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Abstract

When learning a classification model for a new target domain with only a small
amount of training samples, brute force application of machine learning algorithms
generally leads to over-fitted classifiers with poor generalization skills. On the other
hand, collecting a sufficient number of manually labeled training samples may prove
very expensive. Transfer Learning methods aim to solve this kind of problems
by transferring knowledge from related source domain which has much more data
to help classification in the target domain. Depending on different assumptions
about target domain and source domain, transfer learning can be further categorized
into three categories: Inductive Transfer Learning, Transductive Transfer Learning
(Domain Adaptation) and Unsupervised Transfer Learning. We focus on the first
one which assumes that the target task and source task are different but related.
More specifically, we assume that both target task and source task are classification
tasks, while the target categories and source categories are different but related.
We propose two different methods to approach this ITL problem.

In the first work we propose a new discriminative transfer learning method,
namely DTL, combining a series of hypotheses made by both the model learned
with target training samples, and the additional models learned with source cate-
gory samples. Specifically, we use the sparse reconstruction residual as a basic dis-
criminant, and enhance its discriminative power by comparing two residuals from a
positive and a negative dictionary. On this basis, we make use of similarities and dis-
similarities by choosing both positively correlated and negatively correlated source
categories to form additional dictionaries. A new Wilcoxon-Mann-Whitney statistic
based cost function is proposed to choose the additional dictionaries with unbal-
anced training data. Also, two parallel boosting processes are applied to both the
positive and negative data distributions to further improve classifier performance.

On two different image classification databases, the proposed DTL consistently out-
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performs other state-of-the-art transfer learning methods, while at the same time
maintaining very efficient runtime.

In the second work we combine the power of Optimal Transport and Deep Neu-
ral Networks to tackle the I'TL problem. Specifically, we propose a novel method
to jointly fine-tune a Deep Neural Network with source data and target data. By
adding an Optimal Transport loss (OT loss) between source and target classifier
predictions as a constraint on the source classifier, the proposed Joint Transfer
Learning Network (JTLN) can effectively learn useful knowledge for target classi-
fication from source data. Furthermore, by using different kind of metric as cost
matrix for the OT loss, JTLN can incorporate different prior knowledge about the
relatedness between target categories and source categories. We carried out experi-
ments with JTLN based on Alexnet on image classification datasets and the results
verify the effectiveness of the proposed JTLN in comparison with standard con-
secutive fine-tuning. To the best of our knowledge, the proposed JTLN is the first
work to tackle ITL with Deep Neural Networks while incorporating prior knowledge
on relatedness between target and source categories. This Joint Transfer Learning

with OT loss is general and can also be applied to other kind of Neural Networks.

Keywords: Inductive Transfer Learning, Sparse Representation, Optimal Trans-

port, Computer Vision.
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Résumé

Lors de l'apprentissage d’un modele de classification pour un nouveau domaine
cible avec seulement une petite quantité d’échantillons de formation, ’application
des algorithmes d’apprentissage automatiques conduit généralement a des classi-
fieurs surdimensionnés avec de mauvaises compétences de généralisation. D’autre
part, recueillir un nombre suffisant d’échantillons de formation étiquetés manuelle-
ment peut s’avérer tres cotiteux. Les méthodes de transfert d’apprentissage visent
a résoudre ce type de probléemes en transférant des connaissances provenant d’un
domain source associé qui contient beaucoup plus de données pour faciliter la clas-
sification dans le domaine cible. Selon les différentes hypotheses sur le domaine
cible et le domaine source, I’apprentissage par transfert peut étre classé en trois
catégories: appentissage par transfert inductif, apprentissage par transfert trans-
ducteur (adaptation du domaine) et apprentissage par transfert non surveillé. Nous
nous concentrons sur le premier qui suppose que la tache cible et la tache source
sont différentes mais liées. Plus pécisément, nous supposons que la tache cible et
la tache source sont des taches de classification, tandis que les catégories cible et
les catégories source sont différentes mais liées. Nous proposont deux méthodes
différentes pour aborder ce probléme.

Dans le premier travail, nous proposons une nouvelle méthode d’apprentissage
par transfert discriminatif, & savoir DTL(Discriminative Transfer Learning), com-
binant une série d’hypotheéses faites a la fois par le modele appris avec les échantil-
lons de cible et les modeles supplémentaires appris avec des échantillons des caté-
gories sources. Plus précisément, nous utilisons le résidu de reconstruction creuse
comme discriminant de base et améliore son pouvoir discriminatif en comparant
deux résidus d’un dictionnaire positif et d’un dictionnaire négatif. Sur cette base,
nous utilisons des similitudes et des dissemblances en choisissant des catégories

sources positivement corrélées et négativement corrélées pour former des dictio-
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nnaires supplémentaires. Une nouvelle fonction de cotlit basée sur la statistique
de Wilcoxon-Mann-Whitney est proposée pour choisir les dictionnaires supplémen-
taires avec des données non équilibrées. En outre, deux processus de Boosting
paralleles sont appliqués a la fois aux distributions de données positives et néga-
tives pour améliorer encore les performances du classificateur. Sur deux bases de
données de classification d’images différentes, la DTL proposée surpasse de maniere
constante les autres méthodes de I’état de I’art du transfert de connaissances, tout
en maintenant un temps d’exécution tres efficace.

Dans le deuxiéme travail, nous combinons le pouvoir du transport optimal (OT)
et des réseaux de neurones profond (DNN) pour résoudre le probléeme ITL. Plus
précisément, nous proposons une nouvelle méthode pour affiner conjointement un
réseau de neurones avec des données source et des données cibles. En ajoutant une
fonction de perte du transfert optimal (OT loss) entre les prédictions du classifica-
teur source et cible comme une contrainte sur le classificateur source, le réseau JTLN
(Joint Transfer Learning Network) proposé peut effectivement apprendre des con-
naissances utiles pour la classification cible a partir des données source. En outre,
en utilisant différents métriques comme matrice de coiit pour la fonction de perte
du transfert optimal, JTLN peut intégrer différentes connaissances antérieures sur
la relation entre les catégories cibles et les catégories sources. Nous avons effec-
tué des expérimentations avec JTLN basées sur Alexnet sur les jeux de données
de classification d’image et les résultats vérifient lefficacité du JTLN proposé. A
notre connaissances, ce JTLN proposé est le premier travail a aborder ITL avec des
réseaux de neurones profond (DNN) tout en intégrant des connaissances antérieures

sur la relation entre les catégories cible et source.

Mots clés: Inductive Transfer Learning, Sparse Representation, Optimal Trans-

port, Computer Vision.
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CHAPTER 1

Introduction

Making machines that can learn and solve problems as humans is one of the most
exciting and even controversial dreams of mankind. The corresponding research
topic is called Artificial Intelligence (AI) and is defined as the study of “Intelligent
agents”: any device that perceives its environment and takes actions that maxi-
mize its chance of success at some goal [Russell et al. 1995]. Among many of the
sub-topics of Al, one important research direction, which is commonly known as
Machine Learning (ML), is to study the construction of algorithms that can learn
from and make predictions on data. Arthur Samuel firstly defined Machine Learning
as “the field of study that gives computers the ability to learn without being explic-
itly programmed” [Samuel 1959]. The earliest theoretical foundations of Machine
Learning are built by Valiant, who introduced the framework of Probably Approx-
imately Correct (PAC) learning [Valiant 1984], and Vapnik, who casts the problem
of ‘learning’ as an optimization problem [Vapnik & Vapnik 1998]. Nowadays ma-
chine learning is a combination of several disciplines such as statistics, information
theory, measure theory and functional analysis.

Depending on the nature of the learning “signal” or “feedback” available to a
learning system, Machine Learning tasks are typically classified into three broad
categories: Supervised Learning (where the computer is presented with example
inputs and their desired outputs, the goal is to learn a general rule that maps
inputs to outputs), Unsupervised Learning (where only example inputs are given
without corresponding outputs, the goal is to find structure in the given inputs) and
Reinforcement Learning (where the computer program interacts with a dynamic
environment in which it must perform a certain goal, the program is provided

feedback in terms of rewards and punishments as it navigates its problem space).
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Depending on the desired output of a learning system, Machine Learning tasks can
be categorized differently: in classification, inputs are divided into two or more
classes, and the learner must produce a model that assigns unseen inputs to one or
more of these classes; in regression, the outputs are continuous rather than discrete;
in clustering, a set of inputs is to be divided into groups; in density estimation, the
program finds the distribution of inputs in some space; and dimensionality reduction

simplifies inputs by mapping them into a lower-dimensional space, etc.

Nowadays, technology is in constant evolution and the amount of data is every-
day dramatically increasing. In particular, we are witnessing a spectacular growth
in image and video data due to the rapid spread of electronic devices capable of
recording and sharing pictures and videos (e.g. smart-phones, tablets, digital cam-
eras, surveillance video recorders, etc.) all around the world. Consequently, billions
of raw images and videos are diffused on the Internet. For instance, 612 million
of pictures are uploaded on Flickr during the year 2016!, and approximately 400
hours of new videos are uploaded on Youtube every minute according to a recent
report in 20172. However, most of these images and video content are difficult to
exploit because they have not been properly labeled or edited. Therefore, automatic
classification of images becomes a quite urgent need. In this thesis, we mainly
focus on the supervised classification of images.

Ideally, when enough labeled training samples are given, the supervised clas-
sification problem could be formalized as an Empirical Risk Minimization (ERM)
problem where we search in the hypothesis space for a hypothesis that can minimize
the empirical risk on training samples. Thanks to Hoeffding’s inequality, when the
hypothesis space is properly chosen and the training set is large enough, the learned
hypothesis could have a bounded generalization error (i.e., the difference between
the empirical risk and the expected risk) which guarantees its good performance on
same distributed test samples.

However, in reality this is not always the case. A common problem is that

collecting a sufficient number of manually labeled training samples is very expen-

"https://www.flickr.com/photos/franckmichel/6855169886
’https://expandedramblings.com/index.php/youtube-statistics/
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sive. Especially with the rapid increase of Web data, most of the Web collected
images are unlabeled or with very noisy labels. When the number of images is
enormous, manually labelling them would be expensive and time-consuming. Fur-
thermore, when dealing with visual data, a frequently encountered problem is that
even for a same semantic concept, the images obtained can be surprisingly different
by using different sensors, under different lighting conditions, or having different
backgrounds, etc.. These kind of problems give birth to a pressing need for algo-
rithms that can learn efficiently from a small amount of labeled training data by
leveraging knowledge from related unlabeled or noisy labeled data or differently
distributed data. The research direction that deals with these kind of problems is
called ‘Transfer Learning’

The study of Transfer Learning is motivated by the fact that human, even a
child, can intelligently apply knowledge learned previously to solve new problems
efficiently. An example in [Quattoni et al. 2009] gives an evidence on this point:
when a child learns to recognize a new letter of the alphabet he will use examples
provided by people with different hand-writing styles using pens of different colors
and thicknesses. Without any prior knowledge a child would need to consider a
large set of features as potentially relevant for learning the new concept, so we would
expect the child to need a large number of examples. But if the child has previously
learnt to recognize other letters, he can probably discern the relevant attributes (e.g.
number of lines, line curvatures) from irrelevant ones (e.g. the color of the lines)
and learn the new concept with a few examples. The fundamental motivation for
Transfer Learning in the field of Machine Learning was discussed in a NIPS-95
workshop on “Learning to Learn”, which focused on the need for lifelong machine
learning methods that retain and reuse knowledge which are learned previously.
Research on Transfer Learning has attracted more and more attention since 1995.
Compared to traditional machine learning techniques which try to learn each task
from scratch, transfer learning techniques try to transfer the knowledge from some
previous tasks to a target task when the latter has fewer high-quality training data.

The goal of this thesis is to develop efficient transfer learning algo-

rithms for images classification. In the following we will firstly give a formal

3
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description of this problem, and then introduce our contributions.

1.1 Problem definition

1.1.1 Image classification

In an image classification task our goal is to learn a mapping from images to class
labels. The input images could be represented by pre-extracted feature vectors (as
in chapter 3) or image pixels directly (as in chapter 4), we can therefore assume a
vector x € R? as notation for an image, with d the number of feature dimensions
or number of pixels. For the output class labels, we can either consider binary
classification (as in chapter 3) or multi-class classification (as in chapter 4). In both
cases we can either represent the label of an image with a scalar y (y € {+1, —1} for
binary classification or y a discrete value as class index for multi-class classification)
or a vector y € {0,1}", with n the number of classes.

