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Abstract

This thesis investigates experimentally, theoretically and numerically the critical ventilation
velocity in longitudinal ventilated tunnels in case of a fire. The critical velocity is defined as
the minimum ventilation velocity that confines the front of the backlayer of harmful buoyant
gases downwind of the source of emission.

The fire is first modeled by a release of light gas in ambient air. In the experiments, the
light fluid is an air/helium mixture. A simple mathematical model, based on the classical
plume study, is formulated to interpret the variations of the critical velocity as a function of
the source conditions (momentum and buoyancy fluxes and geometry). A good agreement
is observed between the experimental results and the theoretical predictions for both the
momentum-driven and buoyancy-driven releases. In addition, the non-Boussinesq effects, i.e.
related to large differences between the densities of the buoyant plume and the ambient fluid,
could be suitably modeled.

Subsequently, the difference between a buoyant plume and a fire is studied, by combining
experiments and numerical simulations. The reason for the appearance of the so-called
‘super-critical’ velocity, a ventilation velocity that becomes independent of the heat release
rate when it becomes large, is discussed. It is shown that small fires can be reliably modeled
as buoyant densimetric plumes released at ground level. The dynamics induced by larger
fires require instead the modeling of large flames and hence a volumetric source of heat and
buoyancy within the tunnel. In the simulation of fires, when the heat release rate is increased,
the volume of combustion also increases, but the critical velocity remains nearly constant,
which validates the appearance of the ‘super-critical’ velocity.

The effect of tunnel inclination on the critical velocity is then studied. The influence
of slope (defined as negative when the entrance of fresh air is at a lower elevation than
the source) on the movement of smoke is mainly related to the role of the component of
buoyancy along the tunnel axis. A positive slope helps the formation of the backlayer, while
a negative slope helps reaching the critical condition. However, this effect depends on the
source condition. Our experiments and numerical simulations on densimetric plumes suggest
that the dynamical condition at the source affects the critical velocity of a buoyant plume:
when the buoyant plume is momentum-driven, the influence of slope is small; when the
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buoyant plume is buoyancy-driven, the influence of slope is large. This behavior can be
well described by a theoretical model based on the previous model of the critical velocity
in a horizontal tunnel. These results have been extended to the case of fires by conducting
numerical simulations and there is again a good agreement between the observed results and
the theoretical model. In particular, the ratio of the critical velocities obtained for an inclined
and an horizontal tunnel is independent of the power of the fire.

Finally, the effect of vehicular blockage on the critical velocity is studied experimentally
and numerically. The vehicles are modeled by blocks of different sizes placed upstream of
the buoyancy or fire source. It is shown that only the block close to the source affects the
critical velocity, whereas the effect of other blocks of the same size located further upstream
is negligible. As the fire-blockage distance becomes larger, the critical velocity changes and
becomes close to the value in an empty tunnel. The relative position between the blocks and
the fire source has large influence on the critical velocity. When the blocks are placed at
the center laterally, the ventilation flow cannot reach the fire plume directly, a larger critical
velocity is needed compared with that in a corresponding empty tunnel. On the other hand,
when the blocks are placed at the sides laterally, the ventilation flow can directly impact
the fire plume and a smaller critical velocity is needed, with a reduction ratio similar to the
blockage ratio. It is also found that the changing of critical velocity ratio (ratio between the
case with blocks and that in an empty tunnel) is mainly affected by the blocks, whereas the
effect of the source condition (buoyant plume, small or large fire) is small.

Keywords: Critical velocity, Buoyant plume, Fire, Tunnel, Inclination, Block



Abstract in French

Cette thèse a pour objectif la caractérisation de la vitesse de ventilation critique dans un
tunnel ventilé longitudinalement lorsque survient un incendie. La vitesse critique est définie
comme la vitesse de ventilation minimale pour laquelle l’ensemble des fumées nocives est
repoussé à l’aval de l’incendie. Les méthodes utilisées sont théoriques, expérimentales et
numériques.

Dans une première approche, l’incendie est modélisé par un rejet de fluide plus léger que
l’air ambiant. Dans les expériences, il s’agit soit de l’air chaud, soit d’un mélange d’air et
d’hélium ce qui permet d’étudier les effets dits non-Boussinesq, c’est à dire induits par une
large différence de densité entre le rejet flottant et l’air ambiant. Une modélisation théorique
simple est également donnée afin d’expliquer les variations de la vitesse de ventilation
critique en fonction des conditions à la source du rejet (flux de flottabilité et géométrie). Un
bon accord est observé entre les résultats expérimentaux et le modèle théorique aussi bien
pour les rejets dits forcés (jets) que pour les rejets dits flottants (panaches).

Des simulations numériques ont été également menées afin de fournir une comparaison
quantitative des vitesses critiques obtenues dans le cas d’un incendie modélisé par un panache
et le cas d’un feu. L’apparition d’une vitesse dite ’super-critique’ observée dans la littérature
dans le cas de feux a été étudiée. L’effet sur la vitesse critique d’un feu de puissance faible
peut très largement être modélisé par l’effet d’un rejet de fluide léger au sol. En revanche,
un feu de forte puissance nécessite une modélisation des flammes et donc de puissance
thermique produite en volume dans une partie non négligeable du tunnel. La présence de
flammes représente donc une source distribuée de flux de flottabilité au dessus et en aval du
lieu d’injection des gaz de combustion. En conséquence, dans cette situation, le foyer ne peut
être modélisé par une simple condition aux limites au sol du tunnel.

L’effet sur la vitesse critique d’une éventuelle inclinaison ou pente du tunnel a été
également étudié. Une inclinaison du tunnel dans le sens de la ventilation induit une
diminution de la vitesse critique par rapport à un tunnel horizontal alors que pour une
inclinaison en sens contraire la vitesse critique est augmentée. Cependant, cet effet dépend
des conditions à la source du rejet. Pour les rejets flottants, l’effet de la pente du tunnel est
important tandis que la vitesse critique devient de moins en moins dépendante de la pente au
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fur et à mesure que le rejet devient forcé. Le modèle théorique développé pour un rejet dans
un tunnel horizontal a été adapté au cas avec pente et un bon accord a de nouveau été établi
entre les résultats expérimentaux et le modèle théorique. Enfin, pour un feu, les simulations
numériques ont montré que la pente influence très peu la vitesse critique.

Dans une dernière partie, l’effet de la présence de véhicules dans le tunnel a été investigué
aussi bien expérimentalement qu’avec l’outil numérique. Les véhicules sont modélisés par
des blocs parallélépipédiques de différentes tailles placés en amont de la source de flottabilité
ou le feu. Il a été montré que seul le bloc proche de la source modifiait la valeur de la vitesse
de ventilation critique alors que les blocs plus éloignés avaient une influence négligeable. De
même, la vitesse critique obtenue en présence de blocs se rapproche très rapidement de celle
obtenue pour un tunnel sans véhicule lorsque la distance entre la source et le bloc le plus
proche augmente. Le paramètre qui influence le plus la vitesse critique est la position relative
du bloc et de la source. Lorsque le bloc protège directement la source en étant placé à son
côté aussi bien longitudinalement que latéralement, l’air frais de la ventilation n’impacte
pas directement le rejet et la vitesse critique est augmentée par rapport à la situation sans
bloc. En revanche, lorsque le bloc est placé un peu plus loin latéralement tout en étant proche
longitudinalement, l’air frais peut impacter directement le rejet et la vitesse critique est alors
observée plus faible que celle obtenue sans bloc. La diminution de la vitesse critique est
alors semblable en pourcentage à la diminution de section du tunnel induite par la présence
du bloc, elle est attribuée au fait que le bloc induit une augmentation de la vitesse locale
de ventilation favorisant donc la poussée du panache en aval. Au contraire, quand le bloc
protège la source, la vitesse locale de ventilation est nulle au niveau de la source et elle est
augmentée plus loin aux endroits où le panache est moins présent, ce qui induit cette fois-ci
une augmentation de la vitesse critique.

Keywords: Vitesse critique, Panache flottant, Feux, Tunnel, Inclinaison, Obstacles
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Chapter 1

Introduction

1.1 Tunnel fire hazards

Compared with the fires in open spaces, the tunnel fires are characterised by three main
features. Firstly, tunnel is a long confined space in which the heat released by combustion
cannot be removed easily. The temperature can raise quickly and may reach 1000 ◦C in
the fire region. This high temperature imposes serious threat both to the people and to the
structure of the tunnel. Secondly, due to the combustion of the combustible vehicle materials,
toxic gases may be released. Because of the lack of the oxygen, the combustion is often
incomplete, and a large amount of smoke may be then produced. The toxic smoke causes low
visibility as well as chocks. The third is the difficulty in the firefighting. When the fire starts,
fire fighters need to locate the fire source and enter the tunnel. However, The low visibility
and the presence of abandoned vehicles in the road make it hard for the fire fighters to get
close to the source.

Several severe fire disasters in tunnels have been reported so far. Examples are the fires
in Mont Blanc in 1999 causing 38 deaths (Vuilleumier et al., 2002), Tauern in 1999 causing
12 deaths (Leitner, 2001), St. Gotthard in 2001 causing 11 deaths, Daegu in 2003 causing
198 deaths (Hong, 2004), and Viamala Tunnel in 2006 causing 9 deaths.

In Europe, the case of the Mont Blanc tunnel has attracted extensive attention. The
Mont Blanc Tunnel is a tunnel connecting France and Italy. The tunnel is 11.6 km in length,
8.6 m in width, and 4.35 m in height. The passageway is not horizontal, but in a slightly
inverted "V", which assists ventilation. The tunnel is run by France and Italy together. In
1999 a Belgian transport truck carrying flour and margarine caught fire in the tunnel. Despite
immediate rescue operations, 38 people died and the tunnel remained closed for three years
after the fire. In the accident when the truck driver stopped the vehicle in the middle of the
tunnel and failed to fight the fire, the fire alarm was triggered and further entering of cars were
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stopped, but there were still many vehicles left in the tunnel. Within minutes, two fire trucks
from France responded to the unfolding disaster, but due to the smokes and the presence of
abandoned vehicles, the fire engines were unable to proceed. The fire burned for 53 hours and
the temperature within the tunnel reached 1000 ◦C. Due to weather conditions, the airflow
through the tunnel was from the Italian side to the French side. Authorities compounded
the effect by pumping in further fresh air from the Italian side, feeding the fire and forcing
poisonous black smoke through the length of the tunnel. Only vehicles below the fire on the
French side of the tunnel were trapped, while cars on the Italian side of the fire were mostly
unaffected. There were 27 deaths in vehicles, and 10 more died trying to escape.

As this example shows, due to the high traffic and the difficulty in escaping, the losses in
tunnel fires are usually large. Proper operation systems in response to the fire need therefore
to be developed.

1.2 Ventilation strategies

Tunnel ventilation systems are usually installed to remove the heat and contaminant produced
by vehicles in the normal operation. The ventilation systems can be divided into two main
categories: natural ventilation and mechanical ventilation systems. For very short tunnels or
tunnels with large shafts, natural ventilation is usually enough. For long tunnels, mechanical
ventilation systems are usually needed. Mechanical ventilation systems provide a more
controllable way of removing hazards from tunnels and are not dependent on environmental
conditions. Although originally designed to cope with the contaminant produced by vehicles,
the role of mechanical ventilation in case of fires have received attention, due to a large
number of tunnel fire accidents that occurred in the last decades. The mechanical ventilation
systems used in tunnels include two typologies: longitudinal ventilation and transverse
ventilation.

1.2.1 Longitudinal ventilation

In case of a fire, a longitudinal ventilation system (Fig. 1.1) is designed to produce a
longitudinal flow to create a smoke-free path upstream of the fire, while vehicles downstream
of the fire are exposed to smoke. The system is suitable for one-way tunnels and the
evacuation is supposed to be conducted upstream. Users placed downstream the fire are
supposed to escape out of the tunnel by driving their vehicles. Two most important parameters
in this system are the critical velocity and the backlayering length. The critical velocity is the
minimum ventilation velocity that prevents the smoke from flowing upstream the source; the
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Fig. 1.1 Fire-induced smoke longitudinal control (Vauquelin, 2008).

Fig. 1.2 Fire-induced smoke transverse control (Vauquelin, 2008).

backlayering length is the length of the smoke backlayering upstream of the fire when the
ventilation velocity is lower than the critical velocity. The relationship between these two
parameters and the fire heat release rate is a classical topic in the fire safety engineering.

Longitudinal ventilation systems have been widely adopted since they provide a very
cheap solution. These systems present, however, some shortcomings. Firstly, this system is
only suitable for a one-way tunnel. Secondly, the extra air added by the ventilation feeds the
combustion. Thirdly, the ventilation velocity is constant all over the tunnel even if the fire is
localized at one place, which implies a large energy consumption.

1.2.2 Transverse ventilation

A transverse ventilation system (Fig. 1.2) is required for bi-directional long tunnels and
highly recommended for frequently congested one-directional long tunnels. This system
allows the smoke flows (plume flows) arising from a fire to be directly exhausted using
extraction vents in the vicinity of the fire, so that people could be evacuated in both tunnel
directions. In case of a fire, the location of the fire is first determined by the fire detection
system and then the extraction vent or vents nearby the fire site are opened to extract smoke
flows. The important parameters in this system are the ventilation system efficiency (VSE)
and the ventilation system output (VSO). VSE is the ratio between the flow rate of smoke
extracted and the smoke flow rate; VSO is the ratio between the flow rate of smoke extracted
and the extraction flow rate. An extraction ventilation system must be powerful enough to
create longitudinal flows from both sides to confine the smoke between the vents and the fire
source.
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1.3 Investigation methods

The ideal method is to conduct large-scale tests in real tunnels, but this method is costly and
certain parameters (e.g. tunnel geometry) cannot be easily modified for research purposes.
The main experimental approach in the tunnel fire study is conducting small-scale tests, i.e.
setting fires in tunnels whose sizes are proportionally reduced compared to real tunnels. In
small-scale tests, the fire smokes can also be modeled by densimetric flows (salt water or
low density gases), which provides a safer way of doing such investigations. Due to its
development, computational fluid dynamics (CFD) attracts an increasing attention. Among
the software developed specifically for the fire modeling, Fire Dynamics Simulator (developed
by NIST) and FireFOAM (based on OpenFOAM) are probably the most widely used ones by
the fire engineering community.

1.3.1 Large-scale tests

Large-scale testing is generally costly, as they are time consuming, and logistically com-
plicated to perform. However, they can provide valuable information to verify the results
obtained with other methods. Here is a brief introduction of a few recent large-scale fire tests.

The EUREKA EU499 (1992) test program was performed in an abandoned tunnel named
Repparfjord Tunnel in northern Norway. The tunnel was 2.3 km long with a slope less than 1
%, 5.3–7.0 m wide and 4.8-5.5 m high. Twenty one large-scale tests were performed, with
real vehicles, as well as wood cribs and heptane pool fires. The program was intended to
provide information on the fire behavior of different type of fuels, possibilities of escape and
rescue, fire extinguishing and the effect of the fire on the tunnel structure.

The Buxton (1993) test program was carried out in a 2.56 m high, 366 m long colliery
arch-shaped tunnel with a cross-section of 5.4 m2. Kerosene pool fires with heat release
rate 0.3-20 MW were investigated. Twelve experiments were conducted in an unobstructed
tunnel and eight experiments were conducted with a scale model train. The program was to
investigate the interaction between the longitudinal ventilation and the smoke backlayer and
to provide validation data for CFD simulations.

The Memorial (1995) test program was performed in a two-lane, 853 m long and 8.8
m wide road tunnel with a changing cross-section. The tunnel has a 3.2 % upgrade from
south to north portal. The program consisted of 98 tests conducted in different ventilation
systems. Transverse, semi-transverse and longitudinal ventilation systems were all investi-
gated. Results obtained with different fire source sizes and different ventilation velocities
were recorded.
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The Shimizu (2001) test program was performed in a three-lane No. 3 Shimizu tunnel on
the New Toumei expressway in Japan. The tunnel was 1119 m long with a slope of 2 % down
from west to east, the tunnel width was 16.5 m, the height was 8.5 m, the cross-section was a
semicircle. The program was designed to provide fire information in a large cross-section.
Fire behavior regarding combustion rate, formation of smoke layer, interaction of longitudinal
flow on the smoke distribution, behavior of Fixed Fire Fighting Systems (FFFS) on the smoke
layer, and risk for fire spread were investigated.

The Runhamar (2003) test program was performed in a two-way-asphalted road tunnel.
The tunnel was 1600 m long, 6 m high and 9 m wide, with a slope varying between 0.5–1 %.
The tunnel was a blasted rock-tunnel with a cross-section varying between 47 and 50 m2.
The program investigated fires on HGV-trailers (Heavy Goods Vehicle) with different cargo
materials, influence of the heat release rate and of the gas temperature on the airflow were
studied.

1.3.2 Small-scale tests

The physical scaling has been widely used in the fire safety engineering community. Small-
scale experiments allow the experimental conditions to be controlled by the researchers and
parametric studies to be carried out in a more economic way (than large-scale tests). The
most common scaling technique used in the fire community is the ‘Froude scaling’. The
Froude number is a non-dimensional parameter, defined as the ratio of inertial forces to
buoyancy forces. In the Froude scaling, the Froude number is preserved while the Reynolds
number is kept sufficiently high to ensure a fully turbulent flow. The fire source could be
modeled by propane fires (Oka and Atkinson (1995), Wu and Bakar (2000), Li et al. (2010))
or pool fires (Ko et al. (2010), Weng et al. (2015)).

Adopting the Froude scaling, parameters obtained in the experiment have a relationship
with the full-scale case. In the tunnel fire study, the non-dimensional heat release rate (Q∗)

and critical velocity (V ∗) are usually defined as: Q∗ =
Q

ρ0cpT0g1/2H5/2 , V ∗
c =

Vc√
gH

(Oka

and Atkinson, 1995), where ρ0 and T0 are the reference ambient air density and temperature,
respectively, cp is the heat capacity, H is the tunnel height and g is the gravitational accelera-
tion. Assuming that the geometry scale is n, then the heat release Q rescales as n5/2 and the
velocity Vc ∝ n1/2.

Another physical scaling technique is the analog scaling, that uses two fluids of different
densities to model smoke movement in a fire scenario. The two fluids can be for example
helium and air (Vauquelin, 2008), or water and salt water, or even fine hydrogen bubbles
and water (Li et al., 2003). This method simulates the fire smoke using a density difference,
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rather than a temperature difference, and the Froude number is preserved. The analog scaling
requires a determination of fluid density based on a reference gas temperature in a specific
fire. This is not easy, since gas temperature changes significantly with position in many fire
scenarios. Moreover, this method cannot model the heat loss at the tunnel walls. Nevertheless,
it provides a simple way to study the flow dynamics, since it allows the density and the flow
rate at the source to be accurately controlled.

1.3.3 Numerical simulations

With the development of powerful computers and numerical techniques, CFD has attracted
an increasing attention in the fire engineering community. CFD codes solve Navier–Stokes
equations in a discretized domain, and permit a fine resolution of the problem in space and
time for all the parameters of interest.

The Navier–Stokes equations can be numerically solved without any turbulence model
using Direct Numerical Simulation (DNS). However the computational costs of this approach
are very high, which is not suitable for the engineering application. Depending on the
approach used to model turbulent transfers, numerical simulations are usually divided in two
groups: Reynolds-Averaged Navier–Stokes (RANS) simulations and Large Eddy Simulations
(LES). A RANS model solves the time averaged equations introducing two (or more)
equations to model the Reynolds stresses. LES method directly simulates the dynamics
of larger eddies, while small eddies are filtered and their influence is taken into account
through subgrid models. LES is time-dependent and three-dimensional, and is able to capture
unsteady turbulent fire phenomena, but requires greater computational resources than RANS
methods.

1.4 Overview of the study

1.4.1 Objectives

This work aims in shedding light on aspects concerning the dynamics of the buoyant releases
in ventilated tunnels which are still not clarified. Specifically, we focus on the study of the
critical velocity in longitudinal ventilated tunnels. The main objectives of the current study
are:

• Propose an analytical solution of the critical velocity of buoyant plume in a ventilated
tunnel based on the classical plume equations.
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• Discuss the appearance of the so-called ‘super-critical’ velocity, a ventilation velocity
that becomes independent of the heat release rate when it becomes large.

• Study the effect of tunnel inclination on the critical velocity; propose an analytical
solution.

• Study the effect of vehicular blockage on the critical velocity.

1.4.2 Plan of the work

The results of the present research work are presented in the form of research papers in
four different chapters. Note that this way of structuring the manuscript inevitably involves
some repetitions of basic concepts, especially concerning the experimental apparatus and the
numerical set-up, which will be initially presented in Chapter 2.

In Chapter 3 we explore theoretically and experimentally the dependency of the critical
velocity on the dynamical condition of the source and on the geometry parameters charac-
terizing the source and the tunnel section. To that purpose we focus on densimetric plumes
produced by steady and controlled releases of light gases in a ventilated horizontal tunnel. the
critical velocity of forced and lazy releases is investigated and the non-Boussinesq effects (the
effect due to large differences between the densities of the buoyant plume and the ambient
fluid) are discussed. Asymptotic solutions of the model are presented. They allow predicting
the dependence of the critical velocity on the main governing parameters in a simple form.

In Chapter 4, 5, 6 we subsequently investigate more realistic conditions involving the
presence of a fire, the inclination of the tunnel and the presence of obstacles within the tunnel.

Chapter 4 focuses on the critical velocity in longitudinally ventilated tunnels and on its
dependence on the power of the fire source. Here we discuss the reasons for the appearance
of the ‘super-critical’ velocity: the independence of the critical velocity on heat release rate
when this becomes large for large fires. The roles of the diffusive heat fluxes at the tunnel
walls, the radiative fluxes and the presence of large flames are also investigated.

Chapter 5 is dedicated to study the effect of tunnel inclination on the critical velocity. The
influence of the dynamical conditions at the source is studied for both densimetric plumes
and propane fires. A theoretical model based on the horizontal case in Chapter 3 is presented
to discuss the effect of the dynamical condition at the source on the critical velocity.

Chapter 6 focuses on the effect of vehicular blocks on the critical velocity. The tunnel
blockage ratio, fire-blockage distance and the relative position of the block and the fire source
are studied.

Chapter 7 offers some conclusions and perspectives.
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In the Appendix, we present a brief introduction of the numerical tool Fire Dynamics
Simulator.

Note that in the fire safety literature, there are generally two different definitions of critical
ventilation velocity Grant et al. (1998). According to the first definition, the critical velocity is
the minimum velocity that prevents the formation of backflow once that the buoyant releases
impinge on the ceiling. In the second definition, which is more frequent: the critical velocity
is determined as the minimum velocity that prevents the backlayer flow to move upstream
of the source. It is worth-noting that in this work we will use both definitions. In Chapter
3, in order to formulate a simple theoretical model based on a integral ‘top-hat’ plume, we
will use the first definition, since this will allow us to avoid modeling the backlayer flow
at the ceiling. In the remaining part of the work; i.e. Chapter 4, 5, 6, we will instead use
the second definition, a choice which is made by the need of comparing our experimental
results to literature results. Note also that the values of the two critical velocities determined
based on these definitions are, according to our results, of the same order of the experimental
uncertainty, i.e. ±10%, in case of a circular source. There are instead relevant differences
between the two definitions in case of planar 2D sources, occupying the whole tunnel section,
as well as in the case of large fire plumes, in which the extent of flame is of the same order of
the ceiling.



Chapter 2

Methods

This study combines theoretical, experimental and numerical methods.

2.1 Theoretical methods

The localized release of a fluid whose density ρi is lower than that of the ambient fluid
ρ0 induce dynamical effects which are significantly affected by the role of the buoyancy
ρi −ρ0

ρ0
g ( g is the gravitational acceleration). These releases have been extensively studied

in the literature, since the pioneering work by Morton et al. (1956), who proposed a single
integrated model of a rising plume, induced by a localized injection of a buoyancy flux,
refereed to here as Bi. The plume equations given by Morton et al. (1956) are:

d
dy

(ρwb2) = 2ρ0ueb, (2.1a)

d
dy

(ρw2b2) = (ρ0 −ρ)gb2, (2.1b)

d
dy

[
(ρ0 −ρ)wb2]= 0, (2.1c)

where b is the characteristic plume radius, w is its vertical velocity, ρ is the plume density,
ρ0 is the ambient fluid density and ue = αw is the entrainment velocity, α is the entrainment
coefficient. The entrainment coefficient α is here assumed to be of the form α =α0(ρ/ρ0)

1/2

as is customary when dealing with non-Boussinesq releases (Rooney and Linden, 1996;
Van Den Bremer and Hunt, 2010), where α0 = 0.127 is a reference value for the ‘top-hat’
entrainment coefficient for a pure plume. A sketch of the plume adapted from Michaux and
Vauquelin (2008) is shown in Fig. 2.1. Plume parameters b,ρ,w are dependent on y, the
vertical distance above the source. To solve the equations (2.1a-2.1c), the plume Richardson
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number is introduced, defined as Γ =
5

8α0

ηgb
w2 , with η =

ρ0 −ρ

ρ0
. The plume Richardson

number Γ allows for a classification of buoyant releases in momentum-driven forced plumes
(Γ < 1), and buoyancy-driven pure (Γ = 1) and lazy (Γ > 1) plumes (Hunt and Kaye, 2005).

Fig. 2.1 Sketch of the plume, adapted from Michaux and Vauquelin (2008).

In this study we adopt a simple model of buoyant plume in a ventilated tunnel based on
the plume equations (2.1). The effect of the tunnel ventilation will be taken into account by a
drag force exerted by the crossflow on the plume:

d
dy

(ρuwb2) =Cx
√

ρρ0(V −u)2b/π (2.2)

where u is the longitudinal velocity, V is the ventilation velocity, and Cx is a drag coefficient.
The critical condition can then be computed by assuming the momentum balance between
the longitudinal ventilation and the flow after impingement on the ceiling. This model is
explained in detail in Chapter 3.

