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Résumé

L’objet de cette thèse est l’étude quantitative du mouvement des particules intra-
cellulaires (e.g., biomolécules). La cellule est un environnement complexe composé
d’une multitude de structures inter-connectées. Ces structures échangent de la matière
organique directement via le cytosol ou par l’intermédiaire de filaments comme les mi-
crotubules, les filaments d’actine ou encore les filaments intermédiaires. La dynamique
des particules échangées détermine l’organisation et les fonctions cellulaires [Bressloff,
2014, Chapter 9]. Ainsi, l’estimation du mouvement des particules au sein de la cellule
est d’un intérêt majeur en biologie cellulaire puisqu’elle permet de quantifier précisément
les interactions entre les différents composants de la cellule.

Plusieurs techniques de microscopie quantitative permettent d’analyser le mouvement
des particules intra-cellulaires. Les plus populaires sont le Recouvrement de Fluores-
cence Après Photoblanchiment (FRAP), la Spectroscopie à Corrélation de Fluorescence
(FCS) et enfin le suivi de particules individuelles ”Single Particle Tracking” (SPT). Les
techniques FRAP et FCS reposent sur l’analyse moyenne d’un grand nombre de par-
ticules tandis que la méthode SPT permet de révéler des comportements individuels à
une résolution moléculaire. Dans cette thèse, nous étudierons le mouvement individuel
de particules correspondant à des biomolécules dans le contexte biophysique. Nous
adoptons une approche lagrangienne puisque nous analysons la trajectoire d’une même
particule au cours du temps. Ce concept est à distinguer du paradigme eulérien qui
étudie le mouvement local moyen des particules dans une région au cours du temps.

Nous modélisons les trajectoires des particules avec des processus stochastiques
puisque le milieu intra-cellulaire est soumis à de nombreux aléas. Les diffusions –
processus à trajectoires continues– permettent de modéliser un large panel de mou-
vements intra-cellulaires. Les diffusions sont très souvent étudiées en biophysique [Qian
et al., 1991, Saxton and Jacobson, 1997]. Dans la littérature, on distingue ainsi quatre
principaux types de diffusion: le mouvement brownien, la super-diffusion, la diffusion
confinée et la diffusion anomale. Des trajectoires représentatives de ces quatre groupes
de diffusion sont illustrées sur la Figure 0.1. Ces différents types de mouvement corre-
spondent à des scénarios biologiques distincts. Le déplacement d’une particule évoluant
sans contrainte dans le cytosol est modélisé par un mouvement brownien; la particule
ne se déplace pas dans une direction précise et atteint sa destination en un temps long
en moyenne. Les particules (appelées dans ce contexte ”cargos”), sont propulsées par
des moteurs moléculaires le long des microtubules et des filaments d’actine qui con-
stituent le cytosquelette de la cellule. Leurs mouvements sont alors modélisées par des

xi



Résumé

Figure 0.1: Trajectoires simulées représentant les différents types de diffusion. La trajectoire
bleue est brownienne; la trajectoire violette est générée par un mouvement brownien avec dérive
constante (4.2.3) et illustre la super-diffusion; la trajectoire rouge est issue d’un mouvement
brownien fractionnaire de paramètre h > 1/2 (2.5.7) et correspond à une super-diffusion; la
trajectoire cyan simulée avec un processus d’Ornstein-Uhlenbeck (3.3.14) est un exemple de
diffusion confinée; la trajectoire verte issue d’un mouvement brownien fractionnaire de paramètre
h < 1/2 (2.5.7) est associée à une diffusion anomale. Les paramètres des processus ci-dessus sont
reportés dans le Tableau (5.1)

super-diffusions.

La diffusion confinée [Metzler and Klafter, 2000, Hoze et al., 2012] correspond à la
situation où les particules sont bloquées dans des microdomaines. Quand une particule
se fraye un chemin dans un milieu encombré, son mouvement est modélisé par une
diffusion de type anomale [Saxton, 1994, Berry and Chaté, 2014]. Par la suite, nous
ne ferons pas de distinction entre diffusion anomale et diffusion confinée. Nous les
rassemblons sous une terminologie unique dite ”sous-diffusion”. En effet, dans cette
thèse, nous nous plaçons dans un contexte non-paramétrique dans lequel la distinction
entre diffusion confinée et anomale ne peut être réalisée pour des trajectoires courtes.
Un exemple de notre classification selon les trois groupes de diffusions considérés est
présenté sur la Figure 0.2.

xii



Figure 0.2: Classification de trajectoires 2D de la protéine Rab11a. La séquence est obtenue par
microscopie TIRF (en collaboration avec l’ UMR 144 CNRS Institut Curie PICT IBiSA). Nous
avons utilisé notre test à trois décisions au niveau α = 5% (voir Chapitre 4). Les trajectoires
browniennes sont labellisées en bleu, les trajectoires sous-diffusives en vert et les super-diffusives
en rouge.

Problématique

Déplacement carré moyen
Dans la littérature biophysique, les différents types de diffusion sont caractérisés par le
déplacement carré moyen ”Mean Square Displacement” (MSD) [Qian et al., 1991]. Soit
(Xt)t>0 le processus décrivant la trajectoire d’une particule. La courbe MSD est une
fonction du temps définie comme suit,

MSD(t) = E
(
‖Xt+t0 −Xt0‖

2
)
, (0.0.1)

où ‖·‖ est la norme euclidienne et E(·) est l’espérance sur l’espace probabilisé. La fonction
MSD du mouvement brownien est linéaire (MSD(t) ∝ t). Cette propriété remarquable
explique la popularité du MSD. Une représentation schématique des courbes MSD de la
sous-diffusion et de la super-diffusion est donnée sur la Figure 0.3. En pratique, nous
observons les positions successives d’une même particule Xt0 , Xt1 , . . . , Xtn en 2 ou 3
dimensions à intervalles de temps réguliers, c’est-à-dire que l’on a ti+1 − ti = ∆. On
estime la fonction MSD au temps j∆, où le décalage j est un entier, par:

M̂SD(j∆) = 1
n− j + 1

n−j∑
k=0
‖Xtk+j

−Xtk‖
2. (0.0.2)
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time

M
SD

brownien
sous-diffusion
super-diffusion

Figure 0.3: Schéma des courbes MSD typiques des différents types de diffusion.

Les estimations successives (0.0.2) du MSD à différents décalages j constituent une
estimation de la fonction MSD (0.0.1). Une méthode simple, largement utilisée en bio-
physique, consiste à ajuster la courbe obtenue à la fonction t → tβ. Ainsi, Feder et al.
[1996] déclare que la trajectoire est sous-diffusive si β < 0.9, super-diffusive si β > 1.1
et brownienne si 0.9 < β < 1.1 (voir Figure 0.4). Si β < 0.1, la trajectoire correspond à
un mouvement nul.

Limites

Le critère du MSD connâıt néammoins certaines limites. Tout d’abord, en tant que mo-
ment d’ordre deux, il ne permet pas de caractériser complètement la dynamique d’une
trajectoire. C’est la raison pour laquelle Gal et al. [2013] présentent d’autres statistiques
qui peuvent être associées au MSD pour analyser des trajectoires.

Le second problème majeur du MSD est lié à son estimation. La variance de
l’estimateur (0.0.1) augmente avec le décalage j. Ce problème est illustré sur la Fig-
ure 0.4 dans le cas de trajectoires browniennes. Les résultats exposés suggèrent que
la classification de Feder et al. [1996], basée sur le paramètre β, tend à classer une
trajectoire brownienne dans le groupe de la sous-diffusion ou de la super-diffusion en-
gendrant une erreur de classification. De plus, la variance du MSD est aussi affectée
à des décalages j plus petits par la présence de bruit due à l’erreur de localisation.
Pour tenir compte de ces erreurs, Michalet and Berglund [2012] détaillent une méthode
itérative pour déterminer le nombre optimal de décalages j à utiliser en présence de bruit
et rendre ainsi l’estimation plus robuste.

D’autres méthodes exploitant la fonction MSD ont été proposées ces dernières années.
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Figure 0.4: Règle de classification pour détecter les différents modes de diffusion à partir du
MSD. Les courbes rouges sont les courbes MSD limites définies par Feder et al. [1996] t →
tβ , β = 0.9 et 1.1.. Les courbes bleues constituent un intervalle ponctuel de probabilité 95%
associé au MSD empirique calculé sur des trajectoires browniennes de taille n = 30. Les courbes
correspondent aux quantiles d’ordre 2.5% et 97.5% de (0.0.2) et sont calculées par simulation de
Monte Carlo à partir de 10 001 trajectoires browniennes de taille n = 30.

Lund et al. [2014] proposent un arbre de décision pour sélectionner le meilleur modèle de
mouvement qui combine le MSD, le critère d’information bayésien (BIC) et le rayon de
gyration. Lysy et al. [2016] présentent une inférence basée sur un calcul de vraisemblance
pour distinguer deux modèles de sous-diffusion : le mouvement brownien fractionnaire
contre un processus solution de l’équation de Langevin généralisée. Les auteurs con-
sidèrent un modèle bayésien pour estimer les paramètres de diffusion et recourent au
facteur de Bayes pour comparer les modèles.

Afin de réduire la variabilité de l’estimateur du MSD, certains auteurs calculent les
courbes MSD sur un ensemble de trajectoires indépendentes plutôt que sur une seule.
Ces trajectoires peuvent avoir des longueurs différentes mais leurs dynamiques sont sup-
posées être identiques. Par exemple, Pisarev et al. [2015] considèrent un estimateur des
moindres carrés pondéré pour β, la pondération étant calculée à partir de la variance
du MSD. Les auteurs procèdent ensuite à une sélection de modèles basée sur le critère
d’Akaike modifié. Monnier et al. [2012] proposent une approche bayésienne pour cal-
culer les probabilités relatives d’un ensemble de modèles de mouvement. En général,
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Résumé

l’estimation du mouvement par la moyennisation des dynamiques de plusieurs particules
conduit à une simplification des processus biologiques sous-jacents [Gal et al., 2013].

Contributions
Dans cette thèse, nous proposons une nouvelle statistique Tn qui s’affranchit de certaines
limitations du MSD. La statistique Tn est définie comme une normalisation de la plus
grande distance parcourue par la particule depuis son point de départ. Nous interprétons
cette mesure comme suit:

1. si Tn est faible, la particule est restée proche de sa position initiale indiquant qu’elle
est potentiellement bloquée dans un microdomaine ou freinée par des obstacles
(sous-diffusion);

2. si la valeur de Tn est grande, la particule s’est beaucoup éloignée de sa position
initiale, probablement propulsée par un moteur moléculaire (super-diffusion).

Dans un premier temps, nous utilisons cette statistique pour classer la trajectoire as-
sociée à une particule dans un des trois groupes de diffusion. Ensuite, nous proposons un
algorithme basé sur Tn pour détecter les temps de rupture le long d’une trajectoire. En-
fin, nous appliquons notre méthode de classification dans le cadre d’une analyse spatiale
des mouvements intracellulaires.

Classification de trajectoires
Nous voulons associer les trajectoires observées à un des trois groupes de diffusion:
mouvement brownien, sous-diffusion et super-diffusion. Pour cela, nous avons développé
un test à trois décisions [Shaffer, 1980] dont la statistique de test est Tn. L’hypothèse
nulle indique que la trajectoire observée est générée par un mouvement brownien tandis
que les deux alternatives correspondent à la sous-diffusion et à la super-diffusion. Dans
cette thèse, nous étudions le comportement asymptotique de notre test sous l’hypothèse
nulle et en considérant quatre modèles paramétriques associés la super-diffusion et à la
sous-diffusion. Ces modèles paramétriques sont communément utilisés dans la littérature
biophysique. Enfin, nous avons proposé une procédure de tests multiples pour tester
simultanément une collection de trajectoires indépendantes observées dans une seule
cellule. Cette procédure est une extension de la méthode de Benjamini and Hochberg
[1995] aux tests à trois décisions. Cette procédure permet de contrôler le taux de fausses
découvertes ”False Discovery Rate” (FDR).

Détection de changement de mouvement le long d’une trajectoire
Lorsqu’on observe une trajectoire longue (plus de 100 points), il est possible que la par-
ticule en question ait changé de dynamique au cours du temps. Dans une telle situation,
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imposer un modèle unique de déplacement peut conduire à des interprétations fausses.
Nous avons donc développé un algorithme pour détecter les temps de rupture, c’est-à-
dire les instants qui correspondent à des transitions entre deux dynamiques différentes.

De nombreuses méthodes de détection de rupture existent, développées dans différents
contextes. Tout d’abord, Page [1954] a introduit le populaire CUSUM test pour détecter
des changements dans l’évolution d’un paramètre θ (par exemple la moyenne), en sup-
posant que t → θ(t) est une fonction constante par morceaux au cours du temps.
Plus récemment, Spokoiny [2009] a proposé une procédure basée sur des hypothèses
paramétriques locales pour détecter les ruptures dans des séries temporelles non station-
naires. Les détections de rupture pour des processus de diffusion sont aussi étudiées:
Pollak and Siegmund [1985] estiment le changement de la dérive (”drift”) dans le cas du
mouvement brownien avec dérive; une autre approche est celle des modèles de Markov
cachés [Rabiner and Juang, 1986]. En biophysique, Monnier et al. [2015] supposent que
les trajectoires observées peuvent être modélisées par un mélange de K mouvements
browniens avec des dérives et des coefficients de diffusion différents. Les états cachés
correspondent aux différentes valeurs des paramètres de ces mouvements browniens avec
dérive.

Dans notre cas, nous considérons que les changements de dynamique correspondent
à des changements de diffusion (brownien, sous-diffusion et super-diffusion). Nous
souhaitons aussi détecter les temps de rupture dans un contexte non-paramétrique. A
notre connaissance, il n’existe pas de méthodes pour détecter les temps de rupture as-
sociés à un changement de type de diffusion (brownien, sous-diffusion et super-diffusion).
Par conséquent, nous avons mis au point un algorithme séquentiel basé sur la statistique
Tn, calculée sur des sous-trajectoires de la trajectoire initiale et avons adapté le schéma
séquentiel proposé par Cao and Wu [2015]. Cet algorithme permet de contrôler la prob-
abilité de détecter un faux point de rupture lorsque la trajectoire est brownienne du
début à la fin.

Analyse spatiale

La régulation des processus cellulaires, comme la transmission synaptique, repose sur
des interactions moléculaires (liaison et dissociation à des ligands). Les molécules inter-
venant dans ces processus sont d’abord capturées et confinées dans des microdomaines
où s’effectuent des liaisons chimiques. Hoze et al. [2012] modélisent ces microdomaines
par des puits de potentiel. Les auteurs utilisent une approche eulérienne basée sur une
estimation non-paramétrique du paramètre de dérive du processus de diffusion. Cette
approche suppose l’observation d’un grand nombre de particules dans le domaine spatial
étudié. Cette situation ne cöıncide pas toujours avec la réalité expérimentale. De plus,
à cause de son caractère eulérien, l’algorithme de Hoze et al. [2012] n’est pas en mesure
de détecter un mélange de plusieurs modèles de diffusion observé localement dans une
région. Au contraire, il va estimer un mouvement moyen qui ne correspond pas au pro-
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Résumé

cessus biologique sous-jacent.
Nous proposons une procédure alternative pour détecter ces zones. Nous avons re-

cours à un algorithme de clustering couplé avec notre procédure de test pour détecter
les régions avec une grande concentration de particules sous-diffusives. Nous choisis-
sons l’algorithme DBSCAN [Ester et al., 1996] pour sa capacité à distinguer les vrais
clusters dans un environnement bruité. D’autres techniques de clustering sont capables
d’identifier des clusters en présence de bruit. Par exemple, Cao et al. [2007] proposent
une autre approche basée sur la méthode a-contrario. Nous ne considérons pas ce type
d’algorithme ici par souci de simplicité même si leur intérêt est indéniable dans notre
contexte. Nous évaluons notre méthode sur des données artificielles générées par le logi-
ciel Fluosim développé par M. Lagardere et O.Thoumine (Institut Interdisciplinaire de
Neuroscience (IINS), Université de Bordeaux 2). Ce logiciel est spécialement conçu pour
simuler les dynamiques moléculaires dans le contexte de l’imagerie par fluorescence.

Organisation de la thèse

Cette thèse comporte trois parties. Dans la Partie I nous définissons la statistique
Tn ainsi que les procédures de test à trois décisions pour classer les trajectoires des
particules selon trois groupes. Dans la partie II, nous décrivons un algorithme séquentiel
pour détecter les changements de dynamique d’une même particule au cours du temps.
Enfin, dans la Partie III, nous estimons les microdomaines qui piègent les particules.
L’organisation de la thèse est présentée de manière synthétique ci-dessous.

Chapter 2 Nous introduisons le concept probabiliste de diffusion présenté dans
Karlin [1981] et Klebaner et al. [2012]. Nous définissons d’abord la notion générale
de processus stochastique. Ensuite, nous présentons le mouvement brownien à partir
duquel nous construisons les processus de diffusion. Finalement, nous exposons une
extension du mouvement brownien à savoir le mouvement brownien fractionnaire.

Chapter 3 Nous expliquons les théories physiques à l’origine du mouvement brownien.
Nous donnons un aperçu des différents modèles utilisés en biophysique et en physique
pour décrire la sous-diffusion et la super-diffusion. Nous expliquons les scénarios bi-
ologiques asssociés aux différents types de diffusion.
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Part I

Chapter 4 Nous introduisons la nouvelle statistique Tn. Nous développons un test
à trois décisions pour classer une trajectoire suivant le modèle de diffusion le plus
approprié. Notre hypothèse nulle suppose que la trajectoire observée est brownienne.
Nous étendons cette procédure pour tester une collection de trajectoires indépendantes
dans le cadre des tests multiples. Notre procédure contrôle le critère du FDR introduit
par Benjamini and Hochberg [1995] au niveau α.

Chapter 5 Nous évaluons les différentes procédures de test sur des simulations en
dimension deux. En particulier, nous estimons la puissance de nos tests sous différents
modèles paramétriques de diffusion utilisés en biophysique. Nous comparons nos
résultats à la méthode de Feder et al. [1996] basée sur le MSD. Nous analysons des
données réelles acquises par microscopie TIRF décrivant le processus d’exocytose en
dimension deux et trois.

Part II

Chapter 6 Nous présentons une nouvelle méthode pour détecter les instants de
transition, c’est-à-dire lorsque la particule passe d’un mode de diffusion à un autre.
Il s’agit d’un algorithme séquentiel basé sur la statistique Tn calculée sur des fenêtres
glissantes le long de la trajectoire. La taille de la fenêtre est le seul paramètre à
optimiser. Si la trajectoire est entièrement brownienne, nous contrôlons la probabilité
de détecter un (faux) point de rupture au niveau α.

Chapter 7 Nous évaluons notre algorithme séquentiel sur des simulations et des
données réelles. Nous comparons ses performances à celles de deux autres méthodes
proposées par Türkcan and Masson [2013] et Monnier et al. [2015]. Finalement,
nous montrons que notre méthode présente de meilleurs résultats sur les simulations
considérées. Son temps de calcul est aussi négligeable par rapport aux autres méthodes.

Part III

Chapter 8 Nous présentons le modèle de simulation du logiciel Fluosim (IINS,
université de Bordeaux 2). Ce logiciel simule les mouvements de molécules dans
une cellule présentant des zones de confinement (microdomaines). Nous exposons de
manière rigoureuse le modèle mathématique sous-jacent. Nous modélisons la proportion
de particules piégées dans les microdomaines par des équations différentielles. Nous
proposons un schéma de simulation pour évaluer la méthode proposée dans le Chapitre 9.
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Résumé

Chapter 9 Nous proposons une méthode pour détecter automatiquement les zones
de piégeage dans lesquelles les particules sont confinées. Nous utilisons l’algorithme
de clustering DBSCAN [Ester et al., 1996] combiné avec notre procédure de test pour
détecter les zones avec une grande concentration de particules sous-diffusives. Nous
évaluons notre méthode sur des données issues du simulateur Fluosim.

Chapter 10 Nous rappelons les enjeux de cette thèse et les contributions apportées.
Des perspectives méthodologiques sont évoquées et d’autres champs d’application de
nos méthodes sont mentionnés.

xx



1 Preamble

In this thesis, we are interested in quantifying the dynamics of intracellular particles
(e.g., biomolecules) inside living cells. A cell is a complex environment composed of
lots of structures in interaction with each other. They continuously exchange biological
material directly via the cytosol or via networks of polymerised filaments namely the mi-
crotubules, actin filaments and intermediate filaments. The dynamics of these proteins
determine the organization and function of the cell [Bressloff, 2014, Chapter 9]. Then,
inference on the modes of mobility of molecules is central in cell biology since it reflects
the interaction between the structures of the cell.

In quantitative microscopy, there are multiple techniques that allow particle motion
analysis. The most popular are fluorescence recovery after photobleaching (FRAP), cor-
relation spectroscopy-based techniques (FCS) and single-particle tracking (SPT). While
FRAP and FCS average the mobility of a very large number of molecules, SPT is at-
tractive since it can reveal individual dynamics, close to molecular resolution. In this
thesis, we analyse trajectories of individual proteins or molecules. These trajectories
are computed from conventional or super-resolution microscopy image sequences. We
use the Lagrangian setting, that is, we analyse the motion of individual particles (e.g.,
proteins or molecules) along their trajectories. This concept is opposed to the Eulerian
paradigm in which the motion is described as vector field based on the average motion
of particles computed over local regions.

As the interior of a living cell is a fluctuating environment, we model the trajectories
of particles with stochastic processes with continuous paths. Diffusions belong to this
class of processes and can model a large range of intracellular movements. They are
widely used in the biophysical literature [Qian et al., 1991, Saxton and Jacobson, 1997].
Biophysicians distinguish four main types of diffusions, namely Brownian motion (also
referred to as free diffusion), superdiffusion, confined diffusion and anomalous diffusion.
Trajectories illustrating these four type of diffusion are represented in Figure 1.1. These
different diffusions correspond to specific biological scenarios. A particle evolving freely
inside the cytosol or along the plasma membrane is modelled by free diffusion. Its motion
is due to the constant collisions with smaller particles animated by thermal fluctuations.
Then, the particle does not travel along any particular direction and can take a very
long time to go to a precise area in the cell. Active intracellular transport can overcome
this difficulty so that motion is faster and direct specific. The particles (called in this
context cargo) are carried by molecular motors along microtubular filament networks.
Superdiffusions model the motion of molecular motors and their cargo.
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1 Preamble

Figure 1.1: Representative trajectories from simulated data. The blue trajectory is Brownian;
the purple trajectory is from a Brownian motion with drift (4.2.3) and illustrates superdiffusion;
the red trajectory is from a fractional Brownian motion (2.5.7) (parameter h > 1/2) and illus-
trates superdiffusion; the cyan trajectory is from an Ornstein-Uhlenbeck process (3.3.14) and
illustrates confined diffusion; the green trajectory is from a fractional Brownian motion (2.5.7)
(h < 1/2) and illustrates anomalous diffusion. The parameters controlling the processes are given
in Table (5.1).

Confined or restricted diffusion [Metzler and Klafter, 2000, Hoze et al., 2012] is char-
acteristic of trapped particles: the particle encounters a binding site, then it pauses for a
while before dissociating and moving away. Anomalous diffusion includes particles which
encounters dynamic or fixed obstacles [Saxton, 1994, Berry and Chaté, 2014], or particles
slowed by the contrary current due to the viscoelastic properties of the cytoplasm. In
the sequel, we will not distinguish confined and anomalous diffusion and consider that
both are subdiffusion. In fact, as we will use a non-parametric setting, discriminating
confined diffusion from anomalous diffusion is not feasible, especially on short trajecto-
ries. A classification of protein trajectories into the three types of diffusion is shown in
Figure 1.2. This classification is obtained with our three-decision test procedure exposed
in Chapter 4.

2



1.1 Problematic

Figure 1.2: Classification of two-dimensional trajectories from the Rab11 protein sequence in
a single cell observed in TIRF microscopy (Courtesy of UMR 144 CNRS Institut Curie PICT
IBiSA). We use the three-decision test procedure developed in Chapter 4 at level α = 5%. The
Brownian trajectories are in blue, the subdiffusive trajectories in green and the superdiffusive
trajectories in red.

1.1 Problematic

Mean Square Displacement

In biophysics, the different types of diffusions are characterised by the mean square
displacement (MSD) [Qian et al., 1991]. Given a particle trajectory (Xt)t>0, the MSD
is defined as the function,

MSD(t) = E
(
‖Xt+t0 −Xt0‖

2
)
, (1.1.1)

where ‖ · ‖ is the euclidean norm and E is the expectation of the probability space. The
MSD of Brownian motion is linear (MSD(t) ∝ t). This property makes the MSD a
popular criterion to analyse intracellular motion as Brownian motion is the process of
reference. The typical MSD curves of the different diffusion models are represented in
Figure 1.3. In practical imaging, we observe the successive positions of a single particle
Xt0 , Xt1 , . . . , Xtn in the two or three dimensions at equispaced times, that is ti+1−ti = ∆.
The MSD is estimated at lag j by:

M̂SD(j∆) = 1
n− j + 1

n−j∑
k=0
‖Xtk+j

−Xtk‖
2. (1.1.2)
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1 Preamble

Computing the estimator (1.1.2) at different lag j gives an estimation of the MSD func-
tion (1.1.1). Then the simplest rule to classify a trajectory is based on a fit of the MSD
function (1.1.1) to t → tβ. Feder et al. [1996] states that the trajectory is subdiffusive
if β < 0.9, superdiffusive if β > 1.1 and Brownian if 0.9 < β < 1.1. If β < 0.1 it states
that the particle does not move, see Figure 1.4.

time

M
SD

Brownian
Subdiffusion
Superdiffusion

Figure 1.3: Typical MSD curves of the different diffusion types.

Limitations

The criterion of the MSD has some limitations. First the MSD statistic is a summary
statistic, and is not sufficient to characterize the dynamics of the trajectory. Accordingly,
Gal et al. [2013] present several other statistics which can be associated to MSD for
trajectory analysis. Lund et al. [2014] propose a decision tree for selection motion model
combining MSD, Bayesian information criterion and the radius of gyration. Lysy et al.
[2016] present a likelihood-based inference as an alternative to MSD for the comparison
between two models of subdiffusions: fractional Brownian motion and a generalized
Langevin equation. They consider a Bayesian model to estimate the parameter of the
diffusion and they use the Bayes factor to compare the models.

Second, the variance increases with the time lag. Figure 1.4 illustrates this problem in
the case of Brownian trajectories. It suggests that the classification of Feder et al. [1996]
based on parameter β overdetects subdiffusion and superdiffusion while it is Brownian
motion. Moreover the MSD variance is also severely affected at short time lags by
dynamic localization error and motion blur. Michalet [2010] details an iterative method,
known as the Optimal Least Square Fit (OLSF) for determining the optimal number of
points to obtain the best fit to MSD in the presence of localization uncertainty.
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1.2 Contributions
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Figure 1.4: A classification rule for motion modes from MSD. The dashdotted lines are the
bound defined by Feder et al. [1996], t→ tβ , β = 0.9 and 1.1. The dashed lines are the pointwise
high probability interval of 95% associated to the empirical MSD curve for a standard Brownian
motion trajectory of length n = 30. The bounds of the interval are the 2.5% and 97.5% em-
pirical quantile of (1.1.2) and are computed by Monte Carlo simulation from 10 001 Brownian
trajectories of size n = 30.

In order to take account of the variance of the MSD estimate, several authors use a set
of independent trajectories rather than single trajectories. These trajectories may have
different lengths but are assumed to have the same kind of motion. For instance, Pisarev
et al. [2015] consider weighted-least-square estimate for β by estimating the variance of
pathwise MSD. Their motion model selection is then based on the modified Akaike’s
information criterion. Monnier et al. [2012] propose a Bayesian approach to compute
relative probabilities of an arbitrary set of motion models (free, confined, anomalous or
directed diffusion). In general, this averaging process can lead to oversimplication and
misleading conclusions about the biological process [Gal et al., 2013].

1.2 Contributions

In this thesis, we introduce a new statistic Tn that circumvents some of the aforemen-
tioned limitations of the MSD. The statistic Tn is defined as the standardized largest
distance covered by the particle from its starting point. We interpret this measure as
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1 Preamble

follows:

1. if the value of Tn is low, it means that the process stayed close to its initial po-
sition and the particle may be trapped in a small area or hindered by obstacles
(subdiffusion);

2. if the value of Tn is high, the particle went far to its initial position and the particle
may be driven by a motor in a certain direction (superdiffusion).

First we use this statistic in order to classify individual trajectories into the three types
of diffusion of interest. Secondly, we develop an algorithm based on Tn to detect change
points along the trajectory. Finally, we apply our classification method in the context
of spatial analysis.

Classification of the Trajectories

We want to classify the particle trajectories observed in living cells into the three types
of diffusion namely Brownian motion, superdiffusion and subdiffusion. To this end, we
develop a three-decision test procedure [Shaffer, 1980] based on the statistic Tn. The
null-hypothesis is that the observed trajectory is generated from a Brownian motion and
the two distinct alternatives are subdiffusion and superdiffusion. Then, we study the
asymptotic behaviour of our procedure under the null hypothesis and four parametric
models illustrating superdiffusion and subdiffusion and which are commonly considered
in the biophysics literature. We also derive a multiple test procedure in order to apply
simultaneously the test on a collection of independent trajectories which are tracked
inside the same living cell. This procedure is an extension of the procedure of Benjamini
and Hochberg [2000] to three decision tests. It allows to control the false discovery rate
(FDR).

Detection of Change of Dynamic over Time

When we observe a long trajectory (more than 100 points), it is possible that the particle
switches mode of motion over time. Then, fitting a single model to the trajectory can
be misleading. We propose a method to detect the change points: the times at which a
change of dynamics occurs.

A large range of change point detection method exist, developed in different contexts.
Page [1954] introduced the well-known CUSUM test to detect changes in a parameter
θ (as the mean) which is assumed to be piece-wise constant over time. Spokoiny [2009]
proposes a method based on local parametric assumptions to detect changes in non-
stationary time series. Change point in diffusion process has also been studied. For
example, Pollak and Siegmund [1985] estimates the change in the drift of Brownian
motion. Another approach is to use hidden Markov model [Rabiner and Juang, 1986].
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1.3 Organisation of the Thesis

Monnier et al. [2015] assume that the observed trajectories can be modelled by a mixture
of K Brownian motion with different drift and diffusion coefficient values. The hidden
states are the values of the parameters of these Brownian with drift.

In our framework, we consider that the particle switches between the three types of
diffusion aforementioned; we want to detect at which times the changes happen in this
non-parametric framework. To our knowledge, there exists no change point detection
method addressing this issue. Then, we developed a sequential algorithm based on
the statistic Tn which is computed on local windows along the trajectory. We use a
particular sequential scheme adapted from the algorithm of Cao and Wu [2015]. In
case the trajectory is fully Brownian, the probability to detect falsely a change point is
controlled at level α.

Spatial Analysis
Regulation of cellular physiological processes such as synaptic transmission, relies on
molecular interactions (binding and unbinding) at specific places and involves trafficking
in confined local microdomains. Hoze et al. [2012] model these microdomains as potential
wells which attract intra-cellular particles. The authors use an Eulerian method based
on the non-parametric estimation of the drift parameter of the underlying diffusion
process. This method needs a high concentration of particles over the spatial domain
of interest to be meaningful. This situation is not always available experimentally.
Moreover, due to its Eulerian approach, this method can not capture a mixture of
different dynamics occurring at the same location; it will average the different motions,
potentially leading to false conclusions. As an alternative, we define a new procedure to
detect microdomains. We use a clustering algorithm coupled with our test procedure to
detect the zones with a high concentration of subdiffusive particles. More specifically, we
choose the DBSCAN algorithm, designed by Ester et al. [1996], as it can distinguishes
true clusters from noise. Other clustering approaches can be used in this context as the
a-contrario method [Cao et al., 2007]. We will only consider DBSCAN for simplicity. We
assess the proposed method using the software Fluosim developed by M. Lagardere and
O.Thoumine (Institut Interdisciplinaire de Neuroscience (IINS), Université de Bordeaux
2). This software is designed to simulate the molecular dynamics in the context of
fluorescence microscopy.

