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General Introduction

This thesis is devoted to the mathematical and numerical analysis of the optimal
partial transport and optimal constrained matching problems, which are variants
of the optimal transport. The common point of the two mentioned problems
is the presence of unknown active submeasures. For each problem, we are
interested in the characterizations, uniqueness of solution, equivalent formulations
and numerical approximations. The main tools which we have used are some
combinations of PDE techniques, optimal transport theory, Fenchel-Rockafellar
dual theory and augmented Lagrangian methods (first-order splitting methods).
The optimal transport problem (Fig. 1) was first proposed by French geometer
G. Monge in 1781 [72] which consists in transporting piles of sand into holes with

the least amount of work. In modern mathematics language, let i and v be two

Fig. 1: The optimal mass transport problem

non-negative finite Radon measures on R” satisfying the mass balance condition
w(RY) = v(RY) < 4o00. Since the mass should be preserved during the transport
process, it is reasonable to see a transport way as a measure-preserving map 1" :
X — Y, ie, T#p = v (by definition, T is measurable and p(7T-(B)) = v(B)
for every Borel set B C Y'), where X = supp(i) and Y = supp(r). We denote
by T (p,v) the set of all transport maps T as above. Monge’s optimal transport

problem reads as

inf —T'(z)|d .
vt [o=Ta)ldate)
X

One can in general replace the cost function |.| by a measurable cost function

1



c: X xY — [0,+00), where ¢(z,y) stands for the amount of work required to
move a unit of mass from the position x € X to y € Y. In this case, the Monge

problem is to study

TelTn(i,u) / c(x, T(z)) du(x).
It is well-known that Monge’s problem is quite difficult even for the usual question
about the existence of optimal map. The main difficulty comes from the fact that
the constraint T#p = v is so highly nonlinear that the admissible set T (u, ) is
not closed, in general, under usual topologies. Since the 1980s, many authors have
carried out deep analyses for the existence of optimal map. On this direction, we
refer to the non-exhaustive list [5, 24, 26, 32, 52, 85, 86] and the references therein.

In 1942, by applications in economics, L. Kantorovich [64] introduced an
optimal problem that is now seen as a relaxation of Monge’s optimal transport
problem. Kantorovich searched a measure on the product space X x Y instead of
a measure-preserving map as in Monge’s problem. The trick is first to introduce

the admissible set
T (u,v) :={vy € M;“(XXY) cY(AXY) = p(A),y(XxB) =v(B)VAC X,B C Y},

where A and B are Borel sets of X and Y, respectively. We can imagine as follows:
the quantity v(A x B) is seen as the amount of mass moving from A to B. So all
the mass moved to B is (X x B) while the demand mass at B is v(B). To fulfill
the requirement, one should impose v(X x B) = v(B). Analogously, one requires
Y(A X Y) = p(A). In other words,

T(pv)={y e M (X xY) :m#y=pn, m#y=r},

where 7, and 7, stand for the two canonical projections from X x Y onto X and

onto Y, respectively. Kantorovich’s problem reads as

win [ clr.p)dy (MK)
veTT (p,v)
XxY

which is a linear programming in the (possibly infinite-dimensional) space M (X X
Y) of finite Radon measures. The difference between the two problems is that
the Kantorovich problem allows to split mass, i.e. mass from x can be sent to
several destinations y. Moreover, for any transport map 7" € T (u,v), one has

v = (id, T)#u € T(p,v). Unlike Monge’s problem, under very general conditions

2 Optimal Partial Transport and Constrained Matching Problems



General Introduction

on ¢, the Kantorovich problem admits optimal solutions, called optimal plans, by
using the standard direct method (see e.g. [90]). On the other hand, Kantorovich
also introduced a dual maximization problem which turns out to be very important
to the proofs of existence of optimal map for Monge’s problem (see e.g. [24, 52]).
Nowadays, Kantorovich’s problem (MK) is called Monge—Kantorovich problem and

it appears quite naturally in applications.

Besides the applications in industry and in economics as motivated by
Monge and Kantorovich, this subject has got a lot of attention and has been
investigated under various points of view since the end of the eighties with
many surprising applications in partial differential equations (PDEs), differential
geometry, probability theory, geometric inequalities, image processing and other
areas. For more details on the optimal mass transport problem, we refer the reader
to the pedagogical books [3, 83, 89, 90]. Like many other mathematical topics,
the optimal transport problem has been generalized in different trends. Among
generalizations of the optimal transport, we are interested in two problems, called
optimal partial transport and optimal constrained matching problems, which are

closely connected to obstacle type PDEs.

Optimal partial transport aims to study the case where only a part of
the commodity (respectively, consumer demand) of total mass m needs to be
transported (respectively, fulfilled). More precisely, let p, v € M, (RY) be finite
Radon measures and ¢ : RY x RY — [0, +00) be a measurable cost function.
Given a prescribed total mass m € [0, M) With My, = min {(RY), v(RY)},
the optimal partial transport problem (or partial Monge—Kantorovich problem,
PMK for short) reads as follows

min ¢ () = / clx,y)dy iy € TTm(u,v) o, (PMK)

RN xRN

where
Tt v) = {y € MfRY xRV) : m#ty < pp, my#ty < v, y(RY xRY) =m}.

Here, m,#~ and 7,# are marginals of y. This generalized problem brings out new
unknown quantities py := m,#7y and p; = m,#v where the commodity is taken
and the consumer demand is fulfilled, respectively. The problem (PMK) was first
studied theoretically in Caffarelli & McCann [27, Ann. of Math., 2010] and Figalli
[48, Arch. Ration. Mech. Anal., 2010] with a particular attention to the quadratic

Optimal Partial Transport and Constrained Matching Problems 3



cost, c(x,y) = |x — y|?, with results on the existence, uniqueness and regularity
of active submeasures!. The regularities are also discussed in Indrei [61, J. Funct.
Anal., 2013] and Davila & Kim [36, Calc. Var., 2016] for c(z,y) = |z — y|?;
and in Chen & Indrei [33, J. Differential Equations, 2015] for general costs under
assumptions on "smoothness” of ¢ and regularity of u, v.

The main part of this thesis is devoted to the problem (PMK) with general
Finsler distance costs dp and Lagrangian costs c;, which cover the Euclidean cost
c(z,y) = |z — y| and the quadratic cost c(z,y) = |z — y|* as particular cases,
respectively. We will focus on the uniqueness and characterizations of solution
as well as variational aspects and numerical approximations. These will be the
subjects of Chapters 2, 3 and 4. Discussions on the existing techniques and results

will be considered in concrete contexts.

Chapter 2 concerns a rigorous theoretical study of (PMK) with Finsler distance

costs ¢ := dp (including the case of Euclidean distance cost), where

1

delay) =, inf / F(E(), £0)dt - €0) = 2.601) =
with F(z,.) having a linear growth and satisfying some conditions that will be
clarified later. This chapter provides equivalent formulations, the characterizations
and uniqueness of active submeasures for these costs. In this setting, we
first introduce the Kantorovich-Rubinstein type duality for (PMK) with Finsler
distance costs. Recall that in the case c¢(z,y) = |z — y|?, the obstacle Monge-
Ampere equation (cf. Caffarelli & McCann [27] and Figalli [48]) plays an important
role to gather many informations on (PMK). In our case, we introduce the obstacle
Monge-Kantorovich (OMK) equation and show how it is information-rich PDE
for (PMK). Among the main issues of our approach, the uniqueness of the active
submeasures as well as their monotonicity hold true in the case where p and v are
absolutely continuous without disjointness condition of the supports. Note that
the methods used in [27, 48] do not work for the uniqueness of active submeasures
of (PMK) with Finsler distance costs by the fact that the authors there need the
strict convexity of ¢ as well as the existence and uniqueness of optimal map. Our
point of view is to obtain the uniqueness via the study of the OMK equation by
using PDE techniques. On the other hand, our equivalent formulations will be

exploited in Chapter 3 to give interesting numerical simulations.

!The supports of active submeasures are called active regions in [27, 48].
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General Introduction

Our main result starts with the Kantorovich—Rubinstein type duality.

Theorem 0.1. Let p, v € M (RY) be Radon measures with compact supports and
m € [0, My,ay|. Then the problem (PMK) with ¢ = dp has an optimal plan o* and

the Kantorovich—Rubinstein type duality can be written as

K(o*) =  max {D(A,u) = /ud(y — 1) + A(m — V(RN))} . (0.1)

()\,u)E[O,—i-oo)XL:}F

where

L) = {u € L,NL,: u(y)—u(z) <dp(z,y), 0<u(x)<X foralzye ]RN}.

F

In addition, o € Tw(p,v) and (A, u) € RY X L) are solutions of the PMK problem
and of the dual partial Monge—Kantorovich (DPMK) problem (0.1) if and only if

u(r) =0 for (u—m#o)-ae. x €RY wu(x) =\ for (v —m,#0)-a.e. z€RY
and u(y) — u(x) = dp(x,y) for o-a.e. (z,y) € RV x RY.

Next, to introduce the OMK equation, we see that the dual maximization

formulation (0.1) may be written as

max(maX{D (A, u) : ueLF})

A>0

For any fixed A > 0, the primal-dual optimality condition associated with the
maximization problem
max {D(\,u) : u€ L), }

is given by the following PDE: Find (6, ®,u) € My(RY) x M(RV)N x L} such
that

0—V-®=v—pin D(RY)
& (@) Vieu(z) = F (v, %)) |@}ae zeRY (P)
u=0 6 -ae in RY and wu=X #T-ae. in RV,

where #7 and 6~ are the positive and negative parts of the measure 6 given by
the Hahn-Jordan decomposition. This is a double obstacle problem associated
with (PMK) for ¢ = dp, called obstacle Monge-Kantorovich (OMK) equation. To

fix the idea, it is expected that v — 0% and u — 6~ are active submeasures. This

Optimal Partial Transport and Constrained Matching Problems 5



primarily requires that
6t <v and 0 <y, (0.2)

which are not explicitly stated in (Py). In other words, the estimates (0.2) are
important for (PMK) but the advantage of ignoring the constraints (0.2) in the
definition of (Py) lies in the use of augmented Lagrangian methods, which only give
dual solutions in the sense of the Fenchel-Rockafellar duality. This leads to the
question whether the estimates (0.2) are automatically satisfied for any solution
(0, D,u) of (Py).

The central issues of Chapter 2 are the existence, estimates (0.2) and uniqueness
of solution for (Py) as well as its connection to (PMK). The existence of solution
for (Py) will be shown by duality arguments. On the other hand, although the
OMK equation is so degenerate that its flux ® does not explicitly depend on the
gradient Vu, it still admits somehow monotonicity because of the second equation
in (Py). This helps us to show that

0" <pu—pAv<pu and 6" <v—puAv<v forany solutions (6,®,u).

This fulfils the requirement (0.2) (see Theorem 2.3). Concerning the uniqueness

of solution, we have the following result.

Theorem 0.2 (Uniqueness of 0). Assume that p,v € L*(RN)T. Let 0; and 0, be
two solutions to the same OMK equation (Py). Then 01,0, € L*(RY) and 0, = 0,.

Our proof will be based on doubling variables which was used for the first time
by Kruzkov [66] for first order quasilinear equations. In general, one cannot expect
the uniqueness of ® and u because of the degeneracy of (Py).

Now, we come back on the connection between the OMK equation and (PMK).

Theorem 0.3 (Active submeasures and OMK equation). Let p,v € M (RY) be
compactly supported.
(i) For any A > 0 and 6y a solution of the OMK equation (Py), the couple

(Po, p1) == (= Oy, v = 6)

is a couple of active submeasures corresponding to my = (u — 05 )(RY).
(11) Conversely, if (po,p1) € Subm(p,v) is a given couple of active submeasures
and m € [(u A v)(RY), mpy..], then for any Am > 0 such that

Am € argmax {maX {D(\u) :ue LSF}} ;
A>0 v

6 Optimal Partial Transport and Constrained Matching Problems



General Introduction

the measure 0, defined by
O\, ==pn—po and 9;\:,, =V —p1,
is a solution of the OMK equation (Py,, ).
Following Theorems 0.3 and 0.2, we deduce the uniqueness result for (PMK).

Corollary 0.4 (Uniqueness of active submeasures). Let u,v € L'(RM)T be
compactly supported and m € [||p A V||, Mpay|. There exists a unique couple

of active submeasures.

For general Finsler metric F', this uniqueness result is derived by using the
doubling variables technique to the OMK equation. In Chapter 2, we also provide
an alternative proof for C? Finsler metric I basing on the Lebesgue negligibility

of the set of endpoints of maximal transport rays.

The purpose of Chapter 3 is to complete Chapter 2 with the numerical analysis
of (PMK) for Finsler distance costs ¢ = dp. For numerical approximations, Barrett
& Prigozhin [9, Interfaces Free Bound., 2009] studied numerically the case c(x,y) =
|z — y| using approximated nonlinear PDEs and Raviart-Thomas finite elements.
More recently, Benamou et al. [14, SIAM J. Sci. Comput., 2015] introduced a
general numerical framework to approximate solutions of linear programs related
to optimal transport such as barycenters in Wasserstein space, multi-marginal
optimal transport, optimal partial transport and optimal transport with capacity
constraints. Their idea is based on an entropic regularization of the initial linear
programs and Bregman-Dykstra iterations. In this trend, we also refer to the very
recent paper of Chizat et al. [35]. These approaches need to use (approximated)
values of dp.

In Chapter 3, we propose a different strategy basing on the theoretical results
from Chapter 2 and on augmented Lagrangian methods. We first show how one can
directly reformulate the unknown quantities (active submeasures) of the optimal

partial transport into an infinite-dimensional minimization problem of the form:
in F A 0.3
min F(¢) + G(A¢), (0:3)

where F,G are lLs.c., convex functionals and A € £(V,Z) is a continuous linear

operator between two Banach spaces. More precisely, the DPMK formulation (0.1)

Optimal Partial Transport and Constrained Matching Problems 7



will be rewritten in the form of (0.3). To do this, we show that the constraint
u<y>__lu(x) S;dp($,y) for all T,y

is equivalent to F*(z,Vu(z)) < 1 a.e. z, where F™* is the polar function of F,
by definition, F*(z,p) := sup {(p,v) : F(z,v) < 1}. Then, the problem (0.3) is

veERN
approximated by finite-dimensional problems of the form

d)rilel‘r/lh Fu(én) + Grn(Andn). (0.4)
We prove the convergence of discretization, i.e. primal-dual solutions of (0.4)
converge to the ones of the original problem. At last, thanks to peculiar properties
of F and G in our situation, an augmented Lagrangian method is effectively applied
in the same spirit as Benamou & Brenier [12] (see also [13, 15]). For computation,
we just need to solve linear equations (with a symmetric positive definite coefficient
matrix) or to update explicit formulations. It is worth noting that this method
uses only elementary operations without evaluating dr. This is an advantage when

the evaluation of dr(z,y), for each pair (z,y), is difficult.

In Chapter 4, we extend our results to Lagrangian costs ¢ = ¢;, with

cr(w,y) = inf /L(S(t),é(t))dt HE(0) =, £(1) =y, € € Lip([0,1; RY) 5,
ol

q
with ¢ > 1). Our main aims are to study equivalent dynamical formulations and

where L(x,.) is convex and has superlinear growth (for example, L(z,v) =

to provide a numerical approximation for the PMK problem with these Lagrangian

costs ¢r. By using the convex conjugate function H(z,p) := sup (p,v) — L(z,v),
vERN
we introduce the dual maximization formulation in the form

max { / u(l,.)dv — /u(O, Jdp 4+ Am — p(RY) : Xe R, ue /Cé‘} , (0.5)
(Aw) N o
where

) = {u € Lip([0,1] x RN : dpu(t, 2) + H(z, Vou(t,z)) <0 ae. (t,z) e [0,1] x RY,

c

—A<wu(0,z), u(l,z) <0 Vz G]RN}.

The Fenchel-Rockafellar dual problem of (0.5) gives exactly the Benamou-Brenier
type formulation for the PMK problem. For rigorous proofs, the main difficulty

8 Optimal Partial Transport and Constrained Matching Problems
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in the study of general Lagrangian L remains in smooth approximation of the
elements in 2. This issue will be discussed in Chapter 4.

As we will see, the maximization problem (0.5) contains all informations on the
transportation and it falls into the scope of (0.3) which allows us to use augmented
Lagrangian methods for numerical computation. Again, note that we need to use
only the function L via elementary operations instead of the evaluation ¢z (x,y).
This approach provides at the same time active submeasures and their movement.
Thus the method should be a choice when one cares not only active submeasures
but also the optimal transportation.

The last chapter of the thesis deals with an optimal constrained matching
problem, which is a variant from Ekeland’s optimal matching problem (see Ekeland
[41, ESAIM Control Optim. Cale. Var., 2005]), consists in transporting two kinds
of goods and matching them into a target set with constraints on mass at the target.
For example, the target represents the capacities of some companies, the amount
of goods matching at each company should have a predetermined bound from
above. In mathematical language, the optimal matching problem with constraints
for the Euclidean costs can be modeled as follows: Let @ C RY be a nonempty
convex set and fi, fo € M; () represent source measures of the same mass, i.e.,
fi(©2) = f2(©). The constraint on the target set is represented by a measure
O € M (Q) satisfying

f1(©) = /() < 6(Q).

The optimal constrained matching problem reads as follows

W(f f2:0) =  inf / 1 — yldy + / e —yldn |, (06
(y1,72)€TT (f1,f2:0)
X OxN

where

Tr(fl?f?ve)) = {(71772) € M;(QXQ)Q : Wy#’Yl = 7-ry:f%'éf)/? S @aﬂ—x#,yi = fl?z = 172}

This problem can be written as

inf {Wi(f1,0) + Wilfarp) - O, p(Q) = A},
pEM ()
where Wi(.,.) is the 1-Wasserstein distance (see Chapter 1). An optimal solution
p is called optimal matching measure.

The optimal constrained matching problem (0.6) is recently studied

Optimal Partial Transport and Constrained Matching Problems 9



theoretically by Mazon et al. [68] in connection with p-Laplacian type systems
by using PDE techniques. In [9], Barrett & Prigozhin also give a numerical
approximation to the problem (0.6) in the case where © = CLNL D, ie. O is
a constant C' on the destination set D.

Chapter 5 is left to the uniqueness and numerical approximation of the optimal
matching measure. We note that the uniqueness of optimal matching measure does
not hold even with regular fi, fo,© (see Section 5.2). This interesting behaviour
is different from the PMK problem (see Chapter 2). An additional geometric
condition, as well as the absolute continuity of the measure ©, is needed for the

uniqueness.

Theorem 0.5. Assume that © € L' and that S(f1, f2) N supp(©) = @ with

S(fi1, f2) == {Z = (1—tx+ty: z € supp(f1), y € supp(f2) andt € |0, 1]}
There exists a unique optimal matching measure p.

For the proof, we will make use of the special property of Kantorovich potentials
about the Lebesgue negligibility of endpoints of maximal transport rays. We also

give counterexamples to show that the above conditions are non-negligible.

Concerning numerical computation, we develop the variational study of the

problem. We introduce the following dual maximization formulation

max{/(m + u2)dO — /uldfl - /u2df2 s (ug,ug) € K} , (0.7)
where
K = {(uy,us) € Lip1(2) x Lip1(2) : ug +ug < 0}.

Using the Fenchel-Rockafellar dual theory to the maximization problem (0.7), we

also introduce the minimal matching flow problem:
min{|q>1|(§) 1 o|(Q) 1 (B, B, v) € \Il(fl,fg;@)}, (MMF)
where
(1, £2:0) = { (@1, ®2,1) € My@O)Y x MV x M () : =703 = O—v—f; in D'(RY) }.

The interesting point to note here is, in contrast to the PMK problem, the optimal
solutions of Fenchel-Rockafellar dual formulation do not really give optimal
matching measure. In fact, it may in general happen v £ © for optimal solution
(1, Py, v). This is again different from the PMK problem. The following theorem

10 Optimal Partial Transport and Constrained Matching Problems



General Introduction

provides a criterion for the reconstruction of optimal matching measure from
solutions of (MMF).

