of all reactants were available, fully

defined and valid. Overall, we collected more than 100 000 compounds and 87

000 reactions with references to external databases.

Detectable compounds

We gathered a list of 504 putative detectable compounds focusing our search

on effectors of allosteric transcription factors from prokaryotes. Data were col-

lected from several gene expression regulation databases: RegulonDB (v9.0, http:
//regulondb.ccg. unam.mx) [294], RegPrecise (v4, http://regprecise.lbl.
gov) [243], RegTransBase (v7, http://regtransbase.lbl.gov) [242] and BioNemo

(v6.0, http://bionemo.bioinfo.cnio.es) [244].

5.3.2 Reaction and compound encoding

In order to encode the reactions we first normalized the compounds, next com-

puted molecular signatures and finally computed reaction signatures.

Compound normalization

The representation of compounds must be normalized in order to improve the

performance of the encoding method. In particular, compounds were repre-

sented under their aromatic form while charges and hydrogens were removed;

stereochemistry was kept.

Molecular signature

All compounds were encoded internally through their molecular signature [137].

The molecular signature of a compound is a list of overlapping molecular frag-

ments, each of them centred on a distinct atom. Thus, fragments represent atom

neighbourhood (also called atomic signature or atomic environment) in terms

of atom and bond type. Basically, a molecular signature is similar to the ex-

tended connectivity circular fingerprint (ECFP) [74]. We used fragments (atomic

signatures) with an environment diameter of 12 bonds.
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Reaction signature

All biochemical reactions were represented internally by reaction signatures [177].

The reaction signature σ(R) is defined in a vector space as the sum of molecular

signatures of products less the sum of molecular signatures of substrates:

dσ(Rn) =∑
i

dσ(Pi )−∑
j

dσ(S j )

where dσ(Pi ) and dσ(S j ) are the molecular signatures of substrate S j and product

Pi at diameter d .

This approach allows us to encode biochemical reactions by looking at the

changes occurring at the reaction center. Note that the specificity of a reaction

signature is determined by the diameter of the molecular signature, as lower diam-

eters encode multiple compounds while higher diameters are specific. Therefore,

reaction signatures have been shown as a handy way to model enzymatic sub-

strate promiscuity [71, 81, 177], i.e. the ability that enzymes have to process

structurally similar substrates. Our chosen diameter of 12 assumes a relatively

low degree of enzymatic promiscuity for the encoded reactions.

5.3.3 Matching algorithm

After integrating reaction signatures in our database, we can predict on-the-fly if

a compound can act as substrate of a reaction by using a new implementation of

the RetroPath forward algorithm [152]. If a compound C has a list of fragments

(atomic signatures and their respective occurrence) embedding the substrate

fragments contained in a reaction signature R (i.e. the negative part of reaction

signature), then the compound is said to match the reaction. The sum of the

signatures of compound C and those of the reaction R generates a new list of (pos-

itive) fragments P , representing the putative products generated by the reaction

signature acting upon compound C . If we can retrieve a set of known compounds

from those fragments, then the reaction is accepted and C is considered a valid

substrate for R to produce P .

5.3.4 Metabolic graph

Pathways are handled as a graph (where nodes are compounds and edges reac-

tions) with NetworkX python library [295].
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5.3.5 Similarity search

In order to annotate compounds structurally similar to detectable compounds

in predicted metabolic graphs, we precomputed the similarities between all

compounds and detectable ones. Indeed, promiscuous detection of structurally

similar compounds may not be reported in databases and should be checked in

the literature if no suitable detectable compound is found by SensiPath.

Similarity was evaluated with RDKit python library (http://www.rdkit.org/),

representing compounds with RDKit’s ECFP4 fingerprint implementation and a

Jaccard- Tanimoto index [296]. A Tanimoto of one is a perfect match.

5.3.6 Web server implementation

SensiPath web server is a Docker application running the following standard

software packages: Nginx, gUnicorn, Django and Postgres. Data and matching

functions are stored in the database.

5.4 Input and Output

5.4.1 Input

Users query SensiPath with the compound they wish to detect (figure 5.2, left

panel), either as an identifier from an external database (e.g. ChEBI available at

https://www.ebi.ac.uk/chebi/) or as a standard InChI (http://www.inchi-trust.
org/). InChI is a IUPAC string representation of compounds and can be easily

obtained from compound databases. Users can choose to search for detectable

compounds that are at one or two enzymatic steps away from their target.

5.4.2 Output

SensiPath displays its results in two views; (i) pathway view: the set of pathways

leading to recognized detectable compounds (figure 5.3 A); and (ii) graph view:

the whole computed graph around the target (figure 5.3 B), also available for

download as a standard Graph Markup Language file.
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Fig. 5.3: Results pages for querying "CHEBI:60056" at one step. (A) Pathway view.
List of sensing-enabling metabolic pathways, sorted by detectable compound.
Clicking reactions (arrows) or products will display a list of cross-references
to relevant databases. Cross-references which are displayed together are con-
sidered identical by SensiPath. (B) Graph view. Interactive computed graph
around the target (hexagonal node). Putative detectable compounds have a
green border. Selected elements (edge or node) have a bold border. Again,
clicking elements will display their respective cross-references (right panel).
Note that reactions leading to several products have duplicated edges; for
instance, benzoate and ecgonine methyl ester are both products of the same
biochemical reaction (hydrolysis by a cocaine esterase).

5.5 Case studies

Five examples of SEMPs were characterized experimentally in Escherichia coli

by our group to validate SEMP concept. For a model bacteria such as E. coli, in

vivo implementation of SEMPs only requires basic molecular biology knowledge.

As an example, we describe here the design steps required to build a strain of

E. coli able to detect the drug cocaine, and a strain able to detect the pollutant

parathion with the help of SensiPath. A detailed in vivo characterization for these

examples is described elsewhere [196].

We refer to "the metabolic module" as the genetic parts providing the enzymatic

transformations and to "the sensing module" as the gene circuit consisting of the

transcription factor, its responsive promoter and the reporter gene.

5.5.1 Cocaine detection

While several studies have shown interest in detecting cocaine in biological

samples, they rely on aptamers and nanoparticles sensors [101, 297], which do
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not allow the signal to be transferred to the genetic layer of a living organism, a

requirement for further in situ signal processing.

Here, we show how SensiPath was used in order to design a SEMP that detects co-

caine in vivo. To that end, SensiPath web server is queried using a chemical iden-

tifier of cocaine, either through CHEBI:60056 or InChI=1S/C17H21NO4/c1-18-

12-8-9-13(18)15(17(20)21- 2)14(10-12)22-16(19)11-6-4-3-5-7-11/h3-7,12-15H,8-

10H2,1-2H3/t12-,13+,14-,15+/m0/s1. SensiPath founds a candidate SEMP allow-

ing detection that is one enzymatic step away from the target. On the Graph

view (figure 5.3 B), the five different products obtained through known enzymatic

activities on cocaine are displayed. Clicking on an edge of the graph provides

a link to databases providing information on each reaction. One of these com-

pounds has a green border indicating that a biosensor is known to interact with

an identical or highly similar chemical structure. This suggests that the informa-

tion of the presence of cocaine in the medium can be transferred to the genetic

layer and thus constitutes a putative SEMP. All found SEMPs are summarized

on the Pathway view (figure 5.3 A). In the present case study, cocaine can be

hydrolysed and forms the detectable molecule benzoate. Clicking on the arrow

that represents the enzymatic transformation will display cross reference links to

external databases of enzymatic transformations. It is strongly recommended to

carefully check the bibliography that motivated the annotation of the reaction

in the database, since important results might be omitted or misrepresented

due to an incorrect curation process. In the case of cocaine hydrolysis, several

publications confirm the benzoate conversion and databases such as Rhea and

MetaCyc provide a direct link to Uniprot or GenBank where the sequence cod-

ing for the enzyme can be found (GenBank AF173165.1). This sequence can

be synthesized and cloned into an expression vector of choice to constitute the

metabolic module part of the SEMP.

In parallel, a query on BioNemo or RegTransBase for benzoate (or benzoic acid),

the compound reported by SensiPath as having a biosensor, leads to several

potential transcription factors that are known to interact with this compound

(BenM, BenR, CbdS, PcaR, TcbR, CatR, BadR and XylS). In our experimental

implementation, we chose the couple composed of BenR and its responsive

promoter pBen from Pseudomonas putida KT2440 after a quick assessment of

the available literature.

The sequence of pBen can then be synthesized and cloned in front of a reporter

gene of choice (e.g. a fluorescent protein) in addition to the transcription fac-

tor coding sequence in order to form the sensing module part of the SEMP. To

maximize the chances of proper expression of the heterologous proteins, we

recommend to perform a step of codonoptimization on all the coding sequences,
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to place them under control of inducible promoters and to use strain such as

BL21(DE3) due to its efficient protein expression capabilities.

