Thèse soutenue

Etude multi-technique de l'effet de la température d'hydratation de ciment sur la microstructure et les propriétés mécaniques de la pâte de ciment
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Sara Bahafid
Direction : Jean Sulem
Type : Thèse de doctorat
Discipline(s) : Génie Civil
Date : Soutenance le 27/11/2017
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Navier (Paris-Est) - Laboratoire Navier / NAVIER UMR 8205
Jury : Président / Présidente : Thierry Chaussadent
Examinateurs / Examinatrices : Jean Sulem, Siavash Ghabezloo, Paméla Faure, Peter McDonald, Mateusz Wyrzykowski
Rapporteurs / Rapporteuses : Bernhard Pichler, Jean-Baptiste d' Espinose

Résumé

FR  |  
EN

Le processus de l’hydratation de ciment et la microstructure qui en résulte, dépendent de la formulation de la pâte et des conditions d’hydratation. Parmi différents facteurs, la température d’hydratation a un effet important sur la microstructure et les propriétés physiques et mécaniques des matériaux cimentaires. Ceci est particulièrement important pour l’étude du comportement des ciments pétroliers. En effet, dans un puits pétrolier, une gaine de ciment est coulée entre la roche réservoir et le cuvelage en acier pour assurer entre autre la stabilité et l’étanchéité du puits. En raison du gradient géothermique (environ 25°C par km), la gaine de ciment le long d'un puits est exposée à une température d'hydratation qui augmente avec la profondeur menant à une augmentation de perméabilité et une baisse de propriétés mécaniques le long du puits. L'objectif cette thèse est d'étudier l'effet de la température d'hydratation dans la gamme de 7°C à 90°C sur la microstructure d'une pâte de ciment (classe G) et d'établir le lien entre les modifications microstructurales et les propriétés élastiques du matériau. La caractérisation de la microstructure est faite en considérant une combinaison de plusieurs méthodes expérimentales, à savoir, la diffraction des rayons X & l’analyse Rietveld, l'analyse thermogravimétrique, porosimétrie par l'intrusion de mercure, l'évaluation de la porosité par lyophilisation ou par séchage à 11% HR, essais de sorption au Nitrogène et à la vapeur d'eau et finalement, la résonance magnétique nucléaire 1H. L’assemblage de masse des différentes phases de la microstructure a été évalué montrant une légère dépendance à la température d’hydratation. L’étude de la porosité a montré une augmentation de la porosité capillaire et une légère diminution de la porosité totale à 28 jours d’hydratation, ce qui résulte en une diminution de la porosité du gel de C-S-H en augmentant la température d'hydratation. Une méthode d'analyse a été proposée pour évaluer la densité saturée de C-S-H et sa composition chimique en termes des rapports molaires C/S et H/S pour un C-S-H sec et saturé. Les résultats montrent que la densité de C-S-H augmente avec la température d'hydratation expliquant ainsi l'augmentation observée de la porosité capillaire à températures élevées. Les rapports C/S et H/S diminuent avec l’augmentation de la température d’hydratation. La caractérisation de la microstructure a permis d’alimenter un modèle micromécanique destiné à prédire les propriétés élastiques de la pâte de ciment pour différentes températures d’hydratation. Des modèles d’homogénéisation auto-cohérents à deux et trois échelles ont montré que l’augmentation de la porosité capillaire ne suffit pas pour expliquer la baisse des propriétés mécaniques avec la température. En effet, l’augmentation de la densité de C-S-H avec la température d’hydratation annule l’effet de l’augmentation de la porosité capillaire sur les propriétés élastiques. La réduction des propriétés mécaniques pourrait être expliquée en considérant une distribution de porosité au sein de C-S-H sous forme de C-S-H basse densité LD et haute densité HD telle que proposée par Tennis et Jennings (2000). Cette possibilité est investiguée par une combinaison de techniques de porosimétrie : porosimétrie par l'intrusion de mercure, adsorption d'azote et désorption de vapeur d'eau et par un calcul inverse à l’aide de la modélisation micromécanique. Les résultats montrent que la porosité intrinsèque LD augmente légèrement tandis que la porosité intrinsèque HD diminue de manière significative avec l'augmentation de la température d'hydratation. La diminution des propriétés élastiques des matériaux cimentaires avec l’augmentation de la température d'hydratation s’avère être due à l’action combinée de l'augmentation de la porosité capillaire et des changements de porosités intrinsèques à l’intérieure de C-S-H