2.2 Experimental methods

The experiments were performed in a small-scale longitudinal ventilated tunnel at LMFA,
Ecole Centrale de Lyon. A photo of the tunnel is shown in Fig. 2.2. The tunnel is 9 m in
length and 0.36 m in width. The height could be adjusted at 0.185 m or 0.36 m. Two different
experimental set-ups were designed: the isothermal model and the thermal model. The basic
structures of the two models are the same, except that different source is used. The photos of
the sources are shown in Fig. 2.3, the tests of which are presented in 2.2.3. Most tests were
performed in the isothermal model, except for a few cases in Chapter 4, in which the effect
of heat losses on the critical velocity is discussed.
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Fig. 2.2 Experimental installation at LMFA.

Fig. 2.3 Photos of the sources: isothermal circular source, isothermal planar 2D source and
thermal circular source.

2.2.1 Isothermal experiments

In the isothermal experiments (Fig. 2.4), the tunnel height is fixed at 0.185 m in most tests,
except for a few cases in Chapter 3, where some tests are conducted at a tunnel height of
0.36 m. The diameter of the circular source is varied at 100, 75, 50, 35, 25 mm. The length
and width of the planar source are 40×360 mm, 20×360 mm, and 10×360 mm. In Chapter
3 both the circular source and the two-dimensional planar source are used, while in the other
chapters only the circular source is used. The buoyant plume is modeled by the air/helium
mixture, the flow rates of which are controlled and measured independently. The flow rates
of air and helium for a certain plume with density ρi and flow rate qi at the source are:qair = qi

ρi −ρHe

ρ0 −ρHe
,

qHe = qi −qair.

(2.3)
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The density of the buoyant plume can be adjusted by changing the mixing ratio. The average
velocity at the source wi could be computed as: qi = wiAi, where Ai is area of the source
(circular or planar). To visualize the flow, a tiny fraction of nebulised oil is added into the
mixture, and a lens is installed at the inlet of the tunnel.

Hot wire

anemometer

Box

fan

Laser

Air

Seeding

Oil

Flow-

meterSource

V

Air

He

Flowmeter

wi

Fig. 2.4 Schematic of the experimental set-up for the isothermal model.

The ventilation is provided by an extracting fan connected to a box placed at the tunnel
outlet. The ventilation velocity V is measured by a hot wire anemometer placed within a
Venturi tube at the inlet. The reason for not putting directly the hot wire anemometer at the
tunnel center is that the anemometer is not designed to measure a small velocity. Instead,
the anemometer is placed within a Venturi tube to measure the flow rate of the ventilation
flow. The relationship between the velocity measured by the anemometer and the flow rate is
obtained by tests done in another experimental set-up, shown in Fig. 2.5. A fan is put after
the flow meter to create a ventilation flow. A Venturi tube with the hot-wire anemometer is
installed at the entrance before the flow meter. Note that the fan should not be put between
the Venturi tube and the flow meter, to ensure that the flow rate measured by the anemometer
is the same as the flow rate measured by the flow meter, since there might be a leakage
at the fan. Fig. 2.6 shows the relationship between the velocity measured by the hot wire
anemometer and the flow rate measured by the flow meter. A linear fit was conducted and a
correlation was obtained:

Fan
Flow-

meter

Hot wire

anemometer

Fig. 2.5 Experimental set-up to determine the relationship between the velocity measured by
the hot wire anemometer and the flow rate measured by the flow meter .
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Fig. 2.6 Relationship between the flow rate and the velocity measured by the hot wire
anemometer.

qi = 0.0045VHWA (2.4)

where qi is the flow rate (m3/s) and VHWA (m/s) is the velocity measured by the hot wire

anemometer. Finally the ventilation velocity is obtained as: V =
qi

A
=

0.0045VHWA

A
, A is the

tunnel cross-sectional area.
The critical condition is defined by flow visualization, adjusting the power of the fan to

set the front of the backlayering flow (the smoke flow directed against the ventilation flow,
see 1.2.1) at the source position. A typical critical ventilation condition is shown in Fig. 2.7.

Fig. 2.7 Critical ventilation condition in the isothermal experiment (circular source, Γi =
0.015, Di=25 mm).

2.2.2 Thermal experiments

In the thermal experiments (Fig. 2.8), the tunnel height is fixed at 0.185 m and the diameter
of the circular source is 100 mm. The ventilation system is the same as the isothermal model.
Heat release rates between 700 W and 10 kW are produced using a fan and an electric heater,
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controlled and regulated in temperature by a PID controller. The backlayering length is
estimated using K-type thermocouples measuring air temperature, since the temperature of
the backlayer is higher than the ambient. The thermocouples are installed on the tunnel axis
at the ceiling level (2 cm below the ceiling) and 2 cm apart. The critical velocity is obtained
by interpolation when the backlayering length is zero.

Fan
Box

Flow-

meter

Heater

BoxThermocouplesBox

Fan

Hot wire

anemometer

wi,Ti

V

Fig. 2.8 Schematic of the experimental set-up for the thermal model.

An example of the temperature profiles at different times from the beginning to the end
of one test (t = 3500 s) in the thermal experiment is shown in Fig. 2.9. Backlayering length is
taken as the distance between the place we observe sudden temperature rise from the ambient
and the source. A detailed description of the experimental protocol and of the measurements
techniques used in the thermal experiments is provided in Salizzoni et al. (2017).
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Fig. 2.9 Temperature at the tunnel ceiling as a function of the distance from the source in the
thermal model; the experimental conditions are Ti = 280 °C, wi =1.17 m/s, V = 0.205 m/s, Γi
= 1.
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2.2.3 Tests of the sources

The schematic diagram of the tests of the sources is shown in Fig. 2.10. A fan is put after the
flow meter and before the source (Fig. 2.3), to create a ventilation flow. A pitot tube is put
just at the outlet of the source, to measure the velocity profile.

Fan
Flow

meter

Source

Hot wire

anemometer

Pitot

tube

Fig. 2.10 Schematic of the sources tests, the three sources shown in Fig. 2.3 are connected
to the outlet of the fan, a pitot tube is put at the outlet of the source to measure the velocity
profile.

The schematic diagram of the circular and planar source used in the isothermal experiment
is shown in Fig. 2.11. The diameter of the circular source Di is varied at 100, 75, 50, 35, 25
mm. The length (LP) and width (WP) of the planar source are 40×360 mm, 20×360 mm, and
10×360 mm. The width of the planar source is the same as the width of the tunnel.

The velocity profile of the isothermal circular source at five diameters is shown in Fig.
2.12. The velocity is almost a constant except for the case at Di=100 mm, when the velocity
is low. The velocity profile of the isothermal planar source at z direction is shown in Fig.

Di

LP

W
P

Fig. 2.11 Circular and planar source used in the isothermal experiment, photos are shown in
Fig. 2.3.
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Fig. 2.12 Velocity profile of the isothermal circular source: (a) Di = 100 mm, (b) Di = 75
mm, (c) Di = 25 mm, (d) non-dimensional velocity profile at Di = 100, 75, 50, 35, 25 mm.

2.13 and at x direction is shown in Fig. 2.14. For the planar source, the velocity is close to a
constant in the lateral direction of the tunnel (z). In the longitudinal direction (x), the velocity
is close to a constant except in the boundary layers.

The diameter of the thermal circular source is fixed at 100 mm, the geometry is the same
as the circular source in the isothermal model. The non-dimensional velocity profile is shown
in Fig. 2.15. The velocity profile of the thermal and isothermal circular source is similar.

2.3 Numerical methods

The numerical simulation is carried out with an open source software FDS 6.3, with a detailed
description provided in Appendix A. FDS solves the Navier-Stokes equations in LES. In
the simulation, the large eddies of the flow are simulated and the smaller are modeled by a
subgrid model (Deardorff’s model).

There are two tunnel sizes in the numerical simulation. One tunnel is 24H (length) × 2H
(width) × H (height). This tunnel is to simulate tunnel C in Wu and Bakar (2000) and is only
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Fig. 2.13 Velocity profile of the isothermal planar source at the z (width) direction measured
at x=0: (a) Lp = 40 mm, (b) Lp = 20 mm, (c) Lp = 10 mm, (d) non-dimensional velocity
profile.
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(wi=1.2 m/s) circular source at Di=100 mm.
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used in Chapter 4. Another tunnel is 33H (length) × 2H (width) × H (height). This tunnel
is to simulate the tunnel in the experiment and is used in Chapter 5 and Chapter 6. Note that
the tunnel length is reduced to save computing time.

In the numerical model, the ventilation velocity was fixed at inlet and at outlet it was set
‘open’. The tunnel inclination was adapted by varying gravity components in x and y direction.
The circular source in the experiment was modeled by square source with the same area. The
source was located 4.5 m away from inlet and at the tunnel center. The physical property
of the wall was defined as ‘concrete’ with the wall backed up to ambient. The physical
property of the vehicular block was defined as ‘steel’. A set of 50 thermocouples were put
2 cm below ceiling in a region of 1.0 m (from 0.5 m upstream to 0.5 m downstream of the
fire source) to measure the backlayering length. The simulation concerns both densimetric
plumes and fire plumes (propane). The densimetric plumes simulations can be compared with
the experimental data. The fire plumes simulations allow us to study the effect of combustion
and heat transfer. Each simulation lasted 60 s. The flow required approximately 30 s to reach
a steady state (statistically). Therefore the position of the backlayer flow was obtained by
averaging the velocity field between 30 s and 60 s.

To get reliable results from LES simulations, fine enough grids should be considered.
According to McGrattan et al. (2008) the mesh size close to the fire source has to be estimated
depending on a characteristic fire diameter defined as:

D∗ =

(
Q

ρ0cpT0
√

g

) 2
5

(2.5)

whose ratio on the grid size ∆x values have to be in the range 4 ≤ D∗/∆x ≤ 16. For a HRR
of about 3 kW, D∗ is approximately 0.09 m, and therefore ∆x ≃ 0.01 m.

To save computing time, mesh stretching was used along the longitudinal direction, to
provide finer grids near the source. The tunnel is divided into three sub-domains: the domain
close to the inlet is referred to as the ‘Left Domain’, the domain within which is placed the
heat source is the ‘Middle Domain’, and that close to the outlet is the ‘Right Domain’. The
lengths for the three domains are 4 m, 1 m and 1 m, respectively.

Before performing the numerical experiments we carried out a grid sensitivity study in
a horizontal empty tunnel (24H × 2H × H), to evaluate the dependence of our numerical
solution on the resolution of the mesh. The mesh sizes are listed in Table 2.1. In this
grid study we focus on longitudinal profiles of the mean and the standard deviation of the
temperature registered by the thermocouples. Based on the results shown in Fig. 2.16, we
adopted Grid 4 as the reference grid for our numerical study, made up of 756000 cells. Note
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Fig. 2.16 Longitudinal profiles of the mean and of the standard deviation of the temperature
along the tunnel ceiling for the five girds tested (See Table 2.1).

that Eq. (2.5) implies a higher mesh resolution for smaller fires. In the present study the
smallest fire was 0.20 kW, which makes D∗/∆x = 4, i.e. within the recommended range.

Test Number of cells Total cells Cells size in the Middle domain Cells size in the Right and Left Domains
X Y Z (as a fraction of H) (as a fraction of H)

Grid 1 300 25 12 90000 0.08×0.08×0.08 0.08×0.08×0.08
Grid 2 350 50 25 437500 0.04×0.04×0.04 0.08×0.04×0.04
Grid 3 378 54 27 551124 0.036×0.036×0.036 0.072×0.036×0.036
Grid 4 420 60 30 756000 0.032×0.032×0.032 0.064×0.032×0.032
Grid 5 504 72 36 1306368 0.028×0.028×0.028 0.056×0.028×0.028

Table 2.1 Details of the meshes adopted in the grid sensitivity study.

With the above numerical set-up, a typical simulation case in a horizontal empty tunnel
with propane fire is shown in Fig. 2.17.

Fig. 2.17 A FDS simulation case with propane fire (Q= 0.57 kW, V =0.33 m/s).



Chapter 3

The control of light gas releases in
ventilated tunnels

The release of buoyant harmful gases within enclosed spaces, such as tunnels and corridors,
may engender specific industrial and transportation risks. For safety, a simple ventilation
strategy of these spaces is to impose a flow, whose velocity is defined as ‘critical’, that
confines the front of harmful buoyant gases downwind of the source of emission. Determining
the intensity of the critical velocity as a function of the geometrical and dynamical conditions
at the source is a basic fluid mechanics problem which has yet to be elucidated; this problem
involves issues on the dynamics of non-Boussinesq releases, relating to large differences
between the densities of the buoyant and the ambient fluid. We have investigated this
problem theoretically, by means of a simple model of a top-hat plume in a crossflow, and
experimentally, by means of tests in a reduced-scale ventilated tunnel. Experimental results
enlighten i) the existence of two flow regimes, depending on the plume Richardson number
at the source Γi, one for momentum-driven releases, Γi ≪ 1 and one for buoyancy-driven
releases, Γi ≫ 1; ii) a transition between the two occurring in the range 10−2 < Γi < 1, and
iii) the presence of relevant non-Boussinesq effects only for momentum-driven releases. All
these tendencies can be conveniently predicted by the top-hat plume model. Asymptotic
solutions of the model reveal interesting behaviours in the limits Γi → 0, and Γi → ∞. Notably,
solutions for Γi → 0 helps in clarifying the effect of the source radius and are in good
agreement with experimental data. For Γi → ∞, highly buoyant releases are predicted to
behave as point sources of pure buoyancy (independently of their radius and of the density of
the emitted fluid). The model predicts also the effect of a varying radius for lazy releases,
i.e. Γi > 1. Note however that in this flow regime the model predictions are also very close
to those that could be obtained by applying simple scaling approaches for a line source
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of pure buoyancy. These findings support the adoption of simplified models to simulate
buoyancy-driven releases in ventilated confined spaces.

3.1 Introduction

The study of the release of a buoyant fluid within a layer of ambient fluid confined vertically
(Jirka and Harleman, 1979) and laterally (Barnett, 1993) is of major interest in industrial
and environmental flows (Hunt, 1991). Here we investigate the dynamics of a release of
buoyant fluid discharged within a tunnel (Barnett, 1993) and subjected to a forced mechanical
ventilation. A peculiar aspect of these flows (see Fig. 3.1) is the appearance of a backlayer
of buoyant fluid, which forms after impingement of the release at the confinement surface
(or at the ground), and whose front, driven by a pressure gradient, can move forward against
the ventilation (depending on its intensity). The focus is on the control of the propagation of
this buoyant front by means of the forced tunnel ventilation. This issue is directly linked to
industrial and transportation safety problems related to the dispersion of harmful gases in
confined spaces. Examples include the leakage of high pressure natural gas from pipelines,
the accidental releases of hydrogen or hydrogen sulfide, and the propagation of smoke
from fires in road and rail tunnels as well as on underground escalators (Hunt, 1991). This
problem has been notably addressed to assess the safety of twin-bore road tunnels (Grant
et al., 1998), where the ventilation velocity, which blows all the smoke downstream, allowing
the users to evacuate by the entrance, is usually referred to as the ‘critical velocity’. These
practical implications are therefore related to a fundamental problem, that of defining the
intensity of the ‘critical’ ventilation velocity depending on the geometrical and dynamical
conditions at the source. To address this problem we use here theoretical considerations
(sect. 3.2) and experimental tests (sect. 3.3). The comparison between theoretical predictions
and experimental data finally allows us (sect. 3.4) to identify the role of the key control
parameters in the different flow regimes, depending on the conditions imposed at the buoyant
source.

3.2 Theory

To begin with, we consider a horizontal and infinitely long tunnel of height H and width W (
∼ H) within which is placed a source of ‘pure’ (Morton et al., 1956) buoyancy (whose flux
is referred here to as Bi): a point source and a line source perpendicular to the tunnel axis.
Assuming negligible diffusive effects, and in the limits of the Bousinnesq approximation,
the scaling laws for the critical velocity Vc as a function of the governing parameters,
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V

Fig. 3.1 Flow visualisations of the buoyant release submitted to a critical ventilation velocity
(from right to left): (a) forced release Γi < 1, circular source, (b)lazy release Γi > 1, circular
source, (c) forced release, line source, (d) lazy release, line source.

the buoyancy flux Bi and a characteristic length, can be derived from simple dimensional
arguments as:


Vc = f

(
Bi

W

)
→ Vc ∝

(
Bi

W

)1/3

for the line source ,

Vc = f (Bi,H) → Vc ∝

(
Bi

H

)1/3

for the point source.

(3.1)

These scaling laws are suitable for sources whose size is much smaller than the tunnel
dimensions (H and W ) and in case of small density differences between the buoyant and the
ambient fluid. In case these conditions do not hold, an exhaustive dimensional analysis has to
take into account the size bi of the source, and the velocity wi and density ρi of the injected
fluid, as well as the density of ambient fluid ρ0 and of the tunnel dimensions. Keeping the
assumption of negligible diffusive effects, the critical velocity Vc can be therefore expressed
as a function of seven dimensional parameters, namely:

Vc = f (wi,ρi,ρ0,g,bi,W,H), (3.2)

where g is the module of the gravitational acceleration. According to Vashy-Buckingham
theorem, the non-dimensional critical velocity is then a function of four non-dimensional
parameters:

Vc

wi
= f (Γi,

ρi

ρ0
,

bi

H
,
W
H
), (3.3)



24 The control of light gas releases in ventilated tunnels

where Γi =
A
α0

ηigbi

w2
i

is the plume Richardson number, with ηi =
ρ0 −ρi

ρ0
, A a constant equal

to 5
8 for circular antisymmetric plumes and to 1 for 2D planar plumes (van den Bremer

and Hunt, 2014) and α0 = 0.127 (a reference value for the ‘top-hat’ entrainment coefficient
for a pure plume). This latter parameter allows for a classification of buoyant releases
in momentum-driven forced plumes (Γ < 1), and buoyancy-driven pure (Γ = 1) and lazy
(Γ > 1) plumes (Hunt and Kaye, 2005).

To develop a model that allows us to asses the explicit dependence of the non-dimensional
critical velocity on the control parameters, as stated in Eq. (3.3), we take here advantage of
flow visualizations (details on experimental set-up and techniques will be provided in the
next section), showing the morphology of the releases issued from the circular sources and
two-dimensional planar sources (whose axis is perpendicular to that of the ventilated tunnel).
These preliminary results enlighten relevant differences between the these two typologies
of buoyant releases. Those emitted from two-dimensional planar sources exhibit a strong
interaction with the flow. The whole air flux of the ventilation flow has to be entrained within
the 2D plume. In case of forced momentum-dominated releases this results in a rapid mixing
of the buoyant fluid with the ambient air. In case of lazy momentum-driven releases this
results instead in a plume bended to ground level, that is the progressively dispersed vertically
as it moves downstream the source. In both cases we expect that this strong interaction and
mixing with the ventilation flow implies little influence of the source conditions on the critical
velocity, and therefore a general scaling of the critical velocity exhibiting a dependence on
the buoyancy flux (per unit length) only, as it is for a line source of ‘pure’ buoyancy (see
(3.1)). The releases emitted from the circular sources, whose size is smaller than a third of
the tunnel width (i.e. bi ≤ W

3 ), appear instead to behave more like bent-over plume rising to
the ceiling. Their centre of mass is progressively displaced downstream as the rising column
rises and mixes with the ambient fluid.

Based on these observations, we represent the buoyant fluid releases from the circular
source as a ‘top hat’ plumes, following the well-established approach initiated by Morton
et al. (1956), and adopting an entrainment coefficient of the form α = α0(ρ/ρ0)

1/2 (Rooney
and Linden, 1996; Van Den Bremer and Hunt, 2010), as is customary when dealing with
non-Boussinesq releases. The effect of the tunnel ventilation is taken into account by a drag
force exerted by the crossflow on the plume itself. The balance equations for mass, vertical
momentum, density difference and horizontal momentum can be written as
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Fig. 3.2 Sketch of the bent-over plume released from a circular source in the ventilated tunnel
and of the impingement region (in grey) at the tunnel ceiling.



d
dy

(wβ
2) = 2α0βw, (3.4a)

d
dy

(w2
β

2) = η̃gβ
2, (3.4b)

d
dy

(η̃wβ
2) = 0, (3.4c)

d
dy

(uwβ
2) =Cx(V −u)2

β/π, (3.4d)

where w and u are its vertical and longitudinal velocities, respectively, V is the ventilation
velocity, Cx is a drag coefficient and where β = (ρ/ρ0)

1/2b (b is the characteristic plume
radius), η̃ = (ρ0 −ρ)/ρ (ρ is the plume density). The drag in Eq. (3.4d) is proportional to
√

ρρ0, which expresses the weighting role of the local density on the force exerted by the
ventilation flow. In the horizontal momentum balance we avoid taking into account terms
related to the entrainment of ambient air within the plume, as customary in the formulations
of models for buoyant plumes in crossflows (see for example (Devenish et al., 2010) and
(Marro et al., 2014)). The reasons for this over-simplification of the horizontal momentum
budget will be clarified further on,when discussing the modelling of the critical ventilation
condition. Boundary conditions imposed at the source are b(0) = bi, w(0) = wi, u(0) = 0,
and ρ(0) = ρi.

If the ventilation velocity is sufficiently low, the plume impinges in the ceiling produce
a radial flow characterized by a velocity uH and a thickness h (Fig. 3.2). A simple model
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of describing the impingement process is provided by Kaye and Hunt (2007), based on
conservation equations on volume and momentum for the turning region:

{
πbH

2wH = 2πbHhuH

πbH
2wH

2 = γ2πbHhuH
2

(3.5)

where γ is the head-loss coefficient (smaller than 1), a parameter that, in principle, is a
function of the dynamical condition of the buoyant plume at the impingement, i.e. γ = γ(H).

The critical ventilation condition can be computed by assuming that the momentum flux
imposed by the ventilation flow balances the longitudinal momentum flux and the pressure
force of the buoyant flow at the ceiling, immediately after impingement:

ρ0Vc
2 = ϕ

[
ρHuH

2 +
1
2
(ρ0 −ρH)gh

]
. (3.6)

where the parameter ϕ is a constant that has to be determined experimentally. In the
tunnel safety literature (Grant et al., 1998) the critical velocity is generally defined as that
preventing the backlayer flow from moving upstream the source or, alternatively, as the
minimal ventilation velocity preventing the formation of the backlayer flow. Note that, in
accordance with the conditions imposed by (3.5) and (3.6), the latter is the one adopted here.

By solving the system (3.5) we can compute the radial flow variables as uH = 1
γ
wH and

h = γ

2bH , so that (3.6) can be rewritten as:

ρ0Vc
2 =

ϕ

γ2 ρHwH
2
(

1+
2α0γ3

5
ρ0

ρH
ΓH

)
(3.7)

where ΓH =
5

8α0

ηHgbH

w2
H

is the plume Richardson number at the impingement (i.e; at z = H).

Assuming γ ∼ 1, we obtain an estimate of the term 2α0γ3

5 ≃ 0.05, which implies that the
pressure term is negligible compared to the momentum term in the r.h.s. of (3.7), both in
case of pure and lazy plumes (for which we expect ΓH ∼ 1) and for forced plume (ΓH ≪ 1).
Equation (3.7) can be approximated as:

ρ0Vc
2 =C2

ρHwH
2 (3.8)

that in non-dimesional form gives:

Vc

wi
=C

(
ρH

ρ0

)1/2 wH

wi
(3.9)
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where C =
√

ϕ/γ2 is a parameter that depends on ΓH , since γ = γ(H). The systems of
equations (3.4a)−(3.4d) and (3.5) represent a highly simplified model of the dynamics of the
buoyant fluid release, of its interaction with the ventilation flow and of its impingement at the
tunnel ceiling. The model does not take into account pressure gradients and turbulent fluxes,
whose roles are not necessarily negligible when considering the flow developing within a
few source radii (Craske and van Reeuwijk, 2015; Ezzamel et al., 2015), as is the case in the
present study. Furthermore, the model (3.4a)−(3.4d), as it is conceived, is of course unable
to simulate any effect of the flow induced by the side walls, and therefore the influence of
the aspect ratio H/W . It is therefore worth remembering that adopting such a model is only
motivated by the aim of capturing the main bulk phenomena governing the dynamics of the
flow, rather than giving a detailed description of it.

3.2.1 Analytical solution

Following previous authors (Hunt and Kaye, 2005; Michaux and Vauquelin, 2008; Van
Den Bremer and Hunt, 2010), we can obtain an analytical solution of the system (3.4a)−(3.4c),
based on the solution of a freely propagating plume in an unstratified atmosphere, namely:

β

βi
=

(
Γ̃

Γ̃i

)1/2(
1− Γ̃i

1− Γ̃

)3/10

,

w
wi

=

(
Γ̃i

Γ̃

)1/2(
1− Γ̃

1− Γ̃i

)1/10

,

η̃

η̃i
=

(
Γ̃i

Γ̃

)1/2(
1− Γ̃

1− Γ̃i

)1/2

,

(3.10)

where Γ̃ =
5g

8α0

η̃β

w2 is a modified plume Richardson number which changes with height and

can be computed solving the system
dΓ̃

dy
=

1
Λi

Γ̃
1/2(1− Γ̃ )13/10 for Γ̃ < 1,

dΓ̃

dy
=− 1

Λi
Γ̃

1/2(Γ̃ −1)13/10 for Γ̃ > 1,

(3.11)
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with Λi =
βi

4α0

|Γ̃i −1|3/10

Γ̃
1/2

i

is a characteristic length imposed by the conditions at the source.

From (3.11) we obtain
y

Λi
= F(Γ̃ )−F(Γ̃i), where the function F is

F(X) =



2X1/2 for X → 0,
10
3
[(1−X)−3/10 −1] for X → 1−,

10
3
(X −1)−3/10 for X → 1+,

5
4

X−4/5 for X → ∞.