5.5.2 Parathion detection

Synthetic biology application of biosensors in the field of environmental pro-

tection could take the form of microorganisms programmed with a "seek and

destroy" behaviour toward pollutants [298]. However, the task of engineering

tailor-made biosensors for pollutants has been difficult to date [299].

Parathion is listed as one of the twelve worst offenders persistent organic pollu-

tants according to the United Nations Environment Program and could benefit

from such synthetic biology applications provided that a biosensor is available.

A request on Sensipath for parathion, with identifier CHEBI:27928, leads to the

identification of a 1-step SEMP that depends on a phosphotriesterase (PTE)

allowing transformation of parathion into 4-nitrophenol. As in the previous

cocaine example, the proposed transformation could be verified in the literature

[300]. We have experimentally validated this SEMP with a metabolic module

based on the PTE coding sequence coupled with the sensing module made up of

the transcription factor DmpR and its responsive promoter Pu from Pseudomonas

sp. CF600. However, both PTE enzyme and DmpR promoter are known to be

promiscuous, and other pollutants harbouring phenolic structures could activate

DmpR. As this could impair applications requiring a high specificity, alternative

SEMPs were also explored.

Interestingly, with a 2-steps query, SensiPath’s Pathway view shows that 4-nitrophenol

can be an intermediate compound to another SEMP based on nitrite detection.

Indeed a second enzymatic step mediated by a monooxygenase [301] is able

to further transform 4-nitrophenol into nitrite, which is known to interact with

regulators such as NarL from E. coli. This alternative offers the possibility of devel-

oping a more specific biosensor, effectively discarding any risk of cross-activation

by phenolic compounds, as long as they do not have a nitro group. Going further

with this idea, high specificity target detection could be guaranteed by building

up combinations of alternative SEMPs in one or several strains.

5.6 Discussion

The development of novel biosensors is presently needed in order to enlarge

the set of detectable and observable metabolites that are available for synthetic
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biology applications such as in health, environment or fine chemical production.

In that direction, the SensiPath web server provides synthetic biologists with new

solutions to build circuits having the ability of triggering a genetic response when

a compound of interest is present. Our biosensor design solution is based on

the strategy, not fully explored previously, of performing an in silico screening

for enzymatic pathways linking the target to known detectable compounds. The

originality of the approach lies in the systematic search through a full enumer-

ation that SensiPath carries out, allowing discovery of novel sensing pathway

candidates in the metabolic space. Resulting SEMPs are appealing for synthetic

biologists because they can be easily built using conventional DNA assembling

techniques and tested in vivo. SensiPath thus provides an easy way to explore

right out of the box multiple biosensor constructs.

Depending on the application, the reliability of the candidate SEMPs identified by

our method may vary. Limitations of the SEMP method include the need for the

target compound to be able to co-localize with the enzyme (i.e. to enter the cells

or to be internally produced in the cell), and the need for enzymatic products

of the sensing pathway to be not too toxic to the cell. Such issues need to be

addressed in a case-by-case manner, since they greatly depend on the application

and on physico-chemical properties that are not always known for the compound.

Other potential limitations of the method hold with regards to the choice of

the biosensor. Although some information about the degree of promiscuity

of transcription factors may be available from databases and literature, this

aspect should be carefully considered in each application, especially if the final

application requires a high level of specificity. The choice of the biosensor should

also take into account dose response parameters such as the dynamic range

and linear range of detection. SEMP’s properties will depend on the actual

properties of the biosensor, an information that therefore should be considered

and retrieved from the available literature. In addition, promoter sequences

responding to transcription factors may not be always found in databases, often

requiring an investigation of associated references. This information nevertheless

is progressively becoming more available through repositories like the Registry of

Standard Biological Parts (http://parts.igem.org/MainPage).

In conclusion, we believe that the SEMP detection method is an interesting

alternative worth considering with respect to tailored solutions such as rational

design [252, 260] or genome mining [289]. To the authors acknowledgement,

this is the first time a web-based tool is proposed to design biosensors based

on the SEMPs approach. Other tools (such as M-path [73] or BioSynther [91] to

name a few) proposed finding pathways from one compound to another, but

they did not include any detectability concept in the way it was considered here.

In that sense, SensiPath and SEMPs will surely contribute to the design of new
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synthetic biology applications. Moreover, we should expect in the next years to

see the broadness of applicability of SEMPs to increase in parallel with progress

in reaction and gene expression regulation knowledge sources.
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6Expanding biosensing abilities
through computer-aided
design of metabolic pathways

Fig. 6.1: Graphical abstract depicting the experimental validation of Sensing En-
abling Metabolic Pathways. Cells with a sensing module (orange) but without
enzymatic module (blue) do not show any induction in presence of the target
compound (top). Once the enzymatic module is inserted, the signal is trans-
mitted through a detectable compound that triggers the induction, revealing
the presence of the target compound (down).

This work was originally published in ACS Synthetic Biology by Vincent Libis,

Baudoin Delépine, and Jean-Loup Faulon.

Only minor modifications have been introduced in the chapter presented be-

low.

Full reference

Vincent Libis, Baudoin Delépine, and Jean-Loup Faulon. “Expanding Biosensing

Abilities through Computer-Aided Design of Metabolic Pathways”. In: ACS syn-

thetic biology 5.10 (2016), pp. 1076–1085. DOI: 10.1021/acssynbio.5b00225
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Fig. 6.2: General concept of a cell equipped with a sensing-enabling metabolic path-
way (SEMP) allowing for the detection of a new chemical. A naturally un-
detectable molecule is transformed by a metabolic module into an inducer
molecule triggering a genetic response upon binding to a transcription factor.
While the figure illustrates the case of transcription factor working as a positive
activator, the same concept can be applied with a repressor or a riboswitch.

analysis. All authors participated in the interpretation of the results and in the

preparation of the manuscript.

6.1 Abstract

Detection of chemical signals is critical for cells in nature as well as in synthetic

biology, where they serve as inputs for designer circuits. Important progress has

been made in the design of signal processing circuits triggering complex biologi-

cal behaviors, but the range of small molecules recognized by sensors as inputs

is limited. The ability to detect new molecules will increase the number of syn-

thetic biology applications, but direct engineering of tailor-made sensors takes

time. Here we describe a way to immediately expand the range of biologically

detectable molecules by systematically designing metabolic pathways that trans-

form nondetectable molecules into molecules for which sensors already exist.

We leveraged computer-aided design to predict such sensing-enabling metabolic

pathways, and we built several new whole-cell biosensors for molecules such as

cocaine, parathion, hippuric acid, and nitroglycerin.

6.2 Introduction

Engineering of circuits in cells has made fast progress since the dawn of synthetic

biology. New modular tools and strategies regularly expand the toolbox [286].

Just considering the progress made in the last two years, signal processing in

biological systems can now rely on elements such as load drivers [302], memory

systems [303], amplifiers [304], coupling systems [305], or bow-tie architectures

[306], to name a few. Such tools enable the use of synthetic circuits in real life

applications where the complexity of the signals encountered in the environ-

ment was until now problematic [287]. Despite these intense efforts allowing
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Fig. 6.3: Sensing-enabling metabolic pathway (SEMP) design workflow. (a) Reactions are collected from bio-
chemical databases and encoded as reaction signatures. A reaction signature describes a biochemical
transformation rule as a list of fragments of the molecules that are modified during the reaction (See
Methods). (b) The effect of each reaction signature is simulated on each target. If a product is predicted
to form (i.e., if a target’s fragments match the ones of a natural substrate of the reaction), the generated
structure is injected back into the target list, in case it can be further transformed. The metabolic space is
extended by this iterative process until no more products are formed or if a limit is set on the number of
iteration (n = 3 in this work). (c) Finally, the extended metabolic space is represented as an oriented graph
where the nodes are compounds and the edges represent enzymatic reactions. This graph is colored by
labeling the compounds that are found in the transcription factor effectors databases. Pathways linking a
target to a gene inducer can then be automatically enumerated.

precise control of circuit behavior, the development of applications is slowed

by the limited number of inputs available. Usually, inputs to the genetic layer

of circuits are mediated by sensors such as transcription factors, riboswitches,

or two-component signaling pathways. Unfortunately, the number of organic

molecules detectable by well-characterized natural sensors is relatively small

[241]. Rational engineering of sensors through protein engineering or riboswitch

engineering has been accomplished [252, 307], but the time and effort neces-

sary to deploy such approaches still limits the number of available tailor-made

sensors.

