Thèse soutenue

Etude de la réactivité de surface de matériaux d'électrode modèle de la famille des oxydes de lithium lamellaires : couplage expérience théorie.

FR  |  
EN
Auteur / Autrice : Ambroise Quesne-Turin
Direction : Danielle GonbeauFlorent Boucher
Type : Thèse de doctorat
Discipline(s) : Chimie-Physique
Date : Soutenance le 15/11/2017
Etablissement(s) : Pau
Ecole(s) doctorale(s) : École doctorale sciences exactes et leurs applications (Pau, Pyrénées Atlantiques ; 1995-)
Jury : Examinateurs / Examinatrices : Florent Boucher

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les évolutions technologiques notamment dans la télécommunication ou le transport nécessitent des systèmes de stockage de l’énergie de plus en plus performants. Dans le cas des transports, l’utilisation d’énergie fossile est encore la plus rependu. Mais la raréfaction de ces ressources, et le réchauffement climatique en partie dû au gaz CO2 rejeté par la combustion de celle-ci a mené à une prise de conscience d’un besoin de transition énergétique. Le stockage de l’énergie sous forme électrochimique (batteries) permet de s’affranchir de ces défauts. L’un des matériaux d’électrode positive les plus utilisé pour les batteries Li-ion est le LiCoO2. Il est aujourd’hui remis en question, pour des raisons de performance, mais aussi de coût et de toxicité du cobalt. Une substitution du cobalt par d’autres métaux de transition a été testée avec succès. Le matériau LiNi1/3Co1/3Mn1/3O2 (NMC) a montré des performances électrochimiques supérieures au LiCoO2. Un autre matériau d’électrode positive en commercialisation, le matériau spinelle LiMn2O4, offre des capacités intéressantes.Les performances électrochimiques de ces matériaux peuvent être améliorées. La durée de vie de ces batteries est en partie limitée par des phénomènes aux interfaces électrode/électrolyte. Il est nécessaire d’étudier ces phénomènes encore mal compris. Lors de cette étude, nous nous intéresserons à la réactivité de surface d’un matériau modèle Li2MnO3 ; et des spinelles par une approche mêlant expérience et théorie. Notre stratégie opératoire est basée sur l’adsorption de sonde gazeuse suivit d’une étude multi-échelle sur des matériaux modèles couplant expérience et théorie.Une première étude porte sur la réactivité de surface des faces (001) des cristaux de Li2MnO3 par analyse XPS et Auger de l’adsorption de sonde SO2, ainsi que de de la modélisation de ces réactions d’adsorption. Puis une seconde étude s’intéresse au rôle du degré d’oxydation du manganèse dans la réactivité de surface avec une étude sur les spinelles. La dernière partie de la thèse porte sur l’impact des fautes d’empilement sur la réactivité de surface du matériau Li2MnO3 sous forme de poudre.