To build an efficient image classification model, there are two key problems that
need to be solved. The first one is to find a discriminative feature space in which
the class distributions can be easily distinguished from each other, this can either
be done by feature selection (i.e., selecting most discriminative features), or by
mapping the samples into a new feature space (e.g., traditional feature extraction
techniques such as SIFT (Scale-Invariant Feature Transform) or HOG (Histogram
of Oriented Gradient), or the recent representation learning techniques such as
Dictionary Learning or Convolutional Neural Networks (CNNs)). The second one
is to build a proper classifier which maps samples from the feature space to the class
label space. The classifier can either be a generative model which learns the joint
distribution p(x,y) (e.g.,mixture models) or a discriminative model which learns
the conditional distribution p(y|x) (e.g., Support Vector Machines (SVMs)).

In the computer vision community, the first problem is usually the most con-
cerned one, especially with the rapid evolution of Deep Neural Networks, a good
feature representation learned with Convolutional Neural Networks can give excel-
lent classification performance even with a simple classifier (e.g., softmax classifier

or K-Nearest Neighbors classifier). However, the second problem is also important,

4
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especially for transfer learning problems in which we only have a few target train-
ing samples. Depending on the techniques used, these two problems can sometimes
be treated in a unified model (e.g., in CNNs the feature extraction layers and the

softmax classifier are integrated in a unified Deep Neural Network).

1.1.2 Transfer Learning

Train set:

-

Figure 1.1: Comparison of traditional machine learning setting with transfer learn-
ing setting: in traditional machine learning setting, training set and test set should
be formed with images from same categories and follow the same probability dis-
tribution; while in transfer learning setting, an additional training set is also given,
which is allowed to have images from different data distribution, or even from differ-
ent kind of categories. (The labels ‘C’ stands for ‘Castle’, ‘A’ stands for ‘Airport’,
‘B’ stands for ‘Building’, ‘W’ stands for ‘Water’, ‘S’ stands for ‘Snow’, ‘R’ stands
for ‘Road’ and ‘7’ stands for unknown.)

In this section, we follow the notations introduced in [Pan & Yang 2010a] to
describe the problem statement of transfer learning. A domain D consists of two
components: a feature space X and a marginal probability distribution P(x), where
x € X. In general, if two domains are different, then they may have different feature
spaces or different marginal probability distributions. Given a specific domain,
D = {X,P(x)}, a task T consists of two components: a label space ) and a
predictive function f(-), denoted by 7 = {J, f(-)}. The function f(-) is a predictive
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function (i.e., a mapping from the feature space to the label space) that can be used
to make predictions on unseen instances. From a probabilistic viewpoint, f(x) can
also be written as the conditional distribution P(y|x).

Based on the notations defined above, the definition of transfer learning can be

defined as follows [Pan & Yang 2010a],

Definition 1. Given a source domain Dg and learning task Ts, a target domain
Dr and learning task Tr, transfer learning aims to help improve the learning of
the target predictive function fr(-) in Dr using the knowledge in Dg and Tg, where
Ds # Dr, or Ts # Tr.

In the above definition, a domain is a pair D = {X, P(x)}, thus the condition
Ds # Dr implies that either Xg # Xp or P(xg) # P(xr). Similarly, a task is
defined as a pair 7 = {Y, P(y|x)}, thus the condition Tg # Tr implies that either
Vs # Yr or P(ys|xs) # P(yr|xr). When the target and the source domains are
the same, i.e. Dg = Dp, and their learning tasks are the same, i.e. Tg = Tr, the
learning problem becomes a traditional machine learning problem. An illustration
which compares the traditional machine learning setting and the transfer learning
setting is given in Figure 1.1.

Based on different conditions for differences between source domain and tar-
get domain and differences between source task and target task, transfer learning
scenarios can be categorized differently. For example, based on whether the fea-
ture spaces or label spaces are identical or not, transfer learning is categorized
into two settings [Pan 2014]: 1) homogeneous transfer learning (where the inter-
section between source and target feature spaces is not empty (Xs N Xr # 0) and
source and target label spaces are the same (g = Yr), while source and target
marginal distributions and conditional distributions are different (P(xg) # P(xr)
or P(yslxs) # P(yr|xr))), and 2) heterogeneous transfer learning (where the
two feature spaces have empty intersection or the two label spaces are different
(XsNXpr=0or Vs #Vr)).

Another way to categorize transfer learning is based on whether the two domains

or two tasks are identical or not [Pan & Yang 2010a], we have: 1) inductive transfer
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learning (where source and target domains are the same, while source and target
tasks are different but related), 2) unsupervised transfer learning (where source
and target domains are different but related, and source and target tasks are also
different but related), and 3) transductive transfer learning (where source and target
domains are different but related, while source and target tasks are the same).

In this thesis, we mainly focus on the transfer learning scenario where the in-
tersection between source and target feature spaces is not empty (Xs N Xp # 0)
while the source and target label spaces are different (Vs # YVr). According to
the two categorization methods shown above, this scenario can be categorized as
heterogeneous transfer learning or inductive transfer learning.

Specifically, in chapter 3 we consider binary classification problem. We assume
having a target domain Dr with a binary classification task 77, which can be
accessed through a small set of target training data. We also assume having a
source domain Dg with multiple source binary classification tasks 7g1,...,7s L,
which can be accessed through a large set of source training data. As mentioned in
the previous paragraph, here Xs N Xr # () and Vs ; # Yr, Vi € [1, L]. The aim is to
learn a discriminative predictive function for the target task using both the target
training data and the source training data.

In chapter 4 we consider multi-class classification problem. We assume having
a target domain Dr with a multi-class classification task 77, along with a source
domain Dg with a multi-class classification task Tg. Similarly we assume X¢NXr #
() and Vs # Yr. The aim is also to learn a discriminative predictive function for

the target task using both the target training data and the source training data.

1.2 Thesis Contributions

As mentioned above, in this thesis we study the heterogeneous inductive transfer
learning scenario for image classification. Specifically, we propose two different

approaches to tackle this problem:

e In chapter 3 we propose a novel discriminative knowledge transfer method,

which leverages relatedness of various source categories with the target cate-

7
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gory to enhance learning of the target classifier. The proposed Discriminative
Transfer Learning (DTL) explicitly makes use of both positively and nega-
tively correlated source categories to help classification of the target category.
Specifically, DTL chooses from source categories the most positively and neg-
atively correlated categories to act as positive and negative dictionaries for
discriminative classification of target samples using reconstruction residuals
on these dictionaries. We further enhance the performance of DTL by con-
currently running two AdaBoost processes on the positive and negative distri-
butions of the target training set. A novel Wilcoxon-Mann-Whitney(WMW)-
based cost function is also introduced in DTL to deal with the unbalanced

nature of data distribution.

The main contributions of this work are fourfold:

1. We highlight the importance of learning both similarity and dissimilarity
in a transfer learning algorithm through joint use of positively correlated
and negatively correlated source categories, and introduce a Bi-SRC clas-

sifier as the building block of the proposed DTL.

2. We propose a novel cost function based on the Wilcoxon-Mann-Whitney
(WMW) statistic, and apply two parallel boosting processes, both on
positive data and on negative data distribution, thus successfully avoid-

ing the effect of unbalanced data distribution.

3. We conduct theoretical analyses on the proposed DTL algorithm and
provide theoretical guarantees both in terms of error bound and time
complexity.

4. Using different features and evaluating on two different performance met-
rics, we benchmark the proposed DTL on two different databases for the
task of image categorization. We also consistently demonstrate the ef-
fectiveness of the proposed DTL: it displays the best performance with a
large margin in comparison to several state-of-the-art TL methods, with
a runtime that can prove 80 times faster in training and 66 times faster

in testing than the other state-of-the-art TL methods that it has been

8
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compared with.

e In chapter 4 we propose a novel method to jointly fine-tune a Deep Neu-
ral Network with both source data and target data. In contrast to naive
joint fine-tuning, we propose to explicitly account for the relatedness between
source and target tasks and explore such prior knowledge through the design
of a novel loss function, namely Optimal Transport loss (OT loss), which is
minimized during joint training of the underlying neural network, in order
to bridge the gap between the source and target classifiers. This results in a
Joint Transfer Learning Network (JTLN) which can be built upon common
Deep Neural Network structure. In JTLN, the source data and target data
go through same feature extraction layers simultaneously, and then separate
into two different classification layers. The Optimal Transport loss is added
between the two classification layers’ outputs, in order to minimize the dis-
tance between two classifiers’ predictions. As the Optimal Transport loss is
calculated with a pre-defined cost matrix, this JTLN can therefore incorpo-
rate different prior knowledge about the relations between source and target
tasks by using different kind of cost metric. We show two examples of using

the distances between category distributions as cost metric.

The contributions of this work are threefold:

1. We propose a Joint Transfer Learning framework built upon existing

Deep Neural Networks for Inductive Transfer Learning.

2. We extend the Wasserstein loss proposed in [Frogner et al. 2015] to a
more general Optimal Transport loss for comparing probability measures

with different length, and use it as a soft penalty in our JTLN.

3. We show two different ways of using the distance between category dis-
tributions as cost metric for OT loss. Experimental results on two ITL
image classification datasets show that JTLN with these two cost metrics
can achieve better performance than consecutive fine-tuning or simple

joint fine-tuning without extra constraint.

9
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1.3 Outline of the thesis

The structure of this thesis is as follows: chapter 2 reviews existing related work
on general transfer learning algorithms and transfer learning algorithms for vi-
sion recognition problems; chapter 3 describes in detail our work on Discriminative
Transfer Learning using both similarities and dissimilarities; chapter 4 describes in
detail our work on Joint Transfer Learning Network. Finally, in chapter 5 we draw

conclusions and discuss future lines of research.

10
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Literature Review

In this chapter we review related works on general transfer learning algorithms as
well as previous literature on transfer learning algorithms for vision recognition
problems.

Following the two main problems for image classification (which are also the
key problems for vision recognition tasks) introduced in section 1.1.1, we can ap-
proximately categorize related transfer learning algorithms into two categories: 1)
feature representation level knowledge transfer; and 2) classifier level knowledge

transfer. We will introduce these two categories in detail in the following sections.

2.1 Feature representation level knowledge transfer

Feature representation level knowledge transfer algorithms mainly focus on learn-
ing a feature representation which is discriminative for target task by leveraging
knowledge from both target training data and source data. Normally these methods
assume that there exists a mapping from the original input space to an underlying
shared feature representation. This latent representation captures the information
necessary for training classifiers for source and target tasks. The goal of these
algorithms is therefore to uncover the underlying shared representation and the
parameters of the classifier for target task.

Grouped by the feature mapping techniques used by different algorithms, we
will mainly introduce five lines of research works in this section:

In section 2.1.1 we introduce some early transfer learning algorithms which
learns a shared representation with shallow Neural Networks or linear transforma-

tions. Most of these works are proposed for the multi-task learning scenario, which
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considers source tasks and target tasks equally and aim to share knowledge across
all related tasks.

In section 2.1.2 we introduce some transfer learning algorithms which learns a
shared representation using conventional dimensionality reduction methods. Most
of these works are proposed for the domain adaption scenario, which is also a sub-
topic of transfer learning and aim at adapting distributions between source data
and target data.

In section 2.1.3 we introduce some transfer learning algorithms which learn
underlying feature space through the metric learning framework.

In section 2.1.4 we introduce some recent transfer learning algorithms which
make use of the Deep Neural Networks as feature mapping. Similar to the methods
in section 2.1.2, these algorithms are also proposed for domain adaptation scenar-
ios. Since nowadays deep neural networks are the state-of-the-art feature learning
architecture, these DNN based transfer learning algorithms are also the current
state-of-the-art methods for domain adaptation.

In section 2.1.5 we introduce some knowledge transfer algorithms based on dic-
tionary learning (also known as sparse coding) which are designed for the self-taught
learning scenario. Since in self-taught learning we perform knowledge transfer from
unlabeled source samples which are easy to collect, this is a hard but promising

sub-problem of transfer learning.

2.1.1 Representation Learning with Shallow Neural Networks and

linear transformations
2.1.1.1 Transfer learning with shallow Neural Networks

One of the earliest works on transfer learning was [Thrun 1996] which introduced
the concept of lifelong learning. Thrun proposed a transfer algorithm that uses
source training data to learn a function, denoted by ¢ : I — I’, which maps input
samples in feature space I to a new feature space I’. The main idea is to find a
new representation where every pair of positive examples for a task will lie close to

each other while every pair of positive and negative examples will lie far from each
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other.
Let Py, be the set of positive samples for the k-th task and N}, the set of negative

samples, Thrun’s transfer algorithm minimizes the following objective:

m
min > > (30 It —gt) 1= D lebx) —gGx) ) (@1)
9€9 k=1x;€P, x;€Py x; €N

where G is the set of transformations encoded by a two layer neural network.
The transformation g(-) learned from the source data is then used to project the
samples of the target task into the new feature space. Classification for the target
task is performed by running a nearest neighbor classifier in the new space.