Alternative strategies of biosensing could play a role in tackling this lack of in-

puts. In nature, information about a chemical signal can be indirectly conveyed

through enzymatic transformations. A classic example can be observed in the

Lac operon where information about the quantity of lactose in the medium is not

acquired by direct interaction with a transcription factor. Instead, a fraction of the

available lactose is transformed by β-galactosidase into allolactose, which is the

molecule detected by the transcription factor LacI. The use of metabolic transfor-

mation to convey information to the genetic layer has also been demonstrated in

synthetic biology to detect an aromatic and to obtain cell to cell communication

[274, 308, 309].

Here we explore the full potential of metabolism to enable detection of new

molecules and thus expand the scope of chemicals that can serve as input in

synthetic biology applications. We systematically search for enzymatic ways to
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transform undetectable molecules of interest into molecules detectable by exist-

ing biosensors (Figure 6.2). This requires the design of tailor-made pathways out

of thousands of individual enzymatic modules available in the pool of known bio-

chemical reactions, and necessitates the development of computer-aided design

(CAD) tools. As synthetic biologists developed CAD tools to guide the engineering

of genetic circuits [310, 311], metabolic engineers created powerful computa-

tional methods in the context of small molecule production in microorganisms

[35, 81]. Among them, mathematical abstractions have been developed to repre-

sent and simulate biochemical reactions in silico. When fed with entire databases

of known biochemical reactions, such a tool can extract a set of biochemical

reaction rules that can then be applied to any given substrate to generate poten-

tial products (i.e., predicted metabolites). Retrosynthesis tools can iteratively

apply these rules to reconstruct natural or synthetic metabolic pathways. We

leveraged this expertise to build a CAD tool exploiting 9,319 biochemical reaction

rules to search for sensing-enabling metabolic pathways connecting molecules

of interest to the genetic layer. We first evaluated the potential of this approach in

silico by predicting sensing-enabling metabolic pathways (SEMP) of molecules

such as drugs, biomarkers, and toxics. We then tested several predictions in E.coli

by assembling circuits made of heterologous enzymes and transcription factors.

We observed the successful fluorescent response of E. coli to several molecules,

including cocaine, parathion, 2-chloro-4-nitrophenol, hippuric acid, and nitro-

glycerin. In synergy with ongoing efforts of biosensor development, this strategy

offers an immediate expansion of the scope of inputs for synthetic circuits and

has the potential to open the way to new synthetic biology applications in fields

such as medicine and environment.

6.3 Results

6.3.1 The scope of detectable molecules is significantly
expanded in silico via enzymatic pathways

We evaluated the potential of this approach by predicting sensing pathways of

target molecules such as drugs, biomarkers of human diseases and molecule

with risk of toxicity for health and the environment. We gathered data sets rep-

resentative of these types of molecules from three public databases: DrugBank

[312], HMDB [134], Tox21 [313]. Systematic design of tailor-made SEMP for these

targets requires biochemical retrosynthesis and subsequent identification of in-

ducers in the generated products. The workflow we used consists of four steps:

(i) gather the whole trans-species Reactome (ts-Reactome) as a list of encoded

biochemical reaction rules; (ii) submit each target to the ts-Reactome rules to
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Tab. 6.1: Example of Sensing-Enabling Metabolic Pathway (SEMP) Targets marked by a star ("*") have their
SEMPs implemented and tested in vivo over the course of this work (see Supporting Information Figure
6.8).

Target Enzymes and metabolites Sensor and effectors

Cocaine*
illicit drug

Cocaine esterase (Rhodococcus sp.)

3.1.1.84: Benzoate
BenR (Pseudomonas putida)

Benzoate

Heroin
illicit drug

Heroin esterase (Rhodococcus sp.)

3.1.-.-: Acetate (2×)
NR I (Escherichia coli)

Acetate

Aspirin
drug

Acetylsalicylate deacetylase (Rattus norvegicus)

3.1.1.55: Salicylate
NahR (Pseudomonas putida)

Salicylate

Caffeine
drug

Methylxanthine N1-demethylase (Pseudomonas putida)

1.14.13.178: Formaldehyde
FrmR (Escherichia coli)

Formaldehyde

Paracetamol
drug

Aryl acylamidase (Rhodococcus erythropolis)

3.5.1.13: Acetate
NR I (Escherichia coli)

Acetate

Barbituric acid
drug

Bar (Rhodococcus erythropolis)

3.5.2.1: Ureidomalonate
N-malonylurea hydrolase (Rhodococcus erythropolis)

3.5.1.95: Malonate

FapR (Bacillus subtilis)

Malonate

Nitroglycerin*
drug/explosive

NemA (Escherichia coli)

4.99.1.-: Nitrite (2x)
NarL (Escherichia coli)

Nitrite

Chlorpropham*
pollutant

AmpA (Paracoccus sp.)

3.5.1.-: 3-Chloroaniline
TadR (Delftia tsuruhatensis)

3-Chloroaniline

2-chloro-4-
nitrophenol*
pollutant

PnpA (Burkholderia sp.)

1.14.13.-: Chloro-1,4-benzoquinone
PnpB (Burkholderia sp.)

1.6.5.-: Chlorohydroquinone

LinR (Sphingomonas paucimo-

bilis)

Chlorohydroquinone

Propanil
pollutant

AmpA (Paracoccus sp.)

3.5.1.-: Propionate
PrpR (Corynebacterium glutam-

icum)

Propionate

Parathion*
pollutant

PTE (Pseudomonas diminuta)

3.1.8.1: 4-nitrophenol
DmpR (Pseudomonas sp.)

4-nitrophenol

Hydrogen cyanide
chemical warfare agent

Cyanide hydratase (Gloeocercospora sorghi)

4.2.1.66: Formamide
Formamidase (Paracoccidioides brasiliensis)

3.5.1.49: Formate

FdsR (Ralstonia eutropha)

Formate

Cyclosarin
chemical warfare agent

PTE (Pseudomonas diminuta)

3.1.8.-: Cyclohexanol
ChnA (Acinetobacter sp.)

3.5.1.49: 1.1.1.245: Cyclohexanone

ChnR (Acinetobacter sp.)

Cyclohexanone

Hippurate*
biomarker

HipO (Campylobacter jejuni)

3.5.1.32: Benzoate
BenR (Pseudomonas putida)

Benzoate
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DrugBank 59 55 11 4

7.9% detectable (+118%)

51

91.1% undetectable
(96.6% non-processable)

1458

HMDB 56

55.2% undetectable
(85.3% non-processable)

325135 1423137

44.8% detectable (+129%)

Tox21 217

93.6% undetectable
(96.9% non-processable)

6791169 2468216

6.4% detectable (+182%)

3-steps

2-steps

1-step

direct sensing

undetectable

Shortest pathway:

undetectable
& non-processable

Fig. 6.4: In silico prediction of detectable compounds among three data sets. Compounds labeled in the "direct
sensing" category (yellow) are already present in the data set of natural transcription factor’s effectors.
Compounds in other colors (orange, blue, green) are reached by sensing-enabling metabolic pathways
(SEMP). Nonprocessable compounds (hashed) are compounds that do not participate in known enzymatic
reactions (as a product or a substrate). Data sets correspond to the DrugBank sections "approved drugs"
and "illicit drugs"; HMDB’s biomarker compounds are associated with a human disease and the entire
Tox21 data set of putative toxic compounds.

generate products; (iii) iterate on the products and generate a hypergraph around

targets; and (iv) screen the hypergraph for inducers and output putative SEMPs.

The ts-Reactome was based on 3 major biochemical databases (BRENDA [51],

Metacyc [314], and Rhea [292]) that were merged and encoded in reaction sig-

natures [177], a mathematical representation of reactions that we developed

previously. Reaction signatures have been proven useful for metabolic pathway

design in the context of microbial production of value-added compounds [217].

The ts-Reactome reached a total of 9,319 unique reaction rules. When itera-

tively applying these reaction rules to the targets and their generated products,

combinatorial explosions can be computationally demanding and we therefore

limited to 3 steps the maximum length of the pathways. Once the hypergraph

was generated it was colored with known inducers sourced from 4 databases of

transcription factor effectors: BioNemo [244], RegTransBase [242], RegulonDB

[294], and RegPrecise [243]. An overview of the workflow is represented in Figure

6.3, and the labeled graph output from the DrugBank data set can be seen in

Supporting Information Figure 6.6. The pathways in the graph linking a target

molecule to a natural transcription factor effector were automatically enumer-

ated to allow statistical analysis and selection of proof of concept examples for in

vivo implementation.

In each of the considered target data sets a number of compounds were found to

be naturally detectable by existing biosensors, respectively 59, 135, and 169 for

DrugBank, HMDB, and Tox21. Through metabolism, the number of detectable
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compounds grows to 123 (Drugbank), 280 (HMDB), and 477 (Tox21). Therefore,

this approach at least doubled the number of detectable molecules that can be

considered for sensor development in each of the studied data sets (Figure 6.4).