Theorem 0.6. Let f1, fo,© € M (Q) be Radon measures. Assume that S(f1, fa)N
supp(©) = 0 holds. Let (91, P, v) € U(f1, f2;0) be an optimal solution for the
problem (MMF) and set p := © —v. Then p > 0 and it is an optimal matching

measure.

Based on these equivalent formulations, we also provide numerical
approximations for which the convergence of discretization and numerical

simulations are given.

At last, let us give the structure of this thesis. Chapter 1 provides some
preliminaries needed in the thesis. In Chapter 2, we study theoretically the
optimal partial transport with Finsler distance costs dr. We introduce equivalent
formulations for the optimal partial transport with a particular attention to the
so-called obstacle Monge—Kantorovich (OMK) equation. More precisely, active
submeasures are characterized as solutions of the OMK equation. And then,
we study some properties of this OMK equation which allow us to show the
uniqueness and monotonicity results for the active submeasures. To do this,
we will make use of tools from optimal transport theory, variational analysis
and PDE techniques. Chapter 3 concerns numerical approximations for the
optimal partial transport via augmented Lagrangian methods. The convergence
of our discretization is also shown in detail. We base on the so-called ALG2
algorithm to give numerical simulations. Chapter 4 provides a detailed exposition
of theoretical and numerical results for the PMK problem with Lagrangian costs.
In this case, we derive equivalent formulations basing the form of Hamilton—Jacobi
equations with constraints. In Chapter 5, we will be concerned with the optimal
constrained matching problem subject to constraints on capacity of the target.
For such a problem, we show the existence and uniqueness of solution under some
additional geometric conditions. Besides these issues, we also provide numerical
approximations, the convergence of discretization and numerical examples. The
contents of Chapters 2, 3, 4 and 5 are mainly taken from four papers [57-60], among
which [59] is published in IMA Journal of Numerical Analysis, [60] is accepted
for publication in SIAM Journal on Optimization and [57] is under revision for

publication in Journal of Differential Equations.
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Chapter 1
Preliminaries

The purpose of this chapter is to provide notations and some preliminaries in
optimal transport theory, the notion of tangential gradient to a measure and

Fenchel-Rockafellar dual theory as well as augmented Lagrangian methods.

1.1 Notations

Let us set up the basic notions which are used in the text. @ C R stands for a
non-empty domain (sometimes convex or bounded, which will be specified in the
context) with a Lipschitz boundary. We denote by |.| the usual Euclidean norm
on RY (or even Hilbertian norm) and when it is not ambiguous, we also use |u|

for the total variation norm of the measure p.

We denote by Cy(2) (respectively, C(£2)) the spaces of bounded continuous
functions on € (respectively, continuous functions on Q). We set M;(Q)
(respectively, M (2)) for the space of signed (respectively, non-negative) finite
Radon measures defined on 2. Given the Hahn—Jordan decomposition y = u™—pu~
with p, u= € M (Q), we set |u](Q) := p™(Q) + u=(Q) for the total variation of
p on §2 which turns out to be a norm on M,(€2). Moreover, this normed space
is the topological dual space of (Cy(2), ||.]|oc). For two measures py, e € My(),
we write up < po if p1(B) < po(B) for any Borel set B C €, or equivalently
[ odp < [ ¢dus for any ¢ € Cp(Q2), ¢ > 0. The notation p A v stands for the
0 Q

measure of common mass of p and v, i.e.

puAv(A) =inf{u(A;)+v(Az) : disjoint Borel sets A, Az, such that A;UAy; = A}.

12



1. Preliminaries

If u,v € LY(RY) then u Av € LYRY) and
(n Av)(2) = min{pu(z), v(z)} for ae. x € RY.

We also denote by M;(Q)V the space of RY —valued finite Radon measures, i.e.,
b € My(Q)Y if and only if ® = (P, ..., Py) with &; € M,(Q2). We recall that the
total variation associated with ® € M, (€2), denoted by |®|(£2) (or simply |®|), is
defined by

|®|(B) := sup {Z@(BM B = U B; with pairwise disjoint Borel sets B; C Q} )
i=1

i=1

which coincides with the definition via the Hahn—Jordan decomposition whenever
N = 1. Tt is known that the space M,;(2)Y equipped with the total variation
norm is isometric to the topological dual of Cy,(Q2)" with the duality bracket

(®,8) == i/fz d®;

=1 Q

for any ® = (y,...,Px) € My(Q)Y and € = (&, ....&n) € Cp()N. The weak*
convergence in M;(Q)Y is understood in the usual sense, i.e., ®* — & weakly* in
My(Q)N as k — +oo if and only if

(BF &) = (B, &) for any & € Cy(Q)N.

Let us now collect the basic notations used in the thesis.

RN the N —dimensional Euclidean space
|| Euclidean (or generally Hilbertian) norm

B(x,r)  the ball of center z and radius 7 in RV

[z, Y] segment joining x to y, i.e., [z,y] :={(1 —t)x +ty:t € [0,1]}
[zyl [ryl={0-tHr+ty:0<i <1}
LN the N—dimensional Lebesgue measure

Lip(Q2)  the set of Lipschitz functions on 2 w.r.t. the Euclidean norm
Lip1(Q)  the set of 1-Lipschitz functions on Q w.r.t. the Euclidean norm
Or = ¢ ¢ converges uniformly to ¢

My(X)  the space of signed finite Radon measures on X

M (X) the set of non-negative finite Radon measures on X

(1 < po  the measure py is absolutely continuous w.r.t. o

Optimal Partial Transport and Constrained Matching Problems 13



1.2. Optimal Transport

% Radon-Nikodym derivative of ® w.r.t. ||
supp(p)  the support of p, i.e. the set {z € X : u(B(z,r)) >0 Vr >0}
Ty, Ty the projections on the first component and the second component, i.e.

Ty, my defined on X X Y and m,(z,y) =z, m,(z,y) =v.

Typ the push-forward measure of y by T’
L the Lebesgue spaces w.r.t. u
O the Dirac mass measure at x

f*t,f~  positive and negative parts of f

Projy projection on the set K
XA characteristic function of A, i.e., xa(z) =1ifx € Aand xa(z) =0ifz ¢ A
Ik indicator function of K, i.e., [(x) = 0 if x € K and I(x) = 400 otherwise

(., )vi+ duality bracket between V' and V*

1.2 Optimal Transport

For the optimal mass transport theory, the two books of C. Villani [89, 90], the
monograph of L. Ambrosio et al. [3] and the new book of F. Santambrogio [83]

are used as basic references in the sequel.

1.2.1 Monge—Kantorovich problem

Given two non-negative Radon measures p and v with equal masses defined on two
subsets X C RY and Y C RY, respectively, the Monge optimal transport problem
is to find a map 7' : X — Y that transports p onto v, i.e., T#u = v (meaning
v(B) = p(T~(B)) for all Borel sets B C Y) and to minimize the transport cost

/|x— 2)ldu(z).

In other words, Monge’s problem reads as follows
mf /]x — T(z)|dp(x). (MP)

A competitor T for (MP) is called a transport map while a minimizer is indicated
as optimal transport map or simply optimal map.
It is well-known that the Monge problem is in general ill-posed. The set of

transport maps may be empty, nonconvex and noncompact under usual topologies
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(see e.g. [1, 87]). Moreover, it could happen that no transport map realizes
the minimum even if the set of transport maps is not empty. In addition, the
uniqueness of optimal transport map does not hold in general.

In 1942, L. Kantorovich [64] introduced a problem that he made several years
later [63] the connection with Monge’s work in the sense that Kantorovich’s
problem is a relaxation of Monge’s problem. The idea is to enlarge the admissible

set of Monge’s problem. Kantorovich’s problem reads as follows

wt [ o= sldafe), (MK)
YT (p,v)
XxXY

where 7T (i, v) is the set of the so-called transport plans defined by

T(uv) ={yeMF(X xXY) : m#y=p, m#y=r}.

The problem (MK) is nowadays called Monge-Kantorovich (MK) problem. 1t is
known that, for any transport map 7', one always has v := (id, T)#un € T (u,v).
Moreover, in contrast to Monge’s problem, the set 7T (i, v) is always non-empty
(for instance, by taking v := ﬁ(u ® v) € T(u,v)) and the MK problem is a
linear programming in the (possibly infinite-dimensional) space M;(X x Y).

In the problem (MK), one can replace the cost function |x — y| by any proper
ls.c. function ¢ : X x Y — [0,+0oc]. In this setting, the existence result can
be shown by means of the direct method in calculus of variations (see e.g. [90,
Chapter 4]).

An interesting feature of the MK problem is that it admits a dual problem.

Let us summarize some results in the following theorem.

Theorem 1.1. (¢f. [90, Chapter 5]) Let ¢ be an l.s.c. cost function and u,v €
M (RY) be such that p(RY) = v(RY). Then one has:
(i) The MK problem has an optimal plan and the Kantorovich duality holds, i.e.

min / c(z,y)dy(z,y) p = sup {/ udp + / vdrv: (u,v) € Se(u, y)} ,
'y€7T(,u,u) RN RN
(1.1)

where
Se(p,v) = {(u,v) € L,(RY) x L,(RY) : u(z) +v(y) < c(z,y) Va,y e RV},

(i) It does not change the value of the supremum in the right-hand side of (1.1) if
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1.2. Optimal Transport

one restricts the definition of S.(u,v) to those functions (u,v) which are bounded
and continuous.

(iii) If c(x,y) < Cu(x) + Cy(y) for some (Cy, Cy) € L, x L), then the dual problem
on the right-hand side (called Kantorovich dual problem) has an optimal solution.
(iv) If the cost function c is a distance then the Kantorovich dual problem can be

rewritten as
sup {/ ud(v —p) s uweL,n LY u(y) —u(z) < c(z,y) Vr,y€ RN} . (1.2)
RN

A solution u of the Kantorovich dual problem (1.2) is called Kantorovich
potential. Without abusing, the term Kantorovich potential is also understood

for the general case.

The Kantorovich dual maximization problem in (1.1) turns out to be very
useful to show the existence of optimal map for (MP). In this direction, motivated
by problems in fluid mechanics, Y. Brenier [24] showed for the quadratic cost
c(z,y) == | — y|* and pu < LY that there exists a unique optimal transport map

T in Monge’s problem which is the gradient of a convex function and

7(0) =V GloP—6(0)) = & - Vi),

for any ¢ Kantorovich potential transporting p onto v. Moreover, v := (id, T)#u
is an optimal plan for the MK problem. Similar results hold true if one replaces
the quadratic cost by c¢(x,y) := h(z — y), where h is strictly convex (see [52]). In

[71], R.J. McCann extended Brenier’s result to Riemannian manifolds.

The costs of the form c¢(z,y) = |z — y|P with 1 < p < 400 play an important
role in applications. The applications need very often the fact that one can define

the quantity

P

W)= { min [ o= yPdray)y
’YEW(ny)
XxX
which turns out to be a metric on P,(X) the space of probability measures with

finite pth order moment, i.e. n € P,(X) if [|z|Pdn < +oc0, and it metrizes the weak
X

convergence (i.e. test functions are bounded continuous) on P,(X) whenever X is
bounded (see e.g. [90, Chapter 6]). We call W,(u, v) the p— Wasserstein distance

between p and v.
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1.2.2 Benamou—Brenier formula

Among equivalent formulations for the optimal transport, we should mention
the so-called dynamical formulation (or Benamou-Brenier formula) that, for the

quadratic cost c(z,y) = |z — y|?, reads as follows

Wa(p,v)* = miﬂ/l/lvt(x)IQdPt(l‘)dt

0 RN

where the minimum is taken over all pairs (p;,v¢), with p; a curve of measures
and v; a time-dependent velocity, such that the following continuity equation is
satisfied

Oy + divy(vepr) = 0,

po = p and p; = v. As usual, the continuity equation is understood in the weak

sense of distribution, that is,

/1/0t¢d,0+/1/Vx¢-vdp:/qb(l,.)dl/—/gb([)")d% (1.3)

0 RN 0 RN

for any compactly supported smooth function ¢ € C°([0,1] x RY). For short, we
denote (1.3) by —div,, (p,vp) = 01 @ v — §y ® p throughout the thesis.

The dynamical formulation was introduced by Benamou & Brenier [12] for
numerical computation. The approach is then generalized with theoretical point
of view for Lagrangian costs (see [19]) and for transport-type problems (see for

instance [23, 76] and the references therein).

1.2.3 Beckmann problem and Monge—Kantorovich

equation

In the case where ¢(z,y) := |z — y|, the Kantorovich dual problem can be written

as follows, called Kantorovich—-Rubinstein dual formulation,
sup {m/ ud(v —p) = u € Lipy (RY) 3 . (1.4)
N

As shown by Evans & Gangbo [45] (see also [43]), under additional conditions on
and v, that any Kantorovich potential u of (1.4) is characterized by the following
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PDE

—V - (a(x)Vu(z)) =v —p in D'(RY)
ac L™ a>0, |Vul<1 (1.5)
a(|Vu|—1) = 0.

By using the functions a and wu satisfied (1.5) via PDE methods, Evans &
Gangbo [45] constructed an optimal map for (MP) with ¢(z,y) := |x — y|. This
gives a deep result on the existence for this non-strictly convex cost function. There
is by now a large literature on the existence of optimal map by several techniques
(see for instance [4, 5, 18, 26, 32, 86)).

Bouchitté-Buttazzo—Seppecher [22] generalized the system (1.5) for general
Radon measures p and v via the notion of tangential gradient to a measure that
was introduced by themselves in [21] (see the next section if necessary). In this
case, the PDE (1.5), called Monge-Kantorovich (MK) equation, reads as

~V-®=v—p in D(RY)
d € M(RM)N, |[Vu|< 1
% = Vigu |Pl-a.e..
On the other hand, by means of the Fenchel-Rockafellar duality, the

Kantorovich-Rubinstein dual problem (1.4) admits another dual problem reading

as

min {E/d@: de MRV, -V.-d=v—pu inDRY) . (1.6)

This new formulation is called minimal flow or Beckmann problem in the

connection with a continuous model of transportation proposed by Beckmann [10].

1.3 Tangential gradient to a measure

The notion of tangential gradient to a measure was first introduced by Bouchitté—
Buttazzo—Seppecher [21] with applications to low dimensional structures. Here
we recall few useful notations and results from [21] with slight modifications as in
[62]. Given any (non-negative) finite Radon measure n on RY | it admits a tangent

space at n-a.e. point z € R, denoted by T),(z), which is a linear subspace of R¥.
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Set
X, = {¢ € Ly(RY;RY) : div(¢n) € M(RY)},

where the divergence constraint is understood in the sense of distributions. In

other words, there is a constant M such that

/ Ve - ody < M¢]| (1.7)
RN

for any compactly supported smooth function £ € C>®(RY). Formally, if 5 is the
Hausdorff measure H* over a k-dimensional smooth manifold S in RY, by taking
all nonzero test functions & which vanish on S in (1.7), every vector field ¢ € X,,
must be tangent to S.

T, (z) is defined as the envelope of all vectors ¢(z) for ¢ running in X,. This

is rigorously done by using the so-called n-essential union. Define

T,(z) =n—essU{p(z): ¢ € X,},

where the n-essential union is defined as a n-measurable closed multifunction given
by

o 9cX,= o) eT)(z) nae;

e the n-essential union is minimal among all the multifunctions I'(x) satisfying

the previous properties, i.e. T, (z) C I'(x) n-a.e..

Example 1.2. (see e.g. [50, Theorem 3.1] or [21, Example 2.4]) Let n = H"Lg,
where S is a k-dimensional Lipschitz manifold in RY. Then T,(z) = Ts(z) for
n-a.e. x € S with Ts(z) being the classical tangent space to S at z.

We denote by P,(z,.) the orthogonal projection on 7T, (x) for n-a.e. z. Given
u € CY(RY), the tangential gradient of u, denoted by V,u, is defined by

Vyu(z) == P,(x, Vu(zx)).

If moreover v € C'(RY) N Lip(RY) then V,u € LX(RM;RY). As in [21,
Proposition 2.1] or [62, Proposition 4.5], the tangential gradient operator V,, :
CHRY) N Lip(RY) — Ly*(RY;RY) is closable for the uniform convergence and

weak™® convergence, respectively. More precisely, one has

Proposition 1.3. Let {u,} C C'(RY) be such that u, = 0 on RY and V,u, — &
weakly® in Ly*(RN;RY). Then £ =0 7-a.e..
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This proposition allows to extend the tangential gradient to any Lipschitz
function u on RY. Indeed, let {u,} be a sequence of equi-Lipschitz functions such
that u, = u on R". Following Proposition 1.3, there is a unique £ € Ly°(RY; RY)
such that V,u, — & weakly* in Ly°(RY;RY). One defines V,u := ¢.

By approximation, the following integration by parts formula holds

(—div(¢n),u) = /(;5 -Vyudn forany ¢ € X,, u € Lip(RY) N Cy(RY).

Remark 1.4. (i) Let n € M (Q) and u € Lip(Q?). Then V,u := V,a for any
Lipschitz extension @ on RY of u (it does not depend on the choice of ).
(ii) If n = LYLg then V,u = Vu a.e. for Lipschitz functions u on Lipschitz

domain ).
We will need the following chain rule for the tangential gradient.

Proposition 1.5 (Chain rule for the tangential gradient). Let n € M, (RY) and u
be a Lipschitz continuous function defined on RY. Let G be a Lipschitz continuous
function on R such that the set of non-differentiable points of G is finite. Then

V,G(u)(z) = G (u(z))Vyu(z)  for n-a.e. , (1.8)

where G' (u(z)) is the usual derivative with convention G (u(x))V,u(z) = 0 when
Vyu(z) =0 even if G is not differentiable at uw(x). In particular, we have

(i) Vout = Xju=0Vou and Vyu~ = —Xp<o)Vyu 7n-a.e. in RY;

(i) Vyu =0 n-a.e. on the set [u=c] :={z € RY :u(x) = c} for a constant c € R.

Proof. Let us first assume that GG is continuously differentiable. In order to prove
(1.8), it is enough to show that

/ V,G(u) - ®dn = / G (u)V,u - dn,

RN RN

for every ® € L} (RY;RY) such that ®(z) € T,(z) n-ae =z € RY. Let u. €
C>(RY) be the regularization of u by convolution. Since u and G are Lipschitz,
the sequences of equi-Lipschitz functions u. and G o u. converge uniformly to u

and G o u on RY, respectively. Thus V,u. and V,G(u.) converge to V,u and
V,G(u) weakly* in Ly°(RY;RY), respectively. Since ®(z) € T, (z) n-a.e. € RV,
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we have

/VWG(U) - Pdnp = 1in(1) V,G(u.) - ®dn = 1ir% VG(ue) - &dn

RN RN RN
= lim G (us)Vu, - &dn = lim G (u.)Vyu. - @dny
RN RN
= / G (u)V,u - ®dn.
BN

This gives the result (1.8) whenever G is continuously differentiable by taking

!

¢ =V,G(u) — G (u)V,u.

Vri4e2—e ifr>0

For (i), consider the function G.(r) := . Then G. is
0 it <0

continuously differentiable and Lipschitz on R. Thus we have

/VnGg(u) -Pdn = /G;(u)vnu -Pdn = / \/%anu - P dn

RN RN {[u>0]}

for every ® € L (RY;RY) such that ®(z) € T,(z) for n-a.e. x. Letting e — 0,

/Vnu+~<1>d77: / Vnu‘q)dn:/x[wo]vnw@dn.

RN {[u>0]} RN

The proof of the positive part ends up by choosing
¢ :=V,u" — X[u>0] ViU

A similar proof is done for the negative part.

For (ii), we can assume that ¢ = 0. The proof follows from V,u = V,u* —V,u".

Now, let us deal with a general Lipschitz function G satisfying our assumptions.

Let us call {ry,r,...,7,} the set of non-differentiable points of G and set open
subsets Q; == u (R \ {r;}) and Q := (] Q;. Since u is a constant on RN \ ;i =

=1
1,...,n, we have

V,Gu)(z) = G (u(z))Vyu(r) =0 nae z€RV\Q, i=1,..,n
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It remains to verify that

!

