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Qui dit quoi ? Que dans un monde où tout le monde croit devoir s’exprimer, il n’y a plus

d’illumination possible. Rien ne peut être éclairé dans la luminance totale. Il faut beaucoup

de silence pour entendre une note. Il faut beaucoup de nuit pour qu’un éclair puisse jaillir,

pour qu’une couleur neuve soit perçue, soit reçue.

Si j’en avais le pouvoir, j’émettrais aujourd’hui un trou noir. Quelque chose comme un cône

d’extinction forant au ventre l’épaisseur du jour. Pour rouvrir l’espace. Ce qui me terrifie, ce

n’est pas ce chaos de clartés qui brouille la ville comme une avalanche de soleils. C’est qu’il

n’y ait plus nulle part une seule ombre. Tout est férocement surexposé.

Mais rien n’est posé. Ni tranché.

— Alain Damasio, So phare away

To those who inspired it

and will not read it
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Abstract

The work presented in this thesis was inspired by precedent results on the Gaudin models

(which are integrable) for spins- 1
2 only which, by a change of variables in the algebraic Bethe

equations, manage to considerably simplify the numerical treatment of such models.

This numerical optimisation is carried out by the construction of determinants, only de-

pending on the previously mentioned variables, for every scalar products appearing in the

expression of the mean value of an observable of interest at a given time.

By showing it is possible to use the Quantum Inverse Scattering Method (QISM), even when

the vacuum state is not eigenstate of the transfer matrix, the previous results concerning

spins- 1
2 only are generalised to models including an additional spin-boson interaction.

De facto, this generalisation opened different possible paths of research.

First of all, we show that it is possible to further generalise the use of determinants for spin

models describing the interaction of one spin of arbitrary norm with many spins- 1
2 . We give

the method leading to the explicit construction of determinants’ expressions.

Moreover, we can extend this work to other Gaudin models where the vacuum state is not an

eigenstate of the transfer matrix. We did this work for spins- 1
2 interacting with an arbitrarily

oriented magnetic field.

Finally, a numerical treatment of systems describing the interaction of many spins- 1
2 with a

single bosonic mode is presented. We study the time evolution of bosonic occupation and of

local magnetisation for two different Hamiltonians, the Tavis-Cummings Hamiltonian and

a central spin Hamiltonian. We learn that the dynamics of these systems, relaxing from an

initial state to a stationary state, leads to a superradiant-like state for certain initial states.
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Résumé

Le travail présenté dans cette thèse est inspiré de précédents résultats sur les les modèles de

Gaudin ne contenant que des spins- 1
2 (ces modèles sont intégrables) qui, par un changement

de variable dans les équations de Bethe algébriques, parviennent à simplifier le traitement

numérique de ces modèles.

Cette optimisation numérique s’effectue par l’intermédiaire d’une construction en détermi-

nant, ne dépendant que des variables précédemment mentionnées, pour chaque produit

scalaire intervenant dans l’expression de la moyenne d’une observable à un temps donné.

En montrant qu’il est possible d’utiliser la méthode du Quantum Inverse Scattering Method

(QISM), même dans un cas où l’état du vide n’est pas état propre de la matrice de transfert,

les résultats précédents concernant uniquement des spins- 1
2 sont généralisés à des modèles

contenant en plus une interaction spin-boson.

De fait, cette généralisation a ouvert plusieurs voies de recherche possibles.

Premièrement, il est montré qu’il est possible de continuer à généraliser l’utilisation de déter-

minants pour des modèles de spins décrivant l’interaction d’un spin de norme arbitraire avec

des spins- 1
2 . La méthode permettant d’obtenir la construction des expressions explicites de

ces déterminants est donnée.

On peut également pousser la généralisation à d’autres modèles de Gaudin dont l’état du vide

n’est pas état propre de la matrice de transfert. C’est ce que nous avons fait pour des spins- 1
2

en interaction avec un champ magnétique dont l’orientation est arbitraire.

Enfin, un traitement numérique de ces systèmes de spins- 1
2 interagissant avec un mode

bosonique est présenté. L’évolution temporelle de l’occupation bosonique et de l’aimantation

locale des spins est ainsi étudiée selon deux Hamiltoniens différents, l’Hamiltonien de Tavis-

Cummings et un Hamiltonien type spin central. Cette étude nous apprend que la dynamique

de ces systèmes, qui relaxent d’un état initial vers un état stationnaire, conduit à un état

superradiant lorsque l’état initial choisi y est favorable.
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Introduction

General Context

Contrarily to its classical counterpart [1], the notion of quantum integrability strives to find an

unifying definition [2]. Researchers have tried different approaches to this problem [3, 4, 5, 6].

For instance, from a very mathematical point of view using Galois theory [7] or with more

physical interpretation as in [8], where it is explained that a system is integrable if the scattering

it supports is non-diffractive. Nevertheless, an often mentioned asset of the integrable models

is their propensity to be exactly solvable. Interestingly enough, one of the attempts of [1] to

define the quantum integrability relies on this "exact-solvability".

The regain of interest for integrable models is due to technical advances enabling experimental

physicists to build low dimensional quantum systems described by integrable models. Thus,

groups of scientists have been able to set up experiments to study excitons and polaritons

in quantum wells [9, 10, 11] and semi-conductors quantum dots [12, 13, 14, 15, 16, 17, 18].

Additionally, a lot of experiments aim to observe the superradiant phase transition in Dicke-

like models [19] using a Bose-Einstein condensate in optical cavities [20, 21, 22, 23, 24, 25, 26,

27, 28]. All these new experimental accomplishments call for numerical simulations in order

to reach a better understanding of such integrable models. One of the purposes of this thesis

is to present numerical tools to enhance the numerical treatment of a family of integrable

models: the Gaudin models [29].

Another asset of Gaudin models is that all Hamiltonians, built as a combination of the con-

served quantities, belonging to the class of Gaudin Hamiltonians share the same basis of

eigenstates. Consequently, a given result can apply to many situations describing, for instance,

either the pairing Richardson-Gaudin Hamiltonian [30, 31, 32, 33], the BCS Hamitonian [34, 35]

or central spin Hamiltonians [36, 37, 38, 39, 40].

One of the interests of the family of Gaudin models we will focus on, is that they are also able

to describe the Tavis-Cummings (TC) model [41, 42]. Since our work enables us to describe

the TC models, allowing the description of the previously mentioned superradiant phase, we

introduce with more details this phenomenon. The superradiance in quantum mechanics

occurs when an ensemble of N emitters, like excited atoms, interact with a "common radiation

field" [19]. If the wavelength of the radiation turns out to be much bigger than the separation

1



List of Figures

of the ensemble of the emitters, then all emitters interact with the radiation in a collective

and coherent way. In the early 50’s, Robert. H. Dicke suggested a model to describe two level

systems ("molecules") interacting with a "common radiation field". He stated that the gas of

radiating molecules should be treated as a single quantum system [19]. The Tavis-Cummings

model to which we will refer can be understood as the Dicke model in the Rotating Wave

Approximation (RWA), thus it can be used to describe cavity quantum electrodynamic (QED)

[41, 42]. The following inhomogeneous version of the Tavis-Cummings Hamiltonian:

HTC =ωb†b +
N∑

j=1
ε j Sz

j +V
N∑

j=1
(b†S−

j +S+
j b), (1)

is therefore one of the many Hamiltonians which belong to the general class of spin-boson

Gaudin integrable quantum models. Characterised by a (Zeeman) gap which is here chosen

distinct for each of the N spins present, it allows, through a common coupling strength V ,

the flipping (up or down) of each individual spin by an absorption or an emission of a single

boson at energy ω.

This superradiant phase is still the focus of many studies. For example, in [43] the question

of whether the superradiant transition is a quantum phase transition is answered for Dicke

and Tavis-Cummings models, in [44] it is shown that the dephasing of the individual atoms

destroys the phase transition, in [45] the phase diagram for ultracold fermions in a transversely

pumped cavity is given and in [46] extreme parameters values are chosen (the frequency of

the two level systems is very small compared to the bosonic frequency and the coupling is

very strong) to study a system’s behaviour beyond the RWA.

Tightened Context and Outline

The work presented in this thesis is rooted in the work of Michel Gaudin which introduced

the Generalised Gaudin Algebra (GGA) relying on the classical Yang-Baxter equation [29]. The

GGA being based on solutions to this equation, it ensures the integrability of Gaudin models.

The chapter 1 introduces this specific algebra.

As mentioned in the previous section, one of the purposes of the present work is to optimise

the numerical treatment of Gaudin models to efficiently access the dynamics of these systems.

To do so we follow the time evolution of the mean value of observables of interest (denoted Ô)

from an initial state
∣∣ψ0〉 which is not eigenstate of any Hamiltonian H who itself belongs to

the class of Gaudin Hamiltonians. The very general formula giving this evolution at a time t is:

2
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〈Ô〉 (t ) = ∑
n,m

〈ψ0
∣∣ n〉〈m|ψ0〉e i (En−Em )t 〈n|Ô |m〉 . (2)

The states |n〉 and |m〉 being eigenstates of H with respective eigenvalues En and Em , the

diagonalisation of H is needed to access the time evolution of a given system. In order to

use the properties of integrability of Gaudin models, and to avoid a direct diagonalisation of

H , we use in this thesis the Quantum Inverse Scattering Method (QISM) construction [47]

and the resulting Algebraic Bethe Ansatz (ABA). This step constitutes the first simplification:

instead of carrying out an usual diagonalisation, which involves the computation of inverse of

matrices that may lead to singularities and thus to numerical instability, it requires to solve

a set of coupled non-linear equations (the Bethe equations). Additionally, the number of

variables is given by the size of the system whereas a direct diagonalisation requires a number

of inputs of the size of the Hilbert space. The explicit expressions of the set of Bethe equations

is given in chapter 1 and detailed explanations on how to obtain these equations is presented

in Appendix A.2.

We can find further simplifications in the work of Slavnov [48]. Indeed, he rewrote the expres-

sions of scalar products and form factors (the matrix elements of an operator associated to

an observable) as functions of the solutions of the Bethe equations, called the rapidities λi .

The Slavnov formulas turn out to be determinant expressions. This is in itself a simplification

because it exists many efficient way to compute a determinant numerically.

The work presented in this thesis is aligned with the idea of finding determinant expressions to

optimise the numerical treatment of integrable models but contrarily to Slavnov determinants,

the expressions we derive are expressed as functions of other variables (than the λi ) thanks to

the transformation presented in [49, 50] and in this thesis. This change of variables and the

resulting equations are also detailed in chapter 1.

However, the determinant expressions presented in chapter 1 are valid only for a specific

realisation of GGA, when the systems we consider only contain interacting spin- 1
2 . The

different steps to obtain these determinant expressions in the context of spin- 1
2 are presented

in chapter 1.

The chapter 2 details every step needed to generalise the work done for the spin- 1
2 realisation

only. In the section (2.1) of this chapter, new determinant expressions are given when one

spin of arbitrary norm is interacting with many spins- 1
2 . The section (2.2) is dedicated to a

another realisation of the GGA: when the collection of spins- 1
2 is interacting with a single

bosonic mode. It is the introduction of this single bosonic mode that enables the Gaudin

models to describe new dynamics, like the Tavis-Cummings case. In section (2.2), the change

of variables, the new resulting equations, the explicit determinant expressions for the scalar

3
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products and the form factors are shown for this spin- 1
2 -boson realisation.

The chapter 3 describes the algorithmic aspect of the numerical work on solving the Bethe

equations (once the change of variables has been carried out). Besides, the structure of the

algorithm, we justify the need of making specific approximations to solve the set of Bethe

equations and discuss the consistency of these approximations.

In chapter 4, some examples of the asymptotic behaviour of observables of interest is pre-

sented. These results have been obtained using the algorithm presented in chapter 3 as well

as the determinant expressions introduced in this thesis. In section 4.3 we also compare

our asymptotic results to the ones of the Generalised Gibbs Ensemble (GGE) [51]. The latter

theory aiming to describe integrable models in their thermodynamic limit, we compare its

predictions to the asymptotic behaviour of the Gaudin models.

In chapter 5, the real time dynamics (of observables considered in chapter 4) are presented. To

complete our understanding of the behaviour of spin- 1
2 -boson systems, we compare dynamics

ruled by two different Hamiltonians, the Tavis-Cummings Hamiltonian and a "central-spin"

Hamiltonian.

4



1 ABA and Gaudin spin models

In the first section of this chapter, we will introduce the Generalised Gaudin Algebra without

specifying any particular realisation (giving no explicit expression of the operators defining

the algebra, but focusing on the relations between them). In addition, we will present the

Algebraic Bethe Ansatz (ABA) in the same formalism which enables us to define the Bethe

equations. In the second section, we will show how to rewrite these equations in a set of

quadratic ones. The last part of this chapter presents one of the possible realisation of the

Generalised Gaudin Algebra describing spins- 1
2 only. In this context the re-parametrisation of

the Bethe equations into quadratic ones will be shown. Knowing the solutions of these new

equations allows one to build new determinant expressions of the scalar products and of the

form factors (matrix elements of operators under consideration) as functions of the new found

variablesΛ(εi ) which are solutions of the quadratic Bethe equations.

1.1 Algebraic Bethe Ansatz for the rational generalised Gaudin al-

gebra

Let us first introduce the Generalised Gaudin Algebra (GGA) defined by the operators Sx (u),Sy (u),Sz (u)

satisfying the commutation relations [29, 52]:

[
Sx (u),Sy (v)

] = i (Y (u, v)Sz (u)−X (u, v)Sz (v)),[
Sy (u),Sz (v)

] = i (Z (u, v)Sx (u)−Y (u, v)Sx (v)),[
Sz (u),Sx (v)

] = i (X (u, v)Sy (u)−Z (u, v)Sy (v)),[
Sκ(u),Sκ(v)

] = 0, κ= x, y, z, (1.1)

where u, v ∈C and X ,Y , Z are antisymmetric functions. Sx (u),Sy (u),Sz (u) form a Lie Algebra.

5



Chapter 1. ABA and Gaudin spin models

Consistency of the Lie Algebra, imposed by the Jacobi identities, can only be achieved when

the functions X ,Y , Z fulfil the classical Yang-Baxter equation (see Appendix A.1):

X (u, v)Y (v, w)+Y (w,u)Z (u, v)+Z (v, w)X (w,u) = 0. (1.2)

We can introduce the operators S±(u) ≡ Sx (u)± i Sy (u) which fulfil the commutation relations:

[
S±(u),S±(v)

] = ±(X (u, v)−Y (u, v))
[
Sz (u)+Sz (v))

]
,[

S+(u),S−(v)
] = (X (u, v)+Y (u, v))

[
Sz (u)−Sz (v))

]
,[

Sz (u),S±(v)
] = ±1

2
[(X (u, v)+Y (u, v))S±(u)− (X (u, v)−Y (u, v))S∓(u)

−2Z (u, v)S±(u)]. (1.3)

In this work, we exclusively deal with one type of solutions to this equation, namely the rational

(XXX) Gaudin algebra defined for u 6= v by

X (u, v) = Y (u, v) = Z (u, v) = γ

u − v
, γ ∈C. (1.4)

For the remainder of this thesis, we will choose γ= 1. The previous commutation relations

(1.3) become:

[
S±(u),S±(v)

] = 0,[
S+(u),S−(v)

] = 2X (u, v)
[
Sz (u)−Sz (v)

]
,[

Sz (u),S±(v)
] = ±X (u, v)

(
S±(u)−S±(v)

)
. (1.5)

Thanks to the raising and lowering Gaudin operators, we define S2(u) as:
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1.1. Algebraic Bethe Ansatz for the rational generalised Gaudin algebra

S2(u) ≡ 1

2

(
S+(u)S−(u)+S−(u)S+(u)+2Sz (u)Sz (u)

)
, (1.6)

for which
[
S2(u),S2(v)

]= 0, for arbitrary complex parameters u 6= v . Here S+(u) can be seen

as an operator which acts on a state and creates a quasi-particle fully parametrised by a single

complex variable u ∈C. The particle-pseudovacuum |0〉 is defined as a lowest weight vector

for which S−(u) |0〉 = 0, ∀ u ∈C.

For a given number of particle-like excitations M , which is conserved for XXX models, the

Quantum Inverse Scattering Method (QISM) [47] and the resulting ABA allow one to find the

eigenstates common to every S2(u), called the Bethe state, by using the following generic

construction:

|λ1 . . .λM 〉 ≡
M∏

i=1
S+(λi ) |0〉 . (1.7)

If the pseudovacuum |0〉 is also an eigenstate of S2(u) and Sz (u) such as

S2(u) |0〉 = `(u) |0〉
Sz (u) |0〉 = `z (u) |0〉 , (1.8)

the action of the S2(u) operator on a state of the form (1.7) can be obtained explicitly (see

Appendix A.2) from the XXX commutation rules (1.3) as

S2(u) |λ1 . . .λM 〉 =
(

M∏
i=1

S+(λi )

)
S2(u) |0〉+

[
S2(u),

(
M∏

i=1
S+(λi )

)]
|0〉

= E({λ},u) |λ1...λM 〉+
M∑

k=1
Gk ({λ},u) |λ1...,λk → u, ...λM 〉 , (1.9)

7



Chapter 1. ABA and Gaudin spin models

where we write {λ} for the set of all the rapidities λi and where

E({λ},u) = `(u)+
M∑

i=1

(
−2`z (u)X (u,λi )+

M∑
j 6=i

X (u,λi )X (u,λ j )

)
, (1.10)

and

Gk ({λ},u) = 2X (u,λk )

[
`z (λk )+ ∑

j 6=k
X (λ j ,λk )

]

= 2

u −λk

[
`z (λk )+ ∑

j 6=k

1

λ j −λk

]
. (1.11)

States of the form (1.7) therefore become common eigenstates of S2(u) ∀ u ∈C\ {λ} provided

the M rapidities λk are solution of a set of coupled non-linear algebraic equations: the Bethe

equations. For rational models (1.4), these equations are found by cancelling every Gk ({λ},u)

in eq. (1.9) and gathering all terms in the brackets except 1
λ j−λk

in a function F (λi ), which

must vanish with − 1
λ j−λk

. Therefore, in general, the Bethe equations can be written as:

F (λk ) = `z (λk ) =
M∑

j=1(6=k)

1

λk −λ j
. (1.12)

In that case (1.20) becomes:
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1.2. Quadratic Bethe equations

Sz (λk ) |0〉 =
M∑

j=1(6=k)

1

λk −λ j
|0〉

S2(λk ) |0〉 = 1

2

(
S+(λk )S−(λk )+S−(λk )S+(λk )+2

(
Sz (λk )

)2
)
|0〉

= 1

2

(
2S+(λk )S−(λk )− [

S+(λk ),S−(λk )
]+2

(
Sz (λk )

)2
)
|0〉

=
(
− lim
ε→0

X (λk ,λk +ε)
(
Sz (λk )−Sz (λk +ε)

)+(
M∑

j=1(6=k)

1

λk −λ j

)2)
|0〉

=
(
−∂Sz (λk )

∂λk
+

(
M∑

j=1(6=k)

1

λk −λ j

)2)
|0〉

=
(

M∑
j=1(6=k)

1(
λk −λ j

)2 +
(

M∑
j=1(6=k)

1

λk −λ j

)2)
|0〉 . (1.13)

The explicit expressions for the Bethe equations and the other quantities presented in this

chapter will be given in next chapter for systems containing spin- 1
2 .

1.2 Quadratic Bethe equations

Numerically, solving the Bethe equations (1.12) involves some difficulties due to the diver-

gences that happen when two rapidities λi coincide. Willing to rewrite the previous equations

into quadratic ones to prevent the divergences from occurring, we introduce the variables :

Λ(εi ) =
M∑

j=1

1

εi −λ j
(1.14)

which come from the polynomial Q(εi ) = ∏M
j=1

(
εi −λ j

)
whose M roots correspond to the

values of λ j . Indeed, we have Q ′(εi )
Q(εi ) = Λ(εi ) . To find quadratic Bethe equations, a relation

between F (λi ) andΛ2(εi ) had to be found, we used to following one:

9



Chapter 1. ABA and Gaudin spin models

Λ2(εi )+Λ′(εi ) =
M∑

j=1

M∑
k=1

1

(εi −λk )(εi −λ j )
−

M∑
j=1

1

(εi −λ j )2

=
M∑

k=1

M∑
j 6=k

1

(εi −λk )(εi −λ j )

=
M∑

j=1

M∑
k 6= j

1

(λ j −λk )

(
1

εi −λ j
− 1

εi −λk

)

=
M∑

j=1

M∑
k 6= j

2

(λ j −λk )(εi −λ j )

=
M∑

j=1

2F (λ j )(
εi −λ j

) . (1.15)

The Bethe equations with F (u) =−∑N
i=1

Ai
εi−u + B

2g u + C
2g can be equivalently written as pure

quadratic equations [49, 50]. Specifying an expression for F restricts the possible realisations

for the Generalised Gaudin Algebra, the parameters Ai ,B or C still have to be adjusted to

define precisely a wanted algebra. For instance, if the Ai are non-zero, it means our algebra

rules a system containing spins of norm Ai . A variety of XXX models do fall in that category

including the spin-only realisations which are reviewed in this chapter and the spin-boson

realisations specifically studied in the next chapter. By using the definition (1.14) and (1.15)

we have:

Λ2(εi ) = −Λ′(εi )+
M∑

j=1

2

εi −λ j

(
−

N∑
k=1

Ai

εk −λ j
+ B

2g
λ j + C

2g

)

= −Λ′(εi )−2Ai

(
M∑

j=1

2

(εi −λ j )2 +
M∑

j=1

N∑
k 6=i

1

(εi −λ j )(εk −λ j )

)
+ B

g

M∑
j=1

(
1− εi

εi −λ j

)
+ C

g
Λ(εi )

= (2Ai −1)Λ′(εi )−2Ai

M∑
j=1

N∑
k 6=i

1

εk −εi

(
1

εi −λ j
− 1

εk −λ j

)
+ Bεi +C

g
Λ(εi )+ B M

g

= (2Ai −1)Λ′(εi )−2Ai

N∑
k 6=i

Λ(εi )−Λ(εk )

εk −εi
+ Bεi +C

g
Λ(εi )− B

g
M . (1.16)

In the specific case of interest here (Ai = 1
2 for spins- 1

2 ) the quadratic Bethe equations can be

written as:
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1.3. Spin-models

Λ2(εi )+ B

g
M − Bεi +C

g
Λ(εi )−

N∑
j 6=i

Λ(ε j )−Λ(εi )

ε j −εi
= 0. (1.17)

In this section, we have shown how to rewrite the traditional Bethe equations into quadratic

equations thanks to new variablesΛ(εi ) provided we are working with spins- 1
2 . The case for

Ai 6= 1
2 will be discussed in section 3.1. In the next section, we choose a particular realisation

of our algebra, spin- 1
2 only models, and show how to exploit the solutions of the quadratic

equations which is the main motivation of the theoretical work.

1.3 Spin-models

In this section, the quadratic Bethe equations are given, for a spin- 1
2 only realisation. Once

the solutions of these quadratic equations are known, one needs to introduce two representa-

tions of the same eigenstate to be able to exploit these solutions. Indeed, we explain in the

second section that the two representations of an eigenstate enable one to find determinant

expressions for quantities of interest.

1.3.1 "Particle" and "hole" representations

In the previous section, only the commutation relations of S±(u) are presented but not their

explicit expressions which define the realisation of our algebra. The operators that define how

to create or annihilate a particle-like excitation and the one that measure the orientation of

the spins along the ẑ-axis are the followings :

S+(u) =
N∑

i=1

S+
i

u −εi
, S−(u) =

N∑
i=1

S−
i

u −εi
, Sz (u) = 1

g
−

N∑
i=1

Sz
i

u −εi
, (1.18)

with g and εi for i ∈ {1 . . . N } arbitrary real parameters. The Hilbert space of a system of N

spins- 1
2 is the tensor product of N subspace of dimension 2 (C2) and is therefore of dimension

2N . The operators S+
i ,S−

i and Sz
i are the usual spin- 1

2 operators whose commutations relations

are:

11



Chapter 1. ABA and Gaudin spin models

[
S±

i ,S±
j

]
= 0,[

S+
i ,S−

j

]
= 2mzδi j ,[

Sz
i ,S±

j

]
= ±δi j S±, (1.19)

with mz =±1
2 regarding the orientation of the spin i .

Using the derivation explained in section 1.2 and detailed in the Appendix A.2, we can find the

traditional Bethe equations. In this case the vacuum is the state |↓ . . . ↓〉 for which all spins are

in the "down" state. As before the vacuum is eigenstate of Sz (u) and S2(u), indeed:

Sz (u) |0〉 = `z (u) |0〉

=
(

1

g
−

N∑
i=1

Sz
i

u −εi

)
|↓ . . . ↓〉

=
(

1

g
+ 1

2

N∑
i=1

1

u −εi

)
|↓ . . . ↓〉 , (1.20)

S2(u) |0〉 = `(u) |0〉
= 1

2

(
S+(u)S−(u)+S−(u)S+(u)+2Sz (u)Sz (u)

) |↓ . . . ↓〉 . (1.21)

S+(u)S−(u) do not participate to the eigenvalue whereas S−(u)S+(u) only participates when it

acts on the same spin, so we have:
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1.3. Spin-models

`(u) |0〉 =
((

1

g
−

N∑
i=1

Sz
i

u −εi

)2

+ 1

2

N∑
i=1

S+
i S−

i

(u −εi )2

)
|↓ . . . ↓〉

=
(

1

g 2 − 2

g

N∑
i=1

Sz
i

u −εi
+

N∑
i=1

N∑
j=1

Sz
i Sz

j

(u −εi )
(
u −ε j

) + 1

2

N∑
i=1

S+
i S−

i

(u −εi )2

)
|↓ . . . ↓〉

=
(

1

g 2 + 1

g

N∑
i=1

1

u −εi
+ 1

4

N∑
i=1

N∑
j=1

1

(u −εi )
(
u −ε j

) + 1

2

N∑
i=1

1

(u −εi )2

)
|↓ . . . ↓〉

=
(

1

g 2 + 1

g

N∑
i=1

1

u −εi
+ 1

4

N∑
i=1

N∑
j 6=i

1

(u −εi )
(
u −ε j

) + 3

4

N∑
i=1

1

(u −εi )2

)
|↓ . . . ↓〉 .

(1.22)

Thus in this case (1.11) becomes:

Gk ({λ},u) = 2X (u,λk )

[
`z (λk )+ ∑

j 6=k
X (λ j ,λk )

]

= 2

u −λk

[
1

g
+ 1

2

N∑
i=1

1

λk −εi
+ ∑

j 6=k

1

λ j −λk

]
. (1.23)

For Fk ({λ},u) to be null, the λi need to fulfil the set of equations:

1

g
+ 1

2

N∑
i=1

1

λk −εi
+ ∑

j 6=k

1

λ j −λk
= 0, (1.24)

which are the Bethe equations. So in the case of a spin- 1
2 realisation we have F (λk ) = 1

g +
1
2

∑N
i=1

1
λk−εi

=∑
j 6=k

g
λk−λ j

and using (1.17) we can write straightforwardly the quadratic Bethe

equations:

[
Λλ(εi )

]2 =
N∑

j 6=i

Λλ(εi )−Λλ(ε j )

εi −ε j
+ 2

g
Λλ(εi ) (particles). (1.25)
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Chapter 1. ABA and Gaudin spin models

The exponent λ denotes that we work within the "particle" representation whereas the ex-

ponent µ will denote the "hole" representation and no exponent will mean that a result will

be valid for both cases. In relation to the previous equations (1.24) the quadratic ones are

much easier to solve numerically [53, 54]. However the interest of traditional Bethe equations

is that the solutions, the rapidities λi , can be used to build the Slavnov determinants [48]

and doing so to enable us to study the dynamics of a given system. From this statement we

understand the drawbacks of the quadratic equations. If we want to take advantage of the

already existing results relative to the Bethe equations we have to transform theΛ(εi ) back to

the usual λi . An important part of this work is to present how to exploit knowledge of theΛ(εi )

without changing them back to λi . In that purpose, every quantity of interest will be expressed

in terms ofΛ(εi ) starting from the scalar products of two eigenstates of S2(u) defined in the

previous section:

〈λ′
1 . . .λ′

M ′
∣∣ λ1 . . .λM 〉 = 〈↓ . . . ↓|

(
M ′∏
i=1

(S+)†(λ′
i )

)(
M∏

i=1
S+(λi )

)
|↓ . . . ↓〉

= 〈↓ . . . ↓|
(

M ′∏
i=1

S−(λ′
i )

)(
M∏

i=1
S+(λi )

)
|↓ . . . ↓〉 . (1.26)

Within this representation, it is simple to understand that two alternative representations of

any given eigenstate can be built: one using particle-like excitations through the repeated

action of the raising operator on the particle-vacuum |λ1 . . .λM 〉 = ∏M
i=1 S+(λi ) |↓ . . . ↓〉 and

the second one obtained using lowering operators acting, hole-like excitations, on the hole-

vacuum
∣∣µ1 . . .µN−M 〉 =∏N−M

i=1 S−(µi ) |↑ . . . ↑〉. Thus the previous scalar product can be written:

〈µ1 . . .µN−M
∣∣ λ1 . . .λM 〉 = 〈↑ . . . ↑|

(
N−M∏

i=1
(S−)†(µi )

)(
M∏

i=1
S+(λi )

)
|↓ . . . ↓〉

= 〈↑ . . . ↑|
(

N−M∏
i=1

S+(µi )

)(
M∏

i=1
S+(λi )

)
|↓ . . . ↓〉

= 〈↑ . . . ↑|
(

N∏
i=1

S+(νi )

)
|↓ . . . ↓〉 , (1.27)

where {ν1 . . .νN } = {λ1 . . .λM }∪ {µ1 . . .µN−M }. There appears the need of finding the tradi-

tional equations and then the quadratic Bethe equations for all µi . Since the spin algebra

is symmetric in its highest/lowest weight configurations, both formulations of the ABA are

formally identical, being simply related by a change of the quantisation axis from ẑ →−ẑ
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1.3. Spin-models

which exchanges the roles of S+(u) and S−(u) and replaces Sz (u) by −Sz (u) . The QISM [47] is

identically formulated in both cases since |↑ . . . ↑〉 is a valid hole-pseudo-vacuum obeying all

three properties:

S+(u) |↑ . . . ↑〉 = 0, S2(u) |↑ . . . ↑〉 = `↑(u) |↑ . . . ↑〉 , −Sz (u) |↑ . . . ↑〉 = `z
↑(u) |↑ . . . ↑〉 , (1.28)

where `↑(u) and `z
↑(u) are the eigenvalues of S2(u) and Sz (u) in the hole representation.