Most compounds in the data sets that remain undetectable are products of or-

ganic chemistry that are not processed by any known enzyme and therefore no

SEMPs could be predicted by this method. Remarkably, if a compound is pro-

cessed by an enzyme the chances are high (>66%) that at least one SEMP will

be found in 3-steps or less. Moreover, the connection with an existing biosen-

sor is usually possible in a small number of enzymatic steps as the number of

compounds that necessitate long SEMP (3 steps) is significantly lower than the

ones connected through 1 and 2 step pathways. A short selection of interesting

candidates for biosensor development and associated SEMPs is displayed in

Table 6.1.

6.3.2 Implementation of SEMPs in vivo expands E. coli
sensing abilities

In order to validate the concept in vivo, we implemented in E. coli representative

SEMPs from the predictions related to each of the targets data sets (1 drug, 2

pollutants, 1 biomarker). For each SEMP, the genes coding for the required

enzymes were cloned into a metabolic module plasmid allowing control of the

enzymes’ expression level by IPTG. In parallel the genes coding for the required

heterologous transcription factors were cloned into a sensing module plasmid

under the control of an arabinose-inducible promoter and a red fluorescent

protein (RFP) was placed under the control of their associated promoters. The

two modules are compatible for cotransformation in the same strain. Prior to

full characterization of SEMPs we identified optimal expression levels of the

heterologous transcription factors by varying the arabinose concentration in the

presence of the natural effectors (see Methods).

Whole-cell biosensors for illicit compound detection can provide a cheap way

to determine the presence of a molecule in an unknown mixture. Among the

predictions we obtained by processing the DrugBank database’s section "Illicit

Drugs" we selected a SEMP providing E. coli with the ability to detect cocaine.

As shown in Table 6.1, the transformation of cocaine by an esterase (CocE from

Rhodococcus sp.) produces benzoate which can be detected by the transcription

factor BenR from Pseudomonas putida. E. coli BL21(DE3) was first transformed

only with the sensing module bearing the transcription factor BenR and a RFP

under the control of pBEN promoter. This strain emits a strong fluorescent

signal in the presence of benzoate but not in the presence of cocaine (Supporting
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Fig. 6.5: In vivo characterization of sensing-enabling metabolic pathways (SEMP).
Cotransformation of E. coli with both the metabolic module and sensing
module confers sensing abilities toward new molecules. The dose-response
relationship of engineered E. coli strains to the natural effectors and to the
target molecules cocaine (a), parathion (b), hippurate (c), and 2C4NP (d). (e)
shows the fluorescent response of three strains of E. coli harboring a RFP fused
to pYeaR promoter (controlled by NarL) in M9 medium or in M9 supplemented
with 50 µM nitroglycerin. Laboratory strain BL21 responds to nitroglycerin, but
strain JW1642, which is knocked out for the NemA enzyme, does not. However,
response can be restored in JW1642 by providing a functional copy of NemA
on a plasmid. Fold change represents the ratio between the fluorescence
observed at a given concentration and the fluorescence of uninduced controls
of the same strain; a value of 1 represents no induction. Each data point is
the mean of at least 3 replicates, and error bars represent standard deviations.
Smooth curves represent dose-response fitting of the scattered data points.
Statistical significance was determined using Student’s t-test with a P-value
cutoff of 0.005.

112 Chapter 6 Expanding biosensing abilities through computer-aided design of

metabolic pathways



Information Figure 6.10a). Upon cotransformation with a metabolic module

containing CocE, a fluorescent response also occurs in the presence of cocaine,

indicating the expected extension of the sensing scope of the bacteria (Figure

6.5a). Comparison of the dose-response curves of the strain toward cocaine and

the natural effector benzoate suggest that the enzymatic step have no or little

impact on the biosensor performance features. The linear range of detection and

dynamic range for cocaine stays in the same order of magnitude as benzoate.

Another interesting application is the development of whole-cell biosensors for

monitoring chemicals in the environment. Parathion is a major environmental

threat and counts among the "dirty dozen", the 12 worst offenders persistent or-

ganic pollutants according to the United Nations Environment Programme. The

transformation of parathion by a phosphotriesterase (PTE from Pseudomonas

diminuta) produces 4-nitrophenol, which can be detected by the transcription

factor DmpR from Pseudomonas sp. (see Table 6.1). An E. coli strain harboring a

sensing module based on DmpR and the associated DmpK promoter is able to

detect 4-nitrophenol in a dose-dependent fashion but not parathion (Supporting

Information Figure 6.10b). Upon addition of the metabolic module containing

PTE to this strain, the extension of the sensing scope takes place and a strong

fluorescent response occurs in the presence of parathion (Figure 6.5b). To our

surprise the fluorescent response of this strain to parathion is higher than for the

native inducer above 100 µM. The drop in signal in response to 4-nitrophenol

at 300 µM is probably due to the associated toxicity that diminishes growth (see

Supporting Information Figure 6.13). In addition to this effect on growth, flow

cytometry measurements indicate a decreased fluorescence in individual cells at

higher 4-nitrophenol concentration (See single cell data at 1 mM in Supporting

Information Figure 6.12).

In contrast, parathion is less toxic for these cells and in fact is not toxic at these

concentrations if the PTE enzyme is absent (Supporting Information Figure 6.13).

Moreover, despite the decrease in growth rate associated with the intracellular

formation of 4-nitrophenol, the individual fluorescence of these cells in response

to parathion keeps increasing gradually up to 1 mM (Supporting Information

Figure 6.12). Partial or delayed transformation of parathion at high concentration

may allow the cells to stay healthy longer and produce more signal.

Medical applications of synthetic biology often rely on biosensors for biomarkers

of human diseases [315]. We chose to implement a biosensor for an interesting

biomarker, hippuric acid, that is found at high concentration in the urine of a

person intoxicated with toluene. As predicted by the algorithm, transformation of

E. coli with a metabolic module harboring hippurase HipO from Campylobacter

jejuni allows degradation of hippuric acid into benzoic acid, which is detected
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in a dose-dependent fashion by the BenR-based sensing module (Figure 6.5c).

We monitored the activation of this hippurate sensor and the cocaine sensor in

order to investigate if SEMPs have kinetics of detection different from a regular

benzoate sensor. Comparison of the response time to target compounds or to

the natural inducer benzoate shows that neither the HipO- or CocE-mediated

transformation step delays the fluorescent response (see Supporting Information

Figure 6.7).

The engineering of transfer of matter through metabolism has made important

progress during the last 20 years. Synthetic pathways as large as 23 enzymes

long have been successfully implemented to divert natural carbon flux toward

valuable compound production [28]. We wondered if transfer of information

could as well rely on multienzymatic pathways and we selected a target com-

pound that necessitates two consecutive transformations to allow detection.

2-Chloro-4-nitrophenol (2C4NP) belongs to a family of molecule with high tox-

icity for humans used in the chemical industry. Upon monooxygenation and

subsequent reduction performed by two enzymes from a strain of Burkholderia

sp., 2C4NP is transformed into chlorohydroquinone, which can be detected by

LinR, a transcription factor found in Sphingomonas paucimobilis (see Table 6.1).

All three genes were cloned into the modules and conferred E. coli the ability

to detect 2C4NP (Figure 6.5d), while it was not possible with the LinR-module

alone (Supporting Information Figure 6.10d). With our setup, the sensing module

based on LinR transcription factor and a fragment of the LinE promoter from

Sphingomonas paucimobilis had a small dynamic range in E. coli. This could

probably be overcome by directed evolution as promoter activity can be linked to

a selectable output. 2C4NP is highly toxic for E. coli, thus limiting our measure-

ments to a 100 µM upper limit. Remarkably, only the strain with the metabolic

module could survive at a concentration of 2C4NP higher than 75 µM (Supporting

Information Figure 6.13), this is probably due to the detoxifying effect of the two

enzymes from Burkholderia sp.. This situation is the opposite to that observed in

the case of the biosensing of parathion where the intermediate metabolite was

more toxic to the cells than the initial target molecule.

Finally, an interesting case emerged from the predictions as a sensing-enabling

pathway to the vasodilator drug and explosive nitroglycerin was identified with

both metabolic module and sensing module component already present in wild

type E. coli. Indeed, the promiscuous NemA enzyme from E. coli is known to

allow degradation of nitroglycerin into nitrites that are naturally monitored in E.

coli by the NarL regulator. This suggests that wild type E. coli exhibits a fortuitous

transcriptional response to nitroglycerin through a SEMP-like circuit. In order

to test this hypothesis we transformed E. coli with a plasmid harboring a RFP

fused to the native promoter pYeaR, which is controlled by NarL. This strain
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successfully produces a fluorescent response when cultivated in the presence of

nitroglycerin. To confirm the SEMP dependency of this response we transformed

the same reporter plasmid into JW1642, an E. coli strain with a knocked-out NemA

enzyme. This strain is not anymore able to respond to nitroglycerin. Finally, we

introduced a functional copy of NemA on a second plasmid into JW1642 and

observed a restoration of the fluorescent response to nitroglycerin (Figure 6.5e).