1.3 Organisation of the Thesis
The thesis comprised three parts. Part I presents the statistic Tn and the three-decision
test procedures to classify the particles trajectories into three groups. In Part II, we
develop the sequential algorithm to detect motion switching. In part III, we estimate
the microdomains where particles are confined. The thesis organization is synthetically
presented below.
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1 Preamble

Chapter 2 We introduce the probabilistic concept of diffusion presented in Karlin
[1981], Klebaner et al. [2012]. First, we define the notion of stochastic processes.
Then, we put an emphasis on Brownian motion and connect this process to diffusions.
Finally we present an extension of Brownian motion, namely fractional Brownian motion.

Chapter 3 We give the physical foundations which leads to the concept of Brownian
motion. We give an overview of the models used in biophysics and physics for depicting
subdiffusion and superdiffusion. We also described the underlying biological scenarios
associated to the different modes of diffusion.

Part I

Chapter 4 We introduce the statistic Tn. We develop a three-decision test to classify
a trajectory into one of the three types of diffusion aforementioned. Our null hypothesis
is that the trajectory is Brownian. We also derive a multiple test procedure to classify
a set of independent trajectories while controlling the criterion of false discovery rate
(FDR) introduced by Benjamini and Hochberg [1995].

Chapter 5 We assess our test procedures on simulations in the two-dimensional
case. In particular, we estimate the power of the procedures on different parametric
diffusion processes used in biophysics. We compare our results to an approach based on
the MSD. We also analyse real data depicting the exocytosis process in two and three
dimensions.

Part II

Chapter 6 We provide a new method to detect the times at which the particle changes
of diffusion mode. It is a sequential algorithm based on the statistic Tn computed on
local windows along the trajectory. The size of the window k is the only parameter
of the procedure. In the case of a fully Brownian trajectory, the probability to detect
falsely a change point is controlled at level α.

Chapter 7 We assess our sequential algorithm on simulations and real data. We
compare its performances to two different competitive procedures respectively designed
by Türkcan and Masson [2013] and Monnier et al. [2015]. Our method outperforms the
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1.3 Organisation of the Thesis

others on simulations. Moreover, the computational cost is very small compared to the
other methods.

Part III
Chapter 8 We present the software Fluosim (IINS, Université de Bordeaux 2). This
software simulates the dynamics of molecules in an environment with local microdomains
where the particles can be trapped. We give the underlying mathematical framework
associated to the simulator and derive differential equations giving the proportion of
trapped and free particles. We design a simulation scheme helpful to assess the method
described in Chapter 9.

Chapter 9 We propose a method for detecting the trapping areas or microdomains
where the particles are confined. We use the clustering algorithm DBSCAN [Ester et al.,
1996] coupled with our test procedure to detect the zones with a high concentration of
subdiffusive particles. We evaluate the method on data simulated with Fluosim.

Chapter 10 We summarize our contributions and give few methodological perspec-
tives. We emphasize other possible applications of the methods developed in this thesis.

9



2 Introduction to Stochastic Processes and
Diffusions

In this chapter, we present the probabilistic tools in order to define diffusion processes.
As explained in Chapter 1, such processes are of great importance for modelling intra-
cellular dynamics. To this end, we focus on d-dimensional processes with d = 2 or d = 3.
We note that the biophysic literature uses the word diffusion in a very broad sense [Meroz
and Sokolov, 2015]. Here we introduce the probabilistic concept of diffusion presented
in Karlin [1981] and Klebaner et al. [2012]. First, we define the notion of stochastic pro-
cesses. Then, we put an emphasis on Brownian motion, the cornerstone process which
allows to build all the diffusion processes. We describe diffusion processes driven by
Brownian motion. Finally, we deal with an extension of Brownian motion, namely frac-
tional Brownian motion [Mandelbrot and Van Ness, 1968]; we present quickly diffusion
processes driven by fractional Brownian motion.

2.1 Stochastic Process

Let (Ω,F , P ) a probability space where Ω is the sample space, F a field and P a prob-
ability measure. A d-dimensional stochastic process is a function:

I × Ω→ Rd

(t, ω) 7→ X(t, ω)
(2.1.1)

where I is a time interval. We note this application (Xt)t∈I or simply (Xt). We present
briefly stochastic processes from two angles.

Let t ∈ I, the application,

Ω→ Rd

ω 7→ X(t, ω)
(2.1.2)

is the random state of the process at time t. It is a random variable defined on (Ω,F , P ).
Then, a stochastic process can be seen as the collection of random variables {ω 7→
X(t, ω), t ∈ I}.

Let ω ∈ Ω, the application

I → Rd

t 7→ X(t, ω)
(2.1.3)

10



2.1 Stochastic Process

is called a trajectory or a path of the stochastic process (Xt)t∈I .
A stochastic process may be seen as an application from Ω to the set of functions from

I = [0, T ] to Rd. As previously mentioned, we consider only the stochastic processes
whose trajectories are continuous, that is for almost ω ∈ Ω t→ Xt(ω) is continuous.

Finite-Dimensional Distribution
A stochastic process may be seen as a random variable from (Ω,F , P ) to the measurable
space, (

F([0, T ],Rd),⊗t∈[0,T ]Bd
)
,

where F([0, T ],Rd) is the set of functions from [0, T ] to Rd, Bd is the Borelian sigma-
algebra and ⊗t∈[0,T ]Bd is the sigma-algebra generated by all the finite dimensional cylin-
drical sets of F([0, T ],Rd). Then the stochastic process X induces a probability measure
on

(
F([0, T ],Rd),⊗t∈[0,T ]Bd

)
which is defined through the finite-dimensional distribu-

tion.
Now we define the concept of finite-dimensional distribution. Let J = {t0, t1, . . . , tn}

such that ti ∈ I and t0 < t1 <, . . . , < tn. We note,

XJ = (Xt0 , . . . , Xtn), (2.1.4)

the random vector whose components Xti ∈ Rd. The distribution µJ of XJ is the joint
distribution:

µJ(A) = P (Xt0 ∈ A0, . . . , Xtn ∈ An), (2.1.5)

where Ai ∈ Rd and A = A0 × · · · ×An.
The finite-dimensional distributions of X is the family of distributions
{µJ |Ja finite set of I}. If the finite-dimensional distributions µJ satisfy a technical crite-
rion called consistency then the Kolmogorov extension theorem guarantees the existence
of a stochastic process X with finite-dimensional distributions µJ on (Ω,F , P ) [Gallardo,
2008, Chapter 1, Section 1.1].

Filtered Probability Space
We state previously that a stochastic process can be seen as a collection of random
variables defined on (Ω,F , P ). More precisely the random variable (2.1.2) is defined on
(Ω,Ft, P ) where Ft ⊂ F . This reflects that the outcome of the random variable (2.1.2)
depends on what happened before t, that is on the historic of the process until time t.
The fact that ω 7→ X(t, ω) is Ft-measurable and not F-measurable can be compared to
the fact that a stochastic process is determined by all the finite-dimensional distributions
and not only the set of marginal distribution P (Xt ∈ Ai).

Then we define the concept of filtration. A filtration F is a family (Ft) of increasing
fields on (Ω,F) that is Fs ⊂ Ft ⊂ F for s < t. F specifies how the information is

11



2 Introduction to Stochastic Processes and Diffusions

revealed over time. The property that a filtration is increasing corresponds to the fact
the information is not forgotten. Finally, a stochastic process X is called adapted to a
filtration F if, for all t, the random variable ω 7→ X(t, ω) is Ft-measurable.

2.2 Brownian Motion

The observation of the erratic motion of a pollen particle suspended in a fluid by the
botanist R. Brown in 1828 marks the first step in the development of the Brownian
motion theory. In 1905, Einstein argued that the movement of the particle is due to
its bombardment by the particles of the fluid; he obtained the equations of Brownian
motion. The underlying probability theory was derived by N. Wiener in 1923 that is
why Brownian motion is also known as the Wiener process. In this section, we define
the one-dimensional Brownian motion and characterize it as a Gaussian process. Then,
we define the d−dimensional Brownian motion.

Definition

The one-dimensional Brownian motion (Bt) is a stochastic process with the following
properties:

• (Bt) is a process with independents increments. For all t > s, Bt−Bs is independent
of the field Fs generated by the historic of the process (Bu)u∈[0,s] until the time s.

• For all t > s, Bt −Bs has normal distribution with mean 0 and variance t− s.

• The paths of (Bt) are almost surely continuous.

Gaussian Process

A Gaussian process is a process for which all the finite-dimensional distributions are
multivariate normal. We have the following theorem:

Theorem 2.2.1. A Brownian motion started at zeros is a Gaussian process with zero
mean and covariance function min(t, s). Conversely, a Gaussian process with zero mean
and covariance min(t, s) is a Brownian motion.

Multivariate Brownian Motion

As we already stated, we are interested in modelling the trajectories of particle in di-
mension 2 and 3. We define the d-dimensional Brownian motion (d ≥ 1) as the random
vector Bt = (B1

t , . . . , B
d
t ) where all coordinates Bi

t are independent one-dimensional
Brownian motions.
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2.3 Diffusion Process

2.3 Diffusion Process
We present briefly the family of stochastic processes of interest in this thesis, namely
the diffusion processes. First, we recall the Markov property which is a central notion
for defining the diffusion processes. Then, we give the definition of diffusions and some
characterizations of theses processes.

Markov Property
The Markov property states that if we know the present state of the process, the future
behaviour of the process is independent of its past. For instance, a simple model of
weather forecast assumes that the probability to have rain at day j given the information
of the weather on the previous days is the same as the probability to have rain at day j
given the restricted information of the weather at day j − 1. Let note (Xi) the process
giving the weather at each day i and note k the modality corresponding to rain. In this
discrete set up, the Markov property can be written as:

P (Xj = k|Xj−1, . . . , X0) = P (Xj = k|Xj−1). (2.3.1)

As we work with stochastic processes defined continuously in time, the historic of the
process given by Xj−1, . . . , X0 in the discrete case is replaced by the field Ft at time t.
Then, a d-dimensional continuous stochastic process (Xt) is Markovian if:

P (Xt+s ∈ A|Ft) = P (Xt+s ∈ A|Xt), (2.3.2)

where A ∈ Rd. Then we have the following theorem:

Theorem 2.3.1. The Brownian motion (Bt) has the Markov property.

Remark 2.3.1. Another difference (apart from the conditioning) between Equations
(2.3.1) and (2.3.2) is the different nature of the events {Xj = k} and {Xt+s ∈ A}. It is
due to the fact that in Equation (2.3.1) the state space of the stochastic process (modality
of weather) is countable while the state space of the stochastic process is the whole space
Rd (not countable) in (2.3.2) .

Diffusions
A diffusion process (Xt) is a continuous time process which possesses the Markov prop-
erty and for which the sample paths are continuous. Moreover, every diffusion process
satisfies three key conditions see [Karlin, 1981, Chapter 15, Section 1]. The first condi-
tion states that large displacements of magintude exceeding ε > 0 are very unlikely over
sufficiently small intervals,

lim
∆→0

1
∆P (‖Xt+∆ −Xt‖ > ε|Xt = x) = 0, ∀ε > 0, ∀x ∈ Rd, (2.3.3)

13



2 Introduction to Stochastic Processes and Diffusions

where ‖ · ‖ denotes the Eucidean norm. In other words, condition (2.3.3) prevents the
diffusion process from having discontinuous jumps. The two last conditions characterize
the mean and the variance of the infinitesimal displacements and affirm the existence of
the limits:

lim
∆→0

E(Xt+∆ −Xt|Xt = x) = µ(x, t), ∀x ∈ Rd, (2.3.4)

lim
∆→0

E((Xt+∆ −Xt)(Xt+∆ −Xt)>|Xt = x) = σ2(x, t), ∀x ∈ Rd, (2.3.5)

where > denotes the transpose operator; µ(x, t) : Rd ×R+ → Rd is the drift parameter;
σ2(x, t) : Rd × R+ → Sd+ is the diffusion coefficient where Sd+ is the set of positive
semi-definite matrix of size d.

In particular, Brownian motion is a diffusion process : its drift is the null function,
and its diffusion coefficient is constant.

2.4 Stochastic Differential Equation (SDE)
The most common approach for defining diffusion processes is to see them as the solution
of stochastic differential equations.

Physical Model
Initially diffusion models were developed to describe the motion of a particle in a fluid
submitted to a deterministic force due to the fluid and a random force due to random
collisions with others particles. That is why we model efficiently the motion of intra-
cellular particles with diffusion. Let Xt ∈ Rd be the position of the particle at time t and
(Bt) a d−dimensional Brownian motion; assume that Xt = x. Then the displacement of
the particle between t and t+ ∆ is approximately given by:

Xt+∆ − x ≈ µ(x, t)∆ + σ(x, t)(Bt+∆ −Bt). (2.4.1)

The component µ(x, t)∆ is the displacement due to the fluid where the velocity of the
fluid is given by the drift µ(x, t). The term σ(x, t)(Bt+∆ − Bt) expresses the random
component of the motion due to random collisions. More specifically the collisions
increased with the temperature of the fluid; the influence of temperature is modelled
by the diffusion coefficient σ(x, t). We note that the model (2.4.1) implies that, due to
the normality of the Brownian increment, the displacement of the particle Xt+∆ − x is
approximated by a Gaussian random variable of mean µ(x, t)∆ depending on the drift
and of variance σ(x, t)

√
∆ depending on the diffusion coefficient.

Heuristically, a stochastic differential equation is obtained from Equation (2.4.1) by
replacing ∆ by dt, (Bt+∆ − Bt) by dBt and Xt + ∆ − Xt by dXt. Then we have the
following definition:
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2.4 Stochastic Differential Equation (SDE)

Definition 1. Let (Bt) be a d−dimensional Brownian motion. Let µ : R+ × Rd → Rd
and σ(x, t) : R+ × Rd →Md be given functions (Md denoting the set of square matrix
of size d). A stochastic differential equation (SDE) is defined as:

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt, (2.4.2)

where (Xt) is the unknown process. The function µ is referred to as the drift while the
function σ is called the diffusion coefficient.

Solution of SDE

There are two types of solutions respectively called strong and weak solutions. A strong
solution is a weak solution but the reverse is false.

Definition 2. Let Ft the field induced by the initial condition X0 and the Brownian
motion (Bt) which drives the stochastic differential (4.1). We say that Equation (4.1)
has a strong solution (Xt) on the probability space (Ω,F , P ) with respect to (Bt) and
initial condition X0 if the stochastic process Xt satisfies (4.1), has continuous paths and
that Xt is Ft-measurable for all t.

The fact that Xt is Ft-measurable is crucial. It means that Xt depends only on the
historic of the Brownian motion which drives the stochastic differential equation and the
initial condition. Then we can interpret Xt as an output of the system parametrized by
µ(x, t) and σ(x, t) whose input is the Brownian motion (Bt). It reflects the principle of
causality of the system. If Xt could depend on the future, that is on Bs with s > t,
causality would fail.

The concept of strong solution relies on the fact that the Brownian motion is given.
A weak solution of a SDE consists in building at the same time a couple of processes
(Xt, Bt) where (Xt) is a solution of the SDE driven by the Brownian (Bt). We will not
give the exact definition of weak solution as it has technical points not of interest for
the understanding of the concept.

Then the solution of the stochastic differential equation is written as:

Xt = X0 +
t∫

0

µ(Xs, s)ds+
t∫

0

σ(Xs, s)dBs. (2.4.3)

We note that the fact that the two integrals are defined is equivalent to the fact that Xt

is (strong or weak) solution. In particular the integral with integrand dBt is a random
variable Ft-measurable. Details of the construction of such integrals is given in [Klebaner
et al., 2012, Chapter 4].
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2 Introduction to Stochastic Processes and Diffusions

2.5 Fractional Brownian Motion

Fractional Brownian motion (fBm) was introduced to model scale-invariant phe-
nomenons processes showing long-range dependence. Kolmogorov [1941] developed a
turbulence theory based on two hypothesises of scale invariance. In his study of long-
term storage capacity and design of reservoirs, Hurst [1951] observed hydrological events
invariant to changes in scale. Mandelbrot and Van Ness [1968] defined (and named) frac-
tional Brownian motion. They presented it as: ”fBm of exponent h is a moving average
of dB(t), in which past increments of B(t) are weighted by the kernel (t− s)2h−1.” This
kernel is at the origin of the long range dependence property (for a certain choice of
parameter h). The parameter h is known as the Hurst index or Hurst parameter. In this
section, we define fractional Brownian motion and give its main properties. Fractional
Brownian motion is then defined in dimension d.

Self-Similarity and Fractional Brownian Motion

A real-valued stochastic process (Xt) is self-similar with index h > 0 (h− ss) if, for any
a > 0 the processes (Xat) and (ahXt) have the same finite dimensional distributions.
Then, a Gaussian h− ss process (Bh

t ) with stationary increments and Hurst index 0 <
h < 1 is a fractional Brownian motion.

Now we give some properties of the fBm. First, the fBm has continuous paths. We
have E(Bh

t ) = 0 for all t. It is said to be standard if the variance of Bh
1 is equal to one.

For the standard fBm we have:

Cov(Bh
t , B

h
s ) = 1

2(|t|2h + |s|2h − |t− s|2h) (2.5.1)

Then we can show that a fBm with h = 1/2 is simply a (one-dimensional) Brownian
motion.

Long Range Dependence

A stationary time series (Xn)n∈N exhibits long-range dependence if Cov(Xn, X0)→ 0 as
n→∞ but,

∞∑
n=0
|Cov(Xn, X0)| =∞. (2.5.2)

In other words the covariance between X0 and Xn tends to 0 but so slowly that their sum
diverges. Then, we define the stationary process known as fractional Gaussian noise:

Xk = Bh
k+1 −B

h
k, k ∈ N, (2.5.3)
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2.5 Fractional Brownian Motion

where (Bh
t ) is a standard fBm of Hurst index h. Due to the properties of fBm the

fractional Gaussian noise (Xn) is a stationary centered Gaussian process with auto-
covariance function:

γ(k) = E(Xi+kXi) = 1
2(|k + 1|2h + |k − 1|2h − 2|k|2h). (2.5.4)

Then for k 6= 0 we can show that γ(k) = 0 if h = 1/2, γ(k) < 0 if 0 < h < 1/2 and
γ(k) > 0 if 1/2 < h < 1. Now, for h = 1/2 we have:

γ(k) = h(2h− 1)|k|2h−1 + o(1), (2.5.5)
where o(1) → 0 as k → ∞. Consequently γ(k) → 0 as k → ∞ for 0 < h < 1. From
Equation (2.5.5) we deduce:

∞∑
k=0

γ(k) =∞, 1/2 < h < 1,

∞∑
k=0

γ(k) <∞, 0 < h < 1/2.

Consequently, if 1/2 < h < 1, fractional Gaussian noise (hence fBm) (Xn) exhibits long
range dependence.

Stochastic Integration and Fractional Brownian Motion
As stated in the introduction, Mandelbrot and Van Ness [1968] define the fBm as a
moving average of dBt. Decreusefond et al. [1999] shows that fBm can be written as the
following stochastic integral driven by Brownian motion:

Bh
t =

t∫
0

Kh(t, s)dBs, (2.5.6)

where the properties and analytical form of function Kh(t, s) (called kernel) are given in
[Decreusefond et al., 1999].

Multivariate Fractional Brownian Motion
Coutin and Qian [2002] give the following definition of a d−dimensional fractional Brow-
nian motion:
Definition 3. A fractional Brownian motion in dimension d > 1 is the random vec-
tor Bh

t = (Bh,1
t , . . . , Bh,d

t ) where all coordinates Bh,i
t are independent one-dimensional

fractional Brownian motions of Hurst parameter 0 < h < 1.
Again a d−dimensional fBm reduces to a d−dimensional Brownian motion in the case

h = 1/2.
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SDE Driven by Fractional Brownian Motion
We can extent the stochastic differential equation (4.1) to define a (d− dimensional)
stochastic differential driven by a (d−dimensional) fBm of Hurst index 0 < h < 1:

dXt = µ(Xt, t)dt+ σ(Xt, t)dBh
t . (2.5.7)

The same concepts of strong and weak solutions hold for the SDE (2.5.7). The SDE
driven by Brownian motion (4.1) is of the form of the SDE (2.5.7) with h = 1/2.

In the rest of this thesis, we will call diffusion any processes solution of (2.5.7).
We note that it does not match with the definition of [Karlin, 1981, Chap-
ter 15, Section 1] given in Section 2.3, as the Markov property no longer holds
due to the correlations between the fBm increments.

2.6 Summary
In this chapter, we presented Brownian motion from a probabilistic perspective. This
process is of paramount importance in mathematics, physics and biophysics. It will
be the process of reference in this thesis. We also presented the concept of diffusions.
These processes can be seen as the solution of stochastic differential equations (SDE).
Throughout this thesis, we will define the diffusion of interest through SDE. Fractional
Brownian motion (fBm) is also introduced. In this manuscript, we will consider fBm as
well as diffusion driven by fBm for modelling particle trajectories.

In the next chapter, we give the physical derivation of Brownian motion. We will
also describe the motion models used in biophysics for describing intracellular dynamics,
with a particular emphasis on the diffusion models defined in this chapter.
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3 Diffusion for Modelling Intracellular
Trajectories

In this chapter, we present the three main types of diffusion studied in biophysics to
model intracellular motion, namely Brownian motion, subdiffusion and superdiffusion.
We also described the different biological scenarios associated to each mode of diffusion.
First, we present the physical models underlying Brownian motion. More specifically,
we introduce the theory of Einstein [1905] and the Langevin approach. Then, we present
subdiffusion processes which is often split in two parts: anomalous and confined diffusion.
Finally, we deal with superdiffusion.

3.1 Einstein’s Approach

In this section, we present the approach of Einstein [1905] introduced for modelling the
motion of ”small suspended particles” in a liquid. We develop the concept of Brownian
motion in the exact same way as Einstein [1905]. First we depict the related physical
experiment. Secondly, we show that the concentration of suspended particles is governed
by a diffusion in the sense of Fick. Finally, the motion of individual suspended particles
is modelled by a process corresponding to Brownian motion.

Physical Context

Einstein considers a particular physical situation. In first place, he assumes that z moles
of a chemical specie is dissolved in a liquid of volume V . He also supposes that the solute
is confined in a volume V ? separated from the pure solvent by a wall that is permeable
to the solvent but not to the solute. In this situation, the solute produces a pressure on
the wall called the osmotic pressure. Provided z/V ? is small enough, that is the solute
concentration is low, we have:

pV ? = RTz, (3.1.1)

where p is the osmotic pressure, R is the gas constant and T is the temperature. Secondly,
instead of the solute, Einstein considers suspended particles. Now the wall is permeable
to the solvent but not to the particles. In this case, the theory of thermodynamics
do not expect that the suspended particles will produce an osmotic pressure on the
wall. However, according to the molecular-kinetic of heat, the only difference between
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3 Diffusion for Modelling Intracellular Trajectories

a dissolved molecule and a suspended body is their size. Then, Einstein points out
that both the dissolved molecules and the suspended particles should produce the same
osmotic pressure as long as their number is equal. Then he assumes that ”the suspended
bodies perform an irregular, albeit very slow, motion in the liquid due to the liquid’s
molecular motion”. This motion –we will see later that it corresponds to Brownian
motion– is at the origin of the osmotic pressure. In fact, when the moving particles
bounce on the wall, they exert a pressure as in the case of the solute. Then, we can
derive a similar equation as (3.1.1):

pV ? = RT
n

N
, (3.1.2)

where n is the number of suspended particles and N the Avogadro number. Then n/N
is the number of moles of the suspended particles.

In the sequel, for sake of simplicity, Einstein [1905] derives his theory in one dimension.
In other words, the motion of the particles is along the x-axis and consequently we are
only interested in the x-component of the forces applied on the particles.

Fick’s Diffusion
In this paragraph, we are interested in the evolution of the concentration in space and
time ν(x, t) = n(x, t)/dx where n(x, t) in the number of suspended particles at time t in
the small volume dx. Einstein [1905] assumes that a force K, depending on the position
but not on the time, acts on each particle.

First, at the equilibrium we have:

Kν − ∂p

∂x
= 0, (3.1.3)

that is the force K and the force induced by the pressure p compensate each other. Using
the definition of ν and Equation (3.1.2), we can rewrite Equation (3.1.3) as:

Kν − RT

N

∂ν

∂x
= 0. (3.1.4)

On the other hand, the concentration ν is governed by a diffusion in the sense of Fick
[1855]. In this case, diffusion refers to the evolution of a macroscopic quantity as the
heat in a metal or the concentration of a chemical specie in a liquid. It is characterised
by the two laws of Fick [1855]. Once combined, they give the diffusion equation which
is written in our case as:

∂ν

∂t
= D

∂2ν

∂2x
, (3.1.5)

where D is the diffusion coefficient characterising the diffusion.
Now, to fully determined the diffusion of ν we need to derive D as a function of the

parameters of the problem. To this end, we use the first law of Fick [1855] stating
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that ”the diffusion flux between two points of different concentrations in the fluid is
proportional to the concentration gradient between these points”. In our case it can be
written as:

J = −D∂ν
∂x
, (3.1.6)

where J is the diffusion flux and D is the diffusion coefficient characterising the diffusion.
Now we must derive the diffusion flux J that is the number of particles going through an
area of unit one per unit of time. Einstein [1905] assumes that the suspended particles
are spheric of radius a. Additionally, if the liquid has coefficient of viscosity k, then the
force K gives to each particle the velocity,

νK

6πka. (3.1.7)

Consequently the diffusion flux is:

J = νK

6πka. (3.1.8)

In fact, a dimension analysis reveals that the inverse of a volume (ν = n/V ?) multiplied
by a velocity (Equation (3.1.7)) defines a flux.

Finally, the first law of Fick [1855] gives:

νK

6πka = −D∂ν
∂x
. (3.1.9)

From Equations (3.1.4) and (3.1.9), the Fick’s diffusion governing ν has for diffusion
coefficient:

D = RT

N6πka. (3.1.10)

Brownian Motion

Finally, Einstein [1905] models the ”disordered motions” due to thermal molecular ag-
itation of the n suspended particles. More importantly, Einstein links these individual
motions to the Fick’s diffusion examined in the previous paragraph. He assumes that the
motions of individual particles are independent from each other. Moreover, he assumes
that the displacements of a same particle on consecutive time intervals are independent
as long as these time intervals are not too small. Then, in the following, we denote ∆
the length of the time interval which is small compared to the observable time intervals
but still satisfy the independence property of displacements. We recall that the displace-
ments occur along the x-axis only. We denote ∆x the displacement occurring during the
period ∆. Einstein [1905] assumes that ∆x is a random variable whose distribution func-
tion φ is symmetric. Then, the probability that a particle experiences a displacement
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x−∆x x−∆x + dx x x+ dx

ν(x−∆x, t)dx ν(x, t+ ∆)dx

ν(x−∆x, t)dxφ(∆x)d∆x

Figure 3.1: Scheme illustrating the transfer of particles from x−∆x to x between the times t
and t+ ∆. There are ν(x−∆x, t)dx particles in [x−∆x, x−∆x + dx] at time t. Among them
a proportion of φ(∆x)d∆x jump to [x, x + dx] between t and t + ∆. Integrating over all the
displacements ∆x, we obtain ν(x, t+ ∆)dx particles at time t in [x, x+ dx].

lying between u and u + du is φ(u)du. The average number of particles experiencing
such a displacement during a period ∆ is:

dn = nφ(u)du. (3.1.11)

Now, we can deduce the number of particles ν(x, t + ∆)dx from the the numbers of
particles at time t and φ. In Figure 3.1, we show how the particles go from x − ∆x

at time t to x at time t + ∆ using Equation (3.1.11). Integrating over all the possible
displacements we get:

ν(x, t+ ∆)dx = dx.

∫
R
ν(x−∆x, t)φ(∆x)d∆x. (3.1.12)

As ∆ is small we can expand ν(x, t+ ∆) as:

ν(x, t+ ∆) = ν(x, t) + ∆∂ν(x, t)
∂t

.

We also expand the left side of Equation (3.1.12) in Taylor series:∫
R
ν(x−∆x, t)φ(∆x)d∆x = ν(x, t)× 1 + ∂ν(x, t)

∂x
× 0 + ∂2ν(x, t)

∂2x

∫
R

∆2
x

2 φ(∆x)d∆x,

where we use that
∫
φ(u)du = 1 as φ is a distribution function and

∫
uφ(u)du = 0 as φ

is symmetric. We can equalize the right side of the two previous equations according to
the equality given in Equation (3.1.12). Then, we deduce that ν respects the diffusion
equation (3.1.5) predicted by the theory of Fick [1855] with diffusion coefficient given
by:

D = 1
∆

∫
R

∆2
x

2 φ(∆x)d∆x. (3.1.13)

Therefore with a specific definition of the individual motion of n independent particles,
Einstein [1905] shows that the concentration of such particles follows the Fick’s equation.
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3.1 Einstein’s Approach

At this step Einstein [1905] only assumed that the displacement of each particle over
consecutive time intervals –for intervals not too small– are independent random variables
from a symmetric distribution φ. Consequently, the particle motion fulfils the indepen-
dence property of the Brownian increment, see Section 2.2. For the moment, we can not
see why the displacement of the particles should be Gaussian as for Brownian particle.
This link can be made by solving the diffusion equation (3.1.5).

We need additional conditions to solve Equation (3.1.5). Until this point, we have
used the same coordinate system for all the particles. As there are independent of each
other, we can define one coordinate system for each particle. Einstein [1905] states that
the center of gravity of each particle at time t = 0 is the origin of their coordinate system.
Then ν(x, t)dx now denotes the number of particles whose displacements between the
times 0 and t is comprised between x and x+dx. In other words, x denotes the displace-
ment and not the absolute position in a common coordinate system any more. Function
ν still verify Equation (3.1.5) under this new scheme. Now we have the straightforward
conditions:

ν(x, 0) = 0, ∀x 6= 0∫
R
ν(x, 0)dx = n,

(3.1.14)

Finally the solution of the diffusion equation (3.1.5) with conditions (3.1.14) is:

ν(x, t) = n
e

−x2
4Dt

√
4πDt

, (3.1.15)

with x interpreted as a displacement as we have just said. With this meaning of x,
e−x

2/(4Dt)/
√

4πDtdx is the probability that the displacement of a single particle lies
in [x, x + dx]. Therefore, the particle displacement is Gaussian. We also know that
the displacements over consecutive time intervals are independent. Then the motion of
the suspended particles defined by Einstein [1905] correspond to the Brownian motion
defined in Section 2.2. Therefore the physical derivation of Brownian motion by Einstein
[1905] is equivalent to the so-called Wiener process in mathematics. Due to the physical
constraints, the diffusion coefficient D has a particular value given by Equation (3.1.10).

We can extend this theory to the d-dimensional case (d = 2, 3). In this context,
each component follows a one-dimensional Brownian motion and the components are
independent from each other. Not surprisingly, it corresponds to the Definition 3 of
multi-dimensional Brownian motion.

Remark 3.1.1. We note that, in this thesis, in case of the one-dimensional Brownian
motion (Bt) the diffusion coefficient σ is defined as σ = Var(B1). Then we have the
relationship σ = 2D.

Remark 3.1.2. From Equation (3.1.11) and (3.1.15) and the definition of φ we deduce
that φ(x) = e−x

2/(4D∆)/
√

4πD∆. It is coherent with the equality (3.1.13).
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3 Diffusion for Modelling Intracellular Trajectories

3.2 Langevin’s Approach
Physicists define the motion of suspended particles in another way using the approach
of Langevin [1908] (see [Kou, 2008] and [Schuss, 2009, Chapter 1]). This motion is
sometimes refer to as Brownian motion which can be confusing. In this section, we
present this alternative approach. First, we introduce the underlying physical model
and the corresponding hypothesises about the particle motion. Secondly, we show that,
in this case, the particle movement is governed by a well known stochastic differential
equation. Thirdly, we explain why the particle motion defined by Einstein [1905] and by
Langevin [1908] are mixed up. Finally, we explain which concept of Brownian motion
we will use in the thesis. In this section, we derive the model directly in dimension d.

Langevin Equation
Langevin [1908] characterizes the particle motion through the d−dimensional (Langevin)
equation:

m
dv(t)
dt

= −ζv(t) + L(t), (3.2.1)

where v : R+ 7→ Rd is the velocity of the particle, m its mass, ζ > 0 the friction
coefficient and L : R+ 7→ Rd a random force resulting from the collisions with the
surrounding particles. In case of spherical particles of radius a immersed in a liquid
of viscosity coefficient k, the friction coefficient is ζ = 6πka where k is the viscosity
coefficient of the surrounding liquid.