(3.12)

Note that, based on its definition, i.e. Eq. (3.9), the critical velocity does not depend on
the position of the impingement point of the plume at the ceiling. Its evaluation therefore does
not require to evaluate the trajectory of the plume centreline as it rises from the source to the
ceiling. This means that we can avoid taking into account the role of the horizontal momentum
balance Eq. (3.4d), which was therefore presented in a over-simplified formulation. The
analytical expression of the critical velocity can therefore be simply obtained, as a first
approximation, by substituting relations for wH and ρH , given by (3.10), into Eq. (3.9):

Vc

wi
=C

(
Γ̃i

Γ̃H

)1/2(
1− Γ̃H

1− Γ̃i

)1/10
1+ η̃i

(
1− Γ̃H

1− Γ̃i

)1/2(
Γ̃i

Γ̃H

)1/2
−1/2

, (3.13)

with C =C(ΓH).

3.2.2 Asymptotic behaviours

It is instructive to investigate the solutions of the system of equations (2.6) in the limits
of highly forced and lazy releases, respectively. The main findings of plume theory (Van
Den Bremer and Hunt, 2010) indicate that the lower the value of Γi, the larger the distance
needed to attain pure plume conditions, i.e. Γ = 1. Based on this, and given the relatively
short distance between source and ceiling, we assume here that highly forced releases, i.e.
Γ̃i → 0, impinge the ceiling with an identical balance of fluxes, i.e. Γ̃ (y = H)→ 0. With this

assumption, making use of (3.12), we obtain: Γ̃ =
(

1+ 2α0y
βi

)2
Γ̃i. Thus, (3.4)-(3.4c) can be

approximated as
β

βi
=

wi

w
=

ηi

η
= 1+

2α0y
βi

. (3.14)
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Using (3.14) we can have the solution for (3.9)

Vc

wi
=

CF

1+ 2α0H
bi

(
ρ0
ρi

)1/2


(

ρ0
ρi
−1
)

1+ 2α0H
bi

(
ρ0
ρi

)1/2 +1


−1/2

(3.15)

with CF =C(ΓH → 0).

In comparison to forced plumes (Van Den Bremer and Hunt, 2010), lazy plumes rapidly
attain the condition of a pure plume (Γ̃ → 1+) as Γ̃ decreases quickly with distance from
the source (see also Fig. 3.2b). We therefore assume that for Γ̃i > 1, the release impinges
the ceiling in the condition Γ̃ (y = H)→ 1. With this assumption, making use of (3.12), we

obtain: y
Λi

= 10
3 (Γ̃y −1)−

3
10 − 5

4Γ̃
− 4

3
i , which implies that

(Γ̃ −1)−
3

10 Γ̃
− 1

5
i =

6αy
5βi

. (3.16)

Thus, (3.4)-(3.4c) can be approximated as

β/βi =
6αy
5βi

,

w/wi = Γ̃
1
3

i

(
6αy
5βi

)− 1
3

,

η̃/η̃i = Γ̃
− 1

3
i

(
6αy
5βi

)− 5
3

.

(3.17)

(3.9) then gives:
Vc

wi
=CL

(
5

6α0

bi

H
Γi

)1/3

(3.18)

with CL =C(ΓH → 1).

It is to note that, for Γi → ∞, expressing Γi as a function of the buoyancy flux Bi (3.20),
both wi and bi vanish in (3.18), which therefore can be rewritten in the form of a constant
critical Froude number F̂rc, as:

Γi → ∞ Vc

(
H
Bi

) 1
3

= F̂rc (3.19)

with F̂rc =
(

25
48πα2

0

) 1
3
CL.
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Equation (3.19) expresses that, for highly lazy plumes, the dynamical similarity conditions
of the flow are reduced to a one non-dimensional parameter only. In other words, the
governing flow parameters in (3.2) (for negligible viscous effects and fixed tunnel geometry)
could be simply rewritten as Vc = f (Bi,H), and are therefore identical to those of a point
source of pure buoyancy, and exhaustively represented by its flux Bi (without any need to
provide information on its radius bi and density ρi), as in 3.1.

In what follows we explore experimentally the dynamics of these buoyant releases by
investigating the functional dependence expressed by Eq. (3.3), and discuss reasons of the
agreement and disagreement of the experimental data with our theoretical predictions. Our
aim is to extend and complete the analysis previously presented by Le Clanche et al. (2014),
mainly focusing on buoyancy-dominated releases, and investigate Eq. (3.3) for a wide range
of dynamical conditions at the source, spanning from almost pure jets (Γ ≪ 1) to highly lazy
plumes (Γ ≫ 1). Our focus will be mainly on the role of Γi and on that of the density ratio
ρi/ρ0, the key non-dimensional parameter used to evaluate dynamical effects referred to as
‘non-Boussinesq’ (Ricou and Spalding, 1961; Rooney and Linden, 1996) whose influence
has still not been fully elucidated. The comparison between the experimental data and our
theoretical predictions (i.e. (3.13), (3.15), (3.18), (3.19)) will help evaluating the reliability
of the assumptions on which the model is built and therefore provide further insight about
the influence of the parameters governing the dynamics of the flow.

3.3 Experiments

Experiments were performed in a reduced-scale model (Fig. 3.3) of length L = 8.9 m, width
W = 0.36 m, and variable height, H = 0.185 m and H = 0.36 m. The side walls are made
of toughened glass which permit visualisation of the flow. The releases of buoyant fluid are
mixtures of air and helium, whose flow rates were controlled independently and measured by
two flowmeters. Most of the experiments were performed with circular sources, placed at
the centre of the tunnel. Few experiments were also performed using rectangular sources
disposed transversely to the tunnel axis, therefore occupying the whole tunnel section. To
visualise the flow, the buoyant mixture is seeded with nebulised oil and lit with a laser sheet
emitted by a lens installed at the inlet of the tunnel. Note that the mass of oil added to seed
the buoyant release is a tiny fraction of the total mass injected at the source and thus does
not affect the density of the mixture. The longitudinal ventilation is imposed by a fan at
the end of the tunnel. The flow rate within the tunnel is measured by means of a hot-wire
anemometer placed within a Venturi tube at the inlet, providing a spatially averaged velocity
over the tunnel section in the range 0.11 ≤Vc ≤ 1.15 m s−1.
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Fig. 3.3 Schematic of the experimental set-up.

The velocity at the source is instead 0.17 ≤ wi ≤ 11 m s−1, producing a buoyancy flux at
the injection (for a circular source):

Bi = πb2
i wigηi (3.20)

in the range 1 · 10−3 ≤ Bi ≤ 6.3 · 10−2 m4 s−3. Experimental results were obtained by
varying values of the three control parameters. In case of the circular source, the parameters
spanned the ranges 0.004<Γi < 24, 0.25< ρi/ρ0 < 0.92, and 0.034≤ bi/H ≤ 0.270 (source
diameters measured 0.1, 0.075, 0.05, 0.035, 0.025 m). In case of the planar 2D source we
have instead 0.6 < Γi < 13 (note that the definition of Γi for a two-dimensional planar plume
differs from that of a circular plume by a factor 5/8) a fixed density ratio ρi/ρ0 = 0.7, and
0.014 ≤ bi/H ≤ 0.055 (bi refers in this case to the source half-length).

Note that results could be produced for a limited combination of the control parameters
in these ranges of values. Experimental conditions were constrained by the power of the fan
used to produce the longitudinal ventilation, the measurements range of the flow meters, the

availability of helium and by the Reynolds number. This latter, defined as Rei =
2wibi

ν
(ν is

the fluid kinematic viscosity), had to be kept sufficiently high to avoid viscous effects.

Concerning the circular sources, these limitations did not allow us to produce releases
with Γi > 2 with ‘small’ radii (i.e. bi/H < 0.15) and highly-forced (Γi < 1) non-Boussinesq
(ρi/ρ0 < 0.15) releases with ‘large’ radii (i.e. bi/H > 0.3). The Reynolds number varied
in the range 700 < Rei < 11100. Note that Rei generally decreased with increasing Γi, with
2500 < Rei < 11000 for Γi < 0.5, 1000 < Rei < 6000 for 0.5 <Γi < 1 and 700 < Rei < 2000
for Γi > 1. In the case of the planar 2D source, we could mainly produce pure and lazy
releases, i.e. with Γi ≥ 1. The slightly forced releases, i.e. in the range 0.1 ≤ Γi ≤ 1, were
produced for the smallest source size (bi/H = 0.014), only. All (pure and lazy) releases
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exceeded the critical value Recr = 600, indicated by Arya and Jr. Lape (1990) as a threshold
ensuring negligible viscous effects on buoyant releases in a crossflow.

The experimental evaluation of the critical velocity by means of flow visualisations is
somehow simple, since it solely requires, once the source conditions are fixed, an adjustment
to the fan power to assess the position of the backlayer front at the up-wind border of the
source. This protocol inevitably involves a number of experimental uncertainties in determin-
ing the position of the front. To estimate these uncertainties we performed 20 independent
iterations of the same experiment, for a reduced number of experimental conditions. For
each of these conditions, the uncertainty was then quantified as half of the difference be-
tween the minimum and maximum value of Vc. In the case of a circular source, this never
exceeded ±10%, which was therefore assumed to be the reference value of the experimental
uncertainty. In case of planar 2D source the uncertainty was instead higher and could reach
±15%.

To analyse the dependence of Vc/wi in the parameters given by Eq. (3.3) we performed a
different series of experiments. In each of these, we conveniently changed the values of the
control parameters at the source, i.e. wi, bi, and ρi, in order to vary one of the three, i.e. Γi,
bi/H, ρi/ρ0, non-dimensional parameters whilst keeping the other two fixed.

3.4 Results

Results for the case of planar 2D sources are presented in Fig. 3.4. Results were produced
for three source sizes (i.e. bi/H = 0.028,0.056,0.111), a fixed density ratio ρi/ρ0 = 0.7 and
a plume Richardson number in the range 0.1 < Γi < 20. Therefore results concern slightly
forced and lazy releases, only. For this reason, as it will be clarified in presenting the results
for the circular sources, we did not investigate the influence of the density ratio ρi/ρ0 for
these releases (these experiments were actually performed chronologically after those on
circular sources). Plotting the non-dimensional critical velocity on the plume Richardson
number Vc/wi (Fig. 3.4a) shows two main features: i) a general dependence of the form
Vc

wi
∝ Γ

1/3
i and ii) differences between the series obtained with different source size which

are of the same order of the experimental error. This undetectable influence of the source
size bi/H confirm our preliminary observations about the dynamics of these releases. As
previously observed, these are characterised by a strong interaction with the ventilation flow,
which is forced to be fully entrained in the buoyant fluid release. More instructive information
about the dynamics of the planar 2D releases can be then highlighted by verifying the scaling
of the critical velocity predicted by (3.1), i.e. on (Bi/W )1/3. As Fig. 3.4b shows, this scaling
is verified in the whole range of Γi investigated here. All releases, independently of their
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source conditions (bi and Γi) are characterised by a constant Froude number FrW =
VcW 1/3

B1/3
i

whose values are of order unity. This proves that these releases behave as a line source
of ‘pure’ buoyancy. This can be explained by the fact that, as a consequence of the strong
interaction and mixing between the ambient and the buoyant fluid, the dynamics of these
releases loose any dependence on the source conditions, that are therefore fully characterised
by their buoyancy flux per unit length, only.

Results for the circular source are shown in Fig. 3.5 and 3.6 and are compared to those
obtained by Le Clanche et al. (2014) in a reduced-scale model with aspect ratio H/W = 0.5,
slightly different from that of the reduced model used here, and equipped with different
instrumentation. Figure 3.5 shows the dependence of the non-dimensional critical velocity
on the Richardson number Γi, for varying radii bi/H and a fixed density ratio ρi/ρ0 = 0.7.
Figure 3.6 shows the influence of the density ratio ρi/ρ0 on a series of releases with fixed
Γi, each of which has the same radius bi/H. Note that to ensure a turbulent release, larger
radii had to be adopted for larger Γi. As previously mentioned, the constraints of Rei > 700
significantly limited exploration of the effect of a varying radius at large Γi, whereas the
constraint on highly forced releases was mainly limited by the power of the fan producing
the tunnel ventilation.

Experimental results on slightly forced to lazy releases, i.e. Γi > 0.1, agree well with
previous data obtained by Le Clanche et al. (2014) and therefore confirm their main findings,
namely that the non-dimensional critical velocity i) does not show any clear dependence on
the density ratio ρi/ρ0, whereas ii) it clearly exhibits a dependence on the plume Richardson
number of the form ∝ Γ

1/3
i .
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Extending the investigation to Γi < 0.1 reveals further interesting features. Firstly, we
observe a weakening of the dependence of the non-dimensional critical velocity on Γi as
this falls below 0.1. This feature is in agreement with the phenomenological observation
of the two distinct flow regimes previously discussed and represented in Fig. 3.1. This
weakening of the dependence on Γi is also in accordance with the prediction given by the
simple dimensional argument, which indicates Vc/wi ∼ const for Γi → 0 (for any fixed pair
bi/H and ρi/ρ0). The critical velocity exhibits non-negligible dependence on bi/H as Γi → 0
(see Fig. 3.5), whereas any influence of bi/H seems to diminish for Γi > 1. As already
mentioned however, the investigation on the role of bi/H for large Γi was limited by the
constraints imposed by the experimental set-up. Data on highly forced releases also reveals
a clear dependence of the critical velocity on the density ratio, which implies a significant
reduction of Vc/wi as the flow attains non-Boussinesq conditions. It is worth noting that
this effect, which could not be observed in the data set of Le Clanche et al. (2014), is only
observed in momentum-driven flows and becomes undetectable as Γi > 0.1. This suggests
that, as far as the critical velocity is concerned, non-Boussinesq effects have a significant
dynamical effect only in the case of forced momentum-driven releases, and become negligible
as buoyancy begins to act on the flow dynamics. In other words, the buoyancy driven releases
seems to lose information about their source conditions, notably concerning its density. This
can be physically interpreted as the effect of the intermittency in the rising of volumes of
buoyant fluid and to enhanced mixing in the very near field of the source. The evidence of
the negligible influence of the density ratio on Vc for circular releases was actually the reason
due to which we avoided performing experiments with varying ρi/ρ0 in case of planar 2D
sources (which were performed chronologically after the ones with circular sources).

Further insight into the functional dependence (3.3) is provided by the comparison (also
shown in Fig. 3.5 and Fig. 3.6) between the experimental results and those provided by
the analytical solution (3.13). It is worth noting that plotting the data in the whole range of
Γi investigated would require to specify the dependence C =C(Γi). It is also worth noting
that reliable solutions of the plume equations (3.4), spanning over the whole range of Γi,
would have required include a dependence of the entrainment coefficient on the plume
Richardson number (Craske et al., 2017; van Reeuwijk et al., 2016). Taking into account
these dependencies would have however precluded an analytical expression for the non-
dimensional critical velocity Vc/wi, and on the relative asymptotic solutions. Plotting the
analytical solutions (3.3) results requires therefore to adopt two different values of the
parameter C, which are obtained by fitting the data in the momentum-driven regime, i.e.
Γi < 0.1, and in the buoyancy-driven regime, i.e. Γ > 1. This provide a value CF = 0.7 for
forced releases and CL = 0.44 for lazy releases, which implicitly implies smaller head-loss
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coefficient γ for jet-like impinging releases rather than for plume-like releases. This latter
feature is consistent with the idea that, for plume-like impinging plumes, the volume of fluid
in the impingement region can induce generation of momentum due to its buoyancy, which
would results in reducing the whole momentum losses, and therefore increase γ .

Focusing on the results for momentum driven releases, we note a general good agreement
between analytical solutions (3.13) and the experimental data. The model is shown to be
able to capture well both the dependence on the source diameter bi/H (see Fig. 3.5) and on
the density ratio ρi/ρ0 (see Fig. 3.6). It is worth noting that results were obtained for two
different aspect ratios of the tunnel sections, i.e. H/W = 0.5 and H/W = 1. Both sets of
data agree well with the model results, whose predictions do not include any influence of a
varying aspect ratio, since it represents the buoyant release as a forced plume in a laterally
unbounded co-flow. This good agreement between the experimental data therefore suggests
that, in the range of source size investigated here, the dynamics of these releases is almost
unaffected by the confinement of the ventilation flow by the lateral tunnel walls.

In case of buoyancy-driven releases (Γ ≥ 1) the model correctly predicts the negligible
role of a varying density ratio on the critical velocity (see Fig. 3.6). However, concerning
the effect of a varying source diameter (see Fig. 3.5) the comparison between model and
experimental data is less instructive because the differences predicted by the model are of the
same order of the experimental uncertainty, at least in the range of diameter investigated.

To unveil the role of the source size bi, as well as of the other length scales involved
in the problem, namely the tunnel height H and width W , we therefore represent the data
adopting different scalings, and we compare these to the data obtained for the planar 2D
sources. Firstly we adopt the scaling suggested by the asymptotic solution (3.19) for Γi → ∞,
the one that would be expected by releases behaving as point sources of ‘pure’ buoyancy.
These are presented in Fig. 3.7a where we also plot (dotted line) the value of F̂rc predicted
theoretically. The normalisation of Vc by (Bi/H)1/3 is of course not expected to be appropriate
for momentum dominated releases, which explains the large scatter of the data for Γ < 0.5.
We can also observe an agreement between the model and the experiments of data obtained
for Γ ≥ 1, with data for circular source obtained with H/W = 0.5, that lie systematically
below data for both circular and planar source obtained for H/W = 1. Note however that an
effective scaling of the critical velocities induced by buoyancy driven releases, i.e. Γ ≥ 1, can
also be achieved by adopting the tunnel width W instead of the height H as a characteristic
length. Adopting this scaling (see Fig. 3.7b) the data obtained for H/W = 0.5 (and for
any source diameter) collapse on the data for H/W = 1, including both circular and planar
source releases. Physically, this can be simply due to the interaction of the radial outflow
after the impingement at the ceiling with the tunnel lateral walls, occurring for buoyancy
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dominated releases. This is in turn due to two main factors: i) the large source diameters of
these releases (which were needed to ensure fully turbulent releases) and ii) the enhanced
meandering motion of the buoyant releases as they rise toward the ceiling (Burridge et al.,
2017). This meandering motion, which is typical in buoyant plumes, implies fluctuations of
the plume centres of mass as it rises and, consequently, enhanced fluctuations of the position
of the impingement at the ceiling with respect to the tunnel axis. The interaction of the radial
outflow with the lateral walls implies then that the tunnel width W becomes the only relevant
length scales, which acts in constrain laterally the buoyancy flux.

This finding suggests that the dynamics of plume-like releases in ventilated tunnels can
reliably be modelled as Boussinesq releases (neglecting any effect arising at low values of
the ratio ρi/ρ0) of pure buoyancy emitted by a line source, therefore governed by the amount
of buoyancy flux per unit width Bi/W whose dynamical effects on the backlayer flow have to
be balanced by the ventilation flow Vc, in order to prevent its spreading upwind the source.

3.5 Conclusions

We have investigated the dynamics of a release of buoyant fluid discharged from a circular
source placed at the centre of a longitudinally ventilated tunnel. In particular, we focused
on the dependence of the so-called ‘critical ventilation velocity’ Vc, that allows the buoyant
fluid to be confined downwind of the release point, on varying conditions at the source: the
injection velocity wi, density ρi and radius bi. By assuming negligible diffusive effects, and
a tunnel with a fixed aspect ratio (between height and width), the non-dimensional critical
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velocity Vc/wi has been shown to depend on three non-dimensional groups: the plume
Richardson number Γi, the non-dimensional source radius bi/H and the density ratio ρi/ρ0.
This latter parameter is particularly relevant in order to investigate dynamical effects known
as non-Boussinesq, i.e. related to large density differences between buoyant and ambient
fluid, whose influence is still not fully elucidated in the case of highly buoyant releases, i.e.
large Γi.

To investigate these dependencies, we performed experiments in a reduced-scale tunnel,
where buoyant releases were produced with a mixture of helium and air. Experiments on
planar 2D sources (placed perpendicularly to the tunnel axis, so as to occupy the whole
tunnel section) show that these releases act a line source of ‘pure’ buoyancy, which implies
that Vc ∝ (Bi/W )1/3, i.e. that the critical velocity actually depends only on the buoyancy flux
at the source Bi per unit width.

Experiments on circular sources have instead shown the following main features:

• the dependence of Vc/wi on Γi reveals the existence of two flow regimes, one for Γi ≪ 1
and one for Γi ≫ 1;

• the transition between the two regimes occurs in the range 10−2 < Γi < 1;

• Vc/wi does not show any dependence on the density ratio as Γi > 0.1, whereas for
lower Γi the dependence is of the form (ρi/ρ0)

1/2; and

• in the range of source radii investigated, Vc/wi seems to be more sensitive to bi/H for
forced releases, i.e. Γi < 1, rather than for lazy releases Γi > 1.

To obtain further insight into the dynamics of releases issued from circular sources we
interpreted the experiments by comparing their results to an analytical solution of a simple
model of a top-hat plume in a crossflow, which was formulated following the well-established
approach by Morton et al. (1956). Despite its simplicity, the model is able to capture main
trends identified by the experiments, namely the existence of two flow regimes, depending
on Γi, and the rise of non-Boussinesq effects for highly forced releases only, Γi < 0.1. In case
of momentum driven releases, the model helps in elucidating the role of the source radius on
bi/H and of the density ratio ρi/ρ0 on the flow dynamics. Notably these dependence can be
well highlighted by the asymptotic solution in the limits Γi → 0. According to the asymptotic
solution, Vc/wi is shown to depend on (ρi/ρ0)

1/2, although it does not fully rescale on it.
The good agreement between model and experimental data, collected for two different aspect
ratio of the tunnel section, further suggest that the lateral walls do not have an influence on
the dynamics of the light-gas release as it rises and impinges at the tunnel ceiling.
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For lazy releases, i.e. Γi ≥ 1, the model predicts a dependence on source radius bi and
tunnel height H. However, the experimental data for buoyancy driven releases are also
in close agreement with the behaviour observed for planar 2D source: a critical velocity
depending on the on the buoyancy flux at the source Bi per unit width, only, irrespective of its
geometry (planar, circular), its velocity and and its density. This is due to the interaction of
the radial outflow produced after the impingement at the lateral walls, which implies that the
tunnel width becomes the only relevant length scale influencing the dynamics of the rising
back layer flow. The simple scaling Vc ∝ (Bi/W )1/3 observed experimentally would have
two major theoretical implications:

• for pure and lazy releases, the release can be represented as a line sources of ‘pure’
buoyancy, for any source conditions (in terms of density ratio and source geometry);
and

• the so-called non-Boussinesq effects have no major influence on the flow dynamics as
far as gravitational effects take over those related to inertia.

It is worth noting that, from a practical point of view, both features support the use of
simplified mathematical models for the simulation of these flows, and define the ventilation
systems for the management and the mitigation of accidental risks related to the releases of
toxic and flammable fluids in enclosed spaces.





Chapter 4

Critical velocity in ventilated tunnels in
the case of fire plumes and densimetric
plumes

We focus on the critical velocity in longitudinally ventilated tunnels and on its dependence on
the power of the fire source. In particular we aim at identifying the reason for the appearance
of the so-called ‘super-critical’ velocity, a ventilation velocity that becomes independent of
the heat release rate when it becomes large. A critical review of existing literature studies
allows us to point out possible explanations for this peculiar phenomenon. Among these,
we focus here on effects related to heat fluxes (diffusive and radiative) and to the presence
of large (compared to the tunnel height) flames. The study is conducted by combining
experimental, numerical and theoretical methods. The experiments were performed in a
reduced-scale tunnel using densimetric plumes (air/helium mixture and hot air). Numerical
simulations were performed with Fire Dynamics Simulator (FDS) and concerned densimetric
plumes and fire plumes (propane). These show that the diffusive heat fluxes at the tunnel
walls affect only marginally the critical ventilation. Similar conclusions can be drawn for the
role of the radiative fluxes. The main phenomenon that alters the flow dynamics and induces
the critical velocity to become almost independent on the heat release rate when it becomes
large, is the presence of large flames, representing a source of distributed buoyancy within
the tunnel and located downwind of the injection of flammable gases. These results also
show that plumes arising from small fires can be reliably modelled as buoyant densimetric
plumes released at ground level. The dynamics induced by larger fires instead require the
modelling of a volumetric source of buoyancy within the tunnel.
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4.1 Introduction

Constraining the propagation of hot smoke with a forced ventilation is a key issue for the
management of risks related to the occurrence of fires within road and rail tunnels. This goal
can be attained with different ventilation systems, adapted to one-way or two-way tunnels. In
the case of a one-way tunnel, the basic strategy is to avoid the propagation of the front of the
hot smoke upstream of the fire location, in order to allow the users to escape in the opposite
direction and the safety services to approach as close as possible to the fire. To obtain this
condition it is necessary to impose a ‘longitudinal’ ventilation velocity that is referred to as
‘critical’. The study of the dependence of the smoke propagation on the power of the fire and
the intensity of the mechanical ventilation has therefore motivated so far a large number of
studies on the field. From a qualitative point of view, these studies generally agree on the fact
that the critical velocity increases with the one-third power of the heat release rate (HRR) of
the fire and tends to become independent of it as it exceeds a threshold. There are however
two main features that have to be clarified and arising from the literature:

• the reasons for this general behaviour have not been fully identified;

• from a quantitative point of view, the literature results show a general poor agreement
with one another.

The aim of this paper is to shed light on these aspects using theoretical, experimental and
numerical methods. Before providing insight on our methods and results, we begin by
presenting some background concepts (4.1.1) that are needed to critically review the existing
literature on this subject (4.1.2). Based on this review we then identify the main key questions
(4.1.3) that need to be tackled.

