Thèse soutenue

Récupération d’énergie issue des variations temporelles de la température par effet pyroélectrique

FR  |  
EN
Auteur / Autrice : Fatima Zahra El Fatnani
Direction : Daniel Guyomar
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 14/10/2017
Etablissement(s) : Lyon en cotutelle avec Université Hassan II (Casablanca, Maroc)
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : LGEF - Laboratoire de Génie Electrique et Ferroélectricité (Lyon, INSA) - Laboratoire de Génie Electrique et Ferroélectricité / LGEF
Jury : Président / Présidente : Yahia Boughaleb
Examinateurs / Examinatrices : Daniel Guyomar, Yahia Boughaleb, Christian Courtois, Taoufiq Mouhib, Aouatif Dezairi, Najib Laraqi, M'hamed Mazroui, Zina Sassi
Rapporteurs / Rapporteuses : Christian Courtois, Taoufiq Mouhib

Résumé

FR  |  
EN

Cette thèse, de nature expérimentale, rentre dans le cadre de la récupération d’énergie pour les micro-générateurs et l’autonomie des dispositifs électroniques à faible consommation. Ce travail propose les possibilités de récupérer de l’énergie thermique par effet pyroélectrique. L’éner- gie thermique à convertir est une variation temporelle de température. Nous avons proposé deux principales techniques pour produire de l’énergie électrique via une céramique pyroélectrique de type PZT. La première est centrée sur la récupération des radiations infrarouges associé à la tech- nique SSHI. Originellement, la technique SSHI a été développée dans le cas de la récupération d’énergie piézoélectrique, mais nous l’avons appliqué dans le cas de la pyroélectricité et qui nous a permis de maximiser la puissance récupérée d’un facteur de 2. La seconde technique proposée concerne la récupération des fluctuations thermiques provenant des mouvements convectifs nais- sant à l’intérieur d’un fluide dans la configuration de Rayleigh-Bénard. Nous avons mené plusieurs études pour augmenter le transfert convectif dans le but d’améliorer la réponse pyroélectrique et donc maximiser la puissance récupérée. Dans le cas des convections naturelles, le choix de fluide adéquat et l’optimisation des paramètres de contrôle de la configuration Rayleigh-Bénard consti- tuent des étapes primordiales pour aboutir à un meilleur transfert thermique par convection. Dans le cas des convections forcée, il a été étudié l’intérêt de disperser des particules de Cuivre de taille nanométrique dans un fluide porteur pour augmenter plus davantage le transfert convectif. Avec ce nanofluide, la réponse pyroélectrique a été maximisée d’un facteur de 10.