Uhlenbeck and Ornstein [1930] constrained L(t) with two additional assumptions.
First, the mean of L(t) over a large number of independent colliding particles is 0, that
is E(L(t)) = 0d, where 0d is the null vector of Rd. In their physical model, Uhlenbeck
and Ornstein [1930] also assume that the colliding particles are similar to the particle of
interest and have same initial speed v0. Secondly, the autocorrelation function is given
by:

E(L(t)L(s)T ) = σδ(t− s)Id, (3.2.2)

where σ > 0 is a constant, δ is the Kronecker function and Id the identity matrix of
size d. The idea is that each collision is practically instantaneous and that successive
collisions are uncorrelated. Actually, Uhlenbeck and Ornstein [1930] originally model
the autocorrelation function as a function of t − s with a sharp peak of width equal
to the duration of a single collision. The autocorrelation (3.2.2) is preferred nowadays
[Van Kampen, 1992, chapter 9]. Such a force L(t) is called a Langevin force.

Ornstein-Uhlenbeck Process
We did not fully define the stochastic process L(t) as we provide only information on
its first and second moment. Such a process is known as white noise in statistics. If
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3.2 Langevin’s Approach

we further assume that L(t) is Gaussian, we entirely define this process as a Gaussian
process is determined by its first two moments. Then, L(t) is called a Gaussian white
noise. As explained in [Karlin, 1981, Chapter 15, Section 14], the Gaussian white noise
L(t) can be informally defined as the derivative of the Wiener process –equivalently
the mathematical Brownian motion defined in Section 2.2 – L(t) = σdBt/dt. We use
the word informally as in fact the Wiener process is nowhere differentiable. Finally, we
can rewrite the Langevin equation (3.2.1) as the d−dimensional stochastic differential
equation:

mdv(t) = −ζv(t)dt+ σdBt. (3.2.3)

The solution of the stochastic equation (3.2.3) is known as the Ornstein-Uhlenbeck pro-
cess. It is a Gaussian process with:

E(v(t)) = 0d, (3.2.4)

E(v(t)v(s)T ) = σ2

2ζme−(ζ/m)|t−s|Id. (3.2.5)

Waterston and Rayleigh [1892] states that, at the equilibrium (that is as t → ∞), the
mean square velocity verifies:

lim
t→∞

E(‖v(t)‖22) = d
kBT

m
, (3.2.6)

where kB is the Boltzmann constant and T is the temperature. Each component of the
velocity vector has the same variance, so that:

lim
t→∞

E(vi(t)2) = kBT

m
, i = 1, . . . , d. (3.2.7)

Then, equalizing the variances of vi(t) obtained with Equation (3.2.5) with t = s and
obtained with Equation (3.2.7), we have the relationship:

σ =
√

2ζkBT . (3.2.8)

Finally, the Brownian motion of Langevin [1908] is defined as:

Xt =
t∫

0

v(s)ds (3.2.9)

where v(t) is the Ornstein-Uhlenbeck process solution of the SDE (3.2.3). Due to the
Gaussian nature of v(t), (Xt) is also a Gaussian process.
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3 Diffusion for Modelling Intracellular Trajectories

Mean Square Displacement
One reason explaining the confusion between the particle motion respectively defined by
Einstein [1905] and Langevin [1908] is that they both exhibit a linear mean square dis-
placement asymptotically. In the case of the d-dimensional Brownian motion of Einstein
[1905], we can easily show that the mean square displacement is:

E(‖Xt −X0‖2) = d2Dt

= d
2RT
N6πkat

= d
2kBT
ζ

t,

(3.2.10)

where kB = R/N is the Boltzmann constant and ζ = 6πka is the friction coefficient.
In the case of the motion defined by Langevin [1908] (assuming X0 = 0 for simplicity)

we have:

E(‖Xt −X0‖2) =
d∑
i=1

E

 t∫
0

t∫
0

vi(s)vi(u)dsdu


= d

t∫
0

t∫
0

E(v1(s)v1(u))dsdu

= d
2kBT
ζ

(
t− m

ζ
(1− e−(ζ/m)t)

)
= d

2kBT
ζ

t+ o(t)

(3.2.11)

where o(t)→ 0 as t→∞.

Choice of the Definition of Brownian Motion
Each approach relies on different physical models. We emphasize that the Brownian
motion of Einstein [1905] (corresponding to the Wiener process) is nowhere differentiable
and then has a rough (but still continuous) path. On the other hand, the particle motion
defined by Langevin [1908] is differentiable due to its definition as the integration of the
Ornstein-Uhlenbeck process (Equation (3.2.9)). Then its path is smooth. Bressloff [2014]
argues that both processes can be used to model intracellular dynamics in the case where
the particle evolves freely inside the cytosol or along the plasma membrane.

In this thesis, Brownian motion will refer to the motion defined by Einstein
[1905]. It corresponds to the mathematical Brownian motion defined in Section
2.2 called also Wiener process in the mathematical literature.
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3.3 Subdiffusion

3.3 Subdiffusion
Subdiffusion, which includes confined diffusion and anomalous diffusion, are the trans-
lations of several biological scenarios. In this section, we present models associated to
these two types of diffusion. We note that certain models are called diffusion while there
are not solutions of SDE. In this thesis, we will not distinguish confined and anomalous
diffusion and consider that both are subdiffusion.

Anomalous Diffusion
In biophysics, [Saxton and Jacobson, 1997, Meroz and Sokolov, 2015], an anomalous
diffusion (Xt) is characterized by a MSD which is proportional to the monome tβ,

E(‖Xt −X0‖2) ∝ tβ, (3.3.1)

with β < 1. The first two presented models are solutions of a SDE driven by fBm (2.5.7)
(the first being simply fBm). Then we present other type of processes used in biophysics.

Fractional Brownian motion As a particle moves through the cytoplasm, the
latter pushes it back, due to macromolecular crowding and the presence of elastic
elements generating correlations in the particle’s trajectory [Jeon et al., 2011]. A fBm
with Hurst index 0 < h < 1/2 is a good candidate to model this situation. First, it is
straightforward to show that its MSD is given by (3.3.1) with β = 2h < 1 (see Equation
(2.5.1)). Secondly, we saw in Section 2.5 that fBm has its increments negatively
correlated when 0 < h < 1/2. As an example, Weber et al. [2010] study the mechanisms
underlying subdiffusive motion in live Escherichia coli cells thanks to fluorescently
labeled chromosomal loci and RNA-protein particles. They conclude that the observed
motion was well modelled by fBm.

Generalized Langevin equation (GLE) As we have just explained, particles can
be slowed by the contrary current due to the viscoelastic properties of the cytoplasm.
This time we are interested in long-time correlations (and not just correlations) in dif-
fusive motion. Then, Kou [2008] models such phenomenon with a stochastic differential
equations driven by the fBm with Hurst index 1/2 < h < 1; in fact we saw in Section
2.5 that in this case fBm exhibits long range dependence. Then, Zwanzig [2001] and
Chandler [1987] proposed the generalized Langevin equation (GLE):

m
dv(t)
dt

= −ζ
t∫

−∞

v(u)K(t− u)du+G(t), (3.3.2)

where, in comparison with the Langevin equation (3.2.1), G(t) is a noise having memory
replacing the memoryless white noise L(t); the velocity is convolved with a kernel K.
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3 Diffusion for Modelling Intracellular Trajectories

These two features make the solution of the Equation (3.3.2) a non-Markovian process.
We note that both K and G must appear in the equation in order to fulfil a physical
constraint comparable to Equation (3.2.6) (also called fluctuation-dissipation principle
in [Chandler, 1987]):

E(G(t)G(s)T ) = 2ζkBTK(t− s)Id. (3.3.3)

Not surprisingly, we observe that if we choose K = δ –the Dirac function– we find that
the GLE (3.3.2) is equivalent to the Langevin equation (3.2.1) and the condition on
the second moment (3.3.3) is equivalent to the condition (3.2.2). Kou [2008] chooses
to define G(t) as fractional Gaussian noise (2.5.3) with Hurst index 1/2 < h < 1 for
exhibiting long range dependence. From condition (3.3.3), they deduce the kernel K
(noted now Kh):

Kh(t) = 2h(2h− 1)|t|2h−2. (3.3.4)

Then the related stochastic differential equation is:

mdv(t) = −ζ

 t∫
−∞

v(u)K(t− u)du

 dt+ σdBh
t , (3.3.5)

where σ = 2ζkBT and (Bh
t ) is a fBm with 1/2 < h < 1. Finally, Kou [2008] shows that

the integrated process Xt =
∫
v(u)du verifies as t→∞:

E(‖Xt −X0‖2) ∝ t2−2h, (3.3.6)

It fulfils the MSD condition (3.3.1) asymptotically with β = 2− 2h < 1 for 1/2 < h < 1.

Remark 3.3.1. Kou [2008] studies only one-dimensional process. Here, we explain how
we can extend the models of Kou [2008] in higher dimensions. It is quite natural to
define physical Brownian motion in higher dimensions as a stack of one-dimensional
physical Brownian motion. It is what we implied writing Equation (3.2.5) with Id. In
fact, in this case, the Langevin force L(t) is modelled as a white noise and the compo-
nent of d−dimensional white noise are independent. However, when we use the GLE
(3.3.2), we can wonder if the components of the noise G are necessarily independent.
For instance, we could create some correlations through the kernel K. Here, for sim-
plicity, we considered that all the components were independent and shared the same
(one-dimensional) kernel.

Continuous time random walk (CTRW) Intracellular particles can also bind
to molecular complexes. Then, the particle motion is a permanent switch between
binding events and movement toward another spot where it can bind again. Scher
and Montroll [1975] introduce the continuous time random walk (CTRW) to model
anomalous transport properties of charge carriers in amorphous materials. In their
framework, the electron dynamics are successively trapped in different energy wells; the
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3.3 Subdiffusion

Figure 3.2: Percolation clusters on a square lattice for different values of p. We use a 20 × 20
lattice. From left to right percolation clusters obtained with p = 0.20, 0.59, 0.80 (the middle
image correspond to the case p = pc). Sites belonging to finite clusters are marked by full
circles, and sites on the ’infinite’ clusters are marked by open circles. (extracted from Havlin
and Ben-Avraham [1987]).

total time spent in the trapped states is much larger than the time spent in free motion.
In this model, a particle performs random jumps whose step length is generated by a
probability density with finite second moments. The waiting times between jumps are
assumed to be distributed according to a probability distribution ψ(t). If ψ(t) has a
finite first moment that is

∫
tψ(t)dt < ∞ then the mean square displacement of the

CTRW is linear in time. For instance, we can use the exponential distribution:

ψ(t) = (1/τ)e−t/τ , t > 0, (3.3.7)

where τ > 0 is called the characteristic time. We note that, in this case, the random
walk has the Markov property (due to the memoryless property of the exponential distri-
bution). On the contrary, if

∫
tψ(t)dt =∞ the mean square displacement of the CTRW

is given by (3.3.1). A typical choice is a power law distribution:

ψ(t) = 1/(1 + t/τ)1+β, t > 0, (3.3.8)

with τ > 0 the characteristic time and 0 < β < 1.
In neurobiology, Zhizhina et al. [2015] propose to investigate CTRW to model the

axon growth. The growth of an axon to its target is guided by chemical signals from
the cellular environment. The authors describe this interaction by a random waiting
time thereby defining a CTRW. They observe that ”normal” axons and ”mutant” axons
are driven by CTRW with different waiting time distribution.

Random walk on fractal The inner environment of a cell is crowded with small
solutes and macromolecules which occupy 10-50% of the volume [Dix and Verkman,
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3 Diffusion for Modelling Intracellular Trajectories

2008]. If the concentration of obstacles is sufficiently high, the mean square displacement
of the particle is given by Equation (3.3.1) [Havlin and Ben-Avraham, 1987, Saxton,
1994]. In this case, the domain where they evolve develops a fractal-like structure. Then,
a popular model is the random walk on percolation clusters [Havlin and Ben-Avraham,
1987].

For simplicity, we present the model on a 2−dimension square lattice. Each vertex
of the lattice has probability 1 − p to be an obstacle that is the particle can not go
on this kind of vertex. The other vertices can be occupied by particles. They form
connected clusters on which particles are assumed to undergo a random walk. In this
very case, there exists a critical probability pc = 0.592745 below which there exists only
finite clusters and above which there exists one infinite cluster (see Figure 3.2) [Havlin
and Ben-Avraham, 1987]. When p = pc, the random walk on the infinite cluster have
its MSD given by Equation (3.3.1) [Havlin and Ben-Avraham, 1987]. In the literature
of diffusion on fractals, they parametrize the MSD (3.3.1) by β = d/dw where d is the
dimension and dw a parameter called the fractional dimension of the random walk. In the
two-dimensional case (d = 2), the fractional dimension of the random walk on a square
lattice with p = pc is dw = 2.8784 [Grassberger, 1999] leading to β = 0.6948. Havlin
and Ben-Avraham [1987] also consider other choices of p and random walks on both the
finite and infinite percolation clusters. However, in these cases, the MSD is not a power
function. As another two-dimensional example, the fractional dimension of a random
walk on the Sierpinski gasket fractal gives dw = 2.32 (then β = 0.8621)[Havlin and Ben-
Avraham, 1987]. Berry and Chaté [2014] argues that the exponents β observed from
real experiments span a wide range of values and that random walks on fractal can not
model all these possibilities. Then some authors [Berry and Chaté, 2014, Saxton, 1994]
prefer relying on Monte-Carlo simulations with different designs of obstacles (mobiles or
not) to propose a model explaining the observed power function form of the MSD.

Confined Diffusion
In biophysics [Saxton and Jacobson, 1997, Monnier et al., 2012], a confined diffusion
(Xt) is characterized by a MSD of the form:

E(‖Xt −X0‖2) = r2
c

a
(1− be−cσ2/(2r2

c )), (3.3.9)

where parameters rc is the characteristic size of the region of confinement, a is a scale
parameter and b and c depends on the shape of the region. Parameter σ > 0 is the
constant diffusion coefficient. We present two models of confined diffusion and give their
mean square displacements. For the first model, the MSD (3.3.9) is a simplification of
the true MSD. We find the MSD (3.3.9) for a particular case of the second model. We
note that parameter a does not appear in Saxton and Jacobson [1997], Monnier et al.
[2012]. We use this extra scale parameter a to have the common expression (3.3.9) for
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the MSD of the two presented models.

Diffusion within confined geometries The plasma membrane is parceled up into
compartments where proteins undergo short-term confined diffusion. More specifically
these compartments are separated by the actin-based membrane skeleton [Kusumi et al.,
2005]. Then, the motion can be modelled by the SDE (4.1) adding boundary conditions.
Equation (3.3.9) is based on the first term of the exact series solution of the MSD of a
Brownian particle trapped in a square or circular corral (in dimension 2) or in a sphere
(in dimension 3) [see Kusumi et al., 1993, Saxton, 1993]. As an example, Bickel [2007]
shows that, for a certain type of boundary condition, the MSD of a Brownian motion
confined in a circular domain of radius rc is given by:

E(‖Xt −X0‖2) = r2
c

(
1− 8

∞∑
i=1

exp
[
− ι21i

t

τ

] 1
ι21i(ι21i − 1)

)
, (3.3.10)

where 0 < ι1,1 < ι1,2 < . . . are the positive zeros of J ′1, the first derivative of the
Bessel function of order one J1 and τ = 2r2

c/σ
2 is the characteristic time. We note

that, as expected, the MSD saturates to r2
c in the long-time limit t � τ . Then,

Equation (3.3.9) is the first term of the sum (3.3.10) with a = 1, b = 8/(ι211(1 − ι211))
and c = ι211. Parameters σ and rc are unchanged in the two equations (3.3.10) and (3.3.9).

Diffusion in a potential well We can state that a particle is attracted by an external
force modelled by a potential well U . Originally, Kramers [1940] introduced such a
model for describing chemical reactions. His model can be seen as the (d−dimensional)
Langevin equation (3.2.3) (written here as a SDE) with an extra term depending on U :

mdv(t) = −ζv(t)dt−∇U(Xt) +
√

2ζkBTdBt, (3.3.11)

where ∇ denotes the gradient operator. Now we make other assumptions on Equation
(3.3.11) to obtain a process with the MSD (3.3.9). First, we suppose that the viscosity
is very large, that is the friction coefficient ζ tends to infinity. Then, the acceleration
term mdv(t) is negligible. This corresponds to the so-called overdamped condition in
physics [Van Kampen, 1992]. The model reduces to:

ζdXt = −∇U(Xt) +
√

2ζkBTdBt, (3.3.12)

where dXt = v(t)dt. Now, we assume that the potential U is uni-modal; in other words
the particle is trapped in a single domain. In this case, U can be approximated by a
polynomial of order 2. For simplicity, suppose that the potential is given by the following
polynomial:

U(x1, . . . , xd) = (1/2)
d∑
i=1

ki(xi − θi)2, (3.3.13)
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where ki > 0, θi ∈ R and d is the dimension of the process. Then the SDE (3.3.12) turns
into:

dXi
t = −λi(Xi

t − θi)dt+ σdBi
t, i = 1, . . . , d, (3.3.14)

where σ =
√

2kBTζ and λi = ki/ζ > 0. As in the case of Equation (3.2.3), the solu-
tion of the SDE (3.3.14) is the Ornstein-Uhlenbeck process (different parametrization
compared to the SDE (3.2.3) with the extra parameters θi though). The parameter ki
measures the strength of attraction of the potential (related to the potential depth) while
θ = (θ1, . . . , θd) is the equilibrium position of the particle. As we already mentioned,
the Ornstein-Uhlenbeck is a Gaussian process with normal stationary distribution. In
the case of the Ornstein-Uhlenbeck (4.2.1), the mean and covariance of the stationary
distribution are:

E(Xt) = θ, (3.3.15)

Cov(Xt, Xs) = σ2

2


(1− e−λ1|t−s|)/λ1 0

. . .
0 (1− e−λd|t−s|)/λd

 . (3.3.16)

The MSD of the Ornstein-Uhlenbeck process (4.2.1) is given by:

E(‖Xt −X0‖2) = σ2(1− e−λt)
d∑
i=1

(1/λi), (3.3.17)

when X0 is drawn with the stationary distribution. When λi = λ for i = 1, . . . , d
Equation (3.3.17) reduces to:

E(‖Xt −X0‖2) = dσ2(1− e−λt)
λ

. (3.3.18)

Then, we obtain the MSD (3.3.9) with r2
c = σ2/(2λ), a = 2/d and b = c = 1.

As an example, Hozé [2013][Chapter 2, Section 2.9] studies the postsynaptic AMPA-
type glutamate receptor (AMPAR), a protein involved in the fast excitatory synaptic
transmission. AMPAR plays a crucial part in many aspects of brain functions including
learning, memory and cognition. Aberrant AMPAR trafficking is implicated in neurode-
generative process [Henley et al., 2011]. Hozé [2013][Chapter 2, Section 2.9] uses the
overdamped Equation (3.3.12) with a polynomial of order 2 for the potential U to model
potential wells attracting AMPAR in the synapses.

3.4 Superdiffusion
We note that less attention has been paid to superdiffusion in biophysics. We present
here the most popular models.
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Brownian with Drift
At the macroscopic level, the main type of active intracellular transport involves molecu-
lar motors which carry particles (cargo) along microtubular filament tracks. The molec-
ular motors and their cargo undergo superdiffusion on a network of microtubules in
order to reach a specific area quickly. The molecular motor moves step by step along
the microtubules thanks to a mechanicochemical energy transduction process. A single
step of the molecular motor is modelled by the so-called Brownian ratchet [Reimann,
2002]. When we observe the motion of the molecular motor along a filament on longer
time-scales (several steps), its dynamic can be approximated by a Brownian motion with
constant drift (also called directed Brownian) [see Peskin and Oster, 1995, Elston, 2000].

The Brownian motion with drift is solution of the SDE :

dXi
t = vidt+ σdB

1/2,i
t , i = 1, . . . , d, (3.4.1)

where v = (v1, . . . , vd) ∈ Rd is the constant drift parameter modelling the velocity of the
molecular motor. Then the MSD of the directed Brownian motion is given by:

E(‖Xt −X0‖2) = ‖v‖22 t
2 + dσ2t, (3.4.2)

the linear component coming from the Brownian part while the quadratic part is due to
the constant drift. In absence of the Brownian component the MSD is quadratic, the
motion is described as ballistic that is the particle goes straight.

Anomalous Superdiffusion
Anomalous superdiffusions are the analogue to anomalous subdiffusion. Then the MSD
of an anomalous superdiffusion (Xt) is characterized by a MSD which is proportional to
the monome tβ,

E(‖Xt −X0‖2) ∝ tβ, (3.4.3)
with 1 < β < 2.

Fractional Brownian motion Superdiffusion can also be modelled by the fractional
Brownian motion with Hurst parameter 1/2 < h < 1. In fact, we know that the MSD
of the fBm is given by Equation (3.4.3). However, we note that in biophysics the use of
the fractional Brownian motion is mainly related to subdiffusion.

3.5 Summary
In this chapter, we presented the three types of diffusion of interest in this thesis, namely
Brownian motion, subdiffusion and superdiffusion. For each diffusion type, we gave ex-
amples of models used in biophysics. There exists a wide variety of models for sub-
diffusion and superdiffusion. We emphasized that, in biophysics, some processes are
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considered as subdiffusive or superdiffusive even if there are not diffusion according to
the probabilistic definition, see Section 2.3. As an example, continuous time random
walks (CTRW) are not diffusions since their paths are not continuous.

In the next part, we define a test procedure to classify the observed trajectories into
the three diffusion types. Then, we define subdiffusion and superdiffusion as solution of
stochastic differential equations. However, we note that, in principle we can adapt our
test to deal with a larger range of stochastic processes, including random walks. Such
refinement is out of the scope of this thesis. Throughout this thesis, we will evaluate
the proposed methods on diffusions presented in this chapter. We will use the Ornstein-
Uhlenbeck process and the fBm (with 0 < h < 1/2) for modelling subdiffusion. We
will use the Brownian with drift (4.2.3) and the fBm (with 1/2 < h < 1) for modelling
superdiffusion.
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4 Test Procedures

We suppose that the trajectory Xn = (Xt0 , . . . , Xtn) is generated from some unknown
d-dimensional (d = 2 or d = 3) diffusion process (Xt) solution of the SDE (4.1). We
note that we will emphasize the dependence on d on the notations only if necessary.
Our procedure allows to test from which type of diffusion the observed trajectory is
generated. We derive two tests:

1. H0 ”(Xt) is a Brownian motion” versus H1 ”(Xt) is a subdiffusion”,

2. H0 ”(Xt) is a Brownian motion” versus H2 ”(Xt) is a superdiffusion”.

Then, we aggregate the two procedures to build a three-decision procedure. Finally we
propose a multiple test procedure to test a set of independent trajectories. This proce-
dure allows to control the number of false detections that is the number of trajectories
detected as non-Brownian while they are.

4.1 Model

We observe the successive positions of a single particle in a d-dimensional space (d = 2 or
3) at times t0, t1, . . . tn. We suppose the lag times between two consecutive observations
is a constant ∆. The observed trajectory of the particle is:

Xn = (Xt0 , Xt1 , . . . , Xtn) , (4.1.1)

where Xti ∈ Rd is the position of the particle at time ti = t0 + i∆, i = 0, . . . , n.
The discrete trajectory is generated by a stochastic process (Xt)t0≤t≤tn with continu-

ous path and which is a solution of the stochastic differential equation (SDE),

dXt = µ(Xt)dt+ σdBh
t , t ∈ [t0, tn], (4.1.2)

where Bh
t = (Bh,i

t )i=1...d are unobserved fractional Brownian motion of unknown Hurst
parameter h, that is the processes Bh,i

t are independent and are standard fractional
Brownian motion. The unknown paremeters of the model are the Hurst parameter
h ∈ (0, 1), the diffusion coefficient σ > 0 and the drift term µ : Rd → Rd. The SDE admits
a unique strong solution according to a given initial condition Xt0 , if the parameters of
the model fulfil Assumption 1 or Assumption 2.
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4.1 Model

Assumption 1. If h ∈ [1/2, 1), µ fulfils the linear growth hypothesis,

∃K > 0, ∀x ∈ Rd ‖µ(x)‖ ≤ K(1 + ‖x‖), (4.1.3)

and the Lipschitz condition,

∃M > 0, ∀x ∈ Rd ‖µ(x)− µ(y)‖ ≤M‖x− y‖, (4.1.4)

where ‖ · ‖ is the euclidean norm of Rd.

Assumption 2. If h ∈ (0, 1/2), for all x = (x1, x2, . . . xd) ∈ Rd, the drift term µ is
rewritten as

µ(x) =
(
µ1(x1), . . . , µd(xd)

)
, (4.1.5)

where, for all i = 1 . . . d, µi : R→ R fulfils the linear growth hypothesis,

∃K > 0, ∀xi ∈ R |µi(xi)| ≤ K(1 + |xi|), (4.1.6)

and the Lipschitz condition,

∃M > 0, ∀xi ∈ R |µi(xi)− µi(yi)| ≤M |xi − yi|. (4.1.7)

We denote by L the set of functions µ verifying Assumption 1 or 2. Assumption 1
is sufficient to ensure that the SDE (4.1) admits a strong solution when 1/2 < h < 1
[Mishura, 2008, Chapter 3]; Nualart and Ouknine [2002] show that, under Assumption
2, the SDE (4.1) admits a strong solution when 0 < h ≤ 1/2. In the following, Ph,µ,σ

denotes the measure induced by the stochastic process (Xt) solution of (4.1). This
measure comprises all the finite-dimensional distributions of the process. We also note
P = {Ph,µ,σ : 0 < h < 1, µ ∈ L, σ > 0} the set of solutions of the SDE (4.1).

Remark 4.1.1. We adopt the large-sample scheme to derive asymptotic properties of
the test procedure presented in 4, that is the inter-observation time ∆ remains fixed
and the number of observations n tends to infinity. Other schemes exist (see [Fuchs,
2013, Section 6.1.3]) as the high-frequency scheme for which ∆ tends to zero while the
duration of observation is fixed. In the experimental context of microscopic sequences,
∆ is the resolution of the microscopy device while n is the number of frames during
which we track the particle. The resolution of the microscopy device is fixed during the
experiment. Moreover, in an ideal situation, we track the particle during an infinite
time of observation therefore the number of frames n tends to infinity. Then, the large-
sample scheme is the most realistic scheme in our context. [Fuchs, 2013, Section 6.1.3]
also emphasizes that the large-sample scheme is the most realistic in real applications
while the high-frequency scheme is convenient from a theoretical point of view.
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4.2 Parametric Diffusion of Interest
In this section, we mention parametric diffusions of interest which can be used to model
subdiffusion or superdiffusion, the alternative hypothesises of our test. We recall that
the null hypothesis of the test is the mathematical Brownian motion or Wiener process.
In this chapter, we will derive asymptotic properties of our test under these parametric
alternatives. In Chapter 5, we will assess our test based on simulations of these para-
metric diffusion processes. As these diffusions have already been presented in Chapter
3, we just give their name and related SDE.

Subdiffusion
For modelling subdiffusion, we use the Ornstein-Uhlenbeck process:

dXi
t = −λ(Xi

t − θi)dt+ σdB
1/2,i
t , i = 1, . . . , d (4.2.1)

where λ > 0 and θ = (θ1, . . . , θd) ∈ Rd.
We also consider the fractional Brownian motion:

dXi
t = σdBh,i

t , i = 1, . . . , d, (4.2.2)

where 0 < h < 1/2.

Superdiffusion
For modelling superdiffusion, we use the Brownian motion with drift solution of the
SDE:

dXi
t = vidt+ σdB

1/2,i
t , i = 1, . . . , d, (4.2.3)

where v = (v1, . . . , vd) ∈ Rd.
Superdiffusion will also be modelled by the fractional Brownian motion with Hurst

parameter 1/2 < h < 1.

4.3 The Test Statistic
Let us consider the standardized maximal distance Tn of the process from its starting
point:

Tn = Dn√
(tn − t0)σ̂2

n

, (4.3.1)

where Dn is the maximal distance of the process from its starting point,

Dn = max
i=1,...,n

‖Xti −Xt0‖ , (4.3.2)
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4.4 Two Hypothesis Test Procedures Derived from the Test Statistic

and σ̂n is a consistent estimator of σ. The choice of σ̂ is discussed in Section 4.6. If Tn
is low, it means the process stays close to its initial position during the period [t0, tn]:
it is likely that it is a subdiffusion. On contrary, if Tn is large, it means the process
goes away from its starting point as a superdiffusion does with high probability. It is
worth noting that Tn can be related to the mean maximum excursion second moment
proposed by Tejedor et al. [2010] as an alternative to MSD. Now, this new measure Tn
introduces an order in the diffusion processes solution of the SDE (4.1). Then, it allows
to classify them into the different classes of diffusion i-e free diffusion, superdiffusion and
subdiffusion. We want to build a test whose null hypothesis is that the trajectory comes
from a Brownian motion, the gold standard process in biophysics. As a consequence, Tn
must be a pivotal statistic under the hypothesis H0 that is the trajectory is Brownian.

Lemma 4.3.1. Let σ̂n be a consistent estimator of σ such that the distribution of σ̂n/σ
does not depend on σ. If (Xt) is a Brownian Motion, the distribution of Tn does not
depend on σ.

Let qn(α) the quantile of Tn of order α ∈ (0, 1) when (Xt) is a Brownian motion. From
Lemma 4.3.1, qn(α) does not depend on σ.

4.4 Two Hypothesis Test Procedures Derived from the Test
Statistic

First, we define φ1,α the hypotheses test associated to H0 versus H1 at level α ∈ (0, 1).
The procedure φ1,α is defined through its critical region,

R1,α = {Tn < qn(α)} , (4.4.1)

as the following,

φ1,α(Xn) =

 1 if Xn ∈ R1,α,

0 otherwise.

Then Tn has probability α to lie in the critical region (4.4.1). According to Lemma 4.3.1,
the level of the test φ1,α is α,

sup
σ>0

P1/2,0,σ (Tn < qn(α)) = α. (4.4.2)

In a similar way, we can perform the test φ2,α by replacing subdiffusion by superdif-
fusion in the alternative hypothesis. The associated critical region is :

R2,α = {Tn > qn(1− α)} . (4.4.3)
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Table 4.1: The three kinds of error in a three-decision test procedure.

Decision
Do not

Reject H0 Decide H1 Decide H2
Truth
H0 True No error Type I Type I
H1 True Type II No error Type III
H2 True Type II Type III No error

4.5 A Three-Decision Test Procedure
From the two tests φ1,α/2 and φ2,α/2, we define a new procedure φ as follows,

we decide H1 if Xn ∈ R1,α/2,

we decide H2 if Xn ∈ R2,α/2,

we do not reject H0 otherwise.
(4.5.1)

This procedure is well defined since the intersection of the critical region R1,α and R2,α
is empty. This procedure is a three-decision test procedure and admits three kinds of
errors, see Table 4.1.

The first kind of errors is to reject the null hypothesis H0 while H0 is actually true.
The probability that this error occurs is the level of the test which is defined as,

sup
σ>0

E1/2,0,σ (φ1,α + φ2,α) = α. (4.5.2)

We only control the occurrence of this first kind of error. Then we draw attention that
acceptance of H0 ”(Xt) is a free diffusion” does not necessarily demonstrate that H0 is
true. It only means that data do not show any evidence against the null hypothesis. At
the end, we reject this assumption in direction to one of the alternatives at level α/2.
The second type of errors occurs when we do not reject the null hypothesis while one of
the alternatives is true. The last type of errors is to reject the null hypothesis in favour
to a wrong alternative. In the literature of three-decision test such an error is called a
Type III error, see for example Rasch [2012] and references therein.

4.6 Choosing the Estimator of σ

Ideally, we would like to find an estimator of σ which is consistent according to the
large-sample scheme under the hypotheses H0, H1 and H2, and satisfies the assumption
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4.6 Choosing the Estimator of σ

that the distribution of σ̂n/σ is free of σ under H0. However, the large-sample scheme is
not favourable to get an estimator with such properties. For instance, Florens-Zmirou
[1989] shows that the naive maximum likelihood estimator for the drift parameter has
an asymptotic bias of the order of lag time ∆. Then, the high-frequency scheme and
the rapidly increasing design turns out to be more convenient to provide consistent es-
timators. In fact, in the limit, these schemes correspond to the situation in which we
have a continuous observation of the process on the time interval of observation. Jiang
and Knight [1997] propose non parametric estimators of both the drift and the diffu-
sion coefficient. The consistency of these estimators is proven under the high-frequency
scheme only. Therefore, in this section, we discuss about the estimation of the diffusion
coefficient under the large-sample asymptotic.