V,G(u)(z) = G (u(z))Vyu(z) n-ae z e (1.9)

Let us assume that Q # ) (if not, there is nothing to prove). Let G be a smooth
approximation of G by convolution. Let ® € L}(RY;RY) be such that ®(z) =
0 n-a.e. xin RY\ Q. Then

/V,]G(u)(b dn = lir% V,G:(u)®dn
e—
RN RN
=lim [ G.(u)V,u®dny
e—0
RN
=lim [ G_(u)V,u®dn (since ®(z) =0 n-ae zin RV \Q)

e—0
Q

= /G/(u)vnuq) dn,

Q
where we used the Lebesgue Dominated Convergence Theorem. Next, choosing

/

¢ =V,G(u) — G (u)V,yu

as a test function, we obtain (1.9). O

1.4 Fenchel-Rockafellar duality and ALG2
method

Let V and Z be Banach spaces. Let us consider an optimization problem of the

form

inf F(9) +G(A0) (1.10)

where F : V. — (—o00,400| and G : Z — (—o0,+00] are convex, l.s.c. and
A € L(V, Z) the space of linear continuous functions from V' to Z. Using F* and
G* the convex conjugate functions (given by the Legendre-Fenchel transformation)

of F and G respectively, and A* is the adjoint operator of A, it is easy to see that

sup (—F*(=A'0) = G*(0)) < inf F(0) + G(A0).

oEeZ*

22 Optimal Partial Transport and Constrained Matching Problems



1. Preliminaries

where Z* is the topological dual space associated with Z. This is the so-called
weak duality. For the strong duality, which corresponds to equality we have the

following well-known result.

Proposition 1.6 (cf. [42]). Assume moreover that there exists ¢o such that
Flpo) < 400, G(Ady) < 400 and G is continuous at Agpy. Then the so-called
Fenchel-Rockafellar dual problem

sup (—F*(—=A%0) — G*(0)) (1.11)
oEZ*
has at least a solution o € Z* and inf (1.10) = max (1.11). Moreover, in this case,

¢ 1is a solution to the primal problem (1.10) if and only if the optimality condition

holds
—No € 0F(9)

(1.12)
o € 0G(\g).

We are now concerned with numerical approximations for the optimization
problems (1.10) and (1.11), or equivalently for the optimality condition (1.12).
Assume that V and Z are two Hilbert spaces. We introduce a new variable ¢ € Z

to the primal problem (1.10) and we rewrite it in the form

inf F(o)+G(q).

(,9)EVXZ: Ap=q

To solve (1.12), it is sufficient to determine saddle-points of the augmented

Lagrangian
r
Lo(¢,¢;0) == F(9) + G(a) + (0, A0 = ¢) + 5[Ad =g, r > 0.
In other words, we shall solve the problem

i L (6, q;0). 1.13
lmn | max (¢,q;0) (1.13)

This problem is solved by the so-called ALG2 method, also known as Alternating
direction method of multipliers, which is given as follows: Given qq, 00 € Z, we

construct the sequences {¢;}, {¢:} and {o;},i =1,2,..., by

e Step 1:

¢ir1 = argmin L, (¢, ¢;; 0;) = argmin {]:(gb) + (05, Ap) + g|Agb — qi|2} .
bV eV
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e Step 2:

. . T
¢it1 = argmin L, (¢;41, ¢; 0;) = argmin {Q(Q) — (05, q) + §|A¢z’+1 - Q|2} -
qeZ qeZ

e Step 3:

1

0i+1 = argmax {Lr<¢i+17 ¢it1;0) — 2—’U — 01’2} =0; +r(Apit1 — Giy1)-
oez* r

Formally, if the sequences {¢;},{q;} and {o;} are convergent then their limits

should be solutions of (1.13). For the theory of this method and its interpretation,

we refer the reader to [40, 49, 51, 53, 54]. Here, we recall the convergence result

of this method which is enough for our discretized problems later.

Theorem 1.7 (cf. [40], Theorem 8). Fized r > 0, assuming that V =R", Z = R™
and that A has full column rank. If there exists a solution to the optimality relations
(1.12) then {¢;} converges to a solution of the primal problem (1.10) and {o;}

converges to a solution of the dual problem (1.11). Moreover, {q;} converges to

A¢*, where ¢* is the limit of {¢;}.

The proof of this result in the case of finite-dimensional spaces V' and Z can be
found in [40]. The result holds true in infinite-dimensional Hilbert spaces under

additional assumptions. One can see [53] and [49] for more details in this direction.
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Chapter 2

Optimal Partial Transport and
Obstacle Monge—Kantorovich

Equation

Optimal partial mass transport, which is a variant of the optimal transport
problem, consists in transporting effectively a prescribed amount of mass from a
source to a target. The problem was first studied by Caffarelli & McCann [27, Ann.
of Math., 2010] and Figalli [48, Arch. Ration. Mech. Anal., 2010] with a particular
attention to the quadratic cost. In this chapter, our aim is to study the optimal
partial transport problem with Finsler distance costs including the Monge cost
given by the Euclidian distance. Among our results, we introduce a PDE of Monge—
Kantorovich type with a double obstacle to characterize active submeasures,
Kantorovich potential and optimal flow for the optimal partial transport problem.
This new PDE enables us to study the uniqueness and monotonicity results w.r.t.
Lagrangian multiplier A\ for the active submeasures. Another interesting issue of
our approach is its convenience for numerical analysis and computation that we

develop in Chapter 3.

2.1 Introduction

The partial Monge—Kantorovich (PMK) problem (or optimal partial transport) is
a very natural extension of the original optimal transport problem. Given u,v €
M (RY), a prescribed total mass m satisfying 0 < m < myay with my,., =
min {x(RY), v(RY)} and a measurable ground cost ¢ : RN x RY — [0, +00), the
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PMK problem reads as follows

7€AN‘RNXRN

min {E/ cla,y)dy . maty < p, m#y <v, y(RY x RY) =

N xRN

This generalized problem brings out new unknown quantities py := m,#7v and
p1 = m,#7. In other words, let us denote by Subm(p, ) the set of submeasures
of mass m which is defined by

Subm (1, v) == {(po, p1) € M RV)x M (RY) : po <, p1 < v, po(RY) = p1(RY) = m}.

Then the PMK problem reads

min {IC(fy) = / c(x,y)dy : v € TTm(u, V)}, (PMK)

RN xRN

where

Toanlptv) = {7 € (o0 p1) : (po, 1) € Subm(p 1) }.

An element (pg, p1) € Subm(, V) is called a couple of active submeasures if there

exists an optimal plan v of (PMK) such that v € T (po, p1)-

As mentioned in the general introduction, the existence, uniqueness and
regularity issues for active submeasures were initially studied by Caffarelli &
McCann [27] with a special focus on the quadratic cost, i.e., c(z,y) = |z — y|*.
Thereafter, Figalli [48] improves the results. In particular, he removes the

disjointness assumption on the supports of the initial measures.

Our aim here is to give a complete and rigorous study of (PMK) with a Finsler
distance cost dp(x,y) (including the case of Euclidean distance cost). Before going
further, let us take a while to comment our approach and main ideas. It is not
difficult to see that (PMK) is a bilevel optimization problem that aims to find the
active submeasures with the constraint on the total mass as well as the optimal
plan. The authors in [27] introduce a Lagrange multiplier A for the mass constraint,
add a point at infinity which acts as a tariff-free reservoir for transporting the extra
mass and study the relations given by classical duality results. In this way, they
could deduce existence and uniqueness of minimizers when the supports of y and
v are disjoint. As to the strategy of [48] is to study directly the minimization
problem by studying the convexity of the function that associates to each m the

total Monge-Kantorovich work. In particular, this allows the author to prove
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the uniqueness without disjointness condition. The techniques used in [7,15] also
deduce the uniqueness for costs which require existence and uniqueness of optimal
plan in the full transfer case (see [7, Proposition 2.9], [15, Renark 2.11] for precise
statements). However, these techniques do not work for the uniqueness of active
submeasures of (PMK) with Finsler costs. Our point of view is to obtain the
uniqueness via the study of the so-called OMK equation by PDE techniques.

We begin by handling directly the problem for general costs by adding two
arbitrary sites in R to process the problem into a balanced optimal mass
transportation. Taking the cost for free to the new sites, we show that the new total
work coincides with the total work of the PMK problem. Moreover, combining
this with classical duality results, we introduce a bilevel maximization problem
to provide a natural dual partial Monge-Kantorovich (DPMK) problem for the
optimal partial transport. Then, using the triangle inequality satisfied by dg, we
give the Kantorovich-Rubinstein type duality for (PMK) with Finsler distance
costs. In the case of Finsler distances, the variable of the DPMK problem can
be expressed as a couple (A, u) where u can be interpreted as the Kantorovich
potential associated with (PMK) and A would be used to give informations on
active submeasures. Recall that in the case where the cost is given by the square
of the Euclidean distance (cf. [27]), the connection between the obstacle Monge—
Ampere PDE and (PMK) is given by a map that associates to each value parameter
A a solution of the Monge—Ampere PDE. In our case, we introduce a map that
associates to each value \ a solution of the OMK equation. Then, we show how a
right value Ay, enters in connection with the Kantorovich potential to bring out the
solution of (PMK). Among the main issues of our approach, the uniqueness of the
active submeasures holds true in the case where p and v are absolutely continuous
without disjointness condition of the supports. As a consequence, we also obtain
the monotonicity of active submeasures with respect to Lagrange multiplier .

This chapter is organized as follows: In the next section 2.2, we introduce
our main results for the PMK problem with Finsler distances and the OMK
equation. The remaining sections aim to prove the main results. In section 2.3,
we first prove the Kantorovich type duality for the PMK problem with general
costs and then lead to the duality for Finsler distance costs. The existence and
uniqueness issues for the OMK equation are studied in section 2.4. In section 2.5,
we show the connection between the OMK equation and the active submeasures
by using the DPMK problem and the partial minimum flow problem. Thanks to
this connection and the results on the OMK equation, we deduce the uniqueness

of active submeasures. To finish the proofs of the main results, we also study
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some strong L' continuous dependence and monotonicity of solution of the OMK

equation with respect to the obstacle in section 2.6.

2.2 Main results

We give in this section our main results for (PMK) with Finsler distance costs
¢ = dp. Let us begin with a reminder concerning Finsler distances. A continuous
function F': RY x RY — [0, +00) is called Finsler metric on RY if

e [F(xz,.)is convex w.r.t. the second variable for fixed z € R¥;

e F(xz,.)is positively 1-homogeneous for fixed x € RV, i.e.
F(z,tv) = tF(z,v) for every v € RY and ¢ > 0.

In addition, throughout the thesis, we assume that F' is nondegenerate in the sense
that there exist M;, My > 0 such that

M |v|< F(z,v) < My|v| Y(z,v) € RY x RY.

The Finsler distance dr on RY is defined by

1

dele)i=  int [P0 0) =o€ =y (@D

§eLip([0,1;RN)
0

Under the above assumptions on F, the inf problem (2.1) is actually the minimum
and dp is a (not necessarily symmetric) distance, i.e. dp satisfies

o dp(z,y)>0; dp(x,y)=0Iif and only if x = y;

o dr(zr,y) <dp(z,z)+dp(z,y) for any x,y,z € RY.

An example of a Finsler metric which is not a norm in R is given by F(z,v) =
av™ + bvt with 0 < a # b. More generally, for each € R fixed, given vectors
dy,...,d7 # 0 depending on z such that, for any 0 # v € RV, 1n<1?<>§€{<v,df>} > 0,
we define

F(z,v) := 1r1<1;a<>§€{<v,df>} for any v € RY

which turns out to be a Finsler metric.

We say that a function u is 1-dp Lipschitz if and only if

u(y) — u(x) < dp(z,y) for all z,y.
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The polar function F* of F is defined by

F*(x,p) := sup {{v,p) : F(z,v) <1} for any z, p € RV,

veERN

It is easy to see that F™* is also a continuous, nondegenerate Finsler metric and
(v,p) < F*(z,p) F(x,v) forall z, v, p€ R"Y.

Coming back to (PMK) with Finsler distances, our analysis begins with the
following Kantorovich—-Rubinstein type duality.

Theorem 2.1. Let p,v € M (RY) be Radon measures with compact supports and
m € [0, my,.]. Then the PMK problem (PMK) with ¢ = dp has an optimal plan

o* and the Kantorovich—Rubinstein type duality can be written as

K(o*)=  max {D(A,u) - /ud(u — 1) + A(m — V(RN))} . (22)

(,\,u)e[o,+oo)ngF

where
L) = {u € L,NL,: u(y)—u(z) <dp(z,y), 0<u(x)<X foralzye RN}.

In addition, 0 € Tm(p,v) and (A, u) € RY x L} are solutions of (PMK) and of
the DPMK problem (2.2), respectively, if and only if

u(r) =0 for (u—m#o)-ae. x €RY, wu(x) =\ for (v—m,#0)-a.e. z€RY
and u(y) — u(x) = dp(x,y) for o-a.e. (z,y) € RY x RY.

Next, we introduce a new nonlinear PDE that we call the obstacle Monge—
Kantorovich (OMK) equation. Then, we use this PDE to show the uniqueness
of active submeasures whenever the data p and v are absolutely continuous with
respect to the Lebesgue measure.

To introduce our PDE; we see that the DPMK problem (2.2) reads as

) A
max (mfxx {D(A\u): ue LdF}) :
Moreover, formally, for any fixed A > 0, the Euler-Lagrange equation associated

with the problem
max {D(\,u): we L) } (2.3)
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is given by the following PDE

0—-V-d=v—pu in D(RY)
d-Vu=F(,d) (P)
we Ly, 0€dlpyu).

This is a double obstacle problem associated with (PMK) for ¢ = dp. And,
formally we conclude that the study of (PMK) is closely connected to the study of
the dependence of solution of (Py) with respect to A. Our aim now is to study this
connection to get a characterization of active submeasures. Before going further,

let us give the notion of solution to the OMK equation.

Definition 2.2. For a fixed A > 0, a triplet (6, ®, u) € My(RY) x M,(RN)¥ x L)
is said to be a solution to the OMK equation (P) if

00—V -&=v—p in D(RV)
%(x)'V\mU(f):F(x,%(x) |B|-a.e. ©€ RN

u=0 6 -ae. in RY and wu=X\ #T-ae. in RV,

where 0 and 6~ are the positive and negative parts of the measure 6 given by the

Hahn—Jordan decomposition.

Without abusing, we also say that a Radon measure § € M,(RY) is a solution
of (Py) if there exists (®,u) € My(RV)N x L) such that (0,®,u) satisfies the
OMK equation (Py).

It is to be expected that v — 67 and u — 6~ are active submeasures. The
important point to note here is that we do not impose any constraints of type
0T < v and 6~ < p in the definition of the OMK equation. These estimates are

summarized in the following theorem and will be proved later via PDE techniques.

Theorem 2.3 (Existence and estimates for OMK equation). Given p,v €
M (RY) and X > 0, the OMK equation (Py) admits at least one solution (6, ®,u).
Moreover,

O~ <pu—pAv<p and 0" <v—pAv<v
for any solution (0, P, u).

Because of the degeneracy of the OMK equation, the question of the uniqueness

of solution for (Py) is delicate. In fact, one cannot in general expect the uniqueness
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of components ® and u of solution for the OMK equation (P,). However, we can
prove the uniqueness of component ¢ whenever p and v are absolutely continuous

with respect to the Lebesgue measure.

Theorem 2.4 (Uniqueness of 0). Assume that p,v € L*(RN)T. Let 0, and 0, be
two solutions to the same OMK equation (Py). Then 01,0, € LY(RY) and 0, = 0s.

Now, we come to the connection between the OMK equation and (PMK).

Theorem 2.5 (Active submeasures and OMK equation). Let p,v € M (RY) be
compactly supported.
(i) For any A > 0 and 0 a solution of the OMK equation (Py), the couple

(pOa pl) = (:u - 9;7 v—= 0;_)

is a couple of active submeasures corresponding to my = (u — 65 )(RY).
(ii) Conversely, if (po, p1) € Subm(u,v) is a given couple of active submeasures
and m € [(p A v)(RY), mp.,] then for any Am > 0 such that

Am € argmax {max {D(A\u) 1ue LQF}} ;
A>0 v

the measure 0, defined by
0y =p—po and Gjm =V —p

is a solution of the OMK equation (Py,,).
As a consequence of Theorems 2.5 and 2.4, we have the uniqueness for (PMK).

Corollary 2.6 (Uniqueness of active submeasures). Let u,v € L'(RM)T be
compactly supported and m € [||p A v||pr, Mpyay]. There exists a unique couple

of active submeasures.

To end up this section of main results, we propose to study the maps that
associate to each A > 0 the corresponding active submeasures and their total mass
in the case pu,v € LY(RY). Thanks to Theorems 2.3, 2.5 and 2.4, for any A > 0
there exist a unique mass my := (g — 6, )(R") and a unique couple of active

submeasures (p, p7) := (1 — 0y ,v — 6;) corresponding to my. Set

m : [0,00) = [(1AV)(RY), Mg

A — m(/\) = 1my
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and
R : [0,00) — LYRY)x LYRY)

A = RO = (g, 1)

To simplify the presentation, let us denote

Stubopt(pt, V) == {(po, p1) : (po,p1) is a couple of active submeasures

corresponding to some m € [(u A v)(RY), mmax]}.

Theorem 2.7. Let u,v € L*(RN)T be compactly supported. We have that
(i) The map m is continuous, non-decreasing and surjective.

(i1) The map R is continuous, non-decreasing and surjective from [0,00) to

Stubopt(p, V).

It is known that the monotonicity of active submeasures corresponding to
the mass m is obtained for continuous cost ¢ (see [27, Theorem 3.4]) and that
the monotonicity corresponding to Lagrange multiplier A is guaranteed for costs
satisfying the left twist condition (see [27, Sections 2 and 3]). Our result says
that, even if the Finsler distances do not satisfy the condition, the monotonicity
w.r.t. Lagrange multiplier A still holds true. On the other hand, in the quadratic
case, Davila and Kim obtain a Lipschitz continuous dependence of m, on A (see
[36, Theorem 4.5]). In the case of Finsler distances, we do not know this kind of

estimates.

Remark 2.8. (i) There is in general no uniqueness of active submeasures when
m < (u A v)(RY). Indeed, in this case, all feasible submeasures py = p; < p A v
are optimal. This is not a contradiction with our PDE approach by the fact that
there is no such an OMK equation with A > 0 characterizing (PMK).

(ii) In general, the uniqueness of active submeasures does not hold true if both
p and v are not in L'. For example, take y = 0; + 03, v = Jo, where 0, is the

Direct mass at k in R. Then all feasbile submeasures are optimal for any m.

(iii) We show here that the uniqueness holds true whenever u,v € L*(RY) by
using PDE techniques. We do not know if this holds true when one of i, v belongs
to L*(RY).
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2.3 Kantorovich-type duality

The aim of this section is to introduce the Kantorovich type duality for (PMK).

Our main result concerning duality for general costs is the following.

Theorem 2.9. Let p,v € M (RY) be measures with compact supports X and Y,
m € [0, my,.,|. Assume that ¢ is l.s.c. and bounded on X XY . The PMK problem

has a solution o* € T (1, v) and the Kantorovich type duality turns into

K(c*) = min / c(z,y)dy(z,y)
YET m(p,v)

TRy (2.4)

[odus [varamixert, @0 Sy,
N ]RN

where
SXuv) :={(¢, ) € L}, x L, : ¢ <0, ¢ <0 and ¢(x) + ¥(y) + A < c(x,y) Yo,y € RV }.
Moreover, o € Tm(u,v) and (X, ¢,v) € RT x SMNu, v) are solutions if and only if

o(x) =0 for (u— m#0)-a.e. T € RY. Y(y) =0 for (v —myF#o)-ae ye RY

and ¢(z) +V(y) + X = c(z,y) for o-a.e. (x,y) € RN x RY.
(2.5)

The maximization problem on the right hand side of (2.4) is called dual partial
Monge—Kantorovich (DPMK) problem.

