Thèse soutenue

FR
Accès à la thèse
Auteur / Autrice : Mohammed Naji Hammood
Direction : Ouali AmiriNathan Benkemoun
Type : Thèse de doctorat
Discipline(s) : Sciences pour l’ingénieur
Date : Soutenance le 20/10/2017
Etablissement(s) : Nantes
Ecole(s) doctorale(s) : Sciences de l'ingénierie et des systèmes (Centrale Nantes)
Partenaire(s) de recherche : COMUE : Université Bretagne Loire (2016-2019)
Laboratoire : Laboratoire de génie civil et génie mécanique (LGCGM)
Jury : Président / Présidente : Abdelkarim Ait-Mokhtar
Examinateurs / Examinatrices : Jean-Baptiste Colliat
Rapporteurs / Rapporteuses : Jean-Baptiste Colliat, Fabrice Bernard

Mots clés

FR

Résumé

FR  |  
EN

La pénétration des ions chlorure est la principale cause de la dégradation des structures en béton, par corrosion des armatures, entraînant un impact sévère sur leur durabilité et leur durée de vie. La pénétration de ces agents agressifs pourrait être favorisée davantage par la présence de fissures. Dans cet thèse, nous avons utilisé la méthode des éléments finis (EF) pour résoudre l'équation de la loi de Fick couplée à la capacité de fixation d’ions chlorure afin de modéliser la diffusion des ions chlorure à l’échelle mésoscopique. Dans un premier temps, nous avons considéré une représentation 3D d’un matériau, sain, hétérogène biphasé (comme le béton) ou les inclusions (granulats) sont noyées dans une matrice de mortier. Le problème des interfaces (inclusion/matrice) a été résolu en utilisant la méthode E-FEM (Embedded Finit Element Method). Au niveau de ces interfaces, nous avons introduit une discontinuité faible du champ de concentration de chlorures. Une approche d’homogénéisation par moyennes spatiales se basant sur les travaux de Pouya est également utilisée pour prédire les tenseurs de diffusivité macroscopiques des matériaux biphasiques. La comparaison avec l'équation de Maxwell et des résultats expérimentaux a été réalisée pour montrer la précision de l’approche numérique proposée. Dans un second temps, l’approche méso-macro est représentée pour introduire un modèle numérique capable de fournir des informations macroscopiques (tenseur de diffusion moyen) intégrant le niveau d’ouverture de fissure, le chemin de fissuration et l’hétérogénéité des matériaux quasi fragiles tels que les matériaux cimentaires (béton, mortier, ….). Dans ce cas, des points clés du processus de fissuration comme l’évolution d’une fissuration répartie vers une fissuration localisée (macro-fissure(s)), la tortuosité de la fissure et son anisotropie sont intégrées naturellement dans la diffusivité macroscopique. En fin, le tenseur défini est ensuite utilisé afin d'estimer la durée de vie des structures en béton, y compris l'effet de l'endommagement et de la mésostructure interne.