One then finds the sets of Bethe equations which, for (N −M) holes, read:

−1

2

N∑
k=1

1

εk −µ j
− 1

g
=

N−M∑
k 6= j

1

µ j −µk
, (holes) (1.29)

and whose quadratic equations are given by:

[
Λµ(εi )

]2 =
N∑

j 6=i

Λµ(εi )−Λµ(ε j )

εi −ε j
− 2

g
Λµ(εi ). (holes) (1.30)

Solutions to these two sets of equations, (1.25) and (1.30), both define the same ensemble

of M particles eigenstates of the transfer matrix S2(u). The explicit expression of S2(u), for

the realisation (1.18) has a series of N poles at u = εi whose residues correspond to the N

commuting conserved operators:
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Chapter 1. ABA and Gaudin spin models

Res
(
S2(u)

)
u→εi

= limu→εi (u −εi )
1

2

(
S+(u)S−(u)+S−(u)S+(u)+2Sz (u)Sz (u)

)
= limu→εi (u −εi )

1

2

(
N∑

k=1

N∑
j=1

S+
k S−

j

(u −εk )
(
u −ε j

) + N∑
k=1

N∑
j=1

S−
k S+

j

(u −εk )
(
u −ε j

)
+2

(
1

g
−

N∑
k=1

Sz
k

u −εk

)2)

= 1

2

(
N∑

j=1(6=i )

2S+
i S−

j

εi −ε j
+

N∑
j=1(6=i )

2S−
i S+

j

εi −ε j
+

N∑
j=1(6=i )

4Sz
i Sz

j

εi −ε j
+ −4Sz

i

g

)
, (1.31)

which gives us

Ri =−2Sz
i

g
+

N∑
j=1(6=i )

2~Si ·~S j

εi −ε j
with ~Si ·~S j = 1

2

(
S+

i S−
j +S−

i S+
j +2Sz

i Sz
j

)
, (1.32)

whose eigenvalues ri are read off the residues of the S2(u) eigenvalues (1.10). In both repre-

sentations (for spins- 1
2 only) these eigenvalues read:

Res(E({λ},u))u→εi = limu→εi (u −εi )

(
`(u)+

M∑
k=1

(
−2`z (u)X (u,λk )+

M∑
j 6=k

X (u,λk )X (u,λ j )

))

= limu→εi (u −εi )

(
`(u)−2

M∑
k=1

1

u −λk
`z (u)+

M∑
k=1

M∑
j 6=k

1

(u −λk )(u −λ j )

)

= limu→εi (u −εi )

(
1

g 2 + 1

g

N∑
k=1

1

u −εk
+ 1

4

N∑
k=1

N∑
j 6=k

1

(u −εk )
(
u −ε j

) + 3

4

N∑
k=1

1

(u −εk )2

−2
M∑

k=1

g

u −λk

(
1

g
+ 1

2

N∑
j=1

1

u −ε j

)
+

M∑
k=1

M∑
j 6=k

1

(u −λk )(u −λ j )

)
, (1.33)

leading to
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1.3. Spin-models

rλi = −
M∑

j=1

1

εi −λ j
+ 1

2

N∑
j=1(6=i )

1

εi −ε j
+ 1

g

rµi = −
N−M∑

j=1

1

εi −µ j
+ 1

2

N∑
j=1(6=i )

1

εi −ε j
− 1

g
, (1.34)

which explicitly depend on the state only throughΛλ(εi ) =∑M
j=1

1
εi−λ j

andΛµ(εi ) =∑N−M
j=1

1
εi−µ j

.

In addition, since the parameters λ and µ have to be either real or come in complex conjugate

pairs, the resultingΛ(εi ) are systematically real for any eigenstate of the system.

The correspondence between the two representations of a given eigenstate is then easily found

by picking the solutions which give the same ensemble of eigenvalues rk . Doing so, directly

shows that the transformation:

Λµ(εi ) =Λλ(εi )− 2

g
(1.35)

allows one to simply go from one representation to the other for an arbitrary eigenstate, as

defined by any solution of either form of the Bethe equations (1.29) or, alternatively (1.30).

1.3.2 Partition functions, normalisation and form factors

Having access to the two representations of any given eigenstate allows one to rewrite their

scalar product (even for two eigenstates found at different values of g ) like in (1.28):

〈µ1 . . .µN−M | λ1 . . .λM 〉 = 〈↑ . . . ↑|
(

N−M∏
i=1

S+(µi )

)(
M∏

i=1
S+(λi )

)
|↓ . . . ↓〉

≡ 〈↑ . . . ↑|
(

N∏
i=1

S+(νi )

)
|↓ . . . ↓〉 , (1.36)

only thanks to theΛ(εi ). To give a better understanding of the task, here is an example of the

kind of scalar product we want to express:

17



Chapter 1. ABA and Gaudin spin models

〈↑↑↑|
(

3∏
i=1

S+(νi )

)
|↓↓↓〉 = 1

(ν1 −ε1)(ν2 −ε2)(ν3 −ε3)
+ 1

(ν1 −ε1)(ν3 −ε2)(ν2 −ε3)

+ 1

(ν2 −ε1)(ν1 −ε2)(ν3 −ε3)
+ 1

(ν2 −ε1)(ν3 −ε2)(ν1 −ε3)

+ 1

(ν3 −ε1)(ν1 −ε2)(ν2 −ε3)
+ 1

(ν3 −ε1)(ν2 −ε2)(ν1 −ε3)
. (1.37)

First of all, one can compute the scalar product, called partition function, of a Bethe state

(defined by (1.7) using an arbitrary set {λ1 . . .λM }) with any eigenstate common to the opera-

tors Sz
1 . . .Sz

N . These eigenstates are the states containing M up-pointing spins labelled by the

indices {i1 . . . iM }; the N −M other spins {i 1 . . . i N−M } therefore pointing down. We can alter-

natively write this state as either a particle or a hole-like construction
∣∣↑{i1...iM }〉 =

∣∣∣↓{i 1...i N−M }〉.
The scalar product of the Bethe state with this particular basis state was shown (an equivalent

type of proof will be given in the next chapter) to be given by the determinant of an M ×M

matrix [55]:

〈↑{i1...iM } |λ1 . . .λM 〉 = 〈↑{i1...iM }
∣∣ M∏

i=1
S+(λi ) |↓ . . . ↓〉 = DetJM×M (1.38)

Jab =


M∑

c=1(6=a)

1

εia −εic

−Λλ(εia ) a = b

1
εia −εib

a 6= b
. (1.39)

The proof is using the fact that (1.38) is a rational function of the λi parameters which

obeys a simple recursion relation. An identical construction is possible for hole-like states

〈↑{i1...iM }
∣∣µ1 . . .µN−M 〉 = 〈↓{i 1...i N−M }

∣∣∣∏N−M
i=1 S−(µi ) |↑ . . . ↑〉, which, by symmetry, are given by the

same form of determinant of an (N −M)× (N −M) matrix. That matrix is then defined by

the N −M values of ε associated with the spins which are pointing down in the bra and the

replacementΛλ→Λµ.

The scalar products in (1.36) can therefore be written, for an arbitrary ensemble {ν1 . . .νN }, as

the determinant of the N ×N version of the matrix defined above:
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1.3. Spin-models

〈↑ . . . ↑|
(

N∏
i=1

S+(νi )

)
|↓ . . . ↓〉 = DetJN×N ∀ {ν1 . . .νN } ∈CN (1.40)

which is explicitly written in terms of the variablesΛν(εi ) =∑N
j=1

1
εi−ν j

=Λλ(εi )+Λµ(εi ):

Jab =


N∑

c=1(6=a)

1

εa −εc
−Λλ(εa)−Λµ(εa) a = b

1
εa−εb

a 6= b

. (1.41)

While this expression is valid for the overlaps of arbitrary particle-like and hole-like states,

one should keep in mind that a generic particle-state (built out of arbitrary {λ1 . . .λM }) cannot

necessarily be rewritten as an equivalent hole-like representation. However, for eigenstates of

S2(u) (defined by a solution to the Bethe equations) we showed that such a hole-representation

not only exists, but is also quite simple to find using eq. (1.35).

Consequently, for a given eigenstate, its particle representation (|λ1 . . .λM 〉) and hole repre-

sentation
(∣∣µ1 . . .µN−M 〉) correspond to the same normalised state |λ1 . . .λM 〉n and only differ

by a constant pre-factor: |λ1 . . .λM 〉 = Nλ |λ1 . . .λM 〉n and
∣∣µ1 . . .µN−M 〉 = Nµ |λ1 . . .λM 〉n . The

scalar product between both representations of the same state and the projections on an

arbitrary eigenstate of Sz
j with j ∈ {1 . . . N } gives us access to the individual normalisation

of both representations [53] since they respectively give us the product and ratio of these

constants:

〈µ1 . . .µN−M
∣∣ λ1 . . .λM 〉 = DetK

= NλNµ

〈↑{i1...iM } |λ1 . . .λM 〉
〈↑{i1...iM }

∣∣µ1 . . .µN−M 〉 = DetJλM×M

DetJµ(N−M)×(N−M)

= Nλ

Nµ
. (1.42)

These two relations are evidently sufficient to compute the squared norm of both representa-

tions allowing one to properly normalise the states. While the determinant expressions show
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Chapter 1. ABA and Gaudin spin models

that both Nµ and Nλ have to be real, they can still in principle differ by a sign corresponding to

a π phase between both representations. The sign of the product NλNµ allows one to simply

detect this π phase for any given eigenstate and therefore correct this possible phase shift

between both representations of the normalised eigenstate.

Form factors, the elements of a matrix associated to an operator, for the various local raising

and lowering operators S±
i can also be written easily as a similar determinant. Since these form

factors can only be non-zero when they involve two states whose number of excitations differs

by one and since the local spin-raising operators are simply the residues of the Gaudin operator

S+(u) (1.18), one simply needs to take the appropriate limit of the previous determinant to

find:

〈{µ1 . . .µN−M }
∣∣S+

k |{λ1 . . .λM−1}〉
= lim

u→εk
(u −εk )〈{µ1 . . .µN−M }

∣∣S+(u) |{λ1 . . .λM−1}〉

= lim
u→εk

(u −εk )DetJ ({µ1 . . .µN−M ,u,λ1 . . .λM−1}) = DetJ k̂ , (1.43)

where J k̂ is the (N −1)× (N −1) matrix equivalent to (1.41) from which line and column k have

been removed while, at the same time, the sums in the diagonal elements now exclude εk :

J k̂
ab =


N∑

c=1(6=a,k)

1

εa −εc
−Λλ(εa)−Λµ(εa) a = b

1
εa−εb

a 6= b

with (a,b 6= k). (1.44)

The demonstration leading to find the eigenvalue-based representation of the Sz
i form factor

will be kept for next chapter because it is straightforwardly generalisable to spin-only realisa-

tions and and because the numerical part of the thesis is using the spin-boson expressions.

We simply give here the expression of the diagonal (which is denoted by the m) form factor of

Sz
i out of the eigenvalues of the conserved quantities (1.34) where g ′ = 1/g :
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1.4. Conclusions

〈{µ(g ′)}m
∣∣Sz

k

∣∣{λ(g ′)}m〉 = −∂r m
k (g ′)
∂g ′ 〈{µ(g ′)}m

∣∣ {λ(g ′)}m〉 ,

〈{µ(g ′)}m
∣∣Sz

k

∣∣{λ(g ′)}m〉
〈{µ(g ′)}m

∣∣ {λ(g ′)}m〉 =
[
−2+2

∂Λλm(εk )

∂g ′

]
, (1.45)

with {µ} meaning the ensemble of all the µ. We can notice that the form factor is not any more

a determinant but expressed as a function of the derivatives of theΛ(εi ). The ∂Λλ(εi )/∂g ′ are

in fact easy to find by just taking the derivative of the quadratic equations(1.25):

2Λλ(εi )
∂Λλ(εi )

∂g ′ = ∑
j 6=i

∂Λλ(εi )
∂g ′ − ∂Λλ(ε j )

∂g ′

εi −ε j
+2

∂Λλ(εi )

∂g ′ +2Λλ(εi )g ′ (1.46)

Within this section on the spin- 1
2 realisation of the algebra, all results that will be generalised

in next chapter are shown. A short conclusion on the interests of these expressions follows

these last results.

1.4 Conclusions

An important aspect of the determinant expressions is that they allow calculations of scalar

products and form factors using exclusively the variables Λ(εi ) which are much simpler to

obtain since they obey quadratic Bethe equations. Therefore, the determinant expressions

have been instrumental in allowing the fast and efficient numerical calculations necessary

to study the fully quantum non-equilibrium dynamics of the central spin model [53, 54] for

example. While the determinants are those of larger matrices (N ×N ) than Slavnov’s M ×M

determinants [48, 56], they can still provide more efficient numerics than the latter. Indeed, the

determinants being expressed in terms of the {Λλ(ε1) . . .Λλ(εN )} variables, their use avoids the

complicated extraction of the {λ1 . . .λM } variables corresponding to a given {Λλ(ε1) . . .Λλ(εN )}

set.

Another important aspect to highlight, which has not been mentioned at all, is the applicability

to these results for a given Hamiltonian. The transfer matrix S2(u) commuting with every

conserved quantity Ri , will also commute with every Hamiltonian H =∑N
i αi Ri ( with the αi

chosen by the user) built as a linear combination of the conserved quantities. That is to say

that finding the eigenstates of S2(u) is equivalent to finding the eigenstates of a Hamiltonian

built as explained. It is either a strength or a drawback. A drawback because all the previous
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Chapter 1. ABA and Gaudin spin models

method can not be applied outside the class of Hamiltonians previously defined. A strength

because any result found in the frame of the Gaudin models encompasses the whole infinity

of Hamiltonians one can build out of the conserved quantities.
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2 Generalising to other realisations of
the algebra

In this chapter, the determinant expression for the partition function is given in two new

cases. The first one is when the norm of one of the spins is arbitrarily large. The other one

is when the collection of spins- 1
2 is in interaction with a single bosonic mode. In this case,

due to the presence of bosonic operators in S+(u), finding the determinant can not be done

straightforwardly by using the results of last chapter.

2.1 One spin of arbitrary norm interacting with N −1 spin-1
2

2.1.1 Partition function with one arbitrarily large spin

This section uses in his great majority the work we published in [57]. Starting from expression

(1.36), we define a recursive way to build a similar determinant expression for the case where

one of the spins (without loss of generality we systematically choose S1) is raised from a S = 1
2

to S = 1, S = 3
2 and so on, up to an arbitrary S = d

2 .

Integrability and the Bethe ansatz solution of this particular system do not rely on the repre-

sentation of the spin, be it spin 1
2 or higher. In every case, the eigenstates are still built out

of the same operator S+(λ) defined in eq. (1.18) acting on the fully down polarised state, i.e.

eigenstates of every Sz
i with the lowest possible (negative) eigenvalues mz . The dual (hole

representation) is naturally built using S−(λ) acting on the fully up polarised state. Since the

first spin can now accommodate more than a single excitation (
(
S+

1

)2 = 0 only for spins 1/2),

going from the fully down to the fully up polarised state now requires a total ofΩ= 2S+(N −1)

excitations.

It also remains true that inverting the quantisation axis guarantees the existence of a dual Bethe

ansatz so that the partition function (see subsection 1.3.2) we are interested in corresponds to

the scalar product of an arbitrary off-shell Bethe state. We will write ⇑S and ⇓S a spin of norm

S polarised up and down, (1.36) becoming 〈⇑S
1 . . . ↑N

∣∣S+(ν1)S+(ν2) . . .S+(νΩ)
∣∣⇓S

1 . . . ↓N 〉.

As in previous chapter we begin by giving a scalar product in a specific case, here a single spin
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Chapter 2. Generalising to other realisations of the algebra

1 and a single spin 1
2 :

Z
S;

(
1
2

)
{ν1,ν2,ν3} = 〈⇑1↑2|S+(ν1)S+(ν2)S+(ν3) |⇓1↓2〉

= 1

(ν1 −ε1)(ν2 −ε1)(ν3 −ε2)
+ 1

(ν1 −ε1)(ν3 −ε1)(ν2 −ε2)

+ 1

(ν2 −ε1)(ν1 −ε1)(ν3 −ε2)
+ 1

(ν2 −ε1)(ν3 −ε1)(ν1 −ε2)

+ 1

(ν3 −ε1)(ν1 −ε1)(ν2 −ε2)
+ 1

(ν3 −ε1)(ν2 −ε1)(ν1 −ε2)

= 2

(ν1 −ε1)(ν2 −ε1)(ν3 −ε2)
+ 2

(ν2 −ε1)(ν3 −ε1)(ν1 −ε2)

+ 2

(ν1 −ε1)(ν3 −ε1)(ν2 −ε2)
. (2.1)

From this example we can guess that the matrix of interest will still be built out of the set

{ν1 . . .νΩ} while, this time, the second "set" actually becomes the multiset {ε1,ε1 . . .ε1,ε2,ε3,ε4 . . .εN }

with the first element ε1 repeated 2S times. That is to say that 2S of the rapidities have to be

associated with ε1 and the remaining ones are each associated to one of the other spin’s εi .

The resulting product of the terms 1
νi−ε j

is then summed over possible mappings.

In general one has

Z
S;

(
1
2

)⊗N−1

{ν1...νΩ} = ∑
A∈R (2S)

∑
B∈B (Ã)

(2S)!∏2S
i=1 (Ai −ε1)

1∏N−1
i=1 (Bi −εi+1)

(2.2)

where R(2S) is the set composed of every subset of {ν1 . . .νΩ} with given cardinality 2S and

B (Ã) = {(R\A)} is the set of all (N −1)-tuples (permutations) one can build out of the elements

of the relative complement R\A, therefore excluding any rapidity already present in A. Having

chosen a given set of 2S rapidities to associate with the first spin (ε1), we then sum over all

bijections between the N −1 remaining rapidities and the N −1 inhomogeneity parameters

associated with the spins 1
2 . Summing these contributions gives us the desired partition

function which also corresponds to the "partially-homogeneous" limit obtained from having

2S +N −1 spins- 1
2 of which the first 2S share the same inhomogeneity parameter ε1.

This explicit construction retains the basic features of the partition function for spin- 1
2 models

only obtained without repeated ε1, in that it has exclusively single poles in each of the νi

variables. The residue at any of these poles will reproduce the exact same structure in terms
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2

of the set and multiset from which νi and one instance of ε j has respectively been removed.

Moreover, since each rapidity νi necessarily appears in every term, it is obvious that, in the

limit when any νi →∞, the partition function tends to zero.

2.1.2 Set of variables

Considering that, in each of the νi variables, only single poles can appear in the partition

function, it can therefore be written in a way which explicitly depends on combinations which

reproduce this structure. Starting from the Q(z) =∏Ω
i=1(z −νi ) polynomial, one can build a

hierarchy of such rational functions:

Γ0(z) ≡ −Q(z)

Q(z)
=−1

Γ1(z) ≡ −Q ′(z)

Q(z)
=−

Ω∑
i=1

1

z −νi
=−Λ(z)

Γ2(z) ≡ −Q ′′(z)

Q(z)
=−

Ω∑
i1 6=i2

1

(z −νi1 )(z −νi2 )
=−Λ′(z)−Λ(z)2

Γ3(z) ≡ −Q ′′′(z)

Q(z)
=−

Ω∑
i1 6=i2 6=i3

1

(z −νi1 )(z −νi2 )(z −νi3 )
=−Λ′′(z)−3Λ(z)Λ′(z)−Λ3(z)

... (2.3)

This set of Γi (z) functions can therefore be defined recursively by noticing that, taking the

derivative of Γn−1(z), one finds:

∂

∂z
Γn−1(z) =−Q(n)(z)

Q(z)
+ Q(n−1)(z)

Q(z)2 Q ′(z) = Γn(z)−Λ(z)Γn−1(z).

Γn(z) = ∂

∂z
Γn−1(z)+Λ(z)Γn−1(z). (2.4)

In terms of the set of Λ(a)(z) (the ath derivative of Λ(z)), one can explicitly verify that the

solution to this recurrence is given by:
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Γn(z) = ∑
{k0,k1... kn }

C n
{k0,k1...kn }

[ n∏
a=0

(
Λ(a)(z)

)ka

]
, (2.5)

with

C n
{k0,k1...kn } =

n!∏n
a=0

[
[(a +1)!]ka ka !

]δ[
∑n

a=0(a+1)ka],n . (2.6)

Supposing the form valid for n −1, we find that recursion (2.4) will then be verified since:

∂

∂z
Γn−1(z)+Λ(z)Γn−1(z) =

∂

( ∑
{k0,k1... kn−1}

C n−1
{k0,k1...kn−1}

[
n−1∏
a=0

(
Λ(a)(z)

)ka

])
∂z

+Λ(0)(z)

( ∑
{k0,k1... kn−1}

C n−1
{k0,k1...kn−1}

[
n−1∏
a=0

(
Λ(a)(z)

)ka

])

=
n−1∑
b=0

∑
{k0,k1... kn−1}

kbC n−1
{k0,k1...kn−1}

[
n−1∏

a=0(6=b 6=b+1)

(
Λ(a)(z)

)ka

](
Λ(b)(z)

)kb−1 (
Λ(b+1)(z)

)kb+1+1

+
( ∑

{k0,k1... kn−1}
C n−1

{k0,k1...kn−1}

[(
Λ(0)(z)

)k0+1
n−1∏
a=1

(
Λ(a)(z)

)ka

])
, (2.7)

which, regrouping the terms with a given set of powers (k0,k1 . . .kn), can be rewritten as:

∂

∂z
Γn−1(z)+Λ(z)Γn−1(z) = ∑

{k0,k1... kn }
C̃ n

{k0,k1...kn }

n∏
a=0

(
Λ(a)(z)

)ka (2.8)

with coefficients

C̃ n
{k0,k1...kn } =C n−1

{k0,k1...kn−1} +
n−1∑
b=0

kbC n−1
{k0,k1...kb+1,kb+1−1...kn }. (2.9)

It is then simple to verify that this last relation is indeed verified by the coefficients proposed

in (2.6) since every term respects the
∑n

a=0(a +1)ka = n condition so that the right hand side

can be written as:
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C n−1
{k0,k1...kn−1} +

n−1∑
b=0

kbC n−1
{k0,k1...kb+1,kb+1−1...kn−1}

=
[

(n −1)! (1!)k0∏n−1
a=0

[
[(a +1)!]ka ka !

] +n−1∑
b=0

kb
(b +2)! kb+1

(b +1)! kb

(n −1)!∏n−1
a=0

[
[(a +1)!]ka ka !

]]
δ[

∑n−1
a=0(a+1)ka],n−1

=
[

(n −1)!
[
(0+1)k0 +∑n−1

b=0(b +2) kb+1
]

∏n−1
a=0

[
[(a +1)!]ka ka !

] ]
δ[

∑n−1
a=0(a+1)ka],n−1

=
[

(n −1)!
[∑n

b=0(b +1) kb
]

∏n−1
a=0

[
[(a +1)!]ka ka !

] ]
δ[

∑n−1
a=0(a+1)ka],n−1 =

[
(n)!δ[

∑n
a=0(a+1)ka],n∏n

a=0

[
[(a +1)!]ka ka !

]]
=C n

{k0,k1...kn }.

(2.10)

Verifying the validity of (2.6) for n = 1 is simple since only k0 = 1 with ki 6=0 = 0 respects the

condition imposed by the Kronecker delta, namely that
∑n

a=0(a +1)ka = n. This verification

therefore completes the proof.

For the system of interest here, we will build the partition function explicitly in terms of the

variables {Γ1(ε1) . . .Γ2S(ε1),Γ1(ε2),Γ1(ε3) . . .Γ1(εN )}, which as we have shown can themselves

be simply built out of {Λ(ε1) . . .Λ(2S)(ε1), Λ(ε2),Λ(ε3) . . . Λ(εN )}, i.e. on everyΛ(εi ) and on the

2S first derivatives ofΛ(z) evaluated at ε1. These are precisely the variables in terms of which

the set of quadratic Bethe equations is built and which allow one to build a simpler numerical

approach to the problem of finding eigenstates of the system.

2.1.3 Higher spin partition function

As we mentioned before, the explicit expression for the partition function given in (2.2) is a

rational function which contains only single poles for each of the rapidities νi and is fully

symmetric under exchange of any two of these parameters.

It obeys a set of recursive relations linking the partition functions for a variety of systems.

Explicitly regrouping the terms where νi (any of them, by symmetry) is paired to ε1, one can

write it as a sum over the similar partition functions one obtains when the first spin goes from

S → S − 1
2 , after excluding rapidity νi :

Z
S;

(
1
2

)⊗N−1

{ν1...νΩ} =
Ω∑

i=1

2S

νi −ε1
Z

S− 1
2 ;

(
1
2

)⊗N−1

{ν1...νi−1,νi+1...νΩ}. (2.11)
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Identically, one can also write it in terms of the partition functions obtained by excluding any

one of the spins 1
2 (say spin j ):

Z
S;

(
1
2

)⊗N−1

{ν1...νΩ} =
Ω∑

i=1

1

νi −ε j
Z

S;
(

1
2

)⊗N−2
ĵ

{ν1...νi−1,νi+1...νΩ}. (2.12)

As we also pointed out, the construction is such that limνi→∞ Z
S
(

1
2

)⊗N−1

{ν1...νΩ} = 0, for any of the

rapidities.

These properties can be used to set up a recursive proof for any proposed form, whose starting

point will be the previously found representation (1.41) for a collection of N spins 1
2 . However,

since it will become the starting point of the recursive proof this work is built on, we point out

immediately that an alternative determinant representation can be built by simply changing

the signs of every off-diagonal element. Indeed, since transposition leaves a determinant

invariant, in this particular case where off-diagonal elements are related by J̃i j =− J̃ j i , one

can also write:

〈↑↑ . . . ↑|
N∏

i=1
S+(νi ) |↓↓ . . . ↓〉 = detJN×N (2.13)

with

Ji j =
{ ∑N

k 6=i
1

εi−εk
−∑N

k=1
1

εi−νk
i = j

1
ε j−εi

i 6= j
. (2.14)

To prove the equality of two rational functions (in this case containing only single poles),

one simply needs to show that they share the same poles, the same residues at these poles

and the same limit at infinity. Thus, any proposed representation for the partition functions

can be shown to be valid by simply verifying that these conditions are met for the proposed

representation.

Three necessary and sufficient conditions therefore need to be fulfilled in order to validate an

expression for the partition function obtained after raising the first spin from S − 1
2 to S while

adding a new rapidity νΩ.
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First, from (2.11), the residue of this partition function at νΩ = ε1 has to be given by

ResνΩ=ε1 Z
S;

(
1
2

)⊗N−1

{ν1...νΩ} = 2S Z
S− 1

2 ;
(

1
2

)⊗N−1

{ν1...νΩ−1} , (2.15)

which considering the explicit symmetry under exchange of any two rapidities would also be

valid for the poles at an arbitrary νi = ε1. This symmetry is guaranteed since the proposed de-

terminant representation will be expressed exclusively in terms of the Γ variables, themselves

symmetrical under such an exchange.

Secondly, from (2.12), one needs the residue at νΩ+1 = εN to be given by the determinant

obtained after removing the last spin:

ResνΩ+1=εN Z
S;

(
1
2

)⊗N−1

{ν1...νΩ+1} = Z
S;

(
1
2

)⊗N−2
N̂

{ν1...νΩ} , (2.16)

again a fact which remains valid for the residue at νi = εN for any of the rapidities. Provided

the proposed form is explicitly symmetric under the exchange of any two of the spins- 1
2 , this

last condition also immediately leads to a similar result for the residues at each νi = ε j for any

i ∈ {1, . . .Ω} and j ∈ {2,3 . . . N }.