4.1.1 Background

A general sketch of the main physical phenomena affecting the dynamics of the flow within
a longitudinally ventilated tunnel in case of a fire is presented in Fig. 4.1. A part of the
energy flux induced by the presence of the fire is transferred to the surrounding space by
radiation, emitted by the flames and the hot smoke. The convective heat fluxes induce in turn
a buoyancy flux, generating a thermal plume, that rises and impinges on the ceiling, creating
a backlayering flow.

In the simplest representation of this phenomenon, the heat transfer due to radiative
fluxes and diffusive fluxes at the tunnel walls are neglected. By further considering that
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the heat capacity cp is constant, we can express the buoyancy flux at the source as directly
proportional to the HRR, referred to here as Q:

Bi =
gQ

ρ0T0cp
(4.1)

where ρ0 and T0 are reference ambient air density and temperature, respectively and g is
the gravitational acceleration. If we also consider that diffusive processes are negligible, we
then conclude that the extent l of the backlayering flow depends only on the the buoyancy
flux Bi, the ventilation velocity V and the height H and width W of the tunnel, i.e.:

l = f (Bi,V,H,W ) (4.2)

We therefore have a dependence on four independent control parameters having two inde-
pendent physical dimensions. This leads to a non-dimensional form of Eq. (4.2) of the
form:

l
H

= f (Ri,
W
H
) (4.3)

where Ri =
Bi

V 3H
=

gQ
ρ0T0cpV 3H

is the Richardson number, which expresses a ratio between

the buoyancy effects, induced by the presence of a fire, and the inertial effects, associated to
the mechanical ventilation of the tunnel. We can then define the critical ventilation velocity
V =Vc as the smallest one imposing a zero extent of the back layering flow, i.e. l = 0. Then,
for a given tunnel aspect ratio W/H, and assuming that relation Eq. (4.3) is a one-to-one
function, we have

f (Ric) = 0 (4.4)

i.e. Ric = const, being Ric =
Bi

V 3
c H

the critical Richardson number. The dependence of Vc on

Bi (and therefore on Q) will be then expressed as:

Vc ∼
(

Bi

H

)1/3

∼
(

gQ
ρ0T0cpH

)1/3

(4.5)

As we will see in the next paragraph, this functional dependence has been recurrently
proposed in literature studies, in order to link the critical ventilation velocity to the heat
release rate.
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Fig. 4.1 Sketch of smoke movements and heat transfers during a fire occurring in a ventilated
tunnel.

4.1.2 Literature review

The first documented experiments in a reduced-scale tunnel were performed by Thomas
(1968). Based on his experimental data, he concluded that the formation of the backlayer
flow could be prevented by imposing a ventilation velocity scaling on the one-third power of
the HRR:

Vc =

(
gQ

ρ0T0cpW

)1/3

(4.6)

which is therefore in the form of relation Eq. (4.5), except for the fact that the width W is
used as a characteristic length instead of the height H.

A similar correlation was subsequently proposed by Danziger and Kennedy (1982):

Vc =

(
gQ

ρ0Tf cpWFrc

)1/3

(4.7)

where Tf =
Q

ρ0cpUcWH
+T0 and Frc = Ri−1/2

c = 4.5 represents the critical Froude number.

Based on experiments in a reduced scale tunnel and using a propane burner as the heat
source, Oka and Atkinson (1995) identified a dependence on the form:

V ∗
c = Kv(0.12)−1/3(Q∗)1/3 for Q∗ < 0.12

V ∗
c = Kv for Q∗ > 0.12

}
(4.8)
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where 0.22 ≤ Kv ≤ 0.38, depending on the source size, shape, location of the fire, and where

the non-dimensional heat release rate and critical velocity are defined as Q∗ =
Q

ρ0cpT0g1/2H5/2 ,

V ∗
c =

Vc√
gH

. Similarly to Thomas (1968) and Danziger and Kennedy (1982), Oka and Atkin-

son (1995) identify a one-third power law dependence of form of relation Eq. (4.5). They
however argue that this is restricted to small HRR, whereas for larger HRR (and namely for
Q∗ > 0.12) the critical velocity becomes independent of Q∗, reaching a condition referred to
as ‘super-critical’.

A similar behaviour was also reported by Wu and Bakar (2000) and Li et al. (2010). Wu
and Bakar (2000) simulated the fire source by means of a propane gas, placed within a porous
bed burner and found that:

V ∗
c = 0.40(0.20)−1/3(Q∗)1/3 for Q∗ < 0.20

V ∗
c = 0.40 for Q∗ > 0.20

}
(4.9)

where (differently from Oka and Atkinson (1995)) Q∗ and V ∗
c are defined using the hydraulic

height H instead of the tunnel height H as a characteristic length of the tunnel, in order to
include eventual variability induced by a varying aspect ratio of the tunnel cross section. In
relation Eq. (4.9) the proportionality coefficient and the critical value of the non-dimensional
HRR at which the transition between the two regimes occur are different from those given in
Eq. (4.8). These differences are likely to be due (at least partially) to the fact that Wu and
Bakar (2000) used a water system to cool the external tunnel walls, therefore enhancing the
global heat transfers. A further experimental study is that of Li et al. (2010), who performed
experiments using propane gas in porous bed burner, and suggested the following relation:

V ∗
c = 0.81(Q∗)1/3 for Q∗ < 0.15

V ∗
c = 0.43 for Q∗ > 0.15

}
(4.10)

In Eq. (4.10) the proportionality constant in the one-third power law regime and the critical
condition for the transition regime are different from that provided by previous authors.
However, the value of V ∗

c is very close to that identified by Wu and Bakar (2000).
It is worth noting that a similar behaviour, i.e. the weakening of dependence of the

(non-dimensional) critical velocity on the (non-dimensional) HHR, was also observed by
Vauquelin (2005) with a completely different experimental set-up, and based on the injection
of a mixture of air and helium. To explain this peculiar behaviour, Le Clanche et al. (2014)
performed experiments on a similar set-up focusing on the role of the source condition,
namely of a varying diameter of the source, and of a eventual role of varying densities of
the buoyant release. They suggested that the weakening of the dependence of the critical
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Fig. 4.2 Overview of literature data on the non-dimensional critical velocity as a function of
the non-dimensional heat release rate.

velocity on the HRR could be partially attributed to an enhancement of the size of the source
for increasing HRR.

Other recent results are those of Ko et al. (2010) and Weng et al. (2015). Ko et al.
(2010) used pool fires with three kinds of fossil fuels (methanol, acetone, and n-heptane)
and acknowledge a one-third power law dependence of V ∗ on Q∗, even though with a
proportionality coefficient that is greater than the one proposed by Wu and Bakar (2000).
Weng et al. (2015) conducted experiment in a reduced-scale tunnel using a methanol pool
fire and found:

V ∗
c = 0.82(Q∗)1/3 (4.11)

Note that the proportionality coefficient is close to the one identified by Li et al. (2010) for
low heat release rates.

An overall picture of the literature data is presented in Fig. 4.2, where we plot the
dependence of the non-dimensional critical velocity V ∗

c on the non-dimensional heat release
rate Q∗ (using the tunnel height H as the characteristic length scale in the normalisations).
These results include data collected in reduced-scale tests, using different methods to simulate
the fire source: densimetric plumes produced with a light gas mixture (Vauquelin (2005)), a
propane bed burner (Oka and Atkinson (1995), Wu and Bakar (2000), Li et al. (2010)) and
pool fires (Ko et al. (2010), Weng et al. (2015)). In Fig. 4.2 we also include results obtained
in large-scale tunnels, namely from the Buxton gallery and the Memorial test programs (Wu
and Bakar, 2000).

4.1.3 Open questions

The data presented in Fig. 4.2 are clearly affected by a significant scatter. The experimental
uncertainties are certainly relevant, especially for the data collected in large scale tests, but
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these are unlikely to be the only cause for the high dispersion of the results. We can therefore
raise doubt on the effective existence of a one-to-one relation between V ∗

c and Q∗. We stress
here, that such a dependence would imply three major constraints, i.e. that:

• the heat source can be fully characterised by the buoyancy flux only, and that this flux
is proportional to the heat release rate;

• radiative and diffusive effects are negligible;

• the variation of the geometry of the tunnel and of the source has no effect on the critical
velocity.

As previously discussed, these three conditions imply a proportionality between Vc and
Q1/3. This explains the evolution of the data by Megret and Vauquelin (2000) and by Oka
and Atkinson (1995) for low values of the heat release rate. A similar tendency can be
also identified in the data by Wu and Bakar (2000) and of the real-scale experiments in the
Buxton gallery (Bettis et al., 1993), even though the proportionality constant is however
different between Vc and Q1/3. The variation on the proportionality constant can be due for
example to the variability of the tunnel geometry, as well as to variations in the parameters
that characterise the heat source, such as its size and form, its position, and to the extension
of the flames.

The main aspect that needs however to be discussed is the fading out of the proportionality
between Vc and Q1/3 for large heat release. This feature led previous authors to identifying a
‘super-critical’ ventilation velocity (Ingason et al., 2015; Wu and Bakar, 2000).

Grant et al. (1998) and Oka and Atkinson (1995) suggest that this behaviour has to be
due to a sort of ‘blocking’ of the flow due to the presence of the fire, as the flames are large
and attain the ceiling. The mechanism inducing this blocking (and induced by the blocking)
has not however been clarified. Wu and Bakar (2000) argue instead that this is caused
by the intermittency of the flame. Hwang and Edwards (2005) suggest that the maximum
temperature above the fire source plays the key role.

It is evident that the weakening of the dependence of Vc on Q (which is reduced compared
to the one-third power identified for low HRR) implies that the similarity conditions of the
flow are altered so that Eq. (4.3) does not hold anymore. The key problem is therefore
to identify the physical phenomena that are responsible for this breaking of the dynamical
similarity. This can be the symptom of physical phenomena arising for large HRR and with
negligible role for small HRR, and related to non-dimensional parameters that are not taken
into account in Eq. (4.3), due for example to:
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• fluid-mechanics effects, induced by large density differences (determined in turn by
large temperatures), and known as ‘non-Boussinesq effects’ (Le Clanche et al., 2014;
Rooney and Linden, 1996);

• effects induced by the presence of a growing fire and to heat transfer phenomena.

A first attempt in tackling the first aspect was presented by Le Clanche et al. (2014). In this
paper we are instead concerned with the second feature. We aim in particular at focusing on
the role of three phenomena that are induced by the enhancement of the heat release rate Q
and that have not been so far clarified:

1. the growth of the extension of the flames, i.e. of the volume of the heat source,
occurring as Q increases;

2. an increasing role of radiative effects, which implies a reduction between the buoyancy
flux at the source and the total thermal energy flux injected in the system;

3. the growing influence of heat losses at the tunnel walls.

4.2 Materials and methods

In order to investigate the three over-mentioned phenomena, we combine different method-
ologies. Firstly we performed experiments in a reduced scale tunnel simulating the source
with a plume of densimetric (helium) and thermal (hot air) plume. This first set of comparison
allows us to focus on the role of heat fluxes at the tunnel walls, without involving any effect
related to the presence of flames and minimising eventual effects of heat radiation (sect.
5.3.1). These results are subsequently compared to results obtained in experiments using
gas-burners. To that purpose, we have developed a simple model to link the conditions
of a fire plume to those of an equivalent densimetric plume issuing from an area source
(sect. 4.2.2). This allows us to compare the different sets of data and identify analogies and
differences between the two kind of releases. To get further insight in this comparison we
then turn to numerical simulations of both fire and densimetric plumes in ventilated tunnels
(sect. 4.2.3). These allows us also to evaluate the role of radiation, which would be difficult
to quantify experimentally.

4.2.1 Experiments with buoyant plumes

We consider a horizontal and infinitely long tunnel within which a buoyant fluid is contin-
uously released. The critical velocity Vc depends on the conditions imposed at the source
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(density ρi, velocity wi and radius bi), the fixed tunnel geometry (i.e. the fixed ratio be-
tween height H and width W ), the density of the ambient fluid ρ0. Consequently, by further
assuming negligible diffusive effects, the critical velocity can be expressed as :

Vc = f (wi,ρi,ρ0,g,bi,H,cp,λ/e), (4.12)

where λ and e are the tunnel wall thermal conductivity and thickness, respectively. According
to the Vashy-Buckingham theorem, the non-dimensional critical velocity can be expressed as
a function of four non-dimensional parameters:

Vc

wi
= f (Γi,

ρi

ρ0
,

bi

H
,λ ∗), (4.13)

where Γi =
5

8α0

ηigbi

w2
i

is the plume Richardson number, with ηi = (ρ0 −ρi)/ρ0 and α0 =

0.127 (a reference value for the ‘top-hat’ entrainment coefficient) and where λ ∗ = λ

eρ0cpwi
.

The plume Richardson number is a parameter that allows for a classification of buoyant
releases (Hunt and Kaye, 2005) into momentum-driven forced plumes (Γ < 1), and buoyancy-
driven lazy (Γ > 1) plumes (plumes with Γ = 1 are said to be ‘pure’). The parameter λ ∗

represents instead a ratio between the thermal flux injected within the tunnel through the
source and the thermal flux transferred through the tunnel walls, and is therefore a measure
of the heat losses of the tunnel (note that its structure is similar to that of the Stanton number,
with a diffusive heat exchange coefficient λ/e instead of a convective coefficient).

In order to investigate the functional dependence given by Eq. (4.13) we have performed
experiments in a reduced-scale model (Fig. 4.3) of length L = 9 m, width W = 0.36 m
and height H = 0.185 m. The buoyant plumes were obtained by injecting releases of light
isothermal gases, given by a mixture of air and helium, and hot air. A longitudinal air flow
is created by an extraction fan located at the outlet of the tunnel. The measurement of a
spatially averaged ventilation velocity is provided by a hot-wire anemometer placed within a
Venturi tube at the inlet.

In the isothermal experiments (Fig. 4.3a), the flow rates of air and helium are controlled
and measured independently. A tiny fraction of nebulised oil is added into the mixture and
visualization is realized by a lens installed at the inlet of the tunnel. The critical condition is
defined by visualising the backlayering flow, and regulating the power of the fan in order to
set the front of the backlayering flow at the source position. Five source diameters were used
(Di=2.5, 3.5, 5.0, 7.5, 10.0 cm), with a fixed density ratio 0.7. The Richardson number at the
source was in the range 0.004 < Γi < 24 (note that to ensure a turbulent release, larger radii
had to be adopted for larger Γi).
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Fig. 4.3 Schematic of the experimental set-up for (a) the ‘isothermal model’ and (b) the
‘thermal model’.

In the thermal experiments, heat release rates between 700 W and 10 kW were produced
using a fan and an electric heater, controlled and regulated in temperature by a PID controller.
The ceiling (through which most of the heat transfer occurs) is made of plaster with a thermal
conductivity λ = 0.16 W·m−1·K−1 and thickness e = 1.8 cm. The longitudinal extension of
the backlayer flow l was estimated using K-type thermocouples measuring air temperature.
These were installed on the tunnel axis at the ceiling level and 2 cm apart. The source of the
diameter is kept equal to Di=10 cm. An exhaustive description of the experimental protocol
and of the measurements techniques used in these experiments is provided in Salizzoni et al.
(2017).

In both kind of experiments the uncertainties were estimated by performing the same
experiment 20 times for a reduced number of experimental conditions. For each of these
conditions, the uncertainty was then quantified as half of the difference between the minimum
and maximum value of Vc. This never exceeded ±10%, which was therefore assumed to be
the reference value of the experimental uncertainty.
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Name Propane Methanol Acetone N-heptane
Chemical formula C3H8 CH2OH C3H6O C7H16
Enthalpy (MJ/kg) 46.34 20.0 25.8 44.6
∆ Ti (◦C) 2002 2125 1781 2000

Table 4.1 Enthalpy of combustion for fossil fuels and relative temperature rise predicted by
the model (neglecting radiative heat losses).

4.2.2 A model for fire plumes

In order to model a fire plume as a generic densimetric plume issuing from a ground level
circular source of given diameter Di, we have to compute two physical parameters: the
temperature Ti (and therefore the density ρi) and the velocity wi at the source. To that purpose
we consider that the presence of a fire implies the full combustion of a generic fossil fuel
CxHyOz, so that:

CxHyOz +
1
2
(2x+

y
2
− z)O2 → xCO2 +

y
2

H2O (4.14)

By assuming that the HRR is known, we can then compute the mass flow rate of fuel at
the source as well as the temperature rise ∆Ti = Ti −T0 from the enthalpy of combustion ∆H
(values for the different fuels are given in Table 4.1).

The mass of fossil fuel is then computed as ṁ f uel = Q/∆H, whereas the mass of air
(composed of 20% O2 and 80% N2) needed for the full combustion is:

ṁair =
5(4x+ y−2z)ṁ f uel

4M f uel
Mair (4.15)

where M f uel and Mair are the molecular weights of the fuel and of air, respectively. The
temperature rise of the hot gases is:

∆T i =
Q

cpm(ṁ f uel + ṁair)
(4.16)

where cpm is the specific heat of the mixtures of CO2, H2O and N2 produced by the combus-
tion process, and computed as:

cpm =
xMco2Cpco2 + y/2MH2OCpH2O +(4x+ y−2z)MN2CpN2

xMco2 + y/2MH2O +(4x+ y−2z)MN2

(4.17)
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Making use of the ideal gas law, the density of the mixture is then:

ρi =
P0Mi

RTi
(4.18)

where P0 = 105 Pa is a reference ambient pressure, R = 8.31 is the universal gas constant,
and Mi is the molar mass of the hot gases, computed as:

Mi =
xMco2 + y/2MH2O +(4x+ y−2z)MN2

x+ y/2+4x+ y−2z
(4.19)

Finally, the velocity at the source wi can be estimated as:

wi =
ṁ f uel + ṁair

ρiA
(4.20)

where A is a planar surface area of fire source. Knowing the source size Di, its density ρi,
and the ejection velocity wi, we are then able to associate a plume Richardson number Γi for
the different plumes arising from the fire, for varying HRR.

In Table 4.1 are reported the temperature rises provided by the model for different type
of fuels. Note that these results refer to the case of full combustion and negligible heat losses.
It is worth noting that Eq. (4.16) provides almost the same temperature of the hot gases Ti

(around 2000 K) for any type of fuel, regardless of the HRR.

4.2.3 Numerical simulations

Numerical simulations were carried out with Fire Dynamics Simulator (FDS) 6.3, solving
a low-Mach number formulation of the Navier Stokes equations adopting a Large Eddy
Simulation (LES) approach with a Deardorff subgrid closure model. The tunnel aspect ratio
H/W = 1/2 is the same as that of the reduced scale model used in this study and of tunnel C
in Wu and Bakar (2000), whose results will be used as a reference for the simulation of fire
plumes (Fig. 4.4). The length of the numerical tunnel is however reduced compared to that
of these two others tunnels, and equal to 24H. We performed two kind of simulations: with
plumes generated by the injection of propane and with plumes generated by the injection of
an active scalar (temperature). In both cases the source was a square, placed at a distance of
18H from the inlet of the tunnel. The power of the heat release rate ranged from 1 to 30 kW.
In the fire plumes simulations, the fraction of propane converted into smoke particulate was
set equal to 10% . In the hot-air plume simulations the temperature at the source was set
equal to 1300 K.
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H

Fig. 4.4 Tunnel geometry of numerical model.

The tunnel walls are 5 cm thick, with a density of 2000 kg/m3, a specific heat of 0.88
kJ/(kg K) and a conductivity equal to 1.2 W/(m K). Temperature sensors were set 2 cm
below the ceiling from 0.5 m upstream the fire source to 0.5 m downstream of it. To estimate
the position of the front of the backlayering flow we analysed the longitudinal profile of
mean temperature. Each simulation lasted 60 s. The flow required approximately 30 s to
reach a steady state (statistically). Therefore the position of the backlayer flow was obtained
by averaging the velocity field between 30 s and 60 s.

According to McGrattan et al. (2008) the mesh size close to the fire source has to be
estimated depending on a characteristic fire diameter defined as:

D∗ =

(
Q

ρ0cpT0
√

g

) 2
5

(4.21)

whose ratio on the grid size ∆x values have to be in the range 4 ≤ D∗/∆x ≤ 16. For a HRR
of about 3 kW, D∗ is approximately 0.09 m, and therefore ∆x ≃ 0.01 m.

To save computing time, we used an unevenly distributed grid, obtained by stretching
the mesh along the x-direction. The tunnel is divided into three sub-domains: the domain
close to the inlet is referred to as the ‘Left Domain’, the domain within which is placed the
heat source is the ‘Middle Domain’, and that close to the outlet is the ‘Right Domain’. The
lengths for the three domains are 4 m, 1 m and 1 m, respectively. In the Middle Domain the
grid is twice as fine as the one in the other two domains.

Before performing the numerical experiments we carried out a grid sensitivity study,
to evaluate the dependence of our numerical solution on the resolution of the mesh. The
characteristics of the different grids tested are listed in Table 4.2. In order to enlighten the
dependence of the numerical solution on the grid refinement we focus here on longitudinal
profiles of the mean and the standard deviation of the temperature registered at just below
the ceiling (at a distance of approximately 0.1H). Based on these results we adopted Grid 4
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Fig. 4.5 Longitudinal profiles of the mean and of the standard deviation of the temperature
along the tunnel ceiling for the five girds tested (See Table 2).

as the reference grid for our numerical study, made up of 756000 cells. Note that Eq. (5.14)
implies a higher mesh resolution for smaller fires. In the present study the smallest fire was
0.20 kW, which makes D∗/∆x = 4, i.e. within the recommended range.

Test Number of cells Total cells Cells size in the Middle domain Cells size in the Right and Left Domains
X Y Z (as a fraction of H) (as a fraction of H)

Grid 1 300 25 12 90000 0.08×0.08×0.08 0.08×0.08×0.08
Grid 2 350 50 25 437500 0.04×0.04×0.04 0.08×0.04×0.04
Grid 3 378 54 27 551124 0.036×0.036×0.036 0.072×0.036×0.036
Grid 4 420 60 30 756000 0.032×0.032×0.032 0.064×0.032×0.032
Grid 5 504 72 36 1306368 0.028×0.028×0.028 0.056×0.028×0.028

Table 4.2 Details of the meshes adopted in the grid sensitivity study.

4.3 Results

In the analysis of the results we proceed as follows. Firstly, we examine results relative
to densimetric air-helium plumes, for varying source conditions, and we compare these
to those with hot-air plumes, to enlighten the role of the heat losses at the tunnel walls
(sect 3.1). These data are consequently compared to literature data on fire plumes arising
from propane burner and methanol pools (sect 3.2). To further analyse the analogies and
differences between the two set of data we finally turn to numerical simulations (sect 3.2),
that also allows us to evidence the role of radiative fluxes (sect 3.3).

4.3.1 Densimetric plumes: experiments and numerical simulations

As a first step, we focus on the experiments with densimetric plumes. A previous study by
Le Clanche et al. (2014) already investigated the functional dependence given by Eq. (4.13),



4.3 Results 55

1E-3 0.01 0.1 1 10 100
0.1

1

 (a)
V c
/w

i

 i

 ~ i
0

 ~ i
1/3

 Vauquelin

 

 

   Le Clanche et al.
 bi /H=0.236
 bi /H=0.222
 bi /H=0.098
 bi /H=0.060

   Adiabatic
 bi /H=0.270
 bi /H=0.203
 bi /H=0.135
 bi /H=0.068

   Thermal
 bi /H=0.270

 

1E-3 0.01 0.1 1 10 100
0.1

1

 (b)

 ~ i
0

 ~ i
1/3

V c
/w

i

 i

         Experiment
 bi /H=0.270
 bi /H=0.135

         Simulation
 bi /H=0.270
 bi /H=0.135

 

 

Fig. 4.6 Non-dimensional critical velocity Vc/wi as a function of the plume Richardson
number Γi. (a) experimental results comparison between our results (hollow points) and
data from Le Clanche et al. (2014) (solid points); (b) comparison between experimental and
numerical results.

in the case of λ ∗ = 0, i.e. Vc
wi

= f (Γi,
ρi
ρ0
, bi

H ). Focusing on slightly forced and lazy releases,
i.e. Γi > 0.1, they showed that the variations of the radius and of the density ratio have a
slight influence on the non-dimensional critical velocity. Among the three non-dimensional
parameters, Γi is therefore the one having the largest influence on Vc/wi. The non-dimensional
critical velocity Vc/wi shows a dependence of the form Γ

1/3
i , which in dimensional form

implies a dependence of the form Vc ∼ B1/3
i . According to these results, for a fixed tunnel

and source geometry, the dependence of Vc on the HRR has therefore to follow a one-third
power law. As discussed by Le Clanche et al. (2014), a plausible explanation for a different
behaviour, such as that shown by the data by Vauquelin (2005), could be related to a source
size that increases for increasing HRR.

In the present study we have further explored this, performing experiments also for highly
forced releases (Γ ≪ 1) and extending our investigation on the role of the parameter λ ∗, i.e.
on the functional dependence

Vc

wi
= f (Γi,λ

∗) (4.22)

Results on both air-helium plumes and hot air plumes are shown in Fig. 4.6 (a) and are
compared to those obtained by Le Clanche et al. (2014) and by Vauquelin (2005). Concerning
the air-helium plumes experiments, the new set of data for Γi > 0.1 are in close agreement
with those by Le Clanche et al. (2014), and exhibit a dependence of the form ∝ Γ

1/3
i .

For Γi < 0.1, we observe a weakening of the dependence of the non-dimensional critical
velocity for low values of Γi. As this falls below 0.1, and the buoyancy fluxes becomes
negligible on the flow dynamics, the non-dimensional critical velocity tends to a constant, i.e.
Vc/wi ∼ const. We can therefore identify two different regimes, for low and large Γi, with a
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transition region of limited extent, roughly in the range 0.1 ≤ Γi ≤ 0.5. For releases Γi ≤ 0.1,
which therefore are momentum-dominated, we would therefore expect a dependence of Vc on
the HRR that would be different than a one-third power law on the HRR. In this respect, it is
interesting to note that all data from the experiments by Vauquelin (2005) lay in the transition
region, between forced and lazy releases. These source conditions provide then a further
explanation of the fact that these data do not show a clear dependence of the form Vc ∼ Q1/3.

