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Abstract

Analytical, numerical, and experimental investigations of particle transport
in fractures with flat and corrugated walls
The aim of the present thesis is to study the transport and deposition of small solid par-
ticles in fracture flows. First, single-phase fracture flow is investigated in order to assess
the validity of the local cubic law for modeling flow in corrugated fractures. Channels with
sinusoidal walls having different geometrical properties are considered to represent different
fracture geometries. It is analytically shown that the hydraulic aperture of the fracture
clearly deviates from its mean aperture when the walls roughness is relatively high. The
finite element method is then used to solve the continuity and the Navier-Stokes equations
and to simulate fracture flow in order to compare with the theoretical predictions of the local
cubic law for Reynolds numbers Re in the range 6.7 × 10−2 − 6.7 × 101. The results show
that for low Re, typically less than 15, the local cubic law can properly describe the fracture
flow, especially when the fracture walls have small corrugation amplitudes. For Re higher
than 15, the local cubic law can still be valid under the conditions that the fracture presents
a low aspect ratio, small corrugation amplitude, and moderate phase lag between its walls.
Second, particle-laden flows are studied. An analytical approach has been developed to show
how particles sparsely distributed in steady and laminar fracture flows can be transported
for long distances or conversely deposited inside the channel. More precisely, a rather simple
particle trajectory equation is established. Based on this equation, it is demonstrated that
when particles’ inertia is negligible, their behavior is characterized by the fracture geometry
and by a dimensionless number W that relates the ratio of the particles sedimentation termi-
nal velocity to the flow mean velocity. The proposed particle trajectory equation is verified
by comparing its predictions to particle tracking numerical simulations taking into account
particle inertia and resolving the full Navier-Stokes equations. The equation is shown to
be valid under the conditions that flow inertial effects are limited. Based on this trajectory
equation, regime diagrams that can predict the behavior of particles entering closed channel
flows are built. These diagrams enable to forecast if the particles entering the channel will
be either deposited or transported till the channel outlet. Finally, an experimental appara-
tus that was designed to have a practical assessment of the analytical model is presented.
Preliminary experimental results tend to verify the analytical model. Overall, the work pre-
sented in this thesis give new insights on the behavior of small particles in fracture flows,
which may improve our prediction and control of underground contamination, and may have
applications in the development of new water filtration and mineral separation techniques.

Keywords: Particle-laden flow, Particle trajectory, Corrugated walls, Rough Fracture, Local
Cubic Law
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Résumé

Études analytique, numérique, et expérimentale du transport de particules
dans des fractures parois plates et ondulées
Le but de cette thèse est d’étudier le transport et le dépôt de particules solides dans les
écoulements à travers les fractures. Dans un premier temps, l’écoulement monophasique
à travers les fractures est étudié afin d’évaluer la validité de la loi cubique locale comme
mod̀le de l’écoulement. Des canaux à parois sinsöıdales à géométrie variable sont utilisés
pour représenter différents types de fractures. Un premier développement analytique montre
que l’ouverture hydraulique de la fracture diffère de son ouverture moyenne lorsque la ru-
gosité des parois est élevée. La méthode des éléments finis est ensuite utilisée pour résoudre
les équations de continuité et de Navier-Stokes et comparer les solutions numériques aux
prédictions théoriques de la loi cubique locale sur une gamme relativement étendue de nom-
bres de Reynolds Re. Pour de faibles Re, typiquement inférieurs à 15, la loi cubique locale
décrit raisonnablement l’écoulement, surtout lorsque la rugosité et le déphasage entre les
parois sont relativement faibles. Dans un deuxième temps, les écoulements chargés de par-
ticules sont étudiés. Une approche analytique est d’abord développée pour montrer comment
des particules distribuées dans un écoulement stationnaire et laminaire à travers une fracture
peuvent être transportées sur de longues distances ou au contraire se déposer à l’intérieur.
Plus précisément, une équation simple décrivant la trajectoire d’une particule est établie. Sur
la base de cette équation, il est démontré que, quand l’inertie des particules est négligeable,
leur comportement dépend directement de la géométrie de la fracture et d’un nombre adi-
mensionnel W qui relie la vitesse de sédimentation des particules à la vitesse moyenne de
l’écoulement. L’équation proposée est vérifiée en comparant ses prédictions à des simula-
tions numériques de suivi de particules prenant en compte l’inertie des particules et résolvent
complètement les équations de Navier-Stokes. Il est montré que l’équation est valide lorsque
l’inertie du fluide est faible. Des diagrammes de régimes, permettant de prévoir le comporte-
ment des particules à travers la fracture sont proposés. Enfin, un appareil expérimental
conçu dans le but d’effectuer une évaluation pratique du modèle analytique est présenté
et les résultats préliminaires sont discutés. Les rèsultats expérimentaux préliminaires ten-
dent valider le modèle analytique. De façon plus générale, les résultats obtenus à travers
ce travail de thèse font progresser nos connaissances du comportement des petites particules
transportées dans les écoulements de fractures. Potentiellement, ce travail devrait permettre
d’améliorer notre prévision de la pollution souterraine, et peut avoir des applications dans le
développement de nouvelles techniques de filtration de l’eau et de séparation des minéraux.

Mots-clefs: Transport de particules, Fracture rugueuse, Parois ondulées, Loi cubique locale
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Résumé étendu

La modélisation des fluides chargés en particules à travers des canaux d’écoulement in-

terne est fondamentale afin de mieux appréhender divers applications environnementales,

telles que le transport de sédiments et la pollution souterraine ou industrielles, comme la

filtration de l’eau et la séparation des minéraux, ou encore, l’exploitation des ressources

pétrolières. Le transport de contaminants à travers les fractures rugueuses est aussi un su-

jet de recherche important de par sa relation directe avec la contamination des formations

aquifères.

Dans ce contexte, la présente thèse est consacrée à l’étude du transport et de la déposition

de particules solides dans des écoulements à travers des canaux fermés, avec une applica-

tion aux fractures rugueuses. En particulier, on considère des fractures à parois planes et

ondulées (Figure 1). L’objectif principal de ce travail est de déterminer les conditions pour

lesquelles les particules se déposeront à l’intérieur de la fracture ou, au contraire, seront

transportées sur de grandes distances. Plusieurs paramètres doivent être pris en compte

pour étudier le comportement des particules immergées dans un fluide en mouvement. Tout

d’abord, les propriétés des particules, telles que leur taille et leur densité, doivent être con-

nues pour déterminer les forces pouvant agir sur leur déplacement. Par exemple, lorsque

la taille des particules est inférieure au micron, leur comportement est dominé par la dif-

fusion brownienne. En revanche, dans le cas de particules plus grosses, leur mouvement

est insensible à la diffusion brownienne et leur transport dépend uniquement des forces

macroscopiques extérieures, comme les forces gravitationnelles et hydrodynamiques. Nor-

malement, l’augmentation de la taille et/ou de la densité des particules tend à favoriser leur

déposition en raison de la prédominance des effets gravitationnels sur leur comportement.

Deuxièmement, les caractéristiques de l’écoulement, telles que la vitesse, la viscosité et la
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Figure 1: Fractures à parois planes et ondulées considérées dans cette thèse

masse volumique du fluide, sont également des facteurs importants qui doivent être pris en

compte pour modéliser correctement le comportement des particules. L’augmentation de

la viscosité du fluide, par exemple, tend à favoriser le transport des particules sur de plus

longues distances en raison de forces de frottement plus importantes entre le fluide et les

particules.

Dans tout écoulement chargé de particules, il est important d’avoir une description précise

de l’écoulement du fluide avant de modéliser le transport de particules. Dans le cas des

fractures rugueuses, un modèle bien connu et souvent utilisé pour décrire l’écoulement est

la loi cubique locale (LCL), qui est une solution analytique approximative des équations

de Navier-Stokes (NS) pour les écoulements laminaires visqueux à travers les fractures.

Cependant, l’applicabilité de la LCL reste discutable. En fait, un certain désaccord est

évoqué dans les critères proposés par différents auteurs pour valider cette loi. Ceci est dû est

lié aux études précédentes réalisées avec des fractures ayant des géométries spécifiques. Afin

de pallier à ce problème, une étude numérique approfondie a étv menée. Ainsi, la première

partie de notre travail est dédiée à l’effet induit par la géométrie de la fracture sur la validité

de la LCL, sous différentes conditions liées à la géométrie et à l’écoulement. Cette étude est

plus que nécessaire puisque la LCL constitue la base du modèle de transport de particules

dans les fractures.

Pour l’étude du transport des particules, trois approches ont été adoptées:
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• Approche analytique : En supposant que l’inertie des particules soit négligeable, une

forme simplifiée de l’équation du mouvement des particules est couplée à la LCL, et,

par conséquent, une équation décrivant les trajectoires des particules est développée.

Les particules peuvent alors être suivies analytiquement et la distance à laquelle elles se

déposeront peut être calculée. Cette équation relie un nombre sans dimension W à la

géométrie de la fracture. W dépend des propriétés des particules et des caractéristiques

de l’écoulement. Basé sur W et sur les propriétés géométriques de la fracture, des

régimes de transport et de sédimentation sont définis, et des diagrammes de régime

sont établis.

• Approche numérique : En prenant en compte l’inertie des particules et en résolvant les

équations complètes de NS, des simulations numériques sont menées pour confirmer la

capacité du modèle analytique à prédire le comportement des particules dans les frac-

tures. Les distances auxquelles les particules sédimentent à l’intérieur de la fracture

sont calculées numériquement et comparées aux solutions de l’équation des trajec-

toires déterminée analytiquement. Des expériences numériques sont ensuite menées

afin d’évaluer la pertinence des diagrammes de régime.

• Approche expérimentale : Un dispositif expérimental a été conçu et construit dans

le but principal de vérifier le modèle analytique. Des tests préliminaires utilisant des

graines de pavot comme particules ont été conduits, et les résultats expérimentaux ont

été comparés aux prédictions du modèle analytique.

Cette thèse est divisée en quatre chapitres:

Dans le chapitre 1, on présente les concepts de base des écoulements chargés en particules

sont présentés, ainsi qu’un état de l’art sur l’écoulement et le transport des particules dans

des fractures.

Le chapitre 2 est consacré à l’étude des écoulements monophasiques dans des fractures à

parois sinusöıdales. Les simulations numériques visant à évaluer la validité de la LCL sont

présentées et les résultats sont discutés et comparés aux travaux précédents.

Dans le chapitre 3, l’intérê est proté sur le modèle analytique décrivant le transport des

particules faiblement inertielles dans les canaux fermés. Les expériences numériques visant
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à vérifier le modèle analytique sont également présentées et discutées.

Dans le chapitre 4, le dispositif expérimental conçu pour une évaluation pratique du

modèle analytique est décrit. Des résultats expérimentaux préliminaires utilisant des graines

de pavot sont présentés.

Enfin, les principaux résultats obtenus tout au long de la thèse sont résumés et les per-

spectives du travail sont discutées.

Chapitre 2

Différents modèles ont été utilisés en hydrogéologie pour étudier l’écoulement à travers

des fractures à parois rugueuses. L’idéalisation de la fracture en tant que canal à deux parois

plates simplifie grandement le problème et permet de trouver une solution analytique pour

le champ des vitesses, appelée la loi cubique (CL). En tenant compte de la rugosité des

parois et en considérant une faible variation de l’ouverture dans la direction de l’écoulement,

on peut utiliser l’équation de Reynolds qui conduit à la loi cubique locale (LCL), où les

composantes du vecteur vitesse sont exprimées en fonction de la géométrie de la fracture.

Cependant, la validité de la CL et de la LCL reste discutable. En effet, il existe des

critères, strictement liés à la géométrie de la fracture, permettant l’applicabilité de ces deux

lois. Dans ce chapitre, une étude numérique visant à évaluer la validité de la CL et de

la LCL, en considérant des fractures avec différentes géométries, est menée. Les fractures

sont représentées par des canaux à parois sinusöıdales ayant des propriétés géométriques

différentes définissant l’ouverture du canal, l’amplitude et la longueur d’onde des ondulations

des parois, l’asymétrie entre les ondulations des deux parois, et le déphasage entre les deux

parois. La validité de la LCL est évaluée pour des nombres de Reynolds dans la gamme

[6.7×10−2, 6.7×101], en comparant ses prédictions à la solution numérique des équations de

Navier-Stokes (NS). Cette dernière est obtenue en utilisant la méthode des éléments finis,

implémentée dans le logiciel COMSOL Multiphysics.

Les résultats obtenus confirment que la CL, basée sur l’ouverture moyenne de la fracture,

peut remplacer la LCL, basée sur l’ouverture hydraulique, tant que les ondulations des parois

sont relativement petites ou lorsque les parois sont identiques et parallèles. Par contre, elle
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surestime nettement le débit dès que l’amplitude des ondulations devient élevée, surtout

dans les fractures ayant des parois décalées et/ou des parois avec différentes amplitudes

d’ondulation.

La LCL est valide pour modéliser l’écoulement des fluides dans les fractures pour à

faible Re, et en particulier dans les fractures avec de faibles ratios d’aspect et de faibles

amplitudes d’ondulation. Cependant, l’écart entre les solutions de la LCL et des équations

NS augmente même à faible Re, lorsque les parois sont en phase et lorsque les deux parois

présentent une amplitude d’ondulation élevée. Cet écart est dû à la courbure des lignes de

courant qui augmente la tortuosité de l’écoulement et la dissipation d’énergie à l’intérieur de

la fracture. Lorsque Re augmente, les effets inertiels deviennent significatifs pour Re > 15.

Cela signifie que les résultats obtenus pour faibles Re sont valides pour des valeurs de Re

inférieures à 15. Au-dessus de cette limite, la LCL peut encore être pertinente pour modéliser

l’écoulement sous la condition que la fracture présente un petit rapport d’aspect, de faibles

amplitudes d’ondulation, et de faibles variations dans l’ouverture locale le long de la direction

d’écoulement. Lorsque ces conditions ne sont pas respectées, l’accélération et la décélération

répétées du fluide, dues à la variation de l’ouverture locale, tendent à favoriser les effets

inertiels et donc à augmenter l’écart entre les solutions de la LCL et celles des équations de

NS.

En conclusion, une estimation quantitative de l’erreur relative en utilisant la LCL, voire

la CL, pour modéliser l’écoulement du fluide dans les fractures rugueuses a été effectuée. Il

ressort que, tant que les écoulements dans les fractures dépendent fortement de la géométrie

de la fracture, les critères existants dans la littérature ne permettent pas de généraliser

l’applicabilité de la LCL ou la CL pour tout type de fracture, i.e., à géométrie arbitraire.

Cependant, la LCL est valide pour modéliser l’écoulement pour de faibles ratios d’aspect et

de faibles amplitudes d’ondulation.

Chapitre 3

Ce chapitre est consacré à l’étude du transport des particules dans les fractures, en sup-

posant que l’écoulement peut être décrit par la LCL comme discuté au chapitre 2. Les partic-
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ules sont non-browniennes, passives et de dimensions largement plus faibles que l’ouverture

de la fracture. Comme au chapitre 2, des canaux à parois planes et sinusöıdales sont con-

sidérés.

L’inertie des particules est considérée comme faible de telle sorte qu’elle peut être négligée

dans l’équation du mouvement. On montre que, sous cette condition, le comportement des

particules peut être caractérisé par la géométrie du canal et par un nombre sans dimension W

qui représente le rapport entre la vitesse de sédimentation des particules et la vitesse moyenne

de l’écoulement. Une équation différentielle définissant la trajectoire des particules dans les

canaux à parois ondulées et une équation exacte de cette trajectoire dans les canaux à parois

planes ont été dérivées sous l’hypothèse que la vitesse de l’écoulement peut être explicitement

calculée en utilisant la LCL. Ces équations ont été vérifiées à travers les solutions numériques

basées sur une technique de suivi des particules impliquant les équations du mouvement des

particules et le champ d’écoulement obtenu par la résolution des équations de NS. Les

simulations numériques ont été réalisées en tenant compte à la fois de l’inertie des particules

et de celle du fluide. Les résultats numériques ont confirmé les hypothèses sous lesquelles

l’approche analytique a été développée. De plus, ils ont confirmé que la trajectoire des

particules peut être prédite directement en fonction de la valeur de W et de la géométrie du

canal, sans avoir besoin de calculs ou de simulations numériques supplémentaires.

En se basant sur ces développements, un diagramme de régime qui prédit le transport

ou la sédimentation des particules en fonction de W et d’un paramètre géométrique h∗,

représentant le rapport entre l’ouverture moyenne du canal et sa longueur totale, a été

proposé (Figure 2).

Pour les canaux à parois ondulées, le diagramme de régimes est similaire à celui obtenu

pour les canaux à parois planes, mais les zones de transport et de sédimentation ont tendance

à augmenter ou diminuer en fonction de la période et l’amplitude des ondulations, et le

déphasage entre les parois. Quand les deux parois sont en phase, le diagramme de régimes est

identique à celui obtenu pour un canal à parois planes. Lorsque les deux parois sont décalées,

l’augmentation de l’ondulation de la paroi entrâıne une augmentation des zones de transport

et de sédimentation dans le diagramme. En considérant l’asymétrie entre les ondulations des

deux parois, l’augmentation de l’ondulation de la paroi supérieure par rapport à celle de la
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Figure 2: Diagramme de régimes de transport de particules dans un canal á parois planes.
(a) représentation 2D des différentes zones selon la variation de W en fonction de h∗(b)

représentation 1D de ces zones selon
W

h∗
.

paroi inférieure tend à diminuer la zone de transport et à augmenter la zone de sédimentation.

Le diagramme de régimes et les effets des paramètres géométriques sur la variation de ses

zones sont vérifiés par des expériences numériques menées en injectant 100 particules dans

le canal et en calculant les pourcentages de particules qui se déposent à l’intérieur du canal.

Les principaux résultats de ce chapitre ont été publiés dans le ”European Journal of

Mechanics B/Fluids” (Hajjar et al. [1]).

Chapitre 4

Le modèle analytique proposé au chapitre 3, sous l’hypothèse que l’inertie des particules

est négligée et que l’écoulement suit la loi cubique locale (LCL), a été vérifié numériquement

via la résolution numérique des équations de NS et en prenant en compte l’inertie des par-

ticules. Pour aller plus loin, une validation expérimentale est nécessaire, afin de considérer
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des situations réelles et d’évaluer la validité du modèle analytique sur une base pratique. Par

conséquent, ce chapitre est dédié au modèle expérimental. La première partie du chapitre

est consacrée à la présentation de la conception et à la mise en place du modèle physique.

Ensuite, la procédure expérimentale et la méthodologie utilisée pour traiter les données

expérimentales sont décrites. Enfin, plusieurs résultats préliminaires sont présentés et dis-

cutés vis-à-vis des objectifs initiaux de l’étude. Le dispositif est utilisé pour effectuer une

étude préliminaire du transport des particules dans les fractures avec des parois planes et/ou

sinusöıdales, ayant des dimensions conformes aux hypothèses théoriques formulées dans les

chapitres précédents.

Figure 3: Modèle d’une fracture à parois sinusöıdales utilisées dans les expériences

Les résultats obtenus montrent que le banc expérimental est capable de reproduire

les différents comportements des particules dans les fractures, tels que le transport et la

sédimentation, ainsi que la focalisation inertielle. De nombreux tests ont été effectués en

utilisant comme fluides l’eau et un mélange eau-glycérine, et des graines de pavot comme

particules polydispersées. En choisissant une différence optimale de charge hydraulique, les

effets inertiels de l’écoulement sont réduits et les résultats expérimentaux sont en accord avec

la solution analytique. La distance parcourue par les particules jusqu’à leur sédimentation

est dans la plage prédite par le modèle analytique développé. Ceci suggère que la solu-

tion analytique peut être utilisée afin d’évaluer la distance de sédimentation des particules

polydispersées dans les fractures à parois planes et/ou sinusöıdales. Lorsque la charge hy-

draulique augmente, i.e., pour Re plus élevé, on observe que, dans les fractures à parois

planes et sinusöıdales, les particules se focalisent sur une seule trajectoire, vérifiant ainsi la
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présence d’une focalisation inertielle des particules. Ce résultat vérifie l’hypothèse que le

modèle analytique n’est valide que pour un faible Re.

En conclusion, les résultats expérimentaux préliminaires confirment le modèle analytique

développé dans cette thèse. En plus, ces résultats démontrent la capacité du dispositif

expérimental à étudier le transport des particules dans les écoulements en canaux fermés.

Il peut être judicieusement utilisé pour de futures études expérimentales sur le transport de

particules, ce qui peut améliorer notre compréhension du comportement des particules et

valider les modèles déjà développés.

Conclusion

Dans l’ensemble, les résultats obtenus dans cette thèse améliorent notre compréhension

du comportement de petites particules immergées dans les écoulements à travers des canaux

fermés, avec une application directe au transport des contaminants dans les fractures. Par

exemple, on peut identifier, en fonction de leur taille et de leur densité, les contaminants

susceptibles de se déposer à l’intérieur de la fracture ou être en suspension et transportés sur

de longues distances. Ces résultats ont d’autres applications dans la filtration de l’eau et dans

la séparation des minéraux. En effet, sur la base de nos diagrammes de régime, un système

de séparation basé sur la sédimentation de particules dans des canaux à parois sinusöıdales

pourrait être envisagé. Cela permettrait de séparer les particules en fonction de leur taille

et/ou de leur densité en fonction de la distance à laquelle elles se déposent dans le canal.

Comme l’écoulement dans le canal peut simplement être créé par une différence de charge

hydraulique, l’avantage d’un tel système par rapport aux techniques de séparation actuelles

est qu’il est passif et ne nécessite pas une importante alimentation en énergie. Une autre

application concerne la focalisation inertielle qui peut trouver des échos en microfluidique.

Tout d’abord, les résultats obtenus peuvent conduire à une quantification des conditions (Re

et taille des particules) dans lesquelles la focalisation devient efficace. Deuxièmement, on

a pu observer la focalisation inertielle dans les canaux à parois sinusöıdales. Des analyses

supplémentaires pourraient révéler de nouvelles caractéristiques à l’origine du phénomène de

focalisation, comme par exemple l’effet de la courbure des parois des canaux sur les forces
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de portance inertielles agissant sur les particules.
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GENERAL INTRODUCTION

Understanding the transport and deposition of small particles in closed channel flows is of

fundamental importance in many environmental issues, such as underground pollution and

sediment transport, and in several industrial applications, like water filtration and mineral

separation. Other applications concern energy extraction processes like the injection of

proppants in petroleum reservoirs, and medical and biological research like the deposition of

inhaled particles in human airways and cell sorting and separation in microfluidics. In earth

sciences, the transport of contaminants in rough fractures is a crucial research topic due to

its tight relation with water contamination in aquifers.

In such a context, the present thesis is devoted to the investigation of the transport

and deposition of small solid particles in closed channel flows, with application to fracture

flows. In particular, fractures with flat and corrugated periodic walls are considered. The

main objective is to determine the conditions under which the particles will settle inside the

fracture or, on the contrary, be transported over long distances. Several parameters must be

considered in order to study the behavior of particles immersed in a moving fluid. First, the

physical properties of the particles such as their size and density must be known to determine

the forces acting on them. For instance, for sub-micron particles, Brownian diffusion domi-

nates particle behavior and can be considered for studying particle transport. On the other

hand, the transport of larger particles, which are insensitive to Brownian diffusion, depends

directly on the forces acting on the particles due to gravitational and hydrodynamical effects.

Normally, increasing the particle size and/or density tends to favor particle deposition due

to the predominance of gravitational effects on their behavior. Second, the characteristics

of the flow such as its velocity and the fluid viscosity and density are also important factors

that must be taken into account for modeling correctly particle behavior. Increasing the
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fluid viscosity, for example, tends to enhance the transport of particles for longer distances

due to greater friction forces between the fluid and the particles. Finally, the effects of the

channel geometrical properties related to its aperture and to the wall corrugations on particle

behavior must be comprehended.

Before addressing particle-laden flows, it is important to have a precise description of

the fluid flow itself. In the case of rough fractures, a well-known model commonly used to

describe the flow is the local cubic law (LCL), which is an approximate analytical solution

of the Navier-Stokes (NS) equations for viscous laminar flows through thin channels. How-

ever, the LCL applicability remains arguable. In fact, a certain discrepancy emerged in the

criteria proposed by different authors for its validity. This is due to the fact that the previous

studies have been performed with specific fracture geometries. This discrepancy motivated

the first part of our work. In particular, a thorough numerical study is conducted in order to

to investigate the effect of the fracture geometry on the validity of the LCL under different

geometrical and kinematic conditions. This investigation is necessary since the LCL consti-

tutes the basis of our study aiming to model particle transport and depositions in fracture

flows.

To sum up, this thesis is an attempt to answer the following questions:

• Is the LCL a suitable model of fracture flow and what are the effects of the fracture

geometry on its validity?

• What are the effects of the particle properties and of the flow characteristics on the

behavior of particles when immersed in fracture flows?

• How do the the geometrical properties of the fracture affect the particle behavior?

For the study of particle transport and deposition, we adopt three approaches:

• Analytical approach: Assuming that particle inertia is negligible, a simplified form of

the particle motion equation is coupled to the LCL and an equation describing particle

trajectories is developed. Particles can be tracked analytically and the distance at

which the particle may deposit can be calculated. This equation relates a dimensionless

number W to the fracture geometry. W depends on the particle properties and on the
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flow characteristics. Based on W and on the geometrical properties of the fracture,

arbitrary regimes of transport and deposition are defined, and regime diagrams are

established.

• Numerical approach: Taking into account particle inertia, and solving the full NS

equations, numerical simulations are conducted to confirm the ability of the analytical

model to predict the behavior of particles immersed in fracture flows. The distances

at which particles deposit inside the fracture are computed numerically and compared

to the trajectory equation determined analytically. Numerical experiments are then

conducted to assess the relevance of the regime diagrams.

• Experimental approach: An experimental apparatus has been designed and constructed,

with the main aim of verifying the analytical model. Preliminary tests using poppy

seeds as moving particles are conducted and experimental results are compared to the

analytical predictions.

Outline of the thesis

This thesis consists of four chapters:

In chapter 1, we present the basic concepts of particle-laden flows and a bibliographic

review is made regarding flow and particle transport in fractures.

Chapter 2 is devoted to the study of single-phase flows in fractures with sinusoidal walls.

The numerical simulations aiming to assess the validity of the local cubic law are presented,

and the results are discussed and compared to previous works.