The paper presented experiments on a small object recognition task. The results
showed that when labeled data for the target task is scarce, the representation
obtained by running their transfer algorithms on source training data could improve
the classification performance of a target task.

This work is further generalized by several authors [Ando & Zhang 2005]
[Argyriou et al. 2007] [Amit et al. 2007]. The three works can all be casted under

the framework of ‘structural learning’ proposed in [Ando & Zhang 2005].

2.1.1.2 Structural learning methods

In a structural learning framework we assume the existence of task-specific pa-
rameters wy for each task and shared parameters 6 that parameterize a family of
underlying transformations. Both the structural parameters and the task-specific
parameters are learned together via joint risk minimization on some supervised
training data for m related tasks.

Consider learning linear predictors of the form hy,(x) = w1 v(x) for some w € R?
and some transformation v € V : R4 — R?. In particular, let V be the family of
linear transformations: v?(x) = 6x where 0 is a z by d matrix that maps a d
dimensional input vector to a z dimensional space.

Define the task-specific parameters matrix: W = [wy,...,w,,| where w;, € R?

are the parameters for the k-th task and w;y is the parameter value for the j-th

13
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hidden feature and the k-th task. A structural learning algorithm finds the optimal
task-specific parameters W* and structural parameters * by minimizing a jointly

regularized empirical risk:

m 1 nk
arg min Z - Z Loss(wy 0xF,y%) + y®(W) + AT () (2.2)
WO = TR =

The first term in equation (2.2) measures the mean error of the m classifiers by
means of some loss function Loss(-). The second term is a regularization penalty
on the task-specific parameters W and the last term is a regularization penalty on
the structural parameters 6. Different choices of regularization functions ®(W) and

U(0) result in different structural learning algorithms.

[Ando & Zhang 2005] combine a [y regularization penalty on the task-specific
parameters with an orthonormal constraint on the structural parameters, resulting

in the following objective:

m ng m
, 1 Took ok 2 T
arg min E — g Loss(wy, x5, y) + g | wi |3, s.t.00" =1 (2.3)
wo o S . k=1 ’

where 0 is a z by d matrix, z is assumed to be smaller than d and its optimal
value is found using a validation set. Therefore knowledge transfer is realized by
mapping the high dimensional feature vector x to a new feature vector # - x in a
shared low dimensional feature space. The authors propose to solve (2.3) using
an alternating minimization procedure. This algorithm is applied in the context
of asymmetric transfer where auziliary (i.e. source) training sets are utilized to
learn the structural parameter 6. The learned structural parameter is then used
to project the samples of the target task and train a classifier on the new feature
space. The paper presented experiments on text categorization where the source
training sets were automatically derived from unlabeled data (this algorithm can
therefore be regarded as a semi-supervised training algorithm). their results showed
that the proposed algorithm gave significant improvements over a baseline method

that trained on the labeled data ignoring the source training sets.
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This work is further applied to image classification in [Quattoni et al. 2007] in
which they consider having a large set of images with associated captions, while
among them only a few images are annotated with story news labels. They take
the prediction of content words from the captions to be the source tasks and the
prediction of a story label to be the target tasks. The goal is to leverage the
source tasks to derive a lower dimensional representation that captures the rele-
vant information necessary to discriminate between different stories. They perform
experiments with this method both on synthetic data and real news image data.
Results show that when source data labels are suitably related to a target task, the
structural learning method can discover feature groupings that speed up learning

of the target task.

[Argyriou et al. 2007] proposed an alternative model to learn shared represen-
tations. In their approach the structural parameter 6 is assumed to be a d by d
matrix, ¢.e. the linear transformation does not map the inputs x to a lower di-
mensional space. Instead, sharing of hidden features across tasks is realized by a
regularization penalty imposed on the task-specific parameters W, which requires
only a few hidden features to be used by any task (i.e. requires the matrix W to
be row-sparse). This regularization is achieved by using the following matrix norm:
Lia(W) =325, || w/ |2, which is known to promote row sparsity in W. Therefore

the objective can be written as:

m n
1
ar%vno}in E - E Loss(wj 0xF, yF) + vl o(W) (2.4)
k=1 " i=1

The authors showed that this problem is equivalent to a convex problem for
which they developed an alternating minimization algorithm. The paper presented
experiments on a product rating problem where the goal is to predict ratings given
by different subjects. In the context of multi-task learning predicting the ratings
for a single subject can be regarded as a task. The transfer learning assumption
is that predictions made by different subjects are related. The results showed that
their algorithm gave better performance than a baseline model where each task was

trained independently with an /1 penalty.
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[Amit et al. 2007] proposed a regularization scheme for transfer learning based

on a trace norm regularization penalty. Consider the following m by d parameter

1 2 m]

matrix W = [w', w?, ..., w"™], where each row corresponds to the parameters of one

task. The transfer algorithm minimizes the following jointly regularized objective:

m ng

. 1 Tk Kk
arg min E — g Loss(wy x;°, 45 ) + vQ(W 2.5
W — ny, g ( k4 z) ( ) ( )

where Q(W) = >, |v| and v; is the i-th eigenvalue of W. This norm
is used because it is known to induce low rank on solution matrices W
[Srebro & Jaakkola 2003]. Recall that the rank of a d by m matrix W is the mini-
mum z such that W can be factored as W = 8T W, for a z by m matrix W’ and a
z by d matrix 6.

Notice that 6 is no longer in equation (2.5), this is because in this formulation we
do not search explicitly for a transformation 0. Instead, we utilize the regularization
penalty (W) to encourage solutions where the task-specific parameters W can be
expressed as the combination of a few basis shared across tasks. This optimiza-
tion problem can be expressed as a semi-definite program and can be solved with
an interior-point method. However, the authors argue that interior point methods
scale poorly with the size of the training set and proposed a gradient based method
to solve this problem by minimizing a smoothed approximation of (2.5). The au-
thors conducted experiments on a multi-class classification task where the goal is
to distinguish between 72 classes of mammals. The performance of their transfer
learning algorithm is compared to that of a baseline multi-class SVM classifier.
Their results show that the trace-norm penalty can improve multi-class accuracy

when only a few samples are available for training.

2.1.2 Representation Learning with dimensionality reduction

methods

In the previous section 2.1.1, we have introduced some early works on representa-
tion learning using shallow neural networks or linear transformations. A common

assumption of these works is that they assume a representation mapping learned
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with the source data can be directly applied to target data. This is a strong as-
sumption which requests the source data to be very close to the target data, if not
the knowledge transfer with the learned representation mapping will fail.

In this section and the next section 2.1.4 we introduce some transfer learn-
ing algorithms with distribution adaptation which relax this assumption and learn
the shared representation by explicitly minimize predefined distance measures
to reduce the differences between source and target in the marginal distribu-
tion [Si et al. 2010] [Pan et al. 2008] [Pan et al. 2011], or in the conditional dis-
tribution [Satpal & Sarawagi 2007], or both [Long et al. 2013b] [Long et al. 2015]
[Long et al. 2016]. These works are mostly proposed for the Domain Adaptation
scenario, which is a subproblem of transfer learning.

Recall the notations defined in section 1.1.2, assume having a target domain
Dr = {Xp,P(xr)} with a target task 7p = {Vp, P(yr|xr)} (here conditional
probability P(yr|xr) is equivalent to the prediction function fr(-)), and a source
domain Dg = {Xg, P(xg)} with a source task Tg = {Vs, P(ys|xs)}. Given the
assumptions: Xs = Xp, Vs = Vpr, P(xs) # P(xr) and P(ys|xs) # P(yr|xr), the
transfer learning algorithms by distribution adaptation aim to learn a new feature
representation in which the distribution differences between P(xg) and P(xr), or

between P(ys|xs) and P(yr|xr), or both of them are explicitly reduced.

2.1.2.1 Adaptation with Bregman divergence based distance measure

In [Si et al. 2010] the authors proposed a Bregman Divergence based regularization
schema for transfer subspace (representation) learning, which combines Bregman
divergence with conventional dimensionality reduction algorithms. Similar to the
structural learning schema introduced in section 2.1.1, this regularized subspace
learning also learns a feature mapping and a classifier at the same time. The
difference between this work and the structural learning framework is that the reg-
ularization term on the feature transformation parameters is based on a bregman
divergence between the source marginal distribution and the target marginal dis-
tribution. Therefore the difference between the two marginal distributions will be

explicitly reduced during optimization.
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Specifically, assume some feature transformation v?(x) = 6x where 6 is a z by
d matrix that maps the original d dimensional input feature vector into a new z
dimensional feature space. In subspace learning framework we learn this matrix 6

by minimizing a specific objective function F'(6):

0" = arg min F'(0) (2.6)
feR=xd

The objective function F'(€) is designed for specific applications, here it mini-
mizes the data classification loss in the selected subspace according to different as-
sumptions or intuitions. For example, Fisher’s linear discriminant analysis (FLDA)
selects a subspace, where the trace ratio of the within-class scatter matrix and the
between-class scatter matrix is minimized.

To reduce the distribution difference between source and target data, the au-
thors propose a Bregman divergence based regularization term Dy(Pgs || Pr) which
measure the distribution difference of samples drawn from different domains in the
projected subspace 6. By integrating this regularization into (2.6), we obtain a new

framework for transfer subspace learning (TSL):

0* = argmin F'(0) + ADy(Ps || Pr) (2.7)
fcR=zxd

with respect to specific constraints, e.g., 76 = I. Here \ is the regularization
parameter that controls the trade-off between the two terms in (2.7).

Let v : I — I’ be a C! convex function defined on a closed convex set I C
RT. We denote the first order derivative of v by v/, denote its inverse function
by ¢ = (v')~!. The probability density for the source and target samples in the
projected subspace I’ is Pg(v(x)) and Pr(v(x)) respectively. The regularization

term is defined as follows:

Dy(Ps || Pr) = / A(E(Ps(v(x))), E(Pr(v(x))))dp (2.8)

where d(&(Ps(v(x))),&(Pr(v(x)))) is the difference at £(Pr(v(x))) between the
function v and the tangent line to v at point (§(Ps(v(x))),v(£(Ps(v(x))))), du (i.e.,
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du(v(x))) is the Lebesgue measure. The right hand side of (2.8) is also called the
U-divergence on the subspace R<.

The authors show examples of this transfer subspace learning framework using
different F'(6) (i.e. combining with different dimensionality reduction methods),
such as transfered principal components analysis (TPCA), transfered Fisher’s linear
discriminant analysis (TFLDA), transfered locality preserving projections (TLPP)
with supervised setting, etc. They present experimental evidence on both face image
data sets and text data sets, suggesting that the proposed framework is effective to

deal with cross-domain learning problems.

2.1.2.2 Adaptation with Maximum Mean Discrepancy (MMD) as dis-

tance measure

Similar to the previous approach, in [Pan et al. 2008] the authors proposed a trans-
fer learning algorithm which also combines conventional dimensionality reduction
method and a distance measure for measuring the distance between marginal dis-
tributions of source data and target data. In this work the authors make use of
the Maximum Mean Discrepancy as distribution distance measure, and PCA as the
dimensionality reduction method.

Maximum Mean Discrepancy (MMD) is a two samples test criterion for com-
paring distributions based on Reproducing Kernel Hilbert Space (RKHS). Let
X ={z1,...,2n,} and Y = {y1,...,yn,} be two random variable sets from dis-
tributions P and Q, respectively, and H be a universal RKHS with the reproducing
kernel mapping ¢: f(x) = (¢(z), f), ¢ : X — H. The empirical estimate of distance
between P and Q defined by MMD is as follows:

Dist(X,Y) = == " o(e) — - > o(wi) | (2:9)
i=1 i=1

As can be seen, the MMD between two sample sets is equivalent to the distance
between the means of the two sample sets mapped into a RKHS. Based on this,
the authors proposed a new dimensionality reduction method, denoted as MMDE

(Maximum Mean Discrepancy Embedding), to learn a low-dimensional latent space
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F' common to source and target domains. A classifier is then learned in this latent
space with source labeled data, and this learned classifier is directly used for tar-
get classification task (i.e., they assume that in the latent space the conditional

distributions of source data and target data are the same).

Denote the source domain data as Ds,c = {(2{",y{"), ..., (x5 i)}, where
x;"¢ € R™ is the input sample feature and ;"¢ the corresponding label. Similarly,
denote the target domain data as Dy, = {(z1%", y1%"), ..., (l¥, y!o")} with " €
R™. Let the feature projection map be 1. Then learning a common low-dimensional
latent space in which the distributions of the source and target data (i.e., X/,.. and

XI

1ar) can be close to each other is equivalent to minimizing the MMD between X/ .

’
and X,

Dist(X!

sre?