Remark 2.10. See that the duality formulations (2.4) is different from Caffarelli-
McCann’s duality (see [27, Corollary 2.7]) which reads as, for fixed parameter
A,

S t / (e=Ndyo = max . / u(w)dpt / v(y)dv,

N xRN u(a:) + ’U(y) < C(l’,y) RN RN
u(z) < 0,0(y) <0

where
WS(:“’? V) = {7 S MleRN X RN) DAY S W, 71-y:/'%'gfy < V} .
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Note that in this formulation there is no mass constraint on variable v. The duality

(2.4) follows the Caffarelli-McCann one in the case where the problem

min / (c— N)dvy (2.6)
veTT < (p.v)
RN xRN

has a unique optimal plan v for each A. Indeed, given a total mass m, by using
[27, Corollary 2.11], one can choose a A* such that the unique solution vy« of (2.6)
w.r.t. A* satisfies vy (RY x RY) = m. It follows that the left hand side of (2.4)
is less than or equal the right hand side. The inverse inequality can be verified
directly. However, the uniqueness of the problem (2.6) is, in general, not satisfied.

On the other hand, in (2.4), A is a variable and the duality is direct to
(PMK). This formulation reduces to the duality for linear programmings in finite-
dimensional space when p and v are sums of Dirac masses (see e.g. [73, Theorem
13.1]). For numerical computations, the formulation (2.4) with A as a variable is

very useful. This issue will be discussed in Chapter 3.

Proof of Theorem 2.9. The existence of an optimal plan o* € T, (p,v) is
standard, which can be shown by the direct method. Next, for any o € T, (1, v)
and (X, ¢, ) € RT x 8X(u,v), we have

/ o) du(z) + / (y) dv(y) + dm < / $(x) dmy o + / (y) dmydto + Am
RN RN RN RN

- / (¢(x) +(y) + A) do (2.7)
RN xRN
< / C(;c,y)dO’.

RN xRN

As a consequernce,

sup {‘R/gbdu —|—/¢dy—i— Am : A ERT, (¢,0) € SMu,v) p < 71%1111 K(o).
. O o€l m(p,v)
To prove the converse inequality, we add two points 2 € RV \ X and j € RV \Y as
extra production and consumption positions, respectively. Let us consider X =
X U{#}, Y := Y U{g} as metric spaces (induced by the Euclidean distance) and

the measures on X and Y defined by, respectively,

p=p+@Y)—m))oz and U=v+ (u(X)—m)d;.
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Obviously, /i(X) = #(Y). Then, let us consider the extra cost on X x Y

(2. ) c(z,y) if (z,y) e X xY
é(z,y) =
0 it z=zory=y.

From the assumptions on ¢, we have that ¢ is l.s.c. and bounded on the compact

metric space X x Y. It follows from Theorem 1.1 that

min ¢(x,y)dy = max udf +/
4eTT (,0) / ( y) (4,0)€Ss( / H

XxY

Fix any 4 € T0(j1,v), set 1 := YLxxy the restricted measure of ¥ on X x Y. It
is easy to see that m,#v1 < p, m#y < v and 71(X xY) > m. Let us define

V= s € Trm (i, V) so that
/ c(z,y)dy < / c(z,y)dn = / &(z, y)dy.
XxY XxY XxY
Then,
min c(z,y)dy < min / ¢(x,y)dy = max / +/f)dﬁ
YET m(pv) / €T (,0) (,0)€Ss( J
XxY Xxy Y

To finish the proof, for any (4,0) € Sa(f1, V), we can moreover assume that i, 0
always take values in R. Set

uy =4 0(§), v =04 a(2) and X := —a(&) — 9(g) > 0.

Since 4(x)+0(y) < é(z,y), we see that u; < 0in X, v; < 0inY and uy (z)4v1(y) <
c(z,y) — A for any (z,y) € X x Y. So, extending arbitrarily u; and v; up to RY
such that (uy,v1) € SM(p, v), we get

/ a(z) di + / o(y) db = / () du + / o(y) dv + (W(Y) — m)a(@) + (u(X) — m)o(5)

X Y

b-<

(a(z) +0(9)) du+/(@(y)+ﬁ(ﬁf)) dv — (a(&) + 9(g))m

Y

uy(x) dp + /vl (y) dv + Am.
Y

N\X\ >
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Consequently,
min c(z,y)dy <  max /adﬂ—l—/{)dﬁ
’Yeﬂ-m(M,V) / ( ) (fL{[})ESé(ﬂ,ﬁ)
XxY X Y

<sup{/gz§d,u+/1/1dl/+)\m :A>0, ((;5,1/})68?(#,1/)}.
RN RN

From the above arguments, the last supremum is actually the maximum.

At last, by (2.4), 0 € Tm(p,v) and (A, ¢,79) € RT x 8Xu,v) are solutions of
(PMK) and the DPMK problem, respectively, if and only if the inequalities in
(2.7) are equalities. This is equivalent to the optimality criterion (2.5). O

We have a further structure of the duality (2.4) for the costs satisfying triangle

inequality. The following theorem is a more general form of Theorem 2.1.

Theorem 2.11. Under the assumptions and notations of Theorem 2.9, assume
moreover that the cost function ¢ satisfies triangle inequality and c(x,x) = 0 for
any x € RN, Then the DPMK problem can be rewritten as

K(c*) = r(r){a;))( {D(A,u) = /ud(y — )+ Am—v(RY): X>0and u € Lg‘} , (2.8)

where
L) = {u €eL,NL,: uly) —u(z) <clz,y), 0<u(x) <\ foranyz,ye ]RN}.

In addition, 0 € T, v) and (\,u) € RY x L} are solutions of (PMK) and of
the DPMK (2.8), respectively, if and only if

u(z) =0 for (u— mFto)-a.e. x €RY, u(x) =\ for (v —m,#0)-a.e. x €RY

and u(y) —u(z) = c(x,y) for o-a.e. (x,y) € RY xRV,
(2.9)

Proof of Theorem 2.11. We see that

min / c(z,y)dy > sup{DP(A\u) : A>0andu € L)} .
YET m(1v)

RN xRN
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Indeed, for any v € T (1, v) and u € L, we have

/ ud(v — p) + A(m — v(RY)) = / —u(z)dp + /(u(y) —A)dv + Am

RN RY RY
< /—Udﬂx#’}’—i- /(U(y) —Admdy+Ame g g

RN RN

< / c(x,y) dy(z,y).

RxRN

Conversely, for a given A > 0 and (¢, ) € S (u, v), we consider

uy(x) == sup (Y(y) + A —c(z,9)) < A and u(x) := max{u,(r),0} Ve R".
yey
By using the triangle inequality, u is 1-Lipschitz with respect to ¢. Moreover,
—u > ¢ and u(y) — A > Y(y) Vy € Y (where we use the condition ¢(y,y) = 0).
Thus
/ud(z/—u) + A(m — v(RY)) > /¢du+ /wdu—l—)\m.
By Theorem 3.1, the duality and the existence of a solution (A*,u*) are proved.
For the optimality condition (2.9), we use again the duality and (2.10) similarly

to the case of general costs. O

Remark 2.12. If ¢ satisfies triangle inequality and c(x,z) = 0 for any z € RY
then the DPMK problem can be also written as

r(r){%({/ud(u—u)—i—)\(m—u(RN)): A e RT, u(y) —u(z) < clx,y), —)\<u<0Vac,y}.

Indeed, in the construction of u from (¢, 1)), we can take

ui(y) := inf (c(x,y) — ¢(x) —A) and u(y) := min{ui(y),0} Vy € RY.

reX

2.4 OMK equation

The aim of this section is to study the existence and uniqueness of solution for
the OMK equation (Py). We also show some estimates for solution 6, which are
useful for later use. We will make use of variational techniques for the existence

while the uniqueness and estimates of 6 are shown by using PDE techniques. In
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this section, we do not really need the compactness of the supports of 1 and v.

2.4.1 Existence of solution to the OMK equation

The existence of solution to the OMK equation is based on the dual approach.
More precisely, by using the Fenchel-Rockafellar dual theory to the problem (2.3),
we introduce a minimal flow-type problem. The OMK equation is then derived by

optimality condition.

Proposition 2.13. Let u, v € M} (RY) and A\ > 0 be fized. We have

d
max /ud(y_ﬂ) :min{/F(x,m(m))d@—w\/del; (@000 €5}, (211)
uELdFRN N e

where
S = {(@,90,91) e My(R¥)N x MF(RY) x M (RY) : —V-& = y—el—(u—e%}.

Lemma 2.14. Let F' be a nondegenerate Finsler metric and u be 1-dp Lipschitz,
i.e., u(y) —u(x) < dp(z,y) for all x,y. Let u. := p. xu be the convolution of u
with the standard mollifiers p. on RY. Then

lim sup F*(z, Duc(x)) < 1 for all x € RY. (2.12)

e—0

Proof. Fix x € RY. There exists some ||£.||= 1 such that

(Du.(x) - &) _ lim us(x + hé:) — ue(x)
F(z,¢.) h—0+ F(z,h&.)

[ pt) (ul + B — £) — u(z — ) dt
— lim &2

h—0+t F(l‘, hga)

F*(z, Du.(x)) =

This implies that

f pa(t)dF<x —tx—t+ hfe) de
F*(z,Duc(z)) < limsup™=

h—0t+ F(Qi,hfe)
1
e F(x — hé., hé.)drd
< hmR[vp(t){ (x —t+ Th&., hé)drdt (2.13)
- h—0+ F(l’, hfg)
f pe(t)F(SC _t7€s> de
RN

F(x, &)
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On the other hand, there is a sequence £, — 0 such that

limsup F*(z, Du.(z)) = lim F*(x, Du,, (x)). (2.14)

e—0 en—0

Since ||&., ||= 1, up to a subsequence of {£., }, we can assume moreover that
&, — & as ¢, — 0. (2.15)

Thanks to (2.13), we get

[ pe, ) F(x—t,&,)dt
RN
F(x7 §€n>

Let e, — 0, using (2.14), (2.16) and (2.15), we obtain

F*(z, Du., (z)) < (2.16)

f pan(t)F(ZL‘ - t, gan) dt

i (5, D) = Jim, D (09) £ Jimy oy =1
[l

Remark 2.15. The lower semicontinuity of F' is not enough to hold (2.12).
Indeed, we take the lower semicontinuous, nondegenerate Finsler metric F' and

1-dp Lipschitz function v on R defined by, respectively,

lo| if <0 x if <0
F(z,v) = for z,v € R and u(zx) = for z € R.
2| if >0 2¢ if >0
Then,
Ip| if <0
F*(z,p) =141 and u'.(r) = /pg(s)u’(x — s)ds.
—Ip| if x>0
2 R
!/ 3 * / 3
Therefore, w'.(0) = [ p(s)ds+2 [ po(s)ds = 5 and F*(0,4'.(0)) = 5> 1.

[s20] [s<0]

It is known that if u € C*(RY) then

u(y) —u(z) < dp(z,y) Vz,y € RY if and only if F*(z,Vu(z)) <1 Vz e RV,
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The latter is equivalent to
q-Vu(z) < F(z,q) Vr e RY, Vg e RY.

In the case where u is non-smooth, we have the following characterization via the

tangential gradient.

Lemma 2.16. For any I-dp Lipschitz function u and ® € My(RM)YN such that
V- ® e My(RY), we have

P o N
|?N(gg) - Vipu(z) < F(z, @(a:)) |®|-a.e. € RY.

Proof. Taking u. as in Lemma 2.14, for any Borel subset B, we have

® P o
/-V|¢|ud]<1>\: lim/(x)-Vug(x)d]qﬂg limsup/F*(a:,Vug(a:))F(a:,(x))d\<I>|.
s |(I)| a—)OB ’<I>| e—0 J |(I)’

Letting ¢ — 0, using Fatou’s Lemma and Lemma 2.14, we get

d
/ 310 Viwu(@del(o) < [ Fo, g @)aiel)

B

The proof ends up by the arbitrariness of Borel set B. O

Proof of Proposition 2.13. The case A = 0 is obvious. We now assume that A > 0.
1. Let us first show that

()
max /ud(u—,u) §inf{/F(a:,—(a:))d|<I>|+)\/d91: (@.0.0") € 5}
uGLQF ‘(I)l

RN RN RN

Fix any u € LQ‘F and (®,0° 0') € S. Taking u as a test function in the equation
~V - ®=v—0"— (u—6°), using Lemma 2.16, we have

P
/ud(u—u) /|¢|V|¢ud|®|+/ud91 —/ud@o

RN RN RN RN
d
RN RN

Thus, sup [ ud(v—p) < 1nf{ | F(x % ))d|P|+A f det: (9,6°,0') € S}. It
uELé‘F RN
is easy to see that the supremum is actually the maximum by the direct method.
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2. Obviously, we have
max{/ud(u — ) u € LQF} > sup { /ud(y —p)iu€ly  ue Cl,l(RN)}‘
RN RN
It remains to show that

sup{/ud(u—u) tu € CI’I(RN)HLQF}

RN

:min{/F(x,%(m))d@H)\/d@l: (@,0° 0" € S}.

RN RN

(2.17)

On the other hand,

sup{ /ud(y —p)u€ C’l’l(RN)ﬂLQF}
= sup{/ud(u —p)ru € CYYRY), F*(z, Vu(z)) <1, 0 <u(r) <\ Vo € RN}

— _inf {f(u) + Q(Au)},

ueV

where
Flu) = — /ud(u ) VueV = CHERY)(GRY),

Au) = (Vu, —u,u) € Z := Cy(RY;RY) x Cyp(RY) x Cy(RY)

and, for all (¢, z,w) € Z,

0 if z(z) <0,w(z) <A and F*(z,q(z)) <1 Vr e RY
G(q, z,w) :=

+00 otherwise.
We use the W1*®-norm and L*-norm for the spaces V and Z, respectively, i.e.
[ullvi= llulle+||Vull and [|(q, z, w)||z:= [lg|| Lo+ 2] oo+ [ w]| £

Now, using the Fenchel-Rockafellar dual theory (see e.g. Proposition 1.6 with the

A
choice ¢y = 5 > 0 there), we have
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inf F(u) + G(A(u))

ueV
= max (—F*(—A*(QD,HO,Ql)) — Q*(@,QO,Gl)) :
(,00,01)e My (RN )N x My (RN ) x Mp(RN)
The proof of (2.17) is completed by computing explicitly the quantities in this
maximization problem.
e Since F is linear, F*(—A*(®,6°, 6")) is finite (and is equal to 0) if and only if

(=A*(®,0°,0"),u) = F(u) = — /ud(u — ) for any u eV,

RN

or equivalently
(@, Vu) — (0°u) + (0" u) = (v — p,u) forany u eV, ie.

V- d=v—0' - (u—6°) in D(R"Y).

e For G*(®,0°, 0'), we have

G*(®,6°,60") = sup (®,q¢)+ sup  (0°2)+  sup  (0',w)
qECH(RN;RN): F*(z,q(z))<1,Vz 2€C,(RN):2<0 weCL(RN):w<A

J F(z, gr(@)d|@[+X [ o' if §° >0 and 6" >0
RN RN

+o00 otherwise.

Proposition 2.17. Given pu, v € M} (RY) and A > 0, we have that:

(i) If u and (®,0°,0Y) are solutions for the duality (2.11) then (0,®,u) := (9* —
0°, @, u) is a solution to the OMK equation (Py). Moreover 7 = 0, 6= = 6° if
A>0.

(11) Conversely, if (0, ®,u) is a solution to the OMK equation (Py) then u and
(®,0° 0% := (®,07,0%) are solutions for the duality (2.11).

Proof. (i) Let u € L), and (®,6°,0") € S be solutions for the duality (2.11). Then
(0,®,u) := (' —6° @, u) is a solution to the OMK equation (Py). Indeed, we have

§—V-®=v—p in D(RY)
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)
/ud(u—,u) = /@V@ud\@\#—/udel —/ud90

P
< /F(;U,@(x))d\@\—i—)\/del (by Lemma 2.16).

and

By the optimality of u and (®,0°, #'), Proposition 2.13 and Lemma 2.16, we have
that
) )

] () Vioru(e) = Flo. (@) [@ae.

u=0 6#-ae and u=\ #-ae.

By the Hahn-Jordan decomposition, we get = < §°, 6+ < ' and thus
u=0 60 -ae and u=X\ 6OT-ae.

Therefore (0, ®,u) is a solution to the OMK equation (P,). It remains to verify
that 6= = 0° and 0T = #' in the case A > 0. Since A > 0, we deduce that §° and
6! are concentrated on two disjoint sets. Thus 07 = ! and = = 6° by virtue of
the Hahn—Jordan decomposition.

(ii) Conversely, let (6, ®,u) be a solution to the OMK equation (Py). We see that

P
/ud(u—u) = /@V|¢|ud|©|—l—/ud0

RN RN RN
d
= /F(x,@(:p))d@H/AdﬁJ’.
RN RN
The optimality of v and (®,67,0%") follows immediately from the duality (2.11).

[
We have the following estimates for solution 6 of the OMK equation.

Proposition 2.18 (Estimate for the component 6). Assume that u, v € M (RY)
and A > 0. Let (0, P,u) be a solution to the OMK equation (Py). Then

0~ <p—pAv<p and 0T <v—pAv<u.
Proof. Case 1: If A =0, then u =0, ® =0 and
O=v—p=v—puAv—(u—puAv).

By the Hahn—Jordan decomposition, we get that 07 < v—puAv and 6~ < p—pAv.
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Case 2: Let us now assume that A > 0. For 0 < € < A\, we consider the Lipschitz

continuous functions of one variable

0 Hfr<i—e
1 7"—()\—5) .
T, (r) := . fld—e<r<\x VreR
1 ifr>A\

For £ € C>(RY) such that £ > 0, we take T (u)¢ as a test function in the equation
00—V -®=v—pu Weget

[ iwen+ [V @ apl- [THwee-p. @)

Thanks to the chain rule given in Proposition 1.5, we get

[ i Vion (TR die] = [ (22 ) Tjagu- ol [ verlwdal
@] o] @] 21
> é VET! (u)d|®).

Using (2.18) and (2.19), we see that

1 e 1w L) e d(y —
i+ [ & verlwal < [ Tiweaw -
— [THwedw = prv—(u-pav) 20

< [THwedw - na).
Since u < \, for any z € RV, we have

THu)(z) = Xu=y(z) as e — 0.

£

Now, using Proposition 1.5 (ii), the nondegeneracy of F' and the definition of

solution for (Py), we have |®|([u = A]) = 0. Consequently,

o
R VETHu)d|@]— 0 as € — 0.

Letting € — 0 in (2.20), we get

/ £do < / ¢d(v —puAv) for any & € C(RY), € >0.

[u=A] [u=X]
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Using the definition of solution for (Py), we have u = 0 for #-a.e.. Since A > 0,

we obtain

/£d9+: /fd&g /fd(y—,u/\y) for any &€ € C(RY), ¢ > 0.

[u=A] [u=A] [u=A]

This implies that 6t < v — p A v on [u= )\ and that 67 < v — pu A v (since 07 is
concentrated on [u = AJ).

At last, using T?(u)¢ as a test function in the equation § — V - ® = v — u, where

-1 if r<0
T2(r):={ —1+. if0<r<e VreR,
€
0 if r>e
we can prove in much the same way that 0= < pu— pAv. O

Proof of Theorem 2.3. The proof follows from Propositions 2.13, 2.17 and 2.18.
O

As a consequence of Proposition 2.13, we have the duality result for A = +oc.

Corollary 2.19. Let pu,v € M (RY) be such that v(RY) < u(RY). We have

sup { /ud(u — ) s uw is 1-dp Lispchitz, u > O}

RN

P
= min Flx, —(x))d|®|: =V - & =v — —90}.
(.00 EMp (BN )N x M (BY) { / ( !‘DI( NI =

RN
Proof. Using the assumption v(RY) < u(RY), there exists (®,60°) € M,(RM)N x
M (RY) such that —V - ® = v — (u — 6°). This implies that

o

! {/Fa:, z))d|®|: V- & =v— —60}I=C<—|—oo.