The first proposition to estimate σ may be :

σ̂2
1,n = 1

dn∆

n∑
j=1
‖Xtj −Xtj−1‖2, (4.6.1)

where d is the dimension of the process. Even if the estimator (4.6.1) is strongly consis-
tent under the high-frequency scheme for every process (Xt) solution of (4.1) [Basawa
and Prakasa Rao, 1980, Lemma 4.2, p 212], Proposition 1 tells us that it is not the case
under the large-sample scheme.

Proposition 1.

• Under H0, σ̂1,n is strongly consistent and the distribution of σ̂1,n/σ is free of σ.

• If (Xt) is an Ornstein-Uhlenbeck process (4.2.1), σ̂2
1,n/σ

2 converges in probability
to (1− e−λ∆)/(λ∆).

• If (Xt) is a Brownian motion with drift (4.2.3), σ̂2
1,n/σ

2 converges almost surely to
∆‖v‖2/(dσ2) + 1.

• If (Xt) is a fractional Brownian motion (4.2.2), σ̂2
1,n/σ

2 converges almost surely
to ∆2h−1.

A proof of Proposition 1 is given in Appendix A.2. Proposition 1 states that σ̂1,n is
adequate to our procedure under the null hypothesis. However σ̂1,n is asymptotically
biased under some alternatives. Notice that if (Xt) is an Ornstein-Uhlenbeck process
(4.2.1), then σ̂2

1,n underestimates σ2 in average since (1 − e−x)/x < 1 for x > 0. Then
Tn might be overvalued with this estimator, increasing Type II or type III error rate in
our procedure. If (Xt) is a Brownian motion with drift (4.2.3), σ̂2

1 overestimates σ2 in
average. Then Tn might be overvalued with this estimator, increasing Type II or type III
error rate. Similarly, if (Xt) is a fractional Brownian motion (4.2.2), σ̂2

1 underestimates
σ2 if h < 1/2, and overestimates σ2 if h < 1/2.
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4 Test Procedures

The second suggestion to estimate σ may be based on the second order differences
rather than the first order differences,

σ̂2
2,n = 1

2dn∆

n−1∑
j=1
‖(Xtj+1 −Xtj )− (Xtj −Xtj−1)‖2. (4.6.2)

As σ̂2
1,n, σ̂

2
2,n fulfils the assumption of Lemma 4.3.1 under H0. This estimator has the

advantage of decreasing the bias under some alternatives. For instance it removes the
bias in the case of the Brownian motion with drift.

4.7 Approximation of the Distribution of the Statistic under
the Null Hypothesis and Asymptotic Behaviour of our
Procedure

Theorem 4.7.1 gives the asymptotic behaviour of our procedure under the null hypoth-
esis.

Theorem 4.7.1. Let (Xt) be a Brownian Motion on Rd. Let σ̂n be a consistent estimator
of the diffusion parameter σ of (Xt). The test statistic Tn converges in distribution to
Sd0 = sup0≤s≤1

∥∥∥W d
s

∥∥∥ as n → ∞. Here (W d
t ) is a standard d-dimensional Brownian

motion that is the Brownian motion of variance Id and initialization W0 = 0d.

A proof of Proposition 4.7.1 is given in Appendix A.1. We emphasize the dimension
d in Theorem 4.7.1 only for distinguishing the two limit distributions Sd0 , d = 2, 3. The
limit distribution of the test statistic under H0 admits an analytical form in both cases
d = 2 and d = 3. The cumulative distribution of S2

0 (2-dimensional case) is given by [see
Borodin and Salminen, 1996, Formulae.1.1.4, p. 280]:

x ∈ (0,+∞)→
∞∑
k=1

2e−j
2
0,k/(2x

2)

j0,kJ1(j0,k)
,

where x ≥ 0, Jν the Bessel function of order ν and 0 < jν,1 < jν,2 < . . . the positive
zeros of Jν .

The cumulative distribution of S3
0 (3-dimensional case) is given by [see Borodin and

Salminen, 1996, Formulae.1.1.4, p. 317]:

x ∈ (0,+∞)→ 2x√
2π

∞∑
k=−∞

exp
(
−(2k + 1)2x2

2

)
.

Replacing the quantiles qn(α) by the quantiles of Sd0 in our test procedure provides us
a test of asymptotic level α.
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Furthermore, Proposition 2 gives the asymptotic behaviour of the test statistic under
parametric alternatives when the estimator σ̂1,n is considered (see Appendix A.3 for a
proof). More generally, as long as the estimator σ̂n of the diffusion coefficient is such
that σ̂n/σ converges in probability to a positive constant whatever the dynamic of (Xt),
then Proposition 2 holds.

Proposition 2. Assume that we consider the estimator (4.6.1) in our procedure (4.3.1).

• If (Xt) is an Ornstein-Uhlenbeck process (4.2.1), Tn converges in probability to 0.

• If (Xt) is a fractional Brownian motion (4.2.2) with 0 < h < 1/2, Tn converges in
probability to 0.

• If (Xt) is a fractional Brownian motion (4.2.2) with 1/2 < h < 1, Tn converges in
probability to +∞.

• If (Xt) is a Brownian motion with drift (4.2.3), Tn converges in probability to +∞.

Note that Theorem 4.7.1 and Proposition 2 allow us to control the error rates of type
II and type III under parametric alternatives: the associated error rates converges to 0
with n. However, as in practice n may be small, the asymptotic approximation of the
quantiles of Tn may not be accurate. Then the level of the test is no longer α. Since
we are able to draw a sample from the distribution of Tn under H0 (see Algorithm 1),
we propose a Monte Carlo estimate of the quantile qn(x), 0 < x < 1. This estimate
is defined as the [xN ]th order statistic, q(N)

n (x), of the sample (T (1)
n , . . . , T

(N)
n ). Table

4.2 shows that there is a significant difference between asymptotic and non asymptotic
quantiles. As expected, as n→∞, qn(α) converges to q(α).

In dealing with a test, we can also be interested in computing the p-value. The p-value
of the test H0 vs H1 (subdiffusion as the alternative) is defined as:

p1,n = Fn(Tn), (4.7.1)

where Fn denotes the cumulative distribution function (cdf) of Tn under H0. The p-value
of the test H0 vs H2 (superdiffusion as the alternative) is defined as:

p2,n = 1− Fn(Tn). (4.7.2)

Testing the hypothesis H0 vs the hypotheses H1 or H2 is more tricky as we use a two-
sided test with a non-symmetric distribution. In this case we can define the p-value as
:

pn = 2 min {p1,n, p2,n} . (4.7.3)

Doubling the lowest one-tailed p-value can be seen as a correction for carrying out two
one-tailed tests.
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Algorithm 1: Simulation of a N -sample (T (1)
n , . . . , T

(N)
n ) of the distribution of

the statistic Tn under H0.
Input: n, N
// the length n of the trajectory
// the number N of Monte Carlo experiments

Result: a N -sample (T (1)
n , . . . , T

(N)
n )

for i=1 to N do
// Simulation of a Brownian trajectory of size n, of variance

σ = 1 and with resolution time ∆ = 1.

initialization Y
(i)

0 = 0d;
for j=1 to n do

Draw ε ∼ N (0d , Id);
Y

(i)
j = Y

(i)
j−1 + ε;

end
// Computation of the test statistic

Compute the ratio T (i)
n = D

(i)
n /σ̂

(i)
n from (Y (i)

0 , . . . , Y
(i)
n );

end

We estimate Fn with the standard empirical distribution function estimated by Monte
Carlo simulations using Algorithm 1.

F̂n(x) = N−1
N∑
i=1

1(T (i)
n ≤ x). (4.7.4)

Then, we estimate the p-value (4.7.3) substituting F̂n to Fn.

4.8 Multiple Test Procedure for a Collection of Trajectories
Trackers compute a collection of particle trajectories from a sequence of images. Then, it
is desirable to decide the modes of mobility for a collection of particle trajectories. From
now, we consider a collection Xm of m trajectories which are simultaneously observed.
We denote by X(k)

nk the observations associated to the kth particle:

X(k)
nk

=
(
X

(k)
t0 , . . . , X

(k)
tnk

)
, k = 1, . . . ,m,

Xm =
{
X(k)
nk
, k = 1, . . . ,m

}
.

(4.8.1)

In this section, we denote by P the probability distribution of the m-uplet stochastic
processes ((X(k)

t ), k = 1 . . .m) and by E its associated expectation. We assume that
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Table 4.2: Estimation of the quantiles of order α/2 and 1−α/2 (α = 5%) for different trajectory
lengths n in the two and three dimensions case. We use Algorithm 1 with N = 1 000 001 Monte-
Carlo replications to estimate the quantiles.

Trajectory size
Dimension Quantile order 10 30 100 asymp

2 2.5% 0.725 0.754 0.785 0.834
2 97.5% 2.626 2.794 2.873 2.940
3 2.5% 0.950 0.981 1.011 1.061
3 97.5% 2.969 3.127 3.197 3.268

the observed trajectories are independent, that means P belongs to the tensorial product
of probabilities P, (defined in Section 4.1) P ∈ P⊗m. For all trajectories k = 1 . . .m,
we derive our trichotomy hypothesis test procedure: H

(k)
0 ”(X(k)

t ) is a free diffusion”
versus H(k)

1 ”(X(k)
t ) is a subdiffusion” or H(k)

2 ”(X(k)
t ) is a superdiffusion”. We are faced

with the problem of simultaneous tests when the rejections of null hypotheses H(k)
0 are

accompanied by claims of the direction of the alternative (H(k)
1 or H(k)

2 ). In this setup,
multiple test procedures are preferable than single test procedures. Indeed, applying
the procedure at level α for each trajectory produces in average a number of mα type I
errors. A multiple testing procedure aims to control the number of false discoveries. We
refer the reader to Shaffer [1995], Roquain [2011], Grandhi [2015] for a review.

A multiple testing procedure of m null hypotheses against two alternative hypothe-
ses is a rule R1(Xm) × R2(Xm), where R1(Xm) and R2(Xm) are disjoint subsets of
{H(1)

0 , . . . H
(m)
0 }. For i = 1, 2, Ri(Xm) is the set of the rejected hypotheses H(k)

0 to the
benefit of the alternative H(k)

i . We may commit three kinds of errors in such a multiple
testing procedure. Let us introduce the following notations before listing these errors.
For a given P ∈ P⊗m, we denote by I(P) the subset of indexes {1, . . .m} for which the
hypothesis (H(k)

0 ) is actually true and by m0(P) the unknown cardinal of the set I(P).
We denote by R = R1 + R2 the observed number of null hypotheses which are rejected
by the multiple testing procedure. Table 4.3 summaries the number of errors which may
occur following a multiple testing procedure.

• We make a type I error on H(k)
0 when we reject H(k)

0 while it is a true null hypoth-
esis. In this case, k belongs to the set I(P)∩ (R1(Xm)∪R2(Xm)). The number of
errors of first kind is V = V1 + V2.

• Type II error occurs when we do not reject a null hypothesis H0,k while H0,k is
false (k /∈ I(P)). The number of errors of second kind is T = T1 + T2.

• The type III errors are directional errors: the index k /∈ I(P) is correctly rejected
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Table 4.3: Outcomes in testing m null hypotheses against two-alternatives. For i = 1, 2, Ri
is the cardinal of Ri(Xm). The variables (Si)i=1...4, (Ti)i=1,2, U, (Vi)i=1,2 are not observed and
depend on Xm and P.

Truth
Decision

Accept H0 Accept H1 Accept H2 Total
H0 U V1 V2 m0(P)
H1 T1 S1 S3 m1(P)
H2 T2 S4 S2 m2(P)

Total m−R1 −R2 R1 R2 m

(k ∈ R1(Xm)∪R2(Xm)), but for the wrong alternative. We mix up the alternatives
deciding one while it is the other. The number of errors of third kind is S = S3+S4.

To measure the type I error rate, it is common to consider the k-family-wise error rate
(k-FWER) or the false discovery rate (FDR), see [Roquain, 2011] and references therein.
In our settings, controlling the type I error rate is a first step, but it would be necessary
to control type III errors as well. In the literature, the sum of the number of errors
of first and third kind is controlled using the mixed-directional-family-wise error rate
(mdFWER) or the mixed-directional-false discovery rate (mdFDR), see [Grandhi, 2015].
To our knowledge, the mdFWER and mdFDR are only controlled for the problem of
testing null hypotheses against two-sided alternatives for finite-dimensional parameters,
see for example [Guo and Romano, 2015] and references therein.

Biologists are interested in the proportions of each dynamic (subdiffusion, superdif-
fusion and Brownian motion) and their geographic location in the cell. In this context,
controlling the FWER, that is the probability to make a single false discovery, is not
relevant. That is why we focus on a procedure which enables to control the FDR. Guo
and Romano [2015] also present several multiple test procedures associated to three-
decision problems which aim to control the FDR. Their approach is different since the
problem is rewritten as a problem which carries out 3m null hypotheses. Their proposed
procedures control strongly the FDR only on 2m null hypotheses among the 3m under
the dependence or independence of the test statistics. In this section, we propose to
adapt the multiple testing procedures of Benjamini and Hochberg [1995] and Benjamini
and Hochberg [2000] controlling the FDR that is the average proportion of false discov-
eries among the discoveries. We stress that our model is non-parametric. Then we will
consider the control of the mdFDR or mdFWER for a next issue.

Let p(k), p
(k)
1 , and p(k)

2 be respectively the p-value (4.7.3), (4.7.1) and (4.7.2) associated
to the kth trajectory, k = 1 . . .m. Let p(1:m) ≤ p(2:m) ≤ . . . ≤ p(m:m) be the ordered p-
values, and H

(1:m)
0 , . . . H

(m:m)
0 the associated null hypotheses. The adaptation of the
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4.9 Summary

Benjamini-Hochberg (BH) procedure is described in Procedure 1.

Procedure 1 (Adaptation of the Benjamini-Hochberg (BH) procedure).
1. Use the Benjamini-Hochberg procedure on the p-values (p(k))k=1...m :

Let k? be the largest k for which p(k:m) ≤ k
mα.

Rα(Xm) is the set of all hypotheses H(k:m) for k = 1, . . . , k?.

2. Let R1,α(Xm) be the subset Rα(Xm) such that p(k)
1 < p

(k)
2 .

3. Let R2,α(Xm) be the subset Rα(Xm) such that p(k)
1 > p

(k)
2 .

The set Rα(Xm) is the set of all rejected null hypotheses for our trichotomy test.
According to Finner and Roters [2001], we have,

∀P ∈ P⊗m, FDR(Rα(Xm),P) = E
(

V

max(R, 1)

)
= m0(P)

m
α.

Then the FDR of Procedure 1 is controlled by α. Moreover the p-values p(k)
1 and p

(k)
2

give the information to which side of the distribution Fnk
the associated test statistic

T
(k)
nk is. The case of equality (p(k)

1 = p
(k)
2 = 1/2) never occurs since such null hypothesis

will not be rejected at the step 1 of the Procedure 1.
Actually, we may also use the adaptive BH procedure of Benjamini and Hochberg

[2000] as the first step of Procedure 1. Then the Procedure 1 will be referred to as the
adaptive (respectively standard) Procedure 1 when we use the adaptive (respectively
standard) BH procedure as the first step. The adaptive BH procedure is more powerful
than the standard BH procedure. It uses an estimation of the number of true null
hypotheses m0(P) to increase the power of the BH procedure. Benjamini and Hochberg
[2000] simply define the adaptive BH procedure by replacing m by an estimator m̂0 of m0
in the BH procedure. The associated FDR is (m0/m̂0)α and is less than α if m̂0 ≤ m0
almost surely. The procedure to estimate m0 presented in [Benjamini and Hochberg,
2000] is made for m̂0 to be upward biased. This bias favours the control of the FDR at
level α. Due to the fact that m̂0 does not fulfil the condition m̂0 ≤ m0 almost surely, we
can not say that the adaptive BH procedure controls the FDR at level α theoretically.
However simulations from Benjamini and Hochberg [2000] suggest that the adaptive BH
procedure controls the FDR at level α.

4.9 Summary
In this chapter, we modelled the trajectories with diffusion processes. The two and three-
dimensional cases were considered. We proposed a three-decision test to classify a single
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4 Test Procedures

trajectory into the three groups of diffusion, namely Brownian motion, subdiffusion and
superdiffusion. The null hypothesis of the test supposes that the trajectory is Brownian,
the alternative hypothesises corresponding to either superdiffusion or subdiffusion. We
also provided a multiple test procedure to classify a collection of independent trajectories,
controlling the false discovery rate [Benjamini and Hochberg, 1995] at level α.

In the next chapter, we evaluate our two test procedures on simulations, in the two-
dimensional case. We consider parametric diffusion processes used in biophysics for
modelling subdiffusion and superdiffusion. We also analyse real data depicting the exo-
cytosis process in both the two and three-dimensional cases.
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5 Simulation Study and Real Data
Applications

We assess the power of our single test procedure (on a single trajectory) and our multiple
test procedure (on a collection of trajectories) by Monte Carlo simulations. We consider
parametric alternatives: the Ornstein-Uhlenbeck (4.2.1) and the fractional Brownian
motion with Hurst index 0 < h < 1/2 for subdiffusion processes (H1); the Brownian
motion with drift (4.2.3) and the fractional Brownian motion with Hurst index 1/2 <
h < 1 for superdiffusion processes (H2). We restrict the simulations study to the two-
dimensional case (d = 2). Then, we apply our procedure on two and three-dimensional
real data. We compare our results with those obtained thanks to a method based on the
mean square displacement (for the two-dimensional case only).

5.1 Power of the Test Procedure for a Single Trajectory

In Section 4, we studied the asymptotic distribution of the test statistic under the null
hypothesis and parametric alternative hypotheses. More precisely, Proposition 2 states
that the power of the test under parametric alternatives converges to 1 with n. Figure
5.1 shows the Monte Carlo estimates of the power under the parametric alternatives
aforementioned in Proposition 2 in the two-dimensional case. For a fixed step of time
∆ and a fixed diffusion coefficient σ, we vary the values of the other parameters and the
length n of the trajectories. For each parametric alternatives of Proposition 2, we can
use exact simulation schemes.

If (Xt) is an Ornstein-Uhlenbeck process (4.2.1) which is entered in its stationary
regime, then the distribution of the test statistic does not depend on θ (see Appendix
A.4). Figure 5.1(b) shows the plot of the power regarding the values of λ which models
the strength of the restoring force toward the equilibrium position θ. Stronger is the
force, more powerful is the test.

Furthermore if (Xt) is a Brownian motion with drift with parameters (v, σ) such that
‖v‖
√

∆ > σ, then the particle goes toward the direction of v while the Brownian random
part of the SDE (4.2.3) does not affect much its trajectory (see Appendix A.4). The
bigger is the norm of the drift parameter v, more powerful is the test, see Figure 5.1(a).
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Figure 5.1: Monte Carlo estimate of the power of the test at level α = 0.05 according to the
trajectory length n and the parameter associated to the following two-dimensional parametric
alternatives: (a) Brownian motion with drift (parameter v = (v1, v2) such that v1 = v2); (b) the
Ornstein-Uhlenbeck process (parameter λ) and (c) fractional Brownian motion (parameter h).
We use 10 001 Monte Carlo replications for computing each point of the power curves.

Finally if (Xt) is a fractional Brownian motion, then the distribution of Tn depends
only on the Hurst index h (see Appendix A.4). Then the test procedure is equivalent to
test the null hypothesis ”h = 1/2” versus ”h 6= 1/2”, see Figure 5.1(c).
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5.2 The Average Power and the mdFDR of the Multiple Test Procedure for a Collection of Trajectories

Table 5.1: Parameters used for simulating the alternative hypotheses. For simplicity we took
σ = 1 for all processes (including Brownian motion). We choose ∆ = 1.

Hypothesis Process Parameter Value
H1 Ornstein-Uhlenbeck λ 0.53
H1 Fractional Brownian h 0.13
H2 Brownian motion with drift ‖v‖ 0.66
H2 Fractional Brownian h 0.85

5.2 The Average Power and the mdFDR of the Multiple Test
Procedure for a Collection of Trajectories

We recall that we restrict the simulation study to the two-dimensional case. The simu-
lation settings are described as follows. According to experience, we choose the number
of trajectories to be m = 100 or m = 200. All trajectories are assumed to have the same
size n = 30, since this size is reasonable regarding real data. The diffusion coefficient
σ and the lag-time ∆ are set to 1. The collection of two-dimensional trajectories Xm is
composed of :

• m0 < m Brownian trajectories (H0),

• (m−m0)/2 subdiffusive trajectories (H1), half from an Ornstein-Uhlenbeck process
with parameter λ > 0, half from a fractional Brownian motion with Hurst index
0 < h < 1/2,

• (m−m0)/2 superdiffusive trajectories (H2), half from a Brownian motion with drift
v ∈ R2, half from a fractional Brownian motion with Hurst index 1/2 < h < 1.

The parameters to simulate these trajectories are given in Table 5.1. We take the pa-
rameters corresponding to a power of the single test procedure of 80%. Such parameters
are used to produce Figure 1.1. This choice seems coherent in regards to trajectories
from real data, see Figure 1.2. For a given m, the proportion of true null hypotheses H0
varies: m0/m ∈ {0, 0.2, 0.4, 0.6, 0.8}.

The mdFDR is a rate which controls the error of type I and type III. It is defined as
E((V +S)/max(R, 1)) (see Table 4.3). Table 5.2 shows that the Procedure 1 also controls
the mdFDR. The mdFDR and FDR appear to be very close meaning that the number
of type III errors is extremely low. Furthermore, the adaptive Procedure 1 (where m0
is estimated) is less conservative than the standard Procedure 1. As expected, the FDR
and mdFDR increase as the proportion of true null hypotheses increases.
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5 Simulation Study and Real Data Applications

Table 5.2: Monte Carlo estimate of the FDR and mdFDR for both standard and adaptive
Procedure 1 at level α = 0.05 in the two-dimensional case. The number of replications is 10 001.
The error rate estimations are expressed in percentages.

Standard Adaptive
m m0/m FDR mdFDR FDR mdFDR

100 0 0 0 0 0.2
0.2 1 1 3.7 3.7
0.4 2.1 2.1 4.2 4.2
0.6 3.2 3.2 4.7 4.7
0.8 4.1 4.1 4.8 4.8

200 0 0 0 0 0.4
0.2 1 1 3.4 3.4
0.4 2.1 2.1 4 4
0.6 3.2 3.2 4.6 4.6
0.8 4 4 4.7 4.7

To assess the performance of our multiple test procedure, we use the average power
[Grandhi, 2015] :

E
(
Si
mi

)
, i = 1, 2 (5.2.1)

where mi is the number of true alternatives Hi and Si (i = 1, 2) is defined in Table 4.3.
In our simulation scheme, we set mi = (m−m0)/2. The average power is the expected
proportion of hypotheses accepted as Hi among all true alternatives Hi. Average powers
of the different simulations corresponding to different values of m0/m and m are shown
on Figure 5.3.

First, we can see that the powers of H1 and H2 are not very sensitive to the number of
hypothesesm for both the standard Procedure 1 and the adaptive Procedure 1. Secondly,
the adaptive Procedure 1 is more powerful than the standard Procedure 1 (red and blue
dashed lines respectively above red and blue solid lines in Figure 5.3). The benefit of
the adaptive Procedure 1 over the standard Procedure 1 decreases as the proportion of
true null hypotheses m0/m increases (solid and dashed line of same color getting closer
as m0/m increases in Figure 5.3). This is due to the fact that, as m0/m tends to 1, m0
and then m̂0 tend to m. As a result, the adaptive and standard Procedure 1 become
similar.

Remark 5.2.1. We observe that, given a certain procedure (standard or adaptive Proce-
dure 1), the average power of H1 is lower than the average power of H2, see Figure 5.3.
It is not due to the choice of parameters as both alternatives H1 and H2 are simulated to
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Figure 5.2: Boxplots of the p-value p30 (Equation (4.7.3)) under H1 and H2. We simulate a
set of two-dimensional trajectories Xm with m = 100 and m0 = 20 according to the simulation
scheme described in Section 5. We plot the boxplot of the p-values p(i:m)

30 corresponding to each
true alternative hypothesises H1 and H2. The green (respectively orange) line is the threshold
h = p(k∗) obtained by the first step of Procedure 1 (respectively Procedure 1) .The null hypothesis
is rejected if the p-value is lower than h. The black line is the level α = 5%.

share the same power (80%) with the single test procedure. Actually, it comes from the
fact that the p-values under H2 are stochastically smaller than the p-values under H1
(see Figure 5.2). Then, the true superdiffusive trajectories are more easily detected as
non Brownian in the first step of the (adaptive) Procedure 1 than the true subdiffusive
trajectories. We note that, if we use other parametric models for subdiffusion (H1) and
superdiffusion (H2), we can have the opposite situation.

Finally, we compare the adaptive Procedure 1 to the MSD classification of Feder et al.
[1996], based on a fit of the MSD curve to t → tβ. We assess the two methods on
a single collection of two-dimensional trajectories Xm with m = 200 and m0/m = 0.4,
composed of a mixture of Brownian motion, subdiffusion and superdiffusion as described
at the beginning of this section. We get the confusion matrices Table 5.4 and 5.3 for
respectively the adaptive Procedure 1 and the MSD method. The MSD method mixes
up the Brownian trajectories with both subdiffusion and superdiffusion (see line 1 of
Table 5.3). Another big issue is that 40% of the particles undergoing subdiffusion are
considered as immobile by the MSD method. On the other hand, the adaptive procedure
1 detects well subdiffusion and superdiffusion in the setting of this simulation (line 2 and
3 of Table 5.4). More importantly, it controls the number of false discoveries through
the FDR (line 1 of Table 5.4).

5.3 Real Data: the Rab11a Protein Sequence
Fluorescence imaging and microscopy has a prominent role in life science and medical
research. It consists of detecting specific cellular and intracellular objects of interest
at the diffraction limit (200 nm). These objects are first tagged with genetically engi-
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Figure 5.3: Monte Carlo estimate of the average power against the proportion of true null
hypothesis m0/m in the collection of hypotheses. On the left we test m = 100 hypotheses, on
the right m = 200.

Table 5.3: Confusion matrix for the MSD method in the two-dimensional case

Ground truth/Test label Brownian Subdiffusion Superdiffusion Not moving
Brownian 19 45 36 0
Subdiffusion 0 60 0 40
Superdiffusion 3 0 97 0
Not moving 0 0 0 0

Table 5.4: Confusion matrix for the adaptive Proc.1 in the two-dimensional case

Ground truth/Test label Brownian Subdiffusion Superdiffusion
Brownian 96 0 4
Subdiffusion 23 77 0
Superdiffusion 10 0 90

neered proteins that emit fluorescence. Then, they can be observed using wide field or
confocal microscopy. Several image analysis methods have been developed to quantify
intracellular trafficking, including object detection and tracking of fluorescent tags in
cells [Chenouard et al., 2014, Kervrann et al., 2016]. In this section, we present the
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5.3 Real Data: the Rab11a Protein Sequence

biological process of interest, namely the exocytosis. Then, we apply our test procedure
on both two and three dimensional real data.

Exocytosis Process

The exocytosis process is the mechanism of active transport of proteins out of the cell.
Small structures, called the vesicles, travel from organelles to the cell membrane, pro-
pelled by motor activity. The vesicle fuses with the plasma membrane and delivers
the transported protein in the extra-cellular medium, see Figure 5.4. Given computed
trajectories, we investigate here the quantification of vesicles dynamics and trafficking.
As explained earlier in the paper, the trajectories can be generally classified into three
categories: Brownian motion, subdiffusion and superdiffusion.

As a model of exocytosis/recycling, we focus on the Rab11a protein. This protein is a
member of the dynamic architecture of the complex molecular assembly which regulates
recycling organelles trafficking. It plays an essential role in the regulation of late steps of
vesicle recycling to the plasma membrane, namely the tethering-docking process [Schafer
et al., 2014]. During exocytosis, Rab11a is attached to the vesicle membrane. Then,
tracking Rab11a amounts to tracking the vesicle during the exocytosis phase. After the
fusion of the vesicle to the cell membrane, Rab11a is recycled in the cytosol. During
the recycling step, the tracking of Rab11a is not accurate as the proteins are detached
from the vesicle and scatter around the cytosol, see Figure 5.4. It is currently under
investigation. For that reason, we focus on the exocytosis process until the fusion time
with the cell membrane.

The Two-Dimensional Rab11a Sequences

An illustration of a two-dimensional Rab11a sequence is shown in Figure 5.5 where the
dark spots correspond to Rab11a vesicles in a “crossbow” micro-patterned shape cell.
A typical image extracted from an image sequence is shown Figure 5.5. The image
sequence is composed of 600 images of size 256 × 240 (1 pixel=160nm) acquired at 10
frames/s (∆ = 0.1s). We tracked 1 561 trajectories with the multiple hypothesis tracking
method with default parameters [Chenouard et al., 2013], available on the Icy software
(http:www.icy.org). Now we explain how we select the trajectories of interest.

First, we discarded too small and too long trajectories corresponding to tracking errors
in most cases.

Secondly, as we have just said in the previous subsection, we want to study Rab11a
trajectories before the fusion of the vesicle to the membrane. We used a second molecular
marker (Transferin Receptor (TfR)) to select trajectories related to the transport of
vesicles until the fusion time. The transmembrane TfR protein is fluorescently labeled
with a pH-sensitive probe, the pHluorin. Before the fusion time, the pH inside the vesicle
is acidic, leading to a very low pHluorin photon emission. When the vesicle fuses to the
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5 Simulation Study and Real Data Applications

Figure 5.4: Main steps of the exocytosis process. Figure adapted from an original figure from
Basset et al. [2015].

plasma membrane, the pHluorin gets exposed to the neutral extracellular medium and
the fluorescence suddenly increases in the TIRF image plane. This feature allows us to
detect the fusion time and the end of the exocytosis process [Basset et al., 2015]. Now
the steps to select the trajectories of Rab11a undergoing exocytosis before the fusion
time are described as follows.

1. We simultaneously observe two sets of trajectories: TfR and Rab11a trajectories.

2. We match each trajectory of Rab11a with the corresponding trajectory of TfR.

3. We cut the trajectory of Rab11a at the time when the matched trajectory of TfR
starts (fusion time).
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5.3 Real Data: the Rab11a Protein Sequence

Table 5.5: Percentages of Brownian, superdiffusive and subdiffusive trajectories in the two-
dimensional Rab11a sequence according to the different methods of classification.

Method Brownian Subdiffusion Superdiffusion
Standard Proc. 1 80 16 4
adaptive Proc. 1 73 23 4
Single test 66 28 6
MSD 16 63 21

Finally, there is an additional step of selection of trajectories based on mathematical
considerations. As we model particles motions with the diffusion processes 4.1, the
particles are expected to move over time. Then, we have to get rid of the particles
that do not move enough and consequently, can not be modelled by diffusion processes.
In practice, we analyse only the trajectories with at least 20 distinct positions and the
vesicles that stop at the same position less than K = bn/10c times (with n the length of
the trajectory). In the case of the aforementioned image sequence, we end up with 166
trajectories whose median length is n = 83, once we went through the different steps of
the selection process. The histogram of the trajectory sizes is given in Figure (a) 5.6.
We also present the histogram of the test statistic Tn in Figure (b) 5.6.