Xt{ar) = Dist(¢(Xsre), ¥(Xtar))

iH i L ( src) i = tar) (2.10)
= m;qﬁow z; —m;mwm H

Denote the corresponding kernel of ¢ o ¢ by k, then equation (2.10) can be

written in terms of the kernel matrices defined by k as:

/
Xtar

Dist(X!

srco

) = trace(K L) (2.11)

where

K — Ksr(;src Ksr(;tar ER(n1+n2)X(n1+n2)

Ktar,src Ktar,tar

is a composite kernel matrix, and L = [L;;] = 0 with

1
TT% Zi, Ty € Xsrc:
—_J
LU n2 Ti, Tj € Xiars
- otherwise.
ninz

The authors proved that this kernel matrix K correspond to an universal kernel,
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so we can learn this kernel matrix instead of learning the universal kernel k. Thus,

the embedding problem can be formulated as the following optimization problem:

min trace(K L) — Atrace(K)
K=K+el

st Ki+ Kjj — 2K = diy, V(i,j) € N, (2.12)

K1=0, K = 0.

where € is a small positive constant and 1 and 0 are the vectors of ones and
zeros, respectively. The second term is added to unfold the high dimensional data
by maximizing the trace of K. This optimization problem can be further rewritten
as a semidefinite program (SDP) which learns K and can be solved by standard SDP
solvers. After obtaining K , the authors then apply PCA and select the leading eigen
vectors to construct low-dimensional representations X/ . and X} ,.. A classifier is

learned with X

e and Y. and is applied directly for classification in target domain.

The authors perform experiments on indoor WiFi localization dataset and text
classification dataset, the results showed that the proposed MMDE can effectively

improve the performance compared to traditional machine learning algorithms.

2.1.2.3 Transfer Component Analysis

The previous MMDE suffers from two major limitations: (1) it is transductive, and
does not generalize to out-of-sample patterns; (2) it learns the latent space by solv-
ing a semi-definite program (SDP), which is a very expensive optimization problem.
Furthermore, in order to construct low-dimensional representations, in MMDE the
obtained K has to be further post-processed by PCA, this step may discard poten-
tially useful information in K. To get ride of these limitations, the authors further
proposed in [Pan et al. 2011] a new approach, named transfer component analysis
(TCA), which tries to learn a set of common transfer components underlying both
domains such that the difference in data distributions in the new subspace of two
domains can be reduced, and data properties can be preserved.

Unlike MMDE, this proposed TCA avoids the use of SDP and can be gener-
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alized to out-of-sample patterns. Besides, instead of using a two-step approach,
they propose a unified kernel learning method which utilizes an explicit low-rank
representation.

First note that the kernel matrix K defined in (2.11) can be decomposed as K =
(KK~Y/?)(K~'2K), which is often known as the empirical kernel map. Consider
the use of a matrix W € RMm+n2)xm that transforms the empirical kernel map
features to an m-dimensional space (where m < nj + n2). The resultant kernel

matrix is then

K= (KK '?WYWTKY?K)= KWW 'K (2.13)

where W = K12/, This kernel K facilitates a readily parametric form for
out-of-sample kernel evaluations. On using the definition of K in (2.13), the MMD

distance between the two domains X/, . and X/, can be written as:

src

/
Xtar

Dist(X!

srey

) = trace((KWW " K)L) = trace(W ' KLKW) (2.14)

In minimizing (2.14), a regularization term trace(W W) is usually needed to
control the complexity of W. This regularization term can also avoid the rank
deficiency of the denominator in the generalized eigenvalue decomposition.

Besides reducing the distance between the two marginal distributions, the pro-
jection ¢ should also preserve data properties that are useful for the target super-
vised learning task. As in PCA or KPCA, this can be done by preserving the data
variance. Therefore by combining the minimization of distribution difference and

preserving of the data variance, the kernel learning problem becomes:

min trace(W ' KLKW) + p trace(W W)
w (2.15)
st. WIKHKW =1,

where 1 > 0 is a trade-off parameter, W T KHKW is the variance of the pro-
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jected samples with H = I, 4, — (1/n1+n2)117 the centering matrix, 1 € R™+n2
is the column vector with all 1’s, and I,14ne € RTn2)X(n1tn2) [ Rmxm gpe
identity matrix. Though this optimization problem involves a non-convex norm
constraint W' KHKW = I,,,, the authors proved that it can still be solved effi-

ciently by the following trace optimization problem:

max trace(W ' (K LK + pul, )W) 'WTKHKW) (2.16)

Similar to kernel Fisher discriminant analysis [Muller et al. 2001], the W so-
lutions in (2.16) are the m leading eigenvectors of (KLK + ul) 'K HK, where
m < nj + ng — 1. This unsupervised approach is named TCA (Transfer Compo-
nent Analysis), based on this, the authors also proposed a semi-supervised version
SST'CA. The effectiveness and efficiency of TCA and SSTCA are verified by exper-
iments on five toy datasets and two real-world applications: cross-domain indoor

WiFi localization and cross-domain text classification.

2.1.2.4 Joint Distribution Adaptation

The previous three works all focus on adapting the marginal distribution difference
between source and target data, while assuming that the conditional distributions of
source and target data in the learned new feature space are equal so that a classifier
learned on source data can be directly applied to target data. However in reality
the equality assumption of conditional distributions is strong and cannot always be
respected. In [Long et al. 2013b] the authors proposed a transfer learning approach,
referred to as Joint Distribution Adaptation (JDA), which aims to jointly adapt both
the marginal distribution and conditional distribution in a principled dimensionality
reduction procedure. Similar to MMDE and TCA, which are introduced previously,
JDA also make use of Mazimum Mean Discrepancy as the distance measure between
distributions.

Assume (xg,ys) represent a labeled sample from source training set, x; repre-
sent an unlabeled sample from target training set, P(xs) and P(x;) represent the

marginal distributions of source and target data respectively, P(ys|xs) and P(y;|x;)
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represent the conditional distributions of source and target data respectively. The
authors propose to adapt the joint distributions by a feature transformation 7" so
that the joint expectations of the features x and labels y are matched between

domains:

mTin | EP(xs,ys)[T(Xs)ays] - EP(Xt,yt)[T(Xt)ayt] H2
~ || Epg) [T(%s)] = Eppey [T(xe)] |2 (2.17)

+ | E by, ) s T(xs)] = By, [ye T (3x2)] |2

Similar to TCA, the authors first use PCA and MMD to reduce the marginal
distributions. Denote X = [x,...,X,] € R™*" the input data matrix, and H =
— %1 the centering matrix, where n = ng+n; and 1 the n X n matrix of ones, then
the co-variance matrix can be computed as XHX . The learning goal of PCA is to
find an orthogonal transformation matrix A € R™** such that the embedded data

variance is maximized:

max trace(A'XHXTA) (2.18)

ATA=I
To reduce the difference between marginal distributions, the empirical MMD,
which computes the distance between the sample means of the source and target

data in the k-dimensional embeddings, should be minimized:

Ns ns+nt
. 1 1
Dist(P(x.), P(xt)) = || — > ATx; - — > ATk |
5 i=1 b j=ns+1 (2.19)
= trace(ATXMyX ' A)

where M is the MMD matrix and is computed as:
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g if x;,x; € D;
(Mo)i; = ntlm, if x;,x; € Dy (2.20)
n;llt , otherwise.

By minimizing equation (2.19) such that equation (2.18) is maximized, the
marginal distributions between domains are drawn close under the new representa-

tion Z = ATX.

Since in this work the authors assume that no labeled sample is provided in
target training set, to reduce the conditional distributions, the authors propose to
explore the pseudo labels of the target data, which can be predicted by applying
some base classifiers trained on the labeled source data to the unlabeled target
data. Furthermore, they authors propose to explore the sufficient statistics of class-
conditional distributions P(xs|ys) and P(x¢|y;) instead of the posterior probabilities
P(ys|xs) and P(y|x;). With the true source labels and pseudo target labels, we
can match the class-conditional distributions P(xs|ys = ¢) and P(x|y: = ¢) with
respect to each class ¢ € {1,...,C} in the label set . The authors modify MMD

to measure the distance between the class-conditional distributions:

Dist(P(xs|ys = ¢), P(x¢|y: = ¢))

1 T 1 To |12
=g 2 ATxi-—5 D ATx| (2.21)
Ns X_E,D(c) nt < ED(C)
i s J t
= trace(ATXM.X'A)

where Dgc) = {x; | x; € Ds Ay(x;) = c} is the set of examples belonging to class
¢ in the source data, y(x;) is the true label of x;, and nff) = |D§C) |. Correspondingly,
D,gc) = {x; | x; € Dy ANy(x;) = ¢} is the set of examples belongs to class ¢ in the
target data, y(x;) is the pseudo (predicted) label of x;, and ntc) = |D§C)]. Thus the

MMD matrices M, involving class labels are computed as follows:
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T X% €D
nﬁ(ﬁc)ngc) ) 19 “*] t
(Me)ij = B x; € DY, x; € DY (2:22)
() (e)?
ns My x; € Dt(C)axj c Dgc)
0, otherwise.

\

By minimizing equation (2.21) such that equation (2.18) is maximized, the con-
ditional distribution between domains are drawn close under the new representation
Z = ATX. To achieve effective and robust transfer learning, JDA aim to simulta-
neously minimize the differences in both the marginal distributions and conditional
distributions across domains. By incorporating equations (2.19) and (2.21) into

equation (2.18), we can get the JDA optimization problem:

c

min > trace(ATXMXTA) + A|All% (2.23)
ATXHXTA=I ‘=]

where A is the regularization parameter. Based on the generalized Rayleigh
quotient, minimizing equations (2.19) and (2.21) such that equation (2.18) is max-
imized is equivalent to minimizing equation (2.19) and (2.21) such that equation
(2.18) is fixed. The previously introduced TCA can be viewed as a special case of

JDA with C = 0.

For nonlinear problems, consider kernel mapping ¥ : x — (x), and kernel
matrix K = 9(X) T4(X) € R?*" They use the Representer theorem to formulate
the Kernel-JDA as:

C

min Ztrace(ATKMCKTA) + A% (2.24)
ATKHK'A=I "—]

The problem of finding the optimal adaptation matrix A as defined in (2.23)
can be reformulated as a generalized eigen decomposition problem. The authors
proposed an iterative approach where in each iterate they first solve the generalized

eigen decomposition problem, then use the new adaptation matrix A to get the
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new features and train a standard classifier, the pseudo target labels can then be
updated with this new classifier to form a new eigen decomposition problem which
can be solved in the next iterate. This EM-like pseudo label refinement procedure
continues until convergence of the pseudo labels.

The authors performed experiments for image classification problems to evaluate
the JDA approach. The results verified that JDA can outperform other methods

(including TCA) on four types of cross-domain image classification problems.

2.1.2.5 Adaptation with Subspace Alignment

In [Fernando et al. 2013] the authors propose a different method compared with the
previously introduced ones. They propose to use two PCAs as dimension reduction
on source domain and target domain respectively. Following theoretical recommen-
dations of Shai-Ben David’s research, this method designs two different subspaces
to represent the two different domains, rather than to drag different domains into a
common shared subspace. This goal is achieved via optimizing a mapping function
that transforms the source subspace into the target one. The authors design a new
domain adaptation approach based on subspace alignment.

Firstly, they transform every source and target sample in the form of a D-
dimensional z-normalized vector (i.e. a vector of zeros mean and unit standard
deviation). Then, by using PCA, they select for each domain d eigenvectors corre-
sponding to the d largest eigenvalues. These eigenvectors are selected as bases
of the source and target subspaces, which are denoted by Xg and X respec-
tively (Xg, X7 € RP*4). Note that X and X} are orthonormal, which means
XXs =14, X[ Xr =14 (I is the identity matrix of size d).

As projecting two different domains into an intermediate common shared sub-
space may lead to information loss in both source and target domains. The authors
suggest to project source and target data to their corresponding subspaces Xg
and X7 respectively. Suppose a source sample yg € R™? and a target sample
yr € R™P the projection is done by ysXg and yrX7. They then provide a
transformation matrix M from Xg to Xp, which is supposed to connect the two

domains and reduce the divergence between the two domains. The transformation
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matrix M is learned via minimizing the following Bregman matrix divergence:

F(M) = || XsM — Xr|7 (2.25)
M* = argmin(F(M)) (2.26)
where || - [|% is the Frobenius norm. Since Xg and Xr are generated from

eigenvectors, they are intrinsically regularized. The Frobenius norm is invariant to

orthonormal operations, therefore equation (2.25) could be rewritten as follows:

F(M) = || X'sXsM — X'sXr |3 = ||M — X's Xr||5 (2.27)

The optimal M* could therefore be obtained as M* = X’g X7, which implies
that the new coordinate system is equivalent to X, = X'¢XgX7. This X, is called
the target aligned source coordinate system. When source and target domains are

the same, then Xg = X7 and M™ is the identity matrix.