(®,00)EM (RN )N x MF(RN) | ( |q)|< )) ’ | (u )
R

Now, taking u as a test function in the equation —V - ® = v — (u — 6°), we get
o . o
ud(v — p) = @Vmudkﬂ— udf” < | F(x, E(I))dkm

RN RN RN RN
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Hence,

sup{ /ud(u — p) :u is 1-dp Lispchitz, u > 0}
RN

< inf /F D@~V B = v — (- 90)} C.
(2,00)EMy(RN )N x M} (RN)

(2.21)

Conversely, let us consider a sequence A\, — +oo as n — +oo. Thanks to
Proposition 2.13, there exist u, € L) and (®,,609,6}) € S such that

ny“nirvn

/F(a:, |$:| (x))d|<1>n|—|—)\n/d9711 = /und(y —p) <C. (2.22)

RN RN RN

It is not difficult to see that {(®,,6%,601)} is bounded in My(RM)N x M, (RY) x

My(RY). Thus, up to a subsequence, (®,,0°, 6) converges to some (®,6°, 6')
weakly* in My(RM)Y x My(RY) x M,(RY). Tt is clear that ' =0, 6° > 0 and
~V-® =v— (u—0°. Now, using the lower semicontinuity of the functional
[ F(x, %l(x))dkﬂ w.r.t. the weak® convergence in the variable ® (see e.g. [2,

Theorem 2.38]) and passing to the limit in (2.22), we obtain

| Fe |$|( o] < lim [ Flo g:|(x))d|cl>n|

n—-+00
RN RN
< sup { / ud(v — p) : w is 1-dp Lispchitz, u > O}.
RN
The proof is completed by combining this with (2.21). O

2.4.2 Uniqueness of solution # to the OMK equation

In this subsection, we focus on the uniqueness of solution 6 of the OMK equation
(P,) which is then used to show the uniqueness of active submeasures. The result
of uniqueness is somehow optimal in view of Theorem 2.5 and Remark 2.8 (ii). We
will give two proofs of the uniqueness. For C? Finsler metrics F', an alternative
proof will be given in Subsection 2.5.3 basing a combination of PDE and optimal
transport theory. We provide right here the proof for general Finsler metric F.
Our proof will be based on doubling variables technique due to Kruzkov [66] (see

also [31] and the references therein). It uses mainly the following result.
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Lemma 2.20. Let A > 0 and p,v € LY(RY)*. Suppose that (0;, ®;,u;), i = 1,2
are solutions to the same OMK equation (Py). Then 01,0, € L'(RY) and, for any
£ € C2(RYN x RY) such that € > 0, we have

[ [0 -t ey < [ 15,6+ 9,6 lafel@ay

RN RN RN RN
T / / (Vb + V,6) |d| s (y)da
RN RN
/ / (v = 1m)(2) — (v — 1) (9)[E (. ) dady,
RN RN

(2.23)

Before giving the proof of this lemma, let us show how it enables us to prove

the main result of uniqueness in section 2.2.

Proof of Theorem 2.4. Fix any a € C°(RY), a > 0, let us choose

Ee(z,y) = p-(x — y)a(x + y)

as test functions in (2.23). Note that V& + V, & = 2p.(z — y)Va(z +y). We

have

[ 19+ visml@ar = [ [19.6+ V6l

=2 [ [ puto— y)IVale + o)l dyd (o)
:2//pa(t)|Voz(2x—t)|dtd|¢>1|(a7)

— 2/|Voz(2x)|d|<1>1|(a:).

Similarly, [ [|V.& + V& |d|Ps|(y)dz — 2 [ |Va(2y)|d|P2|(y). Next, since f :=
RN RN RN
v —p € L', we have

[ [ - 1wl asy = [ [15) = 1@lpute = v +y) dody

RN RN RN RN
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<llalke [ [15) = F@lorts — ) dya

RN RN

~lale [ [15) = @ = 0lp.(0) dtas

RN RN

= H&HOO/FE(:v)dx — 0,

RN

by the fact that F.(z) := [ |f(x) — f(x —t)|pe(t)dt, F. — 0 in L'. Thus (2.23)
RN

leads to

/(01(9;> — O5(2)) T (22)dz < 2/]Va(2x)\d\<b1\(x) +2/|Va(2y)]d]<1>2](y). (2.24)

RN RN RN

Take a sequence a,, € C2°(RY) such that xpon) < o < XBont+1) and [Va,|< C.

By substituting «, into (2.24) and letting n — +o00, using the finiteness of ®;, we

get [ (61(z) —Oa(x))" dz < 0. Hence 0; < 6. Since 6; and 6, have the same role,
N

R
we obtain 6; = 6. O

Now, we give the proof of Lemma 2.20. Let us consider the Lipschitz continuous

function of real variable
H.(r) := min(r*/e,1) for any r € R.

Proof of Lemma 2.20. Thanks to Proposition 2.18, we have 0,60, € L*(RY). Now,

let us consider the test functions

§e(z,y) == He(ui(x) — ua(y) + ep(, v))é(z,y)

where £ € C(RY x RY), £ >0, p € C°(RY x RY) and 0 < p < 1. For each y,

considering &.(.,y) as a test function, we have

/ He(uy () — us(y) + £p(z, 9)€ (2, )01 (z) da

-+ |$1|( 2).Vipy e (He(ur(z) — ua(y) + ep(x, y)E(z,y)) d|®y](z)
= /. H_(uy(z) — us(y) + ep(z,y))e(x,y) (v — p)(z)dz.
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Integrating with respect to y, we get

/ / He (s () — us(y) + ep(z, 9)€(x, )01 (x) dady

[ [ @) e (@) = a(5) + e )l ) A ](@dy (o 95)
— [ [ Hetur(o) = waty) + 2 9))€() @ = )y

Similarly, applying for (02, ®s, us), we get

/ / H. (11 (2) — ua(y) + 2p( )&, y)0aly) dyda

[ [ Vo (. n(0) = 1a(0) + <plar).) Al (5.
= [ [ Hetus(o) ~ ualo) + epl €)= ) )by

From (2.25) and (2.26), we have

L(e) + In(e) + Is(e) = 0, (2.27)
where
)= [ [ Hetwn() = us(o) + 2ol )6(o ) 61(0) ) dady
- / / H. (w1 () = us(y) + 2pla, )E(w,y) (v — p)()dady
o [ [ Hutwlo) = ualo) + 2ot )t ) (v - n)@)dedy,
)i [ [ @it (Helaae) = ualo) + ol ) ) Al oy
and o

// | Y)-Vias)y (He(ur(x) — ua(y) + ep(e,y))E(x, y)) d|®s|(y)da

RN RN

Optimal Partial Transport and Constrained Matching Problems 49



2.4. OMK equation

Recall that
Vg(z)dr =0 for any g € Lip(RY) N C.(RY). (2.28)
RN
For short, in the following computation, we denote by H. := H.(uj(x) — us(y) +
ep(x,y)) and H. := H_(u;(z) — ua(y) + ep(x,7)). By the chain rule, we have

//| gCgH + Vg, ur Ho€ + eVapH. §)d|<1>1| 2)dy
RN RN
o , ,
RN RN !
. H.d|®:|(z)d . H_£d| 4| (2)dy,
//| Vi£+ V6 Hod ] y+// () (Vo V) HLEd[0 ()

(2.29)
where, in the second equality, we used (2.28) and the fact that £ € C2°(RY x RV):

/ [ @) (VoHe = Tualo) g+ 9,pH.E) i (o)

RN RN

@1 / v, — us(y) + £pl )€ @, ) dyd ] () = 0.
On the other hand,

[ [ Tt Vi) = a) + <pla )l ()

RN RN

// |(I)1 acp"" Vy/))X[ ep<ui(z )—uz(y)ge(l—p)]éd’q)l‘(x)dy — 0.

RN RN

(2.30)

Indeed, since ®; gives no mass on the set [u; = uy(y)] for each y (using Proposition

1.5 (ii), the nondegeneracy of F' and the definition of solution for (Py)),

Of]
Fo(y) = | (@) (Vap + Vyp)X(—cp<u (@) —us(w)<c(1—p) | P1](2)
|‘I>1’
— / |<I)1 xp+vyp)X[u1 w(lﬂ]éd,q) |( )
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and moreover,

[Fe(y)|< /I(pr+ Vyp)l§d|®:|(x) € L'(RY).

Using the Lebesgue Dominated Convergence Theorem, we get (2.30). Next, from
(2.29) and (2.30), we obtain

liminf I, > — / /\(fo + V,€) |d|P4|(z)dy. (2.31)
RN RN
In the same way, we have
liminf I3 > — / /\(Vl{#— V&) |d|P2|(y)dx. (2.32)
RN RN

Concerning I, (¢), we have the convergence in pointwise (z,y),

He(ur(z) = ua(y) + ep(z, y)) — Signg (ui(z) — u2(y)) + p(2, Y)X{us (2)=ua(w)]»

where
1if >0

0 if » <0.

Signg (r) =
Since v — pu € L', then

ne) = / / (61 () — 0a(y)) (Signit (w1 (2) — () + Pl 9) Xy ) —ua () € Ay

RN RN
- / / (v = (@) = (v = (W) (Signg (ur(x) — ua(y)) + P2, Y)X{us (@) =us(w)]) € A2y
RN RN
= / / (01(2) = 02(y)) (Signg (w1 (@) — u2(y)) + (2, Y)X{us (1) =ua (v))) € d2dy
RN RN
[ J1o- @) - &= ) wlela.y) o
RN RN

where we used the assumption 0 < p(z,y) < 1 and therefore

Szgna_(ul (ZE) - u2(y)) + p(x, y)X[m(m):uz(y)] S L.
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Now, by density, we can choose p(x,y) := Signg (61(z) — 05(y)), so that

liminf 1,(c) > / / (61 () — Ba(y)) 6 — / / (v ) () — (v —12) ()€, ) dadly.

RN RN RN RN

Combining this with (2.27), (2.31) and (2.32), we obtain Lemma 2.20. O

2.5 OMK equation vs active submeasures

2.5.1 Partial minimum flow problem

Recall that in the connection between balanced MK problem and the Monge-
Kantorovich equation the so called minimal flow problem is a key ingredient. For
the PMK problem, the definition of minimal flow problem, that we call here the
partial minimal flow problem as well as its connection with (PMK) are given in

the following proposition.

Proposition 2.21 (Partial minimal flow problem). Let u, v € M} (RY) be

compactly supported. For any m € [0, my,.x], we have

min{(o):0 € Tm(p,v)} = max{D()\,u) c(\u) € RT x LQF}

~ min {R[F <w ’;(x)) A|0|(2) : (P, 0°,60') € Upn(s, y)}

(2.33)
where

Wan(1,0) 1= {(@,0,0") € MyEN)Y x My (RY) x M (RY) - °®Y) = p(®Y) — m,
P RY) =v®Y)—m and —V-®=v—0" — (u—6°) in D’(RN)}.

The last minimization problem in (2.33) is called the partial minimal flow
(PMF) problem. It actually introduces the Beckmann problem (see [10] or Chapter

1) for (PMK) with Finsler distance costs. See here that in the balanced case, i.e.,
m = p(RY) = y(RY), the PMF problem becomes

min{ [ Fa, gro)le]: @ € MEY, -V 0 =y~ in DR

RN

which is a generalization of (1.6) to the case of Finsler distances.
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Corollary 2.22. If (,0°,0') € U,,(u,v) is an optimal solution to the PMF
problem and 6° < p, 0 < v then py == p— 6° and p; == v — O are active

submeasures of the PMK problem. Conversely, if py and py are active submeasures
to the PMK problem then there exists a vector measure ® such that (®,0°,0") :=
(P, 10— po,v — p1) is a solution to the PMF problem.

Note that we do not have any constraints of type 6° < u or 8' < v in the
definition of the PMF problem. However, following Theorem 2.23 below and
Proposition 2.18, these constraints are automatically satisfied for any optimal
solutions (®,0°,0') whenever m € [(uAv)(RY), mpy.,]. The case m < (uAv)(RY)

is not interesting for (PMK) because of the obviousness of solutions.

Proof of Proposition 2.21. The first equality has been shown in Theorem 2.1. Let
us prove the second equality. First, for any (A, u) € R x Lj and a triplet
(@,60° 6') € Uy, (1, ), using Lemma 2.16, we have

/ud(u—u)—l—)\(m—y(RN)):/ud(y—u)—)\/dﬁl

RN RN BN
< /ud(u—u)—l—/ud&o—/udﬁl
RN RN RN
~ [ Viowte) gr@alels [ Fle g @hajel
A TR P

This shows that

d
max  D(\u) <inf {/F (.77, —(I)) d|®|(z) : (@,6°0") € Up(p, 1/)}
Au)ERT L) |D|
Now, let (po, p1) be a couple of active submeasures for (PMK) w.r.t. m. By
Corollary 2.19, there exists ® € M,(RY)Y such that —V - ® = p; — py and

)
/F(w, @(:p))d|<b| = sup { /ud(p1 — po) : u is 1-dp Lipschitz, u > 0}

RN RN
=min{K(o): 0 € Tm(po,,)}-

Let us set

0° .=y —py and 6' :=v — py.
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Then (®,6°,0') € Uy, (1, v) and

/F(x, g,(m))dcm— min {K(0) : 0 € Tan(po. p1)} = max {D(\u) : () € B x L3,
0

2.5.2 Link between the OMK equation and the PMK

problem

The connection between the OMK equation and (PMK) appears when we deal with
the extremal condition between the PMF problem and DPMK problem. Roughly
speaking, the optimality condition in the duality of the DPMK and PMF problems

corresponds to (Py) for some A.

Theorem 2.23. Let p,v € M (RY) be compactly supported.

(i) Given m € [0, my.y] and a solution (®,60°,0") to the PMF problem and (), u)
is a solution to the DPMK problem. Setting 0 = 0' — 6°, the triplet (6, ®,u)
is a solution to the OMK equation (Py). Moreover, 67 = 0 and 0= = 6° if
m > (i A ) (RY)

(ii) Given X > 0 and (6, ®,u) a solution to the OMK equation (Py). Then (A, u)
is a solution to the DPMK problem corresponding to m = (u — 07)(RY) and
(®,0° 0" := (®,07,07) is a solution to the associated PMF problem.

Proof. (i) From the optimality of (®,6° 6') and of (), ), using Proposition 2.21,

we have

[ =)+ Mo = (@) = [ Pl gr@nalal
/ud(u—u) - /F(x,%(x))d]®]+)\/d91.

Thanks to Proposition 2.13, we have that u and (®,6° 60") are solutions for the
duality (2.11). Using Proposition 2.17, we have that (6, ®,u) is a solution to the
OMK equation (Py). Now, let us show that 7 = ' and = = €° for the case
m > (u A v)(RY). We divide into two cases: If m = (u A v)(RY), then the total
cost of the associated optimal partial transport problem is zero. This implies that
d=0and:=0'-0"=v—pu=v—puAv—(u—pAv). By the Hahn—Jordan

decomposition, we have

0" =v—puAv<0 and 0 =pu—pAv <6
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Using the constraints on the total mass of #° and of !, we obtain
0" =v—puAv==0" and 0 =pu—pAv=>0.

If m > (uAv)(RY) then A > 0 and the conclusion follows from Proposition 2.17.

(ii) The proof is similar to the one of Proposition 2.17 (ii) with the use of the
duality (2.33). O

We are now ready to give the proof of the connection between active

submeasures and solutions 6 of the OMK equation.

Proof of Theorem 2.5. First, let 65 be a solution of the OMK equation (P)).
Thanks to Proposition 2.18, 0 < pu — 60, < g and 0 < v — 67 < v. Then,
using Theorem 2.23 (ii) and Corollary 2.22, we deduce that py := p — 6 and
p1:=v — 0 are active submeasures.

Conversely, let m € [(u A v)(RY), mya) and (po, p1) be a couple of active
submeasures. Let (Ay,um) be a solution of the DPMK problem. Thanks to
Corollary 2.22, there exists a flow ® such that (®,u — po,v — p1) is a solution
of the corresponding PMF problem. And, thanks to Theorem 2.23 (i), 0, :=
v —p1 — p+ po is a solution of the OMK equation (Py,,) and

0y =v—pi, 05 =p—po O
Thanks to the above connection, let us give the proof of the uniqueness of

active submeasures by using the result of the OMK equation.

Proof of Corollary 2.6. Assume that (po,p1) and (19,71) € Subm(p,v) are two
pairs of active submeasures. We will show that py = 79 and p; = n;. Let Ay > 0
be fixed such that

Am € argmax {max {D(\u) :ue LZ}F}} :
A>0 u

Let 601,65 be Lebesgue functions with negative and positive parts defined by
91+ =v—p1, 0y =p—po,
and 0 =v—mn, 0, =p—no.

Thanks to Theorem 2.5, #; and 6, are solutions to the same OMK equation (Py,,).
So, using the uniqueness in Theorem 2.4, we deduce that ¢, = 65 and that 0, = 0,

67 = 65 . This implies that py = 1y and p; = 7;. O
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2.5.3 Alternative proof of the uniqueness for regular

Finsler metrics

We provide here an alternative proof for the case where Finsler metric is regular
in the sense that

e the function (z,v) — F(z,v) is C? outside of the zero section (i.e., {(x,0)});
o for each x € RY, the function v — F(z,v)? has positive definite Hessian at all
vector v # 0.

In this case, we make use of the special property on the Lebesgue negligibility of

the endpoints of maximal transport rays (see e.g. [18, Corollary 15] for Finsler
metrics or [1, Corollary 6.1], [5, Theorem 6.2] for the Euclidean metric).

It is not difficult to see that the common mass £ Av must be contained in active
submeasures. So, without losing generality, we assume that p and v are disjoint,

e, pAv=0.

Lemma 2.24. Let (0, ®,u) satisfy the OMK equation (Py). Then
o ftlju=x = VLpu=o = 0;
o LY (supp(®) N [u = A]) = LY (supp(®) N [u = 0]) = 0.

Proof. e Let v be an optimal plan which sends pL,—y to some v; < v. Thanks
to [90, Theorem 5.9], u is also a Kantorovich potential of the optimal transport

problem restricted on pLp,—y to v;. Using the fact u < A, we get

0< min /dp(x,y)daz/u d(v1 — plp=y) <0.
Ueﬂ-(/.l, I—[u:)\]7l/1) [ ]
Since p and v are disjoint, we obtain plp,—y = 0. In much the same way, we also
have Viju=0] = 0.
e We will prove that
LY (supp(®) N [u = A]) = 0. (2.34)

We denote by E the set of right endpoints of maximal transport rays w.r.t. u. It
is well-known that LV (E) = 0 (see e.g. [18, Corollary 15]). To prove (2.34), it is
enough to show that

supp(®) N[u= A\ C E.

Assume on the contrary that there exists z € supp(®) N [u = A] such that z ¢ E.
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From z € supp(®), there is (z,y) € supp(p) x supp(v) such that
(2.35)

Since z ¢ F, we can assume moreover that z # y. From (2.35), we get u(y) > A,

a contradiction. O

Alternative proof of Corollary 2.6. Assume that A > 0. If not, there is nothing to
prove. The first equation in the OMK equation implies that

v—0t—(u—6") is concentrated on supp(®P). (2.36)

Since u = 0 6~ -a.e. and the fact that A > 0, we get 6~ L,—y = 0. Thanks to
Lemma 2.24,

(u - 9_) Lu=A = 0.
Combining this with (2.36), the measure (v — 6%)L},=y is concentrated on
supp(®) N [u = A] so that (v — 67)Lp—y = 0, where we used Lemma 2.24 and
the absolute continuity of v. Since u = A §-a.e., we get 07 = vip,—y . In the

same way, we get 0~ = ul,—q . Since the Kantorovich potential u is independent

of active submeasures, we get the uniqueness of 6. O

2.6 Monotonicity

To study the maps m and R defined in section 2.2, we study the monotone
and continuous dependence of the solution 6, of the OMK equation (P,) on the

parameter \.

Proposition 2.25 (Monotonicity and continuity of 6)). Let pu,v € M (RY)
be compactly supported and absolutely continuous. Suppose that (0x, Py, uy) is
a solution to the OMK equation (Py).