Any representation which verifies these conditions will therefore have the correct poles and

residues and its validity will then only require that the limit at any νi →∞ be 0. Since our

determinant representation will be expressed in terms of the Γ variables, it is not only sym-

metric under exchange of two rapidities but it is also obviously non-diverging for any νi →∞.

These facts imply that, once every pole and residue have been checked to be the right ones,

the only possible difference between the known expression and the proposed one could be the

addition of a simple constant. It will therefore be sufficient to check that, when every rapidity

is taken to infinity, the limit does indeed go to zero.

The proposed form will consequently be equal to wanted determinant expression provided

we verify the three conditions described in this section: residues at ε1, residues at εi 6=1 and the

limit at ∞.

2.1.4 Determinant representation

In the same spirit as the partition function for a collection of spins 1
2 , we construct a N ×N

determinant representation such that for every νi , the poles at νi = ε j exclusively appear on

line j of the matrix. Moreover, we posit that the diagonal element J S
11 contains every allowed

Γn(ε1) (n ∈ {0,1 . . .2S}) while off-diagonal elements in the first line do not contain the last one:

Γ2S(ε1). The same remains true on the other lines corresponding to a spin- 1
2 and we therefore

have a generic form:
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J S
11 = (2S)!

2S∑
n=0

SC n
11Γn(ε1)

J S
1 j = (2S)!

2S−1∑
n=0

SC n
1 jΓn(ε1) ∀ j 6= 1

J S
i i = SC 0

i i + SC 1
i iΓ1(εi ) ∀ i 6= 1

J S
i j = SC 0

i j ∀ i 6= 1 , j 6= 1, j 6= i . (2.17)

Exchanging both the rows and the columns associated with any two spins j , j ′ leaves a determi-

nant invariant. Consequently, this makes, as we required, the expression explicitly symmetric

under the exchange of two spins. Once again, being built out of the symmetric variables Γn(ε j )

it is also symmetric under the exchange of any two rapidities ν j ,ν j ′ , making both fundamental

assumptions of the preceding section valid.

As we will demonstrate, the following set of coefficients SC a
i j gives a correct representation of

the partition function Z
S;

(
1
2

)⊗N−1

{ν1...νΩ} = detN×N J S where

J S
i j =



(2S)!
2S∑

n=0

[ ∑
E∈S(2S−n)

1∏2S−n
k=1 (ε1 −Ek )

]
Γn(ε1) i = j = 1

−(2S)!
2S−1∑
n=0

2S−1∑
p=n

∑
E∈S(p−n)

ĵ

2S −p

(ε1 −ε j )2S−p

1∏p−n
k=1 (ε1 −Ek )

Γn(ε1) i = 1 6= j

[
2S

εi−ε1
+

N∑
k 6=i 6=1

1

εi −εk

]
+Γ1(εi ) i = j 6= 1

1
ε j−εi

i 6= j 6= 1

,

(2.18)

with S(n) the ensemble of multisets built by picking n elements in {ε2, . . .εN }, while S(n)
ĵ

is the

ensemble of multisets built by picking n elements in {ε2, . . .ε j−1,ε j+1 . . .εN } (excluding ε j ).

That is to say that on the first line, C n
11 is, for any order n, given by the sum over every possible

choice, with repetitions allowed, of n elements out of {ε2, . . .εN }. The off-diagonal elements

coefficients are built in the same fashion, except that in column j , ε j has to be picked at least

once and the terms are weighted by 2S −p, the number of times ε j actually appears.

For example, when combining a spin 3
2 and two spins 1

2 , one would find the following set of

coefficients:
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3
2 C 0

11 = 1

(ε1 −ε2)3 + 1

(ε1 −ε3)3 + 1

(ε1 −ε2)2(ε1 −ε3)
+ 1

(ε1 −ε2)(ε1 −ε3)2

3
2 C 1

11 = 1

(ε1 −ε2)2 + 1

(ε1 −ε3)2 + 1

(ε1 −ε2)(ε1 −ε3)
3
2 C 2

11 = 1

(ε1 −ε2)
+ 1

(ε1 −ε3)
3
2 C 3

11 = 1
3
2 C 0

12 = 1

(ε2 −ε1)

(
3

(ε1 −ε2)2 + 1

(ε1 −ε3)2 + 2

(ε1 −ε2)(ε1 −ε3)

)
3
2 C 1

12 = 1

(ε2 −ε1)

(
2

(ε1 −ε2)
+ 1

(ε1 −ε3)

)
3
2 C 2

12 = 1

(ε2 −ε1)
3
2 C 0

22 = 3

(ε2 −ε1)
+ 1

(ε2 −ε3)
3
2 C 1

22 = 1
3
2 C 0

i j = 1

(ε j −εi )
, (2.19)

where one can write the coefficients of the third column by exchanging the role of ε2 with ε3.

It is a simple enough task to verify the residue at ε1 since these poles exclusively appear on the

first line of the matrix, from which every term in the determinant can only contain a single one

of the first line’s element . The residue of the determinant is therefore given as a determinant

as well, built form the residues of the matrix elements of the first line while the other matrix

elements are found by computing the νΩ→ ε1 limit. Knowing that:

lim
νΩ→ε1

Γ
{ν1...νΩ}
n (ε j ) = Γ

{ν1...νΩ−1}
n (ε j )+ 1

ε1 −ε j
Γ

{ν1...νΩ−1}
n−1 (ε j ) ∀ j 6= 1,

ResνΩ=ε1Γ
{ν1...νΩ}
n (ε1) = Γ

{ν1...νΩ−1}
n−1 (ε1), (2.20)

we find:

ResνΩ=ε1 det
N×N

J S = det
N×N

J̃ S− 1
2 , (2.21)
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where J̃ S− 1
2 is easily shown to correspond to the J S− 1

2 defined in (2.18) for a spin S − 1
2 :

J̃
S− 1

2
11 = (2S)!

2S∑
n=1

SC n
11Γ

{ν1...νΩ−1}
n−1 (ε1)

= 2S (2S −1)!
2S−1∑
n=0

SC n+1
11 Γ

{ν1...νΩ−1}
n (ε1) = 2S J

S− 1
2

11

J̃
S− 1

2
1 j = (2S)!

2S−1∑
n=1

SC n
1 jΓ

{ν1...νΩ−1}
n−1 (ε1)

= 2S (2S −1)!
2S−2∑
n=0

SC n+1
1 j Γ

{ν1...νΩ−1}
n (ε1) = 2S J

S− 1
2

1 j ∀ j 6= 1

J̃
S− 1

2
i i = SC 0

i i −
1

εi −ε1
+Γ{ν1...νΩ−1}

1 (εi ) = J
S− 1

2
i i ∀ i 6= 1

J̃
S− 1

2
i j = SC 0

i j = J
S− 1

2
i j ∀ i 6= 1 , j 6= i ,

(2.22)

since

S− 1
2 C n

11 =
[ ∑

E∈S(2S−1−n)

1∏2S−1−n
k=1 (ε1 −Ek )

]
= SC n+1

11

S− 1
2 C n

1 j = −

(2S−1)−1∑
p=n

∑
E∈S(p−n)

ĵ

2S −1−p

(ε1 −ε j )2S−1−p

1∏p−n
k=1 (ε1 −Ek )



= −

 2S−1∑
p ′=n+1

∑
E∈S(p′−n−1)

ĵ

2S −p ′

(ε1 −ε j )2S−p ′
1∏p ′−n−1

k=1 (ε1 −Ek )

= SC n+1
1 j ∀ j 6= 1

S− 1
2 C 0

i i =
[

2S −1

εi −ε1
+

N∑
k 6=i 6=1

1

εi −εk

]
= SC 0

i i −
1

εi −ε1
∀i 6= 1 (2.23)

This shows that the first recursive condition concerning the value of the residues at νi = ε1 is

met by the determinant of matrix (2.18).

With the same logic, using

lim
νΩ→εN

Γ
{ν1...νΩ}
n (ε j ) = Γ{ν1...νΩ−1}

n (ε j )+ 1

εN −ε j
Γ

{ν1...νΩ−1}
n−1 (ε j ) ∀ j 6= N

ResνΩ=εNΓ
{ν1...νΩ}
n (εN ) = Γ{ν1...νΩ−1}

n−1 (εN ), (2.24)
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we find

ResνΩ=εN det J S = det J̃ N̂ , (2.25)

with

J̃ N̂
N N = 1

J̃ N̂
N j = 0 ∀ j 6= N

J̃ N̂
i i = SC 0

i i −
1

εi −εN
+Γ{ν1...νΩ−1}

1 (εi ) = J N̂
i i ∀ i 6= 1 6= N

J̃ N̂
i j = SC 0

i j = J N̂
i j ∀ i 6= 1 6= N , j 6= i

J̃ N̂
1 j = (2S)!

(
SC 2S−1

1 j Γ
{ν1...νΩ−1}
2S−1 (ε1)

+
2S−2∑
n=0

[ SC n+1
1 j

εN −ε1
+ SC n

1 j

]
Γ

{ν1...νΩ−1}
n (ε1)

)
= J N̂

1 j ∀ j 6= 1

J̃ N̂
11 = (2S)!

(
SC 2S

11Γ
{ν1...νΩ−1}
2S (ε1)

+
2S−1∑
n=0

[
SC n+1

11

εN −ε1
+ SC n

11

]
Γ

{ν1...νΩ−1}
n (ε1)

)
= J N̂

11, (2.26)

where J N̂ is the (N −1)× (N −1) matrix which corresponds to the matrix one would obtain

from (2.18) for a system made out of a spin S and a collection of N −2 spins 1
2 labelled from 2

to N −1. Since line N is turned into (0 0 . . . 0 1), the resulting determinant giving the residue

is then the one of the (N −1)× (N −1) matrix J N̂ . Indeed, using the notation S;N̂ C n
i j for the

coefficients appearing in J N̂ , we do have :
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S;N̂ C 0
i i =

[
2S

εi −ε1
+

N−1∑
k 6=i 6=1

1

εi −εk

]

=
[

2S

εi −ε1
+

N∑
k 6=i 6=1

1

εi −εk

]
− 1

εi −εN
= SC 0

i i −
1

εi −εN
∀i 6= 1, N (2.27)

S;N̂ C n
1 j =

 ∑
E∈S(2S−n)

N̂

1∏2S−n
k=1 (ε1 −Ek )


= ∑

E∈S(2S−n)

1∏2S−n
k=1 (ε1 −Ek )

− 1

(ε1 −εN )

( ∑
E∈S(2S−n−1)

1∏2S−n−1
k=1 (ε1 −Ek )

)

= SC n
1 j +

1

εN −ε1

SC n+1
1 j . (2.28)

The sum over S(2S−n)
N̂

(which excludes εN ) has been rewritten as the sum over S(2S−n) (now

including εN ) from which we remove every term which contains at least one instance of εN ,

terms which are built from multiplying 1
(ε1−εN ) by the terms of cardinality n − 1. The only

exceptions to this last rule are for the coefficients S;N̂ C 2S
11 = 1 = SC 2S

11 and S;N̂ C 2S−1
1 j (6=1,N ) = 1

ε j−ε1
=

SC 2S−1
1 j (6=1,N ) showing the complete equivalence of the determinants of J̃ N̂ and J N̂ .

Having shown that every residue at ε1 of the determinant of J S gives back the similar de-

terminant of a matrix J S− 1
2 (multiplied by 2S) and that residues at a different ε j gives the

determinant of the matrix J ĵ with spin j removed, we know that to complete the proof we now

simply need to show that the limit when every νi →∞ of the proposed determinant, called

J l i m
i j , is going to zero. Within the determinant, the different terms in Γn>0(εi ) cancel in this

limit, so that only the determinant of the matrix containing the constant coefficients remains:

J l i m
i j =



(2S)!
∑

E∈S(2S)

1∏2S
k=1(ε1 −Ek )

i = j = 1

−(2S)!
2S−1∑
n=0

∑
E∈S(n)

ĵ

2S −n

(ε1 −ε j )2S−n

1∏n
k=1(ε1 −Ek )

i = 1 6= j

2S
εi−ε1

+
N∑

k 6=i 6=1

1

εi −εk
i = j 6= 1

1
ε j−εi

i 6= j 6= 1

. (2.29)

By adding all the matrix elements J l i m
i ,( j 6=1) of a given line to the first column, the determinant
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remains unchanged while the elements of the first column become:

J l i m
i 1 =



 ∑
E∈S(2S)

(2S)!∏2S
k=1(ε1 −Ek )

−
N∑

j=2

2S−1∑
n=0

∑
E∈S(n)

ĵ

2S −n

(ε1 −ε j )2S−n

(2S)!∏n
k=1(ε1 −Ek )

 i = 1

1−2S
ε1−εi

i 6= 1

.(2.30)

We consider a given element of
∑

E∈S(2S)

1∏2S
k=1(ε1 −Ek )

for which each factor of the type 1
(ε1−εi )

appears with a given power between 0 and 2S and can be written as
N∏

i=2

1

(ε1 −εi )xi
with 0 ≤

xi ≤ 2S. In
N∑

j=2

2S−1∑
n=0

∑
E∈S(n)

ĵ

2S −n

(ε1 −ε j )2S−n

1∏n
k=1(ε1 −Ek )

,
N∏

i=2

1

(ε1 −εi )xi
appears xi times because of

this factor: 2S−n
(ε1−ε j )2S−n . By completing the sum over j and knowing that

N∑
i=2

xi = 2S, each of the

N∏
i=2

1

(ε1 −εi )xi
appears 1−2S times in J11. Therefore, all the matrix elements in the first column

became :

J l i m
i 1 =

 (2S)!

( ∑
E∈S(2S)

1−2S∏2S
k=1(ε1 −Ek )

)
i = 1

1−2S
ε1−εi

i 6= 1

, (2.31)

while the other columns have been left untouched. Comparing these new elements with the

previous ones from equation (2.29):

J l i m
i 1 =

 (2S)!

( ∑
E∈S(2S)

1∏2S
k=1(ε1 −Ek )

)
i = 1

1
ε1−εi

i 6= 1

, (2.32)

we are left with det J l i m = (1−2S)det J l i m . This unambiguously implies that det J l i m = 0.
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Provided the proposed expression is valid for a collection of N (and N −1) spins 1
2 , we showed

that Z S=1 is then indeed given by detJ S=1. Recursively we therefore proved the validity of

Z S=3/2 = detJ S=3/2 and so on, for an arbitrary value of S.

For S = 1/2, eq. (2.18) is given explicitly by:

Ji i =
1∑

n=0

[ ∑
E∈S(1−n)

1∏1−n
k=1(εi −Ek )

]
Γn(εi ) ∀i

Ji j =
1−1∑
n=0

1−1∑
p=n

∑
E∈S(p−n)

ĵ

1−p

(εi −ε j )1−p

1∏p−n
k=1 (ε1 −Ek )

Γn(ε1) ∀i 6= j

= 1

(εi −ε j )
(2.33)

which is indeed equal to eq. (2.14), therefore completing the proof. This proof also completes

the part of this present work on spin only models for which we have shown that the partition

function could be written in a determinant expression only depending of theΛ(εi ). In the next

section we will now incorporate a bosonic mode interacting with our collection of spins- 1
2 .

2.2 Spin-boson models

While they simply form a different realisation of the same algebra, models containing a bosonic

mode differ fundamentally by no longer being bounded from above and below, since they now

support an arbitrary number of excitations M ∈N0. These results have been published in [58].

In this section, such a generalisation is presented in a way which is as similar as it can be to the

approach used for spins-1/2 . It is first shown how to build an alternative hole-like Bethe ansatz

for spin-boson models and, then, demonstrated how the domain wall boundary partition

functions can be rewritten as eigenvalue-based determinants. The application of these two

results to the calculation of various form factors is then presented in the last subsection.

2.2.1 Spin-boson realisations

In generalising the previous results to models which include a bosonic mode, we explicitly

restrict ourselves to the particular realisation which combines a single bosonic degree of

freedom and N spins-1/2. It explicitly reads:

S+(u) = b† +
N∑

j=1

V

u −ε j
S+

j , S−(u) = b +
N∑

j=1

V

u −ε j
S−

j , Sz (u) = ω−u

2V
−

N∑
j=1

V

u −ε j
Sz

j , (2.34)
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with b†, b obeying canonical bosonic commutation rules. The conserved charges, found by

looking at the residues of S2(u), are then given by [59]:

Ri = (εi −ω)Sz
i +V

(
b†S−

i +bS+
i

)
+

N∑
j 6=i

2V 2

εi −ε j

~Si ·~S j , (2.35)

in terms of which, the full generating function is given by

S2(u) =
N∑

i=1

Ri

u −εi
+

[
b†b +

N∑
i=1

Sz
i

]
+ 1

2
+

(ω−u

2V

)2
+ 3

4

N∑
i=1

V 2

(u −εi )2 , (2.36)

where the 3
4 factors are simply the Casimir invariant of each local spin- 1

2 .

A typical application of the QISM on this system [52] would be carried out by using the

particle-like construction creating excitations above a pseudo-vacuum defined by a fully

down-polarised spin sector and an empty bosonic mode. It leads to eigenstates of the form:

|λ1 . . .λM 〉 =
M∏

i=1
S+(λi ) |0;↓, . . . ↓〉 . (2.37)

This vacuum |0;↓, . . . ↓〉 is indeed an eigenstate of both S2(u) and Sz (u) and is annihilated by any

S−(u). Thus, it allows the direct use of the construction described in section 1.1. The resulting

ABA shows that the previous state becomes an eigenstate of S2(u) whenever {λ1 . . .λM } is a

solution of the algebraic system of Bethe equations:

ω−λi

2V 2 + 1

2

N∑
k=1

1

λi −εk
=

M∑
j 6=i

1

λi −λ j
. (2.38)

The eigenvalues of the conserved charges (2.35) are then respectively given by:
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ri = V 2

2

(
N∑

j 6=i

1

εi −ε j

)
− εi −ω

2
−V 2

M∑
j=1

1

εi −λ j
. (2.39)

Since they have a fixed number M of particle excitations these states are not only eigenstates

of every Ri but are, as well, eigenstates of the "number" operator b†b+∑N
i=1 Sz

i with eigenvalue

M −N /2. According to (2.36) they are therefore eigenstates of S2(u), u 6= ε j ∀u ∈ C and ∀ j

with eigenvalue
∑N

i=1
ri

u−εi
+M − N

2 + 1
2 +

(
ω−u
2V

)2 + 3
4

∑N
i=1

V 2

(u−εi )2 .

This realisation allows an equivalent description in terms of eigenvalue-based quadratic Bethe

equations [49] given, this time, by:

[Λ(εi )]2 =
N∑

j 6=i

Λ(εi )−Λ(ε j )

εi −ε j
− εi −ω

V 2 Λ(εi )+ M

V 2 , (2.40)

withΛ(εi ) =
M∑

j=1

1

εi −λ j
still.

Central to the constructions presented before for spin-only models is the inherent symmetry

between maximal and minimal weight states which allowed one to define an equivalent hole-

like Bethe ansatz. However, for these spin-boson models, the unboundedness of the bosonic

part gives rise to a problem in defining the alternative hole-pseudovacuum. Still, simple con-

siderations about the total number of quasi-particles M , which is a conserved quantity in XXX

(and XXZ) models, allow one to suppose that a possible hole-vacuum state could be chosen as

|M ;↑↑ ... ↑〉. Indeed, acting on this state with N lowering operators
∏N

i=1 S−(µi ) |M ;↑↑ . . . ↑〉 pro-

duces a state which spans the same subspace of the full Hilbert space as
∏M

i=1 S+(λi ) |0;↓↓ . . . ↓〉.
Both states are indeed linear superposition of tensor-product states containing any number of

bosonic excitations Nb ∈ [0, M ] and any subset of M −Nb spins (picked out of the N available

ones) pointing up. However, it remains to be shown that
∏N

i=1 S−(µi ) |M ;↑↑ . . . ↑〉 can provide

an alternative representation of the eigenstates of the system.

Working with a typical QISM construction for these models, one would explicitly calculate

S2(u)
[∏N

i=1 S−(µi )
] |M ;↑↑ . . . ↑〉 = [∏N

i=1 S−(µi )
]

S2(u) |M ;↑↑ . . . ↑〉+[S2(u),
∏N

i=1 S−(µi )] |M ;↑↑ . . . ↑〉
and look for the set of equations for {µ1 . . .µN } whose solutions reduce to S2(u)

[∏N
i=1 S−(µi )

] |M ;↑↑ . . . ↑〉 =
E(u)

[∏N
i=1 S−(µi )

] |M ;↑↑ . . . ↑〉. By being an eigenstate of S2(u), a proper pseudo-vacuum

would make the term
[∏N

i=1 S−(µi )
]

S2(u) |M ;↑↑ . . . ↑〉 trivially proportional to the original

ansatz
[∏N

i=1 S−(µi )
] |M ;↑↑ . . . ↑〉. However, in the case at hand here, this potential "hole-
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vacuum" is not an eigenstate of S2(u):

S2(u) |M ;↑ . . . ↑〉 =
[

S2
z (u)+ 1

2
S+(u)S−(u)+ 1

2
S−(u)S+(u)

]
|M ;↑ . . . ↑〉

=
[

S2
z (u)+ 1

2

[
S+(u),S−(u)

]+S−(u)S+(u)

]
|M ;↑ . . . ↑〉

= `(u) |M ;↑ . . . ↑〉+
p

M +1 S−(u) |M +1;↑ . . . ↑〉 .

(2.41)

since |M ;↑ . . . ↑〉 is an eigenstate of S2
z (u)+ 1

2

[
S+(u),S−(u)

]
whose eigenvalue we write `(u).

The second term can be written in that way since S+(u) only affects the bosonic part because

every spin in the vacuum state is already pointing up. The fact that we do not have here a

"proper" hole-vacuum turns this reversed problem into one which could be approached using

Sklyanin’s separation of variables [60] and the resulting Functional Bethe Ansatz (FBA) [61].

We show however that, although it is slightly more complex, one can still follow closely the

QISM approach to formulate an alternative algebraic Bethe ansatz.

The standard application of the generating function S2(u) on the hole-like ansatz |µ〉 ≡∏N
i=1 S−(µi ) |M ;↑ . . . ↑〉 would result in the generic form:

S2(u) = Ẽ(u, {µ1...µn})|µ〉+
N∑

k=1
Fk (u, {µ1...µn})|µ〉µk→u +

p
M +1

(
N∏

i=1
S−(µi )

)
S−(u) |M +1;↑ . . . ↑〉 . (2.42)

It turns out, and that is easily verified numerically for small systems, that the last two terms

one might naively consider to be the unwanted terms, cannot be cancelled out for arbi-

trary u ∈ C. When used in conjunction with a proper pseudo-vacuum, the QISM does

lead to a simple structure where both the correct eigenvalue and the unwanted terms nat-

urally appear. Here, due the "faulty" vacuum in use, Ẽ(u, {µ1...µn}) is not the actual eigen-

value of S2(u). The unwanted terms which can be cancelled must contain a u-dependent

piece ∆E(u, {µ1...µn})|µ〉 taken from the term Ẽ(u, {µ1...µn})|µ〉 and the actual eigenvalue

then becomes Ẽ(u, {µ1...µn})−∆E(u, {µ1...µn}). Having no a priori knowledge of the function

∆E(u, {µ1...µn}), one should use for a given u in order to build the correct unwanted term:

∆E (u, {µ1...µn})|µ〉+∑N
k=1 Fk (u, {µ1...µn})|µ〉µk→u+

p
M +1

(∏N
i=1 S−(µi )

)
S−(u) |M +1;↑ . . . ↑〉. Us-

ing the previous expression, the traditional approach used in section 1.3 fails to simply provide
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the desired solution.

However, since, according to eq. (2.36), finding the common eigenstates of S2(u) ∀ u ∈C is

formally equivalent to finding the common eigenstates of the N conserved charges Rk , we

choose to work directly with the latter. It remains simple to then go back to the spectrum of

S2(u) since its whole analytic structure is known. We therefore simply look at the residues (at

u → εk ) of the S2(u) operator’s application on
∏N

i=1 S−(µi ) |M ;↑ . . . ↑〉 to write:

Rk |µ〉 = lim
u→εk

(u −εk )S2(u)|µ〉

= V 2

[
1

2

∑
j 6=k

1

εk −ε j
− ω−εk

2V 2 −
N∑

j=1

1

εk −µ j

]
|µ〉

+V 2

[
N∑

j=1

B j

εk −µ j

(
N∏

i 6= j
S−(µi )

)]
S−

k |M ;↑ . . . ↑〉

+V
p

M +1

(
N∏

i=1
S−(µi )

)
S−

k |M +1;↑ . . . ↑〉 (2.43)

with

B j =
(
−ω−µ j

V
+

N∑
i=1

V

µ j −εi
+ ∑

i 6= j

2V

(µi −µ j )

)
. (2.44)

Working directly with the conserved charges, Rk now results in a form which provides clear

separation of the wanted and unwanted terms. Indeed, the first term in (2.43) will ultimately

become rk
∣∣µ1...µN 〉 while the two last ones are the actual unwanted terms whose global

cancellation will turn the generic ansatz into a proper eigenstate of the ensemble of Rk (and

therefore of S2(u)) with eigenvalues rk .

The Gaudin lowering operator S−(u), given in (2.34), can act either on the bosonic or on

the spin subspace. Assuming for now that the number of excitations is M ≥ N −1, one of

the contributions to the unwanted terms will come from the joint action of the bosonic

part of every S−(µi ). This reduces both kets contributing to the unwanted terms down to

S−
k |M − (N −1);↑ . . . ↑〉. Cancelling the total coefficient in front of this particular state:

V 2

[
N∑

j=1

B j

εk −µ j

p
M !p

(M +1−N )!

]
+V

p
M +1

p
(M +1)!p

(M +1−N )!
(2.45)
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is achieved when:

N∑
j=1

B j

εk −µ j
+ M +1

V
= 0. (2.46)

To form an eigenstate, the cancellation would need to occur for all possible k ∈ [1, N ] which

results in a linear system of equations:


1/(ε1 −µ1) 1/(ε1 −µ2) . . . 1/(ε1 −µN )

...
... · · · ...

1/(εN −µ1) 1/(εN −µ2) . . . 1/(εN −µN )




B1
...

BN

=


−M+1

V
...

−M+1
V

 ,

(2.47)

which is easily solved by recognising the Cauchy matrix. Indeed, its well-known inverse leads

to the solution:

B j ≡
−ω+µ j

V
+

N∑
i=1

V

µ j −εi
+

N∑
i 6= j

2V

µi −µ j
=− (M +1)

V

∏N
k=1(εk −µ j )∏N
a 6= j (µa −µ j )

.

(2.48)

Of course this, in principle, simply cancels one subset of coefficients. One still needs to prove

that solutions to these equations will cancel every coefficient in the unwanted terms.

A generic coefficient results from having the product of Gaudin lowering operators acting on

both the bosonic and the spin part. Looking at a given ket, for which the subset of r +1 = N −
M +m spins labelled {i1 . . . ir ,k} points down (the corresponding number of bosons remaining

being m), the coefficient in front of this basis vector
∣∣m;↓{i1...ir ,k}〉 is given by
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C r
{i1...ir ,k} =

p
M !p
m!

V r+2

 N∑
j=1

B j

εk −µ j

 ∑
A ĵ∈Sr

ĵ

1∏r
k=1(ak −εik )


+ (M +1)

V

[ ∑
A∈Sr

1∏r
k=1(αk −εik )

])
(2.49)

where Sr
ĵ

is the set of all r -tuples built out of r non-repeated elements of {µ1, . . .µ j−1,µ j+1 . . .µN }

and Sr is the similar set of all r -tuples one can build out of the elements of {µ1, . . .µN }. The

n-th element of A ĵ = (a1, . . . ar ) is then any one of the available parameters µ (excluding µ j )

while the n-th element of A = (α1, . . .αr ) can be any one of the N parameters µ (this time

including µ j ).

To turn both brackets into a factor common to every term of the sum over j , the first one can

be rewritten by extending the sum over elements of Sr
ĵ

to one over every element of Sr . One

then needs to subtract the newly introduced contributions: those which belong to the relative

complement Sr \ Sr
ĵ
, i.e. r -tuples which do contain µ j . The previous expression then becomes

C r
{i1...ir ,k} = V r+2

p
M !p

m!

((
N∑

j=1

B j

εk −µ j
+ (M +1)

V

)[ ∑
A∈Sr

1∏r
k=1(ak −εik )

]

−
N∑

j=1

B j

εk −µ j

 ∑
A∈Sr \Sr

ĵ

1∏r
k=1(ak −εik )

 . (2.50)

The first term is cancelled by the solutions (2.48) discussed previously, i.e.: B j =− (M+1)
V

∏N
k=1(εk−µ j )∏N
a 6= j (µa−µ j )

and we are left with:

C r
{i1...ir ,k} ∝

N∑
j=1

B j

εk −µ j

∑
A∈Sr \Sr

ĵ

1∏r
k=1(ak −εik )

. (2.51)

Since every element A in the sum now contains, with certainty, a term ak ′ = µ j (with k ′

denoting the position where µ j appears in A), we can rewrite the sum as:
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C r
{i1...ir ,k} ∝

r∑
k ′=1

N∑
j=1

B j

(εk −µ j )(µ j −εk ′)

∑
A∈Sr−1

ĵ

1∏r−1
k=1(ak −εik )

, (2.52)

where εik is now understood as the elements of (εi1 . . .εik′−1
εik′+1

. . .εir ) therefore excluding εik′ .