In chapter 3, we introduce the analytical model describing the transport of weakly-inertial

particles in closed channel flows. Numerical experiments aiming to verify the analytical

model are also presented and discussed.

In chapter 4, the experimental apparatus that was designed for further validation and

practical assessment of the analytical model is described. Preliminary experimental results

using poppy seeds are presented.

Finally, the main results obtained throughout the thesis are summarized and the per-

spectives of the work are discussed.
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Chapter 1

STATE OF THE ART

1.1 Particle-laden flows: Basic concepts

The term particle-laden flows refers to two phase flows in which a carrier fluid contains

suspensions of particles. Such flows consist of a fluid phase, called continuous phase, and the

collection of all the particles in the flow, called dispersed phase. They represent a complex

medium where multiple interactions are developed between phases which may have different

physical properties.

Examples of particle-laden flows include solid particles in a liquid or a gas, gas bubbles

in a liquid, or liquid particles in a gas. They are ubiquitous in many situations, whether

at the natural and environmental level like rain droplets in clouds, transport of sediments,

and dust inhalation, or at the industrial level like solid-particle separation, bubble column

reactors, and sprays.

The complete set of equations describing particle-laden flows are in general very compli-

cated to be solved analytically or require high computation costs to be solved numerically.

Therefore, some approximations are usually made to simplify the problem such as point-force

particles or mixed multiphase flow. It is also typical to assume that the dispersed particles

size is very small compared to the flow domain so that the suspension is diluted. This as-

sumption can greatly simplify the problem by neglecting particle-particle interactions (like

collisions) with respect to particle-fluid interactions.

The concentration of particles certainly affects the particle dynamics in the flow. Nonethe-
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Figure 1.1: Schematic representation of the difference between dispersed and dense systems
according to particle concentration

less, a distinction has to be made between dispersed systems and dense systems (Figure 1.1).

In the latter case, as the concentration of the particles is high, particle motion is dominated

by particle-particle interactions. On the other hand, in a dispersed system, particle dynamics

is governed by the fluid hydrodynamical forces that prevail over particle-particle interactions.

In this case, the concentration also defines the level of coupling between the dispersed and

continuous phases. Generally, one-way coupling is considered when the particle concentra-

tion is very low so that their effect on the carrier fluid is neglected. The flow equations can

then be solved independently from particle motion equations, which can be then solved us-

ing the corresponding flow fields at the particle position. For higher particle concentrations,

particles can affect the flow by changing the local density and/or viscosity or the velocity

field. In this case, the flow and particle motion equations are mutually coupled. In any case,

to correctly predict the behavior of particle-laden flows, it is important to have an accurate

description of the particle properties and flow characteristics. In addition, depending on

the particle size, a distinction has to be made between colloidal and non-colloidal particles
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Figure 1.2: Suspended colloids with random fluctuations (Brownian motion) and non col-
loidal particles sedimenting due to their density.

(Figure 1.2). Colloids are very small particles, generally submicron-particles having a size

ranging between 1nm and 1000nm (McCarty and Zachara [2], Kretzschmar et al. [3]), even

though some studies suggest extending their size up to 10µm (Khilar and Fogler [4], Sen and

Khilar [5]). Colloids are sensible to Brownian diffusion, i.e. the mechanism by which parti-

cles move (diffuse) from zones of higher concentration to zones of lower concentration (Jones

[6]). Because Brownian diffusion dominates the other mechanisms in colloidal transport,

colloids may be suspended in the fluid for long time periods. On the other hand, when the

particle size increases, typically above 1µm, Brownian effects become negligible and particle

behavior is driven by external forces due to the interaction with the fluid and to potential

external fields such as, for instance, gravity in the case of dense particles and electricity in

the case of charged particles. An example of the distinction between particles based on their

size can be found in the processes of water filtration. In figure 1.3, the different types of

water contaminants which can be encountered in water filtration are illustrated, highlighting

the difference between colloidal and non-colloidal particles.

Throughout this thesis, Brownian effects are neglected so that only non-colloidal particles

are considered.
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Figure 1.3: Different types of water contaminants encountered in water filtration and their
sizes, including underground sediments (white rectangles). Adaptation of Water Quality
Association source material.

1.1.1 Definition of particle inertia

To understand particle inertia, one can consider a case in which inertia is negligible. A

good example for the latter situation is flow tracers, which are commonly utilized to measure

flow velocity when combined with imaging techniques such as PIV and PTV. In fact, a tracer

particle follows exactly the flow streamlines due to its small size and to having a density

matching that of the carrier fluid.

The motion of a non-colloidal tracer can be simply described by:

~vp = ~vf (1.1)

where ~vp and ~vf are respectively the particle and fluid dimensionless velocities rescaled based
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on the typical velocity scale of the flow.

When their size and/or density increase, particles have a proper dynamic and their tra-

jectories deviate from the flow streamlines. These particles are called inertial particles. The

motion of inertial particles can be very complex even when particles are passive and have

non Brownian dynamics (Babiano et al. [7], Haller and Sapsis [8], Cartwright et al. [9],

Balkovsky et al. [10]). This characteristic behavior of inertial particles has a great impor-

tance in many practical situations in earth sciences like oceanology (Lunau et al. [11]) and

atmospheric sciences (Shaw [12]).

Another interesting feature of inertial particles is that, under the effect of their inertia,

they tend to cluster or accumulate in well defined regions of the flow. This phenomena

has been widely studied for different types of fluid flows (e.g. Eaton and Fessler [13] and

Squires and Eaton [14] in turbulent flows, Bec [15] in random flows, Nizkaya et al. [16] in

laminar spatially periodic flows, Angilella [17] and Angilella et al. [18] in vortex flows). This

clustering ability of inertial particles can explain, for example, how rain in turbulent clouds

can be enhanced by the accumulation of water droplets (e.g. Falkovich et al. [19]).

Moreover, particle inertia has a great effect on particle trajectories in fluid flows. For

instance, Stommel [20] studied particle motion in cellular flow fields without taking into

account particle inertia. He found that the particles’ trajectories can be calculated according

to the ratio between the particles settling velocity and the flows vortex velocity. Maxey

[21] extended this concept by including the effect of particle inertia and found that two

dimensionless numbers must be considered: Stokes number St, which characterizes particle

inertia, and the particle to fluid density ratio.

By definition, St is the ratio between particle relaxation time tp and the flow characteristic

time t0. tp can be seen as the characteristic time of particle reaction to a change in the fluid

velocity. If St << 1, then the particle will quickly adapt itself to the fluid velocity and acts

as a tracer. On the other hand, for higher St, the particle will take longer time to respond

to any change in the fluid velocity and will continue along its initial trajectory.

Unlike tracers, inertial particle motion is governed by a second order equation that can
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be written in the following general form:

d~vp
dt

= − 1

St
(~vp − ~vf ) + ~f (1.2)

the term − 1
St

(~vp − ~vf ) being related to the drag force while ~f includes forces resulting from

externally applied fields, such as gravity or other forces (electrical, magnetic...). If St → 0

and if ~f is negligible (e.g. a neutrally buoyant particle in a gravity field), then equation

(1.2) reduces to equation (1.1) and the particle is simply a tracer. When St increases and/or

when f is not negligible, deviation from equation 1.1 appears and solving the particle motion

equation is more complex. However, for small inertia, equation 1.2 can be solved based on

an asymptotic expansion, St being the perturbation parameter.

1.1.2 Particle transport in closed channel flows

Closed channel flows define configurations where a fluid is moving inside closed conduits

such as tubes, pipes or confined channels like fractures (Figure 1.4).

In this thesis, We consider 2D flows occurring in closed channels with flat and corrugated

walls (Figure 1.5). In addition, we consider that the fluid fills the channel cross-section

and there is no free surface of the fluid. In a hydrogeological context, such channels are

commonly used to model rough fractures for example. Flows through these fractures can

carry tiny particles such as rock sediments or organic debris. Depending on the particle

physical properties, on the flow characteristics, and on the fracture geometry, these particles

can have different behaviors. Most of previous works emphasizing on fracture flows focused

either on solute transport (Therrien and Sudicky [22], Bouqain et al. [23], Oltéan et al. [24])

or on the transport of colloidal particles (Boutt et al. [25]).

Generally, for particle-laden flows through fractures, the macroscopic behavior of the

particulate phase can be described by breakthrough curves, i.e. the plot of the variation

of particle relative concentration as a function of time, where the relative concentration is

defined as the ratio of the actual concentration to the one at the source. Breakthrough

curves in previous experimental works have shown that particles are not simply advected

like tracers and that particles velocity deviates from that of the fluid (Novawski et al. [26]).
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Figure 1.4: Examples of closed and open channels

Figure 1.5: Closed channels with corrugated and flat walls considered in this thesis
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This phenomenon was shown to be due to the effect of Brownian diffusion which leads to

the redistribution of particles along the channel cross-section. However, this is not valid

for larger particles that are not affected by diffusion. For example, the transport of such

particles has been investigated by Nizkaya [27] and Nizkaya et al. [16] who showed how they

can be accumulated in preferential regions and focus towards specific streamlines inside the

flow. Another focusing phenomenon that is expected to occur in closed channels is particle

focusing due to the lift forces that emerge when flow inertial effects are important. These

two distinct phenomena of particle focusing are briefly described in the following section.

1.1.3 Focusing phenomena in closed channels

1.1.3.a. Lift-induced inertial migration

Both neutrally and non-neutrally buoyant particles can migrate across the flow stream-

lines to reach specific equilibrium positions within the channel (Figure 1.6). In fact, Segré

and Silberberg [28] were the first to witness that particles in a laminar pipe Poiseuille flow

congregate on an annulus located at a certain distance from the pipe centerline equal to 0.6

times the pipe radius. This phenomenon is known as the tubular pinch effect. Since then,

this phenomenon has been studied extensively using theoretical (Schonberg and Hinch [29],

Asmolov [30]), experimental (Karnis et al. [31], Matas et al. [32]) and numerical approaches

(Feng et al. [33], Yang et al. [34]). These investigations concluded that inertial migration

occurs due to forces that act on particles in inertial flows, known as the inertial lift forces.

Recently, lift-induced particle focusing attracted much attention with the development of

microfluidics where it has many applications, e.g. in cell separation and isolation in biologi-

cal fluids (Di Carlo et al. [35], Martel and Toner [36]). The effect of inertial lift forces must

be is explained in detail in the following chapters.

1.1.3.b. Preferential accumulation of particles in periodic channels

Unlike lift-induced particle focusing, accumulation or clustering of particles due to their

inertia in liquid flows through channels with corrugated walls, remains a theoretical predic-

tion yet to be verified experimentally (Nizkaya et al. [16]). Moreover, particle clustering is
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Figure 1.6: Lift-induced inertial migration in a serpentine channel (Di Carlo et al. [35]).

Figure 1.7: Accumulation of particles in a channel with corrugated walls as predicted by
Nizkaya [27].

only limited to the case of periodic walls corrugations (Figure 1.7) as, in contrast with lift-

induced migration, clustering can not occur in channels with flat walls. This phenomenon

in which particles, with low but finite inertia, are expected to be attracted by a streamline,

may occur for specific channel geometries and flow characteristics.

This phenomenon will be discussed later on with more details. Before that, the flow must

be investigated.

1.2 Flow in channels with flat and corrugated walls

Channels with flat and corrugated walls have been studied extensively in earth sciences

as a model of single rough fractures.

In fact, many studies have shown the importance of the fracture characteristics when

considering flow in fractured geological systems, such as its orientation, its extent, and its

interconnection with other fractures (Rasmussen [37]). Zhang et al. [38] showed that the

hydraulic behavior of a fractured medium is largely influenced by the characteristic lengths
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of the single fractures and their number (i.e. fracture density), and fracture orientations.

Indeed, the properties of the flow occurring through a network of fractures are strongly

controlled by those of the flow occurring through single or discrete fractures. For a network

of fractures, the percolation theory is an appropriate technique for solving the permeability

problems (Mourzenko et al. [39], Mourzenko et al. [40]). However, modeling flow in single

fractures remains a key issue that needs to be properly understood before extrapolating to

more complex configurations.

The parameters likely to intervene in the prediction of flow through single fractures have

been gathered experimentally by Hakami and Larsson [41]. They noted that, apart from

the effect of the fluid properties and pressure conditions on the fracture boundaries, fracture

flow depends also on different geometrical parameters such as the aperture and spatial cor-

relations related to the walls roughness. The roughness characterizes the morphology of the

fracture walls, their general shape and their surface state. The term roughness encompasses

very different morphological characteristics such as: amplitude (elevation of points on the

surface), angularity (slopes and angles), waviness (periodicity), and curvature (Gentier [42],

Belem [43]). The geometric description of the roughness and morphological characteristics

of fractures is based on empirical, geometrical and statistical analyzes, which can be either

geostatistical or fractal (Gentier [42], Belem [43], Mourzenko et al. [39], Plouraboué [44],

Oron & Berkowitz [45], Lefèvre [46], Legrain [47]).

The roughness in its general sense has a multiplicity of characteristic length scales. How-

ever, in the literature, two main scales of roughness are usually highlighted (Figure 1.8).

They are characterized and defined by their effects on the mechanical and hydraulic behav-

ior of a fracture. It is important at this point to distinguish two types of roughness (Louis

[48]). At the micro-scale level, roughness is related to irregularities in the surface of the walls.

It may slightly increase the linear head loss inside the fracture. The macro-scale roughness

characterizes the overall shape of the walls. It causes changes in flow direction and the shape

of the streamlines. The concept of tortuosity is then often used in the literature. Tortuosity

represents the ratio of the length of the trajectory of the flow between two points and the

straight distance between these two same points, and, thus, it can has an important effect

the behavior of the flow through rough fractures. The micro-scale roughness is neglected in
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Figure 1.8: Different scales of roughness according to Dippenaar and Van Rooy [49]. i1
represents first order waviness corresponding to the macro-roughness. i2 represents second
order asperities corresponding to the micro-roughness.

this thesis and only the effects of the macro-scale roughness on the behavior of fracture flow

are considered.

1.2.1 Modeling flow in rough fractures

To model fluid flow in a single fracture, the standard laws of fluid mechanics can be used.

These are the Navier-Stokes (NS) and continuity equations. Eventually, these equations can

be simplified according to the channel geometry and/or assumptions regarding the flow, so

that analytical solutions can be obtained to determine the pressure and velocity fields.

On the other hand, on a larger scale, the flow can be described by Darcy’s law. Darcy’s

law relates the hydraulic gradient to the flow rate using an intrinsic parameter defined as

the permeability. It can be obtained from the NS equation using an upscaling method such

as volume averaging an homogenization (Whitaker [50]).

One of the most important characteristics of a rough fracture is its aperture. The aperture

is defined as the distance between the fracture walls and implicitly depends on the way the

roughness is defined. The aperture can be defined locally or globally according to geometrical

criteria, mechanical criteria, or as a result of hydraulic experiments assuming a law for the

flow. Consequently, the geometric mean, the mechanical and the hydraulic apertures can be

distinguished (Lin [51], Davias [52], Crosnier [53]).

Early attempts to model flow in single fracture assumed that the flow occurs between

two flat parallel plates representing the fracture walls (Bear [54]). This is known as the
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Figure 1.9: The parallel-plate model

parallel-plate model (Figure 1.9). This model is based on the observations stating that most

natural fractures are approximately plane at the fracture length scale. Analytical solutions

to the problem of laminar flow between parallel plates can then be easily obtained. In

particular, for a 2D channel with flat walls of length L∞ and aperture H0, through which a

fluid of density ρ and dynamic viscosity µ is flowing due to a pressure difference ∆P = ρg∆Z

between the inlet and the outlet of the channel, with ∆Z is the hydraulic head and g the

gravity acceleration, the volumetric flow rate per unit width is given by:

Q = −ρgH0
3

12µ

∆Z

L∞
(1.3)

The volumetric flow rate per width is Q = V0H0, V0 being the mean velocity of the flow in

the channel. In this case, the velocity has a parabolic profile (Figure 1.9)

At the same time, Darcy’s law (Darcy [55]) gives a linear relation between the volumetric

flow rate Qv and the pressure drop ∆P :

Qv = −KA
µ

∆P

L
(1.4)

where K is the hydrodynamic permeability and A is the cross-section on which Qv is com-

puted. In order to consider the flow rate per unit width Q, A can be replaced by H0 and

equation (1.4) thus becomes:

Q = −KH0

µ

∆P

L
(1.5)

Replacing equation (1.3) in equation (1.5), the permeability of the channel is equal to
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K =
H2

0

12
, and, therefore, the channel transmissivity can be computed as T = KH0 =

H3
0

12
. Since T is proportional to the cube of the aperture, equation (1.3) is known as the cubic

law (CL) (D.M. Brown [56], S.R. Brown [57], Silliman [58], Chen et al. [59], Konzuk and

Kueper [60], Dippenaar and Van Rooy [49]). If the CL is valid for large fracture apertures,

i.e. when walls macro-roughness can be neglected, it tends to overestimate the flow rate if the

roughness and the aperture have the same order of magnitude. In this case, the two walls can

not be modeled as flat plates and the local aperture varies along the flow direction, an effect

that is not taken into account in equation (1.3). However, the CL can accurately predict

the flow rate in a rough fracture when the apparent aperture H0 is replaced by a fitting

parameter calculated from experimental data and obeying equation (1.3) (Whitherspoon

et al. [61]). This parameter is called the hydraulic aperture Hh. Attempts to match the

measured flow rates to the hydraulic head as predicted by the CL have been made using

different aperture definitions such as the arithmetic mean (Brown [57]), the geometric mean

(Tsang and Tsang [62], Renshaw [63]), the harmonic mean (Unger and Mase [64]) and the

volume-averaged mean (Hakami and Barton [65]) of local apertures or by applying correction

factors to include other information about the fracture (Whitherspoon et al. [61], Gutfraind

and Hansen [66], Neuman [67], De Vallejo and Ferrer [68]). A comparative evaluation of

the different definitions of the aperture can be found in the work presented by Konzuk and

Kueper [60].

Instead of matching the measured flow rates to the predictions of the CL, a different ap-

proach consists in considering the spatial variation of the aperture along the flow direction,

implying that the CL is valid locally along the fracture length and leading to the known

local cubic law LCL. In fact, fluid flow through rough fractures can be fully described by the

NS equations (Zimmerman and Bodvarsson [69]). However, the non-linearity of the inertial

term in these equations makes them difficult to be solved analytically without the use of

perturbation expansions (Hasegama and Izuchi [70], Basha and El Asmar [71]). When the

flow inertial effects are negligible, the NS equations reduce to the Stokes equation. Further-

more, when the channel aperture varies slowly along the flow direction, Stokes equation can

be further reduced to Reynolds equation also known as the LCL (Zimmerman et al. [72]).

The development of the LCL based on the NS equation is detailed and discussed in the
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next chapter.

1.2.2 Inertial effects in fracture flows

At the macroscopic level, fracture flow is characterized by the relation between the volu-

metric flow rate Qv and the pressure drop ∆P applied between the fracture inlet and outlet.

At low flow rates, this relation is linear and is described by Darcy’s law (equation (1.4)).

For low Qv, the permeability K depends only on the fracture geometry. When Qv increases,

experimental investigations showed that the variation of ∆h as a function of Qv deviates

from the linear defined in Darcy’s law (e.g. Firdaouss et al. [73]). This deviation is due to

the inertial effects developing in the flow and to the walls corrugation (Bear [54], Dybbs and

Edwards [74]). The intensity of flow inertial effects allows the separation between Darcian

and non-Darcian regimes and is characterized by the Reynolds number Re =
V0H0

ν
, V0 =

Q

A
being the flow mean velocity, H0 is the characteristic length, and ν is the fluid kinematic

viscosity.

For low and moderate Re, when the inertial and viscous forces in the liquid are of the

same order of magnitude, the deviation of Darcy’s law is cubic in Qv (proportional to Q3
v).

This cubic deviation was later confirmed by many theoretical investigations (Firdaouss et

al. [73], Skjetne and Auriault [75], Jacono et al. [76]). For higher Re, inertial effects can

lead to the appearance of recirculation zones in the flow (Figure 1.10). They are due to the

viscous shear stresses resulting from the fluid momentum mismatch in the channel center

and near-wall regions. The central fluid moves faster than the quasi-stagnant fluid close

to the channel walls, causing thus fluid recirculations within the channel furrows. Such

zones can theoretically appear even in Stokes flows, but only when the aperture variations

are important (Kitanidis and Dikaar [77], Malevich et al.[78]). Due to the presence of

recirculation zones at high Re, the deviation from Darcy’s law is quadratic in Q (Forchheimer

regime [79]). In this case, the deviation is due to energy dissipation that may be explained

by the loss of kinetic energy occurring when single jets tend to penetrate into the separating

line between the main flow and the recirculation zone (Lucas et al. [80]). Therefore, it is

convenient to define the flow regimes as follows:

• Viscous regime: inertial forces are negligible with respect to viscous forces. This is a
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Figure 1.10: Recirculation zones appearing in a fracture with rough walls as identified by
Boutt el al. [25].

Darcian regime in which the variation of ∆P as a function of Qv is linear.

• Transition regime: viscous and inertial forces are of the same order of magnitude. The

deviation from Darcy law is cubic in Qv. This regime is also known as weakly inertial

regime.

• Inertial regime: viscous forces are negligible with respect to inertial forces. The devi-

ation from Darcy law is quadratic in Qv.

In this thesis, fracture flow is investigated for low and moderate Re. Investigating the onset

of creation of recirculation zones as well as the effect of the channel geometry on their

appearance in the inertial regime is not part of the study and will thus not be addressed.

The CL and LCL provide simple relationships relating the hydraulic aperture of a frac-

ture to its permeability, given that the flow is Darcian. For high Re, when the flow becomes

non-Darcian, the validity of the CL and of the LCL becomes questionable. The applicability

of these models must then be assessed before considering them to model fracture flow.
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1.2.3 Idealized model of fracture geometry

Although real fractures have 3D geometries, 2D geometries can be considered for simpli-

fication sake. Indeed, the fracture aperture is practically many orders of magnitude smaller

than its width. If the fracture is presented in a reference frame (X, Y, Z), where X is in the

main flow direction (along the length), Y is in the orthogonal direction (along the width) and

Z is in the vertical direction (along the aperture), it is reasonable to assume an invariance

of the velocity field in the Y direction and to study the system in the 2D referential (X,Z).

In this context, Zimmerman et al. [81] showed that a 2D model in which the aperture varies

only in the flow direction gives qualitatively the same results as a full 3-D model.

In order to study analytically flow and transport in fractures, a geometrical model that

best represents the fracture characteristics must be used. Power and Tullis [82] showed that

natural rock fractures, despite having self-affine properties, can be described by the sum of

multiple sine waves with equal amplitude to wavelength ratios. This means that the walls

roughness, even if irregular, has an oscillatory nature and can be represented by a regular

corrugation, which leads to the sinusoidal fracture model.

The configuration in which the profiles of the walls vary sinusoidally along the length

can be used as a model of real fractures because, it captures their oscillatory nature, as well

as the effects of the walls roughness and of the aperture variation on the flow. Actually, Le

Borgne et al. [83] showed that velocity distribution in sinusoidal channels are very similar

to that obtained in more complex medium.

The difference between using the parallel plate model and the sinusoidal model is shown

in Figure 1.11. On the one hand, it is obvious that the parallel plate model does not

take into account surface roughness. It presents a constant aperture and a geometry that

would not affect the flow streamlines inside the channel. On the other hand, the sinusoidal

model, despite not following exactly the real roughness profile, can still take into account the

aperture variation and the effect of the channel walls on the flow geometry. These are the

reasons why channels with sinusoidal walls have been then widely used to represent rough

fractures (Zimmerman et al. [81], Brown et al. [84], Zimmerman and Bodvarsson [69], Waite

et al. [85], Sisavath et al. [86],Basha and El Asmar [71], Yeo and Ge [87], Nizkaya [27], Liu

and Fan [88], Renu and Kumar [89])
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Figure 1.11: Fracture with irregular roughness modeled as a channel with parallel flat walls
(a) and a channel with sinusoidal walls (b).

It is convenient also to notice that sinusoidal channels have been used to model homoge-

neous porous media. For instance, porous media can be modeled as a set of uniform spherical

grains regularly stacked. In this case, a 2D simplification of a representative elementary vol-

ume can lead to a sinusoidal channel that accounts for the aperture variation inside the

medium. This simplification has been widely applied to study flow and solute dispersion in

porous media (Kitanidis and Dikaar [77], Edwards et al. [90], Bolster et al. [91], Bouquain

et al. [23]).

Throughout the thesis, sinusoidal variation will be considered to represent walls corru-

gation. Other than representing fracture roughness, such geometry is convenient for setting

up numerical simulations and experimental devices aiming at studying fracture flow.

47



48



Chapter 2

SINGLE PHASE FLOW THROUGH

FRACTURES

In order to study particle transport, it is crucial to consider a model that can

describe accurately the fluid flow. Different models were used in hydrogeology

for investigating flow through single rough-walled fractures. Idealizing the frac-

ture as a channel with two flat walls simplifies greatly the problem and enables

to find an analytical solution for the velocity field, known as the cubic law (CL).

Taking into account walls corrugation and considering slowly varying apertures,

Reynolds equation can be used and leads to the local cubic law (LCL), which

gives expressions of the velocity components depending the fracture geometry.

However, the validity of the CL and the LCL remains questionable. Indeed,

there exist some criteria, strictly related to the fracture geometry, for the appli-

cability of these two laws. In this chapter, we propose a numerical study aiming

to assess the validity of the CL and of the LCL by considering different fracture

geometries. The fractures are represented by channels with sinusoidal walls hav-

ing different geometrical properties defined the channel aperture, the amplitude

and the wavelength of the walls corrugation, the corrugations asymmetry and

the phase shift between the two walls. The validity of the CL and of the LCL is

evaluated for Reynolds number in the range [6.7× 10−2, 6.7× 101].
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Introduction

Flow in rough-walled fractures is governed by the Navier-Stokes (NS) equations (Zimmer-

man and Bodvarsson [69]. However, the non-linearity of the inertial term in these equations

makes their solution very difficult to be obtained without the use of perturbation expansions

that may give approximate solutions (Hasegaw and Izuchi [70], Basha and El Asmar [71]).

As pointed out in chapter 1, a fracture can be approximated as a channel with two flat

parallel walls. This approximation simplifies the problem and leads to an analytical solution

of the NS equations known as the CL. Another approximation consists in considering that

the fracture aperture varies slowly and the Reynolds equation, i.e. the LCL, can then be

used.