(i) Let 0 < A\ < Ao and 0y, 0y, be solutions to the OMK equations (Py,) and
(Py,), respectively. Then

0;’1 > 9;; and 65, > 6, .

(ii) If a nonnegative sequence N, — X then 0y, — 0 strongly in L*(RY).
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Lemma 2.26 (Monotonicity of total mass). For any A > 0, let 0 be the solution of
the OMK equation (Py) and my := (u— 05 )(RY) = (v —6)(RY). If 0 < A\ < Ay
then

(LA V)RY) <my, <my, < My

Proof. Thanks to Proposition 2.18, we see that p A v < p — 6, and therefore
(u AV)(RY) < m,. Since p— 05 < pand v — 607 < v, we have my < myax. For
the monotonicity, due to Theorem 2.23, (A1, uy,) and (Mg, uy,) are solutions to the

DPMK problem w.r.t. my, and m,,. By optimality, we have

/ und(v — ) + A (my, — v(RY)) > / urgd(v — 1) + Ag(my, — v(RY))
and

/%d(y — )+ Ao(my, — v(RY)) > /ukld(u — 1) + M (my, — p(RY)).
Adding both sides, we obtain

Aimy, + Aomy, > Aomy, + A\jmy,,

or
(/\2 — /\1)(11’1)\2 — m>\1) 2 0. ]

In order to prove Proposition 2.25, we use the following result whose proof is

given in [27] for general costs.

Theorem 2.27. (27, Theorem 3.4]) Let T, be the set of optimal transport plans

opt
m

of the mass m > 0. There is a curve m € [0, My ,] —> Y™ € Fopt

along which

the left and right marginals v™¢ dominate those of ¥™ whenever € > 0.

Proof of Proposition 2.25. (i) Set m; := my, > (uAv)(RY),i=1,2. Since \; < Ay
and Lemma 2.26, we have m; < m,. Thanks to Theorem 2.27, there exist pairs

of active submeasures (pgi, p}') corresponding to m;,i = 1,2 such that

pot < py? and pit < pp. (2.37)

By Theorem 2.23 (ii), (A1, uy,) is a solution to the DPMK with mass m;. Setting
0 :=v—p —p+py'. By Theorem 2.23 (i), there is ® such that (6, ®,uy,) is a
solution to the OMK equation (Py,). By the uniqueness in Theorem 2.4, we get

O, =0=v—p —pu+pp
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Following the proof of Theorem 2.5, we obtain

0y, = pu—py' and 05 = v —pi.
In the same way, we have

0y, = 1—py* and 05, = v — pi*.

Combining these with (2.37), we get 6} > 6} and 6} > 6} .

(ii) Since 0y <y, 65 < v as in Proposition 2.18, we have that [0y, |< p+v € L'
and therefore {6, } is equi-integrable. By the Dunford—Pettis theorem, up to a
subsequence, ), converges weakly to some 6 € L'(R™). Now, let us show that
0 is a solution of the OMK equation (Py). Once this is done, by the uniqueness
in Theorem 2.4, we deduce that § = 0, and thus the whole sequence 0, — 0,
weakly in L'(RY). By the nondegeneracy of F' and the definition of solution for
the OMK equation (Py,), it is clear that {u,, } is bounded and equi-Lipschitz; and
that {®,,} is bounded in My(RY)N. So, up to subsequence,

uy, — w uniformly on each compact subset of RY

and

dy, — & weakly™® in M,(RV)N.

Let us show that (6, ®,u) is a solution to the OMK equation (Py). First, it is clear
that u € Ly _,

/ud@‘ = lim [ uy,df, =0

An—A
and
_ +_ 1 _ + _
/(u A)dé Al:g)\ (ux, — An)dOy = 0.
Moreover,

P ERT (I))\n o - 00 N
/§d9+/mvﬁd\Ql—AEg/fd@AnJr/ |¢AnV5d|<bAn|—/fd<u 1) VE € C2(RY),

which means that
§—V-®=v—pin D(RY).

It remains to check that %(x)v‘q)‘u(x) = F(x, %(m)) |®|-a.e. z in RY. Thanks

to Lemma 2.16, this is equivalent to
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| Pl gl [ Gio Ve (2.38)

RN

Since ®y, — ® weakly* in M,(RY)Y we have (see e.g. [2, Theorem 2.38])

o o 05
< n
/F(w,—‘q)‘(x))dkbl_largggf/F(x, B,

RN RN
On the other hand,

(x))d|®y,|. (2.39)

n |

. (I))\ . (I))\

1 F n dl® = 1 n d|®

i ) e \‘I’An|(x)) 2] Ajri&/mnlv'%'““ 2]

RN
= lim [y, d(v —p) +/U/\nd9)\n
An—A
P
:/Ud(V—M)+/Ud9:/m(m)V@u(x)d‘(I)L
(2.40)

From (2.39) and (2.40), we deduce (2.38). We have just proved that 6,6 — 6,
weakly in L'(RY). At last, by the monotonicity of the first part, we deduce the

strong convergence in L*(RY). O

Proof of Theorem 2.7. The fact that my € [(u A v)(RY),mpy,,] and the
monotonicity of m, are given in Lemma 2.26 while the continuity of m, follows
from the continuity of ). Let us show the surjectivity of m,. Fix any m €
(1 A V) (RY), Myay]. Let (po, p1) be a couple of active submeasures w.r.t. m.
Taking A := A\, as in Theorem 2.5 (ii), then m, = m. Finally, for the properties
of R, we use again Theorem 2.5 and Proposition 2.25. O
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Chapter 3

Augmented Lagrangian Method
for Optimal Partial Transport

with Finsler Distance Costs

In this chapter, we study numerically the PMK problem basing on the theoretical
results from the previous chapter and on augmented Lagrangian methods. The
use of augmented Lagrangian algorithm for optimal transport problems goes back
to Benamou & Brenier [12, Numer. Math., 2000] in the case where the cost
corresponds to the square of the Fuclidean distance. It was recently extended by
Benamou & Carlier [13, J. Optim. Theory Appl., 2015] to the optimal transport
with the Euclidean distance and mean field games theory and by Benamou et al.
[15, ESAIM Math. Model. Numer. Anal., 2016] to the optimal transportation with
Finsler distances. Our aim here is to show how one can use this method to solve
the optimal partial transport problem with Finsler distance costs. A convergence
study for the potential together with the flow and the active submeasures is given

to validate the approach.

For the purpose of practical implementation, we consider in this part of the
thesis the PMK problem with Finsler distance costs on bounded domains. Given
a bounded Lipschitz domain @ C RY, we are interested in cost functions ¢ = dp
with

1

dp(z,y) =  inf / F(e(t), £@)dt - £(0) = 2,6(1) = y b

£eLip([0,1);9)

where F is a continuous Finsler metric on Q, ie., F : Q x RN — [0, +00) is
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continuous and F(z,.) is convex, positively homogeneous of degree 1 in the sense
F(x,tv) = tF(z,v) Vt>0,vecRY,

Concerning numerical approximations for the optimal partial transport problem,
Barrett & Prigozhin [9] studied the case of the Euclidean distance by using an
approximation based on nonlinear approximated PDEs and Raviart—Thomas finite
elements. Benamou et al. [14] and Chizat et al. [35] introduced general numerical
frameworks to approximate solutions to linear programs related to the optimal
transport. Their idea is based on an entropic regularization of the initial linear
programs. This approach needs to use (approximated) values of dp(z,y).

Here, we use a different approach. We first show how one can directly
reformulate the unknown quantities (variables) of the optimal partial transport

into an infinite-dimensional minimization problem of the form
in F Ao¢),
min F(¢) + G(Ad)

where F,G are ls.c. convex functionals and A € £(V, Z) is a continuous linear
operator between two Banach spaces. Thanks to peculiar properties of F and G,
an augmented Lagrangian method is effectively used in the same spirit of [12] (see
also related works [13, 15-17]). We just need to solve linear equations or to update
explicit formulations. Like the standard optimal transport, it is worth noting that

this method uses only elementary operations without evaluating dp.

3.1 Partial transport and its equivalent

formulations

The equivalent formulations for the PMK problem are presented in the previous
chapter with Q = RY. Here we explain and summarize the results for bounded
Lipschitz domains 2. Although the results remain the same, the technique issues
should be mentioned (especially smooth approximation, see Lemmas 3.2 and 3.5,
needed in passing rigorously from the Kantorovich-Rubinstein dual formulation
to the minimal flow problem).

Assume that F'is nondegenerate in the sense that there exist positive constants
My, M5 such that

M |v|< F(z,v) < Malv| Vo€ QveRY.
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Following Chapter 2, to study the PMK problem we use the DPMK problem.

Theorem 3.1. Let u,v € M (Q) be Radon measures and m € [0, My, ). The
PMK problem with ¢ = dr has a solution 0* € T p(u,v) and

K(c*) = max { D(\,u) := /ud(u — )+ Am—-v(Q) : A>0andu € LQF , (3.1)

Q

where
LQF = {u € C(Q): uly) —u(x) <dp(z,y), 0<u(x) <\ foralz,yc ﬁ}

Moreover, 0 € T(u,v) and (A, u) € R x L;}F are solutions, respectively, if and
only if

u(z) =0 for (u—m#0)-ae. x€Q, ulx)=\ for (v—m,#0)-ae. v
and u(y) —u(x) = dp(z,y) for o-a.e. (z,y) € QA x Q.

Proof. The proof follows in the same way of Theorem 2.1. n

The DPMK problem (3.1) contains all the informations concerning the optimal
partial mass transportation. However, for numerical approximation of the optimal
partial transportation and to use the augmented Lagrangian method, we need to

rewrite the problem into the form
inf Ag).
inf F(¢) +G(Ag)
To do that, recall that the polar function F™ of F'is defined by
F*(x,p) :==sup{{v,p) : F(z,v) <1} for z€Q, pc R

Note that F*(x,.) is not the Legendre—Fenchel transform. We need the following
lemma that gives a smooth approximation of 1-dr Lipschitz continuous function.
This result is evident for the Euclidean distance, i.e.,  is convex and F(z,v) = |v]
for € Q,v € RY. However, we could not find any rigorous proofs for general

Finsler metrics I’ in the literature.

Lemma 3.2. Let Q be a bounded Lipschitz domain and F be a continuous

nondegenerate Finsler metric on Q. For any Lipschitz continuous function u on
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Q satisfying
F*(z,Vu(z)) <1 ae z€Q, (3.2)

there exists a sequence of functions u. € C°(RY) such that
F*(x,Vu(r)) <1Vz €

and

u. = u uniformly on €.

Note that F and F™* are defined only in Q and that the gradient of u is controlled
only inside of © by (3.2). If we use the standard convolution to define u., the value
of u.(x) is affected by the value of u(y) outside of Q which remains uncontrolled.
To overcome this difficulty, if « is near the boundary, we move it a little into inside
of € before taking the convolution. To do this, we use the smooth partition of

unity tool to deal with approximation of u near the boundary.

Proof. Set

if 2€Q
Vo € RY, a(z) = o) e

0 otherwise.

Step 1: Fix z € 0Q. Since () is a Lipschitz domain, there exist r, > 0 and
a Lipschitz continuous function v, : R¥=! — R such that (up to rotating and

relabeling if necessary)
QN B(z,r,) =4z |zn > V.(21,...,zn_1)} N B(z,7,).
Set U, := QN B(z,%). For any z € RY, taking
x5 i=x+ele, (3.3)

where we choose a sufficiently large fixed A, and all small ¢, say fixed A, > Lip(~,)+

T2

1.0<e < —/———
SO0 T

. By this choice and the Lipschitz property of v, we see that

B(z%,e) Cc QN B(z,r,) forall x € U,. (3.4)

Defining

() == /pa(y)ﬂ(:vi —y)dy = / pe(a — y)u(y)dy for all z € RV, (3.5)

RN B(z5,e)
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where p. is the standard mollifier on RY. Obviously, 4. € C>°(RY). Using (3.4),
(3.5) and the continuity of u on ©, we get

., = u on U,.

Step 2: Now, using the compactness of 9Q and 92 C |J B(z, %), there exist
z€00
21y -eey Zn € OS) such that
00 C | | B(z, 2.
H (20, 57)

For short, we write r;, U;, z; instead of r,,,U.,,x,,. Taking an open set Uy € (2
such that .
_ T
Q C:L~J}3(Zi’zi) L.J[A}
1=

Let {¢}", be a smooth partition of unity on €, subordinate to

{UOaB(Zla 25 B2, ) } that is,

¢ € CX(RN),0<¢; <1 Vi=0,...,n

supp(@) € B(z,%) Vi=1,...,n, supp(¢) € Uy
Zgbz() 1 for all z € Q.

i=0

Because of Step 1, there exist @, ..., a" € C>°(RY) such that

~i .
i, = uw on Uj,i=1,...,n.

For i = 0, since Uy € 2, we can take @0 := p. % € C°(RY) and @° = u on Ul.
Set

Ue :=

1+C’€—|—w Z@

where C is to be chosen later and
w(e) == sup{|F*(z,p) — F*(y,p)|: z,y € Q, |z — y|< Me, [p|< [|[Vul| L~}

with constant M := max {\., +1}, A,, is given in Step 1. We show that u. satisfies
all the desired propergigs. By the construction, u. € C*°(RY) and

Ug ZKZ@-u:u on ).
i=0
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At last, we show that
F*(z,Vu.(r)) <1 Vo € Q.

For any =z € Q, if x € U;,i = 1,...,n (near the boundary of €2), we move x a bit
into inside of Q to x§ := x% (see (3.3) and (3.4)), if x € Uy, set x5 = x. We have

1 & L
Vu.(z) = 150t u(e) ;V@(l’ —1—2@ YV ( )

_ 1 ZV@(:U) / p=( — y)u(y)dy

14+ Ce+ w(e)
B(xt,e)

(3

n

=Y o) [ ot -0 Vulay

=0 B(x5 )

The first sum on the right hand side has a small norm. Indeed, using the fact that
ZV@ ) =0 for all x € Q,

we have
> Vi) / pe(@f — y)uly)dy = Z Vi(x / pe (@ — y)u(y)dy — u(x)
=0 B(zt,e) (€ ,e)

Moreover,

/ pe(a — y)u(u) dy — u(z)| < / pe(af — ) (u(y) — u(af)) dy| + [u(2?) — u(z)|

(gc‘? 75) (If ,E)

< 018 Vi = O, N,

where the constant C; depends only on Lip(7,,) and the Lipschitz constant of u
on Q. Combining this with (3.6) gives

> Véilx) / pe(a5 — y)u(y)dy| < Coe Vo € Q,

B(z£ ¢)

where Cy depends only on C and ||V || .
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By the nondegeneracy of F', we have

x, ZVqﬁZ(x) / pe(z; —y)u(y)dy | < Cse for all x € Q.
i=0

B(af )

Fix any x € , if y € B(x5,¢) then |x — y|< |v — 25|+|2f — y|< Me. So we obtain

P V) < g 1 Zw@ [ et —sputpan)
B(x%¢)
( quz / pe(a5 = y)Vuly )dy>]
B(x5.e)
el (YR SUTLI ENE e
=0 B(x%¢)

< 1+CE+ [CgeJqubl / pe(; = y) F™(y, Vu(y)) dy

B(xt,e)

2

+Z¢l [ pela =) (P (@ Vaw) - F* (5, Vuly)) dy

B(z5,¢)

2

Cse + 1+ w(e)
14+ Ce+w(e)

<1 (choose a constant C' > C3).

By the continuity of Vu, and of F*, we also have F*(z, Vu.(7)) <1 Vo € Q. O

Lemma 3.3. Let F' be a continuous nondegenerate Finsler metric on a bounded
Lipshitz domain 2. Then the set of 1-dr Lipschitz functions coincides with the set
Bp+ = {u:Q — R|u is Lipschitz and F*(z,Vu(z)) <1 a.e. z€Q}.

Proof. Let u be 1-dp Lipschitz. Then wu is Lipschitz and u is differentiable a.e. in
Q. Let € Q be any point where u is differentiable. We have, for any v € RV,

(Vu(z),v) . ulzx+hv)—ulx) . dp(z,x + hv)
AV T < bt i St R
F(z,v) ilzlir(l) F(x, hv) - hr;rlljélp F(z, hv)
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1
[ F(x + thv, hv)dt
0

< lim sup =1.

h—0 F(ZE, h’U)

Hence, F*(z,Vu(x)) < 1. Thus u € Bp-.
Conversely, fix any u € Bp«. We divide the argument into two cases. Case 1: If
u is smooth then F*(z, Vu(r)) <1 Vo € Q. For any z,y € Q and any Lipschitz

curve £ in € joining x and y, we have

1

1 1
u(y)—u(z) = / Vu(€(t)E(t)dt < / FH((t), VulE() F(E(), £1))dt < / F(E(t), E(t))dt.
0 0

0

It follows that w is 1-dp Lipschitz. Case 2: For general Lipschitz continuous
function u satisfying F*(z, Vu(x)) <1 a.e. z € Q, thanks to Lemma 3.2, there
exist u, € Bp« (C(RY) such that u. = u on Q. According to Case 1 above, u.
is 1-dp Lipschitz and so is u. [

As a consequence of Lemmas 3.2 and 3.3, for any 1-dr Lipschitz continuous
function wu, there exists a sequence of 1-dp Lipschitz continuous functions u, €
C>®(RY) and u. = u uniformly on Q.

By virtue of Lemma 3.3, the DPMK problem (3.1) can be written as

max {D(\,u) : 0 <wu(x) <A, uis Lipschitz continuous, F*(z, Vu(z)) <1 a.e. z € Q}.

Moreover, we have

Theorem 3.4. Under the assumptions of Theorem 3.1, setting V = R x C'()
and Z == C(Q)N x C(Q) x C(Q), we have

K(o*) = —inf {FOLu) + GAN ) : () €V,
where A € L(V,Z) is given by
A\ u) = (Vu, —u,u — A) V(A u) eV

and F : V — (—o0,+00], G : Z — (—00,+00] are the l.s.c. convex functions
given by

f@m%:—éudwqo—Mm—wm)W&@EV;
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0 if z(x) <0, w(x) <0, F¥(z,q(z)) <1 Vz €
+00 otherwise

To prove this theorem we need the following lemma.

Lemma 3.5. Let A > 0 be fixed. For any u € LQ‘F, there ezists a sequence of
smooth functions u. € C°(RN) (L} such that u. = u uniformly on €.

Proof. Since 0 < u < ), the sequence wu. in the proof of Lemma 3.2 satisfies
0<u. <\ SOUSGCEO(RN)HLQFandug:;uonﬁ. O

Proof of Theorem 3.4. Thanks to Lemmas 3.3 and 3.5, we have

— sup /ud(y — )+ Am = (@) A >0, ue CH) N LY,

Q
=max{D(A\,u) : A\>0andu € L) }.

Using the duality (3.1), the proof is completed. ]

To end up this section, by using the Fenchel-Rockafellar duality as in
Proposition 2.13, we get the following result that will be useful for the proof of the

convergence of our discretization.

Theorem 3.6. Under the assumptions of Theorem 3.1, we have

. : ¢ 0 p1
= b FOLu+GAN, u) = mm{/F(x,@(x))d\CM: (@,6°,0) € Upn(p, y)},

Q
(3.7)
where

U, v) = {(@,90, 1) € My()N x My () x Mp(Q) : 00 > 0,601 > 0,01(Q) = v(Q)—m

and =V -&=v—0" — (u—0" inD/(]RN)}.
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Remark 3.7. The optimality relations for the duality (3.7) reads

/

V- ®d=v—0"—(u—6° in D'(RY)

01(Q) =v(Q) —m

) (B, Vu) > (D, q) Vg€ C(Q), F*(z,q(z)) <1 Vz €
AeRT,ueCHQ)NL),

u=0 6@%ae. in Q

(v = A flae. in Q.