Similar experiments have been conducted by injecting hot air instead of helium and
therefore involving thermal effects, i.e. characterised by λ ∗ ̸= 0. In these thermal plumes
experiments the range of the source conditions were limited to 0.2≤Γi ≤ 2. All data collected
in the hot-air plumes experiments, for which λ ∗ ̸= 0, indicate that the non-dimensional critical
velocity is reduced compared to the cases in which λ ∗ = 0. The differences between the two
set of data, i.e. λ ∗ ̸= 0 and λ ∗ = 0 are slightly larger than the experimental uncertainty and
show a clear influence of the thermal losses in reducing the magnitude of the non-dimensional
critical velocity.

In Fig. 4.6b we compare the numerical results to the predictions provided by the numerical
simulations. In the numerical model tunnel, we test sources of different sizes and with the
density ratio of the experiments (

ρi

ρ0
= 0.7). The radiative solver is turned off and the walls

are set adiabatic. The results show that the numerical results predict accurately the critical
velocity and the existence of two flow regimes, for forced plume (Γi → 0 ),Vc/wi ∝ const.
and for lazy releases (Γi > 1), Vc/wi ∝ Γ

1/3
i .

4.3.2 Comparison between densimetric plumes and fire plumes

Once identified the dependence of the non-dimensional critical velocity as a function of the
source conditions for densimetric plumes, we aim at finding out how, and to what extent, this
dependence is modified by the presence of a distributed source of buoyancy, such as a flame.
The comparison is performed by means of the model presented in Sect. 2.2, representing
the fire plumes as densimetric plumes induced by a localised (at ground level) source of
buoyancy. Results of the model, applied to two sets of literature data, are presented in
Table 4.3. In evaluating the velocity wi, the temperature Ti (and the relative ρi) we consider
two cases: i) that of negligible radiative fluxes, implying that the whole HRR is converted
into a convective flux (and therefore buoyancy); ii) that of a radiative flux whose intensity
is equal to 30 % of the HRR. It is worth noting that, in both cases, the model predicts a
plume characterised by a decreasing Γi for increasing HRR. This means that, according to
the model, the buoyant releases induced by a fire correspond to plumes that become more
forced (i.e. momentum-driven) for increasing HRR. A comparison between our results on
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Ti=1693(K) Ti=2293(K)
Type Fuel Di (m) Q̇ (kW) wi (m/s) Γi wi (m/s) Γi

Wu Burner Propane 0.1 1.5 0.31 21.5 0.42 12.3
&Bakar 3.0 0.63 5.38 0.85 3.07

7.5 1.57 0.86 2.13 0.49
10.5 2.20 0.44 2.99 0.25
12.0 2.51 0.34 3.41 0.19
15.0 3.14 0.22 4.27 0.12
22.5 4.71 0.09 6.40 0.05
30.0 6.28 0.05 8.54 0.03

Weng Pool fire Methanol 0.08 1.59 0.44 8.21 0.60 4.68
et al. 0.10 3.19 0.57 6.22 0.77 3.55

0.12 4.78 0.59 6.89 0.80 3.94
0.15 8.97 0.71 5.98 0.96 3.41
0.17 12.4 0.73 6.44 1.00 3.68

Table 4.3 Plume parameters for propane and pool fire for using the model presented in Sect.
4.2.2, assuming heat losses by radiation equal to the 30% of the HRR (∆T = Ti −T0 = 1400
K) and no heat losses (∆T = Ti −T0 = 2000 K).

densimetric plumes and results of our model applied to literature data on fire plumes in
tunnels is presented in Fig. 4.7a, taking into account the effects of radiation, and in Fig. 4.7b,
neglecting the role of radiation.

The values Vc/wi and Γi depend on the temperature rise, but the general trend remains
unchanged. We observe a good agreement between model and densimetric plumes for most
data points and for both temperature rise, i.e. ∆Ti is 1400 K and 2000 K. Discrepancies can
be observed for the lowest value of Γi, corresponding to releases with higher HRR. At low
HRR, Vc is proportional to the one-third power of Q, which implies that Vc/wi is ∝ Γ

1/3
i .

For larger values of HRR in the experiments of Oka and Atkinson (1995),Wu and Bakar
(2000) and Li et al. (2010), Vc tends to become a constant independent of Q. This implies a
dependence of Vc/wi that differs from a one-third power and becomes proportional to the
square root of Γi. The numbers of data point following this dependence actually depends on
the temperature rise, and decrease for decreasing ∆Ti. In any case, the data corresponding
to the conditions of a ‘super-critical velocity’ show a dependence on the source Richardson
number that is markedly different from that of densimetric plumes. This means that for the
higher HRR fires, the behaviour of the buoyant release can not be assimilated to that of a
densimetric plume emitted by a ground-level source.

To further enlighten the difference between a densimetric plume and a fire plume, we
show in Fig. 4.8 the dependence of the critical velocity induced by these two different
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types of releases for identical values of the HRR. The reference case study is given by the
experiments of Wu and Bakar (2000). The general behavior of the dependence of Vc as a
function of the HRR is well reproduced by our numerical simulations. The numerical results
tend to slightly overestimate the experimental data for the larger values of HRR. As already
enlightened by previous authors (e.g. Li et al. (2010)), this kind of discrepancies is likely
to be due to the role of heat losses at the tunnel wall. Their intensity in the case of Wu and
Bakar (2000) was certainly amplified by the use of water cooling systems on the external
tunnel walls during the experiments. This can justify the lower values of Vc observed in the
experiments, when compared to our numerical simulations, as well as to similar simulations
performed by other authors (e.g. Van Maele and Merci (2008)).

Results in Fig. 4.8 clearly show that, for low HRR, the values of the critical velocity Vc

obtained for propane fires and densimetric plumes are in close agreement (points denoted
as ‘a’, ‘b’ and ‘c’) and follow the same trend, i.e. a dependence on Q1/3 (Fig. 4.8 a) in
dimensional form and on Γ

1/3
i in non-dimensional form (Fig. 4.8b). For larger values of the

HRR, which would correspond to highly forced, momentum-driven, plumes, characterised by
Γi < 0.1 (Fig. 4.8b), the behavior of the fire plumes and densimetric plumes differ more and
more. The excess of momentum imposed in the densimetric plumes leads to non-dimensional
velocities that tend to a constant (Fig. 4.8b), implying dimensional values of Vc that are
larger than those given by a one-third power law (Fig. 4.8a). In the case of propane fires, we
instead observe the opposite behaviour, characterised by the well acknowledged super-critical
velocity, i.e. independent of Q. As shown in Fig. 4.9, this condition takes place as the size of
the flames becomes ‘large’, i.e. attains and exceeds the height of the tunnel (Fig. 4.9d). In
this case, the buoyancy flux is no longer emitted by a localised ground level source but from
a volume distributed source extending downstream the location where the propane is actually
injected. This displacement of the fire source implies then a reduction of the ventilation
velocity needed to prevent the backlayer flow to move upstream of the position of the fire,
and induce the critical velocity to become less and less sensitive to increase in the HRR, so
that Vc tends to a constant.

4.3.3 The role of radiation

As shown in Fig. 4.10, the radiative fraction, i.e. the percentage of energy transferred from
the fire as radiation on the total HRR (as estimated by the FDS simulations), tends to increase
for increasing Q, from a minimal 30 % for low HRR to values attaining 50 % for large HRR.
Despite this, the effects on the Vc are small. For low values of HRR, with an amount of 30 %
of radiative losses, the values of Vc is altered by approximately 10 %. For large values of
HRR, despite a 50 % reduction of the convective fluxes, we observe no significant difference
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Fig. 4.7 Non-dimensional critical velocity as a function of Γi for ∆Ti equal to (a) 1400 K and
(b) 2000 K.
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Fig. 4.8 Comparison of critical velocity between numerical simulation and experiment in Wu
and Bakar (2000), Γi is obtained assumeing a temperature rise ∆Ti = 1400 K (assuming heat
losses by radiation equal to 30 % of the HRR). Temperature field and fire of a, b, c, d are
shown in Fig. 4.9.

between the cases with and without radiation. This feature is actually in agreement with the
general independence of Vc on variations in Q. The role of the radiative fluxes is then only to
allow the super-critical velocity to be reached for a lower HRR.

4.4 Conclusion

In this study, we have investigated the origin of the so-called super-critical velocity, arising
for large fires in case of longitudinally ventilated tunnel. Our investigation is focused on the
influence of physical phenomena that are related to the presence of fire with high temperatures
and large flames, i.e. of same order as the tunnel height. To that purpose, we have combined
small-scale experiments on densimetric plumes, produced by the injection of light gases
and hot air in a reduced scale tunnel, a simple theoretical model to represent fire plumes as



60 Critical velocity in ventilated tunnels in the case of fire plumes and densimetric plumes

(a)                                                                                           (b) 

                                              (T : )        

         

 

 

(c)                                                                                           (d) 

  

                                                         

          

Fig. 4.9 FDS simulations of propane fires. Spatial distribution of temperature and flames
(x− z plane at y =W/2) for different HRR: 1.0, 3.3, 7.5 and 30 kW.
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Fig. 4.10 Influence of radiation on critical velocity, (a) critical velocity at different HRR and
(b) radiative fraction.
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densimetric plumes, and numerical simulations with the code FDS. The results show the
main following features:

• The role of heat losses at the tunnel walls can induce a slight reduction in the critical
velocity. In the small scale experiments this influence could be evidenced by comparing
results for hot-air and light gas(helium and air mixture) plumes. The difference is
however slightly larger than the experimental uncertainty. Therefore, heat losses due
to diffusive heat fluxes cannot justify the appearance of a super-critical velocity.

• For ‘low’ HRRs, the critical velocity needed to control densimetric plumes and fire
plumes are the same, provided that the densimetric plumes are not excessively mo-
mentum dominated , i.e. for Γi > 0.1. Interestingly, we observe that the dynamics of
fire plumes for increasing HRR behaves as that of densimetric plumes with reduced Γi,
i.e. that become more forced. As the size of the flame in the fire plumes increases and
reaches the tunnel height, its dynamics becomes progressively different from that of a
densimetric plume. This means that densimetric plumes represent a reliable model for
fire plumes in ventilated tunnel, but only in the case of a limited extent of the flames.

• The appearance of a super-critical velocity corresponds to the condition at which the
fire plume no longer behaves as a densimetric plume induced by a localised source of
buoyancy. This phenomenon can therefore attributed to the existence of a distributed
source of buoyancy extending downstream the source and occupying the whole tunnel
height.

As a conclusion, we can then assert that the downstream displacement of the volume
distributed buoyancy source can be then regarded as the main reason for the progressive
weakening of the dependence of the critical velocity on the HRR, i.e. for the appearance of a
super-critical ventilation velocity.

Appendix: sensitivity to different subgrid models

To investigate the influence of subgrid models on the critical velocity, we compare the results
using two subgrid models (the default Deardorff’s model and Vreman’s model) at two heat
release rates, 1000 W and 23000 W.

The comparison is based on the analysis of longitudinal profiles of the velocity and
temperature taken at 2 cm below the ceiling. The temperature profile is shown in Fig. 4.11,
and the velocity profile is shown in Fig. 4.12. The temperature field is shown in Fig. 4.13,
and the velocity field is shown in Fig. 4.14. All the data is the average value between 30 s
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Fig. 4.11 Longitudinal temperature profiles at the ceiling level of HRR at 1000 W (V =0.35
m/s) and 23000 W (V =0.70 m/s).
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Fig. 4.12 Longitudinal velocity profiles at the ceiling level of HRR at 1000 W (V =0.35 m/s)
and 23000 W (V =0.70 m/s).

and 60 s . For HRR=1000 W, the ventilation velocity is 0.35 m/s and for HRR=23000 W, the
ventilation velocity is 0.70 m/s.

For HRR=1000 W, the critical velocity given by Deardorff’s model is 0.38 m/s and is
0.37 m/s by Vreman’s model. For HRR=23000 W, the critical velocity is 0.71 m/s when
computed with the Deardorff’s model and 0.65 m/s with Vreman’s model. It can be seen
that for small HRR, the two subgrid models give similar results while for large HRR the
Deardorff’s model provides a higher critical velocity. The difference between the two is
however little.
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Fig. 4.13 Temperature field of HRR at 1000 W (V =0.35 m/s) and 23000 W (V =0.70 m/s).

Fig. 4.14 Velocity field of HRR at 1000 W (V =0.35 m/s) and 23000 W (V =0.70 m/s).





Chapter 5

Effect of inclination on critical
ventilation velocity

Due to the stack effect, smoke movement in inclined tunnels can be significantly different
from that in horizontal tunnels. This can have a significant influence on the critical velocity.
Previous tunnel fire studies have a suggested correlation between the critical velocity Vc and
the tunnel slope θ in a form Vc/Vc0 = 1+kθ , where Vc0 is the critical velocity in the horizontal
tunnel, and k is a constant. The value of k, determined experimentally and numerically in
different studies, can be however very different from one case to another. The reason for
these difference have not been so far clarified, which motives further research work. In order
to unveil this feature, we tackle this problem theoretically, experimentally and numerically.
The theoretical model relies on an a top-hat plume impinging on the ceiling, and predicts
a dependence, in case of buoyancy-driven releases, of the form Vc/Vc0 =

√
1+Cksinθ

(which is different from that proposed by previous authors). Experiments are performed in a
reduced scale tunnel, inclined from −5◦ to +5◦, and using light gas mixture (air/helium) to
simulate the presence of light smokes. Numerical simulations are performed using FDS (Fire
Dynamics Simulator) with hot-air plume and propane fire.

Experimental results show that the dynamical condition at the source affects the critical
velocity: when the buoyant plume is momentum-driven, the influence of slope is small; when
the buoyant plume is buoyancy-driven, the influence of slope is large. This features are
conveniently reproduced by the analytical model adopting Ck = 2.1. Similar influence of Γi

has been observed in the hot-air plume simulation with that in the experiment. Finally, in the
numerical simulation of propane fire, results show that the influence of the slope on the ratio
Vc/Vc0 is not affected by the heat release rate.
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5.1 Introduction

The critical velocity is the minimum ventilation velocity that has to be imposed in a lon-
gitudinally ventilated tunnel in order to prevent reverse flow of smoke in case of fire. Its
dependence on the heat release rate of the fire (Oka and Atkinson (1995), Wu and Bakar
(2000)), has been so far the object of several studies, focusing on the case of horizontal
tunnels. The case of inclined tunnels has instead received less attention.

The influence of slope (defined as negative when the entrance of fresh air is at a lower
elevation than the source) on the movement of smoke is mainly related to the ‘stack effect’
(Merci, 2008) i.e. to the role of the component of buoyancy along the tunnel axis. For these
reasons we generally expect that, compared to a horizontal tunnel, the critical velocity will
be larger for downhill slope (and smaller for uphill slope).

In the literature, it is common practice to evaluate the effect of slope on the critical
velocity Vc assuming as a reference case the value Vc0 of the critical velocity obtained for the
horizontal case.

For operational purposes, the correlation provided by the US Department of Transport
Subway Environment Simulation Program (SES), is Vc/Vc0 = 1+0.0374s0.8. This correlation
is assumed to hold for tunnels with downgrades from 0◦ to 10◦. The correlation is also
adopted by the NFPA 502 standard (Annex D, 2014 edition).

The results of research studies are instead generally presented by fitting the experimental
or numerical data with a linear relation of the form

Vc/Vc0 = 1+ kθ (5.1)

where k is a coefficient and θ is the inclination of a tunnel defined by angle in degree (in
practice, tunnel slope can also be defined as a percentage s = tanθ ×100%, i.e. given by the
ratio of uphill height to horizontal length).

Atkinson and Wu (1996) conducted experiment in a reduced-scale tunnel using propane
in porous bed burner for varying heat release rates. They found that the critical velocity

ratioVc/Vc0 varied little for values of Q∗ =
Q

ρ0cpT0g1/2H5/2 between 0.2 and 0.4, where Q

is heat release rate, cp is specific heat capacity, ρ0 and T0 are the ambient air density and
temperature, respectively, g is gravity acceleration and H is tunnel height. They concluded
that the stack effect has a slight influence on the critical velocity in the range 0 ≤ θ ≤ 10◦,
and proposed the following relation:

Vc/Vc0 = 1+0.014θ (5.2)
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Fig. 5.1 Critical velocity ratio Vc/Vc0 as a function of tunnel slope.

This correlation is in good agreement with the tendency identified by Vauquelin (2005) in an
isothermal reduced-scale model test, with channel slope between -16% and +16%.

Ko et al. (2010) conducted experiments at five different slopes 0, 2, 4, 6, and 8◦ using
methanol, acetone, and n-heptane at two different fire pools. The heat release rate varied
in the range 1.11−15.6 kW. Ko et al. (2010) found that the critical velocity increases with
tunnel slope for each fuel type and pool size, non-dimensional critical velocity could be fitted
into a single correlation, regardless of the heat release rate:

Vc/Vc0 = 1+0.033θ (5.3)

Yi et al. (2014) investigated the influence of slope in a reduced-scale model (in the range
−3% ≤ s ≤ 3%), using methanol pool fires. Yi et al. (2014) found that, as the tunnel slope
increases from downhill to uphill, the critical velocity decreases at a rate that is independent
of the heat release rate of the fire source, according to a fit of the form:

Vc/Vc0 = 1+0.034s (5.4)

Chow et al. (2015) studied the smoke movement in a reduced-scale tilted tunnel using
gasoline 93# with three pool diameters, and for tunnel slopes up to 9◦, and fitted their results
by the following relation:

Vc/Vc0 = 1+0.022θ (5.5)

An overall comparison of the literature data previously presented is shown in Fig. 5.1.
Note that this plot includes results obtained with different experimental condition, in particular
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Di(m) H/W Di/W Tunnel shape (m)

Atkinson
& Wu
(propane
burner)

0.10 0.89 0.36

Ko et al.
(pool fire)

0.065,
0.085

1 0.16, 0.21

Chow et al.
(pool fire)

0.16, 0.20,
0.26

0.67 0.11, 0.13,
0.17

Table 5.1 Tunnel geometry of reduced scale tests in previous study.

with different typologies of heat sources: propane gas burner for Atkinson and Wu (1996),
pool fire for Ko et al. (2010) and for Chow Chow et al. (2015). The plot also includes the
relation recommended in the NFPA 502. To improve the readability of the graph, we plot only
one-set of data for each experiment, together with the linear relation used by the different
authors to fit their data sets. Note also that we have avoided plotting the data from Yi et al.
(2014), since these are affected by too large experimental uncertainties.

In Fig. 5.1 it is clearly shown that the values of the constant k vary significantly from
one study to another. In principle, this different behavior can be explained by the fact that
these data have been obtained in different experimental set-up, with different geometrical
configuration and different typologies of fire sources. The different experimental set-ups are
summarized in Table 5.1, where we report the values of the source diameter Di, the tunnel
height H and width W , as well as their ratios, the shape of the tunnel section and the typology
of fuel used.
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Here we aim in evaluating the influence of these varying factors on the critical velocity.
Namely, aim of this study is to investigate the influence of the source condition on the critical
velocity in inclined tunnels using light gas mixture (air/helium) as buoyant source. To that
purpose, we propose a mathematical model of top-hat plume in a crossflow in an inclined
tunnel. Its predictions are compared to the results of experiments, performed in a reduced
scale tunnel. We also conduct numerical simulations using the software FDS 6.3, which is
used to investigate the difference between buoyant plumes and propane fires.

5.2 Theory

In a general way, the release of light gas from a a circular source placed at the center of the
tunnel can be represented as a buoyant plume in a crossflow impinging on the ceiling. The
sketch of a plume released in an inclined ventilated tunnel is shown in Fig. 5.2. The balance
equations for mass, vertical momentum, density difference and longitudinal momentum can
be written as 

d
dy

(ρwb2) = 2ρ0ueb, (5.6a)

d
dy

(ρw2b2) = (ρ0 −ρ)gb2cosθ , (5.6b)

d
dy

[
(ρ0 −ρ)wb2]= 0, (5.6c)

d
dy

(ρuwb2) =Cx
√

ρρ0(V −u)2b/π − (ρ0 −ρ)gb2sinθ , (5.6d)

where b is the characteristic plume radius, w and u are its vertical and longitudinal velocities,
respectively, ue = αw is the entrainment velocity, ρ is the plume density, V is the ventilation
velocity, θ is the tunnel inclination, and Cx is a drag coefficient. Boundary conditions imposed
at the source are b(0) = bi, w(0) = wi, u(0) = 0, and ρ(0) = ρi. The equations (5.6a)-(5.6d)
are based on the control equations of the case in a horizontal tunnel (equations 3.4a-3.4d),
detailed information of which is presented in Chapter 3. The vertical and longitudinal
momentum equations are slightly changed to include the effect of the buoyancy. This model
is here used to compute the velocity wH , radius bH and density ρH characterize the plume at
the impingement point.

As in Chapter 3, the critical velocity for the inclined tunnel can be computed by assuming
that the momentum flux imposed by the ventilation flow balances the longitudinal momentum
flux, the pressure force of the buoyant flow at the ceiling and the longitudinal component of
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Fig. 5.2 Sketch of the plume released in an inclined ventilated tunnel and of its impingement
at the tunnel ceiling.

the buoyancy force due to the buoyancy fluctuated momentum:

ρ0Vc
2 = ϕ[ρHuH

2 +
1
2
(ρ0 −ρH)ghcosθ ]+ϕ2(ρ0 −ρH)ghsinθ . (5.7)

Compared with the horizontal case, an additional term ϕ2(ρ0 −ρH)ghsinθ is included to
account the effect of buoyancy in the longitudinal direction. As in Chapter 3, the pressure
term is neglected so that Eq. (5.7) can be approximated as:

ρ0Vc
2 =C2

ρHwH
2 +C2(ρ0 −ρH)bHgsinθ (5.8)

with C2 = ϕ/γ2 and C2 = (ϕ2γ)/2.

To obtain an analytical solution and compare this critical velocity with that in a corre-
sponding horizontal tunnel Vc0 (Eq. (3.8)), an assumption needs to be made; namely that the
term cosθ in Eq. (5.6b) has little effect on ρHwH

2. To validate this assumption, numerical
solutions of Eq. (5.6) have been computed at θ = 0, 5◦ and 10◦. The case θ = 0 provides
a reference value ρH0wH0

2, where ρH0 and wH0 are the computed density and the vertical
velocity at the ceiling for a horizontal tunnel. The critical velocity in the horizontal tunnel
is thus ρ0Vc0

2 =C2ρH0wH0
2. Results of the ratio between ρHwH

2 and ρH0wH0
2 are shown

in Fig. 5.3, which suggest that ρHwH
2 is close to ρH0wH0

2, so ρ0Vc0
2 =C2ρHwH

2. In other
words, the term cosθ in Eq. (5.6b) can be neglected when computing the critical velocity, and
the solutions obtained in Eq. (3.10) can be directly applied to the case of a slightly inclined
tunnel.

With the above assumption, the ratio between critical velocity and its corresponding
horizontal case Vc/Vc0:

Vc

Vc0
=

√
1+Ck

ρ0

ρH
ΓHsinθ (5.9)
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Fig. 5.4 Schematic of the experimental set-up.

with Ck = (8α0C2)/(5C). This solution suggests that the influence of the tunnel slope is
linked to the dynamical conditions of the plume at the impingement, notably on its local
value of the Richardson number ΓH and the local density difference. For a lazy plume, we
expect that ΓH → 1 and

ρ0

ρH
→ 1 (see the discussion in Section 3.2.2), Eq. (5.9) reduces to:

Vc

Vc0
=
√

1+Cksinθ (5.10)

5.3 Experimental and numerical methods

5.3.1 Experiment

Experiments were performed in an isothermal reduced-scale model (Fig. 5.4) of length
L = 8.9 m, width W = 0.36 m and height H = 0.185 m. The tunnel inclination could be
adapted from -5◦ to +5◦ i.e. -8.7% to +8.7%. The side walls are made in PMMA which
allows the flow to be visualised.
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Γi 6.02 1.53 1.48 0.37 0.075 0.181 0.0075
Di 0.1 0.1 0.05 0.05 0.05 0.035 0.025
ρi/ρ0 0.7 0.7 0.7 0.7 0.7 0.53 0.7

Table 5.2 Test conditions for tunnel inclined from -5◦ to +5◦.

The longitudinal ventilation is created by an extraction fan installed at the tunnel outlet.
The volume flow rate of the incoming air is measured by a hot-wire anemometer placed
within a Venturi tube at the tunnel inlet. The buoyant source is modeled by an air/helium
mixture, released from a circular source at the tunnel ground. The flow rates of air and
helium are controlled independently and measured by two flow meters. To visualize the
flow, air/helium mixture is seeded with nebulized oil and a lens is installed at the tunnel inlet.
Note that the mass of oil added into the buoyant release is tiny, and therefore does not affect
the density of the mixture. In the experiments we produced releases with a varying values
buoyancy flux at source:

Bi = g
∆ρ

ρ0

π

4
Di

2wi (5.11)

and providing a varying plume Richardson number:

Γi =
5

8α

ηigbi

w2
i

(5.12)

where α = 0.127 is a reference top-hat plume entrainment constant, ρ0 is the density of
ambient air, ∆ρ = ρ0 −ρi, ρi is the density of plume and wi is the velocity at the source.
The buoyant release could then be classified as momentum-driven forced plumes (Γi < 1),
and buoyancy-driven pure (Γi = 1) and lazy (Γi > 1) plumes (Le Clanche et al., 2014). The
releases ranged from highly forced (Γi ≪ 1) to lazy (Γi > 1), issuing from source with
varying source diameter. Four source diameters were used (Di=2.5, 3.5, 5.0, 10.0 cm), with a
Richardson number in the range 0.0075 ≤ Γi ≤ 6. Note that, in order to avoid low-Reynolds
number effects, lazy plumes had to be released from larger sources. The density ratio (ρi/ρ0)
at the source was set equal to 0.7, except for one case, needed to compare our results with
similar data produced by Vauquelin (2005). The test conditions are summarised in Table 5.2.