One can keep the process going by including back µ j in the last sum to now make it go over

every element of Sr−1 while removing
∑

A∈Sr−1\Sr−1
ĵ

:

C r
{i1...ir ,k} ∝

r∑
k ′=1

N∑
j=1

B j

(εk −µ j )(µ j −εk ′)

∑
A∈Sr−1

1∏r−1
k=1(ak −εik )

−
r∑

k ′=1

N∑
j=1

B j

(εk −µ j )(µ j −εk ′)

∑
A∈Sr−1\Sr−1

ĵ

1∏r−1
k=1(ak −εik )

,

=
r∑

k ′=1
Kk ′

[
N∑

j=1

B j

(εk −µ j )(µ j −εk ′)

]

−
r∑

k ′′ 6=k ′

r∑
k ′=1

N∑
j=1

B j

(εk −µ j )(µ j −εk ′)(µ j −εk ′′)

∑
A∈Sr−2

ĵ

1∏r−2
k=1(ak −εik )

(2.53)

where the set of εik now excludes both εik′ and εik′′ , and we defined the constant Kk ′ =∑
A∈Sr−1

1∏r−1
k=1(ak−εik

)
. Doing this iteratively until the r spins have their εik coupled with µ j ,

one easily sees that the whole expression becomes a sum of terms of the form:

N∑
j=1

B j∏n
k=1(εik −µ j )

, (2.54)

with n ≥ 2, which we can show are all identically zero. Indeed, replacing B j by the solution

mentioned before (2.48), we find:
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N∑
j=1

B j∏n
k=1(εik −µ j )

=− (M +1)

V

N∑
j=1

∏N
k=1(εk −µ j )∏N

a 6= j (µa −µ j )
∏n

k=1(εik −µ j )
(2.55)

and choosing one εik′ to play a particular role it can also be written as:

N∑
j=1

B j∏n
k=1(εik −µ j )

=− (M +1)

V

N∑
j=1

∏N
k=1(εk−µ j )∏n

k 6=k′ (εik
−µ j )

εik′ −µ j

1∏N
a 6= j (µa −µ j )

. (2.56)

Considering that a generic polynomial L(z) of maximal order N −1 can always be expanded

on the basis of Lagrange polynomials (using the N points {µ1 . . .µN } ) as:

L(z) = `(z)
N∑

j=1

L(µ j )

z −µ j

1∏
k 6= j (µ j −µk )

, (2.57)

with `(z) =∏N
k=1(z −µk ) and the µi the zeros of the polynomial L, we define the (N −n +1)-

order polynomial A(z) =
∏N

k=1(εk−z)∏n
k 6=k′ (εik

−z) . Its order will always be low enough (for n ≥ 2) for it to

have an exact expansion in the N -points Lagrange basis:
A(z)

`(z)
=

N∑
j=1

A(µ j )

z −µ j

1∏
k 6= j (µ j −µk )

. We

can therefore recognise in (2.56) the expression for A(z)
`(z) at z = εik′ . This allows us to evaluate

the preceding sum as:

N∑
j=1

B j∏n
k=1(εik −µ j )

∝
N∑

j=1

A(µ j )

εik′ −µ j

1∏
k 6= j (µ j −µk )

= A(εik′ )

`(εik′ )
= 0. (2.58)

Indeed, the polynomial A(z) has zeros at every εk except at the n − 1 elements of the set

{εi1 , . . .εik′−1,εik′+1 . . .εin }. Therefore z = εik′ remains a zero of the polynomial A(z) proving that

the sum (2.56) systematically cancels when {µ1 . . .µN } is a solution of eqs. (2.48).
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Thus, it has been shown that, for a system containing N spins-1/2 and a single bosonic mode,

a state built as:

∣∣{µ1 . . .µN }〉 =
N∏

i=1
S−(µi ) |M ;↑ . . . ↑〉 (2.59)

becomes an eigenstate of the N conserved charges Rk defined in (2.35) with corresponding

eigenvalues (see eq. (2.43)):

rk =V 2

[
1

2

∑
j 6=k

1

εk −ε j
− ω−εk

2V 2 −
N∑

j=1

1

εk −µ j

]
, (2.60)

whenever {µ1 . . .µN } is solution of the N algebraic Bethe equations (2.48):

−ω+µ j

V
+

N∑
i=1

V

µ j −εi
+

N∑
i 6= j

2V

µi −µ j
=− (M +1)

V

∏N
k=1(εk −µ j )∏N
a 6= j (µa −µ j )

. (2.61)

For any of these states, the corresponding eigenvalue of the full generating function S2(u) is

then simply obtained by reconstructing the appropriate linear combination given in (2.36)

leading to:

S2(u)
∣∣{µ1 . . .µN }〉 =[

N∑
k=1

rk

u −εk
+M − N

2
+ 1

2
+

(ω−u

2V

)2
+ 3

4

N∑
k=1

V 2

(u −εk )2

]∣∣{µ1 . . .µN }〉 ,

(2.62)

with the eigenvalues rk given in eq. (2.60).

Having shown that one can indeed build a valid hole-like representation of eigenstates, we now

simply need to find the correspondence between both representations of a given eigenstate.
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As for spin-only models, this can be done by equating both sets of eigenvalues rk , respectively

found in eqs. (2.39) and (2.60):

−ω−εk

2
−V 2

N∑
j=1

1

εk −µ j
=−εk −ω

2
−V 2

M∑
j=1

1

εk −λ j
,

Λλ(εk ) =Λµ(εk )+ ω−εk

V 2 , (2.63)

giving us the explicit way to transform one representation into the other. A direct substitution

of this transformation in the quadratic Bethe equations (2.40) consequently gives us the

equivalent equations for the hole-like representation:

[
Λµ(εi )

]2 = ∑
j 6=i

Λµ(εi )−Λµ(ε j )

εi −ε j
+ εi −ω

V 2 Λµ(εi )+ M −N +1

V 2 . (2.64)

Although our main interest for finding such a representation was the construction of eigenvalue-

based determinant expressions for scalar products and form factors, even by itself, the hole-

representation can be useful. Indeed, such a parametrisation of the eigenstates always involves

exactly N rapidities µi which have to be solution of a system of N equations. The traditional

particle-representation is, on the other hand, defined by M parameters λi , a number which

can grow arbitrarily large due to the unboundedness of the bosonic operators. This alternative

representation therefore still allows us to express any eigenstate containing M > N particle-

like excitations in a more compact form systematically writeable in terms of only N complex

parameters.

2.2.2 Partition function

As was possible for spin-only models, we want to be able to access physical quantities in terms

of simple expressions involving exclusively theΛ(εi ) variables. In this section we will start by

deriving a determinant expression for domain wall boundary partition functions from which

expressions for the scalar products and form factors will, in the end, be derived.

Therefore, we want to prove that the scalar product of a generic Bethe-like state (2.37) with an

arbitrary common eigenstate of b†b and the ensemble of Sz
i :
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∣∣M ;↑{i1...im }〉 ≡ (b+)M
m∏

j=1
S+

i j
|0,↓ ... ↓〉 (2.65)

with M ,m ∈N and m ≤ N , is writable as the determinant of an m ×m matrix:

〈M ;↑{i1...im } |λ1...λM+m〉 =
p

M !V mDetJ

Jab =


m∑

c=1(6=a)

1

εia −εic

−Λ(εia ) a = b

1
εia −εib

a 6= b
, (2.66)

which differs significantly from the more traditional Izergin determinant [62] by using the vari-

ablesΛ(εia ) which are explicitly symmetric constructions in terms of the rapidities {λ1 . . .λM }.

In order to show this, one can start from the explicit construction of the state |λ1...λM+m〉 (eq.

(2.37)), which leads to the formal expression:

〈M ;↑{i1...im } |λ1...λM+m〉 =
p

M ! V m
∑
{Pk }

∑
{P }

M+m∏
i 6={k1...kM }

1

λi −εPi

. (2.67)

Here {P } is the ensemble of possible permutations of the indices {i1...iM+m} and Pi denotes

the i th element of the given permutation. In the same way we define {Pk } as the ensemble of

possible subsets {k1 . . .kM } one can build out of {1. . . M +m}; this subset labels the rapidities

used to create the M bosons. In other words, we create the state
∣∣M ;↑{i1...im }〉 starting from

the particle vacuum |0;↓ . . . ↓〉 by using any subset of M rapidities to create bosons. The

remaining unused rapidities can be associated in any possible bijection with {i1 . . . im} so that

each rapidity is used individually to excite any one of the local spins we need to flip up.

By isolating in (2.67) the terms which depend on λM+m , one finds that the overlaps obey the

simple recursion relation:
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〈M ;↑{i1...im } |λ1...λM+m〉 = 〈M ;↑{i1...im }
∣∣b† |λ1..λM+m−1〉

+
m∑

j=1

V

λM+m −εi j

〈M ;↑{i1...î j ...im }

∣∣λ1..λM+m−1〉,

(2.68)

where
∣∣∣M ;↑{i1...î j ...im }〉 is the state with M +m −1 excitations, for which εi j has been removed

from the ensemble {i1 . . . im} and therefore points down.

We now want to show that the proposed determinant representation (2.66) obeys the same

recursion relation. Since they are obviously rational functions of every λi variable, it is then

sufficient to show that, when written as determinants, the left and right hand sides of the recur-

sion (2.68) have the same poles (atλM+m = εi j ), the same residues 〈M ;↑{i1...î j ...im }

∣∣λ1..λM+m−1〉
at these poles and the same limit when λM+m →∞.

The determinant in (2.66) clearly only has single poles atλM+m = εi j which come only from the

diagonal element J j j since only it contains, through −Λ(εi j ), the term 1
λM+m−εi j

. The residue is

then simply given by the determinant of the minor obtained after removing line and column j

and taking the λM+m → εi j limit:

lim
λM+m→εi j

(λM+m −εi j )
p

M ! V mDetJ =
p

M ! V mDetJ ĵ (2.69)

with

J ĵ
a,b =


m∑

c=1(6=a)

1

εia −εic

−
M+m−1∑

k=1

1

εia −λk
− 1

εia −εi j

a = b (a,b 6= j )

1
εia −εib

a 6= b (a,b 6= j )
.

(2.70)

The diagonal elements of this matrix evidently reduce to
m∑

c 6=a (a,c 6= j )

1

εia −εic

−
M+m−1∑
α=1

1

εia −λα
and therefore the limit (2.69) does indeed correspond to the determinant representation (2.66)

of V 〈M ;↑{i1...î j ...im } |λ1..λM+m−1〉, as it should in order to obey the recursion relation (2.68).

Since every rapidity λ j plays an identical role, choosing λM+m enables us , without loss of

generality, to state that the determinant representations have poles and residues at those poles
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which are indeed the same on both sides of the recursive equation (2.68).

Moreover, the λM+m →∞ limit of the determinant (2.66) is easily found since the correspond-

ing terms 1
λM+m−εia

in every Λ(εia ) then simply go to zero. Therefore, limλM+m→∞ 〈M ;↑{i1...im }

|λ1...λM+m〉 reduces to the determinant expression (2.66) one would find for
p

M〈M−1;↑{i1...im }

|λ1...λM+m−1〉. Acting on the bra with the bosonic operator, the limit of the right hand side

of (2.68) trivially gives 〈M ;↑{i1...im }
∣∣b†

∣∣λ1...λM+m−1〉 =
p

M〈M −1;↑{i1...im } |λ1...λM+m−1〉 which

does indeed correspond to the left hand side limit we just discussed. Consequently, if the

determinant representation (2.66) is supposed valid, the left hand side and right hand side of

the recursion relation (2.68) are both rational functions of {λ1 . . .λM+m} and since they have

the same poles, the same residues and the same limit as λi →∞, they are equal.

For M +1 rapidities and a single flipped spin i1, the explicit expansion given in (2.67) gives the

scalar product 〈M ,↑{i1} |λ1 . . .λM+1〉 =
p

M !
∑M+1

j=1
V

λ j−εi1
which is indeed equivalent to the 1×1

version of the above determinant
p

M ! (−Λi1 ) =−pM !
∑M+1

j=1
V

εi1−λ j
. Since neither the order of

the rapidities λi nor of the εi j matters, this equality concludes the recursive proof. Being valid

for M +1 rapidities, the determinant expression can be recursively built for M +2 rapidities

and two flipped spins and so on, proving the validity of (2.66).

2.2.3 Form factors

We showed, in the previous subsection, that the partition function can be written as the

determinant of an N ×N matrix which only depends on the eigenvalues of the conserved

charges. In the current section, we now demonstrate that generic scalar products as well

as form factors can also be written in terms of those partition functions, therefore giving us

access to simple expressions for these quantities, again written explicitly in terms of the same

variables.

Normalisations

Let us first deal with the issue of the normalisation of eigenstates. As was the case for spin-only

models (see section 1.3.2), both representations of the same eigenstate will only differ by a

constant:

|{λ1 . . .λM }〉 = Nλ |{λ1 . . .λM }〉n∣∣{µ1 . . .µN }〉 = Nµ |{λ1 . . .λM }〉n , (2.71)

where |{λ1 . . .λM }〉n is the properly normalised eigenstate in question. Using the transfor-
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mation (2.63) relating both representations, one can write the overlap (given by eq. (2.66))

as:

〈{µ1 . . .µN } | {λ1 . . .λM }〉 = 〈M ;↑ . . . ↑|
N∏

i=1
S+(µi )

M∏
j=1

S+(λ j ) |0;↓ . . . ↓〉

= NλNµ =
p

M ! V N DetJ (2.72)

with

Jab =


N∑

c=1(6=a)

1

εa −εc
−2Λλ(εa)+ ω−εa

V 2 a = b

1
εa−εb

a 6= b

. (2.73)

Interestingly, this corresponds to the determinant of the Jacobian matrix Ji j = ∂F j

∂Λ(εi ) of the set

of quadratic Bethe equations (2.40):

F j =−[
Λ(ε j )

]2 +
M∑

i 6= j

Λ(ε j )−Λ(εi )

ε j −εi
− ε j −ω

V 2 Λ(ε j )+ M

V 2 = 0. (2.74)

This is, of course, highly reminiscent of the Gaudin-Korepin determinant [63] which gives the

norm 〈λ1 . . .λM | λ1 . . .λM 〉 as the M ×M determinant of the Jacobian matrix of the rapidites-

based Bethe equations this time taking derivatives with respect to λi .

Secondly, as for spin-only models, the ratio Nλ/Nµ can be obtained by projecting both repre-

sentations onto a reference state: a single arbitrary eigenstate common to {Sz
1 . . .Sz

N } and b†b

(within the appropriate total excitation number subspace). The simplest choice could be to

use |M ;↓ . . . ↓〉 as this reference state, since its scalar product with the particle-representation

〈M ;↓ . . . ↓ | {λ1 . . .λM }〉 is trivially given by
p

M !; the coefficient involved coming only from the

repeated action of the bosonic parts of the S+(λi ) operators. On the other hand, the second

scalar product 〈M ;↓ . . . ↓ ∣∣ {µ1 . . .µN }〉 would then involve only the N spins parts of every S−(µi )

and would therefore be given by a N ×N determinant.
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Since the numerical calculation of the determinant of a N ×N matrix requires N 3 operations,

it would therefore be more efficient to normalise by calculating the ratio using projections

on a reference state which contains M (or N /2 when M > N /2) excitations in the spin sector.

This would indeed minimise the total number of operations involved in computing both

determinants, which would then be given by M 3 + (N −M)3 (or simply N 3/4 when M > N /2).

In large scale calculations, this can become an important factor in the total computation time.

Finally, one should keep in mind that, in certain calculations such as the resolution of the

identity:
∑

n

∣∣ψn〉〈ψn
∣∣= I, in which eigenstates systematically appear twice, we do not need

the individual norms. Indeed, the terms can be properly normalised using only the single

N ×N determinant given in (2.72) by using the following constructions:
|{λ1...λM }〉〈{µ1...µN }|
〈{µ1...µN } |{λ1...λM }〉 .

Local raising and lowering operators (S+
i ,S−

i ,b†,b)

The raising and lowering operators only have non-zero form factors only between two states

which contain respectively M and M ±1 excitations. These can therefore be straightforwardly

written as partition functions by using the appropriate representations of both states involved

in the calculation:

〈µ1 . . .µN
∣∣S+(u) |λ1...λM−1〉

= 〈M ;↑ . . . ↑|
(

N∏
i=1

S+(µi )

)
S+(u)

(
M−1∏
j=1

S+(λ j )

)
|0;↓ . . . ↓〉 ,

〈λ1...λM−1|S−(u)
∣∣µ1 . . .µN 〉

= 〈0;↓ . . . ↓|
(

M−1∏
j=1

S−(λ j )

)
S−(u)

(
N∏

i=1
S−(µi )

)
|M ;↑ . . . ↑〉 . (2.75)

These are given by the N × N determinant (2.66) built out of the ensemble of "rapidities"

{ν1 . . .νN+M } = {µ1 . . .µN+M ,u,λ1 . . .λM−1} and give us access directly to any local spin oper-

ators by looking at the residues at u → εi knowing that limu→εi (u − εk )S±(u) = V S±
k . Since

the pole at u → εk only appears in the diagonal element Jkk of the partition function via the

term −Λν(εk ) =−∑N
i=1

1
εk−µi

−∑M−1
i=1

1
εk−λi

− 1
εk−u , the residue at u = εk is given by the minor

determinant obtained after removing line and column k. Setting u = εk in the other diagonal

terms lead to − 1
εa−u cancelling the similar term in the sum

∑N
c=1(6=a)

1
εa−εc

. We are therefore left

with the simple N −1×N −1 determinant:

〈µ1 . . .µN
∣∣S+

k |λ1...λM−1〉 =
p

M ! V N−1DetJ k , (2.76)
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with

J k
a,b =


N∑

c=1(6=a,k)

1

εa −εc
−Λλ(εa)−Λµ(εa) a = b

1
εa−εb

a 6= b

with (a,b 6= k). (2.77)

The u →∞ limit gives us the bosonic operator form factors since limu→∞ S+(u) = b†. It is also

easily obtained since the limit simply leads to the cancellation of the 1
εa−u terms in each of the

diagonal elements of the matrix. The resulting determinant representation is then given by

the N ×N determinant:

〈µ1 . . .µN
∣∣b† |λ1...λM−1〉 =

p
M ! V N DetJ B ,

J B
a,b =


N∑

c=1(6=a)

1

εa −εc
−Λλ(εa)−Λµ(εa) a = b

1
εa−εb

a 6= b

. (2.78)

Local "number" operators Sz
i and b†b

The "number" operators, namely the local Sz
i spin operators and the bosonic occupation

operator b†b do not naturally allow such a simple expression. In this section, we show how

one can still derive eigenvalue-based expressions for their form factors. The basic approach

used here to derive such expressions is to make use of the known determinant expression

(2.66) to evaluate scalar products between an eigenstate
∣∣{µ(ω)}m〉 of the system for a given

parameter ω and a second one |{λ(ω+dω)}n〉 evaluated at ω+dω. This second eigenstate

then corresponds to an infinitesimal deformation of the eigenstate of interest: |{λ(ω)}n〉 found

at ω.

Starting from the explicit expression of the conserved charges of the model (eq. (2.35)), we

have Sz
k =−∂Rk (ω)

∂ω = −Rk (ω+dω)+Rk (ω)
dω and therefore can deduce the spin form factors from the

evaluation of:
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〈{µ(ω)}m
∣∣Sz

k |{λ(ω+dω)}n〉 = [
r m

k (ω)− r n
k (ω+dω)

] 〈{µ(ω)}m |{λ(ω+dω)}n〉
dω

.

(2.79)

Using the explicit eigenvalues (2.39) and (2.60), the diagonal form factors which involve the

same state in the bra and the ket will then lead to the typical Hellmann-Feynman theorem:

〈{µ(ω)}m
∣∣Sz

k |{λ(ω)}m〉 = −∂r m
k (ω)

∂ω
〈{µ(ω)}m | {λ(ω)}m〉 ,

〈{µ(ω)}m
∣∣Sz

k |{λ(ω)}m〉
〈{µ(ω)}m | {λ(ω)}m〉 =

[
−1

2
+V 2 ∂Λ

λ
m(εk )

∂ω

]
. (2.80)

while the off-diagonal ones give:

〈{µ(ω)}m
∣∣Sz

k |{λ(ω)}n〉 =
[
r m

k (ω)− r n
k (ω)

] 〈{µ(ω)}m |{λ(ω+dω)}n〉
dω

=
[
εk −ω+V 2Λλn(εk )−V 2Λ

µ
m(εk )

] 〈{µ(ω)}m |{λ(ω+dω)}n〉
dω

, m 6= n.

(2.81)

One notices that a single evaluation of 〈{µ(ω)}m |{λ(ω+dω)}n〉
dω gives direct access to every one of the

N local Sz
i form factors. Since the Gaudin raising operators S+(u) does not explicitly depend

on the parameter ω, the overlap of interest is given once more by the same partition function

whose determinant expression (2.66) has been given before. The deformation to ω+dω

indeed only appears indirectly through the infinitesimal modification of the λ rapidities. This

scalar product could, in principle, be numerically evaluated as a single determinant using the

eigenvalues defining exactly the states respectively at ω and ω+∆ω (with ∆ω being small but

finite):

lim
∆ω→0

〈{µ(ω)}m |{λ(ω+∆ω)}n〉
∆ω

=
p

M ! V N 1

∆ω
lim
∆ω→0

DetJ (2.82)
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with:

Ja,b =


N∑

c=1(6=a)

1

εa −εc
− Λλn(εa)

∣∣∣
ω+∆ω− Λ

µ
m(εa)

∣∣
ω a = b

1
εa−εb

a 6= b

. (2.83)

Being of order ∆ω, the resulting determinant would however then be nearly singular, a fact

which could lead to important numerical stability issues. However, an exact evaluation

remains possible by taking the limit analytically using Λλn(εa)
∣∣
ω+∆ω ≈ Λλn(εa)

∣∣
ω+

∂Λλn (εa )
∂ω ∆ω and

the fact that 〈ψm(ω)
∣∣ψn(ω)〉 = 0 since both eigenstates are distinct and therefore orthogonal.

Retaining the linear terms leads to the following sum of N determinants:

lim
∆ω→0

〈{µ(ω)}m |{λ(ω+∆ω)}n〉
∆ω

=
p

M ! V N
N∑

k=1

∂Λλn(εk )

∂ω
det J̃ k , (2.84)

which are just the N −1×N −1 minors obtained from J after removing line and column k:

J̃ k
ab =


N∑

c=1(6=a)

1

εa −εc
−Λλn(εa)−Λµm(εa) a = b

1
εa−εb

a 6= b

with (a,b 6= k). (2.85)

Notice that they differ from the form factors for S+
k found in eq. (2.77) by the fact that the

sum over εc still includes the term c = k. The expression found here depends not only on

the eigenvaluesΛλ(εi ) but also on their derivatives ∂Λλ(εi )
∂ω . Fortunately, they can be directly

obtained from the knowledge of the set {Λλ(ε1) . . .Λλ(εN )} by simply solving the linear system

of equations:

which one finds by taking the ω derivative of the quadratic Bethe equations (2.40).

From the fact that M̂ = b†b +∑N
i=1 Sz

i is also a conserved quantity, with eigenvalue M − N
2 for

states containing M particle-like excitations, one can directly find a similar expression for the

54



2.3. Conclusions

bosonic occupation form factor:

〈{µ(ω)}m
∣∣b†b |{λ(ω}n〉 = 〈{µ(ω)}m

∣∣M − N

2
|{λ(ω}n〉

−
N∑

i=1
〈{µ(ω)}m

∣∣Sz
i |{λ(ω}n〉 . (2.86)

Using the previous Sz form factors we have

〈{µ(ω)}m
∣∣b†b |{λ(ω}m〉

〈{µ(ω)}m | {λ(ω)}m〉 = M − N

2
+

N∑
i=1

∂r m
i (ω)

∂ω
= M −

N∑
i=1

[
∂Λλm(εi )

∂ω

]
,

(2.87)

〈{µ(ω)}m
∣∣b†b |{λ(ω}n〉 =

(
N∑

i=1

[
r n

i (ω)− r m
i (ω)

])

×〈{µ(ω)}m |{λ(ω+dω)}n〉
dω

, m 6= n (2.88)

which is once again proportional to the term 〈{µ(ω)}m |{λ(ω+dω)}n〉
dω and can therefore be explicitly

computed as eq. (2.84).

2.3 Conclusions

This section has several purposes because it concludes the theoretical part of this work. In a

first time, short conclusions about the two generalisations are given and then the utility of the

spin-boson realisation for the remainder of the work is discussed.

First of all, the method to have access to the partition function with a spin whose norm is

arbitrarily chosen was straightforward because the complexity came from the expressions but

not from the method because it is highly relying on the work done for spins- 1
2 only. The future

work is obviously to find the determinant expression for a partition function with more spins

with arbitrary norm but the complexity of the expressions prevented us from achieving that

for the moment.

However in the second section, it was shown that, despite the lack of symmetry between the

"highest" and "lowest" weight state of quantum integrable models derived from a realisation

of the rational GGA which contains a bosonic mode, one can still use the QISM. The fact of

being able to use the QISM in this case is in itself a result and a similar work can be done to
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tackle the lack of symmetry in other realisations. For instance we as well have done the work

of applying these steps to a realisation defined by:

S+(u) = B+
0 +

N∑
i=1

S+
i

u −εi

S−(u) = B−
0 +

N∑
i=1

S−
i

u −εi

Sz (u) = −B z −
N∑

i=1

Sz
i

u −εi
, (2.89)

with B+
0 , B−

0 and B z the component of a general external magnetic field [64]. This work can

be compared to [65] where the triangular boundaries could correspond to the case where

B+
0 = 0,B−

0 6= 0 and B+
0 6= 0,B−

0 = 0.

Within the spin-boson realisation, the QISM was used to build two distinct algebraic Bethe

ansätze and therefore two representations of eigenstates of Gaudin models. These were then

used to relate scalar products of states and form factors of local operators to a domain wall

boundary partition function which was shown to have a simple expression as the determinant

of a matrix whose elements depend only on the eigenvalues of the model’s conserved charges.

Another recent contribution [66], using the Richardson-Gaudin pairing model (to study the

Read-Green resonance in topological superconductor coupled to a bath), supports our state-

ment on the variety of phenomena which can be modelled by Gaudin models.

The determinant expressions derived within this chapter can have an important positive

impact on the computation time required for numerical work on these systems. Indeed,

being defined only through these eigenvalues which are solutions of a set of quadratic Bethe

equations, they allow one to avoid the explicit finding of the rapidities describing a given state

{λ1 . . .λM }. This work further establishes our capacity to rebuild many aspects of the algebraic

Bethe ansatz using only constructions which are explicitly symmetric in the Bethe rapidities, a

useful fact which could possibly generalise to a much broader class of integrable systems.

We now want to highlight some other work that are related to ours. In [67] it is shown how to

recover spin-boson algebra from spin conserved quantities by deforming one of them. Relying

on this previous way of approaching spin-boson Gaudin models, the papers [68] and [69]

extend our work to the XXZ Gaudin models and create an unifying algebra that are able to

describe Richardson-Gaudin models or Dicke models.

The problem of finding the Bethe equations with the same number of the creation operators

than the number of sites has been studied in the context of Heisenberg XXX with general
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boundaries in [70]. The question of being still able to apply the ABA in the context of integrable

dissipative exclusion problem which can map onto the open XXZ spin chain solved treated in

[71]. Moreover, the problem of cancelling similar supplementary terms as in (2.42) is tackled

in other contexts in [72, 73, 74]. Other methods to solve models without proper pseudo-

vacuum have been introduced in recent years, for instance the: q-Onsager approach [75], the

functional Bethe ansatz [76, 77, 78] or the generalisation of the coordinate Bethe ansatz [79].