This confirms that NemA is enabling the transcriptional response to nitroglycerin

of E. coli and represents an interesting example of a computationally elucidated

naturally occurring SEMP. A summary of all the SEMP validated experimentally

in this work is represented in Supporting Information Figure 6.8.

6.4 Discussion

Biological sensors are central for synthetic biology to solve real-world problems.

Numbers of promising systems involving biosensors have been developed for

medical, environmental, and industrial applications. The approach described

here at least doubles the number of molecules that can be considered for sensor

development in each of the studied compound classes (toxics, biomarkers, and

drugs). SEMPs can be created without the need for time-consuming protein and

riboswitch engineering or discovery of natural sensors. Moreover, the number

of chemical candidates for such a sensing strategy should automatically grow

in time, as the number of characterized sensors and biochemical reactions will

continuously increase in databases. For these reasons, we envision SEMPs as an

important new source of biosensors that will fruitfully be integrated within the

modular synthetic biology toolbox.

Very recently a SEMP approach was used for the monitoring of a product of

interest for industrial bioproduction, 3-hydroxypropionate [275]. By increasing

the number of value added chemicals that can be monitored through fluorescent

readout, SEMPs could alleviate the bottleneck that metabolic engineers currently

face with the low throughputs of conventional measurement methods.

As another example of potential application, the hippuric acid sensor described

here could be a starting point for a cheap way of controlling urine from workers

in the paint industry, especially in the developing world, where a lot of toluene

intoxications occur due to lack of regular testing. However, this application

requires the cells to emit a signal upon reaching a clinically relevant threshold

in complex medium. Encouragingly, such ability was achieved recently with a

modular signal processing strategy (digitalization and amplification) allowing

6.4 Discussion 115



glucose detection at selected thresholds in clinical urine samples from diabetic

patients [287].

In addition to the proof-of-principle examples described in this work, it is in-

teresting to note that the detection of parathion was achieved with the phos-

photriesterase variant PTE-S5 [300], which is known to have an important sub-

strate promiscuity against several organophosporous compounds [316]. Among

them are chemical warfare agents such as cyclosarin that could also be detected

through the same strategy. Transformation of cyclosarin by PTE-S5 produces

cyclohexanol, a compound being subsequently transformed by Acinetobacter

sp.’s ChnA enzyme into cyclohexanone, for which a ChnR-based biosensor has

already been characterized for metabolic engineering applications [317]. While

cyclosarin counts among the most toxic substances ever created, its toxicity

comes from the inhibition of the enzyme acetylcholinesterase in the brain; there-

fore, organisms such as E. coli can detect it without suffering the associated

toxicity.

Intuitive limitations of SEMPs are shared with other intracellular biosensors, such

as the need for sufficient membrane permeability to extracellular targets and a

limited toxicity of the targets for the chassis. As a potential option to minimize

these issues, we expect SEMPs to be easily transplanted to artificial cells that

have been shown to serve as viable chassis for both biosensors and metabolic

pathways [318, 319]. Specific limitations of SEMPs reside in the need for non-

toxic metabolic intermediates and the risk of specificity issues. These biosensors

are unable to discriminate between the presence of the target molecule in the

medium and any intermediates of the SEMP. Careful consideration should thus

be given to the risk of crosstalk if one of the intermediate is a possible contami-

nant in the envisioned biosensing application. Additionally, the potential ligand

promiscuity of enzymes and transcription factors must be kept in mind if high

specificity is required for a particular application. Potential cases of specificity

issues linked to promiscuity are depicted in Supporting Information Figure 6.11.

While detection of multiple targets could be advantageous in environmental

applications, this would usually be problematic in medical applications. Directed

evolution of a SEMP guided by its fluorescent output is an option to overcome

false-positive activation. Lastly, changes of physicochemical properties between

the target molecule and the intermediates of the pathway might result in un-

expected properties. For instance, a decrease in the permeability coefficient of

metabolites resulting from the transformations could lead to their accumulation

inside cells. This could lower the detection limit of the sensor.

Aside from the synthetic biology tool aspect, one may wonder if SEMPs represent

a motif frequently used in nature and why. To our knowledge, this has not been in-
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vestigated yet. Nevertheless, recent reviews suggest that the role of the metabolic

layer in integrating information about the medium or the internal state of the

cell is underestimated compared to the role of the genetic layer [277, 320]. While

the natural occurrence of a response to nitroglycerin seems fortuitous, recent

evidence concerning the Lac operon shows that evolution strongly coselected the

LacI transcription factor and the side-reaction site of β-galactosidase that leads

to production of allolactose [276]. The fact that LacI never evolved to directly

detect lactose suggests that this conserved SEMP motif is advantageous to the

homeostasis although the mechanism is not elucidated yet.

6.5 Methods

6.5.1 Data source

We retrieved 9,319 distinct encoded reactions (reaction signature diameter 12,

see below) and their associated compounds from BRENDA 2015.1 [51], Meta-

Cyc 18.5 [314], and Rhea v61 [292]. Targets were gathered from DrugBank 4.1

[312] (all approved drugs and illicit drugs data sets), the Human Metabolomic

DataBase [134] (all compounds linked to a human disease) and the Distributed

Structure-Searchable Toxicity (DSSTox) Database Network [313] (all compounds).

Finally, we retrieved 505 distinct transcription factor effectors from BioNemo

[244], RegTransBase [242], RegulonDB [294], and RegPrecise [243].

6.5.2 Molecular and reaction signatures

Molecular signatures [77] (MS) are graph-based descriptors that encodes the

"neighborhood" of each atom of a molecule, similarly to Morgan’s or ECFP finger-

prints. Each kind of "neighborhood", or atom environment, is a feature of MS. A

reaction’s signature (RS) is computed by subtracting the MS of the substrates to

the MS of the products of the reaction [177], and takes the general form:

dσ(Rn) =∑
i

dσ(Pi )−∑
j

dσ(S j )

where dσ(Pi ) and dσ(S j ) are the molecular signatures of substrate S j and product

Pi at diameter d . The variable diameter (d) of a molecular signature determines

the size of the scope of the neighborhood that will be described around each

atom. When this diameter is set to a small value, structurally similar molecules

6.5 Methods 117



will share a lot of atoms with identical neighborhoods. This will allow a reac-

tion signature to be applied to substrates that are close but different to the ones

originally described in biochemical reaction databases. While small diameters

allows to simulate promiscuous activities of enzymes and predict more products,

it arbitrarily assumes a certain level of promiscuity from enzymes and thus lead

to the generation of a higher number of incorrect predictions. In this work we

used molecular and reaction signature at a large diameter (d = 12) to encode

compounds and biochemical reactions, we thus consider enzymes largely non-

promiscuous (unless several distinct reactions are reported in the databases for

the same enzyme). See Carbonell et al. [81] for detailed informations about

metabolic pathway design at lower diameter (d < 12).

6.5.3 Compounds and reactions preprocessing

The reactions were filtered in order to gather only biochemical reactions with a

structure available for all involved compounds. The compounds were filtered

using ChemAxon’s Checker and Standardizer tools (JChem v.15.4.27, 2015). We let

aside compounds with R-groups and the associated reactions. We performed the

necessary treatments to standardize the compounds such that their molecular

signature would be comparable. This involved an aromatization step and the

removal of explicit hydrogens. The resulting compounds and reactions were

processed to generate molecular (MS) and reaction signatures (RS). In the end,

we gathered 9,319 unique RS involving more than 18000 unique MS. Target com-

pounds were pretreated the same way and were encoded as MS.

6.5.4 SEMP prediction

Our previous work focused on the development of a synthetic pathway retrosyn-

thesis algorithm named Retropath [81]. We built further on this basis by devel-

oping a Python pipeline adapted to predict SEMP. In our implementation, each

target compound is successively used in-place of each substrate of each reaction

R . If the resulting putative reaction R ′ has the same reaction signature as R , then

we accept R ′ as a pathway step. In order to extend the pathway, the products of

R ′ are then considered themselves as targets. We generated pathways with up

to three steps. The result is a graph where the nodes represent compounds, and

edges represent reactions. Compounds are then matched to the list of transcrip-

tion factor effectors compounds (Jaccard-Tanimoto coefficient [296] over 0.99).

Finally, the sensing pathways are extracted from the graph with NetworkX graph

library v.1.11 [295]. Frequently a target can be sensed through several SEMPs

leading to different sensable compounds, with different pathway lengths. For
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the analysis of the predictions, detectable targets were counted only once even if

several SEMP were predicted.

