Thèse soutenue

Thermodynamique de l'adsorption de l'eau dans le modèle des systèmes moléculaires structurés, qui comprennent des analogues de l'hémicellulose, cellulose cristalline et la lignine

FR  |  
EN
Auteur / Autrice : Aurelio Barbetta
Direction : Thomas ZembHelmuth Möhwald
Type : Thèse de doctorat
Discipline(s) : Chimie et physico-chimie des matériaux
Date : Soutenance le 20/11/2017
Etablissement(s) : Montpellier en cotutelle avec Universität Potsdam
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de Chimie Séparative de Marcoule - Institut de Chimie Séparative de Marcoule
Jury : Président / Présidente : Francesco Di Renzo
Examinateurs / Examinatrices : Thomas Zemb, Helmuth Möhwald, Francesco Di Renzo, Anne-Karine Froment, Emanuel Schneck
Rapporteurs / Rapporteuses : Anne-Karine Froment, Emanuel Schneck

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le bois est un matériau nanocomposite complexe, fortement anisotrope et hiérarchiquement organisé. La micro-structure à l'échelle nanométrique est caractérisée par des nanofibres rigides de cellulose cristalline parallèles les unes aux autres et noyées dans un matrice plus molle et moins anisotrope. Cette matrice est composée par hémicelluloses et lignine, avec une absorption contrôlée par l'entropie et les liaisons hydrogène entre hémicelluloses, lignine, et la surface de micro-cristaux de cellulose. La matrice est hygroscopique et se gonfle avec les changements de l'humidité relative, en fournissant une source de stress interne, tandis que les fibrilles de cellulose s'enroulent en spirale autour de la lumière centrale à un angle précis, qui est appellé AMF, angle des micro-fibrilles. Les micro-fibrilles se réorganisent passivement selon les contraintes osmotique appliquées. Selon l'AMF, le positionnement et les propriétés mécaniques des fibres de bois varient considérablement: le matériau rigide se rétrécit ou il s'allonge dans le sens de la longueur lors du gonflement, en générant de cette façon une grande déformation anisotrope.Une première forme d'équation d'état comprenant entropie et termes chimiques, colloïdaux (comme la force d'hydratation) et termes mécaniques macroscopiques a été établie et permet de prédire sans paramètres l'absorption d'eau en fonction de l'humidité relative du composite de bois pas traité.Le but de la thèse est d'étendre cette équation d'état au bois traité par absorption d'électrolytes en conditions hydrotermales, en intégrant l'équation avec des termes chimiques lié à la présence d'électrolytes. Les résultats du modèle sont comparés avec les données expérimentales de sorption d'électrolytes formulés en fonction de la balance entre chaotropes et cosmotropes de l'échelle de Hofmeister. Les données expérimentales sont produit à partir des isothermes de sorption et des mécanismes moteurs pour tester la prédiction de la théorie en explorant l'effet du soluté (introduit dans le bois par mise en équilibre avec une solution utilisée comme une réservoir osmotique) sur la structure et les dimensions du matériau.