Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires

par Raphaël Butez

Thèse de doctorat en Sciences

Sous la direction de Djalil Chafaï.

Soutenue le 04-12-2017

à Paris Sciences et Lettres (ComUE) , dans le cadre de Ecole doctorale SDOSE (Paris) , en partenariat avec Centre de recherche en mathématiques de la décision (Paris) (laboratoire) et de Université Paris Dauphine-PSL (Etablissement de préparation de la thèse) .


  • Résumé

    L'objet principal de cette thèse est l'étude de plusieurs modèles de polynômes aléatoires. Il s'agit de comprendre le comportement macroscopique des racines de polynômes aléatoires dont le degré tend vers l'infini. Nous explorerons la connexion existant entre les racines de polynômes aléatoires et les gaz de Coulomb afin d'obtenir des principes de grandes déviations pour la mesure empiriques des racines. Nous revisitons l'article de Zeitouni et Zelditch qui établit un principe de grandes déviations pour un modèle général de polynômes aléatoires à coefficients gaussiens complexes. Nous étendons ce résultat au cas des coefficients gaussiens réels. Ensuite, nous démontrons que ces résultats restent valides pour une large classe de lois sur les coefficients, faisant des grandes déviations un phénomène universel pour ces modèles. De plus, nous démontrons tous les résultats précédents pour le modèle des polynômes de Weyl renormalisés. Nous nous intéressons aussi au comportement de la racine de plus grand module des polynômes de Kac. Celle-ci a un comportement non-universel et est en général une variable aléatoire à queues lourdes. Enfin, nous démontrons un principe de grandes déviations pour la mesure empirique des ensembles biorthogonaux.

  • Titre traduit

    Random Polynomials, Coulomb Gas and Random Matrices


  • Résumé

    The main topic of this thesis is the study of the roots of random polynomials from several models. We seek to understand the behavior of the roots as the degree of the polynomial tends to infinity. We explore the connexion between the roots of random polynomials and Coulomb gases to obtain large deviations principles for the empirical measures of the roots of random polynomials. We revisit the article of Zeitouni and Zelditch which establishes the large deviations for a rather general model of random polynomials with independent complex Gaussian coefficients. We extend this result to the case of real Gaussian coefficients. Then, we prove that those results are also valid for a wide class of distributions on the coefficients, which means that those large deviations principles are a universal property. We also prove all of those results for renormalized Weyl polynomials. study the largest root in modulus of Kac polynomials. We show that this random variable has a non-universal behavior and has heavy tails. Finally, we establish a large deviations principle for the empirical measures of biorthogonal ensembles.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication

Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : PARIS-PSL (Paris). Université Paris-Dauphine. Service commun de la documentation : Thèses électroniques Dauphine.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication

Informations

  • Sous le titre : Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires
  • Détails : 1 vol. (137 p.)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.