However, several authors have shown that Reynolds equation tends overestimate the flow

rate in rough-walled and corrugated fractures depending on their geometry and the flow

characteristics (Mourzenko et al. [92], Brown et al. [84], Nicholl et al. [93], Lee et al.

[94]). Indeed, there are some restrictions related to the flow and to the fracture geometry

for the Reynolds equation, and thus for the LCL, to be valid. First, different geometrical

criteria have been proposed for the validity of the LCL. For instance, Zimmerman et al.

[81], by applying the perturbation approach of Hasegawa and Izuchi [70] to fractures with

mirror-symmetric sinusoidal walls, found that Stokes equation can be replaced by Reynolds

equation only if the ratio between the wavelength of the wall and the standard deviation of

the local apertures is higher than five. Using a similar approach with a fracture consisting

of a flat wall and a sinusoidal wall, Zimmerman et al. [72] suggested that the wavelength

of the walls must be higher than three times the arithmetic mean of local apertures for

Reynolds equation to be valid. Later on, Yeo and Ge [87] performed numerical simulations

of flow in fractures with sinusoidal parallel walls with different corrugation amplitudes, and

identified a criterion relating flow tortuosity and walls roughness for Reynolds equation to be

applicable. On the other hand, the influence of the flow characteristics on the validity of the

LCL has been investigated. The LCL is generally considered valid for viscous flows when

Re < 1 ([95], [96], [60]). When Re increases, flow inertial effects become significant and thus

the deviation of the LCL from the NS equations increases. The first inertial corrections to
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the solution given by the lubrication theory were found by [97]. Second order corrections

were then calculated for specific geometries, like for instance, the case of a fracture having

a flat wall and a corrugated wall ([70]), the case of a fracture with parallel walls ([98]) or

for mirror-symmetric fractures ([53], [99] in the case of a radial fracture). [71] and [27]

generalized these results by calculating the inertial corrections for corrugated fractures with

arbitrary walls.

Besides, numerous studies have focused on the determination of the hydraulic aperture,

i.e. the aperture of a fracture with flat walls that would have the same permeability as

the actual rough fracture. For example, in order to relate precisely the hydraulic aperture

to the walls roughness and to the fracture mean aperture (known also as the mechanical

aperture), Sisavath et al. [86], following the method of Van Dyke [97], used a perturbation

approach to study fluid flow in a sinusoidal fracture undergoing dilatation or closure, and

developed an expression for the hydraulic aperture taking into account a resistance term

that can not be simply deduced from Reynolds equation. This result is valid for fractures

with mirror-symmetric walls and is similar to the one obtained by Hasegawa and Izuchi [70]

for flow through fractures consisting of a corrugated wall and a flat wall. Later on, Liu

et al. [88] improved this expression of the hydraulic aperture by taking into account the

roughness, the mean aperture, and the phase shift between the two walls. All these results

clearly demonstrated that the hydraulic aperture deviates from the mean aperture in rough

fractures.

Several attempts were made to modify the LCL in order to take into account the sur-

face roughness, the tortuosity, the friction loss and the flow inertial effects, with different

definitions of the mean aperture, like the geometric mean, the arithmetic mean and the true

aperture (Ge [100], Konzuk and Kueper [60], Mallikamas and Rajaram [101], Qian et al.

[102], Wang et al. [103], Chen et al. [104]). These modifications were able to reduce the

over-prediction of the flow rate by the LCL.

Nevertheless, it would be convenient, when studying fracture flow in rough fracture with

applications ranging from particle and solute transport to heat and mass transfer, to use

the LCL, or the CL. Indeed, they give a direct and relatively simple relationship between

the flow rate and the pressure difference and lead to an explicit expression of the velocity
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components inside the fracture. However, many issues must be resolved before using the

LCL for modeling the fracture flow. First, the criteria proposed in the literature regarding

the applicability of the LCL present certain discrepancy among authors. Most likely, the

discrepancy arise from the specific fracture geometry considered by each one of these authors.

In addition, to our knowledge, none of the available studies provides a quantification of the

relative error between the LCL and the NS equations for arbitrary geometries, i.e. when the

two walls are shifted or when they present different corrugation amplitudes. Such assessment

is nonetheless crucial before considering further complexity in the modeling of fracture flow

processes (particle transport, heat and mass transfer, etc...). Finally, a fine analysis of the

mechanisms involved at the local scale is required to better understand the influence of the

fracture geometry on the flow field and how inertial effects may affect the validity of the

LCL.

To estimate the validity of the LCL and the CL for modeling flow in rough fractures, we

present here a thorough numerical investigation aiming at characterizing flow in rough frac-

tures by studying the effect of their geometry on their hydraulic aperture. For convenience,

fractures are modeled as channels with sinusoidal walls.

In this chapter, we do not study a specific fracture geometry. Instead, we consider

all the possible configurations involving sinusoidal walls to investigate the influence of the

fracture mean aperture, walls corrugation wavelength and amplitude, asymmetry between

walls corrugations, and horizontal phase shift between the walls on the flow characteristics.

Instead of developing analytical solutions for the flow, we verify the validity of the LCL

to model flow by comparing its predictions to numerical solutions of the NS equations for

different values of Re.

Chapter outline: In section 1, we present the fracture configuration as well as the

different parameters that define its geometry. In section 2, the equations governing the flow

in corrugated fractures are recalled and the LCL model is developed in the dimensionless

form. In section 3, these equations are expoited to evaluate the effect of the fracture geometry

on the difference between the hydraulic aperture predicted by the LCL and the mean or

mechanical aperture used in the CL . In section 4, the numerical method used to solve the

NS equations is described. The validity of the LCL is then assessed for Re ranging from
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6.7×10−2 to 6.7×101. In particular, these predictions given by the LCL are compared to the

numerical results, and the relative error between the two solutions systematically quantified

for different geometrical configurations. In section 5, a discussion is provided based on the

results of the study.

2.1 Geometrical description of fractures with corru-

gated walls

The domain is represented in a reference frame (X,Z) where X corresponds to the

horizontal direction (the main flow direction) and Z to the vertical one. Gravity is taken

into account and applies perpendicularly to the main flow direction (along Z).

Following the approach proposed by Nizkaya [27], we consider a two dimensional fracture

having two rough walls with idealized periodic roughness described respectively by the func-

tions Φ1(X) for the lower wall and Φ2(X) for the upper one (Figure (2.1)). The fracture total

length is L∞ and is thus defined by the domain limited by Xε[0, L∞] and Zε[Φ1(X),Φ2(X)].

The fracture walls corrugations are smooth so that
∂Φ1,2(X)

∂X
<< 1. The fracture can be

Figure 2.1: Schematic diagram of a 2D fracture having sinusoidal walls.

equally defined by the local half aperture H(X) = 1
2
(Φ2(X)−Φ1(X)) and the fracture mid-

dle line Φ(X) = 1
2
(Φ1(X) + Φ2(X)). The fracture walls are periodic and have the same

corrugation wavelength L0, which is the characteristic length of the flow in the X direction.
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The phase shift between the two walls is ∆X and the corrugation amplitude of each wall is:

A1,2 =
1

2
(max[Φ1,2(X)]−min[Φ1,2(X)])

The characteristic length in the Z direction can be defined as the mean aperture of the

fracture given by:

H0 =
1

L∞

∫ L∞

0

(Φ2(X)− Φ1(X))dX

Finally, the fracture aspect-ratio can be defined as:

ε =
H0

L0

At this point, it is important to note that there are two types of channels that can be

found in literature depending on the order of magnitude of ε. Channels with ε ∼ 1 are

commonly used to model flow and heat transfer in heat exchangers tubes (e.g. Yin et al.

[105], Mohammed et al. [106]) and channels with ε << 1 are commonly considered to

represent rough fractures.

It is more convenient to study the fracture flow using dimensionless parameters. The

length scales L0 and H0 are thus used to define the dimensionless variables:

z =
Z

H0

, φ1,2(x) =
Φ1,2(X)

H0

, φ(x) =
Φ(X)

H0

, vx =
VX
V0

, vz =
1

ε

VZ
V0

, ψ =
Ψ

Q

In addition, the following dimensionless parameters are introduced:

• δ0 =
A1 + A2

2H0

is the dimensionless average corrugation defined by the ratio of the mean

corrugation amplitude of the walls to the fracture mean aperture. This parameter is

an indicator of the roughness of the walls.

• γ =
A2 − A1

A2 + A1

represents the asymmetry between the walls corrugations defining the

difference of corrugation level between the two walls. γ > 0 means that the upper wall

is more corrugated than the lower one and vice versa. γ = 0 corresponds to upper and

bottom walls with the same corrugation amplitude and γ = 1 to a fracture with flat
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bottom wall.

• ∆x =
∆X

L0

is the dimensionless phase shift

The fracture geometry is thus defined by four parameters ε, δ0, γ and ∆x.

In this thesis, the periodic corrugations of the walls are represented by a sinusoidal

variation (cf. chapter 1). For a fracture with sinusoidal walls, the walls can be defined by

the following equations:

φ1(x) = −1

2
+ δ0(1− γ)sin[2π(x− ∆x

2
)] and φ2(x) =

1

2
+ δ0(1 + γ)sin[2π(x+

∆x

2
)] (2.1)

The equation of the dimensionless local half-aperture of the fracture is given by:

h(x) =
1

2
+ δ0(cos(2πx)sin(π∆x) + γ(sin(2πx)cos(π∆x))) (2.2)

and the equation of the fracture middle-line is:

φ(x) = δ0(sin(2πx)cos(π∆x) + γ(cos(2πx)sin(π∆x))) (2.3)

In such a case, the effect of δ0, γ and ∆x on the fracture geometry is illustrated in Table 2.1.

Table 2.1: Geometry of the fracture walls corresponding to different values of δ0 (a), ∆x (b)
and γ (c).

(a) ∆x = 0 , γ = 0

δ0 = 0.2 δ0 = 0.3

(b) δ0 = 0.2 , γ = 0

∆x = 0.25 ∆x = 0.5

(c) δ0 = 0.2 ,∆x = 0.5

γ = 0.2 γ = 0.8
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2.2 Governing equations

Steady flows in closed channels are governed by the NS equations:

ρ(V.∇)V = −∇P + ρg + µ∇2V (2.4)

where V is the velocity of the fluid, ρ is the fluid density, µ is the fluid dynamic viscosity,

and P is the hydrodynamic pressure. This equation is an application of the fundamental

principle of dynamics to a fluid particle. The rate change of the linear momentum of the

fluid particle (left-hand side of equation (2.4)) is equal to the sum of the external forces:

• ρ(V.∇)V : describes the inertial acceleration. As steady flow is independent of time,

acceleration is only due to spatial variations of the velocity field by convection. This

term is a source of non-linearity in the flow as it presents the square of the velocity

vector.

• −∇P : represents the pressure gradient.

• ρg: represents the external body forces. In our case, these forces are solely due to

gravity.

• µ∇2V : accounts for the energy dissipation due to viscous friction occurring inside the

fluid causing momentum diffusion. Its contribution is more important in zones of high

shear, near walls for example.

Equation (2.4), when written in the scalar form, consists in a system of three equations

with four variables, the three velocity vector components and the pressure. The system of

equations is closed using the continuity equation (mass conservation) which, in the case of

an incompressible fluid flow, is written as:

∇.V = 0 (2.5)

The relative importance between viscous and inertial forces is the ratio between the orders of

magnitude of the inertial acceleration (ρ(V.∇)V ) and of the viscous friction (µ∇2V ), which
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is the Reynolds number Re = ρV0H0

µ
. When Re >> 1, viscous friction becomes negligible

(perfect fluid case). On the other hand, when Re << 1, viscosity dominates the flow, and

equation (2.4) can be simplified into the Stokes equation:

µ∇2V −∇P + ρg = 0 (2.6)

2.2.1 Flow between parallel flat walls: the cubic law

In an incompressible laminar flow generated by a pressure gradient along a channel con-

sisting of two parallel planes (the parallel-plate model), the inertial terms are identically null

and the steady flow can be expressed via equation (2.6). This problem has been thoroughly

addressed in the literature. For instance, Zimmerman and Bodvarsson [69] recalled in detail

all the equations and conditions Of the problem. We therefore recall here only the major

conclusions.

If the wall length is much greater than the distance separating them, one can assume

that only the X-component of the velocity vector is non-zero. In such case, the X-component

of equation (2.6) is written as:

(∇P )X =
∂P

∂X
= µ

∂2VX
∂X2

(2.7)

with ∇P the applied pressure gradient. If the distance between the two walls is H0, inte-

grating equation (2.7) with the no-slip boundary conditions (Vx(0) = Vx(H0) = 0) leads to

the following parabolic velocity profile, similar to the one found in the so called Poiseuille

flow:

Vx = −H
2
0

8µ
(∇P )X (1− 4Z2

H2
0

) (2.8)

For a difference ∆h in the hydraulic head h between the ends of the two plates, (∇P )X =

ρg∆h
L0

. The volumetric flow rate per unit width can thus be expressed as ([54]):

Q =

∫ H0/2

−H0/2

VXdZ = −ρgH0
3

12µ
∆h/L0 (2.9)
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2.2.2 Flow between corrugated walls: the local cubic law

We consider here the fractures defined in section 1. The viscous flow in the fracture is

calculated under the assumption that the simplification of equation (2.4) into equation (2.6)

is valid. The no-slip boundary conditions on the fracture walls yield:

~V (X,Φ1(X)) = ~0 ~V (X,Φ2(X)) = ~0 (2.10)

and the volumetric flow rate per unit width is given by:

Q =

∫ Φ2(X)

Φ1(X)

VX(X,Z)dZ (2.11)

Writing equation (2.6) in scalar form and estimating
∂2VX
∂X2

proportional to
V0

L2
0

and
∂2VX
∂Z2

proportional to
V0

H2
0

, one can see that when ε << 1, the derivative of the velocity with respect

to X can be neglected compared to that with respect to Z. Thus, the projection of equation

(2.6) on X can be reduced to:

µ
∂2VX
∂Z2

=
∂P

∂X
(2.12)

Integrating equation (2.12) with respect to Z, and taking into account the boundary condi-

tions (equation (2.10)), leads to:

VX(X,Z) =
1

2µ

∂P

∂X
(Z − Φ1(X))(Z − Φ2(X)) (2.13)

Defining H(X) = 1
2
(Φ2(X)−Φ1(X)) as the local half aperture, the average velocity can then

be calculated as:

VX =
1

2H(X)

∫ Φ2(X)

Φ1(X)

VX(X,Z)dZ =
−H2(X)

3µ

∂P

∂X
(2.14)

Recalling the no-slip boundary conditions VX(X,Φ1(X)) = VX(X,Φ2(X)) = 0, equation

(2.5), which is applied to local velocities VX , can be also applied to the flux 2H(X)VX
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(Zimmerman and Bodvarsson [69]), thus leading to:

∇.[H3(X)∇P ] =
d

dX
[H3(X)

dP

dX
] = 0 (2.15)

which corresponds to the Reynolds equation for a steady incompressible flow ([57]). Reynolds

equation gives an approximate description of the flow between two slightly non parallel and

non-planar surfaces. Equation (2.15) implies that the CL, which is valid for flows occurring

between two parallel planar walls, can be applied locally (at a point of coordinate X) to a

channel with non parallel walls, leading to the LCL model. To proceed from the local level

to the fracture level, equation (2.15) can be integrated between two points X1 and X2 along

the channel ([58]):

∆P = −12µQ

∫ X2

X1

1

H3(X)
dX (2.16)

with ∆P the pressure drop between these points. When the walls of the fracture are periodic

with a wavelength L0, equation (2.16) gives ([57], [81]):

∆P

L0

= −12µQ

Hh
3 (2.17)

where Hh represents the hydraulic aperture of the fracture.

To write the LCL in dimensionless form, x = X
L0

and h(x) = H(X)
H0

are defined. The

hydraulic aperture of the fracture is thus:

Hh = 2H0< h−3 >
− 1

3 (2.18)

with:

< h−3 > =

∫ 1

0

1

h3(x)
dx (2.19)

the dimensionless hydraulic aperture.

Taking the viscous lubrication pressure P ∗ =
µV0

εH0

as a pressure scale, equation (2.17)

59



leads to:

p = −3

2
< h−3 > (2.20)

with p = ∆P/P ∗ the dimensionless pressure drop.

2.2.3 Flow velocity components in corrugated channels

To calculate the flow velocity components, equation (2.6) is rewritten as a function of

the stream function Ψ(X,Z) ([70], [71], [27]), which satisfies VX =
∂Ψ

∂Z
and VZ = − ∂Ψ

∂X
:

∇4Ψ =
∂4Ψ

∂X4
+ 2

∂4Ψ

∂X2∂Z2
+
∂4Ψ

∂Z4
= 0 (2.21)

Choosing the walls corrugation wavelength L0 and the channel mean aperture H0 as

length scales and the mean flow velocity V0 as a velocity scale in the X direction, the following

dimensionless parameters can be defined:

z =
Z

H0

, φ1,2(x) =
Φ1,2(X)

H0

, φ(x) =
Φ(X)

H0

, vx =
VX
V0

, vz =
1

ε

VZ
V0

, ψ =
Ψ

Q
(2.22)

with vx =
∂ψ

∂z
and vz = −∂ψ

∂x
the velocity components in the dimensionless form. Equation

(2.21) can then be rewritten as:

ε4
∂4ψ

∂x4
+ 2ε2

∂4ψ

∂x2∂z2
+
∂4ψ

∂z4
= 0 (2.23)

When ε << 1, the terms proportional to ε2 and ε4 can be neglected (zeroth-order when

the stream function is developed in the form of an asymptotic expansion), and equation

(2.23) reduces to:

∂4ψ

∂z4
= 0 (2.24)
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In order to simplify the problem, a cross-channel coordinate is introduced as ([69], [16]):

η =
z − φ(x)

h(x)

η enables to map the channel interior into a rectangle (z ε [φ1(x), φ2(x)] → η ε [−1, 1]).

Equation (2.24) becomes:

1

h4(x)

∂4ψ

∂z4
= 0 (2.25)

with the boundary conditions (equation 2.10) expressed as:

ψ(x,−1) = −1

2
, ψ(x, 1) =

1

2
,
∂ψ

∂η
(x,−1) =

∂ψ

∂η
(x, 1) = 0 (2.26)

The solution of equation (2.25) is thus:

ψ(x, η) =
1

4
η(3− η2) (2.27)

and the flow velocity components are respectively equal to ([69], [16]):

vx =
3

4h(x)
(1− η2) and vz =

3(φ′(x) + ηh′(x))

4h(x)
(1− η2) (2.28)

The validity of these expressions to describe the flow velocity components in corrugated

channels will be assessed later on. Note that replacing the dimensional form of equation

(2.28) in Equation 2.12 also leads to the LCL in the form given by equation (2.16).

2.3 Influence of the fracture geometry on its hydraulic

aperture

The CL, established with respect to the mean aperture, tends to overestimate the flow

rate in channels with corrugated walls ([60], [49]) and thus needs to be replaced by the LCL

for a better description of the flow. To evaluate this overestimation, we examine the effect
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of the fracture geometry on the difference between the hydraulic aperture Hh (on which the

LCL is based) and the mean aperture H0 (on which the CL is based).

In a channel with corrugated walls, the ratio
Hh

H0

calculated from the dimensionless hy-

draulic aperture < h−3 > (equation (2.18)) depends only on the corrugation amplitude

representing walls roughness defined by δ0, the corrugations asymmetry defined by γ, and

the dimensionless phase shift between the two walls ∆x (equations (2.19) and (2.2)). As
Hh

H0

does not depend on the channel aspect ratio ε, if the channel mean aperture H0 is fixed,

then two channels having walls with different wavelengths should have the same hydraulic

aperture Hh.

2.3.1 ∆x effect

The variation of
Hh

H0

as a function of ∆x is evaluated for ∆x ∈ [0, 1] (Figure (2.2)). This

range covers all the possible phase shifts between the top and bottom walls. ∆x = 0 and

∆x = 1 correspond to in phase walls whereas ∆x = 0.5 corresponds to the case where the

phase shift is maximum between the two walls. Different values of δ0 (0.1, 0.2 and 0.4) and

γ (0, 0.5 and 1) are considered to investigate multiple geometrical configurations. γ = 0

corresponds to a channel having two walls with the same corrugation amplitude and γ = 1

to a channel with one flat wall.

Hh

H0

is very close to 1 for δ0 = 0.1 in all the considered configurations. This means that

Hh does not deviate strongly from H0 in the case of low corrugation amplitudes. On the

other hand, for δ0 = 0.2 and δ0 = 0.4,
Hh

H0

decreases with the increase of the phase shift

between the two walls and reaches its minimum when this shift is maximum (∆x = 0.5).

Note that when γ = 0 and ∆x = 0, corresponding to parallel identical walls, Hh is equal

to H0 for all the values of δ0. Therefore, the deviation of Hh from H0 increases for higher

wall corrugations amplitudes and when the walls are shifted. For γ = 1,
Hh

H0

does not vary

as a function of ∆x as there is, by definition, no phase shift for this specific configuration.

However, when γ = 1,
Hh

H0

decreases significantly when δ0 increases.
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Figure 2.2: Variation of
Hh

H0

as a function of the phase shift ∆x for different values of the

dimensionless corrugation amplitude δ0, and for corrugations asymmetry γ equal to 0, 0.5
and 1 respectively

2.3.2 γ effect

The variation of
Hh

H0

as a function of γ is plotted in Figure (2.3). γ varies in the range of

[−1, 1] to cover different corrugation asymmetries, going from a channel with a flat bottom

wall (γ = −1) to a channel with a flat top one (γ = 1). Different values of δ0 (0.1, 0.2

and 0.4) and ∆x (0, 0.2 and 0.5) are considered to cover different ranges of the corrugation

amplitudes and phase shifts between the walls. For a channel with parallel identical walls

(γ = 0 and ∆x = 0), the hydraulic aperture is always equal to the mean aperture.

Hh

H0

is minimal when one of the channel walls is flat (γ = ±1). For the same mean cor-

rugation amplitude,
Hh

H0

increases when the asymmetry between the two walls corrugations

decreases. When the phase shift between the two walls is maximal, the hydraulic aperture

remains constant with the variation of the asymmetry between the two walls. This means

that for the same average corrugation amplitude, a channel having a maximum phase shift
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Figure 2.3: Variation of
Hh

H0

as a function of the corrugations asymmetry γ for different

values of the dimensionless corrugation amplitude δ0, and for phase shifts ∆x equal to 0,
0.25 and 0.5 respectively.

between its walls has the same hydraulic aperture as a channel having a flat wall and a

corrugated wall.

2.4 Influence of the fracture geometry on the validity

of the LCL for different Reynolds numbers

In this section, numerical simulations using the finite element method (FEM) are con-

ducted to study the effect of different geometrical properties of fractures with sinusoidal walls

on the validity of the LCL, for Re values ranging from 6.7 × 10−2 to 6.7 × 101. To do so,

we systemically compare the theoretical predictions of the LCL to the numerical solution

obtained by solving the full NS equations.
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2.4.1 Numerical Method

The FEM is used to compute numerical solutions of the NS equations. The numerical

solutions are obtained using COMSOL Multiphysics software. Like most of the numerical

methods, the FEM is based on the discretization of the geometrical domain into small and

simple cells such as triangles or quadrilaterals in 2D. Each one of these cells is called an ele-

ment. Each element contains nodes, which are points in the domain on which approximated

solutions are computed. These approximated solutions are represented by basis functions

that are usually selected as polynomials of order 1 to 3. For each element, the solver searches

values at the nodes and the polynomials constants that can match the differential equation

in the most accurate way.

Numerical simulation procedure

The aim of the simulations is to verify the validity of the LCL represented in the di-

mensionless form by equation (2.20). To do so, the pressure difference between two sections

perpendicular to the main flow and distant of a wavelength, computed numerically via the

resolution of the NS equation, is compared to the pressure difference estimated by the LCL.

The procedure of the numerical simulations is as follows:

• The geometry of the fracture is first defined. The fracture is built by setting the

amplitude and the wavelength of its walls, and the horizontal phase shift between

them according to the expressions of Φ1(X) and Φ2(X). A flat part is constructed

upstream to ensure a parabolic velocity profile at the fracture inlet.

• The computational domain is discretized using a mesh consisting of triangular elements.

The mesh is refined in the near wall regions and gradually coarsened when moving

towards the fracture center (Figure (2.4)). A mesh objectivity test was performed and

the spatial discretization considered sufficiently fine when the same problem, treated

with a finer mesh (1.5 times more nodes) led to the same solution for each considered

field (velocity and pressure).

• A parabolic velocity profile with a mean flow velocity V0 is defined at the inlet. V0 is

defined according to the value of the corresponding Re. A zero pressure is imposed at
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the outlet Poutlet = 0, and the no-slip boundary conditions are imposed on the fracture

walls ( ~Vf = ~0).

• The continuity and NS equations governing the steady incompressible flow in the

fracture are solved, and the pressure and velocity fields are computed.

Figure 2.4: Example of a fracture with sinusoidal walls used in the simulations where the
pressure difference P1 − P2 is calculated along the third wavelength (left), where the flow is
developed and far from the inlet and outlet boundaries. The mesh (adaptive) used for the
numerical simulations (right). The two dashed lines represent the two cut lines on which the
velocity profile is plotted

The pressure difference ∆P = P1 − P2 is calculated along the third wavelength (Figure

(2.4)) where the flow is developed, far away from the inlet and outlet boundaries. This differ-

ence is divided by the corresponding lubrication pressure P0 to determine the dimensionless

pressure drop p which is then compared to the solution determined by the LCL (equation

(2.20)).

2.4.2 Low Re (< 1)

The LCL is generally considered valid for Re < 1. In this section we set Re = 0.1 for all

the simulations.

2.4.2.a. Relative error between the LCL and NS solutions for three reference

geometries

To study the effect of each one of the geometrical parameters on the validity of the LCL,

we consider three reference geometries (Table (2.2)).
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Table 2.2: Geometrical properties of the three fractures used as references in the numerical
simulations.

Configuration Geometry ε δ0 ∆x γ

Parallel walls 0.1 0.2 0 0

Mirror symmetric walls 0.1 0.2 0.5 0

Arbitrary walls 0.1 0.2 0.25 0.2

For each geometry, we set different values of the parameter whose effect is being studied,

and the dimensionless pressure p is computed according to the LCL (pLCL) and to the NS

numerical solution (pNS) respectively. The relative error between the two values is then

calculated as error =
pNS − pLCL

pLCL
∗ 100. Finally, the variation of this error is plotted as a

function of the established parameter.