In the next chapters, numerics using these determinants expressions will be explained and

then shown. In a first time, a chapter will explained how the quadratic Bethe equations were

solved numerically, then graphics illustrating the asymptotic dynamics will be presented to

conclude with real time dynamics graphics.
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3 Solving the quadratic Bethe equations
numerically

3.1 Presentation of the problem

In this chapter, we focus on the numerical techniques one can use to find the eigenstates of S2

by looking for the solutions of the quadratic Bethe equations (2.40). DefiningΛ(εi ) = Λi

V 2 these

quadratic equations (2.40) become:

[Λi ]2 = V 2
N∑

j 6=i

Λi −Λ j

εi −ε j
− (εi −ω)Λi +V 2M , (3.1)

where each side of the equations has been multiplied by V 4 to present exactly the ones that

were solved numerically. We explained in the previous chapter that the interest of these

quadratic Bethe equations is that they contain all the possible information on the variables λi

while being easier to solve. Moreover for a system of N spins- 1
2 with M excitations (bosonics

or spin excitations), one has a total of N Λi variables instead of M variables. So, not only the

quadratic equations are easier to solve, but for a systems containing M > N total excitations,

there are also fewer equations than in the traditional set of Bethe equations. Additionally, one

of the goals of the thesis is to investigate a system’s dynamics and stationary states for different

values of M and in particular when M is large regarding N . This domain of excitations (M > N )

is easily reachable because it still corresponds to a systems of N equations. However, we add

here a limitation in the number of excitations we can choose that arises with the capacity of

a computer. The presence of
p

M !, in the expression of (2.66) for instance, limits M at 170

because 171! is greater than 1.79769e +308, which on many computers is the largest floating

point number that can be represented in eight bytes.

In the light of everything we have explained before, we are left with N quadratic equations of

N variables to solve. In the cases where Ai 6= 1
2 , if we want to derive quadratic equations in a
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same way as for (2.40), i.e. from traditional Bethe equations F (u) =−∑N
i=1

Ai
εi−u + B

2g u + C
2g =∑M

j=1(6=i )
g

λi−λ j
, we notice we would obtain more than N variables because of the presence of

theΛ(n)(εi ) (the derivatives of theΛ(εi )). For instance, for Ai = 1 we would have to work with

2N variables, N variables Λ(εi ) and N variables Λ′(εi ). A way of dealing with the equations

when the derivatives do not vanish is explained in [49].

3.2 The algorithm

The method we chose to solve this system of equations is a multi-linear Newton’s method. In

this section, we start by briefly explaining the structure of the Newton’s algorithm and in a

second part we give more details on each step of the algorithm.

The algorithm solves the quadratic equations and gives all the solutions for a chosen coupling,

we will call it V f i nal . To reach the solution at V f i nal , the quadratic equation are solved at V = 0

in a first time. We then progressively increase the coupling by increments δV until we reach

V f i nal . To solve the equations at a given V , we need a starting point, we will call it a "guess

point", that is an approximation of the solutions. The guess point we use at each step is in fact

the solutions at the previous step, i.e. the starting point of the algorithm to solve the equations

at a given V is the solutions at V −δV .

For systems containing N spins- 1
2 and Mb bosons the first step is to generate all the possible

solutions at V = 0 which will be the initial configurations. The number of total excitations

M being conserved, for each initial configuration of spins there is only one corresponding

number of bosons leading to 2N different initial configurations. The program we wrote solves

the equations for every configuration generated and then saves the N corresponding solutions

Λi in a file.

For each initial configuration we consider the traditional Bethe equations (2.38) where both

sides have been multiplied by 2V 2:

ω−λi +
N∑

k=1

V 2

λi −εk
=

M∑
j 6=i

2V 2

λi −λ j
. (3.2)

At V = 0 it is easy to find the solutions to these equations . Indeed V = 0 leads to:
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3.2. The algorithm

a) λi = ε j + lim
V →0

V 2

ε j −ω
,

b) λi = ω. (3.3)

There are M λi variables, each of them corresponds to either a bosonic excitation or a spin one.

In a) the rapidity λi comes from an excitation of the j th spin whereas in b) the rapidity comes

from a bosonic excitation. These two kinds of excitations corresponds to different terms in the

sum that appears in our change of variablesΛ j =∑M
i=1

V 2

ε j−λi
from the λi to theΛ j :

a)
V 2

ε j −λi
= ω−ε j ,

b)
V 2

ε j −λi
= 0. (3.4)

As a consequence, at V = 0 for a system with Mb bosonic excitations, there will be Mb terms in

the sum that will cancels and M −Mb that will be equal to ω−ε j . As an example, for an initial

configuration |6;↓↑↓↑〉, with Mb = 6, N = 4 spins- 1
2 and a total number of excitations M = 8,

we have at V = 0:

Λ j =
8∑

i=1

V 2

ε j −λi
=ω−ε2 +ω−ε4. (3.5)

Numerically, starting from this solution at V = 0, we increase V step by step until we reach the

coupling of interest. For simplicity we write~Λ= (Λ1, . . . ,ΛN ) when a function depends of all

the components of~Λ. We then define:

F j (~Λ,V ) =V 2

[
N∑

i 6= j

Λ j −Λi

ε j −εi
+M

]
− (ε j −ω)Λ j −

[
Λ j

]2 . (3.6)

61



Chapter 3. Solving the quadratic Bethe equations numerically

The procedure we set up is the following: we want the algorithm to find iteratively a better

guess point to obtain the solutions at a given V ,Λi ;V , knowingΛi ;V −δV , the solution at V −δV ,

from a previous step of the program, in other words ~F (~Λi ;V −δV ,V −δV ) = 0. This previous step

enables us to make a guess~Λg uess
V at V . Let us assume we already have a~Λg uess

V , by applying

Newton’s algorithm we have the following relation for one of our quadratic equations:

F j (~Λg uess
V +δ~Λ,V ) = F j (~Λg uess

V ,V )+ Jδ~Λ= 0, (3.7)

where J is the Jacobian matrix whose elements J j ;k are:

J j ;k = ∂F j (~Λg uess
V ,V )

∂Λk
=V 2

N∑
i 6= j

∂Λ j

∂Λk
− ∂Λi
∂Λk

ε j −εi
− ∂Λ j

∂Λk

(
ε j −ω+2Λ j

)
, (3.8)

leading to:

δ~Λ=−J−1~F (~Λg uess
V ,V ). (3.9)

Following the principle of a Newton’s algorithm, the program will iterate until it finds a

δ~Λ that satisfies equation (3.9) with a precision chosen by the user. Thus, if the program

converges to a solution, we obtain a new set ofΛg uess
i ;V whose "quality factor"

∣∣~F (~Λg uess
V ,V )

∣∣ is

better than before. This operation is repeated until
∣∣~F (~Λg uess

V ,V )
∣∣< ε, where ε is the chosen

precision of the program also defined by the user. Eventually, at the end of this process, we

find the solutions for the quadratic equations at a given V and this process will be repeated by

increasing V by δV until we reach V f i nal .

3.3 Enhancement of the guess

The condition for our program to converge is that the very first guess, before starting the

Newton algorithm, is good enough to be in the basin of attraction of the algorithm. To highly

increase the chances that our guess is in the basin of attraction we use a Taylor expansion of

Λi ;V −δV around V −δV to a chosen order n:
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3.3. Enhancement of the guess

Λ
g uess
j ;V ≈

n∑
i=0

∂nΛi ;V −δV

∂V n

(δV )n

n!
. (3.10)

As a consequence, we need to compute the ∂nΛi ;V −δV

∂V n . To do so we take the derivative of the

equality ~F (~Λi ;V −δV ,V −δV ) = 0 leading to:

d~F (~Λi ,V −δV )

dV
= ∂~F (~Λi ,V −δV )

∂V

dV

dV
+ ∂~F (~Λi ,V −δV )

∂~Λi

d~Λi

dV

= ∂~F (~Λi ,V −δV )

∂V
+ ∂~F (~Λi ,V −δV )

∂~Λi

~Λ′
i .

= 0 (3.11)

where we have written~Λi =~Λi ;V −δV for simplicity. In a same manner as before we arrive at:

~Λ′
i =−J−1 ∂

~F (~Λi ,V −δV )

∂V
. (3.12)

We need to compute the next total derivative ∂2~F (~Λi ,V −δV )
∂(V )2 at V −δV and so on. Applying this

method n times, we deduce a set of linear equations for the nth derivative dependent on all

lower derivatives of~Λi :

Ji j
∂nΛi

∂V n =V 2
N∑

j 6=i

∂nΛi
∂V n − ∂nΛ j

∂V n

εi −ε j
+ An; j = Bn; j

({
∂kΛi

∂vk

}n−1

k=0

)
, (3.13)

where we write v = V 2 for simplicity. Bn; j

({
∂kΛi

∂vk

}n−1

k=0

)
means that Bn; j depends of all the

lower order derivatives ∂kΛi

vk as it can be seen in its explicit expression one can find iteratively

(Appendix A.3):

63



Chapter 3. Solving the quadratic Bethe equations numerically

Bn; j = B ′
n−1 +

1

v

(
−∂

n−1Λ j

∂vn−1

[(
ε j −ω

)+2Λ j
]−Bn−1; j

)
+2

∂Λ j

∂v

∂n−1Λ j

∂vn−1

= −n

v

(
Bn−1; j +

∂n−1Λ j

∂vn−1

[
(ε j −ω)+2Λ j

])+n−1∑
k=1

(
n

k

)
∂kΛ j

∂vk

∂n−kΛ j

∂vn−k
,

B0; j = −Λ jΛ j ,

An; j = −∂
nΛ j

∂vn

[
(ε j −ω)+2Λ j

]
. (3.14)

One can notice that the Jacobian is the same matrix regardless n and so it only needs to be

inverted once and then (3.13) can be rewritten as:

∂nΛi

∂V n =−J−1Bn; j

({
∂nkΛi

∂vk

}n−1

k=0

)
. (3.15)

As explained before, the computation of the derivation to carry out the Taylor expansion

enables us to find a good guessΛg uess
j ;V to start the iteration. We can add that all the parameters

chosen by the user, namely ε, the value of the jump δV between each step and n, have to be

optimised and in our case it has been done empirically. Indeed, ε has to be small enough so

that the solution at V −δV will become a good enough guess at V . The jump δV also has to

be optimised because increasing the coupling by a very small δV requires a lot of step to reach

V f i nal while choosing a bigger δV may draw away the solutions of the equations too far from

the guess point. Finally, the higher the number of derivatives n is, the more the convergence

of the algorithm is increased but the longer time the algorithm needs to run.

Eventually, we decide to adjustδV dynamically, i.e. at each step of the algorithm the coupling is

increased by a substantial δV and then decreased slowly until the program is able to converge

so that the jump δV is as big as possible at each step. However, at V = 0 the equations are

very sensitive because any δV substantially changes the equations, so the value of δV needs

to be very small if we want the solutions at V = 0 to remain a good guess. That is why we

chose to solve the systems for a very small V so that solutions will be near the ones at V = 0

without carry out the step of the successive divisions of a big δV to save some computation

time. These solutions for a very small coupling will lead us to a first guess which will be the

starting point of all remaining steps.

Following the routine we described, we find the solutions of the quadratic Bethe equations at

V f i nal . As a final remark, all the systems of equations of the form (3.9) have been solved by
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3.3. Enhancement of the guess

using the library Scipy of the language Python. In a first time, the command lu factor is used to

carry out a decomposition LU of the Jacobian matrix and then the command lu solve to solve

the system once it is in the form of a LU-matrix system of equations. Decomposing a matrix

into a product of a lower triangular one with a upper triangular makes the numerical treatment

of matrices very efficient. This decomposition can be used to compute determinants as well.

This is another asset of having determinant expressions for our scalar products.
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4 Steady State properties: Local mag-
netisation and bosonic occupation

In this chapter we present numerical results for two different physical quantities in the steady-

state obtained after a variety of product-states initial conditions are evolved unitarily. The

long-time averaged magnetisation along the z-axis and bosonic occupation are evaluated in

the Diagonal Ensemble (DE) (we introduce this ensemble in the next section) by performing

the complete sum over the full Hilbert space for small system sizes. These numerically exact

results are independent of any particular choice of Hamiltonian and therefore describe general

results valid for any member of the class of quantum integrable models built out of the

same underlying conserved quantities as explained in 1.4. Nevertheless, we will use the

TC Hamiltonian (1), and the physics usually related to it, presented in the introduction as

reference to interpret our results since it captures most of the global features.

The collection of results obtained can be qualitatively understood by thinking of it as a "relax-

ation" process for which at infinitely strong coupling, V →∞, every initial state will "relax" to

a common superradiant state. Numerically, we can try to get close to this superradiant state

by considering strong, but finite, couplings. Therefore, all the steady states we present can

be understood as an interrupted "relaxation" process towards a superradiant state. Nonethe-

less, for strong enough couplings the system, in its steady state, will tend to be superradiant

whereas for weaker couplings the "relaxation" process is interrupted before the system can

show a superradiant-like behaviour.

We call our state superradiant-like when each spin is in a maximally coherent superposition

of its |↑〉 and |↓〉 states, i.e. they are in-plane polarised. Consequently the bosonic mode is

also in a maximally coherent superposition of different occupation number states. Eventually,

we can say that a finite value of the coupling between the spins and the bosonic mode then

leads to a long-time limit steady state whose properties are qualitatively captured by a simple

"dynamical" vision in which the coupling strength V plays the role of a time tV at which this

"relaxation process" towards superradiance is interrupted.

This chapter is divided in three mains parts: section 4.1 explains why it is a good approximation

to work in the Diagonal Ensemble , section 4.2 presents the numerical data and a possible
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Chapter 4. Steady State properties: Local magnetisation and bosonic occupation

physical interpretation of these results thanks to a recurrent comparison with a reference

steady state which exhibits the characteristics of a superradiant-like state (as we have defined

it) and lastly, these results are compared to the values of observables one can get within the

Generalised Gibbs Ensemble (GGE).

4.1 Form Factors

Following the last chapters, the point of using numerics to access quantities such as local

magnetisation or bosonic occupation was not to only study the dynamics of our systems but

also to make the best possible use of the variables Λ(εi ) (for the first time) in spin-boson

systems. The expression of the mean value of an observable O at a given time t is:

〈Ô〉 (t ) = ∑
n,m

〈ψ0
∣∣ n〉〈m|ψ0〉e i (En−Em )t 〈n|Ô |m〉 , (4.1)

which is a double sum over the full set of normalised eigenstates |n〉 of H (with eigenvalue En).

We begin this section with the expressions depending ofΛ(εi ) we need in (4.1).

It was shown in subsection 2.2.2 that the projection of a state of the form (2.37) onto a product

state containing M−m bosons with the m spins of index {i1 . . . im} pointing up while the N −m

other spins point down, can be written as an m ×m determinant whose matrix elements

depend exclusively onΛ(εi ):

〈M −m;↑{i1...im } |λ1...λM 〉 =
√

(M −m)! V m DetJ

Jab =


m∑

c=1(6=a)

1

εia −εic

−Λ(εia ) a = b

1
εia −εib

a 6= b
. (4.2)

This construction enables to express 〈ψ0
∣∣ n〉 in terms of Λ(εi ). The squared norm Nλ of the

state |λ1 . . .λM 〉 was also shown to be computable as a N ×N determinant of the same form.

For any eigenstate, the quantum expectation values of local operators were shown in sub-

section 2.2.3 to be obtainable from the Hellmann-Feynman theorem, giving the following
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expression for the local magnetisation:

〈λ1...λM |Sz
k |λ1...λM 〉

NΛ
=

[
−1

2
+ ∂Λ(εk )

∂ω

]
, (4.3)

while the bosonic occupation follows from M̂ = b†b +∑N
i=1 Sz

i which has a well defined eigen-

value for every such state:

〈λ1...λM |b†b |λ1...λM 〉
NΛ

= M −
N∑

i=1

[
∂Λ(εi )

∂ω

]
.

(4.4)

Although there is an infinite number of possible Hamiltonians H = γM̂+∑N
i=1αi Ri which share

the same eigenstates, the full time evolution of a given observable would still depend, through

the eigenvalues En = γM +∑N
i=1αi ri (with M the eigenvalue of M̂ here), on a particular choice

of Hamiltonian.

However, the long time average reduces, due the averaging out of any non-zero frequency, to

the diagonal contributions for n = m:

lim
t→∞

1

t

∫ t

0
〈Ô〉 (t ′)d t ′ =∑

n
〈ψ0

∣∣ n〉〈n|ψ0〉〈n|Ô |n〉 . (4.5)

This is what we call, working in the DE. Underlying this assumption is the fact that no sys-

tematic degeneracies occur so that En 6= Em for any n 6= m. Although technically, for a given

system, level crossings will occur so that for certain specific values of V it is possible to find

two degenerate states, no systematic degeneracies will occur since sets {Λ1 . . .ΛN } solution to

the quadratic Bethe equation are all distinct.

In this work, for small enough systems the sum over the Hilbert space can be performed in

full, but for larger systems it also becomes possible to use Monte Carlo sampling in order to

evaluate the involved sums [80, 81, 82, 53, 54].

Provided a sufficiently spread out projection of the initial state over the eigenstates of the

Hilbert space, i.e. the Inverse Participation Ratio:
∑

n

∣∣〈n|ψ0〉
∣∣4 ¿ 1, and a large enough system

to support a near-continuum of frequencies, the oscillating terms in 〈Ô〉(t) should rapidly

cancel out leading to a steady state whose properties actually correspond to the long term

average:
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lim
t→∞〈Ô〉 (t ) = lim

t→∞
1

t

∫ t

0
〈Ô〉 (t )d t . (4.6)

This evidently excludes systems for which persistent oscillations remain at long times therefore

making limt→∞ 〈Ô〉 (t ) no longer properly defined. For finite size systems, the true complete dy-

namics will retain "weak" fluctuations around the long-time average due to the finite number

of frequencies involved. As shown in [83] for the bosonic occupation number, the relax-

ation towards a steady state, with well-defined asymptotic expectation values, is a completely

reasonable assumption in this type of system.

4.2 Numerical results

The systems we considered are composed of a collection of N = 15 spins- 1
2 interacting with

a bath of bosons. At t = 0 the spins are in their initial configuration and the system is given

M total excitations. This number of excitations being conserved, the number of bosons in

the bath is determined by the number of spins-up (the equivalent of a spin excitation). With

the time, the system is evolving under a Hamiltonian which determines the efficiency of the

redistribution of its excitations so that the spins tend to polarise in the plane which involves the

system in being in a superradiant-like state. However, the integrability limits the freedom of

redistribution by imposing conserved quantities associated to each spin. Knowing that we give

an infinite time to a chosen Hamiltonian to redistribute the excitations among the system, the

question is whether or not an infinite time is enough to overpass the effect of the integrability.

For instance, by giving an infinite time to HT C to rule the dynamics of one of our systems up

to their steady states, we would expect it to thermalise and to have a superradiant-like steady

state.

In this section, we begin, in the first subsection, by giving a complete study of the steady states,

obtained for different values of the coupling V , resulting of the evolution of one unique initial

configuration of spins, one unique value of M and one unique value of ω. A lot of different

statements about the impact of every of those parameters on the steady states, wether or not

this configuration and the value of these parameters favour a superradiant-like state, will be

done. The purpose of the following subsections will be to put to the proof every statement

valid for the reference state by comparing it to other cases.

4.2.1 Reference state and Coupling constant

This first subsection aims to illustrate this interrupted relaxation picture towards the superradiant-

like state. Moreover, it will provide a comparison reference for the remainder of the section.
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The example of interest is the steady state of the local magnetisation for a variety of coupling

constants when the initial state is chosen to be a typical, i.e. highly entropic, product state.

Since the individual gaps are εi = i , flipping up the even numbered spins, ensures a spreading

of the excitations over every available energy scale. Therefore, it should allow a maximally

efficient redistribution of the local excess of energy leading to a "thermalised" steady state

which has lost as much information as possible about the initial state.

Figure 4.1: Local magnetisation in the steady-state for the initial state: |17;↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑〉
for a variety of coupling constants V . The total number of excitations is M = 25 and the
bosonic frequency is set to ω= 6.95 in the middle of the energy band.

The dynamics being a process of exchange of excitations, we could have expected that an

infinite time would compensate a weak coupling and allows the system to behave as if it

has an infinite coupling. For every different value of the couplings V , we observe a different

magnetisation for the spins, i.e. a different steady state. Consequently, the idea that regardless

of the value of V (as long as it is not 0) our system would thermalise to a common state given

an infinite time is wrong. Thus, depending on the strength of the coupling, a system driven to

the steady steady under HTC will reach or not a superradiant-like state. We define, to simplify

our explanation, Vsup the coupling needed to reach a superradiant-like steady state, it is the

coupling for which the value of the local magnetisation is 〈Sz
i 〉 < 10−2∀i . It is the very existence

of the different steady states as functions of V that get closer and closer to be superradiant-like

as V increases that supports our idea of thinking in terms of a pseudo-dynamics where V

plays the role of a time. This pseudo-dynamics relying on a distinction of the steady states

depending on couplings highlights the fact the integrability does limit the redistribution of

the local excitations inside the system even when it has an infinite time to do it.
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We observe that the spins, in the steady states presented in Fig.4.1, tend to be plane-polarised

for the blue curve corresponding to V = 10, which sets Vsup ≈ 10 for the reference initial state.

For weaker values of V , 〈Sz
i 〉 > 10−2 for at least two spins (the ones near the edge). Coming

from highly entropic initial spin configuration, we expect Vsup to be smaller than for any

other initial spin configuration. Additionally, we can guess that another aspect that could

enhance the efficiency of redistribution of the local spin excitations is precisely having a lot of

excitations available. Increasing M , the number of total of excitations, is necessarily synonym

of increasing the number of bosonic excitations once all the spins are excited. That is why we

emit the hypothesis that increasing M may help the system to reach a superradiant-like steady

state, in other words, to lower Vsup (see subsection 4.2.5) because it has at its disposal more

bosons help the redistribution.

One last phenomenon visible in Fig.4.1 we want to comment is the impact for the spins to

have their associated energies εi near the frequency of the bosonic mode ω. We can clearly

notice in Fig.4.1 a phenomenon of resonance. Indeed, the more the associated energy of a

spin is close toω, the weaker coupling it needs to be polarised in the plane. For ε7, we can even

assume that any non-zero coupling is enough for it to be polarised in the plane at t →∞. The

phenomenon of resonance associates to resonant energies highly efficient exchange processes.

It can be understood for systems that evolve under a TC Hamiltonian. Contrarily, if we choose

any Ri (2.35), as Hamiltonian, their is no change in the efficiency of the exchanges between

the spins and the bosons regarding their associated energies because only one spin is coupled

to the bosons. This supports the consistency of using the TC dynamics as comparison point.

Therefore, we can even say that the steady states we are observing are the results of a relaxation

from a reference state, with a strong efficiency occurring at the resonance, evolving with V .

Nevertheless, thinking of this pseudo dynamics of the steady states evolving with V through a

TC vision helps to understand the phenomenon of resonance but it should not be mistaken

with the real time evolution of a system evolving under the HTC that will be presented in

chapter 5.

Thus, we advice the reader to keep in mind that this initial configuration of the reference state,

highly entropic in the spin sector with a bosonic mode ω in the middle of the energy band,

favours the capability of the system to reach a superradiant-like steady state.

Let us focus on the steady state of the bosonic occupation. The total number of excitations M =
〈b†b〉+〈S tot

z 〉 being constant, this quantity will be complementary to the total magnetisation.

In Fig.4.2 we can observe from which coupling the mean number of bosons almost stops to

change and so from which coupling the system is only reorganising itself in the spin sector, the

bosons becoming strictly a medium available for the spins to exchange excitations. We would

like to recall here the TC Hamiltonian, HTC =ωb†b+∑N
j=1 ε j Sz

j +V
∑N

j=1(b†S−
j +S+

j b) to keep in

mind that in this case the spin collection does need the bath to be able to exchange excitations.

Indeed, in this reference state we have a system which is almost only reorganising in term

of spin excitations from V ≈ 6 by reading the coupling for which the bosonic occupation

〈b†b〉 = 17.5±0.02 (red curve), 17.5 representing a state where the total magnetisation along
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Figure 4.2: Bosonic occupation in the steady-state for the initial state: |17;↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑〉
as a function of V . The total number of excitations is M = 25 and the bosonic frequency is set
to ω= 6.95 in the middle of the energy band.

the z axis cancels, i.e. the spins are half excited (dashed black curve). We notice a really weak

overshoot occurring from V = 10, it contradicts the hypothesis of a monotonic evolution to a

fully plane polarised steady state. Moreover, it will force us to verify if the system does correct

this overshoot when the coupling is pushed further.

In order to further prove what we claimed in this section regarding the fact that this highly

entropic initial state is favouring a superradiant-like steady state, we now look at a radically

different initial spin configuration, which this time is explicitly chosen to have low entropy.

Having every spin down polarised and pushing moreover the bosonic frequency near the edge

of the available spin gaps, we therefore have a configuration which, at low coupling, would be

at very high energy in the global TC Hamiltonian spectrum. Close to the edge of the spectrum,

the low density of states should prevent efficient relaxation.

We observe in Fig.4.3 that even with a coupling of 12, which is above the reference state’s Vsup ,

our spins are not yet plane polarised which confirms our assumption that an initial spin con-

figuration highly entropic would give us the smallest Vsup . Nevertheless, by presenting a plot

where the superradiant-like state is not reached, we can wonder if it is possible to asymptoti-

cally attain this state. The presence of a substantial overshoot, for the spins whose associated

energy is far fromω and for couplings V Ê 5, adds additional doubts about whether the system

does reach a superradiant-like steady state at V →∞ with this initial spin configuration and
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Figure 4.3: Local magnetisation in the steady-state for the initial state: |25;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉
as a function of V . The total number of excitations is M = 25 and the bosonic frequency is set
to ω= 13.5 near the maximum of the energy band.

this value of ω. To comment further, even at V = 12 we still see important deviations (for spins

with gaps εi far from ω) from the state where the spins are fully in-plane polarised. Indeed

the low index spins (small gaps) have actually acquired a weak up polarisation, while at this

value of the coupling, the highly entropic state did reach an in-plane polarised steady state

configuration. Thereby, Fig.4.3 completes Fig.4.2 by showing where the overshoot is occurring

locally: it appears far from the resonant spins. Consequently, we show what happen when we

push the coupling further to investigate if the system is able to correct this overshoot.

In Fig.4.4 we present plot of 〈Sz
i 〉 for couplings between V = 0.05 and V = 60. We observe

that in such a case, being far (high order in the spin configuration is as far as possible from a

superradiant-like spin configuration, by having a total magnetisation the furthest possible

from zero) from a supperradiant-like state, still involves a Vsup much greater than in the

reference state. Moreover, we have to push the number of excitations up to M = 50 to be able

to observe for V = 40 and V = 60 a correction for the overshoot previously mentioned. The idea

that increasing M is helping the redistribution of the excitations can be confirmed by looking

at the spin of index 0 in Fig.4.4 and in Fig.4.3 at V = 1, the mean value of the magnetisation is

closer to 0 when there is more excitations. This confirms the hypothesis that having a lot of

excitations available to carry out the redistribution enhances it. Eventually, in spite of these
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4.2. Numerical results

Figure 4.4: Local magnetisation in the steady-state for the initial state: |50;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉
as a function of V . The total number of excitations is M = 50 and the bosonic frequency is set
to ω= 13.5 near the maximum of the energy band.

unfavourable conditions, the system approaches to the fully plane polarised state for a very

strong coupling and we can imagine that it should even reach that state with a coupling even

stronger (and with more excitations), unfortunately we were not able to push our numerics

for a greater V . Nevertheless, this plot supports the idea that the fully plane polarised state

should be the final state in every case for a strong enough coupling. These observations also

support our vision of a pseudo-dynamics evolving with the coupling because the system has

an infinite time to reorganise, so different initial spin configurations should lead to the same

steady states, but this is not what we are observing, it is highly coupling dependent. In other

words, when the orientation of the spins and ω are already tuned, the two "weapons" we have

to help the system to reach a superradiant-like steady state is to increase V and/or M .

We will study with more details the effects that prevent the system from reaching such a state

in the next subsections and illustrate, with more examples, the phenomena noticeable in the

reference state. We will therefore study how the frequency of the bosonic mode, the initial

spin configuration and the total number of excitations will affect this pseudo dynamics and

our capability of reaching this final state of reference.
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4.2.2 Resonance with the bosonic modeω

We now describe what is happening to the steady state when we explicitly change the value

of ω to confirm the observation made through the reference state that resonant spin get in

plane-polarised at weak coupling.

We start the discussion by showing four graphics of the local magnetisation of four different

states differing by their value of bosonic frequency ω= 13.5,10.5,6.95 and 0.5. Doing so, we

are able to discuss two cases where ω will be near one extreme value of one εi and far from the

other extreme value, another case where ω is the same as in the reference case, in the middle

of the value of the εi and one intermediate case. The initial spin configurations are fully down

polarised states for the four graphics so we will only discuss the effect of the bosonic mode in

this subsection.

(a) ω= 0.5 (b) ω= 6.95

(c) ω= 10.5 (d) ω= 13.5

Figure 4.5: Local magnetisation in steady states for the initial state: |25;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉 for a
variety of coupling constants V and four different bosonic frequencies. The total number of
excitations is fixed at M = 25.

First of all, in the four group of plots presented the local magnetisation does not fit to our

criterion 〈Sz
i 〉 < 10−2∀i , we even have 〈Sz

i 〉 > 10−2∀i . The system is not able to reach a state as

plane polarised as the reference state for V = 10 (or even V = 12), even when ω= 6.95. From

that point we confirm that Vsup is greater for the fully down polarised initial spin configuration

than for the reference initial state. A more detailed discussion about the impact of the initial

spin configuration is presented in the next subsection. Through these graphics, we also
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confirm that for the spins whose associated εi are near ω the coupling is more effective than

far fromω. Indeed the value of the local magnetisation for near-resonant spins is almost equal

for a weak coupling, V = 0.05 for instance, as for a greater coupling, for instance V = 10.

