Thèse soutenue

Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale

FR  |  
EN
Auteur / Autrice : Álvaro Mateos González
Direction : Vincent CalvezHugues Berry
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 22/09/2017
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure de Lyon (2010-...)
Laboratoire : Unité de Mathématiques Pures et Appliquées (Lyon ; 1991-....) - Artificial Evolution and Computational Biology
Jury : Président / Présidente : Delphine Salort
Examinateurs / Examinatrices : Vincent Calvez, Hugues Berry, Delphine Salort, Juan Soler, Stéphane Mischler, Thomas Lepoutre, Paul Vigneaux, María José Cáceres Granados
Rapporteurs / Rapporteuses : Juan Soler, Stéphane Mischler

Résumé

FR  |  
EN

Cette thèse est consacrée à l'analyse asymptotique d'équations aux dérivées partielles issues de modèles de déplacement sous-diffusif en biologie cellulaire. Notre motivation biologique est fondée sur les nombreuses observation récentes de protéinescytoplasmiques dont le déplacement aléatoire dévié de la diffusion Fickienne normale. Dans la première partie, nous étudions la décroissance auto-similaire de la solution d'une équation de renouvellement à queue lourde vers un état stationnaire. Les idéesmises en jeu sont inspirées de méthodes d'entropie relative. Nos principaux apports sont la preuve d'un taux de décroissance en norme L1 vers la loi de l'arc-sinus et l'introduction d'une fonction pivot spécifique dans une méthode d'entropie relative.La seconde partie porte sur la limite hyperbolique d'une équation de renouvellement structurée en âge et à sauts en espace. Nous y prouvons un résultat de « stabilité » : les solutions des problèmes rééchelonnés à ε > 0 convergent lorsque ε --> 0 vers la solution de viscosité de l'équation de Hamilton-Jacobi limite des problèmes à ε > 0. Les outilsmis en jeu proviennent de la théorie des équations de Hamilton-Jacobi.Ce travail présente trois idées intéressantes. La première est celle de prouver le résultat de convergence sur la condition de bord du problème plutôt que d'utiliser des fonctions test perturbées. La deuxième consiste en l'introduction de termes correcteurslogarithmiques en temps dans des estimations a priori ne découlant pas directementdu principe du maximum. Cela est dû à la non-existence d'un équilibre du problèmehomogène en espace. La troisième est une estimation précise de la décroissance de l'influence de la condition initiale sur le terme de renouvellement. Elle correspond à une estimation fine d'une version non-locale de la dérivée temporelle de la solution. Au cours de cette thèse, des simulations numériques de type Monte Carlo, schémas volumes finis, Lax-Friedrichs et Weighted Essentially Non Oscillating ont été réalisées.