Request for predictions on custom list of compounds can be addressed to Jean-Loup

Faulon.

6.5.5 Chemicals and reagents

Benzoic acid, cocaine hydrochloride, hippuric acid, 2-chloro-4-nitrophenol,

chlorohydroquinone, parathion-ethyl and 4-nitrophenol were purchased from

Sigma (St. Louis, MO, USA). Permission to purchase cocaine hydrochloride was

given by the French drug regulatory agency (Agence Nationale de Sécurité du

Médicament et des Produits de Santé) to allow development of a new biosensor.

Nitroglycerin was purchased from AccuStandard Europe (Niederbipp, Switzer-

land). Enzymes for cloning procedures (BsaI and DNA polymerase Q5) were pur-

chased from New England BioLabs (Evry, France) and primers were purchased

from Eurofins Genomics (Ebersberg, Germany).

6.5.6 Genetic constructs

Two custom plamids were assembled to serve as vector for each module. Metabolic

module vector is based on BioBrick standard vector pSB4T5 with pSC101 origin

of replication and Tetracycline resistance marker, modified to harbor (i) type IIs

restriction sites BsaI flanking cloning site and (ii) LacI transcription factor. Sens-

ing module vector is based on BioBrick standard vector pSB1K3 with pMB1 origin

of replication and Kanamycin resistance marker, modified to harbor (i) AraC

transcription factor, (ii) pBAD promoter, (iii) type IIs restriction sites BsaI and (vi)

a promoterless RFP. Coding sequences of genes BenR, CocE, HipO, were codon-

optimized for E. coli with Jcat 44 and natural BsaI sites were removed. These genes

were synthesized by Genscript (Piscat- away, NJ, USA). Coding sequence of PTE-

S5, LinR, pnpA, pnpB and DmpR were extracted by PCR from plasmids pMaIc2x-

PTE-S5 [300], pMEU2R [321], pET-pnpA, pET-pnpB [322], and bbak 1413001 from

the registry of standard biological parts (http://parts.igem.org), kind gifts from

Prof. Dan TAWFIK, Prof. Yuji NAGATA, Prof. Ning-Yi ZHOU, and iGEM team

EVRY 2014. Concerning sensing modules, LinR, BenR and DmpR sequences

were followed by transcription terminator BB a0015 from the registry of standard

biological parts, followed respectively with sequence of the LinE gene promoter

(i.e., the 153 base pairs in front of LinE CDS on the Sphingomonas paucimobilis

UT26 chromosome), pBEN promoter (i.e., the 150 base pairs in front of BenA CDS

on Pseudomonas putida KT2440 chromosome) or sequence of the Pu promoter
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(i.e., the 189 base pairs in front of DmpK CDS on Pseudomonas sp. CF600 plas-

mid pVI150). Concerning metabolic modules, T7 promoter with LacO operator

and a ribosome binding site were placed in front of CocE, HipO, PTE-S5 and

pnpA-pnpB CDS. All genes were amplified by PCR to add appropriate BsaI restric-

tion sites and they were inserted in either metabolic or sensing module vectors

using one-step GoldenGate assembly method [323]. In this setup the one-step

assembly places the heterologous transcription factor under control of pBAD

promoter and the promoterless RFP is placed under control of the heterologous

promoter (see Supporting Information Figure 6.9 for a detailed map of metabolic

and sensing modules). Annotated sequences for all constructs were deposited

on GenBank (accession numbers KU746628, KU746629, KU746630, KU746631,

KU746632, KU746633, KU746634, KU746635, and KU746636). Cloning of individ-

ual modules was done in DH5alpha and dose-response characterizations were

carried out in BL21(DE3) after transformation with either sensing module only or

both modules.

6.5.7 Biosensor dose-response characterization

For each biosensor strain, an isolated colony of BL21(DE3) harboring the appro-

priate plasmid(s) was inoculated in 2 mL of selective LB and grown overnight at

37°C. The overnight culture was diluted 1:100 in fresh selective LB and grown for

90 min under agitation at 37°C. Cells were then induced with IPTG 1 mM and ara-

binose and further grown until OD600 reached 0.1 for parathion, 4-nitrophenol,

benzoic acid, hippuric acid and cocaine sensors. For 2C4NP and chlorohydro-

quinone, sensor cells were grown until OD600 reached 0.4 to minimize artifacts

on the signal due to the high toxicity of 2C4NP. In our setup, optimal induction

levels of transcription factors were found to be obtained with arabinose levels of

0.001% (BenR) 0.1% (LinR) and none (DmpR). Candidate chemicals for biosens-

ing were dissolved in ethanol and 2 µL of different concentrations were mixed

with samples of 200 µL of cell culture. 2 µL of pure ethanol was mixed with nega-

tive control cell samples. Cocaine sensor cells and associated control cells lacking

metabolic module were grown in Eppendorf 1.5 mL microtubes with vigorous

agitation for 18 h hours at 30 °C, thus following optimal conditions described in

the literature for CocE activity. All other sensor cells were grown for 18 h with

agitation at 37°C in microplate reader TECAN Infinite 500. Absorbance at OD600

and fluorescence (Exc: 580 nm/Em: 610 nm) was measured with microplate

reader TECAN Infinite 500. All experiments were repeated at least 3 times on

different days with similar results.
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6.5.8 Characterization of the transcriptional response to
nitroglycerin of different E. coli strains

pYeaR promoter (i.e., 146 base pairs in front of YeaR CDS on E. coli MG1655 chro-

mosome) was amplified by PCR from purified chromosome and fused through

GoldenGate assembly with a promoterless RFP into a pACYC plasmid backbone.

The resulting plasmid pYeaR-pACYC was transformed into BL21- (DE3) or JW1642

from the Keio collection [324]. The coding sequence of NemA was extracted

by PCR from a BL21(DE3) strain and cloned under the control of constitutive

promoter J23100 into a pCDF plasmid backbone. A strain of JW1642 was co-

transformed with plasmids pYeaR-pACYC and NemA-pCDF to investigate if it

would restore the response to nitroglycerin. Cells were grown at 37°C in selective

M9 minimal medium with 0.5% glucose. Overnight cultures of each strain were

diluted 1:100 and grown until OD600 reached 0.1. 2 µL of nitroglycerin diluted in

ethanol was added to 200 µL of cell samples to a reach a final concentration of

50 µM. 2 µL of pure ethanol was added to control samples. Cells were grown for

18 h with agitation at 37°C and absorbance at OD600 and fluorescence (Exc: 580

nm/Em: 610 nm) was measured in microplate reader TECAN Infinite 500.
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6.6 Supporting information

BRENDA-S115469

RXN-13425
BRENDA-S115469

RXN-13424 RXN-13425

DB00907

BENZOATE
CPD-9777

CHEBI:17790

CPD-14389 CPD-14390
RXN-13424

Fig. 6.6: Extended metabolic space around the DrugBank dataset. This is an oriented hypergraph generated by
the bioinformatic pipeline described in Fig. 6.3, here visualized with Cytoscape. Similar graphs were
generated and (computationally) analyzed for the HMDB and Tox21 datasets. Nodes represent chemical
compounds and edges represent biochemical reactions. Each compound is associated strictly to one
node. Enzymes can be associated to different pairs of compounds, and thus can be associated to several
edges. Diamond shaped nodes represent target compounds from DrugBank (illicit or accepted drugs) and
circular shaped nodes represent compounds that are generated through up to three metabolic steps from
the initial target compounds. Nodes colored in green are naturally detectable compounds found in the
transcription factor effector databases. A zoom on the area around target compound DB00907 (cocaine)
shows the predicted products of different enzymatic reactions including the natural effector benzoate.
Compounds not involved with any reaction ("non-processed compounds") are not represented.
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Fig. 6.7: Monitoring of the response time to hippurate (a), cocaine (b) and benzoate
of strains equipped with SEMP. No delay is observed between response time
to the natural inducer benzoate and to the SEMP targets hippurate and cocaine
whether in presence of 100µM or 500µM of inducers. Cells were prepared in
the same way as for dose-response characterization experiments (see Meth-
ods). The longer response time for the cocaine sensor might be explained by
the difference of temperature at which the experiment was performed (30°C
instead of 37°C for hippurate sensor). RFU stands for relative fluorescence
units and consists in the raw fluorescence value measured by the platereader.
Dashed lines represent standard deviation of the three replicates.
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Fig. 6.8: Summary of the SEMP successfully implemented in vivo over the course of this work. Only one pair of
the represented metabolic and sensing modules was transformed in each strain. Implementation of a
sixth SEMP allowing detection of the pollutant chlorpropham (see Table 6.1) was not successful because
we were enable to obtain a response to 3-chloroaniline in E. coli based on the TadR transcription factor
from Delftia tsuruhatensis. This failure may be due to a gene induction mechanism that necessitates
compatibility with the host transcription machinery or that requires a co-inducing protein. Intuitively,
the choice of SEMP elements coming from organisms closely related to the host in terms of evolution is
expected to maximize chances of successful implementation.
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Fig. 6.9: Architecture of metabolic and sensing modules. (a) Map of the metabolic module harboring either CocE,
PTE-S5, pnpB-pnpA or HipO coding sequences. (b) Map of the sensing module harboring either BenR-
pBen, DmpR-Pu or LinR-plinE sequences to control RFP. Transcriptional isolation is ensured by BB aB 0015,
a double terminator from the registry of standard biological parts.
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Fig. 6.10: Dose response of control strains lacking metabolic module to the different compounds. (a)(c) Ben-
zoate sensing module alone; (b) 4-nitrophenol sensing module alone; (d) chlorohydroquinone sensing
module alone. Dose-dependent response is limited to the natural effector of transcription factors BenR,
DmpR, LinR (benzoic acid, 4-nitrophenol, chlorohydroquinone) when metabolic module is not present
to enable sensing scope extension to target molecules. At high concentration of target molecules, traces
of signal appeared even without metabolic module, this may be due to partial spontaneous hydrolysis,
impurities from synthesis or promiscuity of the transcription factor.