While, in a purely TC like model, this type of resonant behaviour makes perfect sense since

since spin-flips whose gap corresponds to the bosonic frequency would be favoured, one

needs to keep in mind the fact these results would also apply for a "central spin" Hamiltonian

with only the central spin coupled to the bosonic mode. In other words, in the TC case the bath

of bosons continuously exchanges excitations with all the spins, it flips them up and receives

the excitations when they flip down, these processes being very effective at the resonance. The

spins can only communicate and exchange excitations among themselves through the bosonic

bath. Whereas in a central spin case, the bosonic bath flips only one spin and has to wait for

its de-excitation in the collection of remaining spins to be able to give it another excitation.

Thus, the evolution under these two Hamiltonians is substantially different but, because they

share the same steady states, in chapter 5 we study the real time dynamics associated to these

Hamiltonians to have a better understanding of their differences.

On the other hand, one could expect the local magnetisation to exhibit a monotonic behaviour

in ω−εi . However, particularly clear for V = 2 in panel (b), the non-monotonic behaviour in

ω−εi does not find a simple intuitive explanation in the TC model. But, when considering the

other underlying conserved charges, the terms
~Si ·~S j

εi−εi
make it clear that the distance from the

resonance ω−εi is not the only parameter controlling individual spins, but the "position" of

their individual gap compared to the other spins’ gap will also affect its behaviour.

The fact that any given integrable model in the class studied here can show steady state

properties which is not intuitively seen by looking exclusively at its Hamiltonian is one of the

main conclusions of this work. Every evolution of the same initial spin configuration with

N , M , ω and the εi equal leads to the same steady state because the conserved quantities

are identical in every cases, they play the same role. However, because we are considering

different combinations of them, the Hamiltonians, to rule the evolution of a given system, the

dynamics will be different.

In Fig.4.6 a plot of the bosonic resonance for the four same states only differing by ω is

presented. The curves for ω= 0.5 and 13.5 (red and dashed black ones) in Fig.4.6 are identical

and that indicates a symmetry between these two states in their global behaviour. In these two

cases, the roles of the spin of index 0 and of the one of index 14 are exchanged. By comparing

these two curves with the two last ones (blue and green), we can notice they cross the line,

(undershoot) showing the number of bosons present when the total magnetisation of the

system cancels (black line), for a greater V . This undershoot in bosons is complementary of

the overshoots in magnetisation of Fig.4.5. In the previous section, we saw that an overshoot

in magnetisation is occuring before the spins become plane-polarised, so the sooner it is

reached the smaller Vsup should be. Thus we can conclude that the more ω differs from the

middle of the energy band, the greater Vsup is. This conclusion is highly dependent on the
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Figure 4.6: Bosonic occupation in steady states for the initial state: |25;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉 for a
variety of coupling constants V . The total number of excitations is M = 25 and the bosonic
frequency are set to ω= 0.5,6.95,10.5,13.5.

definition we have chosen for Vsup . Indeed, only one spin can prevent a coupling from being

defined as Vsup by having a non-zero magnetisation. Having ω in the middle of the energy

band lower the maximum difference ω−εi possible and therefore favours the possibility to

have a weak Vsup .

The plots in Fig.4.7, showing the local magnetisation for the same initial spin configuration

as in the reference case, illustrate perfectly what we have been able to confirm all along in

this subsection. Indeed, only ω (here it is equal to 0.5) differs from the reference graphic and

we can clearly observe the system can not reach the fully plane polarised state for V = 12,

more particularly for the εi far from ω despite the fact the spins are alternated, in their initial

configuration, as for the reference state. Even at those coupling, we still still see a strong

memory of the initial which retains the initial spin configuration which is precisely the topic

of the next subsection.

4.2.3 Initial state

In this section we discuss the importance of the initial spin configuration through the four

graphics of Fig.4.8 showing the steady state of the local magnetisation when the initial spin

configurations are different.
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Figure 4.7: Local magnetisation in the steady state for the initial state: |17;↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑〉
for a variety of coupling constants V . The total number of excitations is M = 25 and the
bosonic frequency is set to ω= 0.5, near an edge of the energy band.

In Fig.4.8 four graphics of local magnetisation are shown, graphic (c) is the reference one we

recall to help the comparisons. For the three others we start from an initial spin configuration

less entropic than in the reference graphic. As a result, we see that in each case Vsup is higher

than in the reference state (Vsup = 10), because some local magnetisation do not cancel for

V = 10 in (a), (b) and (d). The bosonic frequency being fixed in the middle of the energy

band for each plot, we study here the impact of the initial spin configuration on the steady

state. The main differences between the reference initial state and the one in (a) are the

total magnetisation of the system, which are respectively 0.5 and −7.5 and the neighbouring

environment of each spin. In the reference state each neighbouring spin is alternated whereas

all the spins are pointing in the same direction in the other case. The total magnetisation of

the fully plane polarised state is zero, so one argument to explain why Vsup is smaller in the

reference than in all the cases presented in this subsection is that the initial state of reference

is simply closer in total magnetisation to a steady state fully plane polarised. Moreover, we

can extend the analysis made for (a) to (b) and (d) as well and affirm that Vsup is clearly a

function of the initial configuration of the spins. This impact of the initial spin configuration

enables us to introduce the notion of the memory of the initial configuration. The more an

initial spin configuration prevent the system from reaching a superradiant-like state, the more

the memory of the initial state is strong. Thus, we can say that a state highly entropic in its

spin sector will have a weak memory of its initial configuration and so will lower Vsup .

We now explain what is locally the effect of an alternation of spins. We can observe that this

divergence from the reference steady state is happening mostly when the spins in their initial
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(a) Initial state: |25;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉 (b) Initial state: |23;↓↓↓↓↓↓↓↓↓↓↓↓↓↑↑〉

(c) Initial state: |17;↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑〉 (d) Initial state: |16;↑↓↑↑↓↑↓↓↑↑↑↑↑↓↓〉

Figure 4.8: Local magnetisation in steady states for various initial states and for a variety of
coupling constants V . The total number of excitations is M = 25 and the bosonic frequency is
set to ω= 6.95.

configuration are not alternated, by looking at the spin of index 1 and 13 in the graphic (d),

and also when the energy εi of the spins is far from ω (as explained in the previous section).

The initial spin configuration of graphic (d) has been chosen to have the least recognisable

patterns as possible, that is why we can observe many local different spin configurations. In

graphic (d), comparing the ensemble of spins with indexes 3,4 and 5 to the one of spins with

indexes 9,10 and 11 confirms that an initial alternated spin configuration favours a steady

state plane polarised. Therefore, we understand that even locally the configuration of spins in

the initial state has an impact. Indeed, for a spin having its neighbours oriented in the same

direction prevent it from reaching a plane polarisation. So we can say that there is a memory of

the initial state, even locally, and that its effect competes with the coupling so starting far from

the a strict alternation of spins, which is the most favourable initial state, involves Vsup > 10.

The graphic Fig.4.9, showing the bosonic occupation in terms of V , illustrates the effect of the

alternation of spins on the global system. The curves representing the evolution of the bosonic

occupation of states containing entropic spin configuration in their initial states (green and

black ones) reach their final values, corresponding to a cancelling total magnetisation among

the z axis, for V ≈ 8 whereas the two other curves are still decreasing for V = 15. This behaviour

confirm that an entropic initial state in the spin sector is favouring a fully plane polarised

steady state. Another aspect Fig.4.9 is confirming is that having more excitations helps the
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Figure 4.9: Bosonic occupation in the steady state for various initial states:
|25;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉, |23;↓↓↓↓↓↓↓↓↓↓↓↓↓↑↑〉 and |16;↑↓↑↑↓↑↓↓↑↑↑↑↑↓↓〉 as a function of
V . The total number of excitations is M = 25 and the bosonic frequency is set to ω= 6.95.

redistribution of the excitations. It is visible when looking at the curves corresponding with

initial state containing more bosonic excitations (blue and red ones), their slopes is more

important than the ones of green and black curves. Nonetheless, in that scenario, having

more initial bosonic excitations implies having an initial spin configuration with few spin

alternations which prevent the system from reaching a superradiant-like steady state. As a

conclusion, the memory of an initial spin configuration closer to a fully planed polarised one

is more efficient than having a lot of bosons in the cases presented in this subsection.

The next subsection deals with what happens to the system when a spin flip occurs near the

resonance.

4.2.4 Spin flip at the resonance

In this subsection, we discuss the outcome of a spin alternation occurring at the resonance

by comparing two plots (Fig.4.10) with the same initial state in terms of spin configuration.

All the spins are pointing down except the two last ones pointing up in both cases (as for the

second graphic of the last subsection), the only difference being the frequency of bosonic

mode.

In Fig.4.10, we present two plots of the local magnetisation. For plot (b), both an alternation

in the spin orientation in the initial state and the resonance occur in the same area. We
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(a) ω= 0.5 (b) ω= 13.5

Figure 4.10: Local magnetisation in steady-states for two initial states for a variety of coupling
constants V : |23;↓↓↓↓↓↓↓↓↓↓↓↓↓↑↑〉 in both case but for two different bosonic frequencies.
The total number of excitations is M = 25.

observe in (a) that the resonance and the spin flip occur far enough so that the two different

effects do not affect each other. For this graphic, all the visible phenomena have already been

explained in the previous subsections, either the resonance far from ω= 6.95 and the initial

spin configuration prevent the system from reaching the fully plane polarised state for V = 7.5

(Vsup > 7.5). The memory of the initial state we introduced in last subsection has two main

consequences: an initial alternated spin configuration lower Vsup and for weak V the spins

have a local magnetisation near their initial one (except near ω). In (b) we observe that the

resonance almost kills the effect of the memory of the initial state in its vicinity, near ω= 13.5,

it is hard to guess the initial state of the spins of indexes 13 and 14. The system has almost lost

the information about its initial spin configuration because redistributions of the excitations

is very effective there. However, in plot (b), it is visible that the memory of the initial state is

not entirely killed at the resonance.

4.2.5 Excitation number M

Having already discussed that a large number of bosonic excitations might enhance the

capability of the system to reach a fully plane-polarised state for the spins for a small coupling,

we present here different plots of the local magnetisation for different values of M .

Fig.4.11 shows four different plots of the local magnetisation: (a) and (b) have a fully up initial

polarisation and differ by M wherehas (c) and (d) have a fully down initial polarisation and

differ by M . We will compare (a) and (b) then (c) and (d) to confirm our assumption on the

impact of having a lot of bosonic excitations available. Knowing that without the introduction

of the bosonic bath, the initial configuration fully up and fully down are equivalent, we will as

well compare (a) and (c) then (b) and (d) to see if this equivalence holds with the presence of

the bosonic bath.

The behaviour of the system confirms the initial guess: the more total excitations M there are,
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(a) Initial state:|0;↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑〉 (b) Initial state:|85;↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑〉

(c) Initial state:|15;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉 (d) Initial state:|100;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉

Figure 4.11: Local magnetisation in steady-states for various initial states and for a variety of
coupling constants V . The total number of excitations is M = 15 for (a) and (c) and M = 100
for (b) and (d) and the bosonic frequency are set to ω = 13.5 (because the effects are more
visible than when we take ω= 6.95).

the more Vsup is small. This can be seen with the couples of plot (a) and (b) or (c) and (d), the

magnetisation of the spins is closer to be zero for (b) and (d) than for (a) and (d) for all the

spins and for any coupling. Thus, the previous conclusion can be rephrased in: you reach a

given magnetisation state within a smaller V when you have more bosonic excitations. That

also explains why the two curves at V = 7.5 are different, it is because having an important

number of bosonic excitations "accelerates" the effect of the coupling. This analysis enables

to understand the interest of being able to modify the total number of excitations easily in our

numerics because we have different steady states in terms of magnetisation just by changing M

[58]. In plot (a), because the initial spin configuration is fully-up polarised, there is absolutely

no boson a t = 0 in the system. This explains why the redistribution of the energies seems to

be really inefficient for the spins of indexes 12, 13 and 14, even being near the resonance. The

absence of bosons leading to an inefficient redistribution process, it corroborates the fact that

having a lot of them enhances it. Having explained in subsection 4.2.3 that there is a memory

of the initial polarisation of the spins at weak coupling, by promoting a fully plane polarised

steady state the bosonic excitations favour a loss of memory of the initial spin configuration.

We now, use the couples of plots (a) and (c) then (b) and (d), to state if there is a difference or

not in having an initial fully up or fully down polarised. For a spin- 1
2 only realisation, going
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from fully up to fully down is equivalent to change the axis of quantification which induces no

differences. The comparison between the couples previously mentioned, i.e. between a fully

up polarised initial state and a fully down one, at fixed number of excitations, shows it is not

possible to obtain (a) from (c) or (b) from (d) only by changing the axis of quantification. In

both cases, the local magnetisation is positive for the spins of indexes 0 and 1 from a certain

coupling V . More precisely, in (a), the local magnetisation stays positive for every coupling

and every spin presented, in (b) the local magnetisation stays positive (or very close to zero)

as well and in (c) and (d) the local magnetisation of spins of indexes 0 and 1 becomes positive

for respectively V = 7.5 and V = 6. It clearly indicates that the system possesses a preferred

direction of magnetisation that is not existing in the absence of bosonic bath. Thus adding

a bosonic bath even with zero bosonic excitations at t = 0, as in plot (a) of Fig.4.11, changes

with certainty the dynamics and the steady states of our systems. It is not surprising because

adding an empty bosonic bath enables the excited spins to transfer their excitations to bosonic

bath (if the coupling is not zero). This difference was introduced in subsection 2.2.1 where

it was explained why |M ;↑↑ . . . ↑〉 is not a proper vacuum (i.e. being eigenstate of S2(u)) state

whereas |0;↓↓ . . . ↓〉 is. Having such a deep distinction in the definition of their associated

pseudovacuum is the reason why we are witnessing a preferred polarisation direction in

Fig.4.11. This preferred polarisation direction explains the visible overshoot at strong coupling

for initial down polarised spin configurations and the reluctance of the up polarised spins

to go to a zero polarisation. Eventually, having bosons in interaction with the collection of

spins- 1
2 has several different impacts: it favours the redistribution of the excitations and by

promoting the up polarisation, it causes an overshoot over the zero magnetisation for the

spins originally down and slows down the progression to a zero magnetisation for the spins

originally up.

The four curves of Fig.4.12 represent the available bosonic occupation (normalised by the

number of spins) in terms of V of the four cases whose local magnetisation has been previously

studied in this subsection. In fact, the finite number of spins N means that, for M>N a minimal

number of bosons M-N will always be present since the system can only accommodate N spin

excitations. While for M = N = 15, we plot b†b/N , for M = 100 we first remove M −N from

the occupation and plot the fraction of available bosons b†b − (M −N )/N which are present

in the steady state. The global behaviour of the system in those cases, studied here through

the evolution of the number of bosons, confirms what we just have explained. The black

line representing a zero total magnetisation is approached for weaker V when the initial spin

configuration is down polarised because the up polarisation is a favoured direction. Indeed

for M = 15, the polarisation population of bosons is varying more when the initial state is up

polarised (red curve) than down polarised (blue curve), i.e. the bosons are giving with more

efficiency their excitations to the spins to flip them than when they are accepting excitations

from the spins when they flip down. Comparing the curves corresponding to M = 15 (blue

and red) with the ones corresponding to M = 100 (green and black) confirms that having more

bosonic excitations enhances the global redistribution of the excitations in the system because

in Fig.4.12 we see that the green and the black curve reach for a weaker coupling V the state of
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Figure 4.12: Available bosonic occupation (divided by the number of spins)
in the steady-state for various initial states:|0;↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑〉, |85;↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑〉,
|15;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉 and |100;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉 as a function of V . The bosonic frequency is
set to ω= 13.5.

zero total magnetisation. It corroborates the fact that Vsup is smaller for systems containing

an important number of bosonic excitations.

Eventually, in all the subsections, we showed that comparing V to a time was consistent to

describe every effect that occurs in our system in our attempt to describe its behaviour without

using an analytic description. Indeed all the conjectures made through the graphic analysis of

the reference state have been confirmed.

Finally, the many conjectures have been done in subsection 4.2.1 have all been confirmed

in the other subsections: having an initial state highly entropic in the spin sector, a bosonic

frequency in the middle of the energy band and an important number of available bosonic

excitations favours the capability of the system to reach a fully plane polarised (superradiant-

like) steady state for a weak coupling V . It supports our vision of the evolution as a function

of the coupling of the steady states, i.e. the system tries to relax to a superradiant-like steady

state but the local conserved charges prevent this scenario from happening for weak coupling.

Eventually, can say that all along this section, the pseudo dynamics in V for the steady states

we derived was a satisfying picture that enabled us to understand the asymptotic physics of

the systems we are considering.

In the next subsection we complete our study by following individually the evolution of few

spins.
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4.2.6 The complexity of the evolution of one spin

Through a plot of the local magnetisation of four spins as a function of the coupling V , we

aim to show that access precisely to the evolution of each spin as a function of V would be a

difficult task.

Figure 4.13: Local magnetisation of four spins, associated with ε0,ε4,ε9 and ε14 when V goes
from 0 to 15 with M = 25 and ω= 13.5.

Fig.4.13 shows the evolution as a function of V of the four spins, with associated energies ε0,

ε4, ε9 and ε14, from the following initial state |25;↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓〉 with the bosonic frequency

set at ω= 13.5. In other words, because Vsup > 15 in such a case, these the magnetisation of

these four spins should not be zero together. At first glance, we see that the behaviour of the

magnetisation is really different regarding ε, at V = 15 their magnetisation is not the same

and they do not reach this value with the same way of evolving. We can also notice that as

we said before, the spin whose associated εi is the nearest of ω reaches its final value for a

weaker coupling than other spins. Moreover, even isolated none of these curves shows a power

law or an exponential decay so we could not capture their behaviour by trying to fit them to

well-known functions. However, we discovered by trying to fit these curves that there exist

mainly two regimes in the evolution of the magnetisation, one for weak values of the coupling

and one for strong values. We will study with more details these two regimes through the real

time dynamics in next chapter.
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4.3 Comparison between the diagonal ensemble and the Generalised

Gibbs Ensemble

Our previous study in the DE was done numerically and was, de facto, quantitative. Another

ensemble that can be used to carry out efficient quantitative calculations for quantum inte-

grable models is the Generalised Gibbs Ensemble (GGE). It has the same philosophy as the

Gibbs canonical ensemble but it is taking into account other conserved quantities than the

energy of the system to describe the steady states of integrable models. In this section, the

GGE is introduced in a first part. We explained how is define the density matrix of such an

ensemble and how we numerically compute the large time expectation values of observables

of interest. The second part of this section compares results obtained in the DE and in the

GGE in specific cases.

4.3.1 Obtaining the Lagrange multipliers of the density matrix

Since it has been introduced by Rigol et al [51], the GGE has been studied a lot being able

to predict the mean value of observables at large time for integrable models. It is supposed

to be able to describe the steady state, after equilibration, of isolated quantum integrable

systems. Even if the systems we are considering are composed of a collection of spins- 1
2

interacting with a bath of bosons, the global system is isolated, it does not interact with an

external environment and so the total number of excitations is conserved. Moreover, in our

case the proximity between the expressions, of the scalar products in the spin- 1
2 realisation

(1.39) and in the spins- 1
2 boson realisation (4.2) for instance, confirms that even if our spins- 1

2

collection is interacting with a bath of bosons, our systems are isolated and a description by

the GGE could still be considered. It is a statistical representation where we can write, as in

the canonical ensemble, a density matrix dependent of the initial conditions. Thus, the mean

value of a given observable Ô in the GGE is simply given by:

〈Ô〉GGE = Tr
[
ρGGE Ô

]
, (4.7)

with

ρGGE = 1

ZGGE
e−

∑
k βk Rk , ZGGE = Tr

[
e−

∑
k βk Rk

]
. (4.8)
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The density matrixρGGE is normalised by the partition function ZGGE , the Rk are the conserved

quantities of our model defined in (2.35) and the βk are the Lagrange multipliers we fix, as

in the canonical ensemble with the temperature, by looking at the initial values of every

conserved quantity of the model:

〈ψ0
∣∣R j

∣∣ψ0〉 = Tr
[
ρGGE R̂ j

]= 1

ZGGE
e−

∑
k βk Rk R j . (4.9)

Despite the fact that an unitary quantum evolution can not lead to a statistical relaxation, it

is normal that the GGE does not describe the global system behaviour. But, we can wonder

if this statistical ensemble could describe the local observables in the steady state of a given

integrable model.

The purpose of this section is to oppose results obtained in the DE as in 4.2 to results obtained

in the GGE. We want to know if the dynamics at very large time of the models ruled by the XXX

Generalised Gaudin Algebra can be predicted by the use of the GGE. The question is worthy to

ask because in certain integrable cases it has been shown that the GGE as it is defined in (4.8)

does not give correct results, see [84, 85], (for the Heisenberg XXZ anisotropic spin- 1
2 chain).

The first step to be able to carry out the quantitative study of the Gaudin models in the GGE, is

to compute numerically the Lagrange multipliers appearing in (4.8). We find them numerically

by solving the following set of equations, whose variables are the βk :

F j =
∑

dimH

 e−
∑N

k βk r h
k r h

j∑
dimH

[
e−

∑N
k βk r h′

k

]
−〈ψ0

∣∣R j
∣∣ψ0〉 = 0, (4.10)

which directly comes from (4.9). In (4.10), the sum over the dimension of the Hilbert space

(
∑

dimH ) goes over the elements with the index h (or h′ for the sum present in the denomi-

nator). Because the coefficients F j depend of sums running on all the Hilbert and because

these sums will need to be recalculated at each loop of our algorithm, solving these equations

is actually a heavy numerical task. Once again to solve this set of equations we are using a

multi-linear Newton’s algorithm as the one used in chapter 3. Therefore, we need to define the

Jacobian matrix JF of F whose elements are given by:
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∂F j

∂βi
= ∂

∂βi
(Tr

[
ρGGE R j

]−〈ψ0
∣∣R j

∣∣ψ0〉)

= ∑
dimH

r h
j

(
(−r h

i )e−
∑N

k βk r h
k
∑

dimH e−
∑N

k βk r h′
k +e−

∑N
k βk r h

k
∑

dimH r h′
i e−

∑N
k βk r h′

k

)
Z 2

GGE

.

(4.11)

In the expression of the matrix elements of the Jacobian matrix we have to deal with double

sums over the dimension over the Hilbert space which add one order of magnitude in the

number of operation needed numerically. Fortunately, the expression of the r h
j (2.39) belongs

to the numerically efficient expressions,depending on the Λi , we derived. Knowing every

matrix element of JF , the Newton’s algorithm will converge to our set of βi denoted ~βl (with

the index l denoting the l th loop of the Newton’s algorithm), solutions of (4.10), using the

following update:

( ~βl+1 − ~βl )JF (~βl ) = F (~βl ). (4.12)

The Jacobian matrix requiring also a lot of numerical resources has also to be recalculated

at each loop. As a consequence, in this case the Newton’s algorithm is not efficient to use

numerically by containing many times the sum over the dimension of the Hilbert space. As

one will see in next chapter, the computation using the GGE is more laborious than our

computation to find the real time dynamics of a given system. This study using the GGE is

more a curiosity on the validity of the description than a presentation of a practical numerical

method to access the steady states of quantum integrable models.

4.3.2 Local magnetisation in the GGE and in the DE

In this subsection we present plots of the local magnetisation for small systems, one of N = 7

spins- 1
2 and M = 13 total excitations and one of N = 7 spins- 1

2 and M = 113 total excitations

working in both ensembles. The method to obtain the large time expectation values of the

local magnetisation in the DE is the same as the one used in the section 4.2 and the method

used to obtain these expectations values in the GGE has been detailed previously in subsection

4.3.1. A comparison of the expectation values of the local magnetisation obtained in those two

ensembles is carried out to see if there is differences, in the steady state, for local observables.

The comparison is done graphically by trying to superpose curves representing the local

89



Chapter 4. Steady State properties: Local magnetisation and bosonic occupation

magnetisation obtained using the GGE to curves obtained using the DE.

(a) Initial state:|13;↓↓↓↓↓↓↓〉 (b) Initial state:|9;↑↓↑↓↑↓↑〉

Figure 4.14: Local magnetisation in steady-states for two initial states for a variety of coupling
constants V . The total number of excitations is fixed at M = 13 and the frequency of the
bosonic mode is set at ω= 2.99. The dashed lines represent results obtained by using the GGE
whereas the full lines represent results obtained in the DE.

In Fig.4.14, we see that the curves corresponding to the local magnetisation obtained through

the GGE, in (a) and (b), do not superpose to the ones we can get using the DE, so we can

directly conclude that the GGE does not give satisfying results in every case. Indeed, the

dashed lines do not strictly overlap the full lines in the presented plots (a) and (b). The local

magnetisation was though an appropriate candidate to a potential description by the GGE.

Therefore, one important conclusion we can already make is that the GGE as it is defined

in the last subsection fails to perfectly describe the results one can find for the XXX Gaudin

models. Nevertheless, we can study how the validity of a GGE description is affected by the

parameters of our system, i.e. ω, M and the initial spin configuration. Thus using Fig.4.14 and

Fig.4.15, we give few more details about how the parameters act on the discrepancies between

the GGE and the results given by the DE.

For a coupling V = 0, the descriptions using the two ensembles are trivially equal because it

is the definition we have chosen (4.9). Looking at Fig.4.14 (b), the gap between the curves

obtained using the GGE and the ones obtained using the DE increases with the coupling

between V = 0.05 (V = 0 in fact) and V = 0.25 and is reduces for V = 0.5. Indeed, the easiest

way to arrive at this conclusion is to look at the spin whose associated energy is ε0 in (b), the

gap between the dashed lines and the full lines is smaller for V = 0.05 and V = 0.5 than for

V = 0.1 and V = 0.25. In a nutshell, it seems we are witnessing a range of coupling that worsens

the validity between GGE and DE and then, when the coupling increases, the validity seems to

be better.

In Fig.4.14, the two curves presented are almost translated, which excludes the conclusion that

near the resonance of the bosonic mode ω= 2.99, the validity between GGE and DE is always

better than far from it. Moreover, by looking at both Fig.4.14 and Fig.4.15 and comparing 14(a)

to 15(a) and 14(b) to 15(b), we can study the impact of M on the validity between GGE and
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(a) Initial state:|113;↓↓↓↓↓↓↓〉 (b) Initial state:|109;↑↓↑↓↑↓↑〉

Figure 4.15: Local magnetisation in steady-states for two initial states for a variety of coupling
constants V . The total number of excitations is fixed at M = 113 and the frequency of the
bosonic mode is set at ω= 2.99. The dashed lines represent results obtained by using the GGE
whereas the full lines represent results obtained in the diagonal ensemble.

DE. We could naively expect that increasing M would dampen the discrepancies between the

two ensembles. The gap between the dashed lines and the full lines in Fig.4.15 (a) is really

tenuous which, with respect Fig.4.14 (a) may confirm our expectation. Yet, comparing plot

(b) in Fig.4.15 and Fig.4.14 contradicts the previous assumption because we can observe in

Fig.4.15 (b) that the gap at V = 2 is clearly greater than the one for V = 0.5 in Fig.4.14 (b).

For the initially completely down polarised we have considered, increasing the number of

bosonic is improving the agreement between the two ensemble whereas it is not what we are

observing for state with a highly entropic initial spin configuration. Therefore we can say, that

the bosonic excitations propensity to improvement the validity is dependent on the initial

spin configuration.

The graphical comparison carried out in this section shows that we can not use the GGE as

it is defined to predict the steady states of our rational Gaudin models. It is not necessarily

surprising because we could have expected that the definition of the GGE presented in this

section contains an insufficient set of conserved quantities to be able to describe the behaviour

of observables in the steady state as it is the case for some other isolated quantum systems.

In [86], it is shown that for Majorana free fermions treated in Quantum Field Theory, the

GGE needs that non local laws of conservations are taken into account in the definition of

the density matrix of the GGE. In addition, it was also shown in [84, 85] that the GGE was

not able to describe the Heisenberg XXZ spin- 1
2 chain which is integrable by comparing to

results obtained by a quench-action method. Once again, the problem lies in the locality of the

conserved charges. Adding quasi-local conserved charges seems to have enabled to describe

an adapted GGE to the problem of the Heisenberg chain [87].

The conserved charges we are considering (2.35) contain a local term (εi −ω)Sz
i and non-local

terms
∑N

j 6=i
2V 2

εi−ε j
~Si ·~S j . By assuming the GGE, as we defined it, correctly fixes the value of our

conserved charges in the numerical treatment we are using, we would get the right values
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for the local magnetisation only when the mean value of the non-local terms would cancel

(meaning the spins would be orientated randomly). However in 4.2, provided the coupling

is of the order of Vsup or above, in the steady state we can observe a fully plane polarisation

of the spins along the z axis (what we have called superradiant-like state) which is clearly

opposed to have spins orientated randomly. That is why the numerical discrepancies we have

between the GGE and the DE are not surprising in our case even if the systems we are working

with are integrable and isolated.