5.3.2 Numerical simulations

The simulation was performed in a tunnel with a same cross-section (H/W = 0.5) of the
experimental test but smaller length L (L = 33H instead of L = 44H) to save computation
time. The tunnel inclination was adapted by varying gravity components in x and y direction.
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At the inlet, the ventilation velocity was fixed and at the outlet it was set as ‘open’. The
circular source (Di = 0.1 m) in the experiment is modeled by a square source with the same
area, i.e. 0.09×0.09 m. This was located 4.5 m away from inlet and at the tunnel centre. 50
temperature receptors were set 2 cm below the ceiling from 0.5 m upstream the fire source
to 0.5 m downstream of it. To estimate the position of the front of the backlayering flow
we analysed the longitudinal profile of mean temperature. The front was set at the location
at which the air below the ceiling was characterised by a 2 ◦C difference compared to the
ambient temperature.

Two kinds of buoyant releases were simulated: hot-air plumes and propane fires. The
hot-air plume was used to reproduce the air/helium mixture in the experiments (i.e. same
density ratio and flow rate). To this purpose, the radiation solver was turned off and the
tunnel walls were set as adiabatic. Propane releases were instead used to reproduce the case
of a real fire, including the effects of i) a distributed source of buoyancy (flames) ii) radiation
iii) heat losses at the tunnel walls. The wall thickness was 5 cm, with the wall backed up to
ambient. The wall was defined as ‘concrete’ with a density equal to 2000 kg/m3, a specific
heat of 0.88 kJ/(kg K) and a conductivity of 1.2 w/(m K).

We simulated five cases of propane fire. For four of these, the fire was characterised by a
heat release rate (HRR) that was the same as that of an ‘equivalent case’ of a hot-air plume,
i.e. Q = cpqiρi(Ti −T0) (qi is the flow rate), therefore providing a same buoyancy flux

Bi =
Qg

ρ0cpT0
(5.13)

as that characterising the densimetric plumes. The case characterised by the highest HRR,
i.e. Q = 15 kW, had however no corresponding hot-air plume.

To increase the resolution in the near-source region, the grid was stretched in the lon-
gitudinal direction. The tunnel was then divided into three sub-domains: the domain close
to the inlet is referred to as ‘Left Domain’, the domain containing the source as ‘Middle
Domain’, and the domain close to the outlet as ‘Right Domain’. The lengths of the three
domains were 4 m, 1 m and 1 m, respectively. The grid size in the Middle Domain is kept the
same in the three directions 0.008m×0.008m×0.008m, while in the other domains the size is
0.016m×0.008m×0.008m. As a result, the simulation domain was divided into 420×43×21
grids along the length, width and height direction, i.e. a total of 379260 cells.



74 Effect of inclination on critical ventilation velocity

0.1 1 10
0.2

0.4

0.6

0.8

1

1.2

 

 

 i
1/3

 Exp
 Num

V c
/w

i

i

Fig. 5.5 Non-dimensional critical velocity as function of Γi, in case of buoyant fluid releases:
comparison between the experimental and numerical results

As indicated by (McGrattan et al., 2008), another criterion that has to be satisfied by the
grid size is given by the value of a characteristic fire diameter:

D∗ =

(
Q

ρ0cpT0
√

g

) 2
5

(5.14)

According to (McGrattan et al., 2008) the non-dimensional ratio D∗/δx (δx is the nominal
size of a mesh cell) has to be in the range 4 ∼ 16. Note that this recommendation requires
higher mesh resolution for smaller fires. In the present study the smallest fire was 0.20 kW,
which makes D∗/δx equal to 4, i.e. within the recommended range.

Each simulation lasted 60 s. The flow required approximately 30 s to reach a steady
state (statistically). Therefore the position of the backlayer flow was obtained by averaging
the velocity field between 30 s and 60 s. A first validation of the numerical results could
be obtained by comparison with the experimental results, for the horizontal case. This is
shown in Fig. 5.5, presenting the dependence of the non-dimensional critical velocity Vc/wi

on the plume Richardson number at the source Γi, in case of buoyant plumes. For the four
values of Γi investigated, the FDS predictions agree well with the experimental results and
are proportional to Γi

1/3 as suggested by Le Clanche et al. (2014).

Preliminary numerical results are presented in Fig. 5.6. The temperature field and smoke
in case of a HRR of 0.57 kW and 15 kW show that, at a same ventilation, the backlayering
length is different depending on the slope: a positive slope helps the formation of the
backlayer, while a negative slope helps reaching the critical condition.
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a b

0

+8.7%

-8.7%

Fig. 5.6 Temperature field of propane at 0.57 kw (V =0.33 m/s) and 15.0 kw (V =0.55 m/s) at
-8.7%, 0 and 8.7%.

5.4 Results

5.4.1 Experimental and analytical results of air/helium releases

Figure 5.7 shows the experimental and analytical results concerning the dependence of the
critical velocity, normalized as Vc/wi and Vc/Vc0, as a function of slope for a wide range
of source Richardson number Γi. Generally good agreement has been achieved between
the experiment and the model (Eq. 5.9), adopting a value of the constant Ck equals to 2.1 .
Note in particular that the role of Γi is correctly reproduced. The non-dimensional critical
velocity Vc/wi is clearly dependent on the plume Richardson number Γi, but this dependence
varies significantly with a varying slope. In general we observe that Vc/wi increases with an
increasing slope. This tendency is clearly visible for large values of Γi and tends to fade out
for small Γi. The trend can be also conveniently evidenced by analysing the velocity ratio
Vc/Vc0. For a same slope, as Γi decreases, the ratio Vc/Vc0 becomes closer to one. Note that,
despite some discrepancies mainly due to the experimental uncertainties, this set of data is in
general agreement with the results of Vauquelin (2005).

To explain these results it is useful to recall some fundamental concepts arising from
the literature on buoyant plume dynamics and reflected in the solution in Eq. (5.9). The
Richardson number Γi is a non-dimensional parameter expressing the ratio of the inertial
force to buoyancy at source. A main finding of plume theory (Van Den Bremer and Hunt,
2010) indicates that the lower the value of Γi, the larger the distance needed to attain pure
plume conditions, i.e. ΓH = 1. Based on this, and given the relatively short distance between
the source and the ceiling, highly forced releases impinge on the ceiling with an identical
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Fig. 5.7 Dependence of Vc/wi and of the critical velocity ratio Vc/Vc0 as a function of the
slope, comparison between experimental results and analytical solution of the model Eq.
(5.9).

balance of fluxes. Compared to forced plumes, lazy plumes rapidly attain the condition of a
pure plume (ΓH → 1+) as Γ decreases quickly with distance from the source. When Γi is
large, the flow impinging the ceiling is buoyancy dominated, and the influence of stack effect
is large, so that Vc/Vc0 increases with the increase of slope. Conversely, when Γi is small, the
flow impinging the ceiling is still momentum dominant, and the influence of the stack effect
is small. Therefore for Γi → 0, the ratio Vc/Vc0 remains close to unity, regardless of the slope.

5.4.2 Numerical results of hot-air plume and propane

As specified in Section 5.3.2, the propane fire cases were set by imposing a HRR that was
the same as that imposed in case of hot-air plumes. The comparison of the results of these
two sets of simulations will be then based on the value of a critical tunnel Froude number,
defined as:

Frc =Vc

(
H
Bi

)1/3

(5.15)

and expressing the ratio between the inertia of the ventilation flow (at the critical condition)
and the effects due to the injection of buoyancy at the source.

Figure 5.8 shows a comparison between the experimental and numerical results, consid-
ering the case of the injection of buoyant plumes (with Di=0.1 m). The two sets of data, for
both Γi=6.02 and Γi=1.53, show a general good agreement with each other. Note also that
releases for higher Richardson number, i.e. Γi=12, behave very similarly to those with lower
ones, i.e. Γi=6.02 and 1.53. Therefore, when plotted as the ratio Vc/Vc0 the critical velocity
seems to collapse on a single curve. The only data that differs from this general behavior are
the numerical results for Γi=1.53. The reasons for this are still unclear and require further
investigations.
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numerical results (Di=0.1 m).
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Fig. 5.9 Dependence of the critical Froude number Frc and of the critical velocity ratio
Vc/Vc0 as a function of the slope in case of propane fires. Comparison between experimental
results on buoyant plumes and numerical results on propane fires (Di=0.1 m), the solution
provided by Eq. (5.10) is also plotted.

Figure 5.9 shows the experimental and numerical results with propane for Di=0.1 m.
The numerical results show that, for low values of Q, Frc is insensitive to variations of Q.
Differently from the case of buoyant (air/helium or hot-air) plumes, the dependency of Vc/Vc0

on slope does not vary with heat release rate Q. In fact, all the results relative to propane fires
show a trend which is very similar to that of the results of lazy plumes in the helium releases
experiments. Consequently, the data could be fitted by Eq. (5.10), the analytical solution
proposed for the lazy plume.

Therefore, numerical results support previous findings (Atkinson and Wu, 1996; Chow
et al., 2015; Ko et al., 2010; Yi et al., 2014): in a real fire, Q is of little importance in
determining the critical velocity ratio, both in case of small fire (with small flame extent) or a
large fire (with flame reaching the tunnel ceiling). The different behaviour observed in the
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case of buoyant plumes and propane fires has therefore to be attributed to the presence of
combustion, since this produces a volume distributed buoyant source.

5.5 Conclusions

Literature results on the dependence of the critical velocity on the tunnel slope suggest
that varying conditions (source size and fuel typology) imposed at the source may play a
significant role in determining the critical conditions. To investigate the effect of the source
condition, we propose a mathematical model of a top-hat plume in a crossflow impinging
on the ceiling. We have also investigated the influence of tunnel inclination on the critical
ventilation velocity by means of experiments in a reduced scale tunnel using air/helium
mixture and numerical simulations of buoyant sources induced by the injection of hot-air
and propane fires.

Our analytical solution suggests that the effect of the slope of a buoyant plume can be
expressed as:

Vc

Vc0
=

√
1+Ck

ρ0

ρH
ΓHsinθ (5.16)

A correlation which differs from that proposed in previous studies.
Results of densimetric plume experiments and hot-air plume simulations confirm that

the effect of the slope exhibits a clear dependence on the source Richardson number Γi, in
accordance with Eq. (5.16). For forced releases (small Γi), the effect of slope on the critical
condition is reduced. For lazy releases (large Γi), the effect of slope on the critical condition
is large. These features can be correctly reproduced by Eq. (5.16). For lazy releases, Eq.
(5.16) reduces to:

Vc

Vc0
=
√

1+Cksinθ (5.17)

In case of a volume distributed buoyancy source, i.e. a fire, the power seems to be have
very little influence on the effect of the slope, and the results of Vc/Vc0 could be fitted into a
single line, irrespective of the HRR. In this case, the results show a similar trend with lazy
releases and could be fitted by Eq. (5.17).



Chapter 6

Effect of blockage on critical ventilation
velocity in tunnels

We conducted small-scale experiments and numerical simulations to investigate the effect
of vehicular blockage on the critical velocity in a longitudinal ventilated tunnel. In the
experiment, the fire source was modeled by densimetric plumes (air/helium mixture) and
three sizes of blocks, occupying 15%, 19% and 43% of the tunnel cross-section, were studied.
Numerical simulations were performed with Fire Dynamics Simulator (FDS) and concerned
hot-air plumes and fire sources (propane). Experimental data shows that only the block close
to the fire source affects the critical velocity, whereas the effect of other blocks (of the same
size) located further upstream is trivial. As the fire-blockage distance becomes larger, the
critical velocity changes and becomes close to that of an empty tunnel. The relative position
of the block and the fire source has a large influence on the critical velocity Vc: when the
ventilation flow cannot reach the fire plume directly, a larger Vc is needed compared with that
in an empty tunnel; when the ventilation flow can reach the fire plume directly a smaller Vc is
needed, and the reduction ratio is similar to the blockage ratio. Numerical simulations have
shown good agreement with the experiments with both source conditions, i.e. hot-air plumes
and propane fires. The temperature and velocity fields given by the numerical simulations
suggest that, despite a different dynamical behaviour between densimetric plumes and fire
plumes, the critical velocity changing ratio seems to be only affected by the blocks rather
than by the source condition.
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6.1 Introduction

In case of a tunnel accident, with people evacuating as fast as possible, there might be
vehicles left close to the fire source producing a blocking effect on the ventilation flow (Fig.
6.1). In this case, local ventilation velocity might be increased or decreased due to the relative
position of the fire and the block, inducing significant modifications to the value of the critical
velocity, defined as the minimum longitudinal ventilation velocity that prevents the smoke
from flowing upstream the source. When considering the case of empty tunnel, it is generally
agreed that at low heat-release rates the critical velocity varies as the one-third power of the
heat release rate, and becomes almost independent of it for large heat-release, as the flames
reaches the ceiling (Le Clanche et al., 2014; Oka and Atkinson, 1995; Weng et al., 2016; Wu
and Bakar, 2000). This dependence can however be altered by obstacles placed within the
tunnel, whose presence can significantly affect the incoming ventilation flow.

Fig. 6.1 Tunnel fire with vehicle blockages upstream in the longitudinal ventilation, adapted
from Vauquelin (2008).

In order to study the role of obstacles blocking the ventilation in tunnels, there have been
to date several experimental and numerical studies, focusing for example on the effects of
blocks on the maximum gas temperature beneath ceiling (Hu et al., 2013) or on the smoke
backlayering (Zhang et al., 2016). Most of the studies focused however on the influence of
the obstacles on the critical ventilation velocity. In these studies, a common approach is to
assume that, for a given heat release rate, the velocity needed to push the smoke downstream,
in presence of vehicle blocking the flow, would be the same as that needed within an empty
tunnel. Identifying as ‘1’ and ‘2’ two different positions in the tunnel (see Fig. 6.1 ),
the first located well upstream the burning vehicle (i.e. position 1) and the second placed
where the burning vehicle is placed (i.e. position 2), we can refer to as Vc,1, A1, Vc,2, A2,
the relative flow velocities and tunnel cross-sectional area. Volume conservation implies
that Vc,1A1 =Vc,2A2 =Vc,2A1(1−ψ), where ψ = (A1 −A2)/A1 is the tunnel blockage ratio.
Assuming that Vc,2 =Vc0, and referring to as Vc the velocity at the position ‘1’, we can then
write:

Vc =Vc0(1−ψ) (6.1)

which expresses a reduction of the critical velocity for an increasing of the blockage ratio.
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Oka and Atkinson (1995) studied the effect of blockage by placing a propane gas burner
above a broken vehicle. They found that, for a vehicle occupying the tunnel half-height, with
a reduction of the tunnel section of 12%, the reduction in critical velocity was 15%. For a
reduction of the effective section of 32% the reduction in the critical velocity was instead
40%−45%.

Li et al. (2010) placed a model of a train above a porous burner to simulate a fire occurring
beneath the vehicle. They found that when the train section was 20% of the tunnel section,
the critical velocity was reduced by 23%, which was in accordance with Eq. (6.1).

Lee and Tsai (2012) studied three vehicles types in different array configurations placed
upstream a gasoline pool fire, occupying 5%−31% of the cross-sectional area. They showed
that when the ventilation flow could reach the fire directly, the critical velocity decreased at
same ratio of the blockage ratio, due to the increase of the local ventilation (Eq. (6.1)). The
distance between the fire and the vehicles also influenced the critical velocity but played a
secondary role. On the contrary, when the ventilation could not reach the fire directly, the fire
power increases and the critical velocity increases compared to the case of an empty tunnel.

Li et al. (2012) carried out numerical simulations in a small-scale tunnel using Fire
Dynamic Simulator (FDS) with a fire source placed above a thermally inert cube, and with
a blockage ratio varying from 10% to 71%. They verified that the reduction of the critical
velocity due to blockage could be taken as corresponding blockage ratio in tunnels (Eq.
(6.1)).

Tang et al. (2013) investigated experimentally the effect of the fire-blockage distance on
the critical velocity and the backlayering length by placing a block upstream a porous burner
source. The fire was locally protected by the block, thus inducing a lager critical velocity. It
was found that when the fire-blockage distance was lager than a certain value (larger than 3.3
times the hydraulic diameter of the tunnel) the critical velocity would become the same as
that in an empty tunnel. During the test, when increasing the fire-blockage distance, both
the backlayering length and the critical velocity decreased progressively, until reaching a
constant value. Based on these observations they proposed a correlation relating the critical
velocity in presence of a block and the corresponding critical velocity in an empty tunnel:

Vc

Vc0
=


1

1−ψ

(
1− L

3.3H

) L
H

≤ 3.3,

1
L
H

> 3.3.

(6.2)

where L is the fire-blockage distance, H is the hydraulic diameter of the tunnel. It should
be noted that this correlation is an empirical fit of one set of experimental results for a fixed
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blockage ratio (ψ = 10%). Note also that, this correlation does not hold when the blockage
ratio ψ is too large (for L = 0, when ψ → 1, Vc → ∞).

Rojas Alva et al. (2017) used an air-helium mixture release to simulate the presence of
a fire smoke, with arrays of vehicles placed upstream. Three sizes of vehicles were used,
producing blockage ratios in the range 10−41%. The fire sources were placed downstream
either directly behind the vehicle or behind the spacing between vehicles. It was found that
the critical velocity decreased in proportion with the blockage ratio when the ventilation
could reach the fire directly (Eq. (6.1)). When the ventilation could not reach the fire directly
a larger air flow was instead needed.

Lee and Tsai (2012) and Rojas Alva et al. (2017) found that apart from the blockage ratio,
the relative position of the fire and the block also plays a role: when the fire was protected by
the block and could not be reached by the ventilation flow directly, an increase, rather than a
decrease, in the critical velocity was observed, although the increasing ratio was not studied
in detail. Tang et al. (2013) suggested that when the fire is placed just downstream the block,
the local ventilation flow velocity is smaller compared with the empty tunnels and a larger
critical velocity (according to Eq. (6.2) and imply L = 0) is needed. In Tang et al. (2013),
the protection of the block on the fire is simply indicated by a smaller ventilation velocity
imposed on the fire source, however, no physical argument is provided to explain this.

The effect of the fire-blockage distance and the relative position between the fire and
the blocks on the critical velocity have already been discussed (Lee and Tsai (2012), Lee
and Tsai (2012), Tang et al. (2013)). In this study we experimentally examine these matters
at different blockage ratios using a buoyant plume. Moreover, we interpret the difference
between one block and an array of blocks of the same size placed upstream the fire. Finally,
we perform numerical simulations with densimetric plumes and propane fires to study the
effect of the source conditions on the critical velocity. In a tunnel accident, when a car is
burning, other cars usually need to stop, therefore the situation with several blocks of the
same size placed upstream was investigated.

6.2 Experiments

Experiments were performed in an isothermal reduced scale tunnel of 8.9 m (length) × 0.36
m (width) × 0.185 m (height), sketched in Fig. 6.2, with an hydraulic diameter H = 0.24 m.
The side walls are made in polymethylmethacrylate (PMMA) which allows visual observation.
Detailed information about the experimental set-up can be found in Chapter 2.

The longitudinal ventilation is created by an extraction fan installed at the tunnel outlet.
The volume flow rate of the incoming air is measured by a hot-wire anemometer placed
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Fig. 6.2 Schematic of the experimental set-up.

within a Venturi tube at the tunnel inlet. The buoyant source is modeled by an air/helium
mixture, released from a circular source (diameter Di = 0.1 m) at the tunnel ground. The flow
rates of air and helium are controlled independently and measured by two flow meters. To
visualize the flow, the air/helium mixture is seeded with nebulized oil and a lens is installed at
the tunnel inlet. Note that the mass of oil added into the buoyant release is tiny, and therefore
does not affect the density of the mixture. In the experiment, the velocity at the source wi is
fixed at 0.69 m/s, density ρi at 0.84 kg/m3, the corresponding heat release rate is 0.57 kW,
computed as Q = (ρ0 −ρi)cpT0

π

4
D2

i wi, with cp the heat capacity, and T0 and ρ0 the ambient
air temperature and density, respectively.

To study the effect of blockage on the critical velocity, a set of blocks were placed
upstream the source. Three kinds of blocks, refereed to as block1, block2 and block3, were
used: 0.05 m (length) × 0.1 m (width) × 0.1 m (height) (block1), 0.08 m × 0.16 m × 0.08 m
(block2), and 0.12 m × 0.24 m × 0.12 m (block3), with blockage ratio 15%, 19% and 43%,
respectively. Fig. 6.3 shows a schematic diagram of the top view and the side view in the
tunnel cross-section for different configurations of the blocks. Three blocks configurations,
refereed to as A, B and C, were considered. In configuration A, one block was placed at the
center; in configuration B, one array of blocks were placed at the centre and in configuration
C, two arrays of blocks were placed at the sides. In configuration A and B, the fire source was
placed downstream the block and was partly blocked, so that the ventilation could not reach
the fire plume directly; in configuration C, the blocks were at the sides and the ventilation
flow could reach the fire directly. Note that in configuration B and C there are several blocks
placed upstream the source.

We expect that when the distance between the source and the obstacles is large enough,
the critical velocity would not be affected by any blockage effect. In order to evaluate
this threshold distance, we placed blocks at an increasing distance from the source. For
the configuration block1, the distance was 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 m. For the
configuration block2, the distance was 0, 0.16, 0.32, 0.48 and 0.64 m. For the configuration
block3, the distance was 0, 0.24 and 0.48 m. The uncertainty of the critical velocity was
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estimated by repeating several times the same experiment. The uncertainty of Vc/Vc0 was
estimated of order 10%.

6.3 Numerical simulations

The simulations were performed in a tunnel with the same cross-section of the experimental
test, i.e. H/X = 0.5, but with smaller length to save computation time. At the inlet, the
ventilation velocity was fixed and at the outlet it was set as ‘open’. The fire source is modeled
by a square source with the same area as in the experiment, i.e. of dimensions 0.09 × 0.09 m.
This was located 4.5 m away from the inlet and at the tunnel center.

Two kinds of buoyant releases were simulated: hot-air plumes and propane fires. The
hot-air plume was used to reproduce the air/helium mixture in the experiment (i.e. same
density ratio and flow rate). To this purpose, the radiation solver was turned off and the
tunnel walls were set as adiabatic. Propane releases were instead used to reproduce the case
of a real fire, with small fire at 0.25 kW and large fire at 7.5 kW. The physical property of
the wall was defined as ‘concrete’ with density 2000 kg/m3, specific heat 0.88 kJ/(kg K)

and conductivity 1.2 W/(m K), the wall thickness was 5 cm with the wall backed up to the
ambient. The physical property of the blocks was defined as ‘steel’ with density 7850 kg/m3,
specific heat 0.46 kJ/(kg K) and conductivity 45.8 W/(m K). The thickness was 1 cm.

A set of 50 thermocouples were placed 2 cm below ceiling in a region of 1.0 m (from 0.5
m upstream to 0.5 m downstream of the fire source). The grid size was the same as that in
Chapter 4, with a mesh stretching in the longitudinal direction to obtain finer grids near the
source. The tunnel is divided into three sub-domains: the domain close to the inlet is defined
as ‘Left Domain’, the domain within which the source is placed is referred to as ‘Middle
Domain’, and the domain close to the outlet is defined as ‘Right Domain’. The lengths for
the three domains were 4 m, 1 m and 1 m. The grid size in the Middle Domain is kept the
same in the three directions 0.008m × 0.008m × 0.008m, while in the other domains the size
is 0.016m × 0.008m × 0.008m. As a result, the simulation domain was divided into 420 ×
43 × 21 grids along the length, width and height direction, i.e. a total of 379260 cells. Each
simulation lasted 60 s. The flow required approximately 30 s to reach a statistically steady
state. The position of the backlayer flow was then obtained by averaging the temperature
field between 30 s and 60 s. The critical velocity was obtained by interpolation when the
backlayering length is zero.

In the hot-air plume simulation, the critical velocity for an empty tunnel was 0.25 m/s,
close to that (0.26 m/s) observed experimentally. The critical velocity in an empty tunnel for
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Fig. 6.3 The block locations in the experiment. Three different sizes of blocks (block1
ψ = 0.15, block2 ψ = 0.19, and block3 ψ = 0.43) were used. In configuration A, one block
was placed at the center; in configuration B, one array of blocks were placed at the center; in
configuration C, two arrays of blocks were placed at the side.
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Fig. 6.4 Effect of the fire-blockage distance for configuration A (one block at the center);
comparing experiments with Eq. (6.2) by Tang et al. (2013).

the 0.25 kW source (small fire) is 0.25 m/s (same as the hot-air plume simulation) and for
the 7.5 kW source (large fire) is 0.53 m/s.

6.4 Results

6.4.1 Experimental results

Figure 6.4 shows the non-dimensional critical velocity Vc/Vc0 as a function of the non-
dimensional fire-blockage distance L/H of one block placed at the centre upstream (con-
figuration A) in the experiment and the comparison with Eq. (6.2). We observe the same
trend between the experiment and Tang et al. (2013): as the fire-blockage distance becomes
larger, the critical velocity attains its corresponding value in an empty tunnel. However,
a large discrepancy between the experimental results and the prediction by Eq. (6.2) is
found when the block is placed not far away from the source, especially for a large block. A
possible explanation is related to a different blockage ratio: Tang et al. (2013) used a single
blockage ratio of about 10%, whereas the blockage ratio is much larger in the present study.
Photos of the flame shape in Tang et al. (2013) suggest that the influence of blocking on the
critical velocity is mainly exerted through a local sheltering of the fire. At the same time, a
large acceleration is achieved near the ceiling, which facilitates attaining locally the critical
condition (see also the numerical study in Lee and Tsai (2012)). The changing ratio of the
critical velocity depends on the relative effect of these two factors.