In fact, the optimality condition —A*c € OF(¢) gives the first two equations and
o € 9G(A¢) gives the last four equations. Moreover, if ® € LY(Q)V then the
condition

(®,Vu) > (®,q) Vg€ C(Q), F*(z,q(x)) <1 Yz e Q

can be replaced by
F(z,®(z)) = (Vu(x), ®(x)) for a.e. z €. (3.8)

However, it is not clear in general that ® belongs to L'(2)". In the case where (2 is
convex and F'(x,v) := |v| the Euclidean norm (or some other uniformly convex and
smooth norms), the L? regularity results are known under suitable assumptions on
pand v (see e.g. [37, 38, 46, 83]). In the case where ® is a vector-valued measure,
the condition (3.8) should be adapted to the tangential gradient as

) )

@(x) Vigu(z) = F (x, @(x)> for |®l-a.e. = € Q.

On the other hand, from the definition of Wy, (u,v), it is expected that @ is
an optimal flow of transporting p — 6° onto v — @'. This requires that 8° < pu

and 9! < v for optimal solutions (®,0° #'). These estimates hold whenever m €

[l A ) (€2), M.

Proposition 3.8. Let m € [(u A v)(Q), mpy.] and (®,0°01) € U, (u,v) be
optimal. Then 6° < p and 0 < v. Moreover, (u — 0% v — ') is a couple of

active submeasures and ® is an optimal flow of transporting u — 6° onto v — 0*.

Proof. The proof follows in the same way as Theorem 2.23 and Proposition 2.18.
O
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Our next work is to compute an approximation of optimal flow ® (in fact,
approximations of @, u, \,0°,0'). To do that, we will apply the ALG2 method to
the DPMK problem (3.1).

3.2 Discretization and convergence

Coming back to the DPMK problem (3.1), our aim now is to give, by using a finite
element approximation, the discretized problem associated with (3.1). To begin
with, let us consider regular triangulations 7, of €. For a fixed integer k > 1,
Py is the set of polynomials of degree less or equal k. Let Ej;, C H'(Q) be the
space of continuous functions on £ and belonging to Py, on each triangle of T;,. We
denote by Y} the space of vectorial functions such that their restrictions belong
to (Py_1)" on each triangle of 7;. Let f = v — u and f;, € Ej such that {f,}
converges weakly* to f in M, (9).

Considering the finite-dimensional spaces
Vh IZRXEh, Zh I:YhXEhXEh,

we set

A\ u) == (Vu, —u,u — X) € Z, for (A u) €V,
Fohw) = —(u, fr) — AM(m —v(Q)) V(\,u) €V,

and

0 if 2<0,w <0, F*(z,q(z)) <1 ae. z€Q
Gn(q, z,w) := for (q,z,w) € Zy,.

+o00 otherwise

Then the finite-dimensional approximation of (3.1) reads

inf .Fh()\, u) + gh(Ah()\, U)) (39)

()\,u)EVh

The following result shows that this is a suitable approximation of (3.1).

Theorem 3.9. Assume that m < v(Q)). Let (Ap,up) € V3, be an optimal solution
to the approzimated problem (3.9) and (¥, 609, 6;) be an optimal dual solution to
(3.9). Then, up to a subsequence, (A, uy) converges in R x C(Q) to (\,u) an
optimal solution of the DPMK problem (3.1) and (®4,0%,0}) converges weakly* in
My (DN x My(Q) x My(Q) to (,60°,0') € (i, v) an optimal solution of the

PMF problem in (3.7).
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Proof. Sincem < v(2), {\,} is bounded in R and {uy, } is bounded in (C'(€2), ||.||oo)-
From the nondegeneracy of F' and the definitions of Fy, Gy, Aj, we have that {uy}

is equi-Lipschitz and
uh(y) - Uh(l') S dF<x>y) vxay € ﬁ

Using the Ascoli-Arzela Theorem, up to a subsequence, u, = u uniformly on
and A\, — . Obviously, A > 0 and u € Lfl‘F. Now, by the optimality of (A, up)
and of (@, 69,6} ), we have

— A (@, 0y, 0;) = —(m — v(Q), fi) in V!
and
Fu(Ans un) + Gu(An(Mny un)) = =F5 (= A5 (Pny 03, 04)) — G (P, 0, 03).
More concretely,
(®p,, Vv) — (09, 0) + (05, v — 8) = s(m — v(Q)) + (fu,v) V(s,v) € Vi,  (3.10)

00 >0, 0, >0, () =v(Q) —m (3.11)

and
(up, fr) + An(m —v(Q)) =sup {{(q,®1) : ¢ € Y3, F*(z,q(x)) <1 ae. x€Q}.
(3.12)
In (3.10), taking v = 0 and s = 1 (respectively, v = s = 1), we see that
{6}} (respectively, {69}) is bounded in M,;(Q). Moreover, using (3.12) and the
boundedness of (A, uy,) we deduce that {®,} is bounded in M(Q)". So, up to a

subsequence,

(Pr,0°,0)) — (@,6°0") weakly™ in My(Q)Y x My(Q) x M,(Q).
Using (3.10) and (3.11), it is clear that (®, 0%, 0') satisfies

(®, Vo) — (0°,0) + (0*,v — 8) = s(m — v(Q)) + (f,v) V(s,v) €V

and
0" >0, 6' >0, 0*(Q) =v(Q) —m,
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ie., (@,0°0") € Uy, (u,v). Next, let us show the optimality, i.e.

F(z, %(w})d@\: (u,v — p) + A(m — v(Q)). (3.13)

D\\

We fix ¢ € C(Q)N such that F*(z,q(z)) < 1Vz € ©, and we consider g, € Y}, such
that ||gn — q||zee()— 0 as h — 0. We see that

F*(x,qn(z)) = F*(z,q(x))+ F*(x,q,(z)) — F*(x,q(x)) <1+ O(h) for a.e. x € Q.

By taking , we can assume that ¢, € Yy, F*(z,qy(z)) <1 for a.e. x € Q)

dn
14+ O(h)
and |lg, — ql|z=@)— 0 as h — 0. Using (3.12), we have

(0, @) = (qn, Pn) + (¢, ® — Pp) + (¢ — qn, )
< sup {{qn, ®rn) : qn € Vi, F*(z,qn(x)) < 1, a.e. x € Q} + O(h)

= (un, fn) + An(m —v(Q)) + O(h).

Letting h — 0, we get
(q,®) < (u,v — p) + AX(m — v(Q)) for any ¢ € C(Q)Y, F*(x,q(z)) <1 Vo € Q.

Taking supremum in ¢, we obtain

[ Pl @Rl .y = ) + Mm - (@)

Q

At last, thanks to the duality equality (3.7), this implies (3.13), the optimality of
(\,u) and of (®,6°,6%). O

Remark 3.10. In the case m = my,,, (called the unbalanced transport), the
DPMK problem has a simpler formulation. So for the purpose of implementation,
we distinguish the two cases: the partial transport and the unbalanced transport.

In the unbalanced case, let us assume that m = my,., = v(Q) (i.e., u(Q) > v(Q)),
the DPMK problem (3.1) can be written as

max /ud(y —p) su € Lip(Q), u >0, F*(z,Vu(r)) <1 ae x€Q . (3.14)

Q
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By using Vh = Eh, Zh = Yh X Eh,Ahu = (VU, —U) and

0 if 2<0,F*(z,q(x)) <1 forae z€Q
gh(Qu Z) =

400 otherwise,

a finite-dimensional approximation can be given by

inf —(u, fa) + Gn(Apu). (3.15)
ueVy
As in Theorem 3.9, we can prove the convergence of this finite dimensional

approximation to the original one (3.14). More precisely, we have

Proposition 3.11. Assume that m = v(Q). Let u, € V}, be an optimal solution
to the approximated problem (3.15) and (®p,09) be an optimal dual solution to
(3.15). Then, up to a subsequence and translation by constant, uy converges to u
an optimal solution of the DPMK problem (3.14) and (®y,, 6)) converges to (®,0°)
an optimal solution of the PMF problem in (3.7) with 0* = 0.

3.3 Solving the discretized problems

Our task now is to solve the finite dimensional problems (3.9) and (3.15). We use
the ALG2 method (see Chapter 1) for the discretized problems. To simplify the
notations, let us drop out the subscript h in (A, us) and (@4, 69,6} ). Thanks to

Remark 3.10, we treat separately the case where m = v(2) and the case where

m < v(Q).

3.3.1 Partial transport (m < v(Q))

Given (g;, z;, w;), (94,09, 0}) at the iteration i, we compute
e Step 1:

()\qul, uiH) = argminfh()\,u) -+ <(CI)1, 90 91), Ah()\,u)> -+ g‘Ah()\,U) — (ql, Ziy U)Z)‘2

177

= argmin —(u, f,) — A(m — v(Q)) + (®;, Vu) + (00, —u) + (0, u — \)
(}\,U)EV}L

+ g\Vu — qi|2+£]u + zi\2+g|u — A —w.
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e Step 2

(Qit1s Zit1, Wit1)

. T
= argmin gh(‘]? 2, w) - <((I)i7 9?) 911)7 (Q) 2, w)> + 7’Ah()‘i+17 ui+1) - ((L 2y U))|2
(q727w)ezh 2

= (argfilig Lr () <1)(@) + Ia<0)(2) + D<oy (w) — (P, @) — (67, 2) — (6}, w)
q,2,W)ELp

T T T
+ 5Vt — QI2+§|W+1 + Z’2+§|Uz'+1 — Xiy1 —wf’.
e Step 3: Update the multiplier
(‘I’i+1; 9?“7 87j1+1> = ((I)i; 9?; 911) + T(VUiH — Qit+1, —Ui+1 — Zi41, Uiyl — )\i+1 - wi—&-l)‘

Before giving numerical results, let us take a while to comment the above
iteration. Overall, Step 1 is a quadratic programming. Step 2 can be computed
easily in many cases and Step 3 updates obviously.

e In Step 1, we split the computation of the couple (A1, u;41) into two steps:
We first minimize w.r.t. u to compute u;,; and then we use u;;1 to compute \;4;.

More precisely, we proceed for Step 1 as follows:
1. For Uit1,

i1 € argmin —(u, fr) + (®;, Vu) + (6, —u) + (0], u)
ueby,
"y — a2’ 2y T2
—I—2|Vu 4 +2|u+zz| +2|u i — wi|*
This is equivalent to
r{(Vuii1, Vo) + 2r{ui, v) = (fr,v) — (®;, Vo) 4+ (02, 0) — (6}, v)
+ 1{(q;, Vv) — r{z;,v) + (N + w;,v) Yv € Ej.

Remark here that the equation is linear with a symmetric positive definite

coefficient matrix.

2. For \;;1, it is computed explicitly

- — r
Ait1 € argmin —s(m — v(Q)) + (0}, w1 — s) + §<ui+1 — 8 — Wi, Ujp1] — S — W;)
seR

v(Q) —m — [0} +7 [ (wi — uir1)
a )

rfl
Q
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e In Step 2, the variables ¢, z, w are independent. So, we solve them separately:

1. For z;11 and w1, if we choose P, finite element for z;,1 and w; 1, at vertex

Tk,

9?(%))

s (1) = Projpcs o (—uiH(xk) ;

0
= min (—Ui+1<xk) + w, 0)

and

0; (xk)>

wit1(T) = Projp,cp. < (Ui+1(9€kz) A

1
= min (uiﬂ(a:k) — Niy1 + b <:jk) ) 0) :

2. For g1, if we choose P, finite element for ¢;,; then, at each vertex x;,

)

Giv1(z1) = Projp . (VWH(IL’Z) +

Y

where Bre(;,) == {q € RV : F*(z,q) < 1} the unit ball for F*(z,.).

It remains to explain how we compute the projection onto Bg«(,,, ). This issue
is recently discussed in [15] for Riemann-type Finsler distances and for crystalline
norms. For the convenience of the reader, we retake here the case where the
unit ball of F(z,.) is (not necessarily symmetric) convex polygon. For short, we
ignore the dependence of z in F' and F*. Given dy, ...,d; # 0 such that, for any
0#veRY, max {(v,d;)} > 0. We consider the nonsymmetric Finsler metric
given by

F(v) = 1r1<12a<>§€{<v,di)} for any v € RY.

It is not difficult to see that the unit ball B* corresponding to F* is exactly the

convex hull of {d;},
B* = conv(d;,i =1,.... k).

Thus we need to compute the projection onto the convex hull of finite points. In
dimension 2, the projection onto B* can be performed as follows: Compute the
successive vertices S, ..., S,. If ¢ ¢ B* then compute the projections of ¢ onto the
segments [S;, S;11] and compare among these projections to chose the right one.
Another way is as the one in [15]: Compute outward orthogonal vectors vy, ..., v,
(Fig. 3.1). If ¢ belongs to [S;, Si+1] + R;v; then the projection coincides with the
one on the line through 5;, .S;.1. If ¢ belongs to the sector S; + R, v;_1 + R v; the

projection is S;.
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- /55\
\

Fig. 3.1: Illustration of the projection

3.3.2 Unbalanced transport (m = v(2))

Thanks to Remark 3.10, we can reduce the algorithm in this particular case by
ignoring the variable A\. With similar considerations for Ayu = (Vu, —u), we get
the following iteration

e Step 1:

: r r
wi1 € argmin —{(u, f,) + (®;, Vu) + (09, —u) + §|Vu - qz-|2—|—§|u + 22

ueFEp,

Equivalently,
r{Vuii1, Vo) +1 (Ui, v) = (fr, v) — (@, VO) (00, v) +1{q;, V) —1(z;,v) Yo € E},.

e Step 2:

1. For z;,1, choosing P, finite element for z;,,, then at each vertex zy,

0Y 00
zi+1(2k) = Projjer: r<) <—Uz‘+1(37k) + Z(;Uk)) = min <—Uz‘+1(37k) + M, 0> :

2. For ¢;,1, choosing P; finite element, at vertex z;,

r

Giv1(x)) = Projg,..,. <Vu2-+1(xl) + ( Z)) :

[ ] Step 3: ((I)i+1, Q?Jrl) = (q)z, 0?) -+ T(VUH& — i1, —Ujp1 — Zi+1>.
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3.4 Numerical experiments

We use the FreeFem++ software [55] and base on [12, 13]. We use P, finite element

for u;, z;, w;, 09,0} and P finite element for ®;, ¢;.

3.4.1 Stopping criterion

In computational version, the measures y and v are approximated by nonnegative
regular functions that we denote again by u and v. We use the stopping criteria:

e For the partial transport:

1. MIN-MAX := min {min u(r), A — max u(z), min 6°(x), min Ql(x)} :
0 Q Q )

2. Max-Lip := sup F*(z, Vu(x)).
Q

3. DIV := [V &+ v — 0" — i+ 0 2.
4. DUAL := ||F(x, ®(x)) — ®(x) - Vul| 2.
5. MASS := | [(v — 6")dz — m|.

e For the unbalanced transport: We change

1. MIN-MAX := min {min u(z), min 90(:10)}.
0 Q

2. DIV:= ||V - @+ v — pu+ 6012

We expect MIN-MAX > 0, Max-Lip < 1; DIV, DUAL and MASS are small.

3.4.2 Some examples

In all the examples below, we take = [0, 1] x [0, 1]. We test for the Riemannian
case and the crystalline case. For the latter, we consider the Finsler metric of
the form F(x,v) = max {(v,d;)} with given directions dj, ..., d; such that for any
0#v e R?

max {(v,d;)} > 0.

1<i<k
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IsoValue
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Fig. 3.2: Optimal flow for u =3, v = d(9.5,0.5), F'(x,v) = |v].
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Fig. 3.3: Stopping criterion at each iteration

For the unbalanced transport

Example 3.12. Taking p = 3L%g and v = d(o.5,0.5 the Dirac mass at (0.5,0.5).
The Finsler metric is the Euclidean one. The optimal flow is given in Fig. 3.2.

The stopping criterion at each iteration is given in Fig. 3.3.

Example 3.13. We take p and v as in the previous example, and the Finsler
metric given by F(z,v) := |v1|+|va|, for v = (vy,v9) € R% This corresponds to the
crystalline norm with d; = (1,1),dy = (—1,1),d3 = (—1,—1) and dy = (1,—1).
The optimal flow is given in Fig. 3.4 and the stopping criterion at each iteration

is given in Fig. 3.5.
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IsoValue

m30.4226
m33.6057

Vec Value

m3.10967
m328243

Fig. 3.4: Optimal flow for =3, v = 6(9.5,0.5), F(x, (v1,v2)) = |v1|+]vz].

- = -DVerror MIN-MAX
—— DUAL error - = =Max-Lip
2 /|
15 1

B VS

Log 10 of Errors
~
.

Nonnegativity of u, and 1-Lipschitz

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

(a) logiop of DIV and DUAL errors (b) Feasibility of u and §°

Fig. 3.5: Stopping criterion at each iteration

For the partial transport

Example 3.14. Taking pu = 4X[(2—0.3)2+(y—0.2)2<0.03) and v =

4X[(2—0.7)2+(y—0.8)2<0.03]- Lhe mass of the transport is m := ”(29). We test for
different Finsler metrics. On each figure below, the subfigure at left illustrates the
unit ball of F' and the subfigure at right gives the numerical result (see Figs 3.6,

3.7, 3.8 and 3.9). The stopping criteria are summarized in Table 3.1.
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(a) The unit ball of F

Fig. 3.6:

(a) The unit ball of F’

IsoValue

(b) Optimal flow

Case 1: F(z,v) = |v|.

Soo0

IsoValue

(b) Optimal flow

W4.65556

Vec Value

m0.585719

Fig. 3.7: Case 2: The crystalline case with d; = (1,1),d2 (-1,1),ds = (-1,—1) and
dy = (1,-1).
Case | DIV DUAL MASS MIN-MAX | Max-Lip | Time execution
1 2.48182e-05 | 9.5294e-06 0.000161361 | -0.0149942 | 1.00068 357 s
2 3.38395e-05 | 5.58717e-05 | 0.000195881 | -0.0012012 | 1.00248 867 s
3 7.44768e-05 | 5.5997e-05 6.66404e-06 | -0.0027238 | 1.00351 1269 s
4 6.33726e-05 | 3.20691e-05 | 0.000120909 | -0.0104915 | 1.02572 1123 s

Tab. 3.1: Stopping criteria for 800 iterations
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IsoValue

-4

(a) The unit ball of F’

(b) Optimal flow

Fig. 3.8: Case 3: The crystalline case with d; = (1,0),dy = (%, %),dg, = (—é, %),d4 = (—%, —%)

and ds = (%, —%) makes the transport more expensive in the direction of the vector (1,0).

IsoValue

(a) The unit ball of F

(b) Optimal flow

Fig. 3.9: Case 4: The crystalline case with dy = (1, —1),d2 = (1,—%2),d3 = (—%,1),ds = (-1,1)
and ds = (—1, —1) makes the transport cheaper in the direction of the vector (1,1).

Example 3.15. Let 1 = 2X[z—02)2+(y-02)2<0.03] T 2X[(2—0.6)2+(y—0.1)2<0.01) and

V = 2X|(2—0.6)2+(y—0.8)2<0.03]- In this example, we take the Euclidean norm and we
let m vary by taking the values m; = £ min{u(Q),»(Q)}, i = 1,...,6. The results
are given in Fig. 3.10.
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Isovalue

IsoValue

IsoValue

777778
i
mi22222
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Ve Value,
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1
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mO' 178517
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0241866
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H0328585
H0:35047

B 372575
WO 304278
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0280408
H0:3050

Wo:331301
Ho 356883

0484341

Fig. 3.10: Optimal flows

0350031
=0 381852

H0 413673
W0.445491
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Chapter 4

Optimal Partial Transport with

Lagrangian Costs

4.1 Introduction

This chapter presents some theoretical and numerical results for the PMK problem

with Lagrangian costs ¢ = ¢, where

1

c(e,y) = inf / LE@).€())dt - €(0) =2, 6(1) =y b (41)

¢eLip([0,1];Q)

with L satisfying some conditions such that, in contrast to the previous chapters,
the class ¢y includes c(z,y) = |z — y[* as a particular case. Our main
aims are to develop rigorously the variational approach to provide equivalent
dynamical formulations and use them to supply numerical approximations. For
the uniqueness, using basically the idea of [75], we establish the uniqueness of

active submeasures in the case where the densities are absolutely continuous.

