Thèse soutenue

Méthodes variationnelles d'ensemble itératives pour l'assimilation de données non-linéaire : Application au transport et la chimie atmosphérique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Jean-Matthieu Haussaire
Direction : Marc Bocquet
Type : Thèse de doctorat
Discipline(s) : Sciences et Techniques de l'Environnement
Date : Soutenance le 23/06/2017
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre d'Enseignement et de Recherche en Environnement Atmosphérique (Champs-sur-Marne, Seine-et-Marne) - Centre d'Enseignement et de Recherche en Environnement Atmosphérique
Jury : Président / Présidente : Serge Gratton
Examinateurs / Examinatrices : Marc Bocquet, Étienne Mémin, Emanuele Emili
Rapporteurs / Rapporteuses : Emmanuel Cosme, Yann Michel

Résumé

FR  |  
EN

Les méthodes d'assimilation de données sont en constante évolution pour s'adapter aux problèmes à résoudre dans les multiples domaines d’application. En sciences de l'atmosphère, chaque nouvel algorithme a d'abord été implémenté sur des modèles de prévision numérique du temps avant d'être porté sur des modèles de chimie atmosphérique. Ce fut le cas des méthodes variationnelles 4D et des filtres de Kalman d'ensemble par exemple. La nouvelle génération d'algorithmes variationnels d'ensemble quadridimensionnels (EnVar 4D) ne fait pas exception. Elle a été développée pour tirer partie des deux approches variationnelle et ensembliste et commence à être appliquée au sein des centres opérationnels de prévision numérique du temps, mais n'a à ce jour pas été testée sur des modèles opérationnels de chimie atmosphérique.En effet, la complexité de ces modèles rend difficile la validation de nouvelles méthodes d’assimilation. Il est ainsi nécessaire d'avoir à disposition des modèles d’ordre réduit, qui doivent être en mesure de synthétiser les phénomènes physiques à l'{oe}uvre dans les modèles opérationnels tout en limitant certaines des difficultés liées à ces derniers. Un tel modèle, nommé L95-GRS, a donc été développé. Il associe la météorologie simpliste du modèle de Lorenz-95 à un module de chimie de l'ozone troposphérique avec 7 espèces chimiques. Bien que de faible dimension, il reproduit des phénomènes physiques et chimiques observables en situation réelle. Une méthode d'assimilation de donnée, le lisseur de Kalman d'ensemble itératif (IEnKS), a été appliquée sur ce modèle. Il s'agit d'une méthode EnVar 4D itérative qui résout le problème non-linéaire variationnel complet. Cette application a permis de valider les méthodes EnVar 4D dans un contexte de chimie atmosphérique non-linéaire, mais aussi de soulever les premières limites de telles méthodes.Fort de cette expérience, les résultats ont été étendus au cas d’un modèle réaliste de prévision de pollution atmosphérique. Les méthodes EnVar 4D, via l'IEnKS, ont montré leur potentiel pour tenir compte de la non-linéarité du modèle de chimie dans un contexte maîtrisé, avec des observations synthétiques. Cependant, le passage à des observations réelles d'ozone troposphérique mitige ces résultats et montre la difficulté que représente l'assimilation de données en chimie atmosphérique. En effet, une très forte erreur est associée à ces modèles, provenant de sources d'incertitudes variées. Deux démarches doivent alors être entreprises pour pallier ce problème.Tout d’abord, la méthode d’assimilation doit être en mesure de tenir compte efficacement de l’erreur modèle. Cependant, la majorité des méthodes sont développées en supposant au contraire un modèle parfait. Pour se passer de cette hypothèse, une nouvelle méthode a donc été développée. Nommée IEnKF-Q, elle étend l'IEnKS au cas avec erreur modèle. Elle a été validée sur un modèle jouet, démontrant sa supériorité par rapport à des méthodes d'assimilation adaptées naïvement pour tenir compte de l’erreur modèle.Toutefois, une telle méthode nécessite de connaître la nature et l'amplitude exacte de l'erreur modèle qu'elle doit prendre en compte. Aussi, la deuxième démarche consiste à recourir à des outils statistiques pour quantifier cette erreur modèle. Les algorithmes d'espérance-maximisation, de emph{randomize-then-optimize} naïf et sans biais, un échantillonnage préférentiel fondé sur l'approximation de Laplace, ainsi qu'un échantillonnage avec une méthode de Monte-Carlo par chaînes de Markov, y compris transdimensionnelle, ont ainsi été évalués, étendus et comparés pour estimer l'incertitude liée à la reconstruction du terme source des accidents des centrales nucléaires de Tchernobyl et Fukushima-Daiichi.Cette thèse a donc enrichi le domaine de l'assimilation de données EnVar 4D par ses apports méthodologiques et en ouvrant la voie à l’application de ces méthodes sur les modèles de chimie atmosphérique