6.6 Supporting information 125



Fig. 6.11: Summary of SEMP-associated specificity modes of failure. A specific limitation of SEMPs resides in
their inability to discriminate between the presence in the medium of the target molecule (A) or of any
of the intermediates of the SEMP (B, C). In the context of whole-cell biosensors, this can be circum-
vented by the use of control strains lacking enzymatic steps to allow discrimination. Another specificity
issue might emerge from the fact that both transcription factors and enzymes can display high levels
of ligands promiscuity. It is interesting to note that an important degree of promiscuity of several el-
ements composing a SEMP (enzymes, transcription factors) does not necessarily translate into poor
sensor discrimination abilities. Discrimination issues only emerge either if the first step of the pathway
can transform several input compounds into the same output metabolite transmitted to the down-
stream steps of the SEMP (A’) or if structurally different output metabolites can also serve as effectors
to the transcription factor (A") (in this case both the first enzyme and the transcription factor must be
promiscuous).
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BL21: HipO metabolic module + benzoate sensing module

BL21: PTE-S5 metabolic module + 4-nitrophenol sensing module

BL21: pnpA-pnpB metabolic module + chlorohydroquinone sensing module

Fig. 6.12: Flow cytometry analysis of strains equipped with SEMP in presence of toxic concentrations of in-
ducer. Cells were cultivated in the same conditions as for dose-response characterization (see Methods)
and red fluorescence was analysed on a CyFlow Space cytometer (PARTEC) counting 20,000 events for
each sample. (a) Toxicity of benzoic acid leads to bimodal distribution of cell fluorescence at 2mM and
half of the population emits more fluorescence than with lower concentrations. Interestingly, hippuric
acid toxicity has a different effect on cell response as fluorescence at 2mM decreases below the level
observed with 100µM. (b) Toxicity of 4-nitrophenol leads to lower level of fluorescence at 2mM than at
100µM, similarly to what is observed with hippuric acid. On the contrary, proportionality of the response
to parathion is maintained even at toxic levels. As shown in suppl. Fig 8, parathion by itself is not toxic
unless PTE-S5 enzyme is present to transform it into 4-nitrophenol. This is probably the cause of the
robust graded fluorescent response at high concentration although the exact mechanism is unknown. (c)
Despite the low dynamic range of LinR, a small but graded response to chlorohydroquinone is observed
while response to 2C4NP only occurs at low concentration (75µM) and is completely abolished upon
reaching toxic levels.
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Fig. 6.13: Growth curves of the different strains in presence of the associated com-
pounds.
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Part II: conclusion &
perspectives

Part II summarizes our work related to biosensor design, in particular the use of

computer-aided pathway design softwares to find Sensing-Enabling Metabolic

Pathways (SEMPs).

In Chapter 4 we reviewed the interest of allosteric transcription factors (aTF) as

biosensors for metabolic engineering applications and different strategies that

can be deployed to discover new biosensors for specific compounds of interest.

Importantly, if the usage of biosensors is widespread in synthetic biology with

the utilization of inducible promoters, the variety of detectable compounds is

quite low in synthetic biology applications compared to what cells are capable of

[241]. This is explained by the desire in that community to use well-characterized

standard parts and should not be regarded as the limit of what can actually be

used in term of biosensors. Indeed, it is becoming quite common to find [325,

326] and optimize [274, 275, 327] biosensors, even as a preliminary step of a

bigger metabolic engineering study [328–331]. This trend should not go away

anytime soon with the ever growing addition of microbial genomes in databases

that will continue to provide new regulatory elements [332].

In Chapter 5 we presented SensiPath, a web application for the computer-aided

design of sensing-enabling metabolic pathways (SEMPs). We collected a dataset

of compounds detectable by allosteric transcription factors and used a new

implementation of a pathway design algorithm to predict short metabolic circuits

able to transform undetectable compounds into detectable ones. SensiPath has

several interesting features that makes it more than a random computer aided

pathway design software with a mapping of detectable compounds.

First, SensiPath is aware of compounds’ stereochemistry thanks to an update of

the molecular signatures [137]. This feature is still lacking from many reaction

prediction softwares despite being one of the major advantages of enzymatic

synthesis [12]. Stereochemical information is indeed difficult to gather from
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metabolic databases since it may be missing, incomplete or incoherent both for

compounds and reactions. It may also results in an additional combinatorial

complexity since chemicals are stored with all their stereoisomers. That is why

the easiest path is simply to ignore stereochemical data. Let us note that the way

SensiPath deals with stereochemistry is still quite naive (compounds are stored

both with and without stereo) and subject to improvements.

We can foresee that the exploitation of chemical ontologies like the one proposed

by ChEBI [333] will greatly help to store and interpret stereochemical relationship

between compounds in a meaningful way. It will also have a salvative impact on

the interpretation of compounds (and reactions) with partial structures (Markush

structures, R-groups) that are typically filtered out while creating reaction rules,

at the risk of losing important reaction mechanisms. In both cases, processing

concepts rather than actual structures could give insights to limit computational

burden by applying rules directly on class of compounds (e.g. "an alcohol")

instead of each of its members (e.g. ethanol, methanol, etc.). This idea would

be particularly well-adapted to a scenario in which users would interactively

decide how to consider a compound, i.e. with or without stereo information, as a

characteristic instance of a class of compounds, etc.

Second, SensiPath computes pathways on-demand and stores the results in a

database to serve future identical queries. This is quite different from other reac-

tion prediction framework such as XTMS [81] that use a precomputed Extended

Metabolic Space (EMS) to find pathways, and thus cannot work with input com-

pounds absent from the EMS. SensiPath is closer to an interactive use, like what

can be seen with MetaRoute [334], MRSD [335], and BioSynther [91].

In truth, both stereochemical perception and real-time computation features

were technical prototypes to prepare a new implementation of XTMS with ad-

ditional data. RetroPath2, that we presented in Chapter 3, superseded those

plans by giving users the flexibility to compute any kind of metabolic circuit [71],

including SEMPs. The dataset of 500 detectable compounds that is the main

novelty of SensiPath from an application standpoint is open-source and can

readily be used by other reaction prediction frameworks.

In Chapter 6 we presented the in vivo validation of the SEMP concept with the de-

sign of four new whole-cell biosensors, in addition of some statistics related to the

number of compounds that could theoretically benefit from such an approach.

Our main finding is that sensing through the metabolism significantly increases

the number of readily detectable compounds, as we doubled this number based

solely on our list of 500 effectors of allosteric transcription factors.
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Interestingly, the main limitation of the prediction of SEMPs was due to the

fact that many target compounds would not be transformed even once by any

of our reaction rules. Since this observation stands for compounds from the

Human Metabolite DataBase, the natural explanation would be that we were

missing reaction mechanisms. This highlights once again the importance of

an exhaustive reaction rules dataset. We could have used a more permissive

enzymatic promiscuity hypothesis while designing the rules (lower diameter, see

Chapter 2), but this would have generated more false positives and ultimately

slowed down our in vivo experimental validation effort. Thus, we can expect

much more compounds to be identified as detectable with a broader dataset of

enzymatic reactions. A thorough dataset of detectable compounds would also

greatly benefit our predictions.

Some of our predictions lead to cofactors or other commodity metabolites that

are endogenous to the chassis, but this is not detrimental to their practicality as

detectable compounds. Instinctively, we could think that this would lead to an

overwhelming specificity problem, in addition to a sensitivity challenge since

cells would react with their own regulation mechanism to a non-orthogonal SEMP.