2.4.2.b. Influence of ε, δ0, γ and ∆x on the relative error between the LCL and

NS solutions

The LCL was established for ε << 1. To verify to which extent the value of ε should be

small for the LCL to be valid, ε was varied from 0.05 to 0.4 for each geometry. The variation

of the relative error between the LCL and NS solutions as a function of ε is plotted in Figure

(2.5).
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Figure 2.5: Variation of the relative error between the LCL and NS solutions as a function
of the aspect ratio ε for channels with parallel walls, with mirror symmetric walls and with
arbitrary walls (Table (2.2)).
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One can notice that the relative error increases with the increase of ε for all the geometrical

configurations. This error is less than 2 % for ε < 0.1 in all the geometrical configurations.

When ε increases, the error is maximum in the channel with parallel walls. Moreover, this

error and consequently the deviation of the LCL from NS are maximal in a channel with

parallel walls and minimal in a channel with mirror-symmetrical configuration.

To compare the two solutions on a local level, the dimensionless velocity profiles are plot-

ted on two cut lines inside the channel located at x = 1.25 and x = 1.5 (Figure 2.4) for ε = 0.1

and ε = 0.4, in the cases of channels with parallel and mirror symmetric walls (Figures (2.6)

and (2.7)). For ε = 0.1, the velocity profiles seem to be identical in the case of parallel

Figure 2.6: Dimensionless velocity profiles given by the LCL (dashed lines) and NS (solid
lines) solutions for aspect ratios ε = 0.1 and ε = 0.4 in the case of a channel with parallel
walls. (a) velocity profiles on cut line 1. (b) velocity profiles on cut line 2

walls and mirror symmetric walls. On the other hand, the two profiles deviate for ε = 0.4

and the deviation is more important in the channel with parallel walls. This confirms the
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Figure 2.7: Dimensionless velocity profiles given by the LCL (dashed lines) and NS (solid
lines) solutions for aspect ratios ε = 0.1 and ε = 0.4 in the case of a channel with mirror
symmetric walls. (a) velocity profiles on cut line 1. (b) velocity profiles on cut line 2

fact that the deviation between the LCL and NS is greater in the channel with parallel walls.

The variation of the relative error between the LCL and NS solutions as a function of

δ0 is plotted in Figure (2.8) for all channel configurations. δ0 was varied in the range [0,

0.4] because δ0 = 0.5 in the mirror symmetrical channel would lead the two walls to be in

contact one with each other.

The relative error between the LCL and NS solutions does not increase significantly in

the mirror symmetrical configuration for all possible values of δ0 and remains around 1 %.

We conclude that the variation of δ0 has a small effect on the deviation of the LCL in this

configuration. Nonetheless, the relative error increases with the increase of δ0 in the channel

with arbitrary walls, and in a greater extent in the channel with parallel walls. The deviation
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Figure 2.8: Variation of the relative error between the LCL and NS solutions as a function of
the dimensionless corrugation amplitude δ0 for for channels with parallel walls, with mirror
symmetric walls and with arbitrary walls (Table (2.2)).

of the LCL with the respect to the NS solutions due to the increase of δ0 is then maximum

in a channel with parallel walls and minimum in a channel with mirror symmetrical walls.

The variation of the relative error between the LCL and NS solutions as a function of

γ is plotted in Figure (2.9). γ was varied from 0 (a channel having two identical walls) to

1 (a channel having a flat wall, representing the maximal possible asymmetry between the

two walls).
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Figure 2.9: Variation of the relative error between the LCL and NS solutions as a function
of the corrugations asymmetry γ for channels with parallel walls, with mirror symmetric
walls and with arbitrary walls (Table (2.2)).

For the three channels, the relative error between the two solutions remains between 1.5

% and 2.5 % when γ increases. Thus, increasing γ has a negligible effect on the deviation of
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the LCL solution with respect to that of NS equations.

The dimensionless phase shift ∆x was varied between 0 and 1 to take into account all

the possible phase shifts between the two walls. The variation of the relative error between

the LCL and NS solutions as a function of ∆x are plotted in Figure (2.10).
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Figure 2.10: Variation of the relative error between the LCL and NS solutions as a function
of the phase shift ∆x.

The variation of the pressure as a function of ∆x presents a symmetry around ∆x = 0.5.

This is due, as shown in section 3, to the fact that the hydraulic aperture is independent

of the direction of the phase shift between the two walls. The flow in a channel where the

bottom wall is offset from the top wall is thus identical to that in a channel where the top

wall is offset from the bottom one, if the offset is equal. One can notice that the relative

error is minimum for ∆x = 0.5 and maximum for ∆x = 0.

2.4.3 High Re (> 1)

When Re increases, the relation between the pressure gradient along the fracture and the

flow rate does not remain linear (as in equation (2.16)) due to the effect of fluid inertia that

becomes more important. For the same applied pressure gradient, the flow rate decreases, or

vice versa, maintaining a given flow rate through the fracture requires increasing the applied

pressure gradient.

On the other hand, we recall that the LCL was established under the assumption of a

Stokes flow inside the fracture and therefore for Re << 1. In its dimensional form (equa-
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tion(2.20)), the pressure is independent of Re although it is expected to increase as Re in-

creases. The validity of the LCL for high Re must then be assessed. Moreover, the velocity

profiles are no more ideally parabolic., and depending on the channel geometry, recirculation

zones may appear inside the fracture. They are due to the viscous shear stresses resulting

from the fluid momentum mismatch in the fracture center and the near-wall regions. The

fluid particles located in the central part of the fracture move faster than the quasi-stagnant

ones located in the channel hollows. This results in the formation of fluid recirculations

near the rough walls. These recirculation zones can also appear under Stokes flow conditions

(Kitanidis and Dykaar [77], Malevich et al. [78]) but under stronger geometrical constraints.

Such recirculation zones greatly affect the validity of the LCL. Investigating the onset of

creation of these zones as well as the effect of the fracture geometry on their appearance are

out of the scope of this study. Instead, we focus on studying the range of Re to which the

LCL can still be used to model flow in fractures, and the effect of the fracture geometry on

this validity.

To do so, we use the reference fractures defined in the previous section (Table 2.2), and

calculate the dimensionless pressure gradient p to compare the LCL and NS solutions for

Re varying in the range [6.7× 10−2, 6.7× 101]. We then compare the relative error between

the two solutions for several geometrical configurations corresponding to different values of

ε, δ0, γ and ∆X.

2.4.3.a. Relative error between the LCL and NS solutions for the reference

geometries

First, we study the variation of the dimensionless pressure p as a function of Re according

to the LCL and to NS solutions for each reference geometry (Table 2.2). The variation of

the relative error between the two solutions is plotted in Figure (2.11). For high Re (i.e.

Re > 40), the deviation between the LCL and NS solutions is maximal in the mirror-

symmetrical configuration and minimal in the channel with parallel walls. This result is

different than the one found for low Re (section 4.2.1). It can also be noted that the relative

error remains constant for Re < 15 in all the geometrical configurations. It then increases

progressively, although remaining relatively low, i.e. below 2 %, for Re values less than 30.
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Figure 2.11: Variation of the relative error between the LCL and NS solutions as a function
of Re for the reference geometries (Table 2.2).

To further investigate this effect, the dimensionless velocity profiles are compared for

Re = 6.6 × 10−2 and Re = 6.6 × 101, in the cases of fractures with parallel and mirror

symmetric walls (Figures (2.12) and (2.13)). One can see that the velocity profile calculated

by the LCL coincides exactly with the profile predicted byNS solution when Re = 6.6×10−2,

for the two cases. For Re = 6.6 × 101, the two profiles also coincide for the fracture with

parallel walls but a deviation appears for the fracture with mirror symmetric walls, which

confirms that the error is more important in the latter case (Figure 2.11).

In order to study the effect of the fracture geometry on the validity of the LCL for higher

values of Re, we computed the variation of the relative error between the two solutions as a

function of Re for each geometry, changing a parameter each time.

2.4.3.b. Influence of ε, δ0, γ and ∆x on the relative error between the LCL and

NS solutions

In the reference geometries (Table 2.2), ε was fixed equal to 0.1. Here, the LCL and NS

solutions are computed for the same geometries but with ε = 0.2 to study the effect of the

aspect ratio on the relative error. The variation of the relative error as a function of Re for

each value of ε and for each geometry is plotted in Figure (2.14).

In all fractures, the relative error between the LCL and NS solutions is higher for ε = 0.2,

compared to the one obtained for ε = 0.1. At low Re, the deviation of the LCL from NS

solution due to the increase of ε is greater in the case of parallel walls (as seen in section
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Figure 2.12: Dimensionless velocity profiles given by the LCL and NS solutions for Re =
6.6 × 10−2 and Re = 6.6 × 101 in the case of a fracture with parallel walls. (a) velocity
profiles on cut line 1. (b) velocity profiles on cut line 2

4.2.1). However, at high Re, the deviation becomes more important in the case of a channel

with mirror symmetrical walls. In the case of a channel with arbitrary walls, the relative

error tends to increase with the increase of ε and Re but remains nonetheless inferior to the

error obtained for mirror symmetrical walls.

To study the effect of δ0, different values are tested and compared to the reference ge-

ometries where δ0 was fixed equal to 0.2. To investigate the effect of the walls corrugation

amplitude, and therefore the walls roughness, on the deviation between the LCL and NS

solutions, the two solutions are now computed for the same geometries but with δ0 = 0.4.

The variation of the relative error as a function of Re for each value of δ0 and for each

geometry is plotted in Figure (2.15).
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Figure 2.13: Dimensionless velocity profiles given by the LCL and NS solutions for Re =
6.6 × 10−2 and Re = 6.6 × 101 in the case of a fracture with mirror symmetric walls. (a)
velocity profiles on cut line 1. (b) velocity profiles on cut line 2
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Figure 2.14: Variation of the relative error between the LCL and NS solutions as a function
of Re. Comparison between ε = 0.1 and ε = 0.2 for fractures with parallel walls, mirror
symmetric walls, and arbitrary walls.

For all the geometries, the relative error is higher for δ0 = 0.4, whatever the value of

Re. However, for small Re, increasing δ0 does not affect the relative error, while the error is
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Figure 2.15: Variation of the relative error between the LCL and NS solutions as a function
of Re. Comparison between δ0 = 0.2 and δ0 = 0.4 for fractures with parallel walls, mirror
symmetric walls, and arbitrary walls.

higher for δ0 = 0.4 when Re is higher than 15.

In the reference geometries (Table 2.2), when the channels have parallel and mirror sym-

metric walls, γ = 0 because the walls have the same corrugation amplitude. We investigate

the influence of the corrugation asymmetry by setting γ = 1
3
. In addition, we compare these

two cases to the case of a fracture having a flat wall (γ = 1) to evaluate the effect of the

asymmetry between the two walls on the validity of the LCL for high Re. The variation of

the relative error as a function of Re for each geometry and for each reference geometry is

plotted in Figure (2.16).
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Figure 2.16: Variation of the relative error between the LCL and NS solutions as a function
of Re for different values of the corrugations asymmetry γ.

When the phase shift between the two walls is maximum (∆x = 0.5), the variation of

γ has no effect on the relative error whatever the value of Re. When the two walls are in

phase (∆x = 0), the relative error increases slightly when Re increased. This increase is
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more important in the case of a channel having a flat wall.

Once again, it is important to note that in all the cases studied in this section, the relative

error remains relatively constant for Re < 15, meaning that the results obtained in section

4.2., on the effects of the fracture geometry on the validity of the LCL at low Re, remain

valid for Re up to 15.

2.5 Discussions

2.5.1 Relation between the hydraulic and the mean apertures

The effect of the geometrical properties of a fracture on the discrepancy between its

hydraulic aperture Hh and its mean aperture H0 has been investigated. Hh and H0 were

compared to estimate the conditions under which the LCL, developed with respect to the

hydraulic aperture Hh, can be replaced by the CL, developed with respect to the mean

aperture H0.

Analytical expressions of Hh based on Reynolds equation or the zeroth order solution

of NS equations exist for specific geometries, like fractures having mirror-symmetric walls

(Zimmerman et al. [81]), parallel and shifted walls (Basha and El Asmar [71]), and non-

identical walls (Nizkaya [27]). These expressions show that Hh deviates from H0 and depends

clearly on the fracture geometry. Instead of considering specific geometries, we directly

calculated Hh using equations (2.18) and (2.19), and plotted the variation of Hh

H0
as a function

of the average corrugation amplitude δ0, the corrugations asymmetry γ and the horizontal

phase shift ∆x between the bottom and top walls (Figures (2.2) and (2.3)).

The results show clearly that, in most cases, Hh is smaller than H0. This leads to a

systematic overestimation of the flow rate by the CL compared to the LCL. However,

these two apertures are equal in fractures with identical parallel walls (γ = 0 and ∆x = 0)

independently of the corrugation amplitude. This is consistent with the result of Basha and

El Asmar [71] who found that the zeroth order solution of NS equations for such fractures

does not depend on any geometrical parameter. In fact, in this particular case, even if δ0

increases, the local aperture remains constant along the fracture length and is always equal

to the mean aperture (Table 2.1(a)).
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The deviation of Hh from H0 increases when the walls are shifted and is maximum when

the phase lag between the two walls is maximum (∆x = 0.5). This can be explained by

the narrowing that appears inside the fracture with the increase of the phase shift (Table

2.1(b)). This narrowing leads to a decrease in the local aperture and therefore to a higher

deviation between Hh and H0. The same narrowing effect explains the diminution of Hh

with the increase of the walls roughness and with the increase of the asymmetry between

the two walls corrugations (Table 2.1(c)).

Therefore, the deviation of Hh from H0 is not only due to the surface roughness, as these

two apertures are equal in fractures with rough parallel walls. The deviation appears when

the two walls are not in phase or when the two walls do not have the same corrugation

amplitude, as a result of the variation in the local aperture.

It is important to note that Hh is calculated here using Reynolds equation (or the zeroth

order solution of NS equations). Considering higher order solutions leads to additional terms

that can not be considered using Reynolds equation alone (Sisavath et al. [86], Liu et al.

[88]). These terms are not taken into account in the formulation of Hh in the current study.

2.5.2 Validity of the local cubic law for different Reynolds num-

bers

The validity of the LCL for modeling flow in rough fractures has been assessed for Re

ranging from 6.7× 10−2 to 6.7× 101 by comparing its solution to the numerical solution of

NS equations and considering different geometries.

• Low Reynolds number: Although Reynolds equation is generally considered valid

for Re < 1, the numerical results obtained cosidering Re = 0.1 show that the LCL solution

can deviate significantly from the NS solution depending on the fracture geometry. This is

consistent with the experimental results of Nicholl [93] who showed that Reynolds equation

can overestimate the flow rate for Re as low as 0.06, and Lee et al. [94] who found that

Reynolds equation is not always valid even for Re between 0.014 and 0.86.

The numerical results show that for Re = 0.1, the relative error between the LCL and

the NS solutions increases for higher ε and δ0. However, this error is minimal when the
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walls are totally shifted and maximal when the walls are in phase. The asymmetry between

the two walls γ has little effect on the deviation between the two solutions. This confirms

that the validity of the LCL is highly dependent on the fracture geometry. This may also

explain the discrepancy in the previous geometrical criterion proposed for the applicability

of Reynolds equation (εδ0 < 0.14 suggested by Zimmerman et al. [81] for a mirror-symmetric

fracture, ε2δ0 < 0.01 by Yeo and Ge [87] for a fracture with parallel walls and ε < 0.33 by

Zimmerman et al. [72] for a fracture with one flat wall and one sinusoidal one).

To understand the origin of this discrepancy, Lee et al. [94] performed direct visualiza-

tions of flow velocity through rough-walled fractures for Re ranging between 0.014 and 0.86,

and found that inertial forces are negligible with respect to viscous forces. This means that

the fracture geometrical properties are solely responsible for the deviation between the LCL

and NS solutions for low Re. In fact, walls roughness causes curvature in the flow stream-

lines that induces flow tortuosity and energy dissipation. In order to analyze the impact of

the fracture geometry on the flow streamlines, the flow streamlines obtained numerically for

Re = 0.1 considering four different geometries are plotted in Figure 2.17. For all the cases,

ε was fixed equal to 0.1, so that he assumption ε << 1 is verified.

Figure 2.17: Flow streamlines plotted for four different fracture geometries: (a) ∆x = 0.5,
δ0 = 0.25 and γ = 0. (b) ∆x = 0, δ0 = 0.25 and γ = 0. (c) ∆x = 0.5, δ0 = 0.4 and γ = 0.
(d) δ0 = 0.25 and γ = 1. Re = 0.1 and ε = 0.1 are fixed in all the cases

The effect of the horizontal phase shift ∆x can be highlighted by comparing cases (a) and

(b) where δ0 = 0.25 and γ = 0 in both cases (Figure (2.17)). For ∆x = 0.5, the streamlines

are mainly curved near the fracture walls and this curvature decreases when approaching

the fracture center where the streamlines become quasi flat. For ∆x = 0, the streamlines
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are curved independently of their position inside the fracture. Therefore, for higher ∆x the

overall curvature of the streamlines reduces, which explains why the deviation of the LCL

from NS solution is greater for lower phase shift between the walls (Figure (2.10)).

Comparing cases (a) and (c) (Figure (2.17)) shows that for the same values of ∆x = 0.5

and γ = 0, increasing the dimensionless corrugation amplitude δ0 from 0.2 to 0.4 produces

streamlines with higher curvature. This explains why increasing δ0 leads to a higher error

when comparing the LCL and the NS solutions (Figure (2.8)).

Case (d) corresponds to a fracture having a bottom flat wall and a top corrugated wall

(γ = 1), with δ0 = 0.25. Near the bottom wall, the streamlines are straight and their

curvature increases when they are closer to the top wall. This is similar to case (a) where

∆x = 0.5 but different than (b) where ∆x = 0. This explains why increasing γ has a stronger

effect on the deviation of the LCL solution for lower ∆x than for higher ∆x (Figure (2.9)).

These results suggest that the deviation between the LCL and NS solutions increases

when the overall curvature of the streamlines increases. This is due to several effects. First,

the curvature of the streamlines leads to a tortuous flow. Tortuosity represents the ratio

of the length of the trajectory of the flow between two points and the distance between

these two same points. In fact, equation (2.17) is established assuming that a fluid particle

travels a distance equal to L0, which would be valid in a channel with flat walls. However,

in rough channels, because of the curvature of the streamlines (especially near the walls),

fluid particles travel longer distances. Second, the viscous dissipation is more significant

when the streamlines are curved due to their disruption especially near the channel throats

(Basha and El Asmar [71]). In fact, as the viscous dissipation is proportional to the velocity

gradient, it increases when the streamlines are narrowed. All these effects point to the fact

that the curvature of the streamlines is the source of deviation between the LCL and NS

solutions at low Re, as confirmed by the numerical results.

• High Reynolds number: If Re increases, flow inertial effects become significant

and the fracture flow does not exhibit a Darcian behavior ([102], [107]). This leads to a

higher deviation of the LCL with respect to the NS solution.

From our study, it appears that, for every case studied, the relative error between the two
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solutions remained quasi-constant for Re < 15, implying that the conclusions drawn for low

Re can be valid forRe values up to 15. It confirms the analytical solution obtained by Nizkaya

[27] for mirror-symmetric channels. It is somewhat consistent with the result obtained by

Zimmerman et al. [72] who, using an order of magnitude analysis of NS equations for a

channel having one flat wall and one sinusoidal wall, argued that inertial effects become

significant for Re > 10. It is also in agreement with the results suggested by Zimmerman

et al. [107] who conducted experimental and numerical simulations on flow in a natural

fracture and showed that inertial effects become important for Re starting between 10 and

20. As the condition Re > 15 was found in all the geometries that we considered (Figures

2.14, 2.15 and 2.16), one can generalize the result for any fracture geometry.

Our numerical results show that the relative error does not change as a function of Re in

the case of parallel walls. This is in agreement with the analytical results of Basha and El

Asmar [71] and Nizkaya [27] who found that inertial terms are null in the first and second

order terms of the NS expansion solution. On the other hand, this error is maximum when

the phase shift between the two walls ∆x is maximum.

In all cases, the relative error between the LCL and NS solutions for higher Re increases

with increasing ε. This error is higher when the walls are shifted than when they are in phase.

A similar tendency appears when δ0 and/or γ increase. The deviation is more important

when the asymmetry between the walls increases, and reaches its maximum in channels

having one flat wall.

These results prove that for high Re, the fracture geometrical properties should be taken

into account to describe the deviation between LCL and NS . This confirms the result

obtained by Qian et al. [102] who showed that fracture flow depends both on Re and on the

walls roughness.

In order to study the impact of the fracture geometry on the flow inertial effects, the

flow streamlines obtained numerically for Re = 26.66 considering four different geometries

are plotted in Figure 2.18. Comparing cases (a) and (b) that have the same δ0 and γ, shows

that when the horizontal phase shift ∆x = 0, the velocity remains constant on the same

streamline so that the velocity variation is only in the vertical direction, like in the case of

flat walls. In case (a) where ∆x = 0.5, one can see that the flow is slower in the channel when

81



Figure 2.18: Flow streamlines in four different fracture geometries for Re = 26.66 and ε = 0.1
(a) ∆x = 0.5, δ0 = 0.25 and γ = 0. (b) ∆x = 0, δ0 = 0.25 and γ = 0. (c) ∆x = 0.5, δ0 = 0.4
and γ = 0. (d) δ0 = 0.25 and γ = 1. The streamlines are colored according to the velocity
of the fluid flow. The blue color corresponds to low flow velocities and red color corresponds
to high velocities

the local aperture is at its maximum and accelerates when the aperture is constricted causing

an alternation of repeated acceleration and deceleration along the fracture length. This effect

becomes more important when Re increases. This phenomena explains why increasing ∆x

leads to a higher error between the LCL and NS solutions as Re increases.

Comparing cases (a) and (c) shows that for the same ε, γ and ∆x, the alternation in the

fluid movement is more pronounced when the dimensionless amplitude δ0 is higher. This is

due to the fact that the flow becomes faster as the channels aperture is narrowing. This

explains why the deviation of the LCL from NS solution is greater for higher δ0 (Figure

(2.15)).

Case (d) corresponds to a fracture having a lower flat wall and a top corrugated wall

(γ = 1), with δ0 = 0.25. The repeated acceleration-deceleration of the flow in this case is

similar to case (a) and it is also due to the aperture variation. This explains why for higher

Re, a higher value of γ increases the deviation of the LCL from NS solution (Figure (2.16)).

These results suggest that for higherRe, inertial effects become significant due to repeated

acceleration and deceleration of the fluid inside the fracture. The fracture geometry gives

rise to this alternation in the fluid movement by inducing variation in the local aperture

along the flow direction. Therefore, the deviation between the LCL and the NS solutions at
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high Re in rough-walled fractures is due to the increase of inertial effects that result directly

from the fracture geometry.

To sum up, the fracture geometrical properties affect greatly the flow. At low Re, the

curvature of the streamlines induced by the fracture geometry increases tortuosity and energy

dissipation, leading to a deviation between the LCL and NS solutions. At high Re, typically

higher than 15, this deviation is due to inertial effects that are more or less pronounced

depending on the fracture geometry.

2.6 Conclusion

In this chapter, the effects of the geometry of rough fractures on the applicability of the

CL and the LCL have been investigated, considering fractures with sinusoidal walls.

Our results confirm that care must be taken when using the CL to model flow in rough-

walled fractures. More specifically, if the CL can replace the LCL as long as the walls

corrugations are relatively small or when the walls are identical and parallel, it clearly over-

estimates the flow once the corrugations amplitude become significant in fractures having

walls that are shifted and/or with different corrugation amplitudes.

The LCL is valid to model fluid flow in rough-walled fractures at low Re, especially in

fractures with small aspect ratios and low corrugation amplitudes. However, the deviation

between the LCL and NS solutions increases even at low Re when the walls are in phase and

when both walls present high corrugation amplitude. This deviation is due to the curvature

of the streamlines which increases the tortuosity and energy dissipation inside the fracture,

depending on the geometrical properties of the fracture.

When Re increases, inertial effects become significant for Re > 15. This means that

the conclusions drawn for low Re can be valid for Re up to 15. Above this limit, the LCL

can still be valid to model the flow provided that the fracture presents small aspect ratio,

corrugation amplitudes, and small variations in the local aperture along the flow direction.

When these conditions are not respected, the repeated acceleration and deceleration of the

flow due to the variation of the local aperture tends to promote the inertial effects and

therefore enhances the deviation between the LCL and NS solutions.
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In conclusion, a quantitative estimation of the error made when using the LCL, and even

the CL, to model fluid flow in rough fractures was given. It is shown that, because fracture

flows are strongly dependent on the fracture geometry, the criteria proposed in the literature

for applying the cubic law and the local cubic law are not sufficient to be generalized for

random fracture geometries. However, the LCL is valid to model the flow for low Re in

channels with low aspect ratio ε.
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Chapter 3

TRANSPORT AND DEPOSITION

OF WEAKLY-INERTIAL

PARTICLES IN FRACTURE

FLOWS

This chapter is devoted to the study of particle transport in fractures, assum-

ing that the flow can be described by the LCL as discussed in chapter 2. The

particles are non-Brownian, passive, and much smaller than the fracture aper-

ture. Their inertia is considered very small so that it can be neglected in the

equation of motion. The equation of motion is coupled to the flow velocity field

as predicted by the LCL to provide a model that can predict the particles’ behav-

ior inside the fracture (transport and/or deposition) as well as their trajectories.

In order to validate this simplified model, its predictions are systemically veri-

fied against numerical simulations where the full NS equations are solved, taking

into account particle inertia and flow inertial effects. Based on the trajectory

equation, regime diagrams that can predict the behavior of particles entering

closed fracture flows are built. These diagrams enable to forecast if the particles

entering the flow will be either deposited or transported along the fracture. The

influence of the fracture geometry on the particle behavior is then investigated
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by considering channels with flat and sinusoidal walls. In particular, the effect

of the corrugation amplitude, of the asymmetry and of the phase lag between

the walls on the extent of the transport and deposition regimes is evaluated.

Here again, the results are systemically verified against numerical experiments

taking into account particle inertia and fully resolving the NS equations. The

main results of this chapter have been published in the European Journal of

Mechanics B/Fluids (Hajjar et al. [1]).

Introduction

As shown in chapter 1, the motion of particles immersed in a fluid flow is very difficult

to predict due to different effects related to the particle properties and flow characteristics.