A novel similarity function Sim(ys, yr) is defined as follows to compare a source

sample yg with a target sample yr:

Sim(ys,yr) = (ysXsM*)(yrXr) = ysAyr (2.28)

where A = XgM*X/.. This Sim(ys,yr) could be used directly to perform a k-
nearest neighbor classification task. An alternative solution is to firstly project the
source data via X, into the target aligned source subspace and project the target
data into the target subspace using X7, then learn a SVM from this d-dimensional

space.

In this method, the unique hyper parameter is d, the number of eigenvectors.
The authors have derived an upper bound on the similarity function Sim(ys,yr),
which corresponds to d. And they show that d could be efficiently tuned with this

bound to guarantee the solution M* being stable and not over-fitting.
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2.1.2.6 Joint Geometrical and Statistical Alignment

The Subspace Alignment (SA) method which is introduced in the previous subsec-
tion does not assume that there exist a unified transformation to reduce the domain
shifts. The variance of projected source domain data will be different from that of
target domain after mapping the source subspace using a linear map because of the
domain shift. Therefore, SA fails to minimize the distribution mismatch between
domains after aligning the subspaces. In addition, SA cannot deal with situa-
tions where the shift between two subspaces are nonlinear. Subspace Distribution
Alignment (SDA) [Sun & Saenko 2015] improves SA by considering the variance of
the orthogonal principal components. However, the variances are considered based
on the aligned subspaces. Hence, only the magnitude of each eigen direction is
changed which may still fail when the domain shift is large. To solve this problem,
in [Zhang et al. 2017] a unified framework that reduces the shift between domains
both statistically and geometrically is proposed, which is referred to as Joint Geo-
metrical and Statistical Alignment (JGSA).

JGSA reduces the domain divergence both statistically and geometrically by
exploiting both shared and domain specific features of two domains. The JGSA
is formulated by finding two coupled projections (A for source domain, and B for
target domain) to obtain new representations of respective domains, such that (1)
the variance of target domain is maximized, (2) the discriminative information of
source domain is preserved, (3) the divergence of source and target distributions is
small, and (4) the divergence between source and target subspaces is small.

The overall objective function of JGSA is defined as follows:

p{Target Var.} + S{Between Class Var.}

e {Distribution shift} + A{Subspace shift} + S{Within Class Var.}

(2.29)

where A, p and [ are trade-off parameters to balance the importance of each
quantity, and Var. indicates variance.
Denote the source domain data as Xy € RP*"s and the target domain data

as X; € RP*™  where D is the dimension of the data instance, n, and n; are
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number of samples in source and target domain respectively. The target variance

maximization is achieved as follows:

max Tr(B"S,B) (2.30)

where S; = XthXtT is the target domain scatter matrix, Hy = I} — n%ltlz— is

the centering matrix, 1; € R™ is the column vector with all ones.

The source discriminative information is preserved by:

max Tr(ATS,A) (2.31)

max Tr(A"S,A) (2.32)

where Sy, is the within class scatter matrix, and Sy is the between class scatter

matrix of the source domain data.

They employ the MMD criteria to compare the distributions between domains,
which computes the distance between the sample means of the source and target
data in the k-dimensional embeddings. Then they follow the idea of JDA (which is
introduced previously in subsection 2.1.2.4) to minimize the conditional distribution
shift between domains. By combining the marginal and conditional distribution
shift minimization terms, the final distribution divergence minimization term is

defined as:

My, Mgy A
minTr [AT BT} (2.33)
A,B M, M,| |B

where My, My, My and M, construct the relationships between source domain

data and target domain data.

Similar to SA, they also reduce the discrepancy between domains by moving
closer the source and target subspaces. The subspace divergence minimization is

achieved by:
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inl|A— B|? 2.34
rjgljlgl! % (2.34)

By using term (2.34) together with (2.33), both shared and domain specific
features are exploited such that the two domains are well aligned geometrically and
statistically.

Finally, by incorporating the above five quantities (2.30), (2.31), (2.32), (2.33)

and (2.34) together, the objective function (2.29) could be rewritten as follows:

- S, 0] |A
Tr| | AT BT} b5
- 0 ,uSt B
max = (2.35)
! M,+ M+ Sy Mg — N A
7 ([am 57] ’ f
My =X My+(A+wl| |B

where I € R%*? is the identity matrix. Minimizing the denominator of (2.35)
encourages small marginal and conditional distribution shifts, and small within
class variance in the source domain. Maximizing the numerator of (2.35) encourages
large target domain variance, and large between class variance in the source domain.
Similar to JDA, they also iteratively update the pseudo labels of target domain data

using the learned transformations to improve the labeling quality until convergence.

2.1.3 Representation learning as metric learning

Another group of transfer learning methods is to cast the representation learning
(or subspace learning) problem into the metric learning scenario.

One of the first works is [Fink 2005], which tries to learn a shared feature repre-
sentation using metric learning disciplines. Similar to the very first transfer learning
method [Thrun 1996, this algorithm learns a feature transformation which is later
utilized by a nearest neighbor classifier for the target task. Unlike Thrun’s trans-
fer algorithm which deploys a neural network to learn the feature transformation,
Fink’s transfer algorithm follows a max-margin approach to directly learn a distance

metric.
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Consider learning a function d : X x X — R which has the following properties:
(i) d(z,2’) > 0, (ii) d(z,2") = d(2/,x) and (iii) d(z,2") + d(2',2") > d(z,2"). A
function satisfying these three properties is called a pseudo-metric. Ideally, we
would like to learn a function d that assigns a smaller distance to pairs having
the same label than to pairs with different labels. More precisely, for any positive
samples x;, X;, and negative sample x;,, we would require the difference in distance

to be at least 7, :

d(x;,%x5) < d(x4,X) — (2.36)

Fink’s algorithm make use of a pseudo-metric of the form: d(x;,x;)* =|| x; —
0 |2, the problem is therefore to learn a linear projection @ that achieves -y
separation as defined in (2.36). This projection is learned with source data, and
then is deployed for classification of target data. The underlying transfer learning
assumption is that a projection 6§ that achieves v separation on the source tasks
will most likely achieve v separation on the target task. Therefore, if we project
the target samples using # and run a nearest neighbor classifier in the new space
we are likely to get a good performance.

Like the early works introduced in subsection 2.1.1, the strong assumption which
requests the source data to be very close to the target restricts the effectiveness of
this method for more general situations. In [Parameswaran & Weinberger 2010] a
new method is introduced which combines the large margin nearest neighbor clas-
sification with the multi-task learning paradigm. Unlike the previously introduced
method, this method learns a specific metric dy(-,-) for each of the T' tasks. They
then model the commonalities between various tasks through a shared Mahalanobis
metric with My > 0 and the task-specific idiosyncrasies with additional matrices

Mj,..., My = 0. The distance for task ¢ is defined as follows:

dr(xi, %7) = 1/ (i — ;)T (M + My) (3¢ — x;) (2.37)

Although there is not a specific projection as 6 defined in [Fink 2005], this

distance defined in Eq. (2.37) could still be considered as a distance in an underlying
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new feature space. The metric defined by My picks up general trends across multiple
data sets and M;~( specialize the metric further for each particular task. An
illustration is shown in Figure 2.1. They authors have proved theoretically that the
Eq. 2.37 is a well defined pseudo-metric when the matrices M; are constrained to

be positive semi-definite (i.e. My = 0).
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Figure 2.1: Figure from [Parameswaran & Weinberger 2010]: An illustration of mt-
lmnn(Multi task large margin nearest neighbors). The matrix My captures the
communality between the several tasks, whereas M, for ¢ > 0 adds the task specific
distance transformation.

To ensure that the learning algorithm does not put too much emphasis onto
the shared parameters My or the individual parameters My, ..., My, they use the

regularization term as follows:

T

min M, —I||% + M| |7 2.38
Mo,...,MT’YOH o— 1|7 ;%” |7 (2.38)

The trade-off parameter +; controls the regularization of M; for all t =
0,1,...,7T. If vy — o0, the shared metric Mg reduces to the plain FEuclidean metric
and if ~0 — oo, the task-specific metrics My~ become irrelevant zero matrices.
Therefore, if y:~9 — 00 and g is small, a single metric Mg across all tasks will be
learned, the result is equivalent to applying lImnn (large margin nearest neighbors)

on the union of all data sets. In the other extreme case, when vy = 0 and ;-9 — o0,
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the formulation will reduce to T independent Imnn algorithms.

Let S; be the set of triples restricted to only vectors for task t, i.e., Sy =
{(i,j, k) € T2 : j ~ i,yr # yi}. Where j ~ i indicates that x; is a target neighbor
of x;, and J; is the set of indexes such that ¢ € J; if and only if the input-label pair
(xi,yi) belongs to task t. Combine the regularizer in Eq. 2.38 with the objective
of Imnn applied to each of the T tasks. To ensure well-defined metrics, the authors
also add constraints that each matrix is positive semi-definite, 7.e. M; = 0. The
resulting algorithm is called multi-task large margin nearest neighbor(mt-lmnn).
The optimization problem is shown in Eq (2.39) and can be solved after some

modifications to the special-purpose solver presented in [Weinberger & Saul 2009].

min oMo —IlF + D [ulMelli+ Y dixix)+ D &
O t=1 (1)) €T jomi (i, k) €St

subject to: Vt,V(i,7,k) € S; :
(1) df (%, x%) — df (xi,%5) 21— &
(2) & =0
(3) My,My,...,Mp = 0.
(2.39)

This regularization term oMo —I||% could be interpreted as learning My while
trying to stay close to the Euclidean distance. Another kind of metric regulariza-
tion for transfer learning is to replace I with the auxiliary metric Mg learned from
source task. The regularization |[M — Mg|| could be interpreted as transferring
knowledge brought by Mg for learning M. This setting is similar to some domain
adaptation methods introduced in the previous section 2.1.2. In domain adaptation
methods the source metric and target metric are usually learned simultaneously by
using the source and target training samples. However it is sometimes impossible
to have access to all the training samples. In [Perrot & Habrard 2015] the authors
have explored the setting Metric Hypothesis Transfer Learning, in which they as-

sume that the source training samples are not accessible so one can only make use
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of the pre-learned source metric Mg to help learning the target metric M. They
have mainly provided some theoretical analysis showing that supervised regularized
metric learning approaches using a biased regularization are well-founded. Their
analysis is based on algorithmic stability arguments allowing one to derive gener-
alization guarantees when a learning algorithm does not suffer too much from a
little change in the training sample. Firstly they introduced a new notion of stabil-
ity called on-average-replace-two-stability that is well-suited to regularized metric
learning formulations. This notion allows one to prove a high probability general-
ization bound for metric hypothesis transfer learning achieving a fast converge rate
in O(%) in the context of admissible, lipschitz and convex losses. Secondly, they
provided a consistency result from which they justify the interest of weighted biased
reqularization of the form |[M — fMg]|| where § is a parameter to set. They derive
an approach for assessing this parameter without resorting to a costly parameter
tuning procedure. They also provided an experimental study showing the effective-
ness of transfer metric learning with weighted biased regularization in the presence

of few labeled data both on standard metric learning an transfer learning tasks.

2.1.4 Representation Learning with Deep Neural Networks

In the previous sections 2.1.1 and 2.1.2 we’ve introduced some transfer learning
algorithms using traditional shallow feature learning methods for transferable fea-
ture learning. Recently Deep Neural Networks have gained great success on feature
learning, which outperform shallow models for various applications including im-
age classification. Furthermore, recent studies reveal that a deep neural network
can learn transferable features which generalize well to novel tasks. In this section,
we introduce some recent works on transferable feature learning with deep neu-
ral networks. Similarly to previous two sections, the methods in this section are
proposed for domain adaptation problem. They extend deep convolutional neural
networks (CNNs) to domain adaptation either by adding one or multiple adap-
tation layers through which the mean embeddings of distributions are matched
[Tzeng et al. 2014] [Long et al. 2015], or by adding a fully connected subnetwork as

a domain discriminator whilst the deep features are learned to confuse the domain
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discriminator in a domain-adversarial training paradigm [Ganin & Lempitsky 2015]
[Tzeng et al. 2015]. In the following we will show details of two representative meth-

ods.

2.1.4.1 Adaptation with MMD: Deep Adaptation Networks

In [Long et al. 2015] the authors proposed a Deep Adaptation Network (DAN) ar-
chitecture, which generalizes deep Convolutional Neural Networks (CNN) to the
domain adaptation scenario. Similar to JDA, which is introduced in previous sec-
tion 2.1.2, DAN also use Maximum Mean Discrepancy as distance measure for
adapting source and target distributions. In this work they use a multi-kernel ver-
sion of MMD, named MK-MMD and proposed by [Gretton et al. 2012], which is
formalized to jointly maximize the two-sample test power and minimize the Type
II error, i.e., the failure of rejecting a false null hypothesis.