4.4 Conclusions

In this chapter, we have explicitly studied the steady states of a class of quantum integrable

models: The rational (XXX) Richardson-Gaudin models. The objectives were numerous, the

mathematical work has a numerical interest, we made use of it to obtain plots of the local

magnetisation and the bosonic occupation of the XXX Gaudin models and finally we derived a

global vision of the behaviour of these models relying on these plots.

First of all, we wanted to highlight the rewriting of the form factors using our new variables,

theΛ(εi ), that enabled us to work very efficiently in the DE. Then, we explained repeatedly the

asymptotic properties of our spins collection through a dynamical vision with the coupling V

as evolving parameter. This repetition aimed to convince the reader the consistency of this

vision. The constant comparison with one particular Hamiltonian among our whole class, the

TC Hamiltonian, chosen because it describes the phenomenon of resonance with the bosonic

frequency (which is visible on our plots), helped the interpretation of the results. We want to

insist on TC interpretation in this conclusion, even though all the content of this thesis is valid

for any combination of conserved quantities. To summarise briefly what had been said in the

section 4.2 about the numerical results, for any of their initial configuration, the spins tend

to relax to a superradiant-like (fully plane polarised) steady state provided the coupling with

the bosonic bath is strong enough, we called the coupling necessary to reach that steady state

Vsup . For a highly entropic initial spin configuration, a frequency of the bosonic modeω in the

middle of the energy band and a great number bosonic excitation, Vsup is minimal. However

when the coupling is smaller than Vsup , the relaxation towards a plane polarisation for all the

spins is interrupted. The very existence of Vsup , a critical coupling leading to a fully plane

polarised steady state, is in total accordance with the results of [43], where it is shown that the

superradiance phase is reached in the TC model above a critical value of the coupling gc .

Finally, numerical computations considering smaller systems showed that the Generalised

Gibbs Ensemble, as it was defined in this chapter, is not suitable in many cases to describe

the steady states of the rational Gaudin models. It can be understood by looking at the

expression of the conserved quantities we are considering, they contain non-local interaction.

We observed an agreement between the predictions of the GGE and the results obtained in

the DE only for a fully down-polarised spin configuration coupled to an important number of

bosonic excitations.
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4.4. Conclusions

The question of the formulation of the conserved quantities only in terms of particle number

operators of the GGE is asked in [88],[89] because integrability allows the existence of stable

particles. Thus expressing the GGE in terms of particle content would ensure that we are

working with right conserved quantities. In the case of Gaudin models there would be an

interest of finding N adapted conserved quantities among the infinity we dispose.

93





5 Real Time Dynamics

From chapter 4, we know that regardless the Hamiltonian ruling the dynamics, a given initial

state always leads to the same steady state. The purpose of this section is to study, through data

corresponding to small systems sizes, how the Hamiltonian determines the way we reach this

steady state. The fact we are considering small systems sizes is not altering deeply the physics,

it is just increasing the influence of the finite size effects. Therefore, the numerical data taken

into account in this chapter is enough to draw conclusions on the dynamics of rational Gaudin

models but only constitutes preliminary calculations that call for another study at bigger

system sizes. As in chapter 4, we are able to extract a lot of information with a simple graphic

analysis by comparing different plots. While in chapter 4 no particular choice of Hamiltonian

was required, we need for the work done in this chapter to chose a Hamiltonian to rule the

time dynamics. In order to study this intermediate regime, we compare the evolution of

different systems ruled by two different Hamiltonians. This chapter will also answer important

questions: Does the the local magnetisation of the system reach a final value ? Or, do we still

observe strong oscillations at infinite time ? Does the system really relax ?

This chapter is divided in two main parts. The first one introduces the Hamiltonians we

work with and how we can obtain the real time dynamics of our systems. Finally, the second

part follows the same construction as section 4.2, i.e. for each subsection the influence of

a parameter is discussed. The study of the dynamics we present in this chapter relies on

a comparison between the influence of two Hamiltonians (belonging to class of Gaudin

Hamiltonians): the Tavis-Cummings Hamiltonian and a "central spin" one. The two dynamics

corresponding to these two Hamiltonians will be different and this is not surprising because

the excitations redistribution processes are very different. In the TC Hamiltonian case, all the

spins are exchanging excitations only with the bosonic bath and this exchange is very efficient

at the resonance whereas, in the case corresponding to the "central spin" Hamiltonian, only

one spin is exchanging its excitation with the bosonic bath and this same spin is also coupled

to the remaining spins. In a nutshell, in the TC case the bosonic bath acts as a medium for the

spins to exchange excitations together while in the "central spin" case one particular spin act

as a medium for the spins to exchange excitations with the bosonic bath.
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5.1 Two different Hamiltonians

The expression (4.1) of the mean value of an observable Ô at a given time t was introduced in

the section 4.1. In this chapter, it is the real time dynamics we are interested in and we are

directly using this expression of the mean value without any approximation. Firstly, we are not

reduced to the DE any more which means we have to incorporate, on top of the 2N the scalar

products 〈ψ0
∣∣ n〉, the 22N matrix elements 〈n|Ô |m〉 which drastically increases the numerical

resources required for our computations. Additionally, due to the presence of oscillating terms

e i (En−Em )t , we have to explicitly use the eigenvalues of the Hamiltonian which governs the

dynamics of a considered system.

We remember here that to belong to the class of Hamiltonians for which the results presented

in this thesis apply, a Hamiltonian needs to be of the form H =∑N
i αi Ri +βM̂ ( with theαi and

β arbitrary naturals coefficients, the Ri given by (2.35), N the number of spins and M̂ defined in

(2.2.3)). We have extended the definition of H given in 1.4 to the spin- 1
2 -boson case by adding

βM̂ to it, M̂ being also a conserved quantity (our ensemble collection of spins and bosonic

bath being an isolated system). Having in mind that we want to obtain very different dynamics

leading to the same steady states, we chose to numerically study H0 = R0, a collection of spins

coupled to a bosonic bath through the spin of index 0 and HTC =∑N
i Ri +ωM̂ as in section 5.2.

Explicitly our Hamiltonians are equal to:

H0 = (ε0 −ω)Sz
0 +V

(
b†S−

0 +bS+
0

)
+

N∑
j 6=0

2V 2

ε0 −ε j

~S0 ·~S j , (5.1)

and

HTC =
N∑

i=1

(
(εi −ω)Sz

i +V
(
b†S−

i +bS+
i

)
+

N∑
j 6=i

2V 2

εi −ε j

~Si ·~S j

)
+ω

(
b†b +

N∑
i=1

Sz
i

)

= ωb†b +
N∑

i=1
εi Sz

i +V
N∑

i=1
(b†S−

i +S+
i b)+

N∑
i=1

N∑
j 6=i

2V 2

εi −ε j

~Si ·~S j

= ωb†b +
N∑

i=1
εi Sz

i +V
N∑

i=1
(b†S−

i +S+
i b), (5.2)

where
∑N

i=1

∑N
j 6=i

2V 2

εi−ε j
~Si ·~S j cancels when computing the full sum due to the antisymmetry of

its denominator. One noticeable difference between these two is that in the Tavis-Cummings
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case all the spins exhibit a similar overall behaviour a part from their distance from the

resonance whereas in the H0 case the spin coupled to bosons should show a radically different

dynamics from the remaining spins.

In the next section, we present the numerical results we obtained through plots of the real

time dynamics of the local magnetisation and bosonic occupation for a small system size.

Having to compute the double sum over of the dimension of the Hilbert space present in (4.1),

considering a small system size enabled the numerics to be handled relatively quickly without

having access to clusters of calculations.

5.2 Numerical Results

One should keep in mind that, regardless of the of the Hamiltonian, a given initial state will

always lead to the same steady state. Therefore, even if the plots we present will differ at finite

time t , since we are considering two different Hamiltonians, for infinite time the mean values,

of the local magnetisation and of the bosonic occupation, we are presenting become equal.

5.2.1 Global difference between the two dynamics

First quantity we will look at, bosonic occupation, will describe the global behaviour of a

given system. In the last section, we introduced the idea that looking at the local value of the

magnetisation of a system can not offer many information on the global behaviour of the

system when the dynamics is ruled by H0. Indeed, the behaviour of a spin will be different

whether we are considering the one coupled to the bosonic bath or not. Thus, to be able to

compare the global dynamics of a system under H0 or HT C , we are studying the relaxation of a

purely bosonic state through the evolution of the expectation value of the bosonic occupation.

Up to subsection 5.2.6, we will only consider fully down polarised initial spin configuration

reducing the problem to a bosonic bath emptying its excitations into a collection of spins

down.

Fig.5.1 presents two plots of the time evolution of the bosonic occupation, one ruled by HTC

(a) and one by H0. The different curves of (a) reach the values they will keep in their steady

states within the range of time presented whereas in (b) the curves have not reached their

asymptotic values within the same range of time (except for V = 2). Most of our analysis

relies on the extraction of an approximate characteristic time for which a given observable

expectation value has reached its asymptotic value (due to the remaining finite-size oscilla-

tions). For instance, in the case of the red curve of Fig.5.1 (a), the characteristic time would

be approximately τ= 10 meaning that the number of bosons will simply fluctuate around its

asymptotic value for a time larger than τ.

First of all, an important results of Fig.5.1 is that the expectations values of the bosonic

occupation do reach a true steady state (we highly expect it to be true for the magnetisation),
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(a) HT C =ωb†b +
N∑

i=1
εi Sz

i +V
N∑

i=1
(b†S−

i +S+
i b) (b) H0 = (ε0 −ω)Sz

0+V
(
b†S−

0 +bS+
0

)
+

N∑
j 6=0

2V 2

ε0 −ε j
~S0·~S j

Figure 5.1: Evolution of the bosonic occupation as a function of the time for a variety of
coupling constants V governed by two different Hamiltonians. The initial state is |13;↓↓↓↓↓↓↓〉
and the bosonic mode is set at ω= 2.99 in both cases.

after a relaxation of the system during a characteristic time. We observe that in the case

of HTC the expectation values reach their coupling dependent asymptotic values within a

characteristic time τ going from τ≈ 40 (for V = 0.05) to τ≈ 10 (for V = 2). Thus, the relaxation

of the bosons is faster when the coupling with the collection of spins increases, in other words

the more the bosons are coupled to the spins the faster they redistribute their excitations. The

same phenomenon is seen in (b) for H0, however at weak coupling the relaxation is slower

than HTC . The plots (a) and (b) are presented for the same time span, we can see without

any doubt that in the case of H0, the characteristic times are larger than for HTC , up to V = 2,

where the characteristic time seems to be of the same order in (a) and (b). We give a physical

explanation to this behaviour in H0: when the bosonic bath gives an excitation to the only spin

coupled to it, it has to wait the reorganisation of the spins among themselves to be able to give

another excitation to the coupled spin (the spin flip from up to down to give its excitation to

the spins), this is a very long-lasting process at weak coupling whereas at strong coupling this

bottleneck in the exchanges has disappeared, the coupled spin is always available to receive

an excitation.

In the Tavis-Cummings case, the bosonic bath can exchange its excitations with all the spins

enabling the systems to reach his asymptotic global configuration for the bosonic excitations

efficiently even at weak coupling . Having in mind this global difference between two systems

ruled by HT C or H0, we will now use the numerical data about local magnetisation to complete

the analysis we have just made by studying the local dynamics of a system.

5.2.2 Resonance with the bosonic mode

In 4.2.2, we learned that the more the associated energy εi of a spin is close to the frequency

of the bosonic mode ω, the more this spin has a near zero magnetisation along the z axis in
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the steady state. For a time bigger than τ, we will recover this behaviour, nevertheless in this

subsection we wonder if the being close to the bosonic resonance influences the dynamics of

a system as well. To answer this interrogation, we plot for HTC the local magnetisation time

dynamics of four spins, one of them, in (b), is near the resonance and another one, in (d), is at

the edge of the energy band.

(a) Sz
1(t ) (b) Sz

3(t )

(c) Sz
5(t ) (d) Sz

6(t )

Figure 5.2: Evolution of the local magnetisation of four different spins as a function of the time
for a variety of coupling constants V governed by HT C . The initial state is |13;↓↓↓↓↓↓↓〉 and
the bosonic mode is set at ω= 2.99 in every case.

To begin with, we can notice on the plots (a) and (c) of Fig.5.2 that the dynamics of the

spins is symmetric with respect to ω. Indeed, absolute values of the difference between the

associated energies of S1 and S5, read ε1 = 1 and ε5 = 5, and ω are (almost) equal and the

long time averages at all time of the local magnetisations in both plot (a) and (c) are identical.

Additionally, by looking at the four plots, we have, as expected, long-time averages of the local

magnetisation around zero for weaker V when the associated energy of the spin of interest is

closer to ω.

Finally, by looking at all the curves for V = 1, we can observe that the characteristic time τ is

not very different, it is easy to see in (a), (c) and (d) by looking at the cyan curve that τ≈ 20,

we also find τ≈ 20 for the black curve in (b). Thus, in every case and for all the values of the

coupling, their is no striking effect of the resonance on the characteristic time, it only affects

the value of the local magnetisation in the steady state towards which the spins will relax.
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5.2.3 A spin coupled to the bosonic bath

We now compare the dynamics of the spin of index 0 (we will write S0), the only one coupled

to the bosons in the "central spin" case. This spin is therefore coupled to the bosonic bath in

both the Tavis-Cummings and the "central spin" cases .

(a) HT C =ωb†b +
N∑

i=1
εi Sz

i +V
N∑

i=1
(b†S−

i +S+
i b) (b) H0 = (ε0 −ω)Sz

0+V
(
b†S−

0 +bS+
0

)
+

N∑
j 6=0

2V 2

ε0 −ε j
~S0·~S j

Figure 5.3: Evolution of the local magnetisation Sz
0 as a function of the time for a variety of

coupling constants V governed either by HT C or H0. The initial state is |13;↓↓↓↓↓↓↓〉 and the
bosonic mode is set at ω= 2.99 in every case.

At first glance, we can observe a lot of differences between the two plots of Fig.5.3 which leads

us to think that the choice of Hamiltonian has a substantial impact even when considering a

spin coupled to the bosonic bath in both cases. Nevertheless we start by giving a similarity

in the behaviour of the local magnetisation shown in the plots (a) and (b). By comparing the

amplitudes of the oscillations around the asymptotic values of the local magnetisation for

every couplings V , we can observe that these amplitudes are close for both Hamiltonians

(except for V = 1). However, the striking difference in the dynamics presented in (a) and (b) is

the evolution of the characteristic time τ with the coupling V . For V = 0.05 and 0.1, τT C (the

characteristic time in the Tavis-Cummings case) is smaller than τ0 (the characteristic time

in the "central spin" case). Then for V = 0.25, the difference between τT C and τ0 becomes

tenuous to finally find τTC > τ0 for V = 1. This phenomenon can be explained by looking at

the expressions of HTC and H0. When governed by HTC , the system has to reorganise itself to

reach his steady state only through the interaction spin-boson V
∑N

i=1(b†S−
i +S+

i b) whereas

in the "central spin" case the system relies on two terms, V
(
b†S−

0 +bS+
0

)
and

∑N
j 6=0

2V 2

ε0−ε j
~S0 ·~S j .

A possible interpretation is that for V < 1, a system, whose dynamics is ruled by HTC , is

more efficient to distribute its excitations to each spin trough the bosonic bath than a system,

whose dynamics is ruled by H0, trough the only spin coupled to the bosonic bath due to

the presence of V 2 in
∑N

j 6=0
2V 2

ε0−ε j
~S0 ·~S j . Then for V > 1 this "central spin" system would be

more efficient to organise its excitations among the collection of spins- 1
2 trough this hyperfine

interactions between the spins, still due to the presence of V 2 rather than V . Looking, at

the plots describing the dynamics of S0 illustrates a new mechanism of relaxation at strong
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coupling.

Having talked about the differences between a spin coupled to the bosonic bath in the Tavis-

Cummings case and in the "central spin" case, we describe, in the next subsection, the

differences between a spin which is not coupled to the bosonic bath in the "central spin" while

being coupled to the bosonic bath in the Tavis-Cummings case (as every spin).

5.2.4 A spin non-coupled to the bosonic bath

In this subsection, we deal with the case of a spin which is not coupled to the bosons in the

"central spin" case. Once again we study the time dynamics of the local magnetisation of

the considered spin, S1 this time. On the one hand, in the Tavis-Cummings case this spin is

coupled to the bosons and the only difference between S1 and S0 is that ε1 is closer toω than ε0.

We should therefore observe a difference of asymptotic mean value for the local magnetisation

between Fig.5.3 (a) and Fig.5.4 (a) as explained in subsection 5.2.2, but not in characteristic

time. On the other hand, for the "central spin" case the spin whose associated energy is ε1 = 1

is not coupled to the bosonic bath anymore, it is only coupled to the spin whose associated

energy is ε0 = 0. Thus, we expect the dynamics of this spin to be very different in these two

cases regarding which Hamiltonian we are considering.

To compare the plots (a) and (b) (we advise the reader to be careful of the different time range

that exists between (a) and (b)) of Fig.5.4, we will focus on the oscillations. The purpose of

plots (c) and (d) is to study and understand what what happens to our system for the greatest

values of the coupling V . In (b), for every curve (so for every value of the coupling V ), the

oscillations are slowed down, with respect to the ones in (a), the period of relaxation much

greater than in the plot (a).

The fact that the amplitudes of the oscillations are bigger only highlights the fact that the local

magnetisation fluctuates more in the "central spin" around its mean value than in the Tavis-

Cummings case. We have yet to take into account what is happening for V > 1 as explained

in subsection 5.2.3, that is why we will now use the information given by the plots (c) and

(d). We notice that for the two chosen values for the couplings, V = 5,10, we have this time

τ0 < τTC and the amplitudes of the oscillations are closer. Eventually, we have learned that the

effect of the reorganisation is more effective, when considering H0 rather than HTC , when the

coupling V is above a certain value even for a spin which is not coupled to the bosonic bath.

In H0, a spin which is not coupled to the bosonic mode feels almost no environment at weak

coupling since it is exclusively weakly coupled to a single spin. That is why we observe very

slow oscillations for V = 0.05 and V = 0.1 (blue and red curves) in plot (b). However, when

the coupling increases, S0 becomes a better medium between the other spins (not directly

coupled to the boson such as S1) and the bosonic mode. At stronger couplings these spins

feel more and more their environment to the point where, at strong enough couplings, the

difference between S1’s characteristic time for H0 and HTC vanishes.
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(a) HT C =ωb†b +
N∑

i=1
εi Sz

i +V
N∑

i=1
(b†S−

i +S+
i b) (b) H0 = (ε0 −ω)Sz

0+V
(
b†S−

0 +bS+
0

)
+

N∑
j 6=0

2V 2

ε0 −ε j
~S0·~S j

(c) HTC , short time dynamics at strong couplings (d) H0, short time dynamics at strong couplings

Figure 5.4: Evolution of the local magnetisation Sz
1 as a function of the time for a variety of

coupling constants V governed either HTC or H0. The initial state is |13;↓↓↓↓↓↓↓〉 and the
bosonic mode is set at ω= 2.99 in every case.

Having talked about the differences between the dynamics of the local magnetisation ruled

by HTC or H0 for a spin coupled to the bosonic bath and for one non-coupled, we can now

continue by comparing the dynamics between these two kind of spin but both in a "central

spin" case. To achieve that purpose we will use Fig.5.3 (b) and Fig.5.4 (b) and (d), i.e. we will

study the differences between S0 and S1. An interesting point to mention here is that, for

V < 1, the period of the oscillations is different in the coupled case and in the non-coupled

one. Indeed, in the case of a spin coupled to the bosonic bath, the mean value of the local

magnetisation oscillates at a similar rate as in the TC case, which means it oscillates faster than

for a spin non-coupled. When reaching, V = 1, the period of the oscillations becomes the same

whether the spin is coupled or not to the bosonic bath. We can conclude that for a dynamics

governed by H0 there are two different regimes. When V
(
b†S−

0 +bS+
0

)
is the dominant term

in the Hamiltonian, the exchanges of excitations between the unique spin coupled to the

bosons and the bosonic bath is the dominant effect which can be seen graphically by regular

oscillations of the local magnetisation similar to the ones observed in the TC case. Whereas,

when
N∑

j 6=0

2V 2

ε0 −ε j

~S0 ·~S j is the dominant term, the exchanges of excitations is more present

among the collection of spins and the oscillations show more brutal kinks, it is not surprising
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because we have now two processes considered in the "central spin" case.

5.2.5 Excitation number M

In this subsection, the impact of the number of total excitations M is studied thanks a compar-

ison between the two plots presented in Fig.5.5. These two plots of the local magnetisation of

S0 describe two systems only differing by M , i.e. the initial number of bosons, which enables

us to strictly observe the influence of M on the dynamics of these systems.

(a) Initial state: |113;↓↓↓↓↓↓↓〉 (b) Initial state |13;↓↓↓↓↓↓↓〉

Figure 5.5: Evolution of the local magnetisation Sz
0 as a function of the time for a variety

of coupling constants V governed by H0 for two initial states with a different number of
excitations. The frequency of bosonic mode is set at ω= 2.99 in every case.

Previously in subsection 5.2.2, to study the influence of ω on the dynamics, we had to iso-

late the impact of the resonance, between the associated energy of a spin εi and ω, on the

steady state of the local magnetisation detailed in section 4.2, to understand its effect on the

relaxation.

To study the impact of M on the dynamics, we have to separate as well its impact on the

asymptotic values of the local magnetisation. Previously, in section 4.2, we learned that in

the steady state, the more a system possesses excitations the more the expectation value

of the local magnetisation will be near zero. By removing this difference between the two

plots (a) and (b), we understand that M also influences the characteristic time τ. Indeed, for

every different value of the coupling V , τ is different. For instance in (a), the characteristic

time goes from τ ≈ 5, for V = 0.5, to τ ≈ 50, for V = 0.25, and in (b) τ goes from τ ≈ 10, for

V = 0.5, to τ ≈ 80, for V = 0.25. More precisely, the characteristic time is always smaller in

the case where M = 113 than in the case where M = 13. But for a difference of an order of

magnitude of bosonic excitation, M = 113 and M = 13, we recover only a slight difference for

the characteristic time, the impact on τ of having a great number of bosonic excitations is

much less substantial as being coupled or not to the bosons. We can nonetheless conclude

that having a great number of excitations accelerates the relaxation towards the steady states

described in section 4.2 even if this effect is weak. We can make the following interpretation: a
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great number of excitations facilitates the capability for the collection of spins to adjust its

final configuration having a lot of excitations available in the bosonic bath. The fact that the

oscillations are faster in (a) than in (b) indicates that there are more exchanges of excitations

when there is more bosonic excitations available which enhances the redistribution.

5.2.6 Initial state

Having talked mainly of the bosonic relaxation in this chapter, its global and local effects, we

now focus our comments on the initial configuration of the spins.

The influence of the spin configuration, in the initial state, is discussed through two couples

of plots, one with H0 as Hamiltonian (Fig.5.6 (a) and (b)) and one with HT C as Hamiltonian

(5.6 (c) and (d)). For each of those couples, the only difference is the spin configuration in the

initial state.

(a) Initial state:|13;↓↓↓↓↓↓↓〉 (b) Initial state:|9;↑↓↑↓↑↓↑〉

(c) Initial state:|13;↓↓↓↓↓↓↓〉 (d) Initial state:|9;↑↓↑↓↑↓↑〉

Figure 5.6: Evolution of the local magnetisation Sz
1 governed by H0 ((a) and (b)) and Sz

0
governed by HTC ((c) and (d)) as a function of the time for a variety of coupling constants V .
The bosonic mode is set at ω= 2.99 in every case

For the plots obtained in the "central spin" case, we can notice that the period of the oscilla-

tions is slightly longer when the initial spin configuration is alternated. But this very tenuous

difference in the period of the oscillations (even at strong coupling) can be explained by the

weak difference of initial bosonic excitations, (a) M = 13 and (b) M = 9. So τ is smaller when

104



5.3. Conclusion

the initial spin configuration is fully down polarised, because it is the configuration containing

the most initial bosonic excitations.

When the dynamics is governed by HTC , we observe the same phenomenon, it is really visible

when considering the curves for V = 0.05 and V = 0.1. Indeed, τ is clearly bigger for the red

curve and the blue curve when the initial state is |9;↑↓↑↓↑↓↑〉. Then for V = 0.25 and V = 0.5,

τ becomes clearly smaller for the green curve and the black curve when the initial state is

|9;↑↓↑↓↑↓↑〉, it seems that for coupling V > 0.1 (which is still a relatively weak coupling) having

an initial state highly entropic in the spin sector accelerates more the redistribution process

than having a lot of bosonic initial excitations.

It corroborates, the fact that an initial state with spins alternation helps the system to reach

efficiently its steady state. By combining these results to the ones of section 4.2, we can say

that having an initial state with spins all pointing in the same direction prevent the system

from reaching a superradiant-like steady state and the characteristic time to reach its steady

state is also important (except for extremely weak values of the coupling).

5.3 Conclusion

The aim of this chapter was to complete the work presented in the chapter 4 about the

dynamics of systems containing a collection of N of spins- 1
2 coupled to a bosonic bath and,

thus, to conclude the numerical part of this thesis (chapters 3, 4 and 5). This part started

in chapter 3 where it was explained how to numerically obtain the Λi , the variables used

in the expression of the mean value of an observable of interest at a time t . The purpose

of the chapters 4 and 5 is to make use of the numerical data, the Λi , to describe the whole

behaviour of a given system with efficient numerical calculations. The principle is to choose

an initial configuration for the spins, the numbers of bosons being complementary to the

spin excitations, and let it evolve until its steady state. It was shown in chapter 4 that for every

Hamiltonian, the steady state of a given initial configuration is a frozen stage of a relaxation

towards a superradiant-like state. It was as well shown that only an ideal combination of the

parameters of the considered system in the initial state can lead to a superradiant-like steady

state. The purpose of this section was to show the dynamics of a given system from the initial

time up to the asymptotic states previously cited.

The first and important conclusion we can make after the study of the real time dynamics is

that the systems we are considering do relax and reach their steady state. In the section 5.2,

the influence of the same parameters as the ones used in 4.2 on the dynamics was studied to

differentiate the ones that influence the steady state, the relaxation time or both. Thus, we

learned that considering a spin whose associated energy is near or farω does not have a strong

effect on the relaxation time even if it does on the value of the magnetisation towards this spin

relaxes. The total number of excitations M has a weak effect on the relaxation time, it is visible

only at extremely small coupling, in that case the greater M is, the quicker the system reaches

its steady state. And finally, within the initial spin configuration, having spin alternations
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reduces the time the system needs to reach its steady state, except at extremely weak coupling,

and it favours the capability of the system to relax towards a superradiant-like steady state.

Additionally, the dynamics is different regarding the Hamiltonian we are considering. The

effect of the choice of Hamiltonian on the dynamics lays in the competition between the

term describing the exchanges of excitations between the bosonic bath and the collection

of spins and the hyperfine couplings between the spins. They are both modulated by the

intensity of the coupling V . Indeed, the term of interaction spin-boson is of first order in V

whereas the term spin-spin is of second order in V . The results of having terms of different

orders in V within the Hamiltonian is that the dynamics is different regarding the value of the

coupling, smaller of bigger than one, i.e. there are two regimes regarding the strength of the

coupling. These two different regimes are visible through the period of the oscillations around

the long-time average in the plot of the section 5.2. To study this difference in the dynamics

due to the Hamiltonians, we have chosen two different ones, one with no terms of spin-spin

interaction, HTC and one "central spin" Hamiltonian H0. While in the TC case, the systems

are reaching their steady state in less time than in the "central spin" case for small values of V ,

for V > 1 it is this time the systems associated to HTC that take more time to attain their steady

states. This difference can be explained by the absence of second order terms in V in HTC .

Eventually, we can say that we have been able to carry out a complete study of observables,

bosonic occupation and local magnetisations, relying on the determinant expressions depend-

ing on theΛi we set up in the chapter 2. This shows the applicability of the results presented in

the theoretical part. However, the last numerical calculations which are presented were made

for small system sizes. We would need more computational power to be able present results

for systems containing as many spins- 1
2 as in chapter 4. Nevertheless, the size of the systems

considered in the sections 4.3 and 5.2 enables to evaluate the validity of GGE to describe our

asymptotic mean values or to understand the real time dynamics of our systems. However, in

the case of the real time dynamics, we can spot the effect of considering small system sizes

in the amplitudes of the oscillations of the mean value of our observables. These oscillations

should dampen for numerical calculations on bigger systems.
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In this conclusion, we remind the reader that this thesis is a consistent progression from very

general theoretical results to useful numerical applications.