Many previous works on particle motion in closed channel flows focused on the phenom-

ena of lift-induced particle migration across the streamlines, principally because of its crucial

implication in microfluidics (Di Carlo et al. [35], Martel and Toner [36]). These works tar-

geted the effect of the particle size and flow characteristics on the order of magnitude of

the different inertial lift forces. Because lift-induced particle migration occurs when parti-

cle motion is dominated by the inertial lift forces, particle inertia has not been generally

considered.

Taking into account particle inertia, Jebakumar et al. [108] investigated the effects of

Stokes number on particle trajectories in wall-bounded vertical channel flow and found that

for small Stokes number, particles behave similarly to neutrally buoyant particles. However,

few works have investigated the effect of gravity on the behavior of non neutrally buoyant

particles in horizontal channel flows. For example, Chen et al. [109], [110] studied the depo-

sition of charged particles in straight and convergent channels, investigating the contribution

of gravity and image forces in the particle deposition process. Even less works considered

particle transport and deposition in fractures and in closed channels with corrugated walls.

For instance, based on migration conditions formulated initially by Sapsis and Haller [111],

Nizkaya et al. [16] neglected fluid inertia and studied particle focusing in channels with

periodic corrugated walls. In particular, they showed that, even if the fluid inertial effects
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are neglected, focusing can occur due to particle inertia and to the waviness of the stream-

lines imposed by the walls corrugation. These authors also defined a trapping diagram that

predicts the presence of inertial focusing as a function of the channel geometry and of the

flow Froude number.

In the present work, particle inertia, which is defined by Stokes number and the particle

response time, is so small that the focusing phenomenon predicted by Nizkaya et al. [16] is

not expected to occur. The flow is unidirectional, laminar and follows the LCL. In addition,

the particles are assumed to be sparsely distributed inside the fluid so that the flow affects the

motion of the particles, but not vice versa. In other words, only one way coupling between

the solid and fluid phases is considered.

Chapter outline: In section 1, the trajectory equations of particles immersed in fluid

flows occurring in channels with both flat and corrugated walls are developed. In section

2, these equations are verified through numerical simulations using a hybrid technique com-

bining a finite element method and a Lagrangian particle tracking method. In section 3,

the diagram defining different particle transport regimes is established, and its validity is

demonstrated by comparing their predictions against numerical experiments. In section 4,

the main results obtained in this chapter are summarized and discussed.

3.1 Governing equations

We consider 2D flows. The domain is represented in a reference frame (X,Z) where X

corresponds to the horizontal direction (the main flow direction) and Z to the vertical one.

Gravity is taken into account and applies perpendicularly to the main flow direction (along

Z). To simplify the problem, We consider a solid spherical particle of radius a and density ρp

moving at a velocity Vp in a fluid of density ρf and dynamic viscosity µ flowing at a velocity

Vf .

3.1.1 Forces acting on each particle

The forces involved when a particle is being driven by a closed channel flow are:

• Gravity and buoyancy forces Fg: they are significant when there is a noticeable dif-
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ference between the particle and the fluid respective densities. The fluid applies an

upward thrust upon the particle which is equal to the weight of an equal volume of the

liquid displaced. Combining the weight and thrust forces, the resulting force is equal

to:

Fg =
4

3
πa3(ρp − ρf )g (3.1)

g being the gravity acceleration. This force is equal to zero for non-buoyant particles.

• Drag force Fd: this force results from the pressure and the viscous frictional forces

exerted by the fluid on the surface of the particle, in the case of uniform continuous

flow. The mathematical expression of the drag force depends on the flow regime around

the particle. It is characterized by the particle Reynolds number Rep =
ρf (Vp−Vf )2a

µ
. In

the Stokes or viscous regime, when Rep << 1, the resolution of Stokes equations leads

to the following mathematical expression of the drag force:

Fd = −6πµa(Vp − Vf ) (3.2)

• Added mass force Fam (Auton et al. [112]): during its motion, the particle displaces

a volume of the surrounding fluid. An additional inertia therefore arises from the

acceleration of the displaced fluid mass. This phenomenon produces the added mass

force of which the expression, in the case of a spherical particle, is given by:

Fam =
mf

2
(
DVf
Dt
− dVp

dt
) (3.3)

mf = 4
3
ρfπa

3 being the mass of the fluid displaced by the sphere and
DVf
Dt

the total

derivative with respect to time.

• Tchen Force FTchen ([113]): it represents the action exerted by the undisturbed flow on

the volume of fluid occupied by the particle. It is calculated by integrating the pressure

gradient exerted by the undisturbed fluid on the particle volume and by subtracting

the hydrostatic contribution (which corresponds to the buoyancy thrust). This force
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involves only the characteristics of the fluid and is expressed as follows:

FTchen = mf
DVf
Dt

(3.4)

• History force Fh: known also as the Basset-Boussinesq force ([114]), it is due to the

non-stationarity of the disturbance flow around the particle and reflects the effect of the

delay caused by the viscous diffusion of the momentum. Indeed, the particle displaces

a quantity of fluid, which disturbs the established flow and a time is therefore necessary

for the stationary regime to be recovered. This force is expressed in an integral form

retaining the whole history of the particle acceleration, as follows:

Fh = −6πa2√µρf
∫ t

−∞

1√
π(t− t′)

d

dt′
[ ~Vp − ~Vf ]dt

′ (3.5)

In this thesis, we consider that the disturbance flow around the particle is steady so

that the history force is neglected.

• Lift forces Fl: these inertial forces occur when there is a pressure gradient in the

direction orthogonal to that of the particle motion. This pressure gradient results from

a rotational movement or the shear in the flow of the carrier fluid. Lift forces are nil

in the case of Stokes regime (Rep = 0). The lift forces acting on a particle in the case

of a channel flow are detailed below.

Four types of lift forces develop in channel flows: rotation-induced (Magnus), shear-slip

(Saffman), shear gradient, and wall-induced lift forces (Figure 3.1). The reviews of Zhang et

al. [115] and Martel and Toner [36] explain in detail the effect of each one of these forces and

how they are scaled to Re and to the ratio of the particle diameter to the channel height.

We recall here a brief summary of these forces and their effects.

• Magnus rotation-induced lift force: this force appears when a particle is rotating in

a uniform flow, so it is not limited to bounded or channel flows. Suppose that the

rotational velocity ω of a spherical particle is in the direction of the flow, the particle

perturbs the surrounding velocity field asymmetrically and drags the fluid faster around
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Figure 3.1: Different types of lift forces: (a) Magnus rotation-induced, (b) Saffman shear-slip,
(c) shear-gradient and (d) wall-induced forces

its upper side. Bernoulli principle states that when the fluid velocity increases, the

pressure decreases. Therefore, the pressure difference which appears between the lower

and upper sides of the spherical particle creates a force in the direction of the pressure

gradient. This force, perpendicular to the flow direction, is called the Magnus force

([116]).

• Saffman shear-slip lift force: this force acts on particles that lead or lag the fluid in

shear flows. The difference between the particle and the fluid velocities generates a

force directed towards the high velocity region. The Saffman force is significant when

external forces (gravitational, electric, magnetic) affect the particle relative velocity

with respect to the fluid. Examples include the case of non-neutrally buoyant particles

transported in a vertical flow, where the gravity can accelerate or decelerate the par-

ticle according to the relative difference between the particle and the fluid respective

densities.
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• Shear-gradient lift force: This force acts on particles immersed in Poiseuille flows and

is induced by the shear gradient resulting from the curvature of the velocity profile

in the channel. In fact, due to the presence of the walls, the velocity is zero at the

channel walls (no-slip) and increases gradually to reach its maximum at the channel

center, leading to a parabolic velocity profile. In the presence of a particle, the relative

velocity of the fluid to the particle is lower in the channel center region than the

near-wall region, and thus leading to a force directed toward the channel walls.

• Wall-induced lift force: This force acts on the particles in the near-wall region. excess

pressure is created in the constriction between the particle and the wall, causing a force

directed away from the wall. In fact, the flow streamlines are more curved on the side

of the particle directed toward the channel center than in the constriction between the

particle and the wall leading to higher velocity in the curved region and therefore to

a higher pressure in the constriction. The resulting lift force is directed toward the

channel center.

Net inertial lift force: the effect of inertial lift forces can be understood by their implication

in the appearance of inertial focusing behavior. Ho and Leal [117] and Vasseur and Cox

[118] found analytically that the balance between the shear-gradient lift force and the wall-

induced lift force explains the particle migration toward equilibrium positions inside the

channel. Their results further showed that the Saffman shear-slip and Magnus rotation-

induced lift forces are respectively one order and three orders of magnitude smaller than the

shear-gradient lift force. Saffman and Magnus forces are therefore generally neglected when

studying of inertial focusing.

The main effect of inertial lift forces on particle transport in closed channel flows is to

produce a lateral migration of particles with respect to the flow direction, especially for

non-buoyant particles. Bretherton [119] demonstrated theoretically that lateral migration

can not occur under Stokes flow conditions. Lift forces can thus be neglected when no

inertial migration is expected to occur. Di carlo et al. [35] have shown through experimental

observations that for very low particle Reynolds number (defined as Rp '
U0a

2

νH0

in this case),

non-buoyant particles do not migrate across streamlines and therefore inertial lift forces
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are negligible with respect to other forces. They also showed that in serpentine channels,

even for higher Rp, lift forces remain negligible for particle radius to channel width ratios

a/H0 < 0.035. This result was later verified by Zhang et al. [120] who performed numerical

simulations without considering the inertial lift forces and found a very good agreement

with their experimental observations. These results confirm that for very low Rp and small
a

H0

, it is reasonable to neglect inertial lift forces. Therefore, in the developments presented

throughout the following sections, we neglect the inertial lift forces by making the assumption

that flow inertial effects are negligible (LCL model) and that the particles are much smaller

than the channel aperture.

3.1.2 Particle motion equation and particle trajectory equation

The particle motion equation is obtained by applying Newton’s second law of motion to

a single particle, stating that the sum of forces acting on a particle is equal to the product of

its mass by its acceleration. When the particle diameter is small and when Re as well as the

velocity gradient around the particle are small, the equation of motion of a solid spherical

particle of radius a and density ρp moving in a fluid of density ρf and dynamic viscosity µ,

as derived by Maxey and Riley [121] and Gatignol [122], with corrected added mass term

(Auton et al. [112]) can be written, in the dimensionless form, as:

d~vp
dt

= (1− 3R

2
)~G (3.6)

− 1

τ
(~vp − ~vf −

a2

6L0

∇2 ~vf )

− 3R

2

D

Dt
[(~vf +

a2

20L0

∇2 ~vf )]

3
√
R√

2τ

∫ t

−∞

1√
π(t− t′)

d

dt′
[~vp − ~vf −

a2

6L0

∇2 ~Vf ]dt
′

where the total length of the fracture L∞ is selected as a horizontal length scale, and V0

as a velocity scale, so that the following dimensionless parameters were defined: h∗ =
H0

L∞
,

x =
X

L∞
, z =

Z

H0

, vxf =
V x
f

V0

and vzf =
1

h∗
V z
f

V0

. d
dt

denotes the derivative with respect

to time taken along the particle trajectory, and ~G = ~ez/Fr, Fr =
V 2

0

L0g
being Froude’s
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number. The forces taken into account in this equation are (according to their order of

appearance): gravity and buoyancy forces, drag force, added mass contribution, force due to

the pressure gradient of the unperturbed flow, and Basset history force due to unsteadiness of

the disturbance flow around the particle. We assume that this disturbance flow is steady so

that Basset force can be neglected. The terms proportional to the Laplacian of the velocity

field, known as Faxen corrections ([123]), are due to the non-uniformity of the fluid flow

at the particle scale. They are neglected under the assumption that the particle radius is

substantially small compared to the characteristic length L0 of the flow.

Under these conditions, i.e. neglecting Basset force and Faxen corrections terms, and

developing the terms of the right-hand side of equation (1), we can write:

L0

V0

d ~Vp
dt

=
1

τ
( ~Vf − ~Vp +

2

9

a2(1− k)g

ν

~g

|g|) +
L0

V0

3R

2

D

Dt
( ~Vf ) (3.7)

In this case, τ = 2
9R

a2V0
νL0

= St
R

represents the particle dimensionless response time, St being

the Stokes number and R =
2ρf

2ρp+ρf
= 2

2k+1
a dimensionless number where k = ρp

ρf
is the ratio

of particle density to fluid density, V0 is the flow mean velocity and ν is the fluid kinematic

viscosity. The fluid flow is governed by the LCL. As shown in chapter 2, the flow velocity

components are equal to:

V X
f =

3V0H0

4H(X)
(1− η2) and V Z

f =
3V0(φ′(X) + ηH ′(X))

4H(X)
(1− η2) (3.8)

where H ′(x) and Φ′(x) correspond respectively to the variations of the dimensionless fracture

aperture and fracture middle line along the flow direction

Particle inertia can be measured by the dimensionless response time τ , defined as the ratio

between the particle characteristic time (particle relaxation time) and the flow characteristic

time T0 = L0

V0
. In this study, we consider weakly inertial particles i.e. τ << 1. A similar

assumption was made by Nizkaya [27] to study particle focusing in channels with periodic

walls. Nonetheless, in the current thesis, particle inertia will be neglected (in the analytical

developments) so that focusing is not expected to occur. In the next section, we recall briefly

the result obtained by Nizkaya [27] to highlight the difference between her approach and the

approach adopted in the present thesis. Then, we define, according to the order of magnitude
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of each term in the particle motion equation, the value of τ under which we assume that

particle inertia can be neglected.

3.1.2.a. Focusing of weakly inertial particles in channels with periodic walls

L0 and H0 are set as length scales, and V0 as velocity scale. The solution of equation

(3.7) is known to converge exponentially to the first order equation ([121], [8]):

~vp = ~vf + τ(
3R

2
− 1)(

D ~vf

Dt
− ~G) +O(τ 2) (3.9)

The components of equation (3.9) are respectively equal to:

vxp = vxf − τ(
3R

2
− 1)

D

Dt
(vxf ) and vzp = vzf − τ(

3R

2
− 1)G− τ(

3R

2
− 1)

D

Dt
(vzf ) (3.10)

In order for particle focusing to occur, the trajectories of moving particles are assumed to

coincide with an attracting streamline. A flow streamline is defined by
dzf
dxf

=
vzf
vxf

whereas

the particle trajectory is defined by
dzp
dxp

=
vzp
vxp

. When the particle trajectory and a flow

streamline coincide, the particle follows the streamline and its trajectory is defined by the

streamline equation, meaning that:

vzp
vxp

=
vzf
vxf

(3.11)

Replacing the particle velocity components using equation (3.10) leads to:

vzf − τ(3R
2
− 1)G− τ(3R

2
− 1)

D

Dt
(vzf )

vxf − τ(3R
2
− 1)

D

Dt
(vxf )

=
vzf
vxf

(3.12)

which gives:

D

Dt
(vzf )−G
D

Dt
(vxf )

=
vzf
vxf

(3.13)
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In the case of stationary flow, equation (3.13) can be written as:

vxf
d
dx

(vzf ) + vzf
d
dz

(vzf )−G
vxf

d
dx

(vxf ) + vzf
d
dz

(vxf )
=
vzf
vxf

(3.14)

Noting β(x, z) =
vzf
vxf

, equation 3.14 can be developed, for the case of a steady flow, and

leads to:

(vxf )2(
dβ

dx
+ β

dβ

dz
)−G = 0 (3.15)

Replacing the expressions of vxf , β, and G into equation (3.15) leads to a relation between z

and x which defines the preferential trajectory.

For a flow following the LCL, β = ε(φ′(x) + ηh′(x)) and equation (3.15) gives:

16h(x)2G

9(1− η2)2
− [ε(φ′′(x) + ηh′′(x)) + ε2

h′(x)

h(x)
(φ′(x) + ηh′(x))] = 0 (3.16)

The η coordinate of the attracting streamline is the solution of equation (3.16). In a specific

channel, the expressions of h(x) and φ(x) are known and their derivatives can be calculated.

Equation (3.16) can be numerically solved to find the expression of η. To do so, equation

(3.16) is integrated along one wavelength (x between 0 and 1), with φ′(0) = φ′(1) and

h′(0) = h′(1), and gives:

γ1
z − (1− η2)2(∆ + η) = 0 (3.17)

γ1
z =

16G

9(2ε− ε2)Jh
being the inverse Froude number, and ∆ =

Jφh
Jh

, with Jh =
∫ 1

0
h′(x)2dx

h(x)3
and

Jφh =
∫ 1

0
h′(x)φ′(x)dx

h(x)3
two shape factors that characterize the channel geometry.

3.1.2.b. Trajectory equation of inertia-free particles

We consider the case where the particle response time τ is very small so that the term

proportional to 1/τ is dominant in equation (3.7) compared to the two other terms, and
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equation (3.7) can thus be simplified to:

~Vp = ~Vf +
2

9

a2(k − 1)g

ν

~g

|g| (3.18)

where ~g
|g| is a vertical unit vector pointing in the downward direction. This equation applies

to inertia-free sedimenting particles and has been already used in the past (e.g. Stommel

[20]). Bergougnoux et al. [124]) studied experimentally the motion of solid particles in a

spherical flow field and found that particle inertia can be safely neglected for τ < 10−2.

Similarly, we assume that the model that we will develop for inertia-free particles is valid

for τ ≤ 10−3. In order to ensure this hypothesis, we consider particles such that τ < 10−4

throughout the present study.

According to equation (3.18), in 2D, the two components of the particle velocity are thus:

V x
p = V x

f =
dXp

dt
and V z

p = V z
f +

2

9

a2(1− k)g

ν
=
dZp
dt

(3.19)

where Xp and Zp are the particle coordinates. This equation shows that neutrally buoyant

inertia-free particles (k = 1 and τ → 0) follow exactly the flow streamlines. For heavy

particles (denser than the fluid such as k > 1), we have V z
p < V z

f , and for particles lighter

than the fluid such as k < 1, we have V z
p > V z

f . For the general case, the trajectory of the

particle is then defined by:

dZp
dXp

=
dZp
dt

dt

dXp

=
V z
f + 2

9
a2(1−k)g

ν

V x
f

(3.20)

The total length of the fracture L∞ is selected as a horizontal length scale. The following

dimensionless parameters are introduced:

h∗ =
H0

L∞
, x =

X

L∞
, z =

Z

H0

, vxf =
V x
f

V0

and vzf =
1

h∗
V z
f

V0

.
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Equation (3.20) can then be rewritten in the dimensionless form:

dzp
dxp

=
dzp
dt

dt

dxp
=
vzf −

W

h∗

vxf
(3.21)

with W =
2

9

a2(k − 1)g

νV0

a dimensionless number that represents the ratio between the particle

sedimentation Stokes velocity and the flow mean velocity V0.

Knowing the particle initial position (x0
p, z

0
p), and knowing the components of the fluid

velocity (vxf and vzf ) at each point (x, z) of the flow domain, the integration of equation

(3.21) gives the position of the particle. In the next section, ~vf will be calculated for a closed

channel flow, assuming that the flow follows the LCL.

Using equations (3.21) and (3.8), the trajectory of an inertia-free particle in a closed

channel LCL flow can be defined by:

dzp
dxp

=
−4h(x)

3(1− η2)

W

h∗
+ (φ′(x) + ηh′(x)) (3.22)

The trajectory of the particle thus depends on the channel geometrical parameters h(x) and

φ(x), and on the ratio
W

h∗
.

Equation (3.22) can then be exploited to determine particle trajectories in channels with

flat and sinusoidal walls.

3.1.2.c. Channel with flat walls

We consider the simple case of a horizontal channel of total length L∞ made up by two

parallel flat walls. The aperture between the walls is H0. In this case, φ1(x) = −1/2,

φ2(x) = 1/2, h(x) = 1/2, φ(x) = 0, h′(x) = φ′(x) = 0, η = 2z, and equation (3.22) becomes:

dzp
dxp

=
−2

3(1− 4z2)

W

h∗
(3.23)

Integrating equation (3.23) between the initial position of the particle (x0
p, z

0
p) and its

actual position (xp, zp), the equation of the particle trajectory in a channel with flat walls
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can be expressed as:

3(zp − z0
p)− 4(z3

p − (z0
p)

3) = 2
W

h∗
(x0

p − xp) (3.24)

In the case of a closed channel flow, equation (3.24) enables to predict the final position

of a particle injected at a defined initial position inside the channel. More specifically, it

allows to know if the particle will settle inside the channel or if it will be transported till

the outlet. In fact, by replacing xp by 1 (which corresponds to Xp = L∞) and by searching

for the corresponding zp, the particle will exit the channel if zp > −1
2
, it will settle inside if

zp < −1
2

.

3.1.2.d. Channel with sinusoidal walls

For the case of a channel with sinusoidal walls, in the dimensional form, the walls are

defined by:

Φ1(X) =
H0

2
+ A1Sin(

2π

L0

(X − ∆X

2
)) and Φ2(X) =

H0

2
+ A2Sin(

2π

L0

(X +
∆X

2
))

(3.25)

where A1 is the lower wall amplitude, A2 is the upper wall amplitude, and ∆X is the

horizontal shift between the two walls (Figure 1 in chapter 2). The dimensionless form of

Φ1(X) and Φ2(X) are given in chapter 2 (equation (2.1)). In this case, the expressions of

the dimensionless local aperture h(x) and channel middle line φ(x) and their derivatives are

more complex so an equation in the form of equation (3.24) is difficult to obtain analytically.

Nonetheless, it is possible to find the position of a particle by numerically integrating equation

(3.20) over [x0
p, 1] considering z(x0

p) = z0
p as the initial condition. For the simple case of

channels having two parallel walls, making the substitution z∗(x) = z(x)− φ(x) leads to an

equation relating z∗(x) and x similar to equation (3.24). Therefore, the behavior of particles

transported in corrugated channels with parallel walls is identical to the one occurring in

channels with parallel walls, when studied with the channel middle line as reference.
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3.2 Numerical verification

In this section, we verify equations (3.22) and (3.24) by performing numerical simulations.

These equations were developed under the assumption that particle inertia can be neglected

(equation (3.18)) and the flow velocity components were calculated using the LCL which

assumes that the flow is dominated by viscous forces. The numerical simulations presented

here aim to challenge the validity of these assumptions and to verify equations (3.22) and

(3.24) by taking into account particle inertia and by fully resolving the continuity and the

NS equations governing the fluid flow inside the channel.

The algorithm of the numerical simulations is shown in Figure 3.2. The finite element

Figure 3.2: The algorithm used in the numerical simulations.

method (FEM) is used to solve the flow equations (cf. chapter 2) and a Lagrangian particle

tracking technique is used to simulate particles motion in the flow by integrating equation

(3.7). For each particle, an ordinary differential equation (ODE) is solved for each position
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vector component (2 equations are solved in 2D) using a fourth order Runge-Kutta method

with an adaptive time step. At each time step, the forces acting on each particle are obtained

from the calculated fields at the current particle position. The positions of the particles are

then updated. This process is repeated until the preset simulation time is reached or when

the particle comes in contact with a boundary.

The ODE considered in the simulations is equation (3.7). It corresponds to equation

(3.7), with Faxen corrections and Basset history force neglected under the assumptions that

particle size is small compared to the channel aperture and that the disturbance flow due to

the particle is quasi-steady.

3.2.1 Simulation procedure

The geometry of the channel is first defined. In the case of a channel with flat walls,

it is represented by a horizontal rectangle defined by the channel aperture as its width and

the channel total length as its length. In the case of a channel with sinusoidal walls, the

two walls are constructed according to the expressions of Φ1(X) and Φ2(X) (cf. Chapter 2,

equation (2.1)). The channel is then built by defining its mean aperture and the horizontal

shift. The channel inlet consists of a square part to ensure a parabolic velocity profile.

The computational domain is discretized with a triangular mesh (Figure (3.3)). The

mesh is refined in the near wall regions and gradually coarsened when moving towards the

channel center. A preliminary grid independence test has been performed to determine the

optimal number of elements with regards to computational cost and numerical precision.

On a total meshed area of 0.0049 m2, the average element surface area is 0.0192 mm2. The

mesh chosen for this case consists of 252364 elements.

A parabolic velocity profile with a mean flow velocity V0 is defined at the inlet, a zero

pressure is imposed at the outlet Poutlet = 0 (Figure (3.3)), and no-slip boundary conditions

are imposed on the channel walls ( ~Vf = ~0).

The continuity and NS equations governing the steady incompressible flow in the channel

are solved, and the pressure and velocity fields are computed.

The properties of the particles (density ρp and radius a) and their number are determined

based on the value of W (see section 3.2.2). The particles are then released with zero initial
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Figure 3.3: Boundary conditions applied on a channel with sinusoidal walls (left) and the
triangular mesh used in the numerical simulations (right).

velocity at X = 0 and at different vertical positions.

The last step of the simulation consists in calculating the particle trajectories by solving

the equation of motion for each particle (equation (3.7)). When a particle comes in contact

with a wall, it sticks to it and it is considered as deposited. The calculation of its trajectory

is then terminated.

3.2.2 Results

Before validating the analytical model (equations (3.22) and (3.24) for τ < 10−4, nu-

merical simulations were performed for τ = 0.01 to verify the presence of inertial focusing

as predicted by equation (3.17). The aim of these first simulations is to check the ability

of the numerical method that we used to verify analytical models and more particularly to

take into account particle inertia. In fact, the focusing in this case is only due to inertia.

Therefore, if the numerical simulations can capture the focusing effect then particle inertia

is indeed taken into account.

3.2.2.a. Particle focusing

A first numerical simulation was performed under the following conditions: 10 particles

are injected at different initial vertical positions in a mirror-symmetrical channel with H0 =

0.3mm, ε = 0.1, and δ0 = 0.25. The particle properties and the flow characteristics are set to

ensure that τ = 0.01 and that equation (3.17) is resolved so that an attracting streamline is
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expected to appear in the flow. The variation of the particle vertical positions with respect

to time is plotted in Figure 3.4.

Figure 3.4: Evolution of the vertical position of 10 particles initially located at different
heights in a sinusoidal channel for τ = 0.01 as predicted by FEM numerical simulations.

It is clear that particles tend to follow the same trajectory after a certain distance and

that particle focusing indeed occurred inside the channel. This result confirms that equation

(3.17) is valid and that particle inertia is indeed taken into account in its formulation.