In Figure 5.5, our results show that the four procedures – adaptive Procedure 1,
standard Procedure 1, single test and MSD method – do not produce similar classification
results visually. From the simulations, we found that the MSD method tends to wrongly
over-detect subdiffusion and superdiffusion (see Tables 5.3 and 5.4). This is probably true
also in the case of real Rab11a sequence. In Table 5.5, we give the proportion of each type
of diffusion for the different methods aforementioned. The adaptive Procedure 1 tends
to decrease the number of Brownian trajectories compared to the standard Procedure
1. It is not surprising as the adaptive Procedure 1 is defined to be more powerful than
the standard Procedure 1: it rejects more easily the null hypothesis. This gain in power
benefits to the alternative H1 (subdiffusion). In fact we detect 23% of subdiffusion for
the adaptive Procedure 1 against 16% for the standard Procedure 1 while both detect 4%
of superdiffusion (see Table 5.5). The single test procedure detects even less Brownian
motion but we know that it can not control the FDR. In Figure 5.5, the subdiffusion
trajectories labelled with the test approach are more located in the center of the cell
in a region corresponding to the Endosomal Recycling Compartment which is known to
organize Rab11a carrier vesicles [Schafer et al., 2014]. It is also true for the subdiffusion
trajectories labelled with the MSD analysis but we have just said that there is probably
an over-detection of the subdiffusion with this method. We note that we carry the
classification of trajectories with our different test procedures and the MSD method on
multiple sequences of Rab11a protein, see Figure 5.7.
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(a) (b)

(c) (d)

Figure 5.5: Map of the classification of the trajectories of the two-dimensional Rab11a sequence
with (a) standard multiple test procedure 1, (b) its adaptative version, (c) MSD, (d) single test
procedure. The colour code is: blue for Brownian motion, red for superdiffusion and green for
subdiffusion, cyan for immobile particule (for the MSD method only).

The Three-Dimensional Langerin Sequence

We study the three-dimensional trajectories of vesicles containing the Langerin protein.
Langerin is a C type lectin receptor almost exclusively expressed in Langerhans cells of
the epidermis and is constitutively endocytosed and recycled [Gidon et al., 2012]. Gidon
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Figure 5.6: Histograms of the trajectory sizes n (a) and of the test statistics Tn (b) of the Rab11a
2D sequence. In Figure (b), the green (respectively red) vertical line represents the quantile of
order 2.5% respectively 97.5% of the asymptotic distribution of Tn. We emphasize that the test
statistics Tn whose histogram is given in (b) are computed from observed trajectories of different
sizes n.
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Figure 5.7: Boxplots of the proportions of Brownian, subdiffusion and superdiffusion computed
from 12 two-dimensional Rab11a sequences. In blue proportions obtained with the single test
procedure, in cyan with the Procedure 1, in violet with the adaptive Procedure 1 and in orange
with the MSD method. Br stands for Brownian, Sub for subdiffusion and Sup for superdiffusion.

et al. [2012] show that a molecular complex containing Rab11a is necessary to sustain
proper trafficking of Langerin and that Langerin delivery at the plasma membrane is
always preceded by the docking and/or tethering of Rab11A/Rab11-FIP2 positive vesi-
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XY YZ

XZ

Figure 5.8: Orthogonal views of the three-dimensional Langerin trajectories classified with the
adaptive Procedure 1. The colour code is: blue for Brownian motion, red for superdiffusion and
green for subdiffusion Out of 123 trajectories, 111 are labelled as Brownian, 5 as superdiffusive
and 7 as subdiffusive.

cles. Then, in this case, the tracking of trajectories of Rab11a is equivalent to track
vesicles containing Langerin.

Here, the data consist in 31 three-dimensional volumes acquired at ∆ = 0.1s with
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Figure 5.9: Histograms of the trajectory sizes n (a) and of the test statistics Tn (b) of the
Langerin 3D sequence. In Figure (b), the green (respectively red) vertical line represents the
quantile of order 2.5% (respectively 97.5%) of the asymptotic distribution of Tn. We emphasize
that the test statistics Tn whose histogram is given in (b) are computed from observed trajectories
of different sizes n.

3D TIRF1 microscopy by incidence angle scanning and azimuthal averaging [Boulanger
et al., 2014]. Each volume is composed of 20 images of size 402 × 402 pixels defining
the XY plane. The Z resolution is much higher (about 50nm) than the resolution in
the X and Y direction (about 200nm). We use the same pre-processing of the data as
in Section 5. We classify 123 trajectories with the adaptive Procedure 1. The median
length of the trajectories is n = 31 corresponding to the situation in which the trajec-
tory is observed through the whole duration of the experiment. Results are shown on
Figure 5.8. The histogram of the trajectory sizes is given in Figure (a) 5.9. We also give
the histogram of the test statistic Tn in Figure (b) 5.9.

5.4 Summary

In this chapter, we evaluated both our single test procedure (4.5.1) and multiple test
Procedure 1 on simulations in the two-dimensional case. To this end, we computed the
power curves under the alternative of parametric diffusion models, namely the Ornstein-
Uhlenbeck process, the fractional Brownian motion and the Brownian motion with drift.
We showed on simulations that our test approach was more reliable than the method of

1Total Internal Reflection Fluorescence.
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Feder et al. [1996] based on the MSD. We also studied real data depicting the exocytosis
in both the two and three-dimensional cases.

In this part, we assumed that the particles were driven by the same diffusion process
over time. In Part II, we relax this assumption and assume that a particle can switch
between the three types of diffusion of interest (Brownian motion, subdiffusion and
superdiffusion) over time.
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Part II

Detection of Motion Switching
along Particle Trajectories
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6 A Sequential Algorithm to Detect
Change Points

In this chapter, we use the test statistic proposed in Chapter 4 in a new setting, namely
change point analysis. As intracellular transport presents a high heterogeneity of mo-
tions depending on the spatial location, the particle switches dynamics over time while
crossing different areas of the cell. For instance, Lagache et al. [2009] model the dynam-
ics of a virus invading a cell with successive switches between superdiffusion along the
microtubules and Brownian motion in the cytosol. We develop here a sequential method
for detecting the time at which an intracellular particle changes dynamic. More precisely,
we are interested in changes from one type of diffusion (superdiffusion, subdiffusion or
Brownian motion) to another type of diffusion.

6.1 Change Point Model

We observe a discrete trajectory Xn = (Xt0 , Xt1 , . . . , Xtn) with ti−ti−1 = ∆ as defined in
Equation (4.1.1). We assume that the discrete trajectory is generated by a d-dimensional
(d = 2 or d = 3) diffusion process (Xt) strong solution of the stochastic differential
equation:

dXt = µ(Xt, t)dt+ σ(t)dBh(t)
t , t ∈ [t0, tn], (6.1.1)

where Bh(t) denotes a d−dimensional fractional Brownian motion of Hurst parameter
h(t); the unknown parameters of the model are the Hurst parameter function h : R+ →
(0, 1), the diffusion coefficient function σ : R+ → (0,∞) and the drift term µ : R+×Rd →
Rd.

Furthermore, we assume that there exists a sequence of N change points on [t0, tn],
namely t0 = τ0 < τ1 < . . . τN < τN+1 = tn such that,

∀j ∈ {0 . . . N}, ∀x ∈ Rd,∀t ∈ [τj , τj+1), µ(x, t) = µj(x) (6.1.2)
h(t) = hj (6.1.3)
σ(t) = σj . (6.1.4)

The number of change points N , the drift functions (µj)j=0...N and the diffusion
coefficient (σj)j−0...N are unknown. We note that as N is unknown the vector of
change points (τj)j=1...N is also unknown. We also assume that the drift terms µj
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6.2 Null and Alternative Hypothesis of the Test

satisfy the Lipschitz and linear growth conditions of Assumption 1 or Assumption
2. Then, the stochastic differential equation (6.1.1) admits a strong solution on each
interval [τj , τj+1). We extend by continuity the solution on each subinterval to get a
solution on [t0, tn]. Moreover, we assume that (hj , µj) and (hj+1, µj+1) are associated
to different types of diffusion. We note that the parameter σj does not influence the
type of diffusion. For example, hj = 1/2 and µj(x) = 0 define the Brownian motion
on [τj , τj+1) then (hj+1, µj+1) must define a subdiffusion or superdiffusion on [τj+1, τj+2).

In the sequel, P τττhhh,µµµ,σσσ denotes the measure induced by the stochastic process (Xt) solu-
tion of (6.1.1). We define the subscripts hhh,µµµ,σσσ and τττ as follows:

• τττ = (τj)j=1...N ∈ RN+∗ is the vector of change points with τ1 < τ2 < · · · < τN ,
• hhh = (hj)j=0...N ∈ (0, 1)N+1 is the vector of Hurst index,
• µµµ = (µj)j=0...N is the set of N + 1 drift functions from R+ × Rd → Rd,
• σσσ = (σj)j−0...N ∈ R(N+1)+∗ is the vector of diffusion coefficients.

We set (hhh,µµµ,σσσ,τττ) = (h, µ, σ, ∅) if there is no change point.
Finally, we suppose that for each τj there exists 0 ≤ j? ≤ n such that τj = tj∗ . It

means that the change of motion occurs precisely at a sampling time. Then, we define
the subtrajectory Xjnj

= (Xτj , . . . , Xτj+1) of size nj generated with diffusion parameters
(hj , µj , σj).

We present a sequential procedure to estimate both the number of change pointsN and
the vector of change points (τ1, . . . , τN ). In the next section, we present the sequential
procedure as a statistical test.

6.2 Null and Alternative Hypothesis of the Test

We adapt the sequential procedure proposed in [Cao and Wu, 2015] to our problem. In
our setting, the sequence of p-values is replaced by the trajectory Xn. Our global null
hypothesis is that (Xt) is a Brownian motion on [t0, tn]:

H0 : Xn is generated from (σBt)t0≤t≤tn . (6.2.1)

Our alternative hypothesis is that there exist τ0 = t0 < τ1, . . . , τN < τN+1 = tn such
that:

1. Xn = (X1
n1 , . . . ,X

N
nN

) where the subtrajectory Xjnj
is generated with diffusion pa-

rameters (hj , µj , σj).

2. For all j = 1, . . . , N diffusion parameters (hj , µj , σj) and (hj+1, µj+1, σj+1) are
associated to different types of diffusion (Brownian, subdiffusion or superdiffusion).
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6 A Sequential Algorithm to Detect Change Points

Remark 6.2.1. The case where the whole trajectory is subdiffusive or superdiffusive
belongs to the alternative hypothesis. In this case there is no change point (τττ = ∅).

In the next section, we present the sequential procedure. The parameters of this
algorithm can be chosen such that we control the type I error of the aforementioned
test at level α. In other words, with appropriate parameters, if the trajectory is fully
Brownian, we will not detect any change point with probability 1− α.

6.3 Procedure
Our procedure comprises three main steps:

1. detect the potential change points,

2. gather these potential change points in clusters; one cluster is assumed to contain
a single change point,

3. estimate the change point in each cluster.

The critical parameter of our method is the size of the local window k (see Box Page
70). There are two parameters to detect the potential change point (γ1, γ2) and two
parameters defining the clusters (c, c?). We explain each step of our procedure in the
next subsections.

Detecting the Potential Change Points
Let 1 ≤ k ≤ n/2. We will discuss about the choice of k in Chapter 7. For all index i
such that tk ≤ ti ≤ tn−k, we consider two subtrajectories of size k starting at Xti ,

• the backward trajectory X−i = {Xti , Xti−1 , . . . Xti−k
},

• the forward trajectory X+
i = {Xti , Xti+1 , . . . Xti+k

}.

We compute the test statistic (4.3.1) for the backward and forward trajectory as,

Bi =
maxj=1,...,k

∥∥∥Xti−j −Xti

∥∥∥√
(ti+k − ti)σ̂(ti−k : ti)

, Ai =
maxj=1,...,k

∥∥∥Xti+j −Xti

∥∥∥√
(ti+k − ti)σ̂(ti : ti+k)

. (6.3.1)

where σ̂(ti : ti+k) (respectively σ̂(ti−k : ti)) denotes the estimate of the diffusion
coefficient from the forward trajectory X+

i (respectively the backward trajectory X−i ).
We note that if we use the standard estimate of the diffusion coefficient proposed in
Section 4.6, we have σ̂(ti−k : ti) = σ̂(ti : ti−k). The denomination Bi (respectively
Ai) is for ”Before time ti” (respectively ”After time ti”). We illustrate this sequential
procedure on Figure 6.1.
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6.3 Procedure

Now, we want to compare the backward statistic Bi and the forward statistic
Ai. The principle is that if the two values are in the same range of values, it is unlikely
that time ti is a change point. Then, we use two cut-off values γ1 < γ2 which depend
on the parameters of the procedure, and we define the following step-function:

φ(x; γ1, γ2) =


1 if x < γ1

2 if x > γ2

0 otherwise.
(6.3.2)

We have the following interpretation of the cut-off values: φ(Ai; γ1, γ2) = 0 means that
X+
i is Brownian, φ(Ai; γ1, γ2) = 1 means that X+

i is subdiffusive and φ(Ai; γ1, γ2) = 2
superdiffusive. Then we compute:

Qi = φ(Ai; γ1, γ2)− φ(Bi; γ1, γ2), i = k, . . . , n− k. (6.3.3)

If Qi = 0 it means that the statistics Bi and Ai belong to the same range of values
defined by γ1 and γ2. Then, both X+

i and X−i are from the same type of diffusion: it is
unlikely that ti is a change point. On the contrary, if Qi 6= 0 the subtrajectories X+

i

and X−i are not from the same type of diffusion and ti is a potential change point. The
detection step is illustrated on a simulated trajectory in Figure 6.2.

Gathering the Potential Change Points into Clusters
A first option proposed by Cao and Wu [2015] is to consider that a cluster is composed
of successive index i (in their context location in DNA sequence) such that Qi 6= 0. Cao
and Wu [2015] require the cluster to have a minimal size r? set to k/2. However, in
our case, this choice does not work well. Due to the high level of randomness of the
stochastic processes modelling the trajectory, we observe rarely clusters of size k/2 of
successive position i in the trajectory such that Qi 6= 0. Then the procedure does not
detect any change point (low power of the test). Also, optimizing the minimal size r?
is tricky and can lead to overdetection or underdetection depending on the situation.
Therefore we choose an other way to build clusters. Even if it is hard to observe successive
potential change points, we argue that a subset of indexes where the concentration of
potential change point is high (even if there are not connected) is likely to contain a true
change point. Then, we define a cluster of potential change points as a subset of index
M = {i, . . . , i+ l} such that:

m+c−1∑
j=m

1(Qj 6= 0) ≥ c?, ∀m = i, . . . , i+ l − c+ 1, (6.3.4)
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6 A Sequential Algorithm to Detect Change Points

t80−k t80 t80+k t230−k t230 t230+k

Sliding window

Figure 6.1: Illustration of the sequential procedure on a one dimension toy trajectory. Blue
parts are the backward subtrajectories on which we compute Bi. Orange parts are the forward
subtrajectories on which we compute Ai. The black points are the centres of the backward
and forward subtrajectories. We shift the backward and forward subtrajectories all along the
trajectory to compute the sequence of (Bi, Ai), as shown by the red arrow.

where c and c? are tuning parameters. We set c = k/2, therefore the cluster has a
minimal size of k/2 as in [Cao and Wu, 2015]. A cluster is created if there are at least
c? potential change points in a set of c successive points. The parameter c? defines the
minimum concentration of potential change point needed to build a cluster. Intuitively,
we should have c? ≥ c/2: the concentration of potential change points i (Qi 6= 0) is
higher than the concentration of points i such that Qi = 0. We set c? = 0.75c. We note
that some points of the clusters are not potential change points (Qi = 0). We emphasize
that the choice c? = c is equivalent to build clusters as presented in [Cao and Wu, 2015].

To illustrate the construction of the clusters, we reproduce a portion of the sequence
of 1(Qj 6= 0) computed on a trajectory simulated with the same parameters as the
trajectory presented in Figure 7.1 (b):

0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0
1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.
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Figure 6.2: Illustration of the detection step on a simulated trajectory. The trajectory is a zoom
of the trajectory represented in Figure 7.1 (a) on the portion corresponding to the time interval
[50, 140]. First the trajectory is Brownian, then after τ1 = 100 it undergoes Brownian motion
with drift. The change point τ1 is represented by the black dot. The blue (respectively orange)
part corresponds to the subtrajectory X−

τ1
respectively X+

τ1
. The size of the subtrajectories is

k = 30. The gray part is the complementary part of the trajectory. The two circles are centred
on Xτ1 . They represent the thresholds defining the different kinds of motion. The radius of the
inner (respectively outer) circle is γ1σ

√
k∆ (respectively γ2σ

√
k∆). For the didactic purpose of

the illustration, here we consider σ known (we estimate it in our method). The blue subtrajectory
stays inside the inner circle: it is classified as subdiffusive. The orange subtrajectory goes outside
the outer circle: it is classified as superdiffusive. If the maximum of one part had lied between
the two circles it would have been classified as Brownian. The maximum of the blue and orange
subtrajectories lie in different regions defined by the two limit circles, then τ1 = 100 is detected
as a potential change point.

We use a window size of k = 30. Then the default parameters of the clustering step
are c = 15 and c? = 10. The blue part defines a cluster. In fact, along this cluster,
the condition (6.3.4) is respected. It turns out that the index of a true change point
is contained in this cluster. We would not have detected this change point with the
choice of Cao and Wu [2015] (corresponding to c? = c). To detect the same cluster with
the choice of Cao and Wu [2015], we should have observed the following sequence of
1(Qj 6= 0):

0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

69



6 A Sequential Algorithm to Detect Change Points

Estimating the Change Point in each Cluster

Denote Mk the kth cluster. We estimate the change point of cluster Mj by:

τ̂j = trj , rj = max
i∈Mj

|Bi −Ai|. (6.3.5)

We choose the point i of the cluster for which Bi and Ai are the most different. The
rational of this idea is that, at the exact change point τj = trj , X−rj

and X+
rj

are trajectories
generated from different diffusion processes and thus Brj and Arj must be the most
different. At a point ti close to τj , the subtrajectories X−i and X+

i are composed of a
mixture of diffusion. Then Bi and Ai reflect this mixture and |Bi −Ai| ≤ |Brj −Arj |.

Finally we can summarize the method as follows:

Procedure 2.

1. For a chosen window size k compute Bi and Ai in (6.3.1) for i = k, . . . , n− k.

2. For prespecified cut-off values γ1 < γ2 compute Qi = φ(Ai; γ1, γ2)− φ(Bi; γ1, γ2).

3. Decompose {k, . . . , n − k} = W0 ∪ W1 where i ∈ W0 if Qi = 0 and i ∈ W1 if
Qi 6= 0..

4. Gather the potential change points, that is points ti such that Qi 6= 0, into clusters
M1, . . . ,MN̂ satisfying Equation (6.3.4).

5. For each Mj let rj = maxi∈Mj |Bi −Ai| then τ̂j = trj .

The parameters of Procedure 2 are the size of the window k, the parameters
defining the clusters c and c? and the cut-off-values (γ1, γ2). We recommend to
set c = k/2 and c? = 0.75c. A choice for the cut-off values (γ1, γ2) is given in
Section 6.4. Then, the only free parameter to be set by the user is the window
size k. The influence of parameter k is discussed in Chapter 7.

6.4 Cut-off Values
We choose γ1 and γ2 such that we control the type I error at level 0 < α < 1 that is:

P ∅1/2,0,σ(∃i ∈ {k, . . . , n?},
i+c−1∑
j=i

1(Qj 6= 0) ≥ c?) ≤ α, (6.4.1)

where n? = n−k−c+1. We explain why controlling the probability in (6.4.1) at level α
is equivalent to control the type I error at level α. The left hand side of Equation (6.4.1)
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6.4 Cut-off Values

is the probability to build one cluster of minimal size c (in the sense of (6.3.4)) under
H0. With Procedure 2, we need to build a cluster of potential change points to detect a
change point, otherwise no change point is detected. Then, controlling the probability
in (6.4.1) at level α under H0 is equivalent to control the probability to detect falsely
a change point under H0 at level α (definition of the type I error). Now we have the
following proposition:

Proposition 3. Let define di = min(Bi, Ai) and Di = max(Bi, Ai) where Ai and Bi are
the test statistics (6.3.1), for i = k, . . . , n?. We define γ?1 and γ?2 as:

P ∅1/2,0,σ

(
min

i=k,...,n?
di(c?/2) < γ?1

)
= α

2 ,

P ∅1/2,0,σ

(
max

i=k,...,n?
Di(c−c?/2) > γ?2

)
= α

2 ,
(6.4.2)

where di(c?/2) is the c?/2 smallest element of (di, . . . , di+c−1) and Di(c−c?/2) the c− c?/2
smallest element of (Di, . . . , Di+c−1) (equivalently the c?/2 greatest element). In other
words, γ?1 is the quantile of order α/2 of the random variable mini=k,...,n? di(c?/2) and γ?2
is the quantile of order 1− α/2 of the random variable maxi=k,...,n? Di(c−c?/2). With the
choice of cut-off values γ?1 and γ?2 Procedure 2 with parameters (k, c, c?) controls the type
I error (6.4.1) at level α.

A proof of Proposition 3 is postponed in Appendix B. We estimate γ?1 and γ?2 with
Monte-Carlo simulation, see Algorithm 2.

When we analyse the proof of Proposition 3 (see Appendix B), we realize that the
choice (γ?1 , γ?2) is not optimal. In particular, the bound in Equation (B.0.7) is loose.
Then, we can see from simulations that the probability of type I error is controlled at a
much lower level (about ) than α (see Table 6.1). Consequently, we recommend to use
the cut-off values verifying:

P ∅1/2,0,σ

(
min

i=k,...,n?
di(c?) < γ̃1

)
= α

2 ,

P ∅1/2,0,σ

(
max

i=k,...,n?
Di(c−c?) > γ̃2

)
= α

2 .
(6.4.3)

We replace c?/2 in Equation (6.4.2) by c?. Then, it is straightforward to show that
γ?1 ≤ γ̃1 and γ?2 ≥ γ̃2. We deduce from these inequalities that the power of Procedure
2, that is its ability to find a true change point, is higher with the choice (γ̃1, γ̃2) than
with (γ?1 , γ?2). In fact, a high value of γ1 detects better subdiffusions than a low value
of γ1. The other way around, a low value of γ2 detects better superdiffusions than a
high value of γ2. As stated before, the control the type I error constrains the choice of
(γ1, γ2). We show from simulations that the choice (γ̃1, γ̃2) still controls the type I error
at level α (see Table 6.1). Estimations of (γ?1 , γ?2) and (γ̃1, γ̃2) –obtained with the Monte
Carlo Algorithm 2– are given in Table 6.2.
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6 A Sequential Algorithm to Detect Change Points

Table 6.1: Control of the type I error for different cut-off values (γ1, γ2). We estimate the
probability of type I error with the proportion of trajectories with at least one change point
detected among 100 001 Brownian trajectories. We use the default parameters for Procedure 2
that is c = k/2 and c? = 0.75c. The estimations are accurate at ±0.14%.

Probability of Type I error
n k with (γ?1 , γ?2) with (γ̃1, γ̃2)

150 20 0.60 5.21
150 30 0.65 4.81
150 40 0.94 4.56
300 20 0.47 5.04
300 30 0.59 4.89
300 40 0.82 4.83

Table 6.2: Cut-off values of Procedure 2 for different sizes of trajectory n and sizes of window k.
The cut-off values are estimated with Algorithm 2 using N = 10 001 Monte-Carlo replications.

n k γ?1 γ?2 γ̃1 γ̃2

150 20 0.61 3.38 0.74 3.09
150 30 0.65 3.35 0.78 3.05
150 40 0.68 3.28 0.80 3.03
300 20 0.58 3.55 0.71 3.27
300 30 0.62 3.55 0.74 3.26
300 40 0.64 3.52 0.75 3.25

6.5 Summary

In this chapter, we assumed that a particle was able to switch between the three diffusion
types (Brownian motion, subdiffusion and superdiffusion) over time. In this context, we
developed an algorithm for detecting the change points corresponding to these switches.
We designed a sequential algorithm in which we compute the test statistic Tn (4.3.1) on
local windows along the trajectory. The sequential scheme is adapted from the algorithm
of Cao and Wu [2015] which computes CUSUM-like statistics along genomic sequences.
We perform an original clustering step for gathering the potential change points which
are close from each other. Our algorithm is user-friendly as there is only one parameter
to tune, namely the window size k.

In the next chapter, we assess our algorithm on Monte Carlo simulations. We study
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Algorithm 2: Estimation of the cut-off values γ?1 and γ?2 by Monte Carlo simu-
lations. For estimating (γ̃1, γ̃2), one should turn c?/2 into c? in this algorithm.

Input: n, k, α, N
// the length n of the trajectory
// the size k of the subtrajectories
// the level α ∈ (0, 1)
// the number N of Monte Carlo experiments
Result: γ̂1(n, k, α) γ̂2(n, k, α)
for i=1 to N do

Generate Xin of size n from the null hypothesis (6.2.1) with σ = 1 and ∆ = 1 ;
// Compute the statistics (6.3.1) along Xin
for j=k to n-k do

Compute (Bi
j , A

i
j) from (6.3.1);

Set dij = min(Bi
j , A

i
j);

Set Di
j = max(Bi

j , A
i
j);

end
for r=k to n-k-c+1 do

Compute sir the c?/2 smallest element of (dir, . . . , dir+c−1);
Compute Sir the c− c?/2 smallest element of (dir, . . . , dir+c−1);

end
Compute mi = minr(Sir) and Mi = maxr(sir);

end
Let (m̃1, . . . , m̃N ) the sorted mis and (M̃1, . . . , M̃N ) the sorted Mis;
Set γ̂1(n, k, α) = m̃b(α/2)Nc and γ̂2(n, k, α) = M̃b(1−α/2)Nc;

two different scenarios mimicking real biophysical processes. In particular, we give some
insights of the impact of the window size k on the results.
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7 Simulation Study

We assess the algorithm proposed in Chapter 6 on different simulation scenarios. We
limit this study to the two-dimensional case. Subdiffusion (respectively superdiffusion)
is modelled with the Ornstein-Uhlenbeck process (4.2.1) (respectively with the Brownian
motion with drift (4.2.3)). We also compare our method to two others procedures, the
first proposed by Türkcan and Masson [2013], the second by Monnier et al. [2015].

7.1 Performance of the Method

We simulate two different scenarios, see Table 7.1, where the particle motion switches
at same change points. Subdiffusions are modelled by Ornstein- Uhlenbeck process:

dXi
t = −λ(Xi

t − θi)dt+ σdB
1/2,i
t , i = 1, 2, (7.1.1)

where λ > 0 models the restoring force toward the equilibrium point θ = (θ1, θ2); σ > 0
is the diffusion coefficient. For modelling superdiffusion we use the Brownian motion
with drift solution of the SDE:

dXi
t = (v/

√
2)dt+ σdB

1/2,i
t , i = 1, 2, (7.1.2)

where σ > 0 is the diffusion coefficient and v > 0. Then the constant drift v = (v, v)/
√

2
verifies ‖v‖ = v.

For each scenario, we compute the performances of our procedure for different values of
the parameters v (for the Brownian motion with drift) and λ (for the Ornstein-Uhlenbeck
process). We assess the performances of our algorithm with respect to two criteria:

1. the number of change points detected,

2. the location of these change points.

Criterion 2 is assessed only on the trajectories for which we detect the right number
of change points that is N = 2. We compute the average and standard deviation of the
locations. We analyse the results of the simulation on the different scenarios in the next
paragraphs.
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Table 7.1: Simulation scenarios for the Monte Carlo study. The size of the simulated trajectories
is n = 300. The change points occur at τ1 = 100 and τ2 = 175. We set σ = 1 for the diffusion
coefficient and ∆ = 1 for the step of time. For the Ornstein-Uhlenbeck process (7.1.1), we define
the equilibrium point as θ = Xτ1 where Xτ1 is the position of the particle at τ1.

Times Scenario 1 Scenario 2
[1, 100] Brownian Brownian
[101, 175] Brownian with drift Ornstein-Uhlenbeck
[176, 300] Brownian Brownian

Scenario 1

First, we illustrate the scenario of simulation with Figure 7.1 (a) showing a trajectory
simulated with Scenario 1. Table 7.2 gives us the results associated to Scenario 1 (see
Table 7.1). We can see clearly that, as ‖v‖ increases, the performance of the method
increases with respect to both criteria. For a given window size k, we get:

1. the proportion of trajectories for which we detect the right number of change point
(N̂ −N = 0) tends to 1 as v inceases.

2. given N̂ −N = 0, the bias and the variance of the estimated change point decrease
to 0 as v inceases.

We also notice that for the window size k = 20, the performance of the algorithm is
lower than for k = 30 and 40 except when ‖v‖ = 2. As the size of the window is too low,
it is hard for the algorithm to detect a Brownian motion with drift with a low drift norm.
In particular, when ‖v‖ = 0.6, it does not detect any change point in most cases; we note
that N̂ −N = −2 for 42.2% of the trajectories. However, when the drift norm is high, a
low window size performs as good as the larger ones (see the case ‖v‖ = 2). It performs
even better if the change points τ1, τ2 are closer. In this case, a large window tends to
mix up the two change points and consequently find only one. We can summarize this
as follows: a large window size enables to detect well the change points associated with
a small drift v if the change points are significantly separated while a small window is
able to distinguish two close change points if the drift v is large enough.

Scenario 2

We illustrate the scenario of simulation with Figure 7.1 (b) showing a trajectory simu-
lated with Scenario 2. Table 7.3 gives us the results associated to Scenario 2 (see Table
7.1). As in Scenario 1, for a window size k = 20 the performance of the algorithm
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Table 7.2: Performance of the Procedure 2 for Scenario 1 (see 7.1) for different window sizes k
and different values of the drift v. The computations are based on 1 001 simulated trajectories
from Scenario 1. We compute the proportions of trajectories with N̂ −N = −2, N̂ −N = ±1,
N̂ −N = 0 and N̂ −N ≥ 2. The column τ1 (respectively τ2 ) gives the empirical average of the
first (respectively second) detected change point on 300 trajectories among which we detect the
right number of change points (N̂ −N = 0). The number in brackets is the empirical standard
deviation of the estimate of τ1 and τ2 computed on these 300 trajectories.

N̂ −N
v k -2 -1 0 1 ≥ 2 τ1 τ2

0.6 20 42.2 14.1 34.7 5.7 3.3 126.3 (23.7) 153.7 (23.6)
0.6 30 20.9 16.9 55.9 5.5 0.8 115.0 (17.8) 162.8 (18.4)
0.6 40 11.8 18.6 67.6 1.8 0.2 109.4 (15.5) 168.2 (15.1)
0.8 20 6.5 12.9 54.4 17.3 8.9 117.4 (16.7) 157.5 (18.5)
0.8 30 1.6 6.5 84.1 6.3 1.5 107.3 (11.6) 170.1 (14.1)
0.8 40 0.3 4.1 93.2 2.3 0.1 104.7 (9.7) 172.4 (10.0)
1 20 0.2 3.7 63.2 21.6 11.3 108.3 (12.1) 168.2 (13.2)
1 30 0.0 1.9 93.8 3.5 0.8 102.9 (5.9) 173.9 (6.5)
1 40 0.0 0.1 97.7 1.9 0.3 103.2 (6.6) 174.5 (7.3)
2 20 0.0 0.0 96.6 2.4 1.0 101.4 (2.1) 176.0 (2.3)
2 30 0.0 0.3 96.8 2.5 0.4 101.2 (3.4) 175.9 (2.6)
2 40 0.0 0.1 99.2 0.5 0.2 101.5 (2.8) 175.8 (2.9)

increases as λ increases. However, it does not behave the same way if the window size
is 30 or 40. For k = 30, the performance increases from λ = 1 to λ = 2 but remains
the same for larger values of λ. For the window size k = 40, the proportion of trajecto-
ries with the correct number of detected change points dramatically drops from 83.6%
with λ = 1 to 54.1% for λ = 4. At the same time, the proportion of trajectories with
N̂ −N = −1 increases. It means that when λ becomes too high the algorithm mixes up
the two change points and find only one. As λ is high (clear subdiffusion), we detect a
potential change point very early in the trajectory: as soon as few points of the forward
subtrajectory X+

i enter in the subdiffusion regime (t ≥ τ1) we classify it as subdiffu-
sive. For example, if λ is big enough we can suppose that the subtrajectory of size k
X+
i = (Xti , . . . Xτ1 , Xτ1+1, Xτ1+2) will be classified as subdiffusive with only three points

in the subdiffusive regime. Then, we get a long sequence of potential change points. But
as k is large, the forward subtrajectory has already reached the second change point τ2.
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Table 7.3: Performance of the Procedure 2 for Scenario 2 (see 7.1) for different window sizes k
and different values of parameter λ. We use the same protocol as in Table 7.2.