Indeed, this work starts with an introduction on the mathematical context: the Generalised

Gaudin Algebra (GGA). Following the introduction of the latter algebra, a result applicable

to any realisations of the GGA is presented: the change of variables that enables to derive

the quadratic Bethe equations. From this generality, the field of work is narrowed down to

a specific realisation describing spin- 1
2 only. The explicit expression of the quadratic Bethe

equations and determinant expressions for scalar products and observables of interest are

then given. Aiming to apply numerically these results to the Tavis-Cummings Hamiltonian,

we have to extend these expressions to a spin- 1
2 -boson realisation by overcoming a lack of a

proper pseudovacuum. Besides, we extend our work to a realisation containing one spin of

arbitrary norm interacting with many spins- 1
2 . The Tavis-Cummings Hamiltonian belonging

to the class of Hamiltonians of the spin- 1
2 -boson realisation, we apply the previously detailed

machinery to find its eigenstates.

The purpose of this work being to achieve efficient numerics, we detail the algorithm used to

solve the quadratic equations. Logically, following the numerical aspect of our work, comes

numerical results. In a first time, because it is really efficient numerically speaking and valid

for any Hamiltonian, we present the asymptotic behaviour of the systems considered which

try to relax towards a fully plane polarised spin configuration, it can be interpreted as a

superradiant-like steady state. Additionally, we show that the traditional definition of the

GGE does not describe the asymptotic behaviour of the XXX Gaudin models through graphic

examples. Concluding this thesis, we present results for the real time dynamics, driven by

the Tavis-Cummings Hamiltonian and a "central spin" Hamiltonian of XXX Gaudin models,

showing that the considered systems relax to their steady states. The relaxation towards the

steady state is very different regarding which Hamiltonian governs it. Even with the same

conserved quantities a variety of different behaviours exists and it is only dependent on how

we combine these conserved quantities to build the Hamiltonian ruling the dynamics. This is

a strong asset of our method, be it theΛi , the scalar products, the form factors, it is the same

calculations for every Hamiltonian except for the eigenvalues which require a minor time to

be computed numerically. Eventually, not only do the results of real time dynamics conclude

the thesis, they also conclude our approach which consisted in finding efficient numerical
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tools allowing the study of interesting physical phenomena such as the superradiance.

All along our progression, some paths for new research projects, both theoretical and numeri-

cal, have been opened.

For the theoretical part, our method to tackle the problem of a missing pseudovacuum and

enforcing the application of the QISM must still be reproducible in other cases with other

realisations of the GGA. A possible research avenue is to find determinant expressions for

several spins of arbitrary norm interacting together, we have them for simple cases but a

general proof still requires some efforts.

Another project of interest would be to link works for the XXX spin chain to ours. In [90, 91],

the method of Separation of Variables is used to derived determinant representation for scalar

products and in [92], the derivation of the determinant expressions relies on the Off-diagonal

Bethe Ansatz.

For the numerical part, with small numerical power we achieved to carry out demanding

computations running double sums over the dimension of the Hilbert space. Consequently,

the size of the systems considered should be increased, which only requires longer calculations,

to dampen the finite-size effects.
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A Appendix

A.1 Yang-Baxter equation from Jacobi identity

In this Appendix, we show that to fulfil the Jacobi identity and then form a Lie Algebra the

operators Sx (u),Sy (u),Sz (u) have to satisfy the classical Yang-Baxter equation, also called

Gaudin equation in that case.

Starting from the Jacobi identity we have:

[
Sx (w),

[
Sx (u),Sy (v)

]]+ [
Sy (v),

[
Sx (w),Sx (u)

]]+ [
Sx (u),

[
Sy (v),Sx (w)

]]= 0

⇒ [
Sx (w),

(
Y (u, v)Sz (u)−X (u, v)Sz (v)

)]+ [
Sy (v),0

]+ [
Sx (u),

(
X (w, v)Sz (v)−Y (w, v)Sz (w)

]]= 0

⇒ −Y (u, v)
[
Sz (u),Sx (w)

]+X (u, v)
[
Sz (v),Sx (w)

]−X (w, v)
[
Sz (v),Sx (u)

]+Y (w, v)
[
Sz (w),Sx (u)

]= 0

⇒ −Y (u, v)X (u, w)Sy (u)+Y (u, v)Z (u, w)Sy (w)+X (u, v)X (v, w)Sy (v)−X (u, v)Z (v, w)Sy (w)

−X (w, v)X (v,u)Sy (v)+X (w, v)Z (v,u)Sy (u)+Y (w, v)X (w,u)Sy (w)−Y (w, v)Z (w,u)Sy (u) = 0

⇒ Sy (u) [−Y (u, v)X (u, w)+X (w, v)Z (v,u)−Y (w, v)Z (w,u)]+Sy (v) [X (u, v)X (v, w)−X (w, v)X (v,u)]

+Sy (w) [Y (u, v)Z (u, w)−X (u, v)Z (v, w)+Y (w, v)X (w,u)] = 0. (A.1)

The functions X ,Y , Z being antisymmetric, X (u, v)X (v, w)−X (w, v)X (v,u)=0, we have now:

[
Sx (w),

[
Sx (u),Sy (v)

]]+ [
Sy (v),

[
Sx (w),Sx (u)

]]+ [
Sx (u),

[
Sy (v),Sx (w)

]]= 0

⇒
{

X (u, v)Z (v, w)−Y (u, v)Z (u, w)−Y (w, v)X (w,u) = 0

X (w, v)Z (v,u)−Y (u, v)X (u, w)−Y (w, v)Z (w,u) = 0
. (A.2)
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Again we use the fact that X ,Y , Z are antisymmetric to rewrite the last implication:

[
Sx (w),

[
Sx (u),Sy (v)

]]+ [
Sy (v),

[
Sx (w),Sx (u)

]]+ [
Sx (u),

[
Sy (v),Sx (w)

]]= 0

⇒
{

X (u, v)Z (v, w)+Y (v,u)Z (u, w)+Y (v, w)X (w,u) = 0

X (w, v)Z (v,u)+Y (v,u)X (u, w)+Y (v, w)Z (w,u) = 0
, (A.3)

which is twice the classical Yang-Baxter equation. Therefore, we have shown that if we want

our operators Sx (u),Sy (u),Sz (u) to form a Lie Algebra and thus satisfy the Jacobi identity, they

have to satisfy the Yang-Baxter equation:

X (u, v)Z (v, w)+Y (v,u)Z (u, w)+Y (v, w)X (w,u) = 0. (A.4)

A.2 Deriving the XXX Bethe equations

In this Appendix it is shown in details how to derive the Bethe equations from the XXX com-

mutations rules:

S2(u) |λ1 . . .λM 〉 = S2(u)
M∏

i=1
S+(λi ) |0〉

=
(

M∏
i=1

S+(λi )

)
S2(u) |0〉+

[
S2(u),

(
M∏

i=1
S+(λi )

)]
|0〉

= `(u) |λ1 . . .λM 〉+
M∑

p=1

p−1∏
i=1

S+(λi )
[
S2(u),S+(λp )

] M∏
i=p+1

S+(λi ) |0〉(A.5)

with `(u) the eigenvalue of S2(u).

From the XXX commutations relations we have access to:
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[
S2(u),S+(λi )

] = X (u,λi )
(
S+(u)Sz (λi )+Sz (λi )S+(u)

−S+(λi )Sz (u)−Sz (λi )S+(u)
)

= X (u,λi )
(
S+(u)Sz (λi )+ [

Sz (λi ),S+(u)
]

−S+(λi )Sz (u)+ [
Sz (u),S+(λi )

])
(A.6)

By using the expression
[
Sz (u),S±(v)

]=±X (u, v)
(
S±(u)−S±(v)

)
we obtain:

[
S2(u),S+(λi )

] = X (u,λi )
(
2S+(u)Sz (λi )−2S+(λi )Sz (u)

)
(A.7)

Then (A.5) becomes:

S2(u) |λ1 . . .λM 〉 = `(u) |λ1 . . .λM 〉+2
M∑

p=1
X (u,λp )

(
p−1∏
i=1

S+(λi )S+(u)Sz (λp )
M∏

i=p+1
S+(λi )

−
p−1∏
i=1

S+(λi )S+(λp )Sz (u)
M∏

i=p+1
S+(λi )

)
|0〉 . (A.8)

For clarity, we will separate this expression to continue the calculations:
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p−1∏
i=1

S+(λi )S+(u)Sz (λp )
M∏

i=p+1
S+(λi ) =

M∏
i=16=λp

S+(λi )S+(u)Sz (λp )

+
M∑

q=p+i

q−1∏
p+1

S+(λi )
[
Sz (λp ),S+(λq )

] M∏
i=q+1

S+(λi )

=
M∏

i=16=λp

S+(λi )S+(u)Sz (λp )

+
p−1∏
i=1

S+(λi )S+(u)
M∑

q=p+i

1

λp −λq

q−1∏
i=p+1

S+(λi )S+(λp )
M∏

i=q+1
S+(λi )

−
p−1∏
i=1

S+(λi )S+(u)
M∑

q=p+i

1

λp −λq

q−1∏
i=p+1

S+(λi )S+(λq )
M∏

i=q+1
S+(λi ).

(A.9)

Now
∏p−1

i=1 S+(λi )S+(u)Sz (λp )
∏M

i=p+1 S+(λi ) is expressed only in terms of S+(.), it just need to

be reorganised:
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p−1∏
i=1

S+(λi )S+(u)Sz (λp )
M∏

i=p+1
S+(λi ) =

M∏
i=16=λp

S+(λi )S+(u)Sz (λp )

+
M∑

q=p+i

1

λp −λq

p−1∏
i=1

S+(λi )S+(u)
M∏

i=p+16=q
S+(λi )S+(λp )

−
M∑

q=p+i

1

λp −λq

p−1∏
i=1

S+(λi )S+(u)
M∏

i=p+1
S+(λi )

=
M∏

i=16=λp

S+(λi )S+(u)Sz (λp )

+
M∑

q=p+i

1

λp −λq

p∏
i=1,λp=u

S+(λi )
M∏

i=p+1,λq=λp

S+(λi )

−
M∑

q=p+i

1

λp −λq

M∏
i=1 6=p

S+(λi )S+(u)

=
M∏

i=16=λp

S+(λi )S+(u)Sz (λp )

+
M∑

q=p+i

1

λp −λq

M∏
i=1 6=q

S+(λi )S+(u)

−
M∑

q=p+i

1

λp −λq

M∏
i=1 6=p

S+(λi )S+(u) (A.10)

In a same manner we find:

p−1∏
i=1

S+(λi )S+(λp )Sz (u)
M∏

i=p+1
S+(λi ) = −

M∏
i=16=λp

S+(λi )S+(u)Sz (u)

−
M∑

q=p+i

1

u −λq

M∏
i=16=q

S+(λi )S+(u)

+
M∑

q=p+i

1

u −λq

M∏
i=1

S+(λi )S+(u) (A.11)

Therefore S2(u) |λ1 . . .λM 〉 becomes:
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S2(u) |λ1 . . .λM 〉 =
(
`(u)−2

M∑
p=1

1

u −λp
`z (u)+2

M∑
p=1

M∑
q=p+1

1

(u −λp )(u −λq )

)
|λ1 . . .λM 〉

+
(

2
M∑

p=1

M∑
q=p+1

1

(u −λp )(λp −λq )
−2

M∑
p=1

M∑
q=p+1

1

(u −λp )(u −λq )

)
|λ1 . . .λM 〉λq=u

+
(

2
M∑

p=1

1

u −λp
`z (λp )−2

M∑
p=1

M∑
q=p+1

1

(u −λp )(λp −λq )

)
|λ1 . . .λM 〉λp=u . (A.12)

Moreover for the XXX solution, the Yang-Baxter equation becomes 1
(u−λp )(λp−λq )+ 1

(λq−u)(u−λp )+
1

(λp−λq )(λq−u) = 0 enabling us to make further simplifications:

S2(u) |λ1 . . .λM 〉 =
(
`(u)−2

M∑
p=1

1

u −λp
`z (u)+

M∑
p=1

M∑
q 6=p

1

(u −λp )(u −λq )

)
|λ1 . . .λM 〉

+
(

2
M∑

p=1

1

u −λp
`z (λp )−2

M∑
p=1

M∑
q 6=p

1

(u −λp )(λp −λq )

)
|λ1 . . .λM 〉λp=u

= E({λ},u) |λ1...λM 〉+
M∑

p=1
Gp ({λ},u) |λ1...,λk → u, ...λM 〉 , (A.13)

Were λk → u means that the k th has been swapped with the parameter u. Thus |λ1 . . .λM 〉
becomes eigenstate of S2(u) provided all Gp ({λ},u) cancel, that is to say when:

1

u −λp
`z (λp )−

M∑
q 6=p

1

(u −λp )(λp −λq )
= 0, (A.14)

defining the Bethe equations.

A.3 Finding the derivatives ofΛi ;V −δV

In this appendix, we show the details of the proof by induction mentioned in the section

(3.3) that is need to compute the derivatives ofΛi ;V −δV . The aim of this proof is to show the

following expression:
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Bn; j = −n

v

(
Bn−1; j +

∂n−1Λ j

∂vn−1

[
(ε j −ω)+2Λ j

])+n−1∑
k=1

(
n

k

)
∂kΛ j

∂vk

∂n−kΛ j

∂vn−k
, (A.15)

starting from B0; j =−Λ jΛ j and Bn; j = ∂Bn−1
∂v + 1

v

(
−∂n−1Λ j

∂vn−1

[(
ε j −ω

)+2Λ j
]−Bn−1; j

)
+2

∂Λ j

∂v
∂n−1Λ j

∂vn−1 .

First step is to verify this statement at n = 1.

B1; j = ∂B0; j

∂v
+ 1

v

(−Λ j
[(
ε j −ω

)+2Λ j
]−B0; j

)+2
∂Λ j

∂v
Λ j

= −2
∂Λ j

∂v
Λ j − 1

v

(
Λ j

[(
ε j −ω

)+2Λ j
]+B0; j

)+2
∂Λ j

∂v
Λ j

= −1

v

(
Λ j

[(
ε j −ω

)+2Λ j
]+B0; j

)
. (A.16)

Now assuming that Bn; j is given by the expression (A.15), we have to verify is this expression is

still valid for Bn+1; j to complete the proof.

Bn+1; j = ∂Bn; j

∂v
+ 1

v

(
−∂

nΛ j

∂vn

[(
ε j −ω

)+2Λ j
]−Bn; j

)
+2

∂Λ j

∂v
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∂n−1Λ j
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)
1

v

(
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nΛ j
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ε j −ω
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∂Λ j
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∂nΛ j
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(
n
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+

n−1∑
k

(
n

k
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∂kΛ j

∂vk

∂n+1−kΛ j

∂vn+1−k
. (A.17)

For simplicity we define A = 2
∂Λ j

∂v
∂nΛ j

∂vn +∑n−1
k

(n
k

)∂k+1Λ j

∂vk+1

∂n−kΛ j

∂vn−k +∑n−1
k

(n
k

) ∂kΛ j

∂vk+1

∂n+1−kΛ j

∂vn+1−k . We have

now:
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We have are left to show that A =∑n
k=1

(n+1
k

)∂kΛ j

∂vk

∂n+1−kΛ j

∂vn+1−k :
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. (A.19)

Gathering the two expressions we do have:

Bn+1; j =
n∑

k=1

(
n +1

k

)
∂kΛ j

∂vk

∂n+1−kΛ j

∂vn+1−k
+ − (n +1)

v

(
Bn; j +

∂nΛ j

∂vn
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ε j −ω

)+2Λ j
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.(A.20)

which completes the proof by induction.
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[40] L. Cywiński, W. M. Witzel, and S. Das Sarma, “Pure quantum dephasing of a solid-

state electron spin qubit in a large nuclear spin bath coupled by long-range hyperfine-

mediated interactions,” Phys. Rev. B, vol. 79, p. 245314, Jun 2009.

[41] M. Tavis and F. W. Cummings, “Exact solution for an n-molecule—radiation-field hamil-

tonian,” Phys. Rev., vol. 170, pp. 379–384, Jun 1968.

[42] M. Tavis and F. W. Cummings, “Approximate solutions for an n-molecule-radiation-field

hamiltonian,” Phys. Rev., vol. 188, pp. 692–695, Dec 1969.

[43] J. Larson and E. K. Irish, “Some remarks on ‘superradiant’ phase transitions in light-

matter systems,” Journal of Physics A: Mathematical and Theoretical, vol. 50, no. 17,

p. 174002, 2017.

[44] P. Kirton and J. Keeling, “Suppressing and restoring the dicke superradiance transition by

dephasing and decay,” Physical Review Letters, 2 2017.

[45] J. Keeling, M. J. Bhaseen, and B. D. Simons, “Fermionic superradiance in a transversely

pumped optical cavity,” Phys. Rev. Lett., vol. 112, p. 143002, Apr 2014.

[46] S. Agarwal, S. M. H. Rafsanjani, and J. H. Eberly, “Tavis-cummings model beyond the

rotating wave approximation: Quasidegenerate qubits,” Phys. Rev. A, vol. 85, p. 043815,

Apr 2012.

[47] B. N. M. Korepin V E, Izergin A G, Quantum Inverse Scattering Method and Correlation

Functions. Cambridge, 1993.

[48] S. N. A, “Calculation of scalar products of wave functions and form factors in the frame-

work of the algebraic bethe ansatz,” Teor. Mat. Fiz., vol. 79, p. ., 1989.

[49] A. Faribault, O. E. Araby, C. Strater, and V. Gritsev, “Gaudin models solver based on

the Bethe ansatz/ordinary differential equations correspondence,” Phys. Rev., vol. B83,

p. 235124, 2011.

[50] O. El Araby, V. Gritsev, and A. Faribault, “Bethe ansatz and ordinary differential equation

correspondence for degenerate gaudin models,” Phys. Rev. B, vol. 85, p. 115130, Mar 2012.

[51] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, “Relaxation in a completely integrable

many-body quantum system: An ab initio study of the dynamics of the highly excited

states of 1d lattice hard-core bosons,” Phys. Rev. Lett., vol. 98, p. 050405, Feb 2007.

[52] G. Ortiz, R. Somma, J. Dukelsky, and S. Rombouts, “Exactly-solvable models derived from

a generalized gaudin algebra,” Nuclear Physics B, vol. 707, no. 3, pp. 421 – 457, 2005.

[53] A. Faribault and D. Schuricht, “Integrability-based analysis of the hyperfine-interaction-

induced decoherence in quantum dots,” Phys. Rev. Lett., vol. 110, p. 040405, Jan 2013.

120



Bibliography

[54] A. Faribault and D. Schuricht, “Spin decoherence due to a randomly fluctuating spin

bath,” Phys. Rev. B, vol. 88, p. 085323, Aug 2013.

[55] O. El Araby, V. Gritsev, and A. Faribault, “Bethe ansatz and ordinary differential equation

correspondence for degenerate gaudin models,” Phys. Rev. B, vol. 85, p. 115130, Mar 2012.

[56] J. Links, H.-Q. Zhou, R. H. McKenzie, and M. D. Gould, “Algebraic bethe ansatz method

for the exact calculation of energy spectra and form factors: applications to models of

bose–einstein condensates and metallic nanograins,” Journal of Physics A: Mathematical

and General, vol. 36, no. 19, p. R63, 2003.

[57] A. Faribault, H. Tschirhart, and N. Muller, “Determinant representation of the domain-

wall boundary condition partition function of a richardson–gaudin model containing

one arbitrary spin,” Journal of Physics A: Mathematical and Theoretical, vol. 49, no. 18,

p. 185202, 2016.

[58] H. Tschirhart and A. Faribault, “Algebraic Bethe ansatze and eigenvalue-based deter-

minants for Dicke-Jaynes-Cummings-Gaudin quantum integrable models,” Journal of

Physics A: Mathematical and Theoretical, vol. 47, no. 40, 2014.

[59] J. Dukelsky, G. G. Dussel, C. Esebbag, and S. Pittel, “Exactly solvable models for atom-

molecule hamiltonians,” Phys. Rev. Lett., vol. 93, p. 050403, Jul 2004.

[60] E. K. Sklyanin, “Separation of variables in the gaudin model,” Journal of Soviet Mathe-

matics, vol. 47, no. 2, pp. 2473–2488, 1989.

[61] L. Amico, H. Frahm, A. Osterloh, and T. Wirth, “Separation of variables for integrable

spin–boson models,” Nuclear Physics B, vol. 839, no. 3, pp. 604 – 626, 2010.

[62] A. G. Izergin, D. A. Coker, and V. E. Korepin, “Determinant formula for the six-vertex

model,” Journal of Physics A: Mathematical and General, vol. 25, no. 16, p. 4315, 1992.

[63] V. E. Korepin, “Calculation of norms of bethe wave functions,” Communications in Math-

ematical Physics, vol. 86, no. 3, pp. 391–418, 1982.

[64] A. Faribault and H. Tschirhart, “Common framework and quadratic bethe equations for

rational gaudin magnets in arbitrarily oriented magnetic fields,” Apr 2017.

[65] S. Belliard, N. Crampé, and E. Ragoucy, “Algebraic bethe ansatz for open xxx model

with triangular boundary matrices,” Letters in Mathematical Physics, vol. 103, no. 5,

pp. 493–506, 2013.

[66] P. W. Claeys, S. De Baerdemacker, and D. Van Neck, “Read-green resonances in a topologi-

cal superconductor coupled to a bath,” Phys. Rev. B, vol. 93, p. 220503, Jun 2016.

[67] P. W. Claeys, S. D. Baerdemacker, M. V. Raemdonck, and D. V. Neck, “The dicke model

as the contraction limit of a pseudo-deformed richardson-gaudin model,” Journal of

Physics: Conference Series, vol. 597, no. 1, p. 012025, 2015.

121



Bibliography

[68] P. W. Claeys, S. De Baerdemacker, M. Van Raemdonck, and D. Van Neck, “Eigenvalue-

based method and form-factor determinant representations for integrable xxz richardson-

gaudin models,” Phys. Rev. B, vol. 91, p. 155102, Apr 2015.

[69] P. W. Claeys, S. D. Baerdemacker, M. V. Raemdonck, and D. V. Neck, “Eigenvalue-based de-

terminants for scalar products and form factors in richardson–gaudin integrable models

coupled to a bosonic mode,” Journal of Physics A: Mathematical and Theoretical, vol. 48,

no. 42, p. 425201, 2015.

[70] S. Belliard and N. Crampe, “Heisenberg xxx model with general boundaries: Eigenvectors

from algebraic bethe ansatz,” SIGMA, vol. 9, Nov 2013.

[71] N. Crampe, E. Ragoucy, V. Rittenberg, and M. Vanicat, “Integrable dissipative exclusion

process: Correlation functions and physical properties,” Phys. Rev. E, vol. 94, p. 032102,

Sep 2016.

[72] N. Crampé, “Algebraic bethe ansatz for the totally asymmetric simple exclusion process

with boundaries,” Journal of Physics A: Mathematical and Theoretical, vol. 48, no. 8,

p. 08FT01, 2015.

[73] J. Avan, S. Belliard, N. Grosjean, and R. Pimenta, “Modified algebraic bethe ansatz for

{XXZ} chain on the segment – {III} – proof,” Nuclear Physics B, vol. 899, pp. 229 – 246, 2015.

[74] S. Belliard and R. A. Pimenta, “Slavnov and gaudin-korepin formulas for models without

u(1) symmetry: the twisted xxx chain,” SIGMA, vol. 11, Dec 2015.

[75] P. Baseilhac and K. Koizumi, “Exact spectrum of the xxz open spin chain from the q

-onsager algebra representation theory,” Journal of Statistical Mechanics: Theory and

Experiment, vol. 2007, no. 09, p. P09006, 2007.

[76] H. Frahm, J. H. Grelik, A. Seel, and T. Wirth, “Functional bethe ansatz methods for

the open xxx chain,” Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 1,

p. 015001, 2011.

[77] R. Murgan and R. I. Nepomechie, “Bethe ansatz derived from the functional relations of

the open xxz chain for new special cases,” Journal of Statistical Mechanics: Theory and

Experiment, vol. 2005, no. 05, p. P05007, 2005.

[78] W. Galleas, “Functional relations from the yang–baxter algebra: Eigenvalues of the {XXZ}

model with non-diagonal twisted and open boundary conditions,” Nuclear Physics B,

vol. 790, no. 3, pp. 524 – 542, 2008.

[79] N. Crampé, E. Ragoucy, and D. Simon, “Eigenvectors of open xxz and asep models for a

class of non-diagonal boundary conditions,” Journal of Statistical Mechanics: Theory and

Experiment, vol. 2010, no. 11, p. P11038, 2010.

[80] V. Alba and P. Calabrese, “The quench action approach in finite integrable spin chains,”

Journal of Statistical Mechanics: Theory and Experiment, vol. 2016, no. 4, p. 043105, 2016.

122



Bibliography

[81] U. Seifert, P. Bleicker, P. Schering, A. Faribault, and G. S. Uhrig, “Persisting correlations of

a central spin coupled to large spin baths,” Phys. Rev. B, vol. 94, p. 094308, Sep 2016.

[82] F. Buccheri, A. De Luca, and A. Scardicchio, “Structure of typical states of a disordered

richardson model and many-body localization,” Phys. Rev. B, vol. 84, p. 094203, Sep 2011.

[83] C. Sträter, Quantum Integrability and its Application to the Dicke Model. PhD thesis,

Ludwig Maximilian University of Munich, 2011.

[84] B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd, and G. Takács, “Correlations

after quantum quenches in the xxz spin chain: Failure of the generalized gibbs ensemble,”

Phys. Rev. Lett., vol. 113, p. 117203, Sep 2014.

[85] B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, M. Rigol, and J.-S. Caux, “Quench-

ing the anisotropic heisenberg chain: Exact solution and generalized gibbs ensemble

predictions,” Phys. Rev. Lett., vol. 113, p. 117202, Sep 2014.

[86] F. H. L. Essler, G. Mussardo, and M. Panfil, “Generalized gibbs ensembles for quantum

field theories,” Phys. Rev. A, vol. 91, p. 051602, May 2015.

[87] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L. Essler, and T. Prosen, “Complete

generalized gibbs ensembles in an interacting theory,” Phys. Rev. Lett., vol. 115, p. 157201,

Oct 2015.

[88] E. Ilievski, E. Quinn, J. D. Nardis, and M. Brockmann, “String-charge duality in integrable

lattice models,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2016, no. 6,

p. 063101, 2016.

[89] E. Q. Enej Ilievski and J.-S. Caux, “From interacting particles to equilibrium statistical

ensembles,” 1 2017.

[90] N. Kitanine, J. M. Maillet, G. Niccoli, and V. Terras, “On determinant representations of

scalar products and form factors in the sov approach: the xxx case,” Journal of Physics A:

Mathematical and Theoretical, vol. 49, no. 10, p. 104002, 2016.

[91] N. Kitanine, J. M. Maillet, G. Niccoli, and V. Terras, “The open xxx spin chain in the sov

framework: scalar product of separate states,” 2016.

[92] J. Cao, W.-L. Yang, K. Shi, and Y. Wang, “Off-diagonal bethe ansatz and exact solution of a

topological spin ring,” Phys. Rev. Lett., vol. 111, p. 137201, Sep 2013.

123





 

 

 

 

 

Certificate of Ethical Approval 

Applicant: 

Hugo Tschirhart 

 

Project Title: 

From two Algebraic Bethe Ansätze to the dynamics of Dicke-Jaynes-Cummings-

Gaudin quantum integrable models through eigenvalue-based determinants 

 

This is to certify that the above named applicant has completed the Coventry 

University Ethical Approval process and their project has been confirmed and 

approved as Low Risk 

 

 

 

Date of approval: 

    25 May 2017 

 

Project Reference Number: 

P57968 




	Acknowledgements/Remerciements
	Abstract (English/Français)
	List of figures
	Introduction
	ABA and Gaudin spin models
	Algebraic Bethe Ansatz for the rational generalised Gaudin algebra
	Quadratic Bethe equations
	Spin-models
	"Particle" and "hole" representations
	Partition functions, normalisation and form factors

	Conclusions

	Generalising to other realisations of the algebra
	One spin of arbitrary norm interacting with N-1 spin-12
	Partition function with one arbitrarily large spin
	Set of variables
	Higher spin partition function
	Determinant representation

	Spin-boson models
	Spin-boson realisations
	Partition function
	Form factors

	Conclusions

	Solving the quadratic Bethe equations numerically
	Presentation of the problem
	The algorithm
	Enhancement of the guess

	Steady State properties: Local magnetisation and bosonic occupation
	Form Factors
	Numerical results
	Reference state and Coupling constant
	Resonance with the bosonic mode 
	Initial state
	Spin flip at the resonance
	Excitation number M
	The complexity of the evolution of one spin

	Comparison between the diagonal ensemble and the Generalised Gibbs Ensemble
	Obtaining the Lagrange multipliers of the density matrix
	Local magnetisation in the GGE and in the DE

	Conclusions

	Real Time Dynamics
	Two different Hamiltonians
	Numerical Results
	Global difference between the two dynamics
	Resonance with the bosonic mode
	A spin coupled to the bosonic bath
	A spin non-coupled to the bosonic bath
	Excitation number M
	Initial state

	Conclusion

	Appendix
	Yang-Baxter equation from Jacobi identity
	Deriving the XXX Bethe equations
	Finding the derivatives of i;V-V

	Bibliography