Recall that the PMK problem reads as follows

min { K(y) = / cr(z,y)dy v € Tm(p,v) p . (4.2)

RN xRN

To introduce and comment our main results, let us take a while to focus on the

typical situation where the cost is given by

a
L(x,z) := k(z) L2 for any (r,2) € RY x RY (4.3)
q
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Chapter 4: Optimal Partial Transport with Lagrangian costs

with ¢ > 1 and k being a (positive) continuous function. Recall here that if k = 1

and ¢ = 2, the cost function ¢, corresponds to the quadratic case:
cp(z,y) =y —z|* for any z,y € RY.

This is more or less the most studied case in the literature (cf. [27, 33, 36, 48, 61]).
However, let us mention here that our approach is variational and goes after our
program of studying the optimal partial transportation from the theoretical and
numerical viewpoints of Chapters 2 and 3. To begin with, it is not difficult to
see that using standard results concerning the Eulerian formulation of the optimal
mass transport problem in the balanced case, i.e. equal mass for the source and

the target, an Eulerian formulation associated with the problem (4.2)-(4.3) can be

/ / '“ G2 it 2) (4.4)

among all the couples (p, v) € M (Q) x L}(Q)" satisfying the continuity equation

given by minimizing

Op+V-(up)=0 inQ:=[0,1] xRN (4.5)

in a weak sense with p(0) < p and p(1) < v and p(0)(RY) = m. However, to
use the augmented Lagrangian method, we will prove rigorously that in fact the
minimization problem of the type (4.4)-(4.5) is the Fenchel-Rockafellar dual of a
new dual problem to (4.2). Indeed, using the general duality result on the optimal
partial transportation in Chapter 2, we prove that a dynamical formulation of the

dual problem of (4.2) consists in maximizing

/u(l, v — /u(O, N+ A(m — u(RY) (4.6)

RN RN

among the couples (A, u) € [0,00) x Lip(Q), where u satisfies the following

constrained Hamilton—Jacobi equation

Dyu(t, ) + k() TDIT < 0 for ae. (1) € Q
(4.7)
—A <u(0,7), u(l,z) <0 VreRY.

Here ¢ —L denotes the usual conjugate of ¢ and a = /. Then, even if the

regularlty of the solutions here creates an obstruction to the application of the
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general theory, we will prove that the minimization problem (4.4) remains to be
the Fenchel-Rockafellar dual of the maximization problem (4.6)-(4.7). Using these
equivalents, we overbalance the problem into the scope of augmented Lagrangian
methods and give numerical approximations to the optimal partial transport
problem. In particular, we will see that this approach does not need to evaluate
cp(z,y), for each pair of endpoints x and y, but requires only some values of L.
Also, the method provides at the same time active submeasures and the associated

optimal transportation.

In addition, let us mention that the Fenchel-Rockafellar duality between the
maximization problem (4.6) and the minimization problem (4.4) brings up (as
optimality condition) a new type of ”constrained” Mean Field Game (MFG)
system. For the particular case (4.3), this system aims to find (p,v) € M (Q) x
L}(Q)"N satisfying both the usual MFG system associated with the cost (4.2)-(4.3):

Ou(t, x) + k‘a(x)w“”“((]#)'q, <0 for a.e. (t,x) in @

§ Op+V-(vp)=0 in (0,1) x RY (4.8)

v(t,z) = k(2)™|Vu(t,2)|72V,u(t,r)  p-ae. (t,z)in Q

and the following non-standard initial boundary values:

p(0) — i € Ol 4o0)(u(0,.)) and v —p(1) € O_oo g (u(l,.)). (4.9)

In other words, these initial boundary values may be written as: —\ <
u(0,.), u(l,.) <0, p(0) < u, p(1) < v, p(0) = p in the set [u(0,.) > —A] and
p(1) = v in the set [u(1,.) < 0]. In the system (4.8), A is an arbitrary non-negative
parameter and the couple (p(0), p(1)) € M (RY) x M (RY) is unknown. Once
the system is solved with the optimal A for (4.4), the couple (p(0), p(1)) gives the

active submeasures and p gives the optimal transportation.

Actually, for a given A > 0, (4.8)-(4.9) is a new type of constrained MFG
system. In this direction, one can see some variant of constrained MFG systems
and their connection with the Mean Field Games under congestion effects in the
paper [82]. However, let us mention that (4.8)-(4.9) is different from the class of
MFG systems introduced in [82]. In particular, one sees that the constraints in
(4.9) focus only the state at time ¢ = 0 and ¢ = 1. As to the constraints in [82],

they are maintained on all the trajectory for every time ¢t € [0, 1] to handle some
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kind of congestion.

At last, let us mention that the main difficulty in the study of the above
variational approach of the problem (4.2) for general Lagrangian L remains in the
regularity of solutions of the optimization problems like (4.4)-(4.5) and (4.6)-(4.7).
To handle this difficulty we prove some new results concerning approximation
of the solutions of general constrained Hamilton—Jacobi equation like (4.7) by
regular function. Moreover, we show how to use the notion of tangential gradient
to study MFG system like (4.8)-(4.9) in the general case. In particular, when
m = p(RY) = v(RY) and L(x,v) = L(v) is independent of z, this MFG system
reduces to the PDE as in the work of Jimenez [62].

To avoid unnecessary difficulties, in our theoretical study, we will work with
Q = RY in the definition (4.1) of ¢, . Throughout this chapter, we drop the

subscript L and write simply ¢ instead of ¢y.
Assumption (A): Assume that the Lagrangian L : RY x RY — [0, +00) is
continuous and satisfies:

e [(z,.)is convex and L(z,0) = 0 for each fixed z € RY;
e (Superlinearity) for any R > 0, there exists a function 0 : R, — R, such that

Or(t)
t

— 400 as t — 400 and L(x,v) > 0g(|v]) Yz € B(0, R).

|v]?

For example, the function L(z,v) := k(z)* -, ¢ > 1 satisfies the above assumption

whenever k is (positive) continuous.
As usual, the convex conjugate H of L is defined by

H(z,p) := sup {(p,v) — L(z,v)} for any » € RN pec RV,

veERN

Note that, under the assumption (A) on L, the function H(.,.) is continuous in
both variables and that ¢(.,.) is locally Lipschitz.

We set Q := [0,1] x RN, The usual derivatives of u are denoted by dyu, V,u,
and V,,u = (O, V,u). Recall that the continuity equation O;p + V - (vp) =
0,p(0) = i, p(1) = v is understood in the sense of distribution, i.e.

[+ [[ 90040 [ o100~ [ 00,1400
Q RN RN

9 (4.10)
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for any compactly supported smooth function ¢ € C°(Q). As before, we denote
(4.10) by
—divy, (p,vp) =0 @V — 6 ® L.

4.2 Uniqueness of active submeasures

The existence of active submeasures follows from Chapter 2. The present section

concerns the uniqueness.

Theorem 4.1 (Uniqueness). Assume moreover that L(x,v) = L(v) is independent
of z and that L(v) = 0 if and only ifv = 0. If p,v € L' and m € [uAv(RY), mp.,]

then there is at most one couple of active submeasures.

The idea of the proof is based on the recent paper [75, Proposition 5.2]. For

completeness, we give here an adaptation to our case.

Lemma 4.2. Assume that L satisfies the assumption (A ). Let (pg, p1) be a couple
of active submeasures and vy € T (pg, p1) be an optimal plan. If (z*,y*) € supp(y)
then po = p a.e. on Bo(y*,R) == {t € RN : ¢(t,y*) < R} and p, = v a.e. on
Be(z*, R) :={w € RY : ¢(z*,w) < R)}, where R := c(x*,y*) = cr(z*,y*).

Proof. We prove that p; = v a.e. on B.(z*, R). If the conclusion is not true then
there exists a compact set K € B.(z*, R) with a positive Lebesgue measure such
that py < v a.e. on K. The proof consists in the construction of a better plan 7.

Since (z*,y*) € supp(7y), we have
0 <~(B(z*,r) x B(y*,r)) < / vder — 0 as r — 0,
B(y*r)

where B(x,r) is the ball w.r.t. the Euclidean norm. Now, geometrically speaking,
instead of transporting mass from z* to around y*, we can give more mass on K.

To be more precise, we construct a new plan 7 as follows

:Y =0 = ﬁ}/I—B(:D*,T)XB(y*,T') +n

with
_ 7Taﬁ'%'é(’yI—B(ar*,r)><B(y*,7")) ® (V - pl)I—K
J(v = pr)dz '
K
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Then 7, #7y = pp and

1(B(z*,r) x B(y*,r))

[{(V — p1)dz

Ty#Y < Y + (v=p)lk <pr+(v—p)lx <v

for all sufficiently small r. It follows that ¥ € T (p, v). Furthermore, we have

/ c(z,y)dy

= /c(;my)dv — / c(z,y)dy + / c(z,y)dn

B(x*,r)xB(y*,r) B(z*,r)xK

< Jy)dy — inf ,Y) — , B(z*,r) x B(y*,r)).
< / c(z,y)dy <(x,y)eg<x¥,lr>xj3(y*,7-)C(x Y) sup oz y)) v(B(z*,r) x B(y*,r))

(z,y)eB(z*,r)x K

< /c(&y)dv for small r,

where we used the fact that

inf c(x,y) — su c(z, > (0 for small r.
((x,y)EB(x*,r)XB(y*,r) ( y) (ac,y)EB(a:p*,T)XK ( y)>
This holds because of the definition of K and the continuity of c. n

The next lemma provides an expression for active submeasures.

Lemma 4.3. Under the assumptions of Theorem 4.1, let (pg, p1) be couple of active

submeasures. Then
po = Xpgit and  p1 = xpgV

for some measurable sets By, B .

Proof. Since L(z,v) = L(v), we get ¢(z,y) := cr(x,y) = L(y—x). Thus ¢(z,y) =0
if and only if z = y. This implies that the common mass u A v must belong to
active submeasures, i.e., u Av < pg and p A v < p;. So without loss of generality,
we can assume that the initial measures p and v are disjoint, i.e., u Av = 0. Now,
let us define

By := Leb(u) N Leb(r) N Leb(po) N {po < pu}V

and
By := Leb(x) N Leb(v) N Leb(py) N {py < v},

Here, Leb(g) is the set of Lebesgue points of g and AM) is the set of points of
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density 1 w.r.t. A. We see that
By = (Leb(p) N Leb(v) N Leb(po))* U ({po < p}V)* = Z U {po = p},

with £¥(Z) = 0. So po = p a.e. on Bf. Next, we show that py = 0 on By. Indeed,
if po(z) > 0 for some x € By then = € supp(py). Hence there exists y € supp(p;)
such that (x,y) € supp(y) for some optimal plan € 7T (pg, p1). Since u A v = 0,
we can take y # x and thus R := ¢(z,y) = L(y —x) > 0. Since B.(y, R) is convex,
it has the cone property, i.e. there is a finite cone with vertex at x contained in
B.(y, R). It follows that there exists a sequence of subsets of B.(y, R) shrinking to
x nicely (see e.g. [79, Theorem 7.10]). Using Lemma 4.2, py = p a.e. on B.(y, R),
we obtain po(z) = p(x), which is impossible. Consequently, the proof of the

expression pg = xpcp is completed. In much the same way, we get p; = xpev. U

Proof of Theorem 4.1. Let (pg, p1) and (po, p1) be couples of active submeasures.
By Lemma 4.3, we have py = Xpept, p1 = XBcV, po = X et and p; = XpeV- By
the convexity of the total cost, we see that %(,00, p1) + %(ﬁo, p1) is also an optimal
couple. If (po, p1) # (Po, p1) then £ (po, p1)+ 2 (po, p1) does not admit any expression

as in Lemma 4.3, a contradiction. ]

Remark 4.4. (i) Following the proof, Theorem 4.1 is still true for any general

cost ¢ (not necessary to be of the form ¢y) if we have the following properties:
e ¢ Is continuous.
e ¢(z,y) =0if and only if x = y.

e The balls w.r.t. ¢ defined by B.(y,R) := {t € RY : ¢(t,y) < R} and
Bu(z, R) :=={w € RY : ¢(z,w) < R)} are regular in the sense that given any
point on the boundary of a ball, there exists a sequence of subsets of the ball

which shrinks nicely to that point.

(ii) In the case where L(x,v) = L(v) is strictly convex, Figalli [48] studied the
strict convexity of the function that associates to each m € (u A v(RY), my,,,| the
total Monge-Kantorovich cost to deduce the uniqueness.

(iii)) When L(zx,.) is positively 1-homogeneous, i.e., L(z,tv) = tL(z,v) Vo €
RN, v € RN, ¢ > 0, the uniqueness can be obtained via PDE techniques applied to
the OMK equation (see Chapter 2).
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4.3 Equivalent formulations

In the present section, under the general assumptions of section 4.1, we introduce
and study the equivalent formulations for the PMK problem of the type (4.4)-(4.5)
and also (4.6)-(4.7).

4.3.1 Dual formulation

We start with the Kantorovich-type dual formulation. It follows from Theorem
2.9 that the DPMK problem can be rewritten as

i {/wdu ~ [ o Mm - u(®) s AE R, (6.6) € D(n u)} |
(4.11)

where
X (p,v) = {(¢,9) € LL x L+ =N < ¢, <0, 9(y) — ¢(z) < c(x,y) Yo,y € RV},

Moreover, we have

Theorem 4.5. Let u,v € M (RY) be compactly supported and m € [0, myay].
Suppose that L satisfies the assumption (A). Then

min K(v) = / c(x,y)dy

YET m(p,v)
RERN (4.12)
= n;lax{/u(l, Jdv — /u(O,.)dp+ Am —g(RY) : XeRT, ue /C,’:\} ,
( 7u> RN RN

where

K= {u € Lip(Q) : Owu(t,x) + H(x,Vyu(t,z)) <0 for a.e (t,x) € Q,

—A<u(0,z) and u(l,z) <0 Vz € RN}.
Note that if u € K} and w is smooth then we get
ou(t, ) + (Vyu(t,x),v) < L(z,v) V(t,z) € Q, veRY. (4.13)

In general, for any u € K2, we can approximate u by smooth functions satisfying a
similar estimate for (4.13). This is the content of the following lemma. Although

we obtain here only the estimate at the limit, this is enough for later use.
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Lemma 4.6. Fiz any u € K. There exists a sequence of smooth functions u. €
C>=(R x RY) such that u. converges uniformly to u on Q and

lim sup (dyue (t, z) + (Voue(t, z),v)) < L(z,v) Y(t,z) € Q,v € RY (4.14)

e—0
and, for all € € Lip([0,1];RY),
1

1
1imsup0/ (8tu€(t7£(t)) + (Vzus(t,ﬁ(t)),ﬁ(t») dt < O/L(ﬁ(t),ﬁ(t))dt- (4.15)

e—0

Proof. Let a., . be standard mollifiers on R and R”, respectively, such that
supp(ae) C [—¢,¢]. (4.16)

Set n.(t,7) := a.(t)B:(x). Let @ be a Lipschitz extension of u on R x RY. By

means of convolution in both time and spacial variables, let us define
e =1 %@ and u(t,x) == U (e + (1 — 2¢)t, (1 — 2¢)z) for (t,z) € R x RV,

Let us show that u, satisfies all the requirements. First, since @ is Lipschitz, u,
converges uniformly to u on Q. Now, for all ¢ € [0, 1], using (4.16), we have

ue(t, ) = / / az(e 4+ (1 —2e)t — 5)B:((1 — 2¢)z — y)u(s,y)dy ds

R RN

= / / az(e+ (1 —2e)t — 5)B((1 — 2e)z — y)u(s, y)dy ds.

0 RN

Fix any v € R, for all ¢ € [0, 1], we have

Oyus(t, z) + (v, Vuc(t, z))

1
=(1-2¢) / / as(e+ (1 —2e)t — 5)B:((1 — 2¢)z — y)Osu(s,y) dyds

0 RN

1
+ (1 —2¢) <v,/ / ac(e+ (1 —2e)t —5)B((1 — 2e)z — y)Vyu(s,y) dy ds>

4.17
/) (317

(1—2¢) as(e+ (1 —2e)t — 5)B:((1 — 2¢)x — y)L(y,v) dy ds
RN
= (1 =2¢) [ Be((1 = 26)z —y)L(y,v) dy.

R

O\H

=
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Letting ¢ — 0, we obtain (4.14). Next, let us fix any £ € Lip([0, 1]; RY). Using
(4.14) with = = &(t), v = £(t), we have

limsup (e (£ £(1) + (Vaue(£,€(1)), (1)) ) < L(E),EW) for ae. te [0,1]. (4.18)

e—0

Recall that (the Reverse Fatou’s Lemma) if there exists an integrable function g

on a measure space (X, n) such that g. < g for all €, then

lim sup / g-dn < / lim sup g.dn.

£

In our case, on X := [0,1] with the Lebesgue measure, the functions g¢.(t) :=

Ouc(t,€(t)) + (Vaue(t,£(t)),£(t)) for a.e. t € [0,1] are bounded by a common
constant depending Lipschitz constants of u and of £&. Applying the Reverse Fatou’s
Lemma and (4.18), we deduce that

1

imsup [ (D (6,0) + (Ve (1. €(0). ) ) e

e—0

1

< [ timsup (u.(.6(0) + (Vau(t 6(0). €02 ) dt

e—0

]

Note that we can do even better in the case where L(z,v) = L(v) is independent

of z. Indeed, from our argument (4.17), we can choose u. such that
Dyue(t,2) + (Vue(t, 2),0) < L(w,v) V(t,2) € Qv € RY

without passing ¢ to 0.

Now, we are ready to prove the duality (4.12). We check directly that the
maximization is less than the minimum in (4.12) with the help of Lemma 4.6. For

the converse inequality, we make use of the theory of Hamilton—Jacobi equations.

Proof of Theorem 4.5. Fix any u € K2. Let u. be the sequence of smooth functions
given in Lemma 4.6. Fix any ¢ € Lip([0, 1]; RY) such that £(0) = z,£(1) = y. By
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using (4.15), we have

u(l,y) —u(0,2) = lim (us(1, £(1)) — u(0.£(0)))

=l / (Brue(t,€(0)) + (Voua(t, (1)), £(1)) ) at

1

< / L(E(t), £(1))dt.

]

Since ¢ is arbitrary, we get
u(l,y) —u(0,z) < c(z,y) Yo,y € RY.

In view of (4.11), we deduce that

(Aw)

K(c*) > sup {/u(l, Jdr — /u(O, N+ Am — pRY): XeRT, ue IC():‘} .

RN
(4.19)

Conversely, let (¢,1) € ®X(u,v) be a maximizer in (4.11). Set

¢1(x) == sup (P(y) —clz,y)) and ¢"(x) := max{dy(x), —A} for x € supp(u).

yEsupp(v)

Since (., y) is locally Lipschitz w.r.t. the variable z, ¢* is Lipschitz on the compact
set supp(u). Moreover, ¢* is non-positive (since ¢ < 0 and ¢ > 0) and (¢*,v) is
also a maximizer of the DPMK problem. By extension, we can assume that ¢* is

non-positive and Lipschitz on RY. Now, we set

t

witia)i=int { [ L(6(6),E))ds + 6°(6(0) € € Lip((0, 6 RY).£(t) =

0

Then (see e.g. [44, Chapter 10] or [28, Chapter 6]) u* is Lipschitz on @ and u* is

a viscosity solution of the Hamilton—Jacobi equation
Owu(t,z) + H(x, Vyu(t,z)) =0

with u*(0, z) = ¢*(z). It is not difficult to see that u*(1,y) < ¢*(y) <0, u*(0,x) =
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¢*(x) > —\ Vao,y € RN and that

1

w(ty) =it [ (). €)as +67(6(0) - € € Lip(0 1) (1) = y

> inf {c(z,y) +¢"(2)}

> (y) Yy e RY.
These imply that u* € K2 and that
u'(Ly) —u(0,2) > ¥(y) — ¢*(x) Va,y €RY.
Thus

/u*(l, )dv — /u*(O, D+ A(m — p(RY)) > /wdu - /¢*du +A(m — p(RY))

= K(c").

Combining this with (4.19), the duality (4.12) holds and u* is a solution of the
maximization problem on the right hand side of (4.12). O

4.3.2 Eulerian formulation by Fenchel-