3.2.2.b. Particle trajectories

In this section, particle trajectories are calculated such ensuring that τ < 10−4.

i. Channel with flat walls

To verify equation (3.24), we computed numerically the trajectories of particles in a

channel with flat walls considering the full equation (equation (3.7)). We set up a numerical

experiment with a channel of total length L∞ = 1m and of aperture H0 = 5mm. 5 parti-

cles of radius a = 5µm and density ratio k = 2.5 are injected in the channel at the same

initial horizontal position x0
p but at different initial vertical positions z0

p . The fluid used is
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water and the mean flow velocity V0 fixed equal to 0.01m/s. In this case W = 0.00817 and

τ = 1.66 ∗ 10−7. The final distance xfp traveled by each particle until they come in contact

with the bottom wall was calculated for each particle initial vertical position z0
p and compar-

isons were made with respect to the predictions of equation (3.24). As shown in Figure (3.5),

the two approaches are in very good agreement with a maximum relative error between the

predicted final particle positions equal to 0.2 %.

0.2 0.4 0.6

−0.4

−0.2

0.2

0.4

xf
p

z0p

Equation 10
Simulation

max. error = 0.2%

Figure 3.5: Distances xfp traveled by particles with different initial vertical positions z0
p in

a channel with flat walls such as W = 0.00817 and τ = 1.66 ∗ 10−7. Comparison between
equation (3.24) (solid line) and particle tracking numerical simulations (symbols).

ii. Channel with corrugated walls

To verify equation (3.22) for the case of corrugated channels, we considered a channel

made up by two sinusoidal walls with H0 = 5mm, L0 = 5 cm, L∞ = 0.98m, A1 = 1.5mm,

A2 = 2mm, and ∆X = 0.25L0. This configuration corresponds to a general case of a random

geometry because the channel walls are neither identical nor parallel. The particle properties

and initial positions were chosen equal to the ones used in the previous section (case of

channel with flat walls) and the flow mean velocity was also fixed equal to V0 = 0.01m/s.

In this case W = 0.00817 and τ = 3.33 ∗ 10−6. The distances xfp traveled by the particles

for different initial vertical positions z0
p are plotted in Figure (3.6), considering the solutions

predicted by equation (3.22) and by the numerical model. The two approaches are here again

in good agreement with a maximum relative error of about 3.3 % between their respective

predictions. The origin of this relative error is further investigated in section 3.2.2.d.

To further compare the two approaches, the trajectories predicted by the analytical model

or the numerical model for the particle with z0
p = −0.2 are plotted in Figure 3.7. One can see
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Figure 3.6: Distances xfp traveled by particles with different initial vertical position z0
p in a

corrugated channel such as W = 0.00817 and τ = 3.33∗10−6. Comparison between equation
(3.22) (solid line) and particle tracking numerical simulations (symbols).

that the trajectories are quasi-identical and have exactly the same corrugated shape, which

further demonstrates the validity of the proposed analytical approach.

Figure 3.7: Comparison between particle trajectories in the same channel as found in the
numerical simulation and as predicted by the analytical model

iii. Dependence of the particle trajectory on W

In the two previous sections, we verified the particle trajectory equations in channels with

flat and corrugated walls for specific geometries. However, according to equation (3.22), the

trajectory depends on the geometry of the channel (φ′(x) and h′(x)) and on the ratio
W

h∗
.

For a specified channel geometry (h∗ is constant), W is the only dimensionless parameter

affecting particle trajectories. More precisely, if, in the same channel, two particles with

different properties are injected in flows with different characteristics (velocity, viscosity), the

particles should follow the same trajectory if they present the same dimensionless number

W .

In order to verify the dependency of particle trajectories on W , we conducted a sensitivity

analysis. To do so, we first studied 5 cases (cases 1 to 5 in Table (3.1)) in which the particle

properties and fluid mean velocities were different but W was kept quasi constant (≈ 0.0043).
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For each case, 8 particles were injected in the channel at different initial vertical positions z0
p .

The distances xfp traveled by the particles are plotted in Figure (3.8) as a function of their

initial positions for different initial vertical positions. The maximum relative error between

the numerical and the analytical solutions of the distances traveled by the particles is 5.1

%. To sum up, particles injected at the same initial altitude travel approximately the same

distance before sedimentation if W is kept constant.

Parameter W τ εReH a(µm) k V0(m/s)
case 1 0.0043 4.26 ∗ 10−7 2.5 2.5 2.58 0.005
case 2 0.00429 1.89 ∗ 10−6 4 5 1.63 0.008
case 3 0.00431 1.55 ∗ 10−7 1 3 1.44 0.002
case 4 0.00429 4.62 ∗ 10−6 5 7.5 1.35 0.01
case 5 0.00432 1.8 ∗ 10−5 10 10.5 1.36 0.02
case 6 0.00809 5.35 ∗ 10−7 1.5 4.5 1.55 0.003
case 7 0.00809 9.45 ∗ 10−7 2.5 4 2.16 0.005
case 8 0.00809 6.97 ∗ 10−6 3.75 11 1.23 0.0075
case 9 0.00809 7.07 ∗ 10−6 7.5 8 1.87 0.015
case 10 0.00809 1.47 ∗ 10−5 10 7 2.59 0.021

Table 3.1: Flow characteristics and particles properties used in the simulation to ensure
W ' 0.0043 (cases 1 to 5) and W ' 0.00809 (cases 6 to 10).
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case 5 : max. error = 5.11 %
Equation 8

Figure 3.8: Distances xfp traveled by particles with different initial positions z0
p for different

configurations presenting same W ' 0.004. Comparison between equation (3.22) (solid line)
and particle tracking numerical simulations (symbols).

To further verify this dependency on W , 5 additional cases (cases 6 to 10 in Table 3.1)

were tested for a value of W ≈ 0.0081. The results of this second series of tests are plotted

in Figure (3.9). Here again, the dependency of particle trajectory on W in the non inertial
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regime is verified, validating furthermore its ability for determining the behavior of particles

immersed in channel flows.
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case 7 : max. error = 2.14 %

case 8 : max. error = 1.91 %

case 9 : max. error = 2.34 %

case 10 : max. error = 2.75 %
Equation 8

Figure 3.9: Distances xfp traveled by particles with different initial positions z0
p for different

configurations presenting same W ' 0.0081. Comparison between equation (3.22) (solid
line) and particle tracking numerical simulations (symbols).

iv. Relative error between the numerical and analytical solutions

The error between the numerical and the analytical solutions can be due to: (i) errors

in the numerical simulations, (ii) the assumptions under which the analytical model was

developed such as the use of the LCL as a solution of the NS equations or, (iii) the negligence

of particle inertia. To investigate the origin of this error, the numerical solution obtained for

case 5, where the maximum relative error is equal to 5.11 %, was recalculated 4 times under

different conditions. The outcomes of this series of tests are as follows:

• When the mesh size is reduced by half, the maximum relative error remains equal to

5.11 %.

• When the time step used to update the particle position is reduced by a factor of 2,

the maximum relative error remains equal to 5.11 %.

• When the particle inertia is neglected, the maximum relative error decreases slightly

to 5 %.

• When Stokes equation is solved instead of the NS equations (to neglect fluid inertia),

the maximum relative error decreases to 4.08 %.
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Taking into account these results, it is clear that the numerical errors are limited since

the relative error between the two solutions remains similar whatever the mesh or time step

refinement. On the other hand, neglecting particle and fluid inertia seems to reduce the

relative error between the two approaches. We can certainly argue that the error is due to

the use of the LCL in equation (3.22) as it cannot ensure a perfect representation of the

velocity field. Nonetheless, The error is expected to remain limited if ε and Re are small (cf.

chapter 2)

3.3 Particle transport regime diagrams

As illustrated in the previous section, the trajectories of small particles with very low

inertia, in channel flows satisfying the LCL approximation, depend on the channel geometry

and on the dimensionless number W . In this section, we try to characterize the different

transport regimes of these particles. To do so, we assume a uniform distribution of the

particles at the inlet, and we define three arbitrary regimes that can occur based on the

amount of particles that settle inside the channel:

• Transport: at least 75 % of the particles are transported in the channel till the outlet.

All the particles having an initial vertical position z0
p ∈ [−1/4, 1/2[ are transported

till the outlet of the channel, and particles with z0
p ε ] − 1/2,−1/4] settle inside the

channel.

• Sedimentation: at least 75 % of the particles settle inside the channel. Particles with

z0
p ∈ ]1/4, 1/2[ exit the channel, and the ones with z0

p ∈ ]− 1/2, 1/4] settle inside the

channel.

• Transition: less than 75 % but more than 25 % of the particles exit the channel. This

regime describes the transition between the transport and the sedimentation regimes

described previously.

The arbitrary selection of the separating percentages 25 % and 75 % defining the different

regimes will be discussed later on. The dependence of these regimes on W is studied first in
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a channel with flat walls, and then in corrugated channels presenting different geometrical

properties (wavelength, amplitude, horizontal shift between the walls).

3.3.1 Channel with flat walls

The channel geometry is defined by the dimensionless parameter h∗ = H0

L∞
. Based on

equation (3.24), the three arbitrary regimes defined previously correspond respectively to

different values of
W

h∗
:

• Transport:
W

h∗
< 0.156 =

Wcr1

h∗

• Sedimentation:
W

h∗
> 0.84 =

Wcr2

h∗

• Transition: 0.156 <
W

h∗
< 0.84

where Wcr1 and Wcr2 are critical values of W characterizing the transition between the

respective regimes. Wcr1 and Wcr2 vary linearly as a function of h∗. Diagrams of transport

regimes can thus be established for channels with flat walls. In Figure (3.10) (a), a 2D

diagram is built where three different regimes corresponding to the transport, transition and

sedimentation zones are delimited by the linear variation of Wcr1 and Wcr2 as functions of

h∗. In Figure (3.10) (b), a 1D diagram is built where these zones are presented according to

the single parameter
W

h∗
. Although the 1D representation could be considered more relevant

in terms of delimitation of the three zones than the 2D one, it does not reflect clearly the

respective contribution of parameters W and h* on the variation of the zones in the diagram.

Consequently, we keep the 2D representation along the chapter as it gives a better graphical

representation of the effects of either the channel geometry (h*) or the particle and flow

properties (W) on the transport regimes. This will enable us to highlight the effects of

the geometrical parameters of the channel on the variation of the different zones in the

diagram. Similar diagrams will be plotted subsequently to highlight the effect of the channel

geometrical parameters on the transport regimes.

The particle transport regimes were arbitrarily defined so that the diagram depends on

the percentages of particles that can be transported or deposited inside the channel. When
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Figure 3.10: Transport regimes diagram for weakly inertial particles in a closed channel with
flat walls. (a) 2D representation of the different zones according to the variation of W as a

function of h∗. (b) 1D representation of these zones according to
W

h∗
.

changing these percentages, the variation of Wcr1 and Wcr2 as functions of h∗ remains con-

stant so that the regimes diagram keeps the same form but the transport and sedimentation

zones will be wider or narrower. The variation of the ratios Wcr1/h
∗ and Wcr2/h

∗ as functions

of the percentages of particles transported or sedimented is plotted in Figure (3.11).

The critical ratio Wcr2/h
∗ tends to increase when the arbitrary sedimentation regime

corresponds to a higher fraction of transported particles. Inversely, Wcr1/h
∗ tends to decrease

when the fraction of transported particles is bigger.

To verify numerically the regime diagram obtained for channels with flat walls, a numeri-

cal experiment was conducted using the particle tracking technique presented in section 3.2,

consisting this time in injecting 100 particles at the channel inlet for three different values of

the pair (h∗, W ). These three values correspond respectively to configurations located in the

transport (h∗ = 0.008, W = 0.001), transition (h∗ = 0.008, W = 0.007), and sedimentation

(h∗ = 0.008, W = 0.007) zones presented in Figure (3.10). For each case, the number of
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Figure 3.11: Variation of Wcr1/h
∗ and Wcr2/h

∗ as a function of the percentage of particles
transported inside the channel.

particles deposited inside the channel corresponds to the percentage of sedimented particles.

% of sedimented particles
(h∗,W ) W

h∗
Numerical experiment Diagram prediction

(0.008, 0.001) 0.125 21 < 25 (Transport)
(0.008, 0.0035) 0.437 43 ε [25, 75] (Transition)
(0.008, 0.0075) 0.937 80 > 75 (Sedimentation)

Table 3.2: Percentages of sedimented particles in a channel with flat walls for configurations
corresponding respectively to the transport regime (h∗ = 0.008, W = 0.001), the transition
regime (h∗ = 0.008, W = 0.0035), and the sedimentation regime (h∗ = 0.008, W = 0.0075)
presented in Figure (3.10). Comparison between the regime diagram predictions (Figure
3.10) and particle tracking numerical simulations results.

As illustrated in Table (3.2), the percentages of sedimented particles obtained numerically

for each case are in good agreement with the regimes predicted by the regime diagram and

thus confirms the validity of the proposed approach.

3.3.2 Corrugated channel with sinusoidal walls

The channel is here defined by the following dimensionless parameters: the average cor-

rugation amplitude δ0 = A0

H0
= A1+A2

2H0
, the phase shift α = 2π∆X

L0
, the asymmetry between the

wall corrugations γ = A2−A1

A1+A2
and l∗ = L0

L∞
. In this case, h∗ = εl∗.

The study for this type of channel is slightly more complex than for channels with flat

walls because three additional geometrical parameters need to be taken into account (δ0, α,

γ). To do so, we first rewrote equation (3.22) as a function of these parameters. Then, we
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applied the criteria defining the three transport regimes using this equation. The strategy

consists in varying one parameters while keeping the other two constant so that its influence

on the regime diagram can be assessed.

The main emerging result is that, whatever the walls amplitudes and horizontal shift

are, the variations of Wcr1 and Wcr2 as functions of h∗ remain linear. Therefore, even for

channels with sinusoidal walls, the diagram is similar to the one obtained for channels with

flat walls (Figure (3.10)). The difference lies in the extension or reduction of the transport

and sedimentation zones depending on the channel geometry. In order to assess the influence

of the channel geometry on the regime diagram, we studied three main configurations:

• channel having in phase walls (α = 0, γ 6= 0)

• channel having out of phase identical walls (α 6= 0, γ = 0)

• channel having walls with maximum phase lag (α = π, γ 6= 0)

3.3.2.a. Channel with in phase walls

In this case, there is no horizontal shift ∆X between the two walls and α = 0. The two

walls do not have necessarily the same amplitude (Figure (3.12)).

Figure 3.12: Channel with in phase sinusoidal walls. Here, the upper wall is more corrugated
than the lower wall meaning that γ 6= 0.

By varying the amplitudes of the walls A1 and A2, the corrugations wavelength L0 and

the channel aperture H0, we find that in all cases, Wcr1 = 0.156h∗ and Wcr2 = 0.84h∗.

These values are identical to the ones obtained in section 3.3.1. Consequently, the diagram

obtained for channels with flat walls (Figure (3.10)) can also be used to characterize trans-

port regimes in corrugated channels without horizontal shift between the walls. To verify

this hypothesis, the numerical experiments presented in section 3.3.1 were conducted in a
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channel with sinusoidal in phase walls using the same values of (h∗, W ). The percentages of

sedimented particles obtained numerically are summarized in Table (3.3).

% of sedimented particles
(h∗,W ) W

h∗
Numerical experiment Diagram prediction

(0.008, 0.001) 0.125 22 < 25 (Transport)
(0.008, 0.0035) 0.437 44 ε [25, 75] (Transition)
(0.008, 0.0075) 0.937 79 > 75 (Sedimentation)

Table 3.3: Percentages of sedimented particles in a sinusoidal channel with in phase walls for
configurations corresponding respectively to the transport regime (h∗ = 0.008, W = 0.001),
the transition regime (h∗ = 0.008, W = 0.0035), and the sedimentation regime (h∗ =
0.008, W = 0.0075) presented in Figure (3.10). Comparison between the regime diagram
predictions (Figure 3.10) and particle tracking numerical simulations results.

Again, the percentages of sedimented particles agree well with the predictions of the

regime diagram, confirming therefore the validity of the regime diagram for corrugated

channels with in phase walls. Interestingly, the diagram is identical to the one obtained

for channels with flat walls.

3.3.2.b. Channel with out of phase identical walls

In this case, the two walls are identical, i.e. they have the same corrugation amplitude

A1 = A2 and thus γ = 0. α and δ0 can vary respectively such as:

• δ0 will be modified by changing the walls amplitude and/or the channel mean aperture.

• α will be modified by changing the phase lag between the upper wall and the lower

wall. α = 0 corresponds to channels with parallel walls and α = π corresponds to

channels with mirror-symmetrical walls

i. Influence of δ0

Let’s consider Wcr1 = c1h
∗ and Wcr2 = c2h

∗ with c1 and c2 two constants describing their

linear variation. The variations of c1 and c2 as functions of δ0 are plotted in Figure (3.13).

When δ0 increases, c1 increases as well, which means that the transport zone increases.

Conversely, c2 decreases when δ0 increases, leading to a decrease of the sedimentation zone.

To further illustrate these variations, we compared two different cases considering δ0

equal respectively to 0.1 and 0.4 while keeping α = π constant and plotted the associated
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Figure 3.13: Variation of c1 (left) and c2 (right) as a function of δ0 for two cases: α = π/2
and α = π.

regimes on the same diagram (Figure (3.14)). One can see that increasing the corrugation

amplitude (by increasing δ0) leads to an increase of both the transport and sedimentation

zones.
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Figure 3.14: Effect of increasing the dimensionless corrugation amplitude δ0 on particle
transport regimes for channels having out of phase identical walls. The red solid lines present
the limits between the regimes for a channel with δ0 = 0.1 and the red dotted lines present
the limits between the regimes after increasing the walls corrugations (δ0 = 0.4). The white
zones present the variations in the transport and sedimentation zones respectively.

Here again, numerical experiments were conducted to verify the diagram’s predictions.

Two configurations corresponding to two pairs of (h∗, W ) located respectively in the two

variation zones of the diagram were used considering δ0 = 0.1 and δ0 = 0.4. The results are

summarized in Table (3.4).

For (h∗ = 0.01, W = 0.0021), when δ0 = 0.1, the percentage of the deposited particles is
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% of sedimented particles
(h∗,W ) W

h∗
δ0 Numerical experiment Diagram prediction

(0.01, 0.0021) 0.21
0.1 30 ε [25, 75] (Transition)
0.4 10 < 25 (Transport)

(0.01, 0.0074) 0.74
0.1 70 ε [25, 75] (Transition)
0.4 80 > 75 (Sedimentation)

Table 3.4: Percentages of sedimented particles in sinusoidal channels with out of phase iden-
tical walls defined respectively by δ0 = 0.1 and δ0 = 0.4, for two configurations corresponding
to (h∗ = 0.01, W = 0.0021) and (h∗ = 0.01, W = 0.0074). Comparison between the regime
diagram predictions (Figure 3.14) and particle tracking numerical simulations results.

equal to 30 % (transition), while this percentage is equal to 10% when δ0 = 0.4 (transport).

For (h∗ = 0.01, W = 0.0074), when δ0 = 0.1, the percentage of the sedimented particles is

equal to 70 % (transition), while this percentage is equal to 80% when δ0 = 0.4 (sedimenta-

tion). The numerical experiments confirm the effect of δ0 on the regime diagram.

ii. Influence of α

To investigate the effect of the phase lag between the walls on particle transport, α was

varied from 0 to 2π for two cases: δ0 = 0.1 and δ0 = 0.2. The variation of c1 and c2 as a

function of α is plotted in Figure (3.15).
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Figure 3.15: Variation of c1 (left) and c2 (right) as a function of α for two cases: δ = 0.1 and
δ = 0.2.

Firstly, one can see that the behavior of the particles does not change when the phase lag

between the walls is in the opposite direction (±α). For example, if the lower wall is shifted

from the upper wall by ∆X = L0/4 (α = π/2), the particles settle at the same distance as

if the shift was ∆X = −L0/4 (α = 3π/2) (Figure (3.16)).

Secondly, c1 reaches its maximal value when the phase lag between the walls is maximum
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Figure 3.16: Channel with sinusoidal walls with positive horizontal shift α = π/2 (left) and
negative horizontal shift α = 3π/2 (right).

(α = π). This means that the transport zone increases with the increase of the phase lag.

Similarly, c2 is minimum for α = π and therefore the sedimentation zone also increases when

the phase lag increases.

To further illustrate these variations, we compared two different cases considering α equal

respectively to 0 and π while keeping δ = 0.2 constant (Figure (3.17)). One can see that

increasing the phase lag between the walls leads to an increase of both the transport and

sedimentation zones in the diagram, their maximum extents being reached when the channel

walls are mirror symmetric (α = π).

Here again, numerical experiments were conducted to verify the diagram’s predictions.

Two configurations corresponding to two pairs of (h∗, W ) located respectively in the two

variation zones of the diagram were used considering α = 0 and α = π. The results are

summarized in Table (3.5).

% of sedimented particles
(h∗,W ) W

h∗
α Numerical experiment Diagram prediction

(0.009, 0.0016) 0.177
0 26 ε [25, 75] (Transition)
π 20 < 25 (Transport)

(0.0085, 0.0065) 0.764
0 66 ε [25, 75] (Transition)
π 80 > 75 (Sedimentation)

Table 3.5: Percentages of sedimented particles in sinusoidal channels with out of phase
identical walls defined respectively by α = 0 and α = π, for two configurations corresponding
to (h∗ = 0.009, W = 0.0016) and (h∗ = 0.0085, W = 0.0065). Comparison between the
regime diagram predictions (Figure 3.17) and particle tracking numerical simulations results.

It is shown that for (h∗ = 0.009, W = 0.0016), when α = 0, the percentage of the
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Figure 3.17: Effect of increasing α on particle transport regimes for channels having out
of phase identical walls. The red solid lines present the limits between the regimes for a
channel with α = 0 and the red dotted lines present the limits between the regimes after
increasing the phase lag to α0 = π. The white zones present the variations in the transport
and sedimentation zones respectively.

deposited particles is equal to 26 % (transition), while this percentage is equal to 20%

when α = π (transport). For (h∗ = 0.0085, W = 0.0065), when α = 0 the percentage

of the sedimented particles is 66 % (transition), while this percentage is 80% when α = π

(sedimentation). The effect of α on the regime diagram is again confirmed by the numerical

experiment.

3.3.2.c. Channel with maximum phase lag between the walls

In this type of channel, the horizontal shift between the walls is maximum (∆X = L0/2

or α = π). When the two walls have the same corrugation amplitude (γ = 0), the channel

presents a mirror-symmetrical geometry (Figure (3.18)). When the walls are not identical,

γ varies between −1 when the upper wall is flat (A2 = 0) and 1 when the lower wall is flat

(A1 = 0). γ < 0 means that the lower wall is more corrugated than the upper wall and vice

versa.

To assess the influence of the corrugation amplitude asymmetry on particle transport,

we studied the variation of c1 and c2 as a function of γ for two different average corrugation

amplitudes δ0 = 0.1 and δ0 = 0.2 (Figure (3.19)).
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Figure 3.18: Channels with lower flat wall (left), mirror-symmetrical walls (center) and upper
flat wall (right).
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Figure 3.19: Variation of c1 (left) and c2 (right) as a function of γ for two different average
corrugation amplitudes δ0 = 0.1 and δ0 = 0.2.

c1 decreases when γ increases. It is maximal when the upper wall is flat (γ = −1)

and minimal when the lower wall is flat (γ = 1). This means that the transport zone in

the diagram is maximal when the upper wall is flat. The transport zone decreases when

increasing the upper wall corrugation or decreasing the lower wall corrugation, to become

minimal when the lower wall is flat. However, when γ = 0.5 (the upper wall corrugation

is equal to three times the lower wall corrugation), the value of c1 is the same for the two

values of δ0. Further calculations showed that for this case (γ = 0.5), c1 is constant and

independent of δ0. When γ < 0.5, c1 increases when δ0 increases and, as a result, the

transport zone increases. γ > 0.5 leads to the opposite result.

c2 also decreases when γ increases. Similarly to what can be observed in the variation

of c1, when γ = −0.5 (the lower wall corrugation is equal to three times the upper wall

corrugation), the value of c2 is constant and independent of δ0. When γ < −0.5, c2 increases

when δ0 increases and, as a result, the sedimentation zone increases. The opposite result

appears for γ > −0.5 .

To further illustrate these variations, we compared two different cases considering the
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γ equal respectively to 1 and -1 while keeping δ = 0.2 constant (Figure (3.20)). For each

case, the pair c1, c2 are respectively equal to 0.11, 0.68 and 0.31, 0.88. The analysis of this

figure shows that increasing the upper wall corrugation relatively to the lower wall leads to

a decrease of the transport zone and to an increase of the sedimentation zone.

0.5 0.6 0.7 0.8 0.9 1

·10−2

0

0.2

0.4

0.6

0.8

1

·10−2

h∗ = H0

L∞

W
=

2 9
2
a
2
(k

−
1
)g

ν
U

0

Sedimentation
Zone variation
Transition
Transport
γ = −1
γ = 1

γ

γ

Figure 3.20: Effect of inverting the asymmetry of wall corrugations amplitudes γ on particle
transport regimes. The red solid lines present the limits between the regimes for a channel
with a flat upper wall (γ = −1) and the red dotted lines present the limits between the
regimes for a channel with a flat lower wall (γ = 1). The white zones present the variations
in the transport and sedimentation zones respectively.

Here again, we verified the predictions of the regime diagram against the numerical

experiment performed using 100 particles. Two configurations corresponding to two pairs of

(h∗, W ) located respectively in the two variation zones of the diagram were used considering

α = 0 and α = π. The results are summarized in Table 3.6.

% of sedimented particles
(h∗,W ) W

h∗
γ Numerical experiment Diagram prediction

(0.01, 0.001) 0.1
-1 0 < 25 (Transport)
1 30 ε [25, 75] (Transition)

(0.01, 0.0075) 0.75
-1 53 ε [25, 75] (Transition)
1 80 > 75 (Sedimentation)

Table 3.6: Percentages of sedimented particles in sinusoidal channels with out of phase iden-
tical walls defined respectively by γ = −1 and γ = 1, for two configurations corresponding
to (h∗ = 0.01, W = 0.001) and (h∗ = 0.01, W = 0.0075). Comparison between the regime
diagram predictions (Figure 3.20) and particle tracking numerical simulations results.
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For (h∗ = 0.01, W = 0.001), when γ = −1, no particles are deposited inside the channel

(transport), while 30% of the particles are deposited when γ = 1 (transition). For (h∗ = 0.01,

W = 0.0075), when γ = −1, the percentage of the sedimented particles is equal to 53 %

(transition), while this percentage is equal to 80% when γ = 1 (sedimentation). The effect

of γ on the regime diagram is once again verified by the numerical experiments.