N̂ −N
λ k -2 -1 0 1 ≥ 2 τ1 τ2

1 20 18.1 44.1 31.8 5.3 0.7 109.9 (20.7) 167.8 (17.9)
1 30 0.8 16.3 78.3 4.2 0.4 104.9 (8.7) 169.9 (9.3)
1 40 0.0 13.2 83.6 3.0 0.2 105.6 (10.8) 170.4 (11.6)
2 20 3.1 22.6 68.1 5.5 0.7 106.4 (8.5) 170.2 (8.1)
2 30 0.1 6.5 89.4 3.4 0.6 107.5 (8.7) 169.1 (8.2)
2 40 0.0 21.2 77.0 1.6 0.2 108.0 (12.7) 169.1 (12.8)
3 20 1.1 17.1 74.8 5.9 1.1 106.3 (5.6) 170.1 (7.9)
3 30 0.0 5.7 90.2 3.2 0.9 108.7 (8.8) 167.6 (8.7)
3 40 0.1 32.1 64.8 2.5 0.5 109.3 (12.9) 166.4 (13.5)
4 20 0.6 12.2 79.4 6.8 1.0 107.2 (6.5) 169.9 (8.4)
4 30 0.0 6.5 89.7 3.1 0.7 109.6 (9.6) 166.5 (9.2)
4 40 0.0 44.3 54.1 1.4 0.2 111.5 (13.3) 166.0 (13.3)

Consequently, it begins to detect potential change points corresponding to the second
change point τ2. As there is a single cluster of potential change points, the algorithm
only detects one change point instead of the two expected. From our simulations, we
observe that the change point detected is either close to τ1 or τ2: it estimated correctly
one change point out of the two real change points.

The idea is that, in a way, a large λ (a very clear subdiffusion) makes the two change
points get closer artificially. Then, a large window can not separate them. We note
that, from our simulations, in the case of a change point between Brownian motion with
drift and Brownian motion, we do not observe such a phenomenon (that is a fall of
the proportions of trajectories with the right number of detected change points when v
increases). However, when the change points are close and the window size k is large
compared to the gap between the change points, the performance stops increasing (but
does not fall) above a certain value of v.

Once the change points are estimated, we can label the type of diffusion on each
subtrajectory Xjnj

= (Xτ̂j , . . . , Xτ̂j+1). For a given scenario, value of parameter (λ or v)
and size window k, we assessed the labelling of the subtrajectories. Results and details
of the evaluation are given in Table 7.4.
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Table 7.4: Proportions of trajectories (among the trajectories with N̂ = N) for which subtrajec-
tories are correctly labelled, in scenario 1 and 2. The change points are detected and estimated
with Procedure 2. The subtrajectories are labelled using the test 4.5.1 at level 5%. Columns 3
et 4 (respectively 4 and 5) correspond to scenario 1 (respectively scenario 2). For example, in
scenario 1 with v = 0.6, when we use a window of size k = 20, 73.7% of the trajectories for which
we detect N = 2 change points are labelled as Brownian on [t0, τ̂1], superdiffusive on [τ̂1, τ̂2] and
again Brownian on [τ̂2, tn].

Scenario 1 Scenario 2

k v % right label λ % right label
20 0.6 73.7 1 83.0
30 0.6 82.3 1 89.3
40 0.6 86.0 1 85.0
20 0.8 74.7 2 90.7
30 0.8 87.7 2 89.0
40 0.8 88.7 2 88.7
20 1.0 82.0 3 89.3
30 1.0 86.3 3 87.3
40 1.0 88.7 3 86.7
20 2.0 89.7 4 88.7
30 2.0 90.0 4 85.0
40 2.0 90.3 4 84.7

7.2 Comparisons with Competitive Methods

We compare our method to two other methods. The method of Türkcan and Masson
[2013] detects change points between Brownian motion and confined motion in a potential
well. The method of Monnier et al. [2015] detects change points between Brownian
motion and Brownian motion with drift. We note that none of these methods deal with
the three types of diffusion (Brownian motion, subdiffusion and superdiffusion) as we do.
In this section, we present the two competitive methods and compare their performances
to Procedure 2 on simulations. At the end of the section, we give a particular emphasis
on the speed and stability of the different methods.

The Method of Türkcan and Masson [2013]

First the method of Türkcan and Masson [2013] is a parametric method. The two para-
metric models under concern are the Brownian motion and the Ornstein-Uhlenbeck pro-
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Table 7.5: Comparison of Procedure 2 and the method of Türkcan and Masson [2013] on the
simulation of Türkcan and Masson [2013]. We recall that the true change point is τ1 = 250.

N̂ −N
Method -1 0 1 ≥ 2 τ1

Procedure 2 19 77 3 1 240.5 (29.4)
Method of Türkcan and Masson [2013] 27 59 14 0 176.3 (53.7)

cess (called diffusion in a harmonic potential in [Türkcan and Masson, 2013]). Türkcan
and Masson [2013] select the model that minimizes the BIC criterion. For detecting
change points, the BIC criterion is computed on a sliding window along the trajectory.
When the BIC indicates a switch of model and that the new model is confirmed in the
next r steps of times, a change is assumed to occur.

We reproduce the simulation described in Türkcan and Masson [2013]. We simulate
N = 100 trajectories of size n = 500. First the trajectory undergoes an Ornstein-
Uhlenbeck process and at time τ1 = 250 it switches to a Brownian motion. The two pro-
cesses share the same diffusion coefficient σ = 0.4472. The parameters of the Ornstein-
Uhlenbeck process (4.2.1) is λ = 7.3870. The step of time is ∆ = 0.05. Results of the
two methods are given in Table 7.5. We can see that our method show better results in
both the number N̂ of detected change points and in the location of the change points.
We also emphasize that we do not set r = 3 as in [Türkcan and Masson, 2013] but we
set r = 51 which corresponds to the size of the window. With r = 3, the method of
Türkcan and Masson [2013] detects more than 4 change points in 91% of the trajectories.
Actually, the method is able to detect the change point, if a collection of about N = 50
trajectories showing the same number of change points at the same location is available.
Accordingly, it provides good results in average. However, such a situation is not realis-
tic in practical imaging. In our scenarios, our non-parametric method outperforms the
parametric method of Türkcan and Masson [2013].

The Method of Monnier et al. [2015]

Monnier et al. [2015] use two parametric models to fit the displacements of the particle:
the Brownian motion and the Brownian motion with drift. We note that the Brownian
motion can be seen as a Brownian motion with a null drift. The two models are actually
a unique parametric model with parameters v = (v1, v2) and σ (with v = (0, 0) for
the Brownian case). Then, Monnier et al. [2015] use hidden Markov models to fit the
displacements of the particle over time. The hidden states are defined as a set of a drift
parameter and diffusion coefficient Sk = vk, σk. They estimate both the number of states
K, the parameters (vk, σk) and the successive (hidden) states along the trajectories.
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They also add a constrained v = 0 for modelling Brownian motion. Model selection is
used with a Bayesian criterion to select the best model. If we assume that K ≤ 2 and
also consider the constrained models with v = 0, the competing models are:

Model 1 a single state which is the Brownian with parameter σ1,

Model 2 a single state which is the Brownian with drift with parameters (v1,σ1),

Model 3 two states which are two Brownian with parameter σ1 and σ2,

Model 4 two states which are one Brownian and one Brownian with drift with respective
parameters σ1 and (v2, σ2),

Model 5 two states which are two Brownian with drift with parameters (v1, σ1) and
(v2, σ2).

In our experiment, we run the method of Monnier et al. [2015] on 100 simulated
trajectories from Scenario 1. We assume K ≤ 2 that is the competing models are the
five models aforementioned. Results are given in Table 7.6. When v = 0.6 or 0.8,
Monnier et al. [2015] detect no change point (N̂ −N = −2) for a large majority of the
trajectories. In this case, the selected model can either have one state (models 1 and 2)
or have two states but from the same type of diffusion (models 3 and 5). Actually, when
v = 0.6, 0.8, the preferred model is Brownian only (model 1) for most of the trajectories
(see Table 7.7). Then the drift is too low to select a model involving Brownian with
drift. As expected, the performance of the method of Monnier et al. [2015] improves
as v increases. The method detects the right number of change points for 96% of the
trajectories when v = 2. When the method detects at least one change point, it means
that the selected model is the model 5. Even when the right model is chosen, it can over-
detect the number of change points (that is N̂ −N ≥ 1). We have 9% of overdetection
when v = 1. When the method detects the right number of change points (N̂ −N = 0),
the location of the change points are very close to the true locations. For instance when
v = 2, the average location of the first detected change point is 100 (which is exactly τ1)
and its standard deviation is 1.4. Finally, our non-parametric method detects better the
change points when the drift is low (v ≤ 0.8). The quality of detections are similar when
the drift is high enough (v = 2). For v = 1, we have a larger proportion of trajectories
detected with the right number of change points with our method except when we use a
window size of n = 20 (63.2% with our method versus 68% with the method of Monnier
et al. [2015]). The locations of the detected change points among the trajectories with
N̂ −N = 0 are slightly more accurate with the method of Monnier et al. [2015].

Algorithmic Considerations
Finally, we compare the speed and stability of the different methods. The method of
Monnier et al. [2015] is time consuming because of the estimation of the a posteriori
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Table 7.6: Performance of the algorithm of Monnier et al. [2015] for Scenario 1 (see 7.1).
The computations are based on 100 simulated trajectories from Scenario 1. We compute the
proportions of trajectories with N̂ − N = −2, N̂ − N = ±1, N̂ − N = 0 and N̂ − N ≥ 2.
The column τ1 (respectively τ2 ) gives the empirical average of the first (respectively second)
detected change point on the trajectories among which we detect the right number of change
points ( N̂−N = 0). The number in brackets is the empirical standard deviation of the estimates
of τ1 and τ2. We note that the empirical average and standard deviation estimate of τ1 and τ2
are not computed over the same number of trajectories for the different values of the drift v
(causing the null standard deviation line 1).

N̂ −N
v -2 -1 0 1 ≥ 2 τ1 τ2

0.6 99 0 1 0 0 93.0 (0.0) 177.0 (0.0)
0.8 82 0 15 1 2 96.0 (7.9) 173.4 (3.9)
1.0 23 0 68 7 2 99.9 (3.9) 174.9 (4.3)
2.0 0 0 96 1 3 100.0 (1.4) 175.0 (1.2)

Table 7.7: Selected models with the method of Monnier et al. [2015] on 100 simulated trajectories
from Scenario 1. BR (respectively BRD) stands for Brownian (respectively Brownian with drift).
For instance, when v = 0.6, the method of Monnier et al. [2015] states that the best fit is
Brownian motion only for 97 trajectories; Brownian motion with drift only for 2 trajectories; a
mix of Brownian and Brownian motion with drift for 1 trajectory.

v BR BRD BR-BR BR-BRD BRD-BRD
0.6 97 2 0 1 0
0.8 74 8 0 18 0
1 18 5 0 77 0
2 0 0 0 100 0

distribution by the Metropolis-Hastings algorithm. Assuming K ≤ 2, it took 115s in
average to deal with one trajectory of the simulation presented in Table 7.6 (300 points)
with four cores working in parallel on a Mac Book Pro version 10.10.1 equipped with 2.8
GHz Intel Core i7, 16 Gb of RAM. In comparison, our method takes less than 0.05s to
process a trajectory without working in parallel. Both our procedure 2 and the method
of Türkcan and Masson [2013] compute quantities on local windows (in our case the
statistics 6.3.1, the BIC of different models for [Türkcan and Masson, 2013]). From
this aspect, the complexity of these two algorithms is equivalent. However, Türkcan
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and Masson [2013] needs to estimate the MAP (maximum a posteriori) to compute the
BIC. They choose a complex likelihood to model the spatial heterogeneity of the motion.
Therefore, they use quasi-Newtonian optimization to find the MAP which is the most
time consuming step of their procedure. It took in average 11s to process a trajectory of
the simulation presented in Table 7.6 (500 points) against less than 0.05s for Procedure
2. In term of stability, different runs of the method of Monnier et al. [2015] on the same
trajectory can give different results (see Section 7.3). This is due to a bad convergence
of the Metropolis-Hastings algorithm. In rare cases, the optimization step of Türkcan
and Masson [2013] can fail. Procedure 2 does not suffer any of these problems as it does
not involve any parameter inference.

7.3 Real Data

We use the same data as Monnier et al. [2015] depiciting long-range transport of mRNAs
in complex with mRNA-binding proteins (mRNPs) (see Figure 7.2). In live neuronal
cultures, endogenous β-actin mRNP particles alternate between Brownian motion and
active transport. In case of active transport (superdiffusion), the particle is driven by
molecular motors along microtubule tracks in the neuronal dendrites. The microscopic
sequence was obtained using mRNA fluorescence labeling techniques. More specifically,
in the experiment of Monnier et al. [2015], the MS2 bacteriophage capsid protein was
tagged with a GFP (Green Fluorescence Protein). As the MS2 bacteriophage capsid
protein binds to β-actin mRNP, it allows to track this latter.

The time resolution of the sequence is ∆ = 0.1s. The space resolution is not given
but when the Brownian motion with drift is chosen, Monnier et al. [2015] find a drift
parameter with order of magnitude of 1µm.s−1. As before, we set the parameter K = 2
for the method of Monnier et al. [2015]. In this case, the model 3 (two Brownian motion
with different diffusion coefficients) is selected by the method. Then, from our point of
view, there are no change of dynamics. We note that we run 100 times the algorithm and
did not get the same outcome each time. It is due to the fact that the inference is based
on a Monte-Carlo Markov chains (MCMC) algorithm for computing the a posteriori
estimates. Consequently, the selected model was not the same every times (92 times
model 3, 7 times model 4, 1 time model 5). Then, the MCMC algorithm can show some
problems of stability giving some contrary outcomes from one run to another.

In Figure 7.3, we show our results for two window sizes k = 10 and k = 15. We do
not detect any change point for larger windows. With both window sizes, we detect
approximately the same portion of the trajectory as superdiffusive. With the window
size k = 15, we also detect a subdiffusive part in the trajectory.
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7.4 Summary
In this chapter, we evaluated our detection change point algorithm on two scenarios of
simulation in the two-dimensional case. We used the Ornstein-Uhlenbeck process for
modelling subdiffusion and the Brownian with drift for modelling superdiffusion. We
also compared our method to i/ the method of Türkcan and Masson [2013] which de-
tects switches between Brownian motion and subdiffusion, ii/ the method of Monnier
et al. [2015] which detects switches between Brownian motion having different constant
drifts. Our non parametric method outperformed the parametric methods of Türkcan
and Masson [2013] and Monnier et al. [2015] on our simulation scenarios. We also con-
sidered real data depicting neuronal mRNPs (mRNAs in complex with mRNA-binding
proteins). Other real data of interest can be considered. For instance, Dahan et al.
[2003] reveal that the Glycine receptor –an inhibitory neurotransmitter receptor in the
adult spinal cord– alternate between Brownian motion in the extra-synaptic domain and
confined diffusion in the synaptic domain. This conclusion was made though the analysis
of the MSD curve. Then, it will be of great interest to study these data with our method
and compare the results of the two approaches.

So far we focused on the trajectories in themselves. In Part III, we consider the
spatial distribution of particle dynamics inside a bound domain. More specifically, we
are interested in detecting domains where the particles are attracted and thereby undergo
subdiffusion. In biophysics, intracellular interactions, such as binding, take place in these
particular domains.
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(a)

(b)

Figure 7.1: Simulated trajectories. Figure (a), trajectory from Scenario 1 with v = 0.8. We
detect N̂ = 2 change points τ̂1 = 99 and τ̂2 = 169 with a window of size 30. Figure (b) trajectory
from Scenario 2 with λ = 1. We detect N̂ = 2 change points τ̂1 = 87 and τ̂2 = 165 with a
window of size 30. The locations of the change points Xτ̂1 and Xτ̂2 are shown as yellow dots on
the trajectories.

84



7.4 Summary

t = 50 t = 100

t = 150 t = 200

Figure 7.2: Observations at different times of the β-actin mRNP trajectories inferred by the
hidden Markov model of Monnier et al. [2015]. Monnier et al. [2015] assume that there are K ≤ 3
possible states (while we used K ≤ 2 in our comparisons). They find three distinct motion states:
one Brownian and two Brownian motions with two different drifts. The Brownian part is depicted
in blue. The pink and orange part are associated with Brownian motion with drift (with different
drift for each color). The purple circle marks the current position of the particle.
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k = 10

k = 15

Figure 7.3: Change point detection on trajectories depicting neuronal mRNPs. The blue parts
correspond to Brownian portions of the trajectory, red part to superdiffusive portions, green
part to the subdiffusive portion. The detected change points are τττ = (67, 75) for k = 10
alternating between Brownian, superdiffusion and Brownian. The detected change points are τττ =
(62, 75, 282) for k = 15 alternating between Brownian, superdiffusion, Brownian and subdiffusion.
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Trajectory Clustering for Spatial
Analysis of Dynamics
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8 Simulation of Particles Trapped in
Microdomains with Fluosim

In this chapter, we present the software Fluosim developed by M. Lagardere and O.
Thoumine (IINS, University of Bordeaux 2). Fluosim was presented in the conference
of MIFOBIO 2016 (see the conference website at http://gdr-miv.fr/mifobio2016/).This
software simulates the dynamics of molecules in an environment with local microdomains
where the particles can be trapped. We will use this model as a reference for studying
the spatial distribution of motion in the cell. M. Lagardere provided us the software
and explained us the simulation scheme. We give here the underlying mathematical
framework associated to this simulation scheme (not studied by M. Lagardere formally).
First, we explain how Fluosim describes the particle motion and the trapping process.
Secondly, we derive differential equations that give the proportion of trapped and free
particles. Finally, we design a simulation to assess our procedure for detecting the
trapping areas (equivalently microdomains or confinement areas) presented in Chapter
9.

8.1 The Fluosim Model

Fluosim allows to study the population dynamics of intracellular particles. Therefore
we observe a population of N independent trajectories, with N of order of magnitude of
103. Throughout this chapter, we denote X(i)

t the position of the ith particle at time t.
In some obvious cases, we will not specify the exponent i for the clarity of notations.

The particles undergo Brownian motion in confined geometries. Formally, we define
the bounded region D where the particles evolve. Inside this region, one defines k
subregions S1, . . . ,Sk in which particles can be trapped. In what follows, we denote
S = ∪kjSj . An example of configuration is shown in Figure 8.1 while a real example
depicting AMPAR (postsynaptic AMPA-type glutamate receptor protein) is exhibited
in Figure 8.2. The particles in S̄ = S/D) undergo a Brownian motion with diffusion
coefficient σs̄. The particles are normally reflected at the boundaries of D.

Inside a subregion Sj , two types of motion can occur.

1. The first motion is confined Brownian motion normally reflected at the boundaries
∂Sj with diffusion coefficient σt ≤ σs̄. The particle is trapped in Sj .
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8.1 The Fluosim Model

Figure 8.1: Example of configuration of trapping areas. Here, there are three trapping regions
then S = S1 ∪ S2 ∪ S3.

2. The second motion is Brownian motion with diffusion coefficient σs. The particle
is not trapped in Sj .

A particle in Sj can switch between two states: trapped or non-trapped (also denoted as
free). We introduce the indicator variable:

φ(X(i)
t ) =

 1 if particle i is trapped at time t,
0 if particle i is not trapped at time t.

(8.1.1)

For a particle belonging to S, we define the binding rate k+ and the unbinding rate
k− as:

P (φ(Xt+h) = 1|φ(Xt) = 0, Xt+h ∈ S) = k+h+ o(h),
P (φ(Xt+h) = 0|φ(Xt) = 1, Xt+h ∈ S) = k−h+ o(h),

(8.1.2)

where h > 0 and o(h)/h → 0 as h → 0. We emphasize the fact that k+ and k− are
two constants which do not depend on space. Then, a trapped particle close to the
boundaries ∂Sj has the same probability to unbind to the trap region Sj than a trapped
particle in the middle of the region Sj .

In the settings of Fluosim, all the subregions Sj share the same parameters k+, k−, σt
and σs. In our simulation scheme, we set σs̄ = σs = σt to σ.
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Figure 8.2: Density map of AMPAR (postsynaptic AMPA-type glutamate receptor) from [Hozé,
2013, Chapter 2]. AMPAR is a protein involved in the fast excitatory synaptic transmission. The
hot spots correspond to trapping regions. [Hozé, 2013, Chapter 2] show that the trapping regions
(called potential wells in their context) are located at the synapses.

8.2 Modelling the Proportions of Trapped Particles
In this situation, we model the evolution of the two populations of interest, the trapped
(or bound) particles and the free particles in the domain D. There are two causes that
influence the population dynamics:

1. the dynamics of individual particles, here normally reflected Brownian motion in
D and in S when trapped,

2. the trapping process.

We can see that the two processes are connected. The trapping process induces a different
motion for the trapped particles; inversely the particles can be trapped only if their
motion drive them inside S. Now, we have the following proposition from Pinsky [2003]:

Proposition 4. Let (Xt) be a normally reflected Brownian motion on a finite volume
domain D. The process (Xt) has a stationary distribution: the uniform distribution over
D denoted U(D). Then, assuming the process (Xt) has reached its stationary distribution,
we have for any t > 0 and B ⊂ D:

P (Xt ∈ B) = |B|
|D|

, (8.2.1)

where |B| denotes the area of domain |B|.
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Then, we make the assumption that initially all the particles follow the stationary
distribution:

Assumption 3. Initially, the particles are independently drawn from the uniform dis-
tribution over D that is:

X
(i)
0 ∼ U(D), i = 1, . . . , N. (8.2.2)

Instead of considering the exact dynamic of a particle, we simply model its probability
to be in any trapping region Sj (equivalently to be in S = ∪kjSj) by:

ps
4= P (X(i)

t ∈ S) = |S|
|D|

i = 1, . . . , N. (8.2.3)

Equation (8.2.3) assumes that, at every time t, the spatial point process
(X(1)

t , . . . , X
(N)
t ) is a binomial point process over D of parameter N and which den-

sity function is the uniform density [Baddeley et al., 2007]. Then, when the number N
of particles is large enough, the evolution of the two populations can be modelled by
a system of differential equations depending on parameters ps, k+ and k−. We denote
t→ b(t) the proportion of bound particles and t→ f(t) the proportion of free particles.
We have: 

db

dt
= γ1f(t)− γ2b(t),

b(t) + f(t) = 1.
(8.2.4)

where γ1 and γ2 are respectively the global binding rate and global unbinding rate. By
global, we mean that there are not defined given that the particle belongs to S, as in
the case of k+ and k−. There are defined as:

P (φ(Xt+h) = 1|φ(Xt) = 0) = γ1h+ o(h),
P (φ(Xt+h) = 0|φ(Xt) = 1) = γ2h+ o(h).

(8.2.5)

Consequently, it defines (φ(Xt)) as the continuous-time homogeneous Markov Chain
with states {0, 1} and infinitesimal generator parameters k+ and k− [Brémaud, 2013,
Chapter 8, Section 2.2]. Finally, we can show that (see Appendix C):

γ1 = k+ps,

γ2 = k−.
(8.2.6)

The solution of the system (8.2.4) in function of parameters ps, k+ and k− is as follows:
b(t) =

(
b(0)− k+ps

k+ps + k−

)
exp(−(k+ps + k−)t) + k+ps

k+ps + k−
,

b(t) + f(t) = 1.
(8.2.7)
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From assumption 3, we have the constraint that b(0) ≤ ps, as only particles inside S
can be trapped. The situation b(0) = ps matches with the situation where initially all
the particles inside S are trapped. From Equations (8.2.7), the transitory regime is
exponential and it converges to an equilibrium proportion:

lim
t→∞

b(t) = k+ps
k+ps + k−

. (8.2.8)

If b(0) < k+ps/(k+ps + k−), function b is decreasing toward its equilibrium point
k+ps/(k+ps + k−). If b(0) > k+ps/(k+ps + k−), function b is increasing toward its
equilibrium point. If b(0) = k+ps/(k+ps + k−), function b is constant and equal to its
equilibrium point. The characteristic time is defined as τc = 1/(k+ps + k−). We can
consider that the stationary regime is reached when t > 5τc.

In the same way, we can model the proportions of trapped particles and free particles
inside S. We denote t→ bs(t) the proportion of trapped particles inside S and t→ fs(t)
the proportion of free particle inside S. We propose the following model:

dbs
dt

= k+fs(t)− k−bs(t)

bs(t) + fs(t) = 1
(8.2.9)

We can carry out the same study as previously. Again the solution is exponential. The
equilibrium proportion of trapped particles inside any trapping regions Sj (same for all
regions) is:

lim
t→∞

bs(t) = k+

k+ + k−
. (8.2.10)

8.3 Simulation with Fluosim
In this section, first we present a simulation scheme. Secondly, we evaluate the model
(8.2.7) describing the evolution of the proportion of trapped and free particles in the
whole domain D on the simulations. Finally, we assess the model (8.2.9) describing the
evolution of the proportion of trapped and free particles in the set of trapping areas S
on the simulations.

Simulation Scheme

We propose the following simulation settings. We design two trapping regions S1 and
S2. We define the regions:

1. D is a square of radius 5 µm. We define the origin of the axis at the bottom left
corner of D.
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Table 8.1: Parameters for the simulation with Fluosim.

Type Parameters Value

Biological
σ2 1 µm2.s−1

k+ 0.2 s−1

k− 0.05 s−1

Microscopic
∆ 0.1 s

∆x 0.025 µm

2. S1 is a circle of radius r1 = 0.65 µm and center θ1 = (2.5, 2.5).

3. S2 is a circle of radius r2 = 0.39 µm and center θ2 = (4, 4).

The parameters of simulation are given in Table 8.1. Initially, 2 500 particles are uni-
formly distributed over D, fulfilling Assumption 3. Fluosim allows us to identify which
particle is trapped at time t: we know φ(X(i)

t ) that is if the particle i is trapped or not
at time t. In Figure 8.3, we plot the positions of the particles labelled as free or trapped
at time t = 10 s (transitory regime) and t = 100 s (stationary regime).

Evaluation of Model (8.2.7)
We compare the proportion of trapped particles t→ b(t) given by the model (8.2.7) to the
true proportion of trapped particles. The curves are given in Figure (8.4) (a). Visually,
the fit of the transitory regime (t < 5τc = 77.5 s) is rather good . The stationary regime
is not exactly the same as the one predicted by the model. The predicted equilibrium
is 22.53% while the mean true proportion of trapped particles computed on the last 100
steps of time is 21.35%. The relative error of the model is 5.24%. This error is due to
the fact that the model oversimplifies the underlying trapping process: the dynamic of
the particles is only modelled by the parameter ps. Moreover, by using the parameter
ps, we assume that particles are always in the stationary regime of a normally reflected
Brownian motion on D. This assumption holds at the beginning, as the particles are
initially drawn from the uniform distribution on D. As t increases, the trapping process
makes this assumption fail. It explains the relative good fit of the transitory phase and
the relative lack of fit of the asymptotic phase. However, we can consider that it is a
rather good model considering its simplicity and parsimony in terms of the parameters.

Evaluation of Model (8.2.9)
We compare the proportion of trapped particles t → bs(t) given by the model (8.2.9)
to the true proportion of trapped particles inside S. Interestingly, we observe the
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t = 10 s

t = 100 s

Figure 8.3: Positions of the particles simulated with Fluosim at time t = 10 s and t = 100 s.
In blue free particles, in red trapped particles. The red circles defined the regions S1 (large disk)
and S2 (small disk).
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opposite situation compared to the case of b(t) (proportion of trapped particles in the
whole domain D): there is a clear lack of fit during the transitory regime but a perfect
fit during the stationary regime, see Figure (8.4) (b). We can see that the transitory
regime has the same duration for b(t) and bs(t). During this phase, the number of
particles inside S increases due to the process of Brownian particles entering in S and
getting trapped. However, in the model (8.2.9), it is assumed that the number of
particles is constant (and large). Then, it explains the lack of fit during the transitory
phase which matches with a period during which the number of particles increases in S.
On the contrary, once b(t) has reached the stationary regime, the number of particles
inside S is approximately constant (even if it is not the same particles that remain in
S from one time to another). In the latter case, the model (8.2.7) is relevant and the
stationary regime is well predicted by the model.
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Figure 8.4: Evolution of the proportions of trapped particles over time. In Figure (a), propor-
tions of trapped particles in the whole domain D, in Figure (b) proportions of trapped particles
in the trap region S. In red the true proportion of trapped particles computed from the data, in
blue the proportions computed with model (8.2.7), in green the asymptote of model (8.2.7). We
computed the red curve over N = 2 500 trajectories simulated with Fluosim with parameters
given in Table 8.1.

8.4 Summary

In this chapter, we presented the underlying model of the simulator Fluosim. The
formalization in a mathematical framework of the software allowed us to link the diffusion
models used throughout this thesis to the trajectory dynamics generated by Fluosim.
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We emphasize that M. Lagardere and O. Thoumine only gave us the software without
any additional document. The particles generated in Fluosim can switch between the
trapped and the free states. When there are trapped, they undergo Brownian motion
in confined regions. When there are free, they are driven by Brownian motion only
constrained by the boundary conditions on the limits of the domain. We modelled
the proportions of trapped and free particles in the whole domain and in the trapping
regions through two systems of differential equations. Then, we were able to predict the
proportion of particles inside the trapping regions which where in the the trapped state.

The model of Fluosim defines local domains where particles are confined for a while.
In the next chapter, we are interested in estimating such domains where particles undergo
subdiffusion. We present a method to detect such areas. We evaluate the performances
of the method based on clustering on the simulation described in Section 8.3 obtained
with Fluosim. Our understanding of the generative process of Fluosim allows us to
have better insights on the simulation results of our clustering approach.

96



9 A Method for Detecting Trapping Areas

In this chapter, we aim at detecting trapping areas (equivalently microdomains or con-
finement areas), that is regions where the particles are trapped and thereby undergo
subdiffusion. In our context, it is expected that these areas contain a high concentra-
tion of particles detected as subdiffusive. Then, we use a clustering algorithm DBSCAN
[Ester et al., 1996] coupled with our test procedure such areas. We evaluate the method
on the simulation described in Section 8.3 obtained with Fluosim.

9.1 Model
We use a similar model as in Section 4.8. We observe a collection Xm of m d-dimensional
trajectories which are simultaneously observed. We denote by X(k)

nk the observations
associated to the kth particle:

X(k)
nk

=
(
X

(k)
t0 , . . . , X

(k)
tnk

)
, k = 1, . . . ,m,

Xm =
{
X(k)
nk
, k = 1, . . . ,m

}
.

(9.1.1)

We assume that each discrete trajectory is generated by a stochastic process (X(k)
t )

with continuous path defined on the spatial domain D ⊂ Rd and which is a solution of
the stochastic differential equation (SDE),

dX
(k)
t = µ(X(k)

t )dt+ σ(k)dB
(k),h(k)

t , t ∈ [t0, tnk
], (9.1.2)

where B(k),h
t is a d-dimensional fractional Brownian motion of unknown Hurst parameter

h(k). The unknown parameters of the model are the Hurst parameter h(k) ∈ (0, 1), the
diffusion coefficient σ(k) > 0 and the drift term µ(k) : D → Rd. We can also assume that
the SDE (9.1.2) is constrained by some boundary conditions.

Even if our method can be used in two or three dimensions, in the rest of the chapter,
we restrict our model to the two-dimensional case for sake of simplicity. Then, we use
the simulation scheme of Section 8.3 to illustrate our method. More specifically, we
assume that we observe 2 500 trajectories of size n = 30 simulated with the simulation
scheme described in Section 8.3. The trajectories are observed once the equilibrium
regime is reached (burning period of 100 s). We recall that in the simulation scheme 8.3
the trajectories can switch between two diffusion models:
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9 A Method for Detecting Trapping Areas

1. confined Brownian in small microdomains (denoted Sj) with normal reflection on
the boundaries ∂Sj ,

2. Brownian motion in the whole domain D with normal reflection on the boundaries
∂D.

These two models are included in Equation (9.1.2), adding the right boundary condi-
tions. However, our model does not specify any switching between different diffusions.
In fact, for trajectories of size n = 30, we can assume that no switching will occur due
to the choice of the switching parameters k+ and k− given in Table 8.1. Finally, the
simulation scheme of Section 8.3 will be refer to as the Fluosim simulation through this
chapter.

9.2 Outline of the Procedure

We can use our test procedures to detect the confinement areas with the following four-
step procedure.

1. We run a test procedure, our single test procedure 4.5.1 or our multiple test Pro-
cedure 1 on the collection of trajectories Xm. As in Part 4, we denote R1(Xm) the
set of trajectory indexes corresponding to the acceptance of hypothesis H1 that is
the trajectory is subdiffusive.

