Thèse soutenue

Architecture Dynamiquement Auto-adaptable pour Systèmes de Vision Embarquée Multi-capteurs

FR  |  
EN
Auteur / Autrice : Ali Isavudeen
Direction : Mohamed AkilEva Dokladalova
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 19/12/2017
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009)
Jury : Président / Présidente : Geneviève Baudoin
Examinateurs / Examinatrices : Mohamed Akil, Eva Dokladalova, Joël Budin, Nicolas Ngan
Rapporteurs / Rapporteuses : Antoine Dupret, Fan Yang Song

Résumé

FR  |  
EN

Un système de vision embarquée multi-capteurs est doté de plusieurs capteurs d'images de technologie différente.Il peut être un capteur couleur, un capteur infrarouge ou encore un capteur bas niveau de lumière.Les caractéristiques de ces capteurs sont également hétérogènes.Nous avons différentes fréquences trames, résolutions et dynamiques de pixels.Cette multiplicité et cette hétérogénéité des capteurs d'images permet à un système de vision de mieux répondre à ses besoins.En fait, un système de vision multi-capteurs doit fonctionner dans plusieurs milieux opérationnels (urbain, marin, boisé).Il doit également s'adapter à plusieurs conditions de luminosité (jour, nuit, faible éclairage).Enfin, la multiplicité des capteurs permet d'offrir des fonctionnalités intéressantes à l'utilisateur final : fusion multispectrale, vision panoramique, vision multi-champs.Le défi de conception est que l'ensemble de ces paramètres environnementaux et opérationnels peuvent varier dynamiquement au cours de l'utilisation du système de vision.Il est nécessaire que la conception de l'architecture tienne compte de cette variabilité dynamique du contexte d'utilisation.L'architecture doit présenter la flexibilité dynamique suffisante afin de s'adapter aux variations de contexte.Elle doit également pouvoir prendre conscience de l'évolution du contexte.La solution architecturale doit tout de même satisfaire les contraintes de surface et de consommation énergétique d'un système embarqué et portable.Nous proposons dans cette thèse un moniteur permettant à l'architecture actuelle de Safran de s'auto-adapter dynamiquement.Ce moniteur joue deux rôles dans l'auto-adaptation de l'architecture.D'une part, il observe en permanence les changements de contexte.D'autre part, il décide et pilote en conséquence les adaptations à effectuer sur l'architecture.L'observation porte sur l'environnement opérationnel et sur le système de vision multi-capteurs (y compris l'architecture).Le moniteur analyse les données d'observation et prend des décisions sur l'adaptation.Enfin, il commande les différents contrôleurs de l'architecture afin d'exécuter les adaptations requises par le changement de contexte.Nous introduisons un réseau de routeurs qui a pour principal objectif l'acheminement des données de monitoring.Le réseau proposé permet d'accéder à l'architecture sans pour autant compromettre le traitement des flux d'images.Ce réseau s'inspire de nos précédents travaux pour la mise en place d'un système de paquets de données cite{Ng2011}.Un dernier volet de notre proposition porte sur la gestion de la mémoire trames.Avec les changements de contexte permanents, le besoin en ressources de mémoire évolue dynamiquement.Pour une utilisation économique et optimale des ressources, il est nécessaire d'adapter l'attribution des ressources au fil des variations des besoins.Nous présentons un contrôleur mémoire permettant l'allocation dynamique de l'espace mémoire et la régulation dynamique de la distribution de la bande passante mémoire.Nous évaluons les différents volets de notre proposition à l'aide d'une implémentation sur un FPGA Cyclone V de chez ALTERA (5CGX).Nous présentons les validations progressivement au fur et à mesure que nous abordons chaque volet de notre proposition.Chaque validation présente les performances en temps et en surface