Thèse soutenue

Apprentissage de Structure de Modèles Graphiques Probabilistes : application à la Classification Multi-Label
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Maxime Gasse
Direction : Alexandre AussemHaytham Elghazel
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 13/01/2017
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône ; 2003-....) - Data Mining and Machine Learning
Jury : Président / Présidente : Céline Robardet
Examinateurs / Examinatrices : Élisa Fromont, Willem Waegeman, Véronique Delcroix
Rapporteurs / Rapporteuses : Christophe Gonzales, Jose M. Peña

Résumé

FR  |  
EN

Dans cette thèse, nous nous intéressons au problème spécifique de l'apprentissage de structure de modèles graphiques probabilistes, c'est-à-dire trouver la structure la plus efficace pour représenter une distribution, à partir seulement d'un ensemble d'échantillons D ∼ p(v). Dans une première partie, nous passons en revue les principaux modèles graphiques probabilistes de la littérature, des plus classiques (modèles dirigés, non-dirigés) aux plus avancés (modèles mixtes, cycliques etc.). Puis nous étudions particulièrement le problème d'apprentissage de structure de modèles dirigés (réseaux Bayésiens), et proposons une nouvelle méthode hybride pour l'apprentissage de structure, H2PC (Hybrid Hybrid Parents and Children), mêlant une approche à base de contraintes (tests statistiques d'indépendance) et une approche à base de score (probabilité postérieure de la structure). Dans un second temps, nous étudions le problème de la classification multi-label, visant à prédire un ensemble de catégories (vecteur binaire y P (0, 1)m) pour un objet (vecteur x P Rd). Dans ce contexte, l'utilisation de modèles graphiques probabilistes pour représenter la distribution conditionnelle des catégories prend tout son sens, particulièrement dans le but minimiser une fonction coût complexe. Nous passons en revue les principales approches utilisant un modèle graphique probabiliste pour la classification multi-label (Probabilistic Classifier Chain, Conditional Dependency Network, Bayesian Network Classifier, Conditional Random Field, Sum-Product Network), puis nous proposons une approche générique visant à identifier une factorisation de p(y|x) en distributions marginales disjointes, en s'inspirant des méthodes d'apprentissage de structure à base de contraintes. Nous démontrons plusieurs résultats théoriques, notamment l'unicité d'une décomposition minimale, ainsi que trois procédures quadratiques sous diverses hypothèses à propos de la distribution jointe p(x, y). Enfin, nous mettons en pratique ces résultats afin d'améliorer la classification multi-label avec les fonctions coût F-loss et zero-one loss