2. We choose a single point x̃i to represent each trajectory X(i)
ni .

3. We partition the set R = {x̃i|i ∈ R1(Xm)} into clusters.

4. We use these clusters to define confinement areas.

The same scheme can be used to detect areas where superdiffusion or Brownian motion
are the pilot dynamics. In step 3, we just have to replaceR1(Xm) by respectivelyR2(Xm)
(set of trajectory indexes corresponding to superdiffusion) or R0(Xm) (set of trajectory
indexes corresponding to Brownian motion). In the case of superdiffusion, we could
use the aforementioned method to detect potential actin filaments associated to active
transport.

In the next sections, we will detail successively the steps 2, 3 and 4 of the method.
Step 1 is straighforward as it is the procedure explained in Part 4. However, we can
compare the outcomes of the method obtained with different test procedures. As already
mentioned, we will use the simulation presented in Section 8.3 to illustrate the different
steps of the methods.
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9.3 Representative Points of Trajectories and Spatial
Distribution of Detections

First, we propose different ways for representing trajectories. Then, we use these repre-
sentations to study the spatial distribution of the particles detected as subdiffusive with
our test procedures.

Representative Points
We need to define a single point to represent our trajectory. Then we define a function
f as:

R2×n → R2

(x1, . . . , xn) 7→ f(x1, . . . , xn).

Here are some examples of f :

• f(x1, . . . , xn) = (1/n)
n∑
i=1

xi, the representative point is the mean point,

• f(x1, . . . , xn) = x(k), with k ∈ {1; . . . , n} the representative point is the kth point
of the trajectory.

In Figure 9.1, we show the trapped particles of the Fluosim simulation. As we already
mentioned, the trapped particles are modelled by confined Brownian motion normally
reflected at the boundaries of the trapping regions. In that case, we can see that different
representative points of the trajectories have very different spatial distributions. From
Figure 9.1, we choose to represent the trajectory Xn = (Xt0 , . . . , Xtn) by the point
Xbn/2c (related function f(x1, . . . , xn) = x(bn/2c)). In fact, we can see that the spatial
distribution of the representative points X(i)

bn/2c of the trapped trajectories X(i)
n is uniform

over the trapped region S1 and S2 (Figure 9.1 (b)). This is due to Proposition 4, as the
trapped particles undergo a normally reflected confined Brownian motion in S1 and S2.
On the other hand, the average position of the trapped trajectories are concentrated in
the middle of the trapped regions (Figure 9.1 (a)). Therefore in the purpose of estimating
S1 and S2, we should represent the trajectory i with X

(i)
bn/2c rather than by its average

position.

Spatial Distribution of the Detections
We study the spatial distribution of the representative points of the particles detected as
subdiffusive with our test procedures. Spatial statistics and point processes have been
successfully investigated in image analysis for several decades (see [Mumford and Desol-
neux, 2010] and [Descombes, 2013] for a recent review and analysis). In what follows, we
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(a) (b)

Figure 9.1: Spatial distribution of the trapped particles in the Fluosim simulation. Left the
trajectories are represented by their mean point, right they are represented by Xn/2. A trajectory
is considered trapped if it is trapped during the whole period of observation. Particle i is
trapped if φ(X(i)

tj ) = 1, j = 1, . . . , n using definition of Equation (8.1.1). Red circles represent
the boundaries of the trapping regions S1 (big circle) and S2 (small circle). The black square
represents the boundaries of the whole domain S.

do not consider generative models to represent the spatial distributions of trajectories
represented by points. Instead, we propose to estimate clusters corresponding to aggre-
gates of trajectories, with no prior information. In that sense, our approach is in the
spirit of conventional clustering approaches, and is somehow related to the a-contrario
modelling [Desolneux et al., 2003b, Cao et al., 2007, Desolneux et al., 2003a].

We define the set:
R = {X(i)

bn/2c|i ∈ R1(Xm)}, (9.3.1)

where R1(Xm) is the set of indexes of the trajectories detected as subdiffusive by a test
procedure. The scatter plot of R is presented in Figure 9.2. We test the trajectories of
the Fluosim simulation with the single test procedure (Figure 9.2 (a)) and the adaptive
Procedure 1 (Figure 9.2 (b)). Results of the two procedures in terms of numbers of
true and false detections are also presented in Table 9.1. As expected, we detect more
subdiffusive trajectories with the single test procedure (508 subdiffusive trajectories)
than with the adaptive Procedure 1 (209 subdiffusive trajectories). We can see that the
false detections of the single test procedure at level 5% are uniformly distributed over
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the domain D/S (points outside the red circles delimiting S1 and S2 in Figure 9.2 (a)).
From Proposition 4 and Assumption 3 for a particle i not trapped in S1 or S2 we have:

X
(i)
bn/2c ∼ U(D/S). (9.3.2)

Secondly we can consider that the set:

{X(i)
bn/2c|i ∈ R1(Xm) and trajectory i not trapped}, (9.3.3)

is a random subsample from the sample (9.3.2) of uniformly distributed points. Then
the subsample (9.3.3) is also generated by a uniform distribution over D/S. Then, it
explains why the false detections are uniformly distributed over D/S in Figure 9.2 (a).
We note that Equation (9.3.2) does not exactly hold because of the trapping regions.
However, we can see from the simulation that it is a good approximation. When we
use the adaptive Procedure 1, there are less false detections (few points outside the
red circles in Figure 9.2 (b)). On the other hand, the adaptive Procedure 1 does not
detect well the subdiffusive trajectories inside the biggest trapping region S1: there are
significantly fewer points detected inside this region than with the single test procedure.
This is due to the fact that the adaptive Procedure 1 is less powerful than the single test
procedure. Now, it is very intuitive that a Brownian particle confined in a small area
will be easier to detect as subdiffusive than if it is trapped in a large area. In the latter
case, we will need to observe it over a much longer time to figure out that it is effectively
confined in a domain. That is why the adaptive Procedure 1 detect better the particles
trapped in S2, the smallest trapping region, than those trapped in S1. The single test
procedure is powerful enough to detect well the trapped particles in the two regions.

From Figure 9.2, we can see that the trapping regions S1 and S2 correspond to high
concentrations of particles detected as subdiffusive. However, because of the false detec-
tions, we detect subdiffusive particles outside the trapping regions. Then, we propose
to use the clustering algorithm DBSCAN developed by Ester et al. [1996] to detect the
trapping regions. It can detect the clusters corresponding to real trapping regions from
the noisy points due to false detections. There exist alternative clustering algorithms
able to detect clusters from noisy points [Desolneux et al., 2003b, Cao et al., 2007, Desol-
neux et al., 2003a]. Cao et al. [2007] propose an approach based on a-contrario models.
The authors define noise as a background process characterised by its distribution π.
This method allows a finer analysis of the clusters than DBSCAN through the concept
of meaningful clusters [Desolneux et al., 2003b, Cao et al., 2007]. Then, the authors can
build a hierarchy of clusters. We will focus only on DBSCAN for simplicity.

9.4 A Clustering Algorithm: DBSCAN

The algorithm DBSCAN (Density Based Spatial Clustering of Applications with Noise)
proposed by Ester et al. [1996] is a non parametric clustering algorithm. The clusters
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(a) (b)

Figure 9.2: Spatial distribution of particles detected as subdiffusive with the single test proce-
dure at 5% (left), with the adaptive Procedure 1 (right). Red circles represent the boundaries
of the trapping regions S1 (big circle) and S2 (small circle). The black square represents the
boundaries of the whole domain D.

Table 9.1: Numbers of true and false detections in the Fluosim simulation.

Method True H1 False H1 Total
Single test 390 118 508

adaptive Proc. 1 188 21 209

are defined through a notion of point concentration or point density. In this section, R
denotes the set of detected points (9.3.1) as previously, but more generally it denotes
any set of points xi from which we want to detect clusters. In the same way, D denotes
the whole domain of the Fluosim simulation but more generally denotes any space
containing the set of points from which we want to detect clusters.

Algorithm

First, Ester et al. [1996] define the neighbourhood of x ∈ R ⊂ D as:

Nε(x) = {y|y ∈ R/x, d(x, y) ≤ ε}, (9.4.1)
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where ε > 0 is a parameter of DBSCAN to fix and d is a norm, for instance the Euclidean
norm.

Secondly, the authors define a core point x as a point fulfilling the condition:

#Nε(x) ≥ n?, (9.4.2)

where n? is a parameter to fix and #A is the cardinal of the set A.
Then, DBSCAN scans all the points of R as shown in Algorithm 3:

Algorithm 3: Single scan approach of the algorithm DBSCAN.
Input: ε, n?, R
Result: a partition of R = ∪mi=1Ci
j=1;
for i=1 to #R do

if xi is unclassified And #Nε(x) ≥ n? then
Create a new cluster Cj ;
Expand the cluster from xi with a rule expandCluster(xi,R,ε,n?);

end
j=j+1;

end

A cluster can be created only from a core point. Now, we explain how DBSCAN
expands a cluster from a core point. We need first to present the concepts of boarder
points and noisy points introduced by Ester et al. [1996]. A boarder point x is a point
such that:  ∃y ∈ R,#Nε(y) ≥ n? and x ∈ Nε(y),

#Nε(x) < n?.
(9.4.3)

In other words, a boarder point is a point belonging to the neighbourhood of a core
point but which is not a core point itself. A noisy point is a point which is not in the
neighbourhood of any core points and which is not a core point itself.

From a core point x, DBSCAN expands a cluster connecting all the core points
and boarder points until the maximal cluster is built. More specifically Ester
et al. [1996] build a cluster C from a core point x as the set of points C =
{y|y is density reachable from x}. A point y is said to be density reachable from x
if there exists a sequence x = x1, x2, . . . , xp−1, xp = y ∈ R such that: xi+1 ∈ Nε(xi),

#Nε(xi) ≥ n?.
(9.4.4)
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Figure 9.3: Classification of spatial points with DBSCAN with parameters ε = 0.15 and n?.
Red points are the core points, cyan points are the boarder points and blue points are the noise
points with respect to (ε, n?). We plot a circle of radius ε centered on an element of each type of
points. The centers are the points with filled circles of the color corresponding to the point type.
We can see that the red circle contains more than n? point (center excluded) then its center is a
core point ; the cyan circle contains less than n? point (center excluded) but contains a core point
then its center is a boarder point; the blue circle contains less than n? point (center excluded)
and does not contain any core point then it is a noisy point. The points were simulated by a
mixture of the uniform distribution on the square [0, 1]2 and a bivariate normal distribution of
mean [0.5, 0.5] and covariance 0.05 ∗ I2. Out of the 20 points, 10 points were simulated by the
uniform and 10 by the normal distribution.

We illustrate the DBSCAN algorithm on a very simple simulation in Figure 9.3. We
highlight the definition of the different types of points (core, boarder and noisy points)
of the method.

Selection of the DBSCAN Parameters

Now we must choose the parameters ε and n? of the method. First Ester et al. [1996]
note that, ideally, we should have a pair of parameters (ε, n?) adapted to each cluster,
as each cluster does not have the same density (or concentration) of points. Obviously
this information is available only once the clusters are found. Then, we have to use a
single pair of parameters (ε, n?) for all the clusters. A couple (ε, n?) able to detect the
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least dense cluster is a good choice as such parameters will also be able to detect denser
clusters. Ester et al. [1996] argue that, in two-dimensional problems, we can set n? = 4
as a rule of thumb. Once the parameter n? is fixed, we can choose ε using two different
methods:

1. a data driven method based on the observed distribution of the n? nearest neigh-
bours,

2. a parametric method which models the distribution of the noisy points.

In the following, we present two data driven methods and two parametric method for
selecting the parameter ε. Then, we compare the outcome of the DBSCAN algorithm
according to the different choices of ε on the Fluosim simulation.

Data driven methods The data driven methods define ε from the sample
d1(n?), . . . , dm(n?) with di(n?) denoting the distance of the n? nearest neighbours of
point xi ∈ R. Parameter ε is chosen from the sample d1(n?), . . . , dm(n?). Denote
d(1)(n?), . . . , d(m)(n?) the increasing-ordered sample. Note that if we choose ε = d(i)(n?),
the i points corresponding to the values d(1)(n?), . . . , d(i)(n?) will be core points while
the other points will be either boarder or noisy points. The choice ε < d1(n?) corre-
sponds to the case where all the points are noisy points (no core points); the choice
ε ≥ dm(n?) correspond to the case where all the points are core points. In the latter
case, they all belong to one single cluster. Then, if we have an estimation of the number
of noisy points q̂, a natural choice proposed by Ester et al. [1996] is ε = d(m−q̂+1)(n?).
Otherwise Ester et al. [1996] rely on a graphical approach to determine ε. The authors
plot the sequence u1 = d(m)(n?), . . . , um = d(1)(n?) and ε is defined as the first ui in the
first valley of the sequence.

Alternatively, we propose to use the algorithm of Otsu [1979] on the sample
(d1(n?), . . . , dm(n?)) to find the optimal ε. We briefly explain the method. Let y1, . . . , ym
a sequence of scalars and y(1), . . . , y(m) the sorted sequence. Otsu [1979] finds k such
that the variance between the sets A1 = {y(1), . . . , y(k)} and A2 = {y(k+1), . . . , y(m)} is
maximal. Note that the algorithm of Otsu [1979] is widely used for image segmentation.
In the clusters, the distance to the n? nearest neighbours are significantly lower than in
the noisy points. Then, we expect the method of Otsu [1979] to distinguish between the
two distributions and find a good candidate ε.

Parametric methods Daszykowski et al. [2001] assume implicitly that the noisy points
are uniformly distributed and derive ε accordingly. They define ε as the α quantile of the
distribution of the n? nearest neighbours of m points drawn from a uniform distribution
over D. Daszykowski et al. [2001] choose α = 0.05. If the observed noisy points are really
drawn from a uniform distribution, none of them will be chosen as a core point with
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approximately 1 − α probability. It is not an exact 1 − α probability for the following
reasons.

1. There are q ≤ m noisy points and not m noisy points as in the method of
Daszykowski et al. [2001].

2. The noisy points are uniformly distributed over D/S(∪Ci) ⊂ D where S(∪Ci) is
the space delimited by the clusters Ci; then there are not uniformly distributed
over the whole domain D as in the method of Daszykowski et al. [2001].

As q and the clusters Ci are unknown, we can not propose a method which exactly
controls the probability to detect a noisy point as a core point. We note that Daszykowski
et al. [2001] estimate ε with Monte-Carlo simulations. It can be time consuming if m is
large.

Friedman et al. [1975] also study the distribution of the n? nearest neighbours of
m points uniformly distributed over a finite space D. They assume that m is large
enough to neglect boundary effects. Then, they state that the ratio of the volume of a d
dimensional sphere centered at a point containing n? neighbours and the volume of the
whole space D is governed by a beta distribution f of parameters (n?,m− n?):

f(x) = m!
(n? − 1)!(m− n?)!x

n?−1xm−n
?
, 0 ≤ x ≤ 1. (9.4.5)

Now, we define ε as Daszykowski et al. [2001]. Then, if we note F−1(α) the quantile
of order α of the distribution f , we get:

ε =
(
|D|F−1(α)

π

)1/d

, (9.4.6)

where |D| is the volume (or area in the two-dimensional case) of D. In our case, we have
d = 2 (3 if we work in three dimensions).

Comparison on simulations We apply the DBSCAN algorithm on the set R (9.3.1)
obtained with the single test procedure (Figure 9.2 (a)). The parameter ε is estimated
with the different methods aforementioned (see Table 9.2). We run DBSCAN with the
different values of ε of Table 9.2; we always keep n? = 4. Results are shown on Figure 9.4.
All the methods for estimating ε -except the one of Otsu [1979]- give similar estimations
of ε (see Table 9.2). Consequently, these close values of ε give the exact same clusters
when we run DBSCAN: we find two clusters corresponding to the two trapping region
S1 and S2. When ε is given by the method of Otsu [1979], DBSCAN detects 5 clusters
while there are only two trapping regions. It also includes two points in the cluster
corresponding to S2 while there are out of the trapping region S2 (see the green cluster
Figure 9.4 (b)). Then we prefer to use the others methods to estimate ε.
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Table 9.2: Values of the parameter ε of DBSCAN obtained with different methods. The pa-
rameter ε is estimated assuming n? = 4 as advised by Ester et al. [1996]. The parameter ε is
expressed in pixel units. We recall that the original image is 200× 200 pixels.

Type Method ε

Data driven
Graphical method 5.64
Otsu [1979] 12.39

Parametric
Daszykowski et al. [2001] 5.94
Beta distribution 5.86

(a) (b)

Figure 9.4: Clusters detected by DBSCAN on the set of particles detected as subdiffusive with
the single test procedure at 5%. To be accurate, we run the DBSCAN algorithm on the set R
(9.3.1) obtained with the single test procedure. We use n? = 4. On the left, we choose ε = 5.86
derived from the beta distribution. On the right, we pick ε = 12.39 obtained with the method
of Otsu [1979]. The noisy points are in red, points from the same clusters have the same color.
Red circles represent the boundaries of the trapping regions S1 (big circle) and S2 (small circle).
The black square represents the boundaries of the whole domain D.
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9.5 Estimation of the Shape of the Trapping Areas

In this section, we estimate the shapes Ŝ1 and Ŝ2 of the confinement areas S1 and S2 from
the clusters detected with DBSCAN. Xu et al. [1998] propose a grid- based approach
to estimate the geometries of clusters. More specifically, they want to estimate the area
occupied by the clusters. We use this approach to estimate the geometries of the clusters
detected with DBSCAN. We note that, as we use a grid, the shapes of the clusters are
approximated by polygons. The resolution r of the grid is the key parameter to optimize.
If r is too large the shape of the cluster is poorly approximated while if it is too small
the cluster may be split in disconnected polygons. First, suppose we detect only one
cluster C of size nc. As proposed by Xu et al. [1998], we set:

r = max
i=1,...,nc

d̃i(n?), (9.5.1)

where d̃i(n?) is the distance of the n? nearest neighbours of the ith point of cluster C.
The estimated shape of cluster C is given by the union of the cell grid containing at
least one point of cluster C. The resolution parameter r given by (9.5.1) assures that
the estimated shape is not split in several disconnected polygons. Now, suppose that we
detect several clusters. Optimally, we use one resolution parameter per cluster. Then
we get as many grids as clusters; we want to merge all the cluster shapes on a common
grid. We use the finest gird. It is straightforward to translate the cluster shapes from a
coarser grid to the finest grid. For the shape computed on the finest grid nothing has to
be done. We note that, as we work with shapes (and not points anymore), we can not
split the shapes into disconnected shapes going from a coarser grid to a finer grid. The
estimation of the geometry of the cluster C2 corresponding to the trapping region S2 is
given in Figure 9.5.

We evaluate the quality of the estimation of the trapping regions S1 and S2 comparing
the centroids and areas of the estimated regions to the true regions. We also compare
the proportion of subdiffusive particles inside the estimated trapping regions to the true
proportions. Results are given in Table 9.3. First, the estimated regions are close to the
true regions in terms of areas and centroids (see Table 9.3). Secondly, the proportion of
subdiffusive particles in the second estimated region Ŝ2 is much closer to the ground truth
proportion than the one of Ŝ1. As the region S1 is larger than S2, it is harder to detect
a subdiffusive particle trapped in S1 than in S2. In other words, when the alternative
hypothesis is confined Brownian motion, the power of our test procedures (both single
test procedure or adaptive Procedure 1) decreases as the size of the confinement domain
increases.

Remark 9.5.1. We note that the ground truth proportion of subdiffusive particle inside
the true regions are around 70% in Table 9.3 while from Figure 8.4 (b) the proportion in
the trapping regions at the equilibrium is around 80%. We simulate the trajectories at
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Figure 9.5: Estimation of the geometry of the cluster C2 corresponding to the trapping region
S2. The resolution of the grid is given by (9.5.1). In this case, it is r = 5.2 pixels. We recall that
the original image is 200× 200 pixels. The blue cells of the grid contain at least one point of the
cluster C2 (represented in green). The blue part is the polygon estimation of the geometry of C2
corresponding to the trapping region S2.

the equilibrium (burning period of t = 100s) then the difference is due to something else.
Actually, the ground truth proportion of Table 9.3 is computed considering that a particle
is subdiffusive if it is trapped in the domain during the whole period of observation. On
the other hand, in Figure 8.4, we compute this proportion at a single time t. We prefer
using the former definition as it is clearly not possible to state if a particle is subdiffusive
from the observation of a single point.
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Table 9.3: Comparison of the estimated regions with the true regions using different features.
For computing the ground truth proportion of subdiffusion inside the true regions we consider
that a particle is subdiffusive if it is trapped in the domain during the whole period of observation.

True regions Estimated regions
Property S1 S2 Ŝ1 Ŝ2

Centroid (2.5,2.5) (4,4) (2.5,2.6) (4.0,3.9)
Area 1.34 0.48 1.37 0.58
Proportion of subdiffusion 70 69 54 72

9.6 Assessment of the Method on Another Example
We evaluate the method for detecting microdomains on a more challenging example. We
use a simulation scheme similar to the one described in Section 8.3. However, the region
S2 is now the circle of radius r2 = 0.39µm and center θ2 = (3.35, 3.35); we translate the
original region S2 closer to S1. We also set k+ = 0.05 s−1 while it was originally set
to 0.2 s−1 (see Table 8.1). Consequently, at the equilibrium, the proportion of trapped
particles inside S = S1 ∪ S2 is k+/(k+ + k−) = 0.5 (see Equation (8.2.10)) against
0.8 in the previous simulation. We use a burning period of t = 250 s to be at the
equilibrium. Therefore, with these new settings, the microdomains S1 and S2 are closer
and the concentration of trapped particles in the microdomains is lower than in the first
simulation scheme.

Despite the fact that the true trapping regions S1 and S2 are close, the DBSCAN
algorithm –with n? = 4 and ε = 7.53 derived from the beta distribution (9.4.5)– succeeds
in discriminating two clusters corresponding to the trapping regions, see Figure 9.6 (a).
We also present the regions estimated with the grid-based approach Figure 9.6 (b).
Quantitative results about the estimation of the regions are given in Table 9.4.

Remark 9.6.1. We can build artificial examples in which DBSCAN discriminates two
clusters and at the same time the corresponding regions estimated with the grid-based
approach overlap. Therefore, further development should be conducted to deal with this
problem. For instance, another choice for the resolution (9.5.1) of the grid-based ap-
proach could be considered. We note that we do not have this problem in the example of
this section, see Figure (9.6) (b).

9.7 The Method of Hoze et al. [2012]

In this section, we present the method developed by Hoze et al. [2012] to detect mi-
crodomains. In their context, the microdomains, called potential wells, attract proteins
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(a) (b)

Figure 9.6: Clusters detected by DBSCAN on the set of particles detected as subdiffusive with
the single test procedure at 5% (a), estimation of the trapping regions with a grid-based approach
(b) in a scenario where microdomains are closer to each other and less dense. For the clustering
step (Figure (a)), we run the DBSCAN algorithm on the set R (9.3.1) obtained with the single
test procedure. We use n? = 4. We choose ε = 7.53 derived from the beta distribution (9.4.5).
In Figure (a), the noisy points are in red, points from the same clusters have the same color. Red
circles represent the boundaries of the trapping regions S1 (big circle) and S2 (small circle). The
black square represents the boundaries of the whole domain D. For the estimation of regions
(Figure (b)), the resolution of the grid is r = 8.6 pixels of the original image. In Figure (b), the
blue (respectively green) region correspond to the blue (respectively green) cluster of Figure (a).
The blue (respectively green) region is the estimation of S1 (respectively S2).

Table 9.4: Comparison of the estimated regions with the true regions using different features
in a scenario where microdomains are closer to each other and less dense.. For computing the
ground truth proportion of subdiffusion inside the true regions we consider that a particle is
subdiffusive if it is trapped in the domain during the whole period of observation.

True regions Estimated regions
Property S1 S2 Ŝ1 Ŝ2

Centroid (2.5,2.5) (3.35,3.35) (2.6,2.8) (3.5,3)
Area 1.34 0.48 1.15 0.55
Proportion of subdiffusion 46 41 52 45
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9 A Method for Detecting Trapping Areas

such as the postsynaptic AMPA-type glutamate receptor (AMPAR). We note that Hoze
et al. [2012] focus on the two dimensional case but the method can be extended to the
three-dimensional case. For simplicity, we consider only the former case as Hoze et al.
[2012]. First, we present the model of Hoze et al. [2012]. Secondly, we describe their
two-step approach.

1. Hoze et al. [2012] estimate the drift vector field (equivalently the drift function) in
a non parametric way from the observation of multiple trajectories,

2. The authors fit this vector field to a parametric drift function.

Overdamped Langevin Equation

Hoze et al. [2012] observe a collection of m independent trajectories Xm (see Equation
(9.1.1)). They assume that all the trajectories X(k)

nk =
(
X

(k)
t0 , . . . , X

(k)
tnk

)
are generated

from the same diffusion process (Xt) solution of the overdamped SDE (already presented
in Equation (3.3.12) with another parametrization):

dXt = −∇U(Xt)dt+ σdBt, (9.7.1)

where ∇ is the gradient operator, U : R2 → R is the potential function, and σ > 0 the
diffusion coefficient. As usual, we note µ = −∇U , defined in R2 with values in R2, the
drift function (also called the drift vector field in [Hoze et al., 2012])

Non-Parametric Estimation of the Drift

Hoze et al. [2012] estimate the drift function µ in a non parametric way. We recall that
the drift function is defined through the limit:

µ(x) = lim
∆→0

1
∆E(Xt+∆ −Xt|Xt = x). (9.7.2)

Then, Hoze et al. [2012] define the estimator µ̂ of the drift µ as the empirical counterpart
of (9.7.2). First, they define a square S(x, r) or side r to reflect the local conditioning
Xt = x in Equation (9.7.2). The estimator µ̂(x) at point x ∈ R2 is defined as the empiri-
cal average of all the displacements of particles starting from S(x, r). An expression of µ̂
is derived in Appendix D. Figure 9.7 shows the estimated drift vector field µ̂ computed
from the Fluosim simulation. We note that a similar approach can be used to infer the
diffusion coefficient in case we assume that it is not constant over space but is defined
as the function σ : R2 →M2 where M2 is the set of squared matrix of size 2.
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Parametric Fit of the Drift Vector Field

Hoze et al. [2012] assume that the potential U is a truncated polynomial of order 2:

U(x, y) =

 A
(

(x−x0)2

a + (y−y0)2

b − 1
)

if x−x0
a + y−y0

b − 1 < 0,
0 otherwise,

(9.7.3)

where (x0, y0) is the attractor, A > 0 is the depth of the potential modelling the strength
of the attractive force toward (x0, y0). Parameters (a, b) are the axis lengths of the ellipse
of center (x0, y0) in which the particle is submitted to the attractive force. In fact the
range of the attractive force is limited to the aforementioned ellipse. As already men-
tioned in Section 3.3 if potential U is a polynomial of order 2 not truncated the solution
of the SDE (3.3.12) is the Ornstein-Uhlenbeck process. In this case, the attractive force
has infinite range.

Finally, Hoze et al. [2012] assume that parameter (a, b) and (x0, y0) are known. In
other words they suppose that the microdomain of attraction is known. They infer the
depth A of potential U with the least- square estimator:

Â = min
A>0

Nx∑
i=1
‖−∇U(xi)− µ̂(xi)‖2 , (9.7.4)

where Nx is the number of points of the finite lattice G ⊂ D on which we compute the
drift vector field. In the case we can compute µ̂ on the whole space D, we replace the
finite sum in Equation (9.7.4) by an integral over D. It is straightforward to compute
the closed form of Â, see [Hoze et al., 2012].

9.8 Comparison of the Two Methods
In this section, we emphasize the assumptions, key parameters and properties of our
method of detection of microdomains and the method of Hoze et al. [2012]. Our method
is based on a Lagrangian approach while the method of Hoze et al. [2012] relies on an
Eulerian strategy.

Our Procedure

Our method is based on the combination of the clustering algorithm DBSCAN [Ester
et al., 1996] and our test procedures. The critical parameter in our method is the
parameter ε of DBSCAN. Multiple choices have been studied in Section (9.4). Results
on simulations (see Table 9.3) reveal that:

1. our method detects satisfyingly the shapes of the microdomains,
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9 A Method for Detecting Trapping Areas

Figure 9.7: Drift field computed with the method of Hoze et al. [2012]. The Fluosim simulation
comprises 30 frames of 200 × 200 pixels as the domain D is a square of 5µm and the spatial
resolution is ∆x = 0.025µm (see Table 8.1). We compute µ̂(x) on each point of this 200 × 200
lattice, see Equation (D.0.4). We set r = 5 pixels. We can see clearly the two microdomains S1
and S2: the vector field converges to the centres of these domains. We can see that the vector
field is orthogonal to the boundaries of the square D. It is due the normal boundary condition
on ∂D. Elsewhere, µ̂(x) = 02 reflecting Brownian motion.

2. our method is able to reliably estimate the proportion of subdiffusive and non-
subdiffusive trajectories if the microdomain contains a mixture of trajectories of
different diffusion types.

Finally our method can handle a general collection of trajectories Xm. More specif-
ically, the different trajectories do not need to have the same drift parameters and
diffusion coefficients (see Equation (9.1.2)). However, their drift functions and diffusion
coefficients must not depend on time. In such a case, a further development of the
method is to use the detection of change point of Chapter 6, as a pre-processing step of
our method. We split the trajectories into smaller trajectories showing the same diffu-
sion type over time. Then, we come back to the same framework as the one studied in
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this Chapter.

The Approach of Hoze et al. [2012]

The method of Hoze et al. [2012] is based on a first non-parametric estimation of the
drift vector field followed by a parametric fit to a chosen drift function. The purpose
of Hoze et al. [2012] is to estimate the parameter A (the depth of potential), assuming
a parametric model for the trajectories, defined through the potential function (9.7.3).
Then, the authors do not provide a method to detect confinement zone. We note that
the estimation of the confinement zone is equivalent to estimate parameters (a, b, x0, y0)
in their model (see Equation (9.7.3)). The authors assumes that these parameters are
known.

Future development of the method of Hoze et al. [2012] can involve the estimation
of parameters (a, b, x0, y0) in order to estimate the microdomains under the parametric
model (9.7.3). However, in this case, the microdomains can only be approximated by
ellipses of length axis (a, b) and center (x0, y0).

Another approach could be to detect microdomains directly from the non-parametric
estimation of the drift, see Equation (D.0.4). In any cases, the non-parametric estimation
of the drift is a key step. We must set the critical parameter r reflecting a balance between
bias and variance (see Appendix D). Consequently the parameter r can be related to
the bandwidth parameter in density estimation. [Hozé, 2013, Chapter 2, Section 2.9.1]
states that their method is robust to the choice of r but do not provide a statistical
method for choosing this parameter. We also note that the quality of the estimation of
µ̂(x) depends on the number of trajectory points close to x. Then, the locations where
the density of trajectory points is low will give a poor estimate of µ. Consequently, the
quality of estimation of the drift vector field varies across space which can be problem.
However, the microdomains show a high concentration of trajectory points; the drift
vector field should be well estimated there. Finally, the non-parametric estimation of
the drift assumes that, locally in space, all the trajectories undergo the same diffusion
process with the same drift function. Such an hypothesis can be a strong in practice.
For instance, we can see in Figure 9.7 that the estimated drift field can not capture
Brownian motion occuring in the microdomains, due to the estimation process based on
averaging (see, Equation D.0.4).