Lee and Tsai (2012) found that the distance between the fire and the block affected Vc

only marginally, which contradicts our observations. The reason is that in Lee and Tsai
(2012), the non dimensional distance L/H is always lower than 0.25, whereas in the present
study we investigate the influence of the fire-blockage distance in a much wider range.
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Fig. 6.5 Effect of the fire-blockage distance for one block (configuration A) and an array of
blocks (configuration B) placed at the centre upstream the source.
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Fig. 6.6 Effect of the fire-blockage distance for two arrays of blocks placed at the sides
upstream the source (configuration C).

Figure 6.5 shows the difference between one block (configuration A) and one array of
blocks (configuration B) placed at the centre, upstream the source. No significant difference
is found between the two sets of data, which suggests that only the block close to the source
affects the critical velocity whereas the influence of the other blocks of the same size located
further upstream is not relevant.

Figure 6.6 shows the effect of the fire-blockage distance for two arrays of blocks placed
at the sides upstream the source (configuration C). In this case, the ventilation could reach
the plume directly which implies a reduction of the critical velocity. Fig. 6.6 shows that
when L = 0, for block1 (ψ=15%) and block2 (ψ=19%) the changing of critical velocity
is negligible, whereas for large blocks (block3) the decreasing ratio of the critical velocity
(37%) is close to the blockage ratio (43%), as suggested by Eq. (6.1).

Figure 6.7 shows the experimental results for L = 0 (i.e. for a block located just upstream
the source), along with the data from a similar study, Rojas Alva et al. (2017). Good
agreement has been achieved between the two data-sets for both conditions (obstructed and
non-obstructed). For non-obstructed case, the data follows Eq. (6.1), although the value is
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slightly larger; for the obstructed case, Vc/Vc0 is larger than 1, but the trend is very different
from Eq. (6.2). The application of Eq. (6.2) to cases with large blockage ratio is therefore
questionable.

6.4.2 Comparison with numerical results

Figure 6.8 shows the comparison between the experimental results and the numerical simula-
tions of the hot-air plume for configuration B when the blocks are located at the centre (a)
and configuration C, when the blocks are located at the sides (b). In (a), when the fire source
is partially blocked, the critical velocity is larger, but when L/H is larger than unity, Vc →Vc0.
Generally, a good agreement between the experiment and the numerical simulations has been
achieved. However, a discrepancy is found for L = 0 (numerical results are smaller). The
reason might be that FDS could not properly model the recirculation flow downstream the
block, which directly affects the trajectory and the entrainment of rising the buoyant plume.
In Lee and Tsai (2012) and Li et al. (2012), the effect of the block just upstream the source on
the critical velocity was not investigated, hence this phenomenon was not observed. In Fig.
6.8 (b), when the ventilation reaches the fire plume directly, the critical velocity is smaller.
For large blocks (configuration C) when L = 0, the numerical result of the decreasing of
Vc/Vc0 (39%) is close to the result of the experiment (37%) and the blockage ratio (43%).

Figure 6.9 shows the temperature and the velocity fields of the hot-air plume in configura-
tion B (blocks at the center) and configuration C (blocks at the sides) for block1 (ψ = 15%)
at the condition L/H = 0.4. The ventilation velocity is 0.26 m/s. The temperature field for
the two cases clearly shows that the backlayer is different even at a same blockage ratio but
with a different relative position between the fire and the blocks. Looking at the velocity field,
with blocks placed at the center, we observe a recirculation flow downstream the block, with
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Fig. 6.8 Comparison between the experimental results and the numerical simulation of hot-air
plume in case of the blocks located at the centre (configuration B) (a) and at the sides
(configuration C) (b) of the tunnel.

a buoyant plume that raises almost vertically before being blown downstream. Although the
ventilation flow is accelerated close to the ceiling, the critical ventilation velocity needed is
larger compared to that in a corresponding empty tunnel. In case of blocks placed at the sides,
the ventilation flow is accelerated, due to a decrease in the cross-section. The accelerated flow
can reach the plume directly, and therefore a smaller critical velocity is needed. A ventilation
velocity profile of the longitudinal velocity along height at 0.05 m before the source is shown
in Fig. 6.10. For the case block1B (ψ = 15%, blocks at the center) a recirculation bubble
takes place close to the ground and the backlayer forms at the ceiling, suggesting that a larger
ventilation is needed to obtain the critical condition. For the case of block1C (ψ = 15%,
blocks at the sides) the bulk flow is accelerated and no backlayer is detected.

Figure 6.11 shows the comparison between the experimental results and the numerical
simulations of propane fire for configuration B when blocks are placed at the centre (a) and
configuration C when the blocks are placed at the sides (b). For the small fire, only the
cases close to the source were investigated, since it was found that when L/H is larger than
unity, the change of the critical velocity is small. Numerical results are generally within the
experimental uncertainties, which suggests that the blockage effect on the critical velocity is
not directly affected by the fire source conditions. For configuration B (blocks at the center),
as in the hot-air plume simulation, we observe a discrepancy between the experimental and
numerical results when the fire-blockage distance L is small (numerical results are smaller).
Fig. 6.12 shows the temperature and velocity fields in configuration B (blocks at the center)
and configuration C (blocks at the sides) for block1 (ψ = 15%) at the condition L/H = 0.4
for large fire. Compared to the hot-air plume, the fire plume represents a volumetric source
of buoyancy within the tunnel. Unlike the hot-air plume, which is deflected at the source
position, the fire plume is displaced downstream while the combustion continues. Although
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Fig. 6.9 Temperature and velocity fields of the hot-air plume in configuration B (blocks at
the center) and configuration C (blocks at the side) for block1 (ψ=15%) at the condition
L/H = 0.4. The ventilation velocity is 0.26 m/s.
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Fig. 6.10 Vertical velocity profiles of the longitudinal velocity at 0.05 m upstream the source
(the same condition as Fig. 6.9).
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Fig. 6.11 Comparison between experimental results and numerical simulation of the propane
fire (large fire at 7.5 kW and small fire at 0.25 kW) in case of blocks located at the centre
(configuration B) (a) and the sides (configuration C) (b) of the tunnel.

different conditions of the source are observed between the hot-air plume simulations and
the propane fire simulations, the critical velocity changing ratio is similar for the two kinds
of simulations. Therefore, in a tunnel with a block, the critical velocity changing ratio seems
to be only affected by the blocks rather than by the source condition.

6.5 Conclusions

We have investigated the influence of the presence of blocks on the critical velocity in a
longitudinally ventilated tunnel. We focused on the influence of the blockage size, the
fire-blockage distance and the relative position of the fire and the block. To that purpose, we
have combined small-scale experiments on densimetric plumes (produced by the injection of
light gases), and numerical simulations with the code FDS with hot-air plumes and propane
fires. The results show the main following features:

• Results from configuration A (one block placed at the center) and configuration B (an
array of blocks placed at the center) suggest that only the block close to the fire source
affects the critical velocity, whereas the effect of other blocks of the same size located
further upstream is negligible.

• The block affects the critical velocity only when it is placed close to source. When the
non-dimensional fire-blockage distance L/H is larger than unity, the change in critical
velocity becomes trivial.

• The relative position of the block and the fire source has a large influence on the critical
velocity Vc, so that different Vc could be obtained even for a same blockage ratio. When
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Fig. 6.12 Temperature and velocity fields of the large fire (7.5 kW) in configuration B (blocks
at the center) and configuration C (blocks at the side) for block1 (ψ=15%) at the condition
L/H = 0.4. The ventilation velocity is 0.55 m/s.

the fire source is partially blocked and the ventilation flow cannot reach the fire plume
directly, a larger Vc is needed compared with the case of a corresponding empty tunnel;
when the ventilation flow can reach the fire directly, a smaller Vc is needed, and the
reduction ratio is similar to the blockage ratio.

• Numerical simulations with hot-air plume and propane fire show good agreement with
experiments with densimetric plumes when blocks are placed at the sides. However a
discrepancy between the experimental and numerical data is found when the blocks
are located at the centre upstream when the non-dimensional fire-blockage distance is
small. The reason might be that the interaction between the recirculation flow (formed
after block) and the plume makes the situation very complex.

• In the numerical simulations, while different flow behavior is observed between the
hot-air plume and the propane fires, the critical velocity changing ratio is similar for
the different source conditions. This suggests that the critical velocity changing ratio
is mainly affected by the presence of blocks, whereas the effect of the source (buoyant
plume, small or large fire) is small.



Chapter 7

Conclusions and Perspectives

Conclusions

In this thesis the critical velocity (a minimum ventilation velocity that prevents the smoke
from flowing upstream the source) in longitudinal ventilated tunnels in case of a fire has been
studied.

The fire is first modeled by a release of light gas in ambient air. In the experiments, the
light fluid is an air/helium mixture. A theoretical model based on the classical plume study
to investigate the critical velocity of a buoyant release has been proposed. The model depicts
a buoyant plume rising from a circular source in a crossflow within a wide horizontal tunnel.
In the experiments it was found that the behavior for momentum-driven and buoyancy-driven
plumes was different. For momentum-driven plumes, the influence of the source radius and
the non-Boussinesq effects (the effects due to large differences between the densities of the
buoyant plume and the ambient fluid) are not negligible, and both the features can be well
described by the model. For buoyancy-driven plumes, both the experiment and the model
show that the non-Boussinesq effects are negligible. The experimental results are on one
hand in a good agreement with the predictions of the theoretical model, on the other hand,
they are also in good agreement with a simple scaling suitable for a line source of pure
buoyancy.

Subsequently, the cause for the so-called ‘super-critical’ velocity in the tunnel fire study
is discussed. This part combines the experimental study of densimetric plumes (air/helium
mixture and hot-air) and the numerical study of propane fires. It was found that heat losses at
the tunnel walls can induce a slight reduction in the critical velocity, but it cannot justify the
appearance of the super-critical velocity. Small fires could be reliably modeled by densimetric
plumes when these are not excessively momentum-driven. Large fires can no longer be
modeled as localized buoyancy source but should be modeled as a distributed buoyancy
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source. The ‘super-critical’ velocity is caused by the downstream displacement of the volume
distributed buoyancy source.

The tunnel inclination on the critical velocity is investigated in the third part. The
influence of slope (defined as negative when the entrance of fresh air is at a lower elevation
than the source) on the movement of smoke is mainly related to the role of the component of
buoyancy along the tunnel axis. Compared to a horizontal tunnel, the critical velocity will be
larger for positive slope (and smaller for negative slope). Our experiments and numerical
simulations on densimetric plumes suggest that the dynamical condition at the source affects
the critical velocity of a buoyant plume: when the buoyant plume is momentum-driven, the
influence of slope is small; when the buoyant plume is buoyancy-driven, the influence of
slope is large. A theoretical model (based on the previous model of the critical velocity
in a horizontal tunnel) which gives a correlation for the critical velocity ratio Vc/Vc0 (Vc

and Vc0 are critical velocities in an inclined and horizontal tunnel) can reliably reproduce
these behaviors. An approximation of the model for a buoyancy-driven plume provides a
correlation: Vc/Vc0 =

√
1+Cksinθ , Ck is a constant fitted from our experiment, which is

independent of the buoyancy flux at the source for buoyancy-driven releases. For a volume
distribute buoyancy source, i.e. a fire, numerical simulations suggest that the power of the
fire has very little influence on the critical velocity ratio Vc/Vc0. Moreover, the results of the
fire simulations show a similar trend with buoyancy-driven releases and can be well fitted by
the correlation provided by the model.

The final part of the thesis focuses on the effect of vehicle blockage on the critical velocity,
experimentally and numerically. The vehicles are modeled by blocks of different sizes placed
upstream of the buoyancy or fire source. Some important parameters, such as the tunnel
blockage ratio, the fire-blockage distance and the relative position of the fire and the block,
are investigated. The similar results obtained when putting one block and an array of blocks
of the same size at the center (laterally) upstream the source suggest that only the block
close to fire source affects critical velocity, whereas the effect of other blocks located further
upstream is negligible. As the fire-blockage distance becomes larger, the critical velocity
changes and becomes close to the value in an empty tunnel. The relative position of the block
and the fire source has large influence on the critical velocity. When the blocks are placed at
the center laterally, the source is partly protected. In this situation the ventilation flow does
not directly impinge on the fire plume and the critical velocity is increased comparing with
the case in an empty tunnel. On the other hand, when the block is placed at the sides laterally,
the ventilation flow directly reaches the fire plume and the critical velocity is then observed
lower than that in an empty tunnel. The reduction ratio of the critical velocity is similar to
the reduction in cross-section of the tunnel induced by the presence of the block, which is
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attributed to the fact that the block induces an increase in the local ventilation velocity thus
promoting the downstream plume thrust. On the contrary, when the block protects the source,
the local ventilation velocity is zero at the source and is increased where the plume is not
present, thus causing an increase in the critical velocity. Similar results are obtained between
the buoyant plumes and the propane fires, which suggests that the variation of the critical
velocity ratio (ratio between the case with blocks and that in an empty tunnel) is mainly
affected by the blocks, whereas the effect of the source condition (buoyant plume, small or
large fire) is small.

Perspectives

Smoke control in case of a fire in a tunnel can be achieved by mechanical ventilation.
One simple strategy is to provide the tunnel with a longitudinal ventilation flow, which is
discussed in the present study. Based on the results obtained in this simple configuration,
more sophisticated strategies could be investigated. Here we introduce two other strategies:
one is to add movable screens at the tunnel ceiling; the other is to develop a transverse system
(see Fig 1.2).

In the first strategy, when the fire starts in a tunnel, the nearby screens are activated,
providing a barrier to retard the smoke flowing to other places. Combining this strategy with
longitudinal ventilation, a much smaller ventilation velocity would be needed to prevent the
smoke from flowing upstream, since a large proportion of the smoke is blocked near the
ceiling. To obtain a good design, the size of the screen and the distance between two screens
needs to be investigated.

In the second strategy, when the fire starts in a tunnel, the nearby fans are activated,
creating air flow to extract the smoke out of the tunnel directly. Compared with the longi-
tudinal ventilation strategy, this strategy requires to detect the location of the fire source,
which requires a corresponding fire detection system to be built. During the fire control
operation, the extraction fans must be powerful enough to create longitudinal flows from
both sides to confine the smoke between the vents and the fire source. Operationally, jet fans
installed beneath the ceiling could be operated together with the extraction vents to produce
the longitudinal flows to suppress smoke from spreading. To design an effective system,
the power of the extraction fans and the distance between two fans needs to be decided.
The longitudinal ventilation study presented in this thesis could provide some preliminary
information for the longitudinal flow needed to confine the smoke.





Appendix A

Introduction of the numerical simulation

A.1 Introduction

A.1.1 Navier-Stokes equations at low-Mach number

General form of the equations

The dynamic and thermodynamical condition of a fluid are fully modelled by the following
system of equations: 

∂ρ

∂ t
+

∂ρui

∂x j
= 0, (A.1a)

∂ρui

∂ t
+

∂ρuiu j

∂x j
=−∂ρ

∂xi
+

∂τi j

∂x j
+ρgi, (A.1b)

∂ρh
∂ t

+
∂ρu jh

∂x j
=

dp
dt

+ τi j
∂ui

∂x j
− ∂qi

∂xi
+S. (A.1c)

where x is the vector position, u(x, t) is the velocity field, ρ(x, t) is the density field, t is
the time, p is the pressure, τi j is the tensor of viscous stresses, h is the internal enthalpy, qi is
the diffusive heat flux and S is the heat sources. The relationship between the mass enthalpy
of a small fluid element (H (x, t)) and the internal enthalpy is:

h = H − 1
2

uiui (A.2)
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In case of a Newtonian fluid, the diffusive heat flux and viscous stresses tensor can be
written as: 

qi =−ρc′pk
∂T
∂xi

, (A.3a)

τi j = µ

(
∂ui

∂x j
+

∂u j

∂xi

)
+µ

′∂uk

∂xk
δi j. (A.3b)

with k the diffusivity, T the temperature, µ = ρν the dynamic viscosity and ν the kinematic
viscocity, and δi j the Kronecker symbol:

δi j =

{
1 for i = j,

0 for i ̸= j.
(A.4)

The second dynamic viscosity, µ ′, is related to the first by µ ′ ≈−2
3 µ . The modified specific

heat c′p, is related to the specific heat of gas, cp, by the following relationship:

c′p =

∫ T
Tre f

cp(T ′)dT ′

T −Tre f
(A.5)

where Tre f is reference temperature.

The Sutherland formula can be used to calculate the value of the dynamic viscosity as a
function of the temperature:

µ = µ0

√
T
T0

1+ Cµ

T0

1+ Cµ

T

(A.6)

where the subscript ‘0’ corresponds to a reference value and Cµ , equals to 123.6 K in dry air.

The equations of ideal gas write: h(T ) = c′p(T )× (T −T0), (A.7a)

p = ρ
R
M

T. (A.7b)

with R the universal constant of ideal gas and M the molar mass of the gas considered.

Low Mach number approximation

By injecting Eq. (A.7a) into the enthalpy (Eq. A.1c) and use the mass conservation equation,
one can have:

∂c′pρT
∂ t

+
∂c′pρTu j

∂x j
=

Dp
Dt

+ τi j
∂ui

∂x j
− ∂qi

∂xi
+S (A.8)
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with the derivative
Dp
Dt

=
∂ p
∂ t

+u j
∂ p
∂x j

. Assuming a low-Mach number, the ideal gas law (Eq.

A.7b) can be written as:

ρT = ρ0T0 (A.9)

where ρ0 and T0 are a density and a reference temperature, respectively. Assuming Eq. (A.9),
Eq. (A.8) reduces to:

∂u j

∂x j
=− 1

c′p

Dc′p
Dt

+
1

c′pρ0T0

(
Dp
Dt

+ τi j
∂ui

∂x j
− ∂qi

∂xi
+S
)

(A.10)

By analyzing the Eq. (A.10), we realize that the divergence of the velocity is equal to the
sum of five terms. After assessing the order of quantity of each term on the right side of A.10
(see (Carlotti, 2013) for more detail), the equation of enthalpy reduces to:

∂u j

∂x j
=− 1

c′p

Dc′p
Dt

+
1

c′pρ0T0

[
∂

∂xi

(
ρc′pκ

dT
dxi

)
+S
]

(A.11)

Final form of the system of equations

In a general way, the pressure can be decomposed in its hydrostatic and hydrodynamic
(refered to as pd) components:

p(x,y,z, t) = p0 +ρ0gi(xi − x0
i )+ pd (A.12)

where p0(t) is the reference pressure at a fixed point of the flow.

Using the decomposition of the pressure by Eq. (A.12) in the set of equations A.1, we
obtain the final system of the Navier-Stokes equations:

∂ρ

∂ t
+

∂ρu j

∂x j
= 0, (A.13a)

∂ρui

∂ t
+

∂ρuiu j

∂x j
=−∂ pd

∂xi
+

∂

∂x j

(
ρν

∂ui

∂x j

)
+(ρ −ρ0)gi, (A.13b)

∂u j

∂x j
=− 1

c′p

Dc′p
Dt

+
1

c′pρ0T0

[
∂

∂xi

(
ρc′pκ

∂T
∂xi

)
+S
]
, (A.13c)

ρT = ρ0T0. (A.13d)
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A.1.2 Poisson equation on the pressure

By dividing the momentum equation (Eq. A.13b) by the density, ρ , rearranging the equation
and taking its divergence, we have:

∂

∂xi

(
1
ρ

∂ pd

∂xi

)
=− ∂

∂ t

(
∂ui

∂xi

)
− ∂

∂xi

(
u j

∂ui

∂x j

)
+

∂

∂xi

[
1
ρ

∂

∂x j

(
ρν

∂ui

∂x j

)]
+gi

∂

∂xi

(
ρ −ρ0

ρ

)
(A.14)

This equation constitutes the Poisson equation. However, because of the left side, corre-

sponding to the variable coefficients
∂

∂xi

(
1
ρ

∂

∂xi

)
, the numerical resolution methods are

inefficient, thus increasing the computation time. We would therefore like to replace the term
1
ρ

∂ pd

∂xi
with an expression that is a gradient.

Term
1
ρ

∂ pd

∂xi
is then replaced with the sum of a gradient and a corrective term that can be

included in the Poisson equation as a perturbation. This corrective term should be as small as
possible and easy to calculate, such as:

1
ρ

grad(pd) = grad(H)+V and V small (A.15)

Several solutions are possible, but the version 6 of FDS arbitrarily chooses H, implying

that V =
1
ρ

grad(pd)−grad(H) and verifies that V is small. The solution proposed by FDS6

is:
1
ρ

grad(pd) = grad
(

p′

ρ

)
− pdgrad

(
1
ρ

)
(A.16)

where pd is a priori small.

With this solution, the Poisson equation becomes:

∂ 2(pd/ρ)

∂xi∂xi
=− ∂

∂xi

(
pd

∂ (1/ρ)

∂xi

)
− ∂

∂ t

(
∂ui

∂xi

)
− ∂

∂xi

(
u j

∂ui

∂x j

)
+

∂

∂xi

[
1
ρ

∂

∂x j

(
ρν

∂ui

∂x j

)]
+gi

∂

∂xi

(
ρ −ρ0

ρ

)
(A.17)

This last formulation of Poisson equation allows pd to be computed, by the numerical
methods.
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A.1.3 Turbulence modeling

Most flows of interest in fire engineering and tunnel building ventilation are turbulent.
However, the domains to be meshed are generally very large, and preclude using Direct
Numerical Simulation (DNS), which would require a mesh size smaller than the smallest
turbulence scales (Kolmogorov scale, ηt). We must therefore model the turbulence. For this,
two types of approaches are possible: the Reynolds-Averaged Navier–Stokes (RANS) or the
Large Eddy Simulation (LES). RANS simulations decompose the instantaneous quantities
into an average quantity and its fluctuation according to the Reynolds decomposition. For a
quantity f , we have:

f =< f >+ f ′ (A.18)

where f ′ represents the fluctuations of f around its temporal average < f >.

The principle of the LES is to use a filter on the Navier-Stokes equations, which will
eliminate small scales fluctuations. The large eddies of the flow are then simulated and the
smaller are modeled by a subgrid model. This approach is based on the assumption that, in a
turbulent flow, the large vortex structures are mostly responsible for the transport of energy
and the momentum. The result of the filter of a quantity f is f :

f (x) =
1

L f

∫
f (r) ·χ

(
x− r
L f

)
dr (A.19)

with L f the filter scale and χ a function defined in R3, of integral 1, which is 1 in the center
and is negligible outside [−1,1]3. Thus, when L f → 0, we have that f → f . For more details
on the average Reynolds and the filters, the reader is referred to Pope (2000).

Applying the above filter and decomposing the quantity f as f = f + fsgs, with fsgs the
unresolved quantity (called the subgrid) that has to be modeled, the set of equations A.13
can be rewritten:

∂ρ

∂ t
+

∂ρu j

∂x j
= 0, (A.20a)

∂ρui

∂ t
+

∂ρuiu j

∂x j
=−∂ pd

∂xi
+

∂

∂x j

(
ρν

∂ui

∂x j

)
+(ρ −ρ0)gi, (A.20b)

∂u j

∂x j
=− 1

c′p

Dc′p
Dt

+
1

c′pρ0T0

[
∂

∂xi

(
ρc′pκ

dT
dxi

)
+S
]
, (A.20c)

ρT = ρ0T0. (A.20d)
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Favre filtering

At constant density, the only cross terms in Eq. (A.20) are uiu j. For a variable density, new
cross terms appear: ρ f with f = ui and f = uiu j. In order to take these terms into account it
is customary to introduce the Favre filtering, defined as:

f̃ =
1
ρ
·ρ f (A.21)

The Favre filter of one of the components of the velocity is then:

ũi =
1
ρ
·ρui (A.22)

The Favre filter of the density is ρ̃ = ρ . Given that ρT = ρ0T0, we also have T̃ = ρ0
ρ
·T0,

i.e.:
ρ̃T̃ = ρ0T0 (A.23)

By applying the Favre filter to equations A.20, we obtain:

∂ ρ̃

∂ t
+

∂ ρ̃ · ũ j

∂x j
= 0, (A.24a)

∂ ρ̃ · ũi

∂ t
+

∂ ρ̃ · ũiu j

∂x j
=−∂ pd

∂xi
+

∂

∂x j

(
ρν

∂ui

∂x j

)
+ ρ̃gi, (A.24b)

∂u j

∂x j
=− 1

c′p

Dc′p
Dt

+
1

c′pρ0T0

[
∂

∂xi

(
ρc′pκ

dT
dxi

)
+S
]
. (A.24c)

We define ρ ′ the fluctuations of ρ at a fixed point, so ρ(t) = ρ(t)+ρ ′(t). We then obtain:

ũ = u+
1
ρ̃

ρ ′u. Moreover, by defining ui = ũi +u′i, we have:

1
c′p

Dc′p
Dt

=
T
c′p

Dc′p
DT

×
∂ ũ j

∂x j
+

T
c′p

Dc′p
DT

×
∂u′j
∂x j

(A.25)
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The set of equations A.24 can then be rewritten as:

∂ ρ̃

∂ t
+

∂ ρ̃ · ũ j

∂x j
= 0, (A.26a)

∂ ρ̃ · ũi

∂ t
+

∂ ρ̃ · ũi · ũ j

∂x j
=−∂ pd

∂xi
+

∂

∂x j

(
ρν

∂ui

∂x j

)
+ ρ̃gi −

∂ ρ̃ ·Ri j

∂x j
, (A.26b)(

1+
T
c′p

c′p
DT

)
∂ ũ j

∂x j
=−

∂M j

∂x j
− 1

c′p

Dc′p
Dt

×
∂u′j
∂x j

+
1

c′pρ0T0

[
∂

∂xi

(
ρc′pκ

dT
dxi

)
+S
]
.