3.3.3 Summary

The behavior of weakly inertial particles injected in a channel laminar flow depends on

the dimensionless number W and on the channel geometry. The separation between the

transport, sedimentation and transition regimes is characterized by the linear variation of

two critical values of W , Wcr1 and Wcr2 respectively. These two values are functions of the

ratio between the aperture and the total length of the channel, which is characterized by

the dimensionless number h∗ =
H0

L∞
. Wcr1 = c1h

∗ defines the limit between the transport

and transition zones, while Wcr2 = c2h
∗ defines the limit between the transport and the

sedimentation zones. This leads to the definition of a regime diagram that is valid for

arbitrary channel geometries.

It was found that configurations involving a channel with flat walls and a channel with

in phase sinusoidal walls (α = 0) share the same values of c1 and c2. When the top and

bottom walls are shifted, the direction of this shift does not affect the distance traveled by

the particles. However, transport and sedimentation zones are optimum when the phase lag

between the two walls is maximum(α = π).

In channels with identical walls (γ = 0), increasing the wall corrugation (δ0) or the

horizontal shift (α) tends to enlarge both the transport and the sedimentation zones. In

channels having nonidentical walls (γ 6= 0) and a maximum phase lag (α = π), the increase

of the upper wall corrugation compared to the lower one leads to a narrower transport

zone and to a larger sedimentation zone. The transport zone increases when the upper

wall corrugation decreases, and reaches its maximum size when the upper wall becomes flat

(γ = −1). Conversely, increasing the upper wall corrugation promotes sedimentation, and

the sedimentation zone reaches its maximum size when the lower wall becomes flat (γ = 1).
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3.4 Conclusion

This chapter was devoted to the study of the transport regimes of particles with low

inertia, in 2D fracture flows. The flow was assumed to be laminar and dominated by viscous

forces, characterized by low values of ε and Re, ε being the fracture aspect ratio and Re

the flow Reynolds number estimated on the fracture mean aperture. Channels with flat and

sinusoidal walls were considered to represent different fracture geometries.

We showed that when particle inertia is neglected, the particle behavior can be charac-

terized by the channel geometry and a dimensionless number W which represents the ratio

between the particle settling velocity and the flow mean velocity. A differential equation

defining the particle trajectory in corrugated channels and an exact equation of this tra-

jectory in channels with flat walls were derived under the assumption that particle inertia

can be neglected and that the flow velocity components can be explicitly calculated using

the LCL. These equations were verified against numerical experiments based on a particle

tracking technique combining the particle motion equations together with the flow field ob-

tained by solving the NS equations. The numerical simulations were performed taking into

account both particle and fluid inertias. The numerical results confirmed the assumptions

under which the analytical approach was developed. Furthermore, it confirmed that the

particle trajectory can be directly predicted according to the value of W and to the channel

geometry without the need for further calculations or numerical simulations.

Based on these developments, a regime diagram was established, which predicts the trans-

port or the sedimentation of particles as a function of W and of a geometrical parameter h∗,

representing the ratio between the channel mean aperture and its total length. For channels

with corrugated walls, the regime diagram is similar to the one obtained for channels with

flat walls, but the zones of transport and sedimentation tend to increase or decrease depend-

ing on the channel geometry, related to the corrugation wavelength and amplitude and to

the phase lag between the channel walls. It is shown that for a corrugated channel having

two in phase walls, the regime diagram is identical to the one obtained for a channel with

flat walls. When the two walls are out of phase, increasing the wall corrugation leads to an

increase of the zones of transport and sedimentation in the diagram. Taking into account
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the asymmetry between the two walls corrugations, increasing the upper wall corrugation

relatively to the lower one tends to decrease the transport zone and to increase the sedi-

mentation zone. The regime diagram and the effects of the geometrical parameters on its

zones variation were verified by numerical experiments which were conducted by releasing

100 particles in the channel and by computing the percentages of particles that deposited

inside the channel.

The results presented in this chapter describe in which way the geometry of a fracture

affect the transport and the deposition of particles as well as the distance at which they will

deposit inside the fracture.

In the following chapter, the experimental device that was designed to verify the analytical

results is presented.
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Chapter 4

EXPERIMENTAL INVESTIGATION

OF PARTICLE TRANSPORT IN

FRACTURE FLOWS

An analytical model describing the transport of weakly inertial particles in

closed channels with flat and corrugated walls has been proposed in chapter 3,

under the assumptions that particle inertia is neglected and that the flow follows

the local cubic law (LCL). This analytical model has been verified numerically

taking into account particle inertia and fully solving the Navier-Stokes (NS)

equations. To go further, an experimental validation is required. In order to

consider real situations and to assess the validity of the analytical model on a

practical basis. In this chapter, the experimental apparatus that was designed

and built up to this end is presented. The first part of the chapter is devoted to

the presentation of the design and the setup of the physical model. Then, the

experimental procedure and the methodology used to process the experimen-

tal data are described. Finally, several preliminary results are presented and

discussed with respect to the initial objectives of the study.
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Introduction

The experimental apparatus is first described and explanations are given regarding the

design of each one of its components. In the past, numerous experiments have been performed

to investigate flow and particle transport in open and closed channel flows. Laboratory scale

open channels are commonly used to reproduce phenomena occurring in earth-surface liquid

flows such as sediment transport in rivers (Best [125],Yilmaz [126], Wang et al. [127]) and

sand transport in near-shore regions (Jarno-Druaux et al. [128], Chu et al. [129]).

Similarly, laboratory scale closed channels have been used to model flows in either natural

(e.g. Hakami and Larsson [41]) or synthetic (e.g. Qian et al. [102]) fractures. Synthetic

fractures can be made either by creating surface roughness replicating that of real fractures

(Yeo et al. [130], Ju et al. [131]), or by considering fracture walls with idealized roughness.

For instance, Qian et al. [102] glued small square plates on flat surfaces to generate surface

roughness. Crosnier [53] used disks with crenelated surface to study flow in radial fractures.

In the present work, we made the choice to model rough fractures as channels with sinusoidal

walls (cf. chapters 1 and 2). Our experimental apparatus and its schematic representation

are shown respectively in Figures 4.1 and 4.2. It consists of a transparent long open channel

in which a fluid is circulating in a closed circuit. Inside the channel, two Plexiglas plates

are inserted to simulate the fracture. These plates can be flat or sinusoidal. Fluid flow is

created by applying a pressure drop between the inlet and the outlet of the fracture. In such

a configuration, the hydraulic gradient can be controlled directly by adjusting the liquid

level difference between inflow and outflow flumes (e.g. Qian et al. [102]) or by placing the

fracture in an open channel flow (e.g. Rush et al. [132]). In our experiments, we opted for the

second option. Liquid circulation is assured by three centrifugal pumps that move the liquid

from the reservoir toward the channel and regulate the flow rate. A digital camera is used to

track the movement of the particles inside the fracture. The camera is fixed on a conveyor

belt (charlyrobot) whose movement follows the flow main direction. To illuminate the zone

of the recordings in order to improve the quality of the pictures, two light projectors are

placed above the fracture. A computer connected to both the charlyrobot and the camera

allows to control the displacement of the camera and the quality of the captured pictures.
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Figure 4.2: Schematic representation of the experimental apparatus
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Since the aim of this apparatus is to assess the analytical solution developed in chapter

3, the experimental setup was designed in such a manner that it satisfies the theoretical

assumptions. In particular, two main constraints were considered to define the dimensions

of the fracture walls. First, the flow through the fracture must be unidirectional and must

follow the LCL. It is obvious that this latter condition implies a certain constraint on the

flow rate through the cross-section of the fracture. Second, the corrugations of the fracture

walls must be smooth (cf. chapter 2), and it should be possible to adjust the aperture and the

phase shift between the fracture walls so as to investigate different fracture configurations..

A detailed description of the experimental apparatus as well as the choice of the fracture

walls dimensions are presented in the next sections.

4.1 Experimental setup and procedure

4.1.1 Open channel with closed circuit flow

The channel is designed and manufactured by DIDATEC Technologies. It was initially

dedicated to study open channel systems but we modified it by inserting a fracture model

into the flume (Figure 4.3).

The channel has a total length of 400 cm and a cross section of 16 × 34 cm2 (width ×
height). The side walls are made of transparent reinforced glass, to ease the visualization

of the flow. All the other components in contact with the liquid are made of stainless steel

or glass reinforced plastic to prevent corrosion. The inclination of the channel can be finely

adjusted using a screw system and inclinometer that indicates the angle of inclination. In our

experiments, the channel has been always placed in a horizontal position. All the equipment

is set up on an steel coated frame. The frame is equipped with adjustable rubber feet to

avoid vibrations.

Upstream, a polyethylene stilling tank is connected to the centrifugal pumps, with a

drain valve in its lower part. A honeycomb (flow straightener) is placed in the tank at the

channel inlet to reduce turbulence (Figure 4.3(c)). Downstream, another tank is placed with

direct evacuation into the main reservoir. The reservoir is a tank made of fiberglass with a

capacity of 500 L and is connected to the liquid pumps. It has a transparent lid and a drain
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Figure 4.3: The open channel used in the experiments. (a) Side view showing the channel
walls. (b) Inside view of the channel. (c) The honeycomb (flow straightener) inserted at the
channel inlet.

valve and is equipped with a low-level sensor that turns off the pumps as soon as the liquid

level is lower than the inlet of the pumps.

Liquid circulation between the reservoir and the channel is ensured using a pumping

system. This system consists of three centrifugal pumps, an electromagnetic flow meter, an

electrical control box, and different valves (Figure 4.4). Each pump has a flow rate that

can be adjusted between 50 and 350 L/min (3 and 21 m3/h). The speed of the pumps is

controlled by a manual set point frequency. A flow meter measures the total flow rate of the
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Figure 4.4: Pumping system consisting of centrifugal pumps, a flow meter, and electrical
control box.

liquid transported from the reservoir to the channel. The flow rate is adjusted by actuating

one or more pumps.

4.1.2 Fractures with flat and sinusoidal walls

The fractures used in the experiments have flat and/or sinusoidal walls (Figure 4.5). The

fracture model is placed at 2.5 m from the open channel inlet. The fracture walls are made

of PMMA Plexiglas (Poly(methyl methacrylate)) and have a thickness of 2.8 cm, a total

length of 68 cm and a width of 16 cm, so as to match the width of the open channel. In

every configuration, the lower wall is fixed to the bottom of the open channel using three
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Figure 4.5: Top and side views of the sinusoidal walls used in the experiments.

drywall screws on each side. The upper wall is fixed, using 6 machine screws, on a hollow

slab which is also made of PMMA (Figure 4.6).

Figure 4.6: The hollow slab holding the upper wall and the bolts used to raise and lower the
slab.

On the upper part of the slab, six bolts are inserted and their heads are placed on the

upper edge of the side walls of the open channel. Turning these bolts out increases the

distance between the slab and the channel walls and raises the slab. Therefore the distance

between the upper and lower walls of the fracture, which corresponds to the aperture, can
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be adjusted. In the same way, by turning the bolts in the opposite direction, the fracture

aperture can be decreased. The mean aperture of the fracture H0 can be varied between 0

(When the bolts are fully inserted and the two walls are completely in contact one with each

other) and 2 cm (when the bolts are pulled out to the maximum). Similarly to the method

used to move the slab vertically, two bolts were inserted on the right side of the slab and

allowed it to move horizontally. In this way, the phase shift between the upper and lower

wall can be modified in order to control the phase lag between them (cf. chapter 2).

4.2.2.a. Fracture geometrical properties

Fractures with flat walls are only defined by their mean aperture H0 which, in our case,

can vary between 0 and 2 cm as mentioned in the previous section. The total length of the

walls is equal to L∞ = 69 cm. For sinusoidal walls, the fracture roughness is defined by the

wavelength L0 and the amplitude A of the wall corrugations (A0 is the mean corrugation

amplitude between the two walls), the horizontal phase shift between the two walls ∆X.

Two identical sinusoidal walls were machined with A = 1.25 mm and L0 = 2.5 cm (Figure

4.7). These two parameters were selected in order to have smooth wall corrugations, which

is a condition for the LCL to be valid and for eliminating the risk of having recirculation

zones in the fracture furrows (cf. chpater 2).

By combining the flat and sinusoidal walls, 4 geometrical configurations of the fracture

can be studied respectively:

i with two flat walls

ii with a lower flat wall and an upper sinusoidal wall

iii with a lower sinusoidal wall and an upper flat wall

iv with two sinusoidal walls

The geometrical properties of the fracture can be adjusted in the following way:

• ε =
H0

L0

can be varied between 0 (when the two walls are in contact) and 0.8 (when H0

is maximum). Practically, ε is varied between 0.1 and 0.4 to ensure that ε ≤ 0.4 (cf.

chapter 2).
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Figure 4.7: The dimensions of the sinusoidal walls (in mm).

• δ0 =
A0

H0

can be varied between 0.03 when one of the walls is flat and the aperture is

maximum, and 0.5 when the two walls are sinusoidal and the aperture is minimum.

• γ =
A2 − A1

A2 + A1

(A2 corresponds to the upper wall and A1 to the lower one) can be varied

between −1 (in the case (iii)) above, 0 (case (iv)) and 1 (case (ii)).

• ∆x =
∆X

L0

can be varied between 0 when the walls are in phase, and 0.5 when the

phase shift is maximum.

The walls inlet follows an exponential profile instead of a rectangular one to ensure a

smooth laminar flow and to avoid any stagnant zone that may appear at the lower wall inlet

(Figure 4.7). The flow through the fracture is created by a hydraulic head difference ∆h

(pressure difference ∆P = ρg∆h) between the inlet and the outlet.
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4.2.2.b. Particle injection

In order to verify the theoretical results, the particles must be small, typically less than

1 mm in diameter. In addition, the analytical model was developed in 2D. To be able to

reproduce the 2D conditions experimentally, particles must stay away from the side walls of

the open channel to avoid any particle-wall interaction that may affect their behavior.

The first technique adopted for injecting the particles in the flow consisted in dropping

them off directly in the closed circuit and tracking them as soon as they enter the fracture.

This technique is the less restrictive and is eased by the fact that the centrifugal pumps allow

the passage of suspended solids up to 10 mm in diameter. However, many difficulties arose

when using this technique. First, the particles are randomly dispersed in the flow, meaning

that they can enter the fracture at different positions along the width and at different times.

Particles can then be very close to the open channel side walls which may thus affect their

behavior. This technique would be fine for studying particle transport in tubes (e.g. Segré

and Silberberg [28], Matas et al. [32]), but it is not convenient in our case. Second, as

will be discussed later on, some particles can be located out of the camera focus. Finally,

the moment at which particles enter the fracture can not be precisely estimated and the

recording start time is thus unknown.

To overcome these difficulties, another technique was chosen. It consists in injecting the

particles manually and directly at the fracture inlet, at the center of the flow path. To make

this possible, a rubber hose was fixed on the slab holding the fracture upper wall (cf. section

2.2) with one end directly positioned at the fracture inlet (Figure 4.8). The other end is

connected to a plastic syringe used to inject the particles. The syringe has a volume of 50 mL

and the internal diameter of its tip is 2 mm. To avoid the appearance of air bubbles in the

flow, the particles are placed in the syringe without the liquid and the piston is fully pushed

in. The syringe is then attached to the hose and the liquid is sucked up directly from the

open channel. In this way, the nozzle only contains liquid without any air bubbles. Finally,

the syringe is shaken to disperse the particles in the liquid before injecting the suspension

into the fracture.
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Figure 4.8: The syringe and the rubber hose used to inject particles at the fracture inlet.

4.1.3 Liquid properties

At first, we intended to work with water as a liquid. The problem that appeared was that

this option could only provide too high Re with regards to the assumptions made concerning

the study of particle transport (cf. chapter 3). As an example, to assure Re = 5 in a fracture

having two flat walls with H0 = 5mm, the hydraulic head must be ∆h = 0.03mm which

is, from an practical point of view, impossible to set up. Therefore, the use of another fluid

has been considered to match the purpose of the study. Nonetheless, we performed some

preliminary tests with water to verify the capability of our experimental device to produce

lift induced particle focusing, as a validation step.

In order to reduce inertial effects and Re, a liquid with higher viscosity was considered.

We chose to work with glycerin which is odorless, colorless and has a viscosity theoretically

about 1000 times higher than water. The problem with the glycerin alone is that its very high
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viscosity risks to reduce significantly the hydraulic characteristics of the centrifugal pumps.

As glycerin is soluble in water, we decided to mix glycerin and water with a volumetric ratio

1L of water/4L of glycerin. This ratio was selected because according to the empirical formula

of Cheng [133], the viscosity of the mixture at 20◦C is expected to be in the order of 65cSt,

which is a moderately high viscosity with respect to water. The liquid reservoir was then filled

approximately with 50 L of water and 200 L of glycerin. The selected glycerin has a degree

of purity higher than 99.5% and a water content inferior to 0.5%. The kinematic viscosity of

the mixture νf was measured with a glass capillary (U-tube) viscometer, for temperatures

ranging from 20◦C to 31◦C. The variation of νf as a function of the temperature is plotted

in Figure 4.9.
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Figure 4.9: Variation of the kinematic viscosity of the water-glycerin mixture as a function
of the temperature, as measured by the glass capillary viscometer.

Moreover, as the density varies slightly with the temperature, the mixture density ρf

was measured at room temperature (20◦C). This was done by measuring the weight mf of

a predefined volume Vf . To take into account the measurement errors that may occur, the

weights of different volumes were measured (Table 4.1).

Throughout the experimental study, we considered ρf = 1211kg/m3.
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Table 4.1: Density of the mixture as the ratio between measured weights mf and volumes
Vf .

Vf (mL) mf (g) ρf (g/L or kg/m3)
50 60.33 1206.6
100 121.02 1210.2
150 182 1213.3
200 242 1213.5
Mean density 1210.9

4.1.4 Visualization and image treatment

4.2.4.a. Lighting

To improve the tracking of the particles with the camera, two light projectors were placed

above the fracture. These projectors were adjusted to shed white light on the fracture, so

that particles with different color can be easily detected. To isolate the fracture walls from

the rest of the channel, two black cardboards were glued to the side walls above the upper

wall and below the lower wall so that only the fracture walls and the gap between them are

visible (Figure 4.10).

4.2.4.b. Camera and bench

The camera utilized in the experiments (Canon EOS 6D) is a 20.2-Megapixel full-frame

CMOS digital single-lens reflex camera. It is equipped with a 24− 105 mm zoom lens with

optical image stabilization. Throughout the experiments, the lens was set with a maximum

zoom in. Each setting of the camera is controlled by the application EOS Utility which is

also used for remote shooting and for download and display. Videos recorded by the camera

have a 1920 × 1080 full high definition recording quality and the frame rate was set to 50

fps.

The camera is fixed on a bench equipped with a motor-driven belt conveyor (Figure 4.11).

The total length of the bench is 1.7m. The stepping motor allows to define a moving velocity

up to 1.5m/s. It is controlled by the application MINIMOVE which allows to set the position

and the displacement velocity. The camera can be then fixed at any position alongside the

fracture. It can be also moved along the fracture length to follow the displacement of the
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Figure 4.10: The black cardboards placed on the open channel wall to isolate the fracture
and to ease visualization. The visible part of the fracture is also shown.

particles inside the fracture. Throughout the experiments, videos are either recorded at a

fixed point such as the inlet and the outlet of the fracture, or recorded while the camera is

moving along the fracture length.

4.1.5 Experimental procedure and image treatment

The first components to install in the experimental apparatus are the fracture walls.

According to the predefined geometrical properties (flat or sinusoidal walls), two walls among

the four available are selected. The lower wall is first fixed. Then, the upper wall is fixed

on the holding slab, and the slab is then placed and adjusted according to the desired mean

aperture and, when applicable, to the phase shift between the two walls.

The camera is fixed on the belt conveyor. Particles are inserted into the syringe which
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Figure 4.11: The bench and the belt conveyor on which the camera is fixed.

is then connected to the inlet hose. When using the water-glycerin mixture, the pumps are

turned on for at least one hour to ensure that the glycerin is completely dissolved in water

and that the mixture is thus homogeneous.

In the experiments where the camera is fixed at a specified point alongside the fracture,

recording is started directly once the particles are injected and is turned off when all the

moving particles have passed.

When the camera is moving along the fracture, a first test is performed to determine the

velocity at which the belt conveyor should be set. Then, the experimental procedure is as

follows:

1. The camera is positioned at the fracture inlet.
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2. The video recording is turned on and particles are injected immediately after.

3. As soon as the particles get out of the hose end and enter the fracture, the camera is

translated at the velocity previously determined.

4. When the camera reaches the fracture outlet, recording is turned off when all the

particles have passed.

5. The video is then post-processed by applying an image treatment procedure described

hereafter.

The image treatment procedure consists first in transforming the recorded video into a

series of images. For that purpose, we used the software MPlayer. The number of images

depends on the duration of the video, knowing that the frame rate of the camera is set at 50

frames/second. As an example, a video of 10 s duration will be transformed into 500 images.

After that, the number of pictures is reduced by keeping only those which feature par-

ticles. For instance, when the camera starts recording before the particles are injected, the

first images without particles are deleted, and the same goes for the last images that were

recorded after all the particles have exited the fracture.

The images are then edited using the open-source image editor GIMP. A simple Batch

processing plugin, David’s Batch Processor, is used to automatically perform operations on

all the images because treating each image alone would be time-consuming and practically

impossible. The image treatment procedure is as follows:

1. The images are cropped by selecting only the zone between the two walls. A random

image is selected before, and cropped in GIMP in order to extract the crop required

values (width and height) and apply them to the Batch Processor.

2. The contrast of the images is increased to make the particles more distinguishable.

3. This step is optional because it is possible at point (2) to directly process the images in

order to track the particles and to find the distance to deposition, or to study particle

trajectories. However, it is possible also to convert the colored images into black and

white either directly or by applying a threshold.
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An example of the image treatment is given in Figure 4.12 for a black poppy seed immersed

in the water-glycerin mixture.

Figure 4.12: Image treatment applied in the case of a black poppy seed immersed in the
water-glycerin mixture.

In addition to this procedure, it is possible to draw the trajectories of single particles

when the camera is fixed, using a Matlab script, by adding successive photos of the moving

particle and combining them into one. This will be shown later on when single particle

trajectories are discussed.

4.2 Preliminary results with poppy seeds

The ability of the experimental apparatus to investigate particle transport in closed

channels must be assessed before going into further investigations related to the analytical

model presented in chapter 3. This was done by performing simple experiments using small
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particles that can be easily found on a daily basis like, for instance, poppy seeds. In fact,

poppy seeds are relatively small, have a quasi-spherical shape and a gray to black color,

making them convenient for experiments and image treatment. However, poppy seeds are

polydisperse. They have slightly different sizes and densities. This tends to slightly hinder

the validation of the analytical model but it also provides a better representation of practical

situations in which particles are neither perfectly spherical nor monodisperse.

4.2.1 Particle properties

The average density ρp of poppy seeds was first measured by weighing samples and by

soaking them in a water volume Vf in order to measure the change in volume ∆V , which

is equal to the particles volume Vp. To take into account measurement errors, four samples

with different weights (mp) were considered. The results are presented in table 4.2.

Table 4.2: Geometrical properties of the three fractures used as references in the numerical
simulations.

mp (g) ∆V = Vp(mL) ρp (kg/m3)
5 10 1068
10 100 1072
20 150 1069
30 200 1070

Average density 1069.75

The considered measured density of poppy seeds is equal to ρp = 1070 kg/m3. This

means that the particles are slightly denser than water and lighter than the water-glycerin

mixture (ρp = 1211 kg/m3). This does not modify the analytical model verification, but

instead of considering sedimentation or deposition, floating will be studied. In fact, the

particle trajectories depend on the ratio k between the particle and liquid densities. In the

case of poppy seeds immersed in water-glycerin mixture, k < 1 and the vertical position

of the particles increases along the fracture length until the particles reach the upper wall.

Hence, trajectories are investigated from the point at which particles are injected until they

reach the upper wall.

In addition, all the particles do not have the same size. At first, using sieves, particle

diameter dp was found to range from 500µm to 1mm. In order to find a more specific range
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of dp, an digital image analysis was performed. A portion of the particles was dispersed on a

homogeneous paper and photographed. Using the software ImageJ, particles were converted

into circular black dots on a white background and their surfaces were determined (Figure

4.13). dp was then calculated.

Figure 4.13: (a) A sample of poppy seeds dispersed on a homogeneous surface. (b) Particles
converted into black circular dots on a white background.

The particle size distribution of a representative sample of 30 particles is presented in

Figure 4.14. The mean value of dp is 746µm with a standard deviation of 147µm. Therefore,

in the following, dp is considered as belonging to the range [600µm; 800µm].

4.2.2 Transport with water as the operating liquid

At first, experiments were performed using water as a liquid. In these experiments, the

hydraulic head difference between the fracture inlet and outlet was set to ∆h = 9 mm. As

mentioned above, in such a configuration, inertial effects dominate due to the low viscosity

of the fluid. Therefore, lift forces can not be neglected, meaning that the analytical model

presented in chapter 3 can not be assessed. On the other hand, one can expect the occurrence

of inertial focusing in such configuration, meaning that particles injected randomly should

focus on the same trajectory due to the lift forces acting on them (cf. chapter 3). Even though
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Figure 4.14: A histogram of particle size distribution of a representative sample of 30 poppy
seeds.

poppy seeds are slightly denser than water, gravity forces are dominated by lift forces and

therefore particles do not deposit on the lower wall. In order to verify the suitability of the

experimental setup to deal with particle transport, we performed tests with water so that

inertial focusing could be observed. Two experiments are proposed. In the first one, we

injected a single particle. In the second one, we injected 2 particles. These particles were

injected into a fracture with flat walls.

4.3.2.a. Trajectory of a single particles

First tests were performed by injecting a single particle into the fracture in order to

study their trajectories. In such a configuration, particle-particle interactions are avoided

and inertial focusing, if it is observed, is solely due to the effect of lift forces.

The camera was fixed right before the fracture outlet, capturing the last 15 cm of the

fracture. One particle was injected at the fracture inlet, and it was filmed when it was

exiting the fracture. The succession of particle positions after image treatment, allows to

plot its trajectory as illustrated in Figure 4.15. According to this figure, it is clear that the

particle trajectory is a straight horizontal line parallel to the fracture wall. By definition,

this behavior is characteristic of inertial focusing.
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Figure 4.15: Single particle trajectory plotted at the fracture outlet as a succession of particle
positions. (a) Positions of the particle at different times of the experiment. (b) Deduced
particle trajectory

4.3.2.b. Inertial focusing of two particles

The experiment performed with a single particle was completed by a second test per-

formed with two particles. The objective of this experiment was to test the same hypothesis

as the previous case, i.e., if the two particles will exit the channel on the same trajectory, and

to check if the slight difference in the physical properties (size and density) of the particles

had an effect on their behavior. The same image treatment was performed and the two

trajectories are plotted in Figure 4.16.