Related Method

Masson et al. [2014] also propose an Eulerian approach to infer the drift vector field (and
the diffusion coefficient vector field). The image is first decomposed into non overlapping
blocks. All the subtrajectories inside a block of the partition (or mesh) are supposed
to be driven by the same SDE. The drift and diffusion coefficient is supposed to be
constant in each block. Then, the starting point is similar to the analysis proposed in
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[Hoze et al., 2012]. However, instead of using non-parametric estimates of the drift and
the diffusion coefficient, the authors use Bayesian inference to estimate the parameters.
More specifically, they use an approximate Gaussian likelihood based on the Gaussian
approximation of the SDE. This likelihood approach is flexible and can take into account
localization errors. Jeffrey’s prior is used as a default prior distribution for the drift and
the diffusion coefficient. The motion in the different blocks are supposed independent.
Accordingly, the a-posteriori distribution on the whole space is the product of the a-
posteriori distributions of each block. An alternative option is to use smoothing priors
to penalize strong gradients of the drift field (or the coefficient diffusion field) [El Beheiry
et al., 2016]. In this case, the a-posteriori distribution is no longer the product of the
a-posteriori distributions of each block and the estimation of the maximum a-posteriori
(MAP) can be computationally costly. Once the local drifts (and diffusion coefficients)
are estimated by the MAPs, Masson et al. [2014] propose to fit the estimated vector
field to a parametric vector field as in [Hoze et al., 2012], (see Equation (9.7.4)). They
use a least square estimator but add a penalization term to smooth the vector field
compared to Hoze et al. [2012]. The main advantage of the Bayesian method of Masson
et al. [2014] is that prior information – from a biologist expert for instance – about the
drift and diffusion coefficient can be added. Finally Masson et al. [2014] emphasise that
prior information –more specifically smoothing prior on the gradient field– can reduce
the statistical error due to misconnections of particles during the tracking process.

9.9 Summary
In this chapter, we presented a method to detect the trapping regions where the particles
are confined and thereby undergo subdiffusion. We combined the clustering algorithm
DBSCAN [Ester et al., 1996] and our test procedure (4.5.1) to identify the areas with a
high concentration of subdiffusive particles, corresponding to the trapping regions. We
used a basic grid-based approach to estimate the trapping regions. We were also able
to estimate the proportion of particles inside the trapping regions which were effectively
confined in the domain. In fact, some particles can go through a trapping region without
being trapped.

We compared our method to the Eulerian approach of Hoze et al. [2012]. Due to
its averaging estimation process, Hoze et al. [2012] was not able to capture the motion
of particles not confined in the trapping regions but still going through these regions.
Each method have a critical parameter to set. In our case, the parameter ε defines the
clusters. In [Hoze et al., 2012], r is a bandwidth parameter influencing the smoothness
of the estimated drift field.

In future work, the non-parametric estimation of the drift field proposed in Hoze
et al. [2012] can be combined to our own method to get better insights of the biological
processes occurring in microdomains in practical imaging.

116



10 Conclusion

In this thesis, we developed several methods based on statistical testing to analyse the
traffic of intracellular particles. Designing a statistical test implies to define the hy-
pothesises and the test statistic. We proposed a new test statistic Tn (4.3.1). Our null
hypothesis is that the particle is driven by Brownian motion, the motion of reference
in biophysics for modelling intracellular motion [Qian et al., 1991], in mathematics for
defining stochastic differential equations [Karlin, 1981] and in physics with the Langevin
equation [Kou, 2008]. Then, we used this test in order to classify the observed trajecto-
ries according to their modes of diffusion. We also developed an algorithm for detecting
the times at which a particle switches motion based on the test statistic Tn. Finally, we
proposed a spatial interpretation of the outcome of our test on a collection of trajectories.

10.1 Contributions of the Thesis

Classification

We developed a three-decision test for classifying the particle trajectories observed in
living cells into three types of diffusion: Brownian motion (null hypothesis), subdiffusion
and superdiffusion (alternatives). On the one hand, we built a single test procedure for
testing a single trajectory, on the other hand we proposed a multiple test procedure for
testing a collection of trajectories. These procedures control respectively the type I error
and the false discovery rate at level α. It is worth noting that the length of the trajectory
n is taken into account in our classification rule. Our approach can be considered as an
alternative to the MSD method. It gives more reliable results as confirmed by our Monte
Carlo simulations and evaluations on real sequences of images depicting protein dynamics
acquired with 2D and 3D TIRF microscopy. We implemented the test procedure in
the Matlab package THOT (Testing HypOtheses for diffusion TricHotomy) available
http://serpico.rennes.inria.fr.

Detection of Change of Dynamic over Time

We proposed a non parametric algorithm to detect the change points along a particle
trajectory. These change points are defined as the times at which the particle switches
between the three modes of diffusion mentioned in this thesis. When the trajectory
is fully Brownian (our null hypothesis H0), we control the probability to detect a false

117

http://serpico.rennes.inria.fr/doku.php?id=software:thot:index
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change point at level α. Our procedure has a single parameter to choose: the size k of the
local sliding window. We give guidelines on how to choose this parameter. We compared
our method to the methods of Türkcan and Masson [2013] and Monnier et al. [2015].
None of the existing methods is able to distinguish the three types of motions, namely
Brownian motion subdiffusion and superdiffusion. Secondly, we demonstrate that our
procedure outperforms the two competitive procedures aforementioned. In addition, it is
much faster than the two others which is a advantage when dealing with a large numbers
of trajectories.

Clusters of Trajectories for Spatial Analysis

In the cell, there are microdomains where successively i/ particles are trapped ii/ they
interact with other complex iii/they are released in the cytosol. We proposed a method
for detecting these domains where particles are confined for a while. First, we repre-
sented each trajectory by a single point. Then, we tested the trajectories and obtained a
map with the spatial distribution of the outcome of the test. We used a clustering algo-
rithm to detect the clusters of subdiffusive trajectories. More specifically, we chose the
DBSCAN clustering algorithm as it is able to discriminate noisy points (corresponding
to trajectories outside microdomains) from true clusters (corresponding to subdiffusive
trajectories inside microdomains). Finally, we estimated the contours of the clusters
with a grid-based approach. This technique was validated on simulations produced by
the Fluosim software. Our procedure gives good results as long as the microdomains is
not too large.

10.2 Future Work and Extensions

Bayesian Tests

Further work involves adding prior information about the hypotheses to test. We can
use a Bayesian framework to this end. Generally, the hypothesises are parametric and
of the form: H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1. Prior information is introduced through
[Kass and Raftery, 1995]:

1. prior probabilities affected to each hypothesis H0 and H1,

2. prior distributions over the set of parameters of each hypothesis π0(θ), θ ∈ Θ0 and
π1(θ), θ ∈ Θ1.

Berger and Guglielmi [2001] developed a Bayesian test with a parametric null hypothesis
against an alternative non-parametric hypothesis, which matches with our framework.
Another approach consists in weighting the p-values obtained with a standard test pro-
cedure. It was proposed in the multiple test procedure of Holm [1979]. Giving a large
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Figure 10.1: Example of architecture of a convolutional neural network (CNN). Source https:
//www.clarifai.com/technology.

weight to an hypothesis (or equivalently to the corresponding p-value) favours rejec-
tion while a small weight favours acceptance. Genovese et al. [2006] define a binary
weighting scheme and use the weighted p-values as inputs of the algorithm of Ben-
jamini and Hochberg [1995] to obtain a procedure that controls the false discovery rate.
We emphasize this method with the example of the Rab6 protein trafficking studied
in [Pécot et al., 2017]. The authors show that the Rab6 proteins move quite directly
from the Golgi apparatus to the cell periphery until they enter a docking phase. Then,
they mostly go back towards the cell center by following long and indirect trajectories.
Therefore, we can give a weight favouring the superdiffusion hypothesis to the Rab6
proteins going towards cell periphery while we give a weight favouring the Brownian
motion hypothesis to those going back to the Golgi apparatus. To conclude, we can
improve our test procedures using prior information modelled in a Bayesian framework
or by p-values weighting. A challenging task is to translate the Bayesian and p-values
weighting methods to three-decision testing.

Convolutional Neural Networks

In this thesis, we proposed a model-based approach in the sense that Brownian motion
was the null hypothesis or our tests. Machine learning and deep learning are another way
to address the issue of trajectory classification. The intern V. Gleizes from INSA Rennes
worked during two months on this topic. He used a convolutional neural network (CNN)
[LeCun et al., 1995, Krizhevsky et al., 2012] and focused on the two-dimensional case.
He considered 2D binary images depicting 2D paths corresponding to the observation of
2D trajectories over time (2D+Time), see Figure 10.3. These images are the inputs of
the CNN.

A convolutional neural network is composed of successive layers. The layers are filters
receiving an input from the previous layer and producing an output for the next one.
In case of the CNN, there are three main types of layers. The convolutional layers
apply convolution on the input image. The pooling or sub-sampling layers reduce the
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Figure 10.2: Comparison of the power curves of the fractional Brownian motion obtained with
our test procedure and with CNN. The dashed curves are the power curves obtained with our
three-decision test procedure at level α = 5% (see Figure 5.1 (c)), the plain lines are the power
curves obtained by V. Gleizes with CNN. If 0 < h < 1/2 it is subdiffusion, if 1/2 < h < 1 it is
superdiffusion, if h = 1/2 it is Brownian motion. The CNN detection rate for Brownian motion
is represented with dots at h = 1/2 (the color code still holds for the dots). Our test procedure
detects well 95% of the Brownian trajectories at level α = 5% for any size n (black dot).

dimension of the features representing the data. Then, it reduces the computational
cost and prevent from overfitting. Finally, the fully connected layers apply non linear
filters and allow to classify the original input image. An example of architecture is
given in Figure 10.1. In practise, V. Gleizes designed its own architecture consisting in
successively two convolutional layers, one pooling layer, two convolutional layers, one
pooling layer, one fully connected layer of 128 neurones, one fully connected layer of 3
neurones.

CNN is a supervised classification method, then it must be trained with labelled
images. In our case, CNN is trained with images depicting two-dimensional trajectories
obtained by simulation. As a consequence we know their label. More specifically, CNN is
learnt with images depicting Brownian trajectories, fractional Brownian trajectories with
h < 1/2 for subdiffusion, fractional Brownian trajectories with h < 1/2 for superdiffusion.
Then, he assessed the performances of the method on another set of Brownian and
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(a) (b) (c)

Figure 10.3: CNN input images. The input image in Figure (a) represents a Brownian trajec-
tory, the input image in Figure (b) a fBm with h < 1/2 modelling subdiffusion, and the input
image in Figure (c) a fBm with h > 1/2 modelling superdiffusion. The dimensions of the images
are 255× 255. The trajectories have same size n = 30.

fractional Brownian trajectories. Results are presented in terms of power curves in
Figure 10.2. It shows better perfomances than our test for detecting subdiffusion (fBm
with h < 1/2) and superdiffusion (fBm with h > 1/2), especially on small trajectories.
CNN detects well 69% (respectively 54% and 64%) of Brownian trajectories of size
n = 10 (respectively n = 30 and n = 50). Surprisingly, the best detection rate is for
the trajectory size n = 10. Our test is built such that we detect well 95% of Brownian
trajectories at level α = 5%, irrespective to the trajectory size n.

In terms of computational cost, both the training and estimation phase are heavy for
CNN. Moreover, it is required to estimate the CNN parameters for any trajectory size n.
Also, V. Gleizes considered images of a fixed size. As the method is not scaled-invariant,
future work could involve a multi-scale approach. On contrary, we derived asymptotic
behaviour of our method (Theorem 4.7.1), so that we can use the asymptotic parameters
for large n. Once the thresholds defining the rejection region of our test are computed,
the classification is instantaneous in terms of computational cost. Finally, our test
procedure is scale invariant in the sense that our test does not depend on the diffusion
coefficient σ nor the step of time between two observations ∆. Then, the two approaches
have pros and cons and could be combined to give better results.

Application to Spatial Ecology

In this thesis, the range of developed methods was applied to analyse intracellular traf-
ficking. The same questions arise in ecology with the study of animal displacement.
Each animal behaviour corresponds to a particular motion. For instance, when the rate
of preys in an area decreases, predators move to the next prey patch in a relatively
straight way; their motion can be modelled by a superdiffusion [Schick et al., 2008].
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Another type of motion is referred to as area-restricted search. It includes foraging,
breeding and resting behaviours [Bailey et al., 2009]. In this case, animals do not go in
a specific direction but tend to increase their turning angle especially when they prey.
Therefore, this type of motion can be modelled with subdiffusion or Brownian motion.
Consequently, we are convinced that the statistical methods designed in this thesis can
be helpful to analyse individual and collective animal movement.
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A Convergence Results of the Single Test
Procedure

A.1 Proof of Theorem 4.7.1

Proof of Theorem 4.7.1. Under the null hypothesis, Xt/σ = Bt is a standard Brownian
Motion. Let us introduce the following random variable,

T̃n = max
k=1...n

∥∥∥∥ 1√
n
Rk

∥∥∥∥ , (A.1.1)

where Rk =
∑k
j=1(Bj∆−B(j−1)∆)/

√
∆. Since σ̂n is a consistent estimator of σ and using

the Slutsky Lemma, it remains to prove that T̃n converges in distribution to S0. Using
the fact that the increments of the Brownian process are independent and Gaussian, Rk
is the sum of k independent identically N (0, 1)-distributed random variables. We define
the following process,

W
(n)
t = 1√

n
Rbntc, t ∈ [0, 1],

where bxc denotes the integer part of x ∈ R. Then we get:

T̃n = sup
t∈[0,1]

‖W (n)
t ‖2. (A.1.2)

Due to Donsker’s Theorem [Billingsley, 2013, Theorem 8.2], (W (n)
t ) converges in dis-

tribution to the Wiener measure as n → ∞ over the space of continuous function on
[0, 1]. Since x → supt∈[0,1] ‖x(t)‖ is a continuous function on the space of continuous
functions from [0, 1] to R, T̃n converges in distribution to S0.

A.2 Proof of Proposition 1: the Convergence of the Estimator
(4.6.1) of the Diffusion Coefficient

Notice that σ̂n = σ̂1,n is strongly consistent under the null hypothesis due to the strong
law of large numbers and the independence of the increments of the Brownian motion.

We focus now on the three alternatives. According to the alternative, we denote by E
the expectation associated to the measure P of the solution of the related SDE ((4.2.2)
or (4.2.1) or (4.2.3)).
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Brownian with drift. We may rewrite the strong solution of the SDE (4.2.3) as,

Xtk = Xtk−1 + v∆ + σ
√

∆εk, k = 1 . . . n,

where
√

∆εk = Btk − Btk−1 , and (Bt) is a standard Brownian motion. Then the ran-
dom variables Zk = ‖v∆ + σ

√
∆εk‖2, k = 1 . . . n, are positive independent identically

distributed random variables, and admit a moment of order 1,

E(Zk) = ∆2‖v‖2 + d∆σ2.

Then according to the strong law of large numbers, σ̂n converges almost surely to
∆‖v‖2/d+ σ2.

Ornstein-Uhlenbeck process. Let (Xt) be an Ornstein-Uhlenbeck process (4.2.1). The
SDE (4.2.1) admits a unique solution [Bressloff, 2014, Section 2.2.3]

Xt −Xs = (Xs − θ)(e−λ(t−s) − 1) + σ

∫ t

s
e−λ(t−u)dB1/2

u . (A.2.1)

Then (Xt) is a stationary Gaussian process where transition density p(s, x, t, y) is the
density of

N
(
x+ (x− θ)(e−λ(t−s) − 1), σ2(1− e−2λ(t−s))/(2λ)Id

)
.

Then we get that,

E(‖Xt+∆ −Xt‖2 | Xt = x) =
∫
‖x− y‖2p(t, x, t+ ∆, y)dy,

= ‖x− θ‖2(e−λ∆ − 1)2 + dσ2(1− e−2λ∆)/(2λ).

Moreover the density µ of the stationary distribution of (Xt) is the Gaussian variable
N
(
θ, (σ2Id)/(2λ)

)
. Then we obtain that,

E(‖Xt+∆ −Xt‖2) =
∫

E(‖Xt+∆ −Xt‖2 | Xt = x)µ(x)dx,

= dσ2(e−λ∆ − 1)2/(2λ) + dσ2(1− e−2λ∆)/(2λ),
= dσ2(1− e−λ∆)/λ.

Now, according to [Bibby and Sørensen, 1995, Lemma 3.1], if (Xt) is a stationary diffu-
sion, σ̂2

n converges in probability to E(‖Xt+∆ −Xt‖2)/(d∆). We deduce the result.

Fractional Brownian Motion. Let (Xt) be a fractional Brownian motion (4.2.2). Due
to the self-similarity property and the stationary increments of the fractional Brownian
motion, the following process,

W
(n)
t = Xt0+n∆t −Xt0

(n∆)hσ , t ∈ [0, 1],

125



A Convergence Results of the Single Test Procedure

is a standard fractional Brownian motion. The statistic associated to the quadratic
variation of the process (W (n)

t ) may be defined as,

Vn = 1
n

n∑
i=1

‖W (n)
i/n −W

(n)
(i−1)/n‖

2

E‖W (n)
i/n −W

(n)
(i−1)/n‖2

− 1,

= σ̂2
n

σ2∆2h−1 − 1.

According to [Coeurjolly, 2001, Proposition 1], Vn converges almost surely to 0. Then
we deduce that σ̂2

n/σ
2 tends to ∆2h−1 almost surely.

A.3 Proof of Proposition 2: the Asymptotic Behaviour of the
Test Statistic under Parametric Alternatives

Since the diffusion parameter σ is unknown, the test statistic (4.3.1) is normalized by
an estimator of σ. Proposition 1 states that σ̂n/σ converges in probability to a constant.
Therefore, it is sufficient to study the asymptotic behaviour of the test statistic as if σ
was known. Then, in this section, we consider the test statistic Tn as:

Tn = maxi=1,...,n ‖Xti −Xt0‖
σ
√
tn − t0

. (A.3.1)

Brownian motion with drift (H2). The process (Xt) is a Brownian motion with drift
(4.2.3) and may be rewritten as,

Xtn −Xt0 = v(tn − t0) + σ(Btn −Bt0).

Using that (Bt) is a Brownian motion, the distribution of Btn−Bt0 is N (0d, (tn− t0)Id).
Then we have:

E
(∥∥∥∥Xtn −Xt0

σ(tn − t0) −
v

σ

∥∥∥∥2
)

= d

tn − t0
. (A.3.2)

As tn− t0 = n∆, we deduce that Vn = (Xtn −Xt0)/(σ(tn − t0)) converges in probability
to v/σ. As the euclidean norm is a continuous function, the variable ‖Vn‖ converges in
probability to ‖v‖/σ > 0. Then

√
n∆Vn converges in probability to +∞. Since Tn is

lower bounded by
√
n∆Vn = ‖(Xtn −Xt0)‖/(σ

√
tn − t0), the proof is complete.

The Ornstein-Uhlenbeck process (H1). The process (Xt) is an Ornstein-Uhlenbeck pro-
cess (4.2.1). We assume that the process is in its stationary regime, that means Xt0 is
drawn from the stationary distribution that is Xt0 ∼ N (θ, σ2/(2λ)Id). The SDE (4.2.1)
admits an unique solution [Bressloff, 2014, Section 2.2.3]

Xt − θ = (Xt0 − θ)e−λ(t−t0) + σ

t∫
t0

e−λ(t−u)dB1/2
u . (A.3.3)
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Then we may bound the test statistic Tn by,

‖Xt0 − θ‖
σ
√
n∆

+
d∑
i=1

max
k=1...n

|Xi
tk
− θi|

σ
√
n∆

.

Since Xt0 is drawn from the stationary distribution, the term ‖Xt0 − θ‖/
√
n∆ converges

in probability to zero.
Now we show that the second term in the previous equation tends to zero in probability
as well. We introduce the variables (ξ1

k, ξ
2
k) defined as,

ξik = (Xi
tk
− θi)

√
2λ/σ, k = 1 . . . n, i = 1, . . . , d.

Then for i = 1, . . . , d, the sequence (ξik)k is a standardized stationary normal sequence
with covariance function,

rk = E
(
ξi`ξ

i
`+k

)
= e−k∆, k ≥ −`.

Let i be in {1, . . . , d}. Then (an(maxk=1...n(ξik) − bn))n converges in distribution ac-
cording to [Leadbetter et al., 1983, Theorem 4.3.3], where an =

√
2 log(n) and

bn = an − (2an)−1(log log(n) + log(4π)). We deduce that maxk=1...n(ξik)/
√
n∆ con-

verges in probability to 0. Moreover, since (ξik)k is a centred Gaussian process, then
maxk=1...n(−ξik)/

√
n∆ converges in probability to 0 by symmetry. Then we conclude

that maxk=1...n |Xi
tk
− θi|/

√
n∆ converges in probability to 0.

The fractional Brownian Motion (H1). The process (Xt) is a fractional Brownian mo-
tion with h ∈ (0, 1/2). From the property of self-similarity and stationarity of increments
of the fractional Brownian motion, the following process,

Z
(n)
t = Xtn∆+t0 −Xt0

σ(n∆)h , t ∈ [0, 1], (A.3.4)

is a fractional Brownian motion. We rewrite the test statistic as,

Tn = 1
(n∆)1/2−h max

k=1...n
‖Z(n)

k/n‖

Then Tn is bounded by,
1

(n∆)1/2−h

d∑
i=1

max
k=1...n

|Zi,(n)
k/n |,

where Z(n)
t = (Z1,(n)

t , . . . , Z
d,(n)
t ). The process Z(n) has a version with continuous path

as a result of being γ-Holder continuous for any γ < h. Let i ∈ {1, . . . , d} be fixed. Then
the random variable maxk=1...n |Z

i,(n)
k/n | is bounded by,

M
(n)
i = sup

t∈[0,1]
|Zi,(n)
t |,
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which possesses an absolutely continuous density on R∗+ according to Zäıdi et al. [2003].
That means the sequence

(
maxk=1...n ‖Z

(n)
k/n‖

)
n

is tight. Since h < 1/2, we deduce that
Tn converges in probability to 0.

The fractional Brownian Motion (H2). The process (Xt) is a fractional Brownian mo-
tion with h ∈ (1/2, 1). From the property of self-similarity we get that:

Yn = ‖Xtn −Xt0‖
2

σ2(t− t0)2h ∼ χ
2(d). (A.3.5)

We observe that T 2
n ≥ Yn(n∆)2h−1. Let x be a positive constant. We have:

P (Tn < x) ≤ P
(
Yn(n∆)2h−1 < x2

)
≤ P

(
Yn < x2/(n∆)2h−1

)
. (A.3.6)

Since h > 1/2, x2/(n∆)2h−1 converges to 0 as n → ∞. Then the right hand side of
(A.3.6) converges to 0. That means P (Tn < x) converges to 0 as n → ∞: Tn converges
to +∞ in probability.

A.4 Dependency of the Power on the Parameters of the
Parametric Alternatives

Lemma A.4.1. Let (Xt) be a Brownian motion with drift (4.2.3). Let σ̂n be the es-
timator of the diffusion coefficient defined in Equation (4.6.1). The distribution of Tn
(4.3.1) depends only on the parameter v

√
∆/σ and the trajectory size n.

Proof of Lemma A.4.1. We may rewrite the strong solution of the SDE (4.2.3) as,

Xtk = Xtk−1 + v∆ + σ
√

∆εk, k = 1 . . . n,

where
√

∆εk = Btk − Btk−1 , and (Bt) is a standard Brownian motion. Then (εk) is a
sequence of independent Gaussian variables N (0, 1). Furthermore, we have immediately:

Xtk −Xt0 = vk∆ + σ
√

∆
k∑
i=1

εi, k = 1 . . . n.

Finally the test statistic Tn may be rewritten as,

Tn =
maxk=1,...,n

∥∥∥∥∥k v√∆
σ +

k∑
i=1

εi

∥∥∥∥∥√
1
2

n∑
i=1

∥∥∥v√∆
σ + εi

∥∥∥2
.
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As the distribution of (εk) is free of the parameters the distribution of Tn depends only
on v
√

∆/σ.

Lemma A.4.2. Let (Xt) be a fractional Brownian motion (4.2.2). Let σ̂n be the es-
timator of the diffusion coefficient defined in Equation (4.6.1). The distribution of Tn
(4.3.1) depends only on the parameter h and the trajectory size n.

Proof of Lemma A.4.2. The fractional Brownian motion may be described by its incre-
mental process [Taqqu, 2003]:

εk = (Xtk −Xtk−1)/(σ∆h), k ≥ 1, (A.4.1)

where (εk) is a fractional Gaussian noise which is a stationary standardized Gaussian
process with autocovariance function E(εkεk+i) = (1/2)(|i + 1|2h − 2|i|2h + |i − 1|2h).
Finally the test statistic Tn may be rewritten as,

Tn =
maxk=1,...,n

∥∥∥∥∥ k∑
i=1

εi

∥∥∥∥∥√
1
2

n∑
i=1
‖εi‖2

.

Then the distribution of Tn depends only on the trajectory size n and on h through the
distribution of (εk).
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B Proof of Proposition 3

Proof. We suppose that the trajectory Xn is generated under the null hypothesis (6.2.1).
For simplicity, we note P the probability under H0 (noted P ∅1/2,0,σ in Chapter 6). We
want to show that under H0, Procedure 2 with thresholds γ1 and γ2 defined in Propo-
sition 3, controls the probability of the type I error at level α:

P

∃i ∈ {k, . . . , n?}, i+c−1∑
j=i

1(Qj 6= 0

 ≥ c?) ≤ α (B.0.1)

where n? = n− k − c+ 1.
We express the event {Qi 6= 0} as:

{Qi 6= 0} = {φ(Bi) = 0, φ(Ai) = 1} ∪ {φ(Bi) = 0, φ(Ai) = 2}
∪ {φ(Bi) = 1, φ(Ai) = 0} ∪ {φ(Bi) = 2, φ(Ai) = 0}
∪ {φ(Bi) = 1, φ(Ai) = 2} ∪ {φ(Bi) = 2, φ(Ai) = 1}

(B.0.2)

Then we deduce the following inclusion:

{Qi 6= 0} ⊂ {φ(Bi) = 1} ∪ {φ(Bi) = 2} ∪ {φ(Ai) = 1} ∪ {φ(Ai) = 2} (B.0.3)

Then from the definition of φ we can reexpress the right hand side of (B.0.3) and get
the inclusion:

{Qi 6= 0} ⊂ {Bi < γ1} ∪ {Ai < γ1} ∪ {Bi > γ2} ∪ {Ai > γ2}
= {min(Bi, Ai) < γ1} ∪ {max(Bi, Ai) > γ2}

(B.0.4)

In the sequel we note di = min(Bi, Ai) and Di = max(Bi, Ai). Then we have:

P (Qi 6= 0) ≤ P ({di < γ1} ∪ {Di > γ2}), i = k, . . . , n?. (B.0.5)

This implies the following:

P
(i+c−1∑

j=i
1(Qj 6= 0) ≥ c?

)
≤ P

(i+c−1∑
j=i

1({dj < γ1} ∪ {Dj > γ2}) ≥ c?
)

(B.0.6)
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Now we can bound the right-hand side of Equation B.0.6:

P
(i+c−1∑

j=i
1({dj < γ1} ∪ {Dj > γ2}) ≥ c?

)

≤P
(i+c−1∑

j=i
1({dj < γ1}) + 1({Dj > γ2}) ≥ c?

)

≤P
(i+c−1∑

j=i
1({dj < γ1}) ≥ c?/2

)
+ P

(i+c−1∑
j=i

1({Dj > γ2}) ≥ c?/2
)

(B.0.7)

Then we can express the right-hand side of Equation B.0.7 as:

P
(i+c−1∑

j=i
1({dj < γ1}) ≥ c?/2

)
+ P

(i+c−1∑
j=i

1({Dj > γ2}) ≥ c?/2
)

=P (di(c?/2) < γ1) + P (Di(c−c?/2) > γ2)
(B.0.8)

Finally we have:

P (∃i ∈ {k, . . . , n?},
i+c−1∑
j=i

1(Qj 6= 0) ≥ c?)

=P
( n?⋃
i=k

{i+c−1∑
j=i

1(Qj 6= 0) ≥ c?
})

≤P
( n?⋃
i=k

{i+c−1∑
j=i

1({dj < γ1}) ≥ c?/2
})

+ P
( n?⋃
i=k

{i+c−1∑
j=i

1({Dj > γ2}) ≥ c?/2
})

=P
( n?⋃
i=k
{di(c?/2) < γ1}

)
+ P

( n?⋃
i=k
{Di(c−c?/2) > γ2}

)
=P

(
min

i=k,...,n?
di(c?/2) < γ1

)
+ P

(
max

i=k,...,n?
Di(c−c?/2) > γ2

)
=α

2 + α

2 = α

(B.0.9)

We go from line 2 to line 3 using Equations (B.0.6) and (B.0.7). We go from line 3 to
line 47 using Equation (B.0.8). Finally, we go from line 5 to 6 using the thresholds γ1
and γ2 of Proposition 3. It finishes the proof.
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C Derivation of the Global Binding and
Unbinding Rates

We show that under Assumption 3 the equalities (8.2.6) hold. Let begin with the equality
involving γ1.

P (φ(Xt+h) = 1|φ(Xt) = 0)
=P (φ(Xt+h) = 1, Xt+h ∈ S|φ(Xt) = 0) + P (φ(Xt+h) = 1, Xt+h ∈ S̄|φ(Xt) = 0)
=P (φ(Xt+h) = 1|φ(Xt) = 0, Xt+h ∈ S)P (Xt+h ∈ S|φ(Xt) = 0) + 0
=(k+h+ o(h))P (Xt+h ∈ S)

(C.0.1)

The particle can not be trapped outside S. Then the second probability of the sum is
zero. We go from line 3 to line 4 as the probability to be in region S at t+h is independent
from the event {φ(Xt) = 0} to be a free at t. Normally reflected Brownian motion in
a domain D with finite volume has a stationnary distribution. This distribution is the
uniform distribution over D [Pinsky, 2003]. Then with Assumption 3 we get:

P (φ(Xt+h) = 1|φ(Xt) = 0) = (k+h+ o(h)) |S|
|D|

= k+ |S|
|D|

h+ o(h)
(C.0.2)

We deduce that:
γ1 = k+ |S|

|D|
(C.0.3)

Now we prove the second equality of (8.2.6) involving γ2.

P (φ(Xt+h) = 0|φ(Xt) = 1)
=P (φ(Xt+h) = 0, Xt+h ∈ S|φ(Xt) = 1) + P (φ(Xt+h) = 0, Xt+h ∈ S̄|φ(Xt) = 1)
=P (φ(Xt+h) = 0|φ(Xt) = 1, Xt+h ∈ S)P (Xt+h ∈ S|φ(Xt) = 1) + 0
=(k−h+ o(h))× 1

(C.0.4)

We go from line 3 to line 4 as {φ(Xt) = 1} ⊂ {Xt+h ∈ S}. Then we get the result.
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D Non Parametric Estimate of the Drift
Function

We derive the estimate of the drift function µ defined as,

µ(x) = lim
∆→0

1
∆E(Xt+∆ −Xt|Xt = x), (D.0.1)

under the model presented in Section 9.7. First we define the function

φ̃(x, i, t) =

 1 if X(i)
t ∈ S(x, r)

0 otherwise,
(D.0.2)

where X(i)
t is the position of the ith trajectory X(i)

ni at time t and S(x, r) is a square
centred in x ∈ R2 of side r. The function φ̃(x, i, t) indicates if the position X

(i)
t of

trajectory i is inside the square S(x, r) at time t. Then we set:

N(x, r) =
m∑
i=1

ni−1∑
j=1

φ̃(x, i, t), (D.0.3)

the number of points of the trajectory collection Xm falling in the square S(x, r) during
the whole period of observation. We note that a single trajectory can have multiple
points inside S(x, r) over time. Finally the estimate of the drift is given by:

µ̂(x) = 1
N(x, r)∆

m∑
i=1

ni−1∑
j=1

(Xtj+∆ −Xtj )φ̃(x, i, tj) (D.0.4)

which is the mean of all the displacements starting in the square S(x, r).
From the law of large numbers we have:

µ̂(x)→ 1
∆E(Xt+∆ −Xt|Xt ∈ S(x, r)), (D.0.5)

as N(x, r) → ∞ noting that N(x, r) is random as well. In other words, as the number
of trajectory points falling inside S(x, r) tend to infinity the convergence D.0.5 holds.
We note that we also need ∆ → 0 and r → 0 for µ̂(x) to converge towards µ(x). In a
biological experiment, we can not make the temporal resolution ∆ tend to 0 (see Remark
4.1.1). However, we can select parameter r. The choice of r is a compromise between
bias and variance. A low r will reduce the bias of µ̂(x) as S(x, r) gets closer to x but at
the same time few points will fall inside S(x, r) and the variance of µ̂(x) will increase.
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C. Guérin, F. Senger, L. Blanchoin, and J. Salamero. Fast high-resolution 3d total
internal reflection fluorescence microscopy by incidence angle scanning and azimuthal
averaging. Proceedings of the National Academy of Sciences, 111(48):17164–17169,
2014.
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