Assume having a set of labeled source training samples {(x?,y;)};*; and a set
of unlabeled target training samples {xz.};“:l. Denote by Hjy be the reproduc-
ing kernel Hilbert space (RKHS) endowed with a characteristic kernel k. The
mean embedding of distribution p in Hj is a unique element ug(p) such that
Expf(x) = (f(x), ux(p))n, for all f € Hy. The MK-MMD dj(p, g) between prob-
ability distributions p and ¢ is defined as the RKHS distance between the mean
embeddings of p and ¢q. The squared formulation of MK-MMD is defined as:

di(p,q) = | Ep[o(x*)] — Bylo(x)] I3, (2.40)

A property of this distance is that p = ¢ if and only if d2(p,q) = 0. The
characteristic kernel k associated with the feature map ¢ is defined as the convex
combination of m PSD (Positive Semi-Definite) kernels {k,}" ;. As studied the-
oretically in [Gretton et al. 2012], the kernel adopted for the mean embeddings of
p and ¢ is critical to ensure the test power and low test error. The multi-kernel
k can leverage different kernels to enhance MK-MMD test, leading to a principled
method for optimal kernel selection.

Using the kernel trick, MK-MMD (2.40) can be computed as the expectation of
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kernel functions:

d2(p, q) = Exsxrsk(x®,X"*) + Extyrrk(x!, x") — 2Eye e k(x5, %) (2.41)

t t

where x5, x'* ~ p, x!,x"* ~ ¢, and k € K. However, this computation incurs
a complexity of O(n?) which is undesirable for deep CNNs. Therefore the authors
propose to adopt the unbiased estimate of MK-MMD [Gretton et al. 2012] which

can be computed with linear complexity O(n). Specifically:

nes/2
2
di(p.0) = — > gr(zi) (2.42)
5 =1

. A .
where z; is a quad-tuple defined as: z; = (x5,_1,x5;, x5, _1,%b5;), and the multi-

kernel function k£ on each quad-tuple z; is evaluated by:

gr(2:) = k(x5;_1,%5;) + k(xéiflaXtQi) - k(xgiqaxgi) - k(xgiaxépl) (2.43)
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Figure 2.2: Figure from [Long et al. 2015]: The DAN architecture for learning
transferable features. Since deep features eventually transition from general to
specific along the network, (1) the features extracted by convolutional layers conv!
— conv3 are general, hence these layers are frozen, (2) the features extracted by
layers convj — convd are slightly less transferable, hence these layers are learned
via fine-tuning, and (3) fully connected layers fc6 — fc8 are tailored to fit specific
tasks, hence they are not transferable and should be adapted with MK-MMD.
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To learn an optimal feature transformation, the authors propose to extend the
AlexNet architecture [Krizhevsky et al. 2012], which is comprised of five convolu-
tional layers (convl — conv5) and three fully connected layers (fc6 — fc8). Each
fc layer £ learns a nonlinear mapping hf = f* (thg 1+ 1Y), where h! is the (-th
layer hidden representation of point x;, W* and b’ are the weights and bias of
the ¢-th layer, and f* is the activation, taking as rectifier units f(x) = maxz(0,x)

for hidden layers or softmax units f(x) = for the output layer. Letting

Z\x| T
0 = {W¢, bz}é:1 denote the set of all CNN parameters, the objective of learning a

CNN is to minimize its empirical risk:

3 1 S a a
min - > 00k ) (2.44)

where J is the cross-entropy loss function, and §(x¢) is the conditional prob-
ability that the CNN assigns x{ to label y{. Given that the convolutional layers
can learn generic features that tend to be transferable in layers convl — conv8 and
are slightly domain-biased in convj — convs, while the higher layers fc6 — fc§ are
more domain specific which cannot be directly transferred to the target domain
via fine-tuning with limited target supervision [Yosinski et al. 2014]. The authors
therefore propose to freeze convi-convs and fine-tune convj — convd to preserve
the efficacy of fragile co-adaptation, while retrain the fc6 — fc8 layers’ parameters
with requiring the distributions of the source and target to become similar under
the hidden representations of these fully connected layers. This can be realized by
adding an MK-MMD-based multi-layer adaptation regularizer (2.40) to the CNN
risk in (2.44):

IIllIl — Z JOXF),yi) + A Z d2(D (2.45)

{=ly

where A > 0 is a penalty parameter, [; and [y are layer indexes between which
the regularizer is effective, in DAN the authors set l; = 6 and Iy = 8. D{ = {h}*}
is the ¢-th layer hidden representation for the source and target examples, and

d2 (D%, DY) is the MK-MMD between the source and target evaluated on the /-th
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layer representation. An illustration of the whole DAN architecture could be found
in Figure 2.2.

The authors propose to initialize the parameters in DAN with the parameters of
an AlexNet model pre-trained on ImageNet 2012. The training process is therefore
a fine-tuning of this pre-trained model on source and target training data.

They perform experiments of DAN compared to other transfer learning methods
and deep learning methods on both unsupervised and semi-supervised adaptation
problems. The results verified the efficacy of the proposed DAN against previous
methods.

This work is further improved in [Long et al. 2016], in which the authors pro-
posed a Residual Transfer Network which can adapt both marginal distributions

and conditional distributions at the same time.

2.1.4.2 Adaptation with Adversarial Networks

In [Ganin & Lempitsky 2015] the authors proposed a new approach to domain adap-
tation in deep architectures. As the training progresses, the approach promotes the
emergence of “deep” features that are (i) discriminative for the main learning task
on the source domain and (ii) invariant with respect to the shift between the do-
mains. This adaptation behavior is achieved by augmenting a feed-forward model
with few standard layers and a new gradient reversal layer. The resulting augmented
architecture can be trained using standard back-propagation.

Assume that the model works with input samples x € X where X is some input
space and certain labels (output) y from the label space Y. They consider classi-
fication problems where Y is a finite set Y = {1,2,..., L} in the paper, although
they claim that their approach is generic and can handle any output label space
that other deep feed-forward models can handle. They further assume that there
exist two distributions S(x,y) and 7 (x,y) on X ® Y, which will be referred to as
the source distribution and the target distribution. Both distributions are assumed
complex and unknown, and furthermore similar but different (in other words, S is
“shifted” from 7T by some domain shift). Their ultimate goal is to be able to predict

labels y given the input x for the target distribution. At training time, the model
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Figure 2.3: Figure from [Ganin & Lempitsky 2015]: The proposed architecture in-
cludes a deep feature extractor (green) and a deep label predictor (blue), which to-
gether form a standard feed-forward architecture. Unsupervised domain adaptation
is achieved by adding a domain classifier (red) connected to the feature extractor
via a gradient reversal layer that multiplies the gradient by a certain negative con-
stant during the back-propagation-based training. Otherwise, the training proceeds
in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the
feature distributions over the two domains are made similar (as indistinguishable as
possible for the domain classifier), thus resulting in the domain-invariant features.

have an access to a large set of training samples {x1,x2,...,xx} from both the
source and the target domains distributed according to the marginal distributions
S(X) and T (x). They denote with d;, which is a binary variable, the domain label
for the i-th sample, which indicates whether z; come from the source distribution
(d; = 0) or from the target distribution (d; = 1). For the samples from the source

distributions they also have categories labels y; € Y.

They define a deep feed-forward architecture that for each input x predicts its
label y € Y and its domain label d € {0,1}. They decompose such mapping into
three parts. They assume that the input x is first mapped by a mapping G (a
feature extractor) to a D-dimensional feature vector f € R”. The feature mapping
may also include several feed-forward layers and we denote the vector of parameters
of all layers in this mapping as 0y, i.e. f= Gf(x;0¢). Then, the feature vector f
is mapped by a mapping G, (label predictor) to the label y, and they denote the

parameters of this mapping with 6,. Finally, the same feature vector f is mapped
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to the domain label d by a mapping Gy (domain classifier) with the parameters 6,4

(see Figure 2.3).

During the learning stage, they aim to minimize the label prediction loss on
the annotated part (i.e. the source part) of the training set, and the parameters
of both the feature extractor and the label predictor are thus optimized in order
to minimize the empirical loss for the source domain samples. This ensures the
discriminativeness of the features f and the overall good prediction performance
of the combination of the feature extractor and the label predictor on the source

domain.

At the same time, they want to make the features f domain-variant. That is,
they want to make the distributions S(f) = {G¢(x;0f)|x ~ S(x)} and T'(f) =
{G¢(x;0¢)|x ~ T(x)} to be similar. To achieve this, they seek the parameters 6
of the feature mapping that mazimize the loss of the domain classifier (by making
the two feature distributions as similar as possible), while simultaneously seeking
the parameters 6; of the domain classifier that minimize the loss of the domain
classifier. In addition, they seek to minimize the loss of the label predictor. More

formally, they consider the functional:

E(05.0y,04) = Z Ly(Gy(Gy(xi;05);6y), yi)

t=1,..., N
di =0
—A Z Ld(Gd(Gf(Xi§ 9f)§ gd)a yz) (2.46)
i=1,.,N
= > Ly0,0,) =X > Liy(05,0a)
i=1,..., N i=1,...,N
d; =0

where Ly(-,-) is the loss for label prediction (e.g. multinomial), Ls(:,-) is the
loss for the domain classification (e.g., logistic), while L; and LY, denote the corre-
sponding loss functions evaluated at the i-th training example. Based on this, they

seek the parameters éf, éy, 0, that deliver a saddle point of the functional (2.46):
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(07, 6,) = argmin E(0, 8, 0,)
efvey
(2.47)

éd = arg min E(éf, éy, Qd)
b4

The authors demonstrate that standard stochastic gradient solvers (SGD) can
be adapted for the search of this saddle point. They show that a saddle point for
(2.46) (2.47) can be found as a stationary point of the following stochastic updates:

OL! oL
9f<—9f—,u<60; —)\69;> (2.48)
OL:
0y — 0, — u—2 (2.49)
Yy Yy 803;
OL!
07+ 04— d 2.
d < 04 "0, (2.50)

where p is the learning rate. As direct implementation of (2.48) — (2.50) is
not possible, they authors propose to reduce the updates to some form of SGD
by introducing a special gradient reversal layer (GRL). During the forward propa-
gation, GRL acts as an identity transform. During the back-propagation though,
GRL takes the gradient from the subsequent level, multiplies it by —A and passes
it to the preceding layer. This GRL is inserted between the feature extractor and
the domain classifier, resulting in the architecture depicted in Figure 2.3. Running
SGD in this model implements the updates (2.48) — (2.50) and converges to a saddle
point of (2.46).

To evaluate the proposed approach, the authors perform experiments on a num-
ber of image datasets and their modifications. Results show that their approach

outperforms baseline methods and some previous domain adaptation methods.
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2.1.5 Representation Learning with Dictionary Learning

Another group of research works on transferable feature learning is based on dic-
tionary learning (also known as sparse coding). Due to the fact that learning re-
constructive dictionary usually don’t need labeled data, many of these works are
proposed for the self-taught learning scenario in which we are provide with a small
set of labeled target training samples and a large set of unlabeled source training

samples.

2.1.5.1 Self-taught Learning and a Sparse coding based approach

[Raina et al. 2007] is the first work that proposed the self-taught learning problem.
They proposed an approach to self-taught learning that uses sparse coding to con-
struct higher-level features using the unlabeled data. These features form a succinct
input representation and can improve classification performance for the target task.

In self-taught learning, one is given a labeled training set of m samples
{(xl(l),y(l)),(xl(2),y(2)),...,(xl(m),y(m))} drawn ii.d. from some distribution D.
Here, each acl(i) € R™ is an input feature vector (the “I” subscript indicates that
it is a labeled example), and y(i) € {1,...,C} is the corresponding class label. In
addition, a set of k unlabeled examples x&l),xq(f), . ,:cgk) € R” is also given. The
unlabeled data are not assumed to be drawn from the same distribution as the
labeled data, nor that it can be associated with the same class labels as the labeled
data. While the labeled and unlabeled data should not be completely irrelevant to
each other if unlabeled data is to help the target task.

To learn the higher-level representations, the authors proposed a modified ver-
sion of the sparse coding algorithm [Olshausen & Field 1996]. Specifically, given
the unlabeled data {335}), .. ,x&k)} with each xz(f) € R™, the propose the following

optimization problem:
min Y [l =7 a3 + Blla (2.51)
b 1; ]

s.t. ”b]||2 <1,Vjel,....s
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The optimization variables in this problem are the basis wvectors b =
{b1,b2,...,bs} with each b; € R", and the activations a = {aM ... a®} with
each a(¥ € R®, agi) is the activation of basis b; for input :cqff). The number of
bases s can be much larger than the input dimension n. This optimization objec-
tive balances two terms: (1) The first quadratic term encourages each input ng ) to
be reconstructed well as a weighted linear combination of the bases b; (with corre-

@

;)i (2) The second term encourages the

sponding weights given by the activations a
activations to have low L; norm, ¢.e., it encourages the activations a to be sparse
— in other words, for most of its elements to be zero. The problem (2.51) is convex
over each subset of variables a and b (though not jointly convex); in particular, the
optimization over activations a is an [j-regularized least square problem, and the
optimization over basis vectors b is an [2-constrained least square problem. These
two convex sub-problems can be solved efficiently, and the objective in (2.51) can

be iteratively optimized over a and b alternatively while holding the other set of

variables fixed.