(A.26c)

with
Ri j = ũ′iu

′
j ; M j =

1
ρ̃

ρ ′u′j (A.27)

The diffuse terms of the equations A.26b and A.26c could be simplified as:

(
ρν(T )

∂ui

∂x j

)
≈ ρ̃ ·ν(T )∂ ũi

∂x j
, (A.28a)

1
c′pρ0T0

[
∂

∂xi

(
ρc′pκ(T )

∂T
∂xi

)
+S
]
=

1
c′pρ0T0

[
∂

∂xi

(
ρ̃c′pκ(T )

∂ T̃
∂xi

)
+S

]
(A.28b)

In fact, by developing the diffusive term of Eq. (A.26b) with the relationship ui = ũi +u′i, it
becomes: (

ρν(T )
∂ui

∂x j

)
= ρ̃ν(T )

∂ ũi

∂x j
+ ρ̃[ν̃(T )−ν(T )]

∂ ũi

∂x j
+ρν

∂u′i
∂x j

(A.29)

In the right-hand side, the second and third terms are small compared with the first one. The
same approach is used for the terms in Eq. (A.26c).

The term representing the variation of specific heat in the left hand side of Eq. (A.26c) is
often represented in the form (see (Carlotti, 2013)):

T
c′p(T )

Dc′p
DT

(T )≈ T
c′p(T )

Dc′p
DT

(T ) (A.30)
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By taking these simplifications into account, the set of equations (A.26) can be rewritten:

∂ ρ̃

∂ t
+

∂ ρ̃ · ũ j

∂x j
= 0, (A.31a)

∂ ρ̃ · ũi

∂ t
+

∂ ρ̃ · ũiũ j

∂x j
=−∂ pd

∂xi
+

∂

∂x j

(
ρ̃ν(T )

∂ ũi

∂x j

)
+ ρ̃gi −

∂ ρ̃ ·Ri j

∂x j
, (A.31b)(

1+
T

c′pT

Dc′p
DT

(T )

)
∂ ũ j

∂x j
=−

∂M j

∂x j

+
1

c′p(T )ρ0T0

[
∂

∂xi

(
ρ̃c′p(T )κ(T )

∂ (T )
∂xi

)
+S
]
.

(A.31c)

Only the following two terms are unknown and require a closure assumptions:

Ri j = ũ′iu
′
j ; M j =

1
ρ̃

ρ ′u′j

Closure of the equations

In order to close the system of equations A.31, we must make an hypothesis, known as
‘Boussinesq assumption’, and introduce a turbulent viscosity νt . The terms Ri j and M j can
then be written:

−Ri j = νt

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3
∂uk

∂xk
δi j

)
and M j =− 1

T0
Ds

∂T
∂x j

(A.32)

with
Ds =

νt

Prt
(A.33)

where Prt is the turbulent Prandtl number. The FDS code sets a default value at 0.5, but it
can be changed by the user.

Among all of the turbulent viscosity models, we focus here on the four subgrid models
implemented in FDS6: Smagorinsky constant, Smagorinsky dynamic, Deardorff and Vreman.
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Constant Coefficient Smagorinsky Model In the Smagorinsky model the eddy viscosity
νt is expressed as: 

νt = (CsL f )
2|S|, (A.34a)

|S|=

(
2Si jSi j −

2
3

(
∂ui

∂xi

)2
)1/2

, (A.34b)

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (A.34c)

where Cs is the empirical Smagorinsky constant (generally assumed to equal to 0.2) and
L f = (δxδyδ z)1/3 the scale of the filter (proportional to the mesh size).

Dynamic Smagorinsky Model Differently from the constant coefficient Smagorinsky
model, the coefficient Cs of equations (A.34) is not assumed to be a constant, and is computed
from the flow conditions at each time step, by two successive filters. The first is the grid filter,
the second is the test filter. The test filter width is assumed to be larger than the grid filter
width.

Deardorff’s Model The principle of the Deardorff’s model consists in modeling the
turbulent viscosity νt by the subgrid kinetic energy, Eksgs:

νt =CDL f
√

Eksgs (A.35)

where CD is a model constant.

The subgrid kinetic energy can be calculated by different methods. FDS6 models it as:

Eksgs =
1
2
(
(u− û)2 +(v− v̂)2 +(w− ŵ)2) (A.36)

where u is the average value of u at the grid cell center and û is the weighted average of u
over the adjacent cells. Their respective equations are:

ui jk =
ui jk +ui−1, jk

2
, (A.37a)

ûi jk =
ui jk

2
+

ui−1, jk +ui+1, jk

4
(A.37b)

The terms v, v̂, w and ŵ are defined similarly. The model constant is generally set to 0.1.
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Vreman’s Model The Vreman’s model (Vreman (2004)) is conceived in order to have a
zero turbulent viscosity (νt = 0) when the norm of the velocity gradient zero (ψi jψi j = 0). In
this model, the turbulent viscosity is modeled by:

νt =CV

√
Φβ

ψi jψi j
(A.38)

with 
Φβ = β11β22 −β

2
12 +β11β33 −β

2
13 +β22β33 −β

2
23, (A.39a)

βi j = ∆
2
mψmiψm j, (A.39b)

ψi j =
∂u j

∂xi
. (A.39c)

The Vreman constant, CV , is dependent on the Smagorinsky model by the following relation:
CV ≈ 2.5C2

S . However, during the validation phase of FDS, the developers found that a
Smagorinsky constant equal to 0.17 gave better results. The Vreman constant is thus fixed by
default to CV = 0.07 (but it can also be modified by the user).

A.1.4 Simulation software: Fire Dynamics Simulator

The numerical tool that was chosen to simulate the plumes during this thesis is the three-
dimensional code Fire Dynamics Simulator (FDS). This part presents a general presentation
of the software, describes the different physical models, focusing on the case of fire plumes.

General presentation of the software

FDS is a Computational Fluid Dynamic (CFD) software, suitable for low-Mach number
flows, with a focus on the heat transfer and smoke from fires. It is supplied with a three-
dimensional visualization software called Smokeview and with f ds2ascii which allows a
post-processing of the simulated data. FDS, Smokeview and f ds2ascii are developed by the
National Institute of Standards and Technology (NIST) in the United States and VTT Center
in Finland. Several other collaborators around the world are involved in the improvement of
the code. To date, FDS 6.5.3 is the latest version available to the public.

FDS solves the Navier-Stokes equations presented in the previous sections in DNS or
LES, with a discretization of these equations by finite differences. It uses a scheme of explicit
predictor-corrector, second-order accuracy in time and space, and solve the Poisson equation
by Fast Fourier Transformation - (FFT).
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Different physical models

The FDS code uses many turbulence models, the combustion or the thermal exchanges. This
part presents the models of subgrid and heat exchanges.

Subgrid Models As explained in the previous section, to close the system of equations
A.31, one needs to model the turbulent viscosity νt . For this, FDS offers four subgrid models:
Smagorinsky constant, Smagarinsky dynamic, Deardoff and Vreman. These models have
already been presented in section A.1.3.

The other diffusive parameters, the thermal conductivity (λkt) and the diffusivity of the
materials (κ) are related to the turbulent viscosity by:

λkt =
ρνtcp

Prt
; (ρκ)t =

ρνt

Sct
(A.40)

where the turbulent Prandtl number Prt and the turbulent Schmidt number Sct are considered
as constant for a given scenario. By default, these numbers are equal to Prt = 0.5 and
Sct = 0.5. Both can be modified by the user.

Heat exchanges Models This sub-section presents the different ways of modeling thermal
conduction within solids, as well as heat exchanges at the walls.

The conduction within solids FDS assumes that the solids consist of several layers.
Each layer is made up of several materials which can undergo different thermal degradation
reactions. These reactions form products of chemical reactions such as water vapor and/or
combustion products. FDS uses a model for the conduction of heat in solids, which is
unidirectional (1D) and perpendicular to the solid surfaces:

ρscps

∂Ts

∂ t
=

∂

∂x
λks

∂Ts

∂x
+ q̇′′′s (A.41)

where ρs is the density of the solid, cps the specifi c heat of the solid and λks the thermal
conductivity of the solid. The term q̇′′′s is composed of chemical reactions and absorption due
to radiation:

q̇′′′s = q̇′′′s,c + q̇′′′s,r (A.42)

The term q̇′′′s,c, corresponds essentially to the production rate (loss) of heat obtained by the
pyrolysis model of different types of liquid and solid fuels. The second term, q̇′′′s,r, corresponds
to the sum of the radiations received and emitted by the solid.
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The fluid-solid exchanges By default, FDS calculates the convective heat flux, q̇′′s,c,
from the following equation:

q̇′′s,c = k(Tg −Tw) (A.43)

Where Tg is the temperature of the gases outside the boundary layer, Tw the wall temperature
(the wall surface of the heat exchange side) and k the heat transfer coefficient.

The aim of the thermal exchanges models is to calculate the value of the heat transfer
coefficient k, used in Eq. (A.43). FDS computes this coefficient in three different ways. The
first one, implemented by default in FDS, consists in taking the maximum value between the
terms of natural convection and forced convection:

k = max
[
C|Tg −Tw|1/3,

λk

L̂
Nu
]

(A.44)

where C is an empirical coefficient for natural convection, L̂ is a characteristic length of the
solid, λk is the thermal conductivity of the gas and Nu is the Nusselt number. The parameter
C is equal to 1.52 for horizontal surfaces and 1.31 for vertical or cylindrical surfaces. The
Nusselt number depends on the geometry and the characteristics of the flow:

Nu =C1 +C2RenPrm, (A.45a)

Re =
ρ|u|L

µ
, (A.45b)

Pr ≈ 0.7 (A.45c)

For plane and cylindrical surfaces, the default values are: C1 = 0, C2 = 0.037, n = 0.8, m =
0.33 and L = 1m. For spherical surfaces, the values are equal to C1 = 2, C2 = 0.6, n = 0.5, m
= 0.33 and L = D where D is the diameter of the sphere. All these constants can be modified
by the user.

The second way is to use the log law to model the exchanges close to the walls. This
model is defined as: 

k =
q̇′′w

Tg −Tw
=

ρwcpuτ

T+
, (A.46a)

T+ =
Tg −Tw

Tτ

, (A.46b)

Tτ =
q̇′′w

ρwcpuτ

(A.46c)

In this model, Tg corresponds to the temperature of the gas at the first mesh outside the wall,
Tw and ρw are the temperature and the density at the wall, q̇′′w is the heat flux at the wall and
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Tτ and uτ are the temperature and velocity scales, respectively. The velocity uτ is related to
the wall slip (τ =−ρu2

τ ). This model thus considers that the heat diffuses in an identical way
as momentum.

The third and last method consists in imposing the value of the heat transfer coefficient,
k, on the basis of values given in tables (see for example Bergman et al. (2011)).

It is also possible to impose directly the value of the heat flux, q̇′′w, instead of calculating
it by Eq. (A.43). In this case, two different approaches are possible. The first is to define the
net heat flux. The code will then calculate the temperature of the surface, so that the sum of
the convective and radiative heat fluxes equals the net heat flux. The second method consists
in separately specifying the convective heat flux and the radiative heat flux.

FDS can also impose adiabatic conditions on surfaces. In this case, this is equivalent to
define a net heat flux equal to 0 and an emissivity of the material equal to 1.

Combustion Combustion is introduced into the governing equations via the source terms,
q̇′′′ in the energy transport equation. For most applications, FDS uses a combustion model
based on the mixing-limited, infinitely fast reaction of lumped species. Lumped species
are reacting scalar quantities that represent a mixture of species. The reaction of fuel and
oxygen is not necessarily instantaneous and complete, and there are several optional schemes
that are designed to predict the extent of combustion in under-ventilated spaces. For an
infinitely-fast reaction, reactant species in a given grid cell are converted to product species at
a rate determined by a characteristic mixing time, τmix. The heat release rate per unit volume
is defined by summing the lumped species mass production rates times their respective heats
of formation:

q̇′′′ =−∑
α

ṁ′′′
α ∆h f ,α (A.47)

The characteristic mixing time, τmix, dependents on three physical processes: diffusion,
subgrid-scale (SGS) advection, and buoyant acceleration. Take the fastest between the three
of these processes as its characteristic time scale.

Radiation Radiation is introduced into the governing equations via the source terms, q̇′′′r

in the energy transport equation:

q̇′′′r =−▽ · q̇′′r (x) = κ(x)[U(x)−4πIb(x)] ; U(x) =
∫

4π

I(x,s′)ds′ (A.48)
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where κ(x) is the absorption coefficient, Ib(x) is the source term, and I(x,s) is the solution
of the radiation transport equation (RTE) for a non-scattering gray gas:

s ·▽I(x,s) = κ(x)[Ib(x)− I(x,s)] (A.49)

The radiation equation is solved using a technique similar to a finite volume method for
convective transport. Using about 100 discrete angles, the finite volume solver requires about
20% of the total CPU time of a calculation,



References

Arya, S. and Jr. Lape, J. (1990). A comparative studyof the different criteria for the physical
modelling of buoyant plume rise in a neutral atmosphere. Atmos. Environ., 24:289–295.

Atkinson, G. T. and Wu, Y. (1996). Smoke control in sloping tunnels. Fire Saf. J., 27(4):335–
341.

Barnett, S. J. (1993). A vertical buoyant jet with high momentum in a long ventilated tunnel.
J. Fluid Mech., 252:279–300.

Bergman, T., Lavine, A., Incropera, F., and Dewitt, D. (2011). Introduction to heat transfer.
John Wiley & Sons, 6th Edition.

Bettis, R., Jagger, S., and Wu, Y. (1993). Interim validation of tunnel fire consequence modes,
summary of phase 2 tests. Technical report, HSL Project Report.

Burridge, H., Parker, D., Kruger, E., Partridge, J., and Linden, P. (2017). Conditional
sampling of a high Péclet number turbulent plume and the implications for entrainment.
J. Fluid Mech., 823:26–56.

Carlotti, P. (2013). Éléments de mécanique des fluides pour la modélisation des incendies.
Habilitation à diriger les recherches, École Centrale de Lyon et Université Claude Bernard
Lyon I.

Chow, W. K., Gao, Y., Zhao, J. H., Dang, J. F., Chow, C. L., and Miao, L. (2015). Smoke
movement in tilted tunnel fires with longitudinal ventilation. Fire Saf. J., 75:14–22.

Craske, J., Salizzoni, P., and van Reeuwijk, M. (2017). The turbulent prandtl number in a
pure plume is 3/5. J. Fluid Mech., 822:774–790.

Craske, J. and van Reeuwijk, M. (2015). Energy dispersion in turbulent jets. part 1: Direct
simulation of steady and unsteady jets. J. Fluid Mech., 763:500–537.

Danziger, N. and Kennedy, W. (1982). Longitudinal ventilation analysis fot the glenwood
canyon tunnels. 4th International Symposium Aerodynamics & Ventilation of Vehicule
Tunnels, pages 169–186.

Devenish, B. J., Rooney, G. G., Webster, H. N., and Thomson, D. J. (2010). The entrainment
rate for buoyant plumes in a crossflow. Bound-Lay Meteorol, 134:411–439.

Ezzamel, A., Salizzoni, P., and Hunt, G. R. (2015). Dynamical variability of axisymmetric
buoyant plumes. J. Fluid Mech., 765:576–611.



112 References

Grant, G., Jagger, S., , and Lea, C. (1998). Fires in tunnels. Proc. Roy. Soc. London A,
356(2873-2906).

Hong, W.-H. (2004). The Progress And Controlling Situation Of Daegu Subway Fire Disaster.
Fire Saf. Sci., 6:s–5–1.

Hu, L. H., Tang, W., Chen, L. F., and Yi, L. (2013). A non-dimensional global correlation
of maximum gas temperature beneath ceiling with different blockage–fire distance in a
longitudinal ventilated tunnel. Appl. Therm. Eng., 56(1):77–82.

Hunt, G. R. and Kaye, N. B. (2005). Lazy plumes. J. Fluid Mech., 533:329–338.

Hunt, J. C. R. (1991). Industrial and environmental fluid mechanics. Annu. Rev. Fluid Mech.,
23:1–41.

Hwang, C. C. and Edwards, J. C. (2005). The critical ventilation velocity in tunnel fires-a
computer simulation. Fire Saf. J., 40(3):213–244.

Ingason, H., Li, Y. Z., and Lonnermark, A. (2015). Tunnel Fire Dynamics. Springer New
York, New York, NY.

Jirka, G. H. and Harleman, D. R. F. (1979). Stability and mixing of a vertical plane buoyant
jet in confined depth. J. Fluid Mech., 94(02):275–304.

Kaye, N. B. and Hunt, G. R. (2007). Overturning in a filling box. J. Fluid Mech., 576:297–
323.

Ko, G., Kim, S., and Ryou, H. (2010). An experimental study on the effect of slope on the
critical velocity in tunnel fires. J Fire Sci., 28:27–47.

Le Clanche, J., Salizzoni, P., Creyssels, M., Mehaddi, R., Candelier, F., and Vauquelin, O.
(2014). Aerodynamics of buoyant releases within a longitudinally ventilated tunnel. Exp.
Therm Fluid Sci., 57:121–127.

Lee, Y.-P. and Tsai, K.-C. (2012). Effect of vehicular blockage on critical ventilation velocity
and tunnel fire behavior in longitudinally ventilated tunnels. Fire Saf. J., 53:35–42.

Leitner, A. (2001). The fire catastrophe in the Tauern Tunnel: experience and conclusions
for the Austrian guidelines. Tunnel. Underg. Space Technol., 16(3):217–223.

Li, L., Cheng, X., Cui, Y., Li, S., and Zhang, H. (2012). Effect of blockage ratio on critical
velocity in tunnel fires. J Fire Sci., 30:413–427.

Li, Y., Shing, V. C. W., and Chen, Z. (2003). Fine bubble modelling of smoke flows. Fire
Saf. J., 38(3):285–298.

Li, Y. Z., Lei, B., and Ingason, H. (2010). Study of critical velocity and backlayering length
in longitudinally ventilated tunnel fires. Fire Saf. J., 45(6–8):361–370.

Marro, M., Salizzoni, P., Cierco, F., Korsakissok, I., Danzi, E., and Soulhac, L. (2014). Plume
rise and spread in buoyant releases from elevated sources in the lower atmosphere. Environ
Fluid Mech., 55:50–57.



References 113

McGrattan, K., Hostokka, S., McDermott, R., Floyd, J., Weinschenk, C., and Overholt, K.
(2008). Fire Dynamics Simulator (Version 5) User’s Guide. NIST Special Publication
1019 (Fifth Edition).

Megret, O. and Vauquelin, O. (2000). A model to evaluate tunnel fire characteristics. Fire
Saf. J., 34:393–401.

Merci, B. (2008). One-dimensional analysis of the global chimney effect in the case of fire
in an inclined tunnel. Fire Saf. J., 43(5):376–389.

Michaux, G. and Vauquelin, O. (2008). Solutions for turbulent buoyant plumes rising from
circular sources. Phys. Fluids, 20:066601.

Morton, B. R., Taylor, G. I., and Turner, J. S. (1956). Turbulent gravitational convection
from maintained and instantaneous sources. Proc. Roy. Soc. London A, 234:1–23.

Oka, Y. and Atkinson, G. T. (1995). Control of smoke flow in tunnel fires. Fire Saf. J.,
25(4):305–322.

Pope, S. (2000). Turbulent flows. Cambridge University Press.

Ricou, F. P. and Spalding, D. B. (1961). Measurements of entrainment by axisymmetrical
turbulent jets. J. Fluid Mech., 11:21–32.

Rojas Alva, W. U., Jomaas, G., and Dederichs, A. S. (2017). The influence of vehicular
obstacles on longitudinal ventilation control in tunnel fires. Fire Saf. J., 87:25–36.

Rooney, G. G. and Linden, P. F. (1996). Similarity considerations for non-boussinesq plumes
in an unstratified environment. J. Fluid Mech., 318:237–250.

Salizzoni, P., Creyssels, M., Jiang, L., Mos, A., Mehaddi, R., and Vauquelin, O. (2017).
Influence of source conditions and heat losses on the upwind back-layering flow in a
longitudinally ventilated tunnel. Int. J. Heat Mass Transfer. (in press).

Tang, W., Hu, L. H., and Chen, L. F. (2013). Effect of blockage-fire distance on buoyancy
driven back-layering length and critical velocity in a tunnel: An experimental investigation
and global correlations. Appl. Therm. Eng., 60(1–2):7–14.

Thomas, P. H. (1968). The movement of smoke in horizontal passages against an air flow.
Fire Research Note, No. 723, Fire Research Station, Watford, UK.

Van Den Bremer, T. S. and Hunt, G. R. (2010). Universal solutions for Boussinesq and
non-Boussinesq plumes. J. Fluid Mech., 644:165–192.

van den Bremer, T. S. and Hunt, G. R. (2014). Two-dimensional planar plumes and fountains.
J. Fluid Mech., 750:210–244.

Van Maele, K. and Merci, B. (2008). Application of RANS and LES field simulations to
predict the critical ventilation velocity in longitudinally ventilated horizontal tunnels. Fire
Saf. J., 43(8):598–609.

van Reeuwijk, M., Salizzoni, P., Hunt, G., and Craske, J. (2016). Turbulent transport and
entrainment in jets and plumes: A dns study. Phys. Rev. Fluids, 1:074301.



114 References

Vauquelin, O. (2005). Parametrical study of the back flow occurrence in case of a buoyant
release into a rectangular channel. Exp. Therm Fluid Sci., 29(6):725–731.

Vauquelin, O. (2008). Experimental simulations of fire-induced smoke control in tunnels
using an ‘air-helium reduced scale model’: Principle, limitations, results and future. Tunnel.
Underg. Space Technol., 23:171–178.

Vreman, A. W. (2004). An eddy-viscosity subgrid-scale model for turbulent shear flow:
Algebraic theory and applications. Phys. Fluids, 16(10):3670–3681.

Vuilleumier, F., Weatherill, A., and Crausaz, B. (2002). Safety aspects of railway and road
tunnel: example of the Lötschberg railway tunnel and Mont-Blanc road tunnel. Tunnel.
Underg. Space Technol., 17(2):153–158.

Weng, M. C., Lu, X. L., Liu, F., and Du, C. X. (2016). Study on the critical velocity in a
sloping tunnel fire under longitudinal ventilation. Appl. Therm. Eng., 94:422–434.

Weng, M. C., Lu, X. L., Liu, F., Shi, X. P., and Yu, L. X. (2015). Prediction of backlayering
length and critical velocity in metro tunnel fires. Tunnel. Underg. Space Technol., 47:64–
72.

Wu, Y. and Bakar, M. Z. A. (2000). Control of smoke flow in tunnel fires using longitudinal
ventilation systems - a study of the critical velocity. Fire Saf. J., 35(4):363–390.

Yi, L., Xu, Q. Q., Xu, Z. S., and Wu, D. X. (2014). An experimental study on critical velocity
in sloping tunnel with longitudinal ventilation under fire. Tunnel. Underg. Space Technol.,
43:198–203.

Zhang, S., Cheng, X., Yao, Y., Zhu, K., Li, K., Lu, S., Zhang, R., and Zhang, H. (2016). An
experimental investigation on blockage effect of metro train on the smoke back-layering
in subway tunnel fires. Appl. Therm. Eng., 99:214–223.


	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Tunnel fire hazards
	1.2 Ventilation strategies
	1.2.1 Longitudinal ventilation
	1.2.2 Transverse ventilation

	1.3 Investigation methods
	1.3.1 Large-scale tests
	1.3.2 Small-scale tests
	1.3.3 Numerical simulations

	1.4 Overview of the study
	1.4.1 Objectives
	1.4.2 Plan of the work


	2 Methods
	2.1 Theoretical methods
	2.2 Experimental methods
	2.2.1 Isothermal experiments
	2.2.2 Thermal experiments
	2.2.3 Tests of the sources

	2.3 Numerical methods

	3 The control of light gas releases in ventilated tunnels
	3.1 Introduction
	3.2 Theory
	3.2.1 Analytical solution
	3.2.2 Asymptotic behaviours

	3.3 Experiments
	3.4 Results
	3.5 Conclusions

	4 Critical velocity in ventilated tunnels in the case of fire plumes and densimetric plumes
	4.1 Introduction
	4.1.1 Background
	4.1.2 Literature review
	4.1.3 Open questions

	4.2 Materials and methods
	4.2.1 Experiments with buoyant plumes
	4.2.2 A model for fire plumes
	4.2.3 Numerical simulations

	4.3 Results
	4.3.1 Densimetric plumes: experiments and numerical simulations
	4.3.2 Comparison between densimetric plumes and fire plumes
	4.3.3 The role of radiation

	4.4 Conclusion

	5 Effect of inclination on critical ventilation velocity
	5.1 Introduction
	5.2 Theory
	5.3 Experimental and numerical methods
	5.3.1 Experiment
	5.3.2 Numerical simulations

	5.4 Results
	5.4.1 Experimental and analytical results of air/helium releases
	5.4.2 Numerical results of hot-air plume and propane

	5.5 Conclusions

	6 Effect of blockage on critical ventilation velocity in tunnels
	6.1 Introduction
	6.2 Experiments
	6.3 Numerical simulations
	6.4 Results
	6.4.1 Experimental results
	6.4.2 Comparison with numerical results

	6.5 Conclusions

	7 Conclusions and Perspectives
	Appendix A Introduction of the numerical simulation
	A.1 Introduction
	A.1.1 Navier-Stokes equations at low-Mach number
	A.1.2 Poisson equation on the pressure
	A.1.3 Turbulence modeling
	A.1.4 Simulation software: Fire Dynamics Simulator


	References