However, we showed with the nitrite biosensor (used for nitroglycerin detection)

that the detection of an endogenous compound is possible and could be used in

SEMP design.

The development of generalist biosensors is highly desirable since they can be

used for many applications. As a matter of fact, the intracellular detection and

fluorescent report of NAD(P)H/NAD(P) ratios was the subject of intense research.

In 2013, Siedler et al. used SoxR to sense NADPH levels in E. coli and showed in a

proof-of-concept that it was suitable to screen alcohol dehydrogenase variants

by the impact of their activity on NADPH level (that is a cofactor) [336]. They

successfully increased the activity for an alternative substrate by 38% in a single

screen and proposed that this method could be used for the guided evolution of

all NADPH-dependent enzymes. Similarly, in 2016 Keasling’s group reported a

NADPH/NADP+ yeast biosensor that could be used for the dynamic regulation

of the redox state of cell factories [337]. Therefore, it appears that the detection of

cofactors that are widely abundant in cells is not only feasible but also desirable

for metabolic engineering applications.

The SEMP approach was tested by numerous in vivo applications. De Lorenzo’s

lab devised a similar strategy as soon as 2006 for the discovery of specific novel

enzymatic activities with a "genetic trap" that would report the transformation of

a substrate (supplemented) into a known detectable product. They proposed a

proof-of-concept with the search of dehydrochlorination enzymes that would

process lindane (a pesticide) into 1,2,4-trichlorobenzene (effector of an evolved
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XylR) [130]. In 2014, De Lorenzo used a SEMP-like concept to engineer a com-

munication channel between two Pseudomona Putida strains using benzoic

acid as a messenger for the detection of aromatic compounds [308]. Xue et al.

detected salicylaldehyde by a one-step transformation into salicylate that is de-

tectable by NahR [274] and proposed to use it in association with other aTF

to make whole-cell biosensors for the detection of a variety of aromatic pollu-

tants. Chong et al. developed a whole-cell biosensor with a pigment output for

ganophosphate pesticides detection using enzymatic promiscuity to transform

parathion, methylparathion, and fenitrothion into 4-nitrophenol that is readily

detectable by DmpR [338]. As we already mentioned, Church’s lab used the SEMP

approach to screen for variants producing 3-hydroxypropionate [275]. All those

results comfort the interest of SEMP’s methodology.

In the end, the perfect biosensor depends heavily on the final application and the

resources that are at disposition for the project [110]. SEMP have the merit to re-

quire few research effort if enzymes and aTF are available and are well-expressed

in the chassis organism. However, direct sensing should be preferred most of the

time since it allows a better handle on biosensors’ parameters [327]. Interestingly,

we should note that systems that were heavily optimized by evolutive processes

are quite different from what we could think of when keeping engineering prin-

ciples in mind (abstract hierarchical thinking, modularization and decoupling,

part standardization). One of the best examples might be found in enzymes that,

in addition of their catalytic function, also harbor an allosteric mechanism that

is controlled by metabolites of their pathway to regulate their efficiency. This

is indeed an ideal answer to the dynamic regulation problem since it is much

faster than anything necessitating a round of gene expression. If strategies exist

to engineer such allosteric mechanisms [339, 340], they require case-by-case

protein engineering that does not seems amenable yet to automated design in

metabolic engineering.

Overall, we argue in this thesis that the design of de novo metabolic pathways

greatly benefits from the integration of exotic data since they can bring innovative

solutions before the eyes of a human expert. We discussed in Part I how CAD

softwares could build users’ trust and encourage data exploration. In Part II, we

showed that the simple addition of a detectable compounds dataset revealed

a new utilization for our reaction prediction framework. We envision that the

integration of other datasets answering questions that are somehow related

to pathway design ("which compounds can be bought?", "which are toxics?",

"which pass the membrane?", etc.) will contribute too to the emergence of new

applications and to the perceived added-value of CAD softwares by users. In that

context, we need to go toward a better integration of predictive models, notably

Quantitative Structure Activity Relationship (QSAR), in order to predict relevant

136 Chapter 6 Expanding biosensing abilities through computer-aided design of

metabolic pathways



properties. Importantly, to maintain their trust, users must be kept in control of

the degree of confidence in data used by CAD softwares. This will be amenable by

more interactivity between users and bioCAD softwares. In that spirit, we should

take a leaf out of other CAD softwares’ book, notably those for architecture and

product design that adopted along the years plenty of features to empower their

users’ creativity and to enhance their collaborativity.

We expect that the advances in CAD will continue to lower the amount of nec-

essary prerequisite expert knowledge for biological engineers to express their

creativity, and we believe this will eventually contribute to the flourishment of

novel and smart metabolic engineering applications to solve the grand challenges

our society is facing. In this regard, let us quote a word of wisdom from Kasparov,

a chess-player that was considered the best of all time when he was defeated in

a ground-breaking game by the brute force power of Deep Blue, IBM’s artificial

intelligence (AI). Later, Kasparov conducted a rich reflection on AI’s potential for

humankind and remains to this day one of its best advocates. Interestingly, he

designed a new kind of chess (freestyle chess) in which human players are each

paired with an AI to free their creativity and came to some exciting conclusions

about human-computer interaction:

"I reached the formulation that a weak human player plus machine

plus a better process is superior, not only to a very powerful machine,

but most remarkably, to a strong human player plus machine plus

an inferior process.

At the end of the day, it’s about interface. Creating an interface that

will help us to coach machine towards more useful intelligence will

be the right step forward." ([@2])

.
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Title : Computer-aided design (CAD) tools for bioproduction and biosensing pathway engi-
neering
Keywords: computer-aided design, retrosynthesis, metabolic engineering, synthetic biology, biosensor

Abstract: Advances in systems and synthetic biology

are fueling our ability to develop successful metabolic

engineering applications for the sustainable produc-

tion of bio-based chemicals. We can envision a future

in which designer cells could be engineered to trans-

form any carbon source into any target compound.

This daunting task will be achieved by leveraging meth-

ods that proved themselves in other engineering disci-

plines. Among those, the use of Computer Aided De-

sign (CAD) softwares is expected to reduce the amount

of time and expert knowledge needed to design de

novo metabolic pathways. The first part of this thesis is

dedicated to our pathway prediction algorithm and its

CAD implementations. Most notably, we will present

RetroPath2.0, a versatile reaction network prediction

framework focused on retrosynthesis that is built to be

easily extensible by the community. In the second part,

we will highlight the interest of intracellular biosensors

for metabolic engineering and introduce SensiPath, a

web application that uses a reaction prediction engine

to design biosensing circuits for compounds for which

no direct biosensors are known. Altogether, this thesis

proposes that bioCAD tools should focus on empow-

ering users’ creativity and encourage them to explore

original applications.

Titre: Outils de conception assistée par ordinateur pour l’ingénierie de voies métaboliques
de bioproduction et de biodétection
Mots clefs : conception assistée par ordinateur, rétrosynthèse, ingénierie métabolique, biologie synthétique,

biosenseur

Résumé : Les récentes avancées en biologie

des systèmes et en biologie synthétique contribuent

déjà au fleurissement d’applications en ingénierie

métabolique visant une bioproduction renouvelable

de composés chimiques. Nous pouvons entrevoir

un futur où des microbes seraient conçus à la carte

afin de valoriser n’importe quelle source de carbone

en n’importe quel composé d’intérêt. Si la route

est longue avant l’accomplissement d’un tel objectif,

son parcours devrait en être grandement facilité par

l’exploitation de méthodes d’ingénierie déjà éprouvées

dans d’autres disciplines. On s’attend entre autre à

ce que l’utilisation de logiciels de Conception Assistée

par Ordinateur (CAO) diminue le temps et l’expertise

nécessaires à la construction de voies métaboliques

n’existant pas dans la nature. La première partie de

cette thèse est dédiée à notre méthode de prédic-

tion de voies métaboliques et à ses implémentations.

Nous décrivons tout particulièrement RetroPath2.0,

un outil de prédiction de réseaux de réactions met-

tant l’accent sur les applications de rétrosynthèse, et

qui est construit pour être facilement extensible par

la communauté. Dans la seconde partie, nous dé-

taillons l’intérêt des biosenseurs intracellulaires pour

l’ingénierie métabolique et introduisons SensiPath;

une application web qui exploite un outil de prédiction

de réactions pour concevoir des circuits métaboliques

permettant la biodétection de composés pour lesquels

aucun biosenseur direct n’est connu. Dans l’ensemble,

cette thèse propose que les outils de bioCAO devraient

permettre de révéler la créativité de leurs utilisateurs

et encourager l’exploration de nouvelles applications.
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