It is often easy to obtain large amounts of unlabeled data that shares several
salient features with the labeled data from the target classification task. Building on

this observation, the authors propose the following approach to self-taught learning:
they first apply sparse coding to the unlabeled data :Uq(f ) € R” to learn a set of bases
b. Then for each training input xl(i) € R” from the target task, they compute

features &(xl(i)) € R?® by solving the following optimization problem:

a(zf”) = argmin i — >~ al0;(13 + Bllat? | (2.52)
J

a(®)

This is a convex [1-regularized least square problem and can be solved efficiently.

It approximately expresses the input xl(i) as a sparse linear combination of the bases

bj. The sparse vector d(:vl(i)) is the new representation for xl(i). These new features
are taken as input to standard supervised classification algorithms (such as SVMs)

for target task.

The authors argue that, compared to PCA, this proposed sparse coding process

is a better way for unsupervised feature learning in the self-taught learning scenario
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for two reasons: first, PCA results in linear feature extraction while the sparse
coding method learns a nonlinear representation a(z) due to the presence of the /1
term in equation (2.51); second, since PCA assumes the bases to be orthogonal, the
number of PCA features cannot be greater than the dimension n of the input, while
sparse coding can use more basis vectors than the input dimension. By learning
a large number of basis vectors but using only a small number of them for any
particular input, sparse coding gives a higher-level representation in terms of the
many possible “basic patterns”.

The authors perform experiments of the proposed sparse coding approach with
two standard classifiers: a support vector machine(SVM) and a Gaussian discrim-
inant analysis (GDA). In addition, they also proposed a Fisher kernel based clas-
sifier specifically designed for sparse coding features. They show results on several
different applications including image classification, the results confirmed the effec-
tiveness of the proposed approach.

This sparse coding based approach is widely adopted for self-taught learning
scenarios, and is also improved from different aspects by different researchers. For
example, in [Wang et al. 2013] the authors propose to learn the sparse coding basis
(i.e., the redundant dictionary) using not only unlabeled samples, but also labeled
samples. They also proposed a principled method to seek the optimal dictionary

basis vectors for a smaller dictionary which demands less computational cost.

2.1.5.2 Self-taught Low-rank coding

In a recent work [Li et al. 2017] the authors propose a new sparse coding based self-
taught learning framework for visual learning, which can utilize the rich low-level
pattern information abstracted from the auxiliary domain, in order to characterize
the high-level structural information in the target domain. Since many types of
visual data have been proven to contain subspace structures, a low-rank constraint
is introduced into the coding objective to better characterize the structure of the
given target set. This proposed representation learning framework is called self-
taught low-rank (S-Low) coding, which can be formulated as a non-convex rank-

minimization and dictionary learning problem.
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Consider having a set of abundant unlabeled samples Xg = {ng), ey 1:,({3 )} €
R¥>™ in the source domain, and a limited number of samples Xp =

{ng), e ,iL'ng)} € R¥™" in the target domain. Here d is the feature dimension,
m is the number of samples in source training set, and n is the number of sam-
ples in target training set. Unlike the previous approach [Raina et al. 2007], in this
work the authors do not require that the samples in the target domain are labeled.
Therefore their framework can be adapted to either unsupervised or supervised
situations according to the availability of labels on target training samples.
Conventionally, the sparse coding, dictionary learning or low-rank learning
methods approximately represent the samples in a single domain (here we take

the target domain as an example) as:

XT ~ DTZT (253)

where Z7 € R™*" is the representation coefficient matrix and Dy € R4 is a
dictionary with r the size of this dictionary. Zr is usually expected to be sparse
or low-rank, according to the application scenario. To make use of samples in both
domains, the authors propose to learn the dictionary from all available samples in
two domains (source and target). The whole sample set is denoted as X = [Xg X7].

Therefore they propose the following constraint:

[Xs Xr] =D[Zs Zr] + [Es E7] (2.54)

where Zg € R™"™ and Zp € R"*™ are the coefficient matrices corresponding to
source domain and target domain, respectively. Eg € R™ and Ep € R¥™ are the
sparse noise matrices that model the reconstruction errors in auxiliary and target
domains. The noise matrices Eg and Ep are often constrained using the surrogate
of 10 norm which enables the model to learn a robust dictionary.

To discover the underlying subspace structure in training data, the authors
further propose to impose a low-rank constraint on the coefficient matrix Z, in the
target domain where the learning tasks are performed. The objective function can

therefore be formulated as:
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i k(Z MI|E Ao||E
bz Bin o rank(Z7) + A1 ||Esllo + A2 ||Er|lo

st. Xg =DZs +Eg (2.55)

X7y =DZr + Er

where rank(-) denotes the rank function, || - ||p is the lp norm, and A; and Ay
are two trade-off parameters. In (2.55) the first term characterizes the low rank-
ness of Zr in the target domain, and the last two terms model the reconstruction
errors. This is a variant of rank minimization problem that is NP-hard in general.
Therefore, it cannot be solved directly, normal solution would be to relax the Iy
norm and the rank function with /; norm and nuclear norm respectively. However,
the authors argue that the /1 norm and the nuclear norm are biased estimators, as
they over penalize large entries and large singular values. Therefore, the authors
propose to employ the non-convex surrogates of [y norm and rank function, which

are MCP norm and matrix y-norm, respectively.

The definition of matrix MCP norm for a matrix B € RP*4 is:

B) = ZQS)\,'y(Bi,j) (2.56)

v, if [t] > A
o[ -5

~|t] — %, otherwise.

where [z]1 = maxz(z,0), A is set to 1, and for simplicity denote M,(B) =
M, ,(B).

The matrix vy-norm is defined as:

ol -3 [ (-

= Zqﬁm(ai(B)) = M, (a(B)), v>1

v
_l’_
U
IS

(2.57)
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where o(B) = (01(B),...,04(B))" denotes a function from RP*? to Ry, =

min(p, ¢). The matrix vy-norm is non-convex with respect to B.

Furthermore, the dictionary is jointly learned from both auxiliary and target
domains, in order to transfer useful knowledge from the auxiliary domain. As the
source data set usually contains much more samples than target data set Xr, the
learning of dictionary is easily dominated by the source data. To emphasize the
reconstruction power of D in the target domain, the authors propose to introduce
an Iz 1 norm constraint on the source coefficient matrix Zg. In this way, some rows

in Zg are encouraged to be zero, which enables Xg to adaptively select bases from

D.

By replacing the rank function and [y norm with matrix y-norm and MCP
norm, and adding the [ 1 norm constraint on source coefficient matrix, the objective

function (2.55) can then be rewritten as:

min Z + MM 9(Eg) + Ao Mo (ET) + X3||Z
D,Zs,Z7,Es,ET | THﬂ ! ﬂ( s) ? 72( i o SH271 (2.58)

st. Xg =DZg+Eg, Xp0=DZp+ Ep

where A3 is a trade-off parameter, and ||Zg||2,1 = Z?ZI(Z?:I([ZS]U)Q)I/Q is the
la1 norm. Each column in the learned coefficient matrix Zr corresponds to one
sample in the target domain, which is named low-rank coding of the corresponding

sample.

The authors proposed a majorization-minimization augmented Lagrange mul-
tiplier (MM-ALM) algorithm to solve the problem (2.58). They presented two
applications of this S-Low coding, one for clustering and the other for classification.
Experimental results on five benchmark data sets demonstrated the effectiveness
of the proposed algorithms compared with the state-of-the-art self-taught learning

methods.
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2.2 Classifier level knowledge transfer

Unlike the Representation level knowledge transfer methods, which focus on learn-
ing a shared representation space for source and target data, classifier level knowl-
edge transfer focus on transferring knowledge from source classifiers. The objective
of these kind of methods is usually selecting and adapting some learned classifiers

to a new classification task which has only few labeled samples.

2.2.1 SVM based methods

Support Vector Machine (SVM) is a supervised learning method for solving classifi-
cation and regression problems, and several early works on classifier level knowledge
transfer are constructed based on the original SVM classifier. A common form of the
objective function of these SVM based transfer learning models could be expressed

as follows:

in ®(w' i Yiswhb 2.
min®(w) +C ) by w',b) (2:59)

v (x4,9i)€Dr

where Z(xi,yi)eDT e(x;,y;; wt, b) is the loss on labeled samples in the target do-
main Dy, and ®(w!) is the regularization on model parameter w' which enforces
the margin maximization and the knowledge transfer. The knowledge transfer reg-
ularization is usually expressed as a minimization of the distance between the pre-
learned source parameter w* and the target parameter wt.

One of the first SVM based transfer learning works is the Adaptive-SVM (A-
SVM) proposed in [Yang et al. 2007], in which Yang et al. assume that the decision

function fr(-) for the target classification task can be formulated as:

fr(x) = fs(x) + Af(x) (2.60)

where fg(-) is the source decision function and Af(x) = w' ¢(x) is the pertur-
bation function. The perturbation function Af(-) is learned using the labeled data
from the target domain Dr and the pre-learned parameters for the source decision

function fg(+), the objective function is as follows:
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1 N

- 2

: C .
min 5 |wl|* + ;:1 &i (261)

s.b. & >0, yifs(xi) +yiw d(x;) > 1— &, V(xi,y:) € Dr

where ), § measures the total classification error of the adapted classifier fr(-)
in the target domain. The first term in (2.61) minimizes the deviation between
the target decision boundary and the source decision boundary. The cost factor C
balances the contribution between the source classifier and the training examples,
i.e. the larger C is, the smaller the influence of the source classifier is.

This work was improved in [Aytar & Zisserman 2011] for object detection. Aytar
and Zisserman fistly show a more general form of the objective function for A-

SVM(this form was firstly introduced in [Li 2007]) as follows:

N
min [|w’ — Tw*|* + Cy g (2.62)
=1

where w® and w' are the parameters for source classifier and target classifier
respectively. I' controls the amount of transfer regularization. The authors have
shown that I is actually a trade-off parameter between margin maximization of the
target classifier and the knowledge transfer from source classifier, 7.e. the larger I'
is, the larger the knowledge transfer is, while the smaller the margin maximization
is.

To avoid this trade-off, [Aytar & Zisserman 2011] propose the projective Model
Transfer SVM (PMT-SVM), in which they can increase the amount of transfer

without penalizing margin maximization. The objective function for PMT-SVM is

as follows:
N
min |w'|> + T Pw'[|? + C) &, st (w) w* >0 (2.63)
wt —
1=
where P = I — X:SYF?VTS is the projection matrix, I' controls the amount

of transfer regularization, and C controls the weight of the loss function ) . &;.
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| Pwt||? = ||w!||?sin? 6 is the squared norm of the projection of the w' onto the

T t

source hyperplane, @ is the angle between w® and w'. (w')'w® > 0 constrains w
to the positive half-space defined by w?®. Experimental results have shown that this
PMT-SVM works better compared to A-SVM and SVM when having only a few
labeled samples in target domain, especially for one-shot learning when only one
labeled sample is available.

In [Aytar & Zisserman 2011] the authors also show a direct generalization of A-

SVM to deformable transfer formulation, named Deformable Adaptive SVM (DA-
SVM), for object detection with deformable part based models.

In [Jiang et al. 2008] the A-SVM was improved for visual concept classification,
where the authors propose the cross-domain SVM (CD-SVM) which makes use of
k-nearest neighbors from the target domain to define a weight for each auxiliary

pattern, and then the SVM classifier was trained with re-weighted patterns.

Tommasi et al. [Tommasi et al. 2010] proposed a multi-model knowledge trans-
fer algorithm based on the Least Square SVM (LS-SVM). The objective function

of the multi-model knowledge transfer is defined as follows:

1 i C <
min Sllw = > Bwil* + 5D Gy = w- #(xi) —b)” (2:64)
’ j=1 i=1

where w is the parameter of the target model and w; are the parameters of the
pre-learned source models, the coefficient vector B should be chosen in the unitary
ball, i.e. B8 < 1. The second term in Eq. (2.64) is the least square loss for training

samples in the target domain. The optimal solution of Eq. (2.64) is as follows:

k N
w = ZﬁjW;- + Z ;i d(x;) (2.65)
j=1 i=1

where w is expressed as a weighted sum of the pre-trained models scaled by the
parameters (3, plus the new model built on the incoming training data. The new
model parameters «; could be learned on the target training data. The optimal
coefficients f; could be found by minimizing the LOO (leave one out) error, which

is an unbiased estimator of the classifier generalization error and can be used for
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model selection [Cawley 2006].