Figure 4.16: Trajectories of the two particles plotted at the fracture outlet as a succession
of particle positions.(a) Positions of the two particles at different times of the experiment.
(b) Deduced particle trajectories

The analysis of this figure shows a slight difference between the two trajectories which,

however, remain almost parallel to the fracture wall. This small difference could be assigned

to the respective physical properties of the particles that are not identical (they have a

different size). Under these conditions, we can consider that the particles converge to an

equilibrium position and that inertial focusing occurs. This result gives a first insight about

the ability of the experimental apparatus to capture some of the physical mechanisms that

take place in closed channel flows. It also confirms that inertial lift forces cannot be neglected
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in our experiment when water is used and thus that the theoretical assumptions of our

analytical model cannot be fulfilled.

4.2.3 Transport with water-glycerin mixture as the operating liq-

uid

To investigate the particle deposition case, we replaced water by a water-glycerin mixture.

This mixture presents a higher dynamic viscosity than that of water permitting to reduce,

with a reasonable hydraulic head difference (∆h), the flow inertial effects. Therefore, we

expect that the particles would float towards the upper wall. Comparisons can then be

made with the predictions of the analytical model presented in chapter 3, in terms of distance

traveled. For convenience, the term ”deposition” is used to refer to the fact that the particle

comes in contact with the upper wall. Deposition is normally used for particles that sediment

on the bottom wall, but as the mechanism is the same, it will be used for particles that come

in contact with the upper wall.

Another important advantage of choosing the water-glycerin mixture instead of the water

alone, is that by increasing ∆h, we can study non-inertial regimes at low Re (for small ∆h),

in which the analytical model is valid, as well as inertial regimes at high Re (for high ∆h), in

which the inertial effects are significant. This can thus give us insights into the limitations

of the analytical model for high Re.

We recall that the analytical model was developed with the aim to predict particle trajec-

tories and positions without knowing the exact flow velocity field. Instead, an approximated

velocity is calculated using the LCL (cf. chapter 3). In fact, based on the hydraulic aper-

ture Hh (which depends on the fracture geometry) and on the pressure difference ∆P , the

flow mean velocity V0 can be estimated. Then, depending on the particle radius a and on

the density ratio k, the dimensionless number W is determined and the particle trajectory

equation as well as the distance at which the particle will deposit can be calculated. This

can be done under the assumption that the particles have a small inertia (particle response

time τ < 10−3) and that Re = V0H0

ν
is small.

To sum up, in each case, ∆h is set and Re is calculated. For relatively low Re, W and
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τ are determined, and the distance to deposition can be calculated for each particle. This

distance is compared to that found experimentally. For high Re, the presence of inertial

focusing is investigated.

The mixture and particle properties are defined in sections 2.3 and 3.1. The mixture

temperature was measured at different positions in the channel and at different times, using a

mercury-in-glass thermometer and was found to be equal to 21.5 ◦C. The kinematic viscosity

is approximately equal to νf = 55 cSt and the density ratio is k = 0.88. As the particle

diameter was defined in a given range, the same applies for W and τ . In the experiments,

H0 was varied between 5mm and 10mm, and ∆h between 0.8 cm and 15 cm. In the following,

we present selected significant results which show specific particle behaviors.

4.3.3.a. Fracture with two flat walls

The configuration with two flat walls was used with different values of H0 and ∆h.

i. Non-inertial regime: verification of the analytical model

The mean aperture was set to H0 = 5mm and the hydraulic head difference to ∆h =

2.5 cm, leading to V0 = 0.013m/s (using the LCL) and Re = 1.184. In this case, the

dimensionless numbers are τ ∈ [9.6× 10−6; 1.7× 10−5] and W ∈ [−0.058;−0.032]. A picture

illustrating the particles right before they exit the fracture is shown in Figure 4.17.

Figure 4.17: Multiple particles filmed moving on the upper wall, ahead of the fracture outlet
for ∆h = 0.8cm (Re = 1.184, τ ∈ [9.6× 10−6; 1.7× 10−5] and W ∈ [−0.058;−0.032]).

According to this figure, the majority of the particles floated and were moving on the

upper wall. This means that the inertial lift forces are negligible with respect to gravity
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(buoyancy) forces. To assess the predictions of the analytical model, a random particle with

an initial vertical position z0
p ' 0 was selected. For this particle The distance to deposition

(in the dimensionless form with L∞ as a length scale xf = Xf

L∞
) was found experimentally

(Figure 4.18) to be xfexp = 0.075 (or Xf
exp = 0.051m in the dimensional form). Note that in

the case of a fracture with a corrugated wall, the distance to deposition can be more easily

determined by counting the number of the wavelengths that the particle has traveled before

touching the wall. Using the analytical model, the range of the distance to deposition xfana

is equal to xfana ∈ [0.043; 0.078] (or Xf
ana ∈ [0.029m; 0.053m] ) considering the range of W

mentioned above. This means that the distance to deposition found experimentally falls in

the range predicted by the analytical model.

Figure 4.18: The distance Xf
exp traveled by a particle entering the fracture with two flat

walls at Z0
p ' 0.

Although this experimental observation can be disputed due to the heterogeneity of the

physical properties of the particles (size, density), it is nonetheless in relatively good agree-

ment with the analytical solution, confirming thus that the analytical model gives a good

approximation of the distance at which polydisperse particles would deposit in fractures with

flat walls.

ii. Inertial regime: Lift-induced particle focusing

The mean aperture was set to H0 = 9mm and the hydraulic head difference to ∆h =

5 cm. In this case, V0 = 0.171m/s and Re = 27.81. Thus, flow inertial effects should be

dominant. Several particles were injected at the fracture inlet and the camera was fixed in

the same way as previously (section 3.2.1), i.e. at the fracture outlet. Figure 4.19 shows the
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particles right before they exited the fracture.

Figure 4.19: (a) Multiple particles filmed ahead the fracture outlet for ∆h = 5 cm (Re =
27.81 cm). (b)The deduced line on which particles focused

In this test, none of the particles float towards the upper wall, meaning that buoyancy

forces are negligible with respect to other forces. Instead, particles tend to travel with

the same vertical position and therefore move on a single trajectory. This is due to the

equilibrium between the different inertial lift forces acting on the particles (cf. chapter 3).

The slight deviation between the particle positions is due to their polydispersity. However,

one can conclude that inertial focusing occurs this experiment.

4.3.3.b. Fracture with a flat wall and a sinusoidal wall

In this case, the fracture consists of a bottom flat wall and an upper sinusoidal one.

The tests performed are similar to those done with the flat fracture (section 3.3.1). We

first performed experiments with low ∆h to assess the analytical model for this particular

configuration. ∆h was then increased to generate high Re in order to examine the effect of

the fluid inertia on the particle behavior and the potential presence of inertial focusing.

i. Non-inertial regime: verification of the analytical model

The mean aperture was set equal to H0 = 5mm (the hydraulic aperture was then cal-

culated Hh = 4.9mm). In order to minimize the inertial effects, the hydraulic head was

fixed equal to ∆h = 2.5 cm. Using the LCL, V0 = 0.013m/s and Re = 1.184. In this

case, the dimensionless numbers are τ ∈ [9.6× 10−6; 1.7× 10−5] and W ∈ [−0.058;−0.032].

148



Figure 4.20: Multiple particles floated to the upper sinusoidal wall, ahead the fracture outlet
for ∆h = 2.5cm (Re = 1.184, τ ∈ [9.6× 10−6; 1.7× 10−5] and W ∈ [−0.058;−0.032]).

Figure 4.20 shows the particles right before they exited the fracture. Most of the particles

floated to the upper wall due to the density difference, suggesting that the inertial lift forces

are overcome by the buoyancy forces so that inertial focusing can not occur. To verify the

predictions of the analytical model, a random particle with an initial vertical position z0
p ' 0

was selected (Figure 4.21). The distance to deposition for this particle was measured to

be equal to xfexp = 0.22 (or Xf
exp = 0.15m in the dimensional form). Using the analytical

model, the distance to deposition xfana was evaluated in the range xfana ∈ [0.136; 0.25] (or

Xf
ana ∈ [0.092m; 0.17m] ). This means that the distance to deposition found experimentally

belongs to the range predicted by the analytical model. This result proves that even when

the fracture has a corrugated wall, the analytical model gives a good approximation of the

range of the distance at which polydisperse particles would deposit.

ii. Inertial regime: Lift-induced particle focusing

As discussed in chapters 1 and 3, previous investigations on inertial focusing have mainly

considered channels with flat walls (e.g. Di Carlo et al. [35]) or other geometries such as

serpentine channels (Zhang et al. [120]) and spiral channels (Russom et al. [134]). Even

though sinusoidal walls have not been considered before, one can expect the same effect to

occur due to the equilibrium between the different lift forces acting on the particles. To this

end, a test was performed with relatively high ∆h.

We set the mean aperture H0 = 9mm (the hydraulic aperture was then calculated

Hh = 8.82 mm), and ∆h = 6 cm leading to Re = 18. Several particles were injected at the
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Figure 4.21: Particle with Z0
p ' 0 traveling through the fracture until it touches the upper

wall.

fracture inlet. Figure 4.22 shows the particles right before they exited the fracture. Similarly

to what was observed with two flat walls, the particles do not float but instead remain at a

certain distance from the upper wall. This can also be interpreted as inertial focusing. An

approximate line on which particles focused was drawn and it shows a sinusoidal shape. This

experiment proves that inertial focusing can occur even when the fracture has a sinusoidal

wall.

4.3.3.c. Fracture with two sinusoidal walls

The final tests were performed in the fracture with two sinusoidal walls. The walls were

mounted in a mirror-symmetric configuration for which the variation of the aperture is max-

imum, and consequently the deviation of the LCL from the NS solution is maximum (cf.

chapter 2). This configuration is, therefore, the most convenient to validate the analytical

model.

i. Non-inertial regime: verification of the analytical model

The mean aperture was set equal to H0 = 7mm (Hh = 6.12 mm). To minimize inertial
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Figure 4.22: (a) Multiple particles filmed ahead the fracture outlet for ∆h = 6cm (Re = 18).
(b) Approximated line on which the particles have focused is plotted in red by connecting
the particles. (c) Schematic representation of the fracture and the approximated focusing
trajectory.

effects, the hydraulic head was fixed equal to ∆h = 2.4 cm which leads, using the LCL, to

V0 = 0.02m/s and Re = 2.3. In this case, the dimensionless numbers are τ ∈ [4×10−4; 7.1×
10−4] and W ∈ [−0.038;−0.021].

Similarly to the previous tests, a random particle with an initial vertical position z0
p ' 0

was selected in order to verify the predictions of the analytical model (Figure 4.23). The

distance to deposition for this particle was measured to be equal to xfexp = 0.147 (or

Xf
exp = 0.1m in the dimensional form). Using the analytical model, the distance to de-

position xfana was evaluated in the range xfana ∈ [0.092; 0.16] (or Xf
ana ∈ [0.0625m; 0.108m] ).

The distance to deposition measured experimentally belongs thus to the range predicted by

the analytical model. This result confirms the ability of the analytical model to give a good

approximation of the range of the distance at which polydisperse particles would deposit,

even when the fracture has two corrugated walls.
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Figure 4.23: Particle with Z0
p ' 0 traveling through the fracture until it touches the upper

wall.

ii. Inertial regime: Lift-induced particle focusing

This test was performed with relatively high ∆h to investigate the presence of inertial

focusing when the two walls of the fracture are sinusoidal. Similarly to the two previous

cases, one can expect inertial lift forces to dominate the buoyancy forces due to the increase

of the flow inertial effects, so that the analytical model does not remain valid.

We set the mean aperture H0 = 8mm (the hydraulic aperture was then calculated

Hh = 7.22mm), and ∆h = 10 cm leading to Re = 14.5. Several particles were injected at

the fracture inlet. Figure 4.24 shows the particles right before they exited the fracture.

Figure 4.24: (a) Multiple particles filmed ahead the fracture outlet for ∆h = 10cm (Re =
14.5). (b) Approximated line on which the particles have focused.

Once again, the particles do not float but remain at a certain distance from the upper

wall, which can be interpreted as inertial focusing. An approximate line on which particles

focused was drawn and it also shows a sinusoidal shape. This experiment confirms that

inertial focusing can occur even when the fracture has sinusoidal walls, and that the analytical
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model is not valid when the flow inertial effects are relatively important.

4.3 Conclusion

In this chapter, the experimental apparatus that was designed and built up to study

particle transport in closed channels was presented. A detailed description of the experi-

mental setup and procedure was given. The apparatus was used to conduct a preliminary

study of particle transport in fractures with flat and/or sinusoidal walls with dimensions in

accordance with the theoretical assumptions made in the previous chapters.

The experimental results show that the apparatus is able to capture the different behav-

iors of particles in fractures, such as transport and deposition as well as inertial focusing.

Many tests were performed using water and a water-glycerin mixture as liquid and poppy

seeds as polydisperse particles moving in the liquid. By choosing an optimal difference in

piezometric load, flow inertial effects can be reduced and the experimental results are in

agreement with the analytical solution. The distance traveled by the particles from the inlet

till they deposit fall in the range predicted by the analytical model developed in chapter

3. This suggests that the analytical solution can be used to evaluate deposition distance

of polydisperse particles in fractures with flat and/or sinusoidal walls. When the hydraulic

head was increased, i.e. for higher Re, it was shown that in fractures with both flat and

sinusoidal walls, the particles focused on a single trajectory, verifying thus the presence of

inertial focusing and confirming that inertial lift forces govern the particle behavior. This

result verifies the assumption that the analytical model is valid only for low Re.

As a conclusion, the preliminary experimental results verify the analytical model devel-

oped in this thesis. In addition, these results demonstrate the ability of the experimental

device for investigating particle transport in closed channel flows. It can be soundly used for

future experimental studies of particle transport, which may improve our understanding of

particle behavior and further validate the previously developed models.
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CONCLUSION AND

PERSPECTIVES

Single-phase flow and particle transport through fractures with flat and corrugated peri-

odic walls have been investigated.

For single-phase flow, a thorough numerical study has been conducted to investigate the

effects of the fracture geometry on the validity of the local cubic law (LCL). Numerical

solutions of the Navier-Stokes (NS) equations have been compared to the predictions of the

LCL. The results suggest that the validity of the LCL depends strongly on the geometrical

properties of the fracture, defined by its aperture, the roughness (corrugation amplitude)

of its walls, as well as the phase shift between the walls, and the asymmetry of the walls

corrugations. The results further suggest that the criteria previously proposed for the ap-

plicability of the LCL to fracture flow, developed considering specific fracture geometries,

can not be generalized for fractures with arbitrary geometries. In all the cases tested in

the present manuscript, the LCL was found to be valid for modeling fracture flow, under

the condition that the walls roughness as well as the Reynolds number Re are relatively

small. Another numerical result, obtained in all the configurations tested in the simulations,

suggests that the flow remains in the non-inertial regime for Re ≤ 15.

To investigate particle transport through fractures, an approach combining analytical,

numerical, and experimental developments has been adopted. In the analytical approach,

the LCL was used to model the flow and was coupled to a simplified form of the particle

motion equation in which particle inertia is neglected. A model describing the trajectories

of the particles transported in channels with flat and corrugated walls was developed. It

was found that when particle inertia is negligible, the particle behavior depends on a dimen-
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sionless number W relating the particle properties and the flow characteristics, as well as

on the geometry of the fracture. Using the proposed trajectory equation, and considering

a uniform distribution of particles at the channel inlet, different transport regimes could

be identified: transport, sedimentation and transition. According to the channel geometry,

different diagrams that can predict the transport regime of particles entering a channel were

then established. Moreover, numerical simulations combining the finite element method

(FEM) to a Lagrangian particle tracking technique were conducted to assess the relevance

of the analytical approach. Contrary to the analytical model, these simulations were con-

ducted solving the full NS equations and taking into account particle inertia. Particles were

injected at different positions at the inlet of channels with flat and corrugated walls, and

the distance to deposition was computed numerically for each particle. This distance was

then compared to the distance predicted by the analytical model. First, the dependence of

the particle behavior on W and on the channel geometry was verified. Numerical experi-

ments were then performed considering 100 particles. The results confirmed the ability of

the regime diagrams to predict the behavior of the moving particles.

Finally, an apparatus was constructed to study particle behavior in fractures with flat and

sinusoidal walls. The aim of this apparatus was to evaluate the pertinence of the analytical

model when applied to practical configurations. To reduce the flow inertial effects, a water-

glycerin mixture was used as the operating liquid. Preliminary tests conducted using poppy

seeds seem to confirm the validity of the analytical model. For high pressure difference, the

analytical model was no longer valid: The behavior of the particles is dominated by inertial

lift forces, leading to inertial focusing in both the flat and sinusoidal walls configurations.

Overall, the results obtained in this thesis improve our understanding of the behavior of

small particles immersed in closed channel flows, with a direct application to the transport

of contaminants transported through fractures. For instance, we can identify, based on

their size and density, the contaminants that are likely to deposit inside the fracture or be

suspended and transported for long distances. Our results have other applications in water

filtration and in mineral separation. In fact, based on our regime diagrams, a system of

separation based on particle deposition in channels with sinusoidal walls could be designed.

It would enable to separate particles based on their size and/or density depending on the
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distance at which they would deposit in the channel. As the flow in the channel can simply be

created by a hydraulic head difference, the advantage of such system with respect to present

separation techniques is that it is passive and does not require important energy supply.

Another application concerns inertial focusing, and may find some echoes in microfluidics.

First, the results obtained may lead to a quantification of the conditions (Re and particle size)

under which focusing becomes efficient. Second, we were able to observe inertial focusing in

channels with sinusoidal walls. Further analyses may reveal new features at the origin of the

focusing phenomenon, such as, for instance, the effect of the curvature of the channel walls

on the inertial lift forces acting on the particles.

Perspectives

The ability of the experimental apparatus to study flow and particle transport in closed

channels has been confirmed. It can now be used for further investigations. First, single-

phase flow can be addressed. As the apparatus can be utilized over a wide range of flow

rates and pressure differences, the validity of the LCL can be assessed experimentally. The

results described in the second chapter of the present document could thus be practically

evaluated.

Concerning particle transport, the most important perspective would consist in conduct-

ing experiments with spherical particles of different sizes and/or densities, in order to have

an exact comparison with the analytical model and more particularly to validate the regime

diagrams established in chapter 3. This can be done by injecting particles slightly denser

than the liquid at the fracture inlet and by calculating the percentage of particles exiting

the fracture. Distances to deposition could also be measured and compared to the analytical

predictions, similar to what was done with poppy seeds in this thesis. Moreover, our experi-

mental results suggest that the analytical model is not valid anymore when the flow inertial

effects are important. The apparatus could therefore help to quantify the range of validity

of the theoretical assumptions, i.e. Re and the ratio of particle size to channel aperture

above which inertial lift forces start to be dominant with respect to other forces acting on

the particles.

Regarding now the analytical and numerical modeling presented in this manuscript, sev-
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eral developments could be considered. We neglected inertial effects so that our analytical

model is valid only for small Re. For high Re, flow inertial effects may lead to the appearance

of recirculation zones, especially when the walls corrugations are not smooth. These recir-

culation zones can trap the particles under specific conditions. Investigating this trapping

mechanism requires an exact description of the fracture flow, and the LCL can no longer be

used. A numerical analysis based on the NS equations could be applied.

Another perspective would consist in considering dense particle suspensions. In such

configuration, two-way coupling must be taken into account, as well as particle-particle

interactions. A numerical model combining the lattice Boltzmann method for describing

the fluid flow and a discrete element method for describing particle motion has recently

been developed in GeoRessources. This model enables to consider the effect of the particles

on the flow and the particle-particle interactions. This couples approach could be used in

combination with the experimental investigations to verify the analytical developments in

both dilute and dense suspensions. This numerical model could also help to generalize the

results concerning particle transport and deposition for the case of non-spherical particles.

In addition, different particle shapes such as oblate and prolate spheroids, or parallelepipeds

can be considered and the effect of particle orientation on the particle behavior may be

eventually addressed.

Finally, another perspective would consist in assessing the validity of the analytical results

obtained in this thesis in the case of fractures with non-periodic and non-smooth rough walls.

Indeed, the analytical models proposed in this thesis do not require the fracture walls to be

periodic. However, these analytical models incorporate expressions for the variation of the

fracture walls, and more precisely, expressions for the variation of the fracture middle line

and the fracture half-aperture along the fracture length (H(X) and Φ(X) in chapters 2 and

3). Numerical and experimental verifications using fractures with non-periodic walls could

be conducted to evaluate the validity of the analytical predictions, and more particularly the

distance at which injected particles would deposit inside the fracture. The only limitation

for such generalization would be the singularities that may appear in the wall shapes, which

may give rise to singularities in the NS equations. This final point would require additional

investigations.
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rugueuses. PhD thesis, 1996.

[45] A. P. Oron and B. Berkowitz, “Flow in rock fractures: The local cubic law assumption

reexamined,” Water Resources Research, vol. 34, no. 11, pp. 2811–2825, 1998.
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Abstract

Analytical, numerical, and experimental investigations of particle transport
in fractures with flat and corrugated walls
The aim of the present thesis is to study the transport and deposition of small solid par-
ticles in fracture flows. First, single-phase fracture flow is investigated in order to assess
the validity of the local cubic law for modeling flow in corrugated fractures. Channels with
sinusoidal walls having different geometrical properties are considered to represent different
fracture geometries. It is analytically shown that the hydraulic aperture of the fracture
clearly deviates from its mean aperture when the walls roughness is relatively high. The
finite element method is then used to solve the continuity and the Navier-Stokes equations
and to simulate fracture flow in order to compare with the theoretical predictions of the local
cubic law for Reynolds numbers Re in the range 6.7 × 10−2 − 6.7 × 101. The results show
that for low Re, typically less than 15, the local cubic law can properly describe the fracture
flow, especially when the fracture walls have small corrugation amplitudes. For Re higher
than 15, the local cubic law can still be valid under the conditions that the fracture presents
a low aspect ratio, small corrugation amplitude, and moderate phase lag between its walls.
Second, particle-laden flows are studied. An analytical approach has been developed to show
how particles sparsely distributed in steady and laminar fracture flows can be transported
for long distances or conversely deposited inside the channel. More precisely, a rather simple
particle trajectory equation is established. Based on this equation, it is demonstrated that
when particles’ inertia is negligible, their behavior is characterized by the fracture geometry
and by a dimensionless number W that relates the ratio of the particles sedimentation termi-
nal velocity to the flow mean velocity. The proposed particle trajectory equation is verified
by comparing its predictions to particle tracking numerical simulations taking into account
particle inertia and resolving the full Navier-Stokes equations. The equation is shown to
be valid under the conditions that flow inertial effects are limited. Based on this trajectory
equation, regime diagrams that can predict the behavior of particles entering closed channel
flows are built. These diagrams enable to forecast if the particles entering the channel will
be either deposited or transported till the channel outlet. Finally, an experimental appara-
tus that was designed to have a practical assessment of the analytical model is presented.
Preliminary experimental results tend to verify the analytical model. Overall, the work pre-
sented in this thesis give new insights on the behavior of small particles in fracture flows,
which may improve our prediction and control of underground contamination, and may have
applications in the development of new water filtration and mineral separation techniques.

Keywords: Particle-laden flow, Particle trajectory, Corrugated walls, Rough Fracture, Local
Cubic Law
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Résumé

Études analytique, numérique, et expérimentale du transport de particules
dans des fractures parois plates et ondulées
Le but de cette thèse est d’étudier le transport et le dépôt de particules solides dans les
écoulements à travers les fractures. Dans un premier temps, l’écoulement monophasique
à travers les fractures est étudié afin d’évaluer la validité de la loi cubique locale comme
mod̀le de l’écoulement. Des canaux à parois sinsöıdales à géométrie variable sont utilisés
pour représenter différents types de fractures. Un premier développement analytique montre
que l’ouverture hydraulique de la fracture diffère de son ouverture moyenne lorsque la ru-
gosité des parois est élevée. La méthode des éléments finis est ensuite utilisée pour résoudre
les équations de continuité et de Navier-Stokes et comparer les solutions numériques aux
prédictions théoriques de la loi cubique locale sur une gamme relativement étendue de nom-
bres de Reynolds Re. Pour de faibles Re, typiquement inférieurs à 15, la loi cubique locale
décrit raisonnablement l’écoulement, surtout lorsque la rugosité et le déphasage entre les
parois sont relativement faibles. Dans un deuxième temps, les écoulements chargés de par-
ticules sont étudiés. Une approche analytique est d’abord développée pour montrer comment
des particules distribuées dans un écoulement stationnaire et laminaire à travers une fracture
peuvent être transportées sur de longues distances ou au contraire se déposer à l’intérieur.
Plus précisément, une équation simple décrivant la trajectoire d’une particule est établie. Sur
la base de cette équation, il est démontré que, quand l’inertie des particules est négligeable,
leur comportement dépend directement de la géométrie de la fracture et d’un nombre adi-
mensionnel W qui relie la vitesse de sédimentation des particules à la vitesse moyenne de
l’écoulement. L’équation proposée est vérifiée en comparant ses prédictions à des simula-
tions numériques de suivi de particules prenant en compte l’inertie des particules et résolvent
complètement les équations de Navier-Stokes. Il est montré que l’équation est valide lorsque
l’inertie du fluide est faible. Des diagrammes de régimes, permettant de prévoir le comporte-
ment des particules à travers la fracture sont proposés. Enfin, un appareil expérimental
conçu dans le but d’effectuer une évaluation pratique du modèle analytique est présenté
et les résultats préliminaires sont discutés. Les rèsultats expérimentaux préliminaires ten-
dent valider le modèle analytique. De façon plus générale, les résultats obtenus à travers
ce travail de thèse font progresser nos connaissances du comportement des petites particules
transportées dans les écoulements de fractures. Potentiellement, ce travail devrait permettre
d’améliorer notre prévision de la pollution souterraine, et peut avoir des applications dans le
développement de nouvelles techniques de filtration de l’eau et de séparation des minéraux.

Mots-clefs: Transport de particules, Fracture rugueuse, Parois ondulées, Loi cubique locale
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