In [Kuzborskij et al. 2013] the authors extend this LSSVM based transfer learn-
ing to an incremental transfer learning setting, where the source is a pre-learned
multi-class classifier for N classes, denoted as W’ = [w/,..., w/y], and the target
is a small training set composed from samples belonging to the N known classes
and a new class. Their aim is to find a new set of hyperplanes W = [wy, ..., wy]
and w41, such that: (1) performance on the target (N + 1)-th class improves by

transferring from the source models, and (2) performance on the source N classes

should not deteriorate or even improve compared to the former.

They achieve the first goal by using the regularizer ||[wy.1 — W’B||?, which
enforces the target model wx 1 to be close to a linear combination of the source
models. Negative transfer is prevented by weighting the amount of transfer of
each source model using the coefficient vector 8 = [B1,...,8n5]". To achieve the
second objective, they enforce the new hyperplanes W to remain close to the source
hyperplanes W’ using the term ||[W — W’||%.. The final objective function with the

two regularizers is as follows:

M N+1
1 C
W =Wt [ wasr =WBIE+5 > D (W Xitbn—Yin)® (2.66)

i=1 n=1

. 1
min -
W,wyi1,b 2

where Y is the label matrix, Y;, is equal to 1 if y; = n and is equal to —1

otherwise. The solution to this problem is given by:

M
W, =W, +Y Ainxi, n=1,...,N
i=1

al - (2.67)
WN41 = Z B Wi, + Z Ai (N+1)Xi
n=1 i=1
b=b — [b// b//T B}
where

A — A/ _ [AII A”,B}
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A’ Y
1 0

A// XTW/
M
b//T 0

-1
X'X+4I 1

17 0

To tune the parameter (3, they extend the method shown in
[Tommasi et al. 2010]. They cast the optimization of B as the minimization
of a convex upper bound of the LOO error and they propose a projected
subgradient descent algorithm to find the optimal 3.

As can be seen from the above, most SVM based transfer learning methods
enforce knowledge transfer simply by adding a regularization term to minimize
the distance between the target model parameters and the source model parame-
ters. This brute-force regularization work well for binary-classification when target
positive category and source positive category are as close as possible. The exten-
sion to multi-class classification could be done in a one-vs-all manner as shown in
[Kuzborskij et al. 2013], and the negative transfer is mainly prevented by tuning

the parameter 3 (which could be seen as a model selection process).

2.2.2 Boosting based methods

Adaptive boosting (AdaBoost) [Freund & Schapire 1997] is a widely used boosting
algorithm. It can be used in conjunction with many other types of learning algo-
rithms to improve performance. The basic learning algorithm, also known as ‘weak
learner’, is trained in each iteration with reweighted training instances and the fi-
nal output of AdaBoost is a weighted combination of the weak learners trained in
each iteration. AdaBoost is adaptive in the sense that subsequent weak learners are
tweaked in favor of those instances misclassified by previous classifiers. The ability

of turning ‘weak learners’ to a ‘strong learner’ makes AdaBoost a natural choice
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for transfer learning. The models trained on source data are always ‘weak’ for tar-
get data due to the distribution discrepancy between source and target, therefore
one can make a combination of these ‘weak models’” with AdaBoost to make the
combination a ‘strong’ model on target data.

One of the first works using AdaBoost for transfer learning is the Transfer
AdaBoost(TrAdaBoost) [Dai et al. 2007]. Dai et al. make use of AdaBoost for
transfer learning by choosing from the source labeled samples the useful ones for
building a classifier for target data. Assume having a few target training samples
and a large amount of source training samples, their aim is to select the source
samples that follow the same probability distribution as the target samples. To
achieve this goal, they build a Transfer AdaBoost framework for learning on target
and source training samples at the same time. In each iteration, AdaBoost works
normally on target samples, i.e. it increases the weights on misclassified target
samples; on the other hand, for source training samples, the misclassified ones
are considered as the outliers to the target distribution, therefore the weights on
misclassified source samples are decreased. In this way, after several iterations, the
source samples that fit the target distribution better will have larger weights, while
the source samples that do not fit the target distribution will have lower weights.
The instances with large weights will intent to help the learning algorithm to train
better classifiers.

Since the original TrAdaBoost only works for one source domain, in
[Yao & Doretto 2010] the authors extend the TrAdaBoost to transfer learning from
multiple source domains. A new algorithm MultiSource-TrAdaBoost is proposed as
a direct extension of TrAdaBoost. Assume having several different source training
sample sets, each with abundant labeled samples, and one target training sample
set with few labeled samples. In each iteration of AdaBoost, one weak learner is
build on each source training set, and the one with the best performance on target
set, i.e. the one appears to be the most closely related to the target, is chosen
as the weak learner for current iteration. In this way, the authors claim that the
MultiSource-TrAdaBoost can better avoid negative transfer effect caused by the

imposition to transfer knowledge from a single source, which is potentially loosely
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related to the target.

The TrAdaBoost and the MultiSource-TrAdaBoost are all instance based trans-
fer learning algorithms, 4.e. they try to identify which training instances, coming
from the source domains, can be reused, together with the target training instances,
to boost the target classifier. In [Yao & Doretto 2010] the authors further propose
another parameter based transfer learning algorithm, namely TaskTrAdaBoost, in
which the target classifier model shares some parameters with the most closely
related sources. The TaskTrAdaBoost tries to identify which parameters, coming
from various sources, can be reused, together with the target training data, to
improve the target classifier learning. More precisely, TaskTrAdaBoost is a two
phase learning approach. Phase-I deploys traditional machine learning to extract
suitable parameters that summarize the knowledge from the sources. In this case
they learn a set of weak classifiers on each source task with AdaBoost. Phase-I1
is a parameter-transfer approach for boosting the target classifier. It is again an
AdaBoost loop over the target training data. At each iteration, they pick from the
set of weak classifiers learned in Phase-I the one with the lowest classification error
on the target training data. As all weak classifiers could be pre-learned in Phase-I,
the phase-II transfer learning approach could be much faster than the previously
introduced MultiSource-TrAdaBoost algorithm.

Theoretical analysis and experimental results in [Yao & Doretto 2010] have
shown the advantage of MultiSourceTrAdaBoost and TaskTrAdaBoost over the
original TrAdaBoost. Since the TaskTrAdaBoost limits the freedom in picking the
weak classifiers, which leads to a smaller VC-dimension of the candidate hypothesis
space, the prediction error in individual iteration would be greater for TaskTrAd-
aBoost, while the generalization error could be reduced, because this effect also
avoids over-fitting. Therefore, TaskTrAdaBoost works better when having a large
number of source tasks and a small number of target training samples. Further-
more, the convergence rate of TaskTrAdaBoost also have a reduced upper bound,
which means it requires fewer iterations to converge, and therefore is more efficient
than MultiSourceTrAdaBoost.

Another boosting based transfer learning algorithm is the Cross-Category Trans-
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fer Learning (CCTL) proposed in [Qi et al. 2011]. Instead of directly transferring
knowledge from source instances or pre-learned source task parameters, the au-
thors propose to use a label propagation approach to transform source classifier
predictions to target task. Specifically, they define a real-valued transfer function
Ts(x,x;) = ¢s(x,%;,;)k(x,%;;) to connect the [-th source domain and the target
category. In which, the ¢g(x,x;;) = XTSXH measures the correlation between two
different categories, and the kernel function k(x,x;;) measures the sample similar-
ity. A cross-category classifier is learned to propagate the labels from the instances
in [-th source domain Dg; to the target category to form a discriminant function

hi(x) as follows:

1
Dl > wiTs(x,x1,) (2.68)

" x1,,€Ds,

hl (X) =

where |Dg| is the cardinality of Dg;. The parameter matrix S for hj(x) is

learned by minimizing the following objective function:

S* = argmin ;(.5) (2.69)
S
where
al A
U(S) = Zwi(l — yilu(xi))+ + §HSHQF (2.70)
i=1

where (-)4+ = max(0,-), ||S||F is the Frobenius norm of the matrix S, A is the
balancing parameter, and w; is the sample weight for i-th sample in target domain.

Finally, they define a common AdaBoost process, in each iteration they learn a
cross category classifier from each source domain to the target domain, and a same
one from target domain to itself, they then pick from these classifiers the one with
the minimum training error as the weak classifier for current iteration. the final
output is a combination of the weak classifiers learned in all iterations.

Since this CCTL takes into account both category correlations and sample cor-
relations, it shows a better performance than the previously introduced TaskTrAd-

aBoost. However, CCTL only works for binary classification problems. Further-
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more, when having L different source domains, in each iteration of CCTL one should
solve L + 1 optimization problems. This makes this method not very efficient, es-
pecially when having a lot of source domains.

Table 2.1 summarizes the boosting based transfer learning methods introduced

in this section compared with the original AdaBoost algorithm.

Table 2.1: Boosting based transfer learning methods

In each Boosting iteration:

Boosting based methods ;
Update sample weights

(1: augment weight; |: decrease weight) Choose weak learner

Wrongly classified samples 1 Learned with
AdaBoost Correctly classified samples | weighted samples

Comeetly clssied tage samptes | Leamned with
TrAdaBoost Y & P weighted target

Wrongly classified source samples |

. 1
Correctly classified source samples 1 and source samples

Wrongly classified target samples 1 The one with best
. . Correctly classified target samples | performance on target
MultiSourceTrAdaBoost Wrongly classified source samples | from candidates learned
Correctly classified source samples 1 with multiple sources

The one with best

TaskTrAdaBoost Wrongly classiﬁed samples 1 performance on target
Correctly classified samples | from pre-learned
weak classifiers
The one with best
COTL Wrongly classified samples 1 performance on target
Correctly classified samples | from candidate cross-

category classifiers

2.2.3 Generative models

The two groups of methods introduced previously are all discriminative models
which learn the conditional distribution of labels on knowing input features. An-
other kind of classification methods are generative models, which learn the joint
distribution of the labels and input features. Generative models are also adopted
for knowledge transfer, especially in the case of zeros-shot or one-shot learning for
object recognition, where no target sample or only one target sample is given for

training an object recognition model.
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A representative work is proposed in [Fei-Fei et al. 2006], which is a Bayesian-
based unsupervised one-shot learning object categorization framework that learns

a new object category using a single example (or just a few).

Firstly, to formalize the task of object classification with a generative model,
they start with a learned object class model and its corresponding model distri-
bution p(@), where € is a set of model parameters for the distribution. Given a
new image and the objective is to decide if it contains an instance of the target
object class or not. In this query image they have identified IV interesting features
with locations X', and appearances A. They now make a Bayesian decision R. For
clarity, they express training images through the detected feature locations X; and

appearances Ay.

R— p(Object| X, A, Xy, Ay)
p(No Object| X, A, X:, A;)
_ p(X, AlX, A, Object)p(Object)
- p(X, AlA;, Ay, No Object)p(No object)
_ [ p(X, A6, Object)p(8|X:, As, Object)dd
- J p(X, Al6g, No object)p(By,| Xz, At, No object)dby,

(2.71)

Note that the ratio of -2Obiect)

2(Noobject) in the second line is usually set manually to

1, hence it is omitted in the third line of Equation (2.71). The goal of learning in
this formulation is to estimate the density of the object model p(8|X;, A, Object).
In other words, in the high dimensional space that characterize the objects, the
goal is to find the appropriate distribution that defines the extent of where and
how the models occupy this space. This goal is achieved through the usage of prior

knowledge.

The representation of the object class model is chosen based on the constellation
model [Burl & Perona 1996]. A constellation model consists of a number of parts,
each encoding information on both the shape and the appearance. The appearance
of each part is modeled and the shape of the object is represented by the mutual
position of the parts [Fergus et al. 2003]. The entire model is generative and prob-

abilistic, so appearance and shape are all modeled by probability density functions,
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which are Gaussians. Assume a generative object model is learned, with P parts
and a posterior distribution on the parameters 6 : p(0|X;, A;) where X; and A,
are the location and appearances of interesting features found in the training data.
Recall the Bayesian decision rule in Equation (2.71). Assume that all non-object
images can also be modeled by a background with a single set of parameters 6y,
which are fixed. The ratio of the priors may be estimated from the training set or
set manually (usually to 1). The decision then requires the calculation of the ratio

of the two likelihood functions, which may be factored as follows:

p(X,A‘B) - Z p(X,A,h’O) - Z p(.A’h, 0) p(X‘h, 0) (2'72)

heH heH Appearance  Shape

Since the model only has P (typically 3-7) parts while there are N (up to 100)
features in the image, the authors introduce an indexing variable h which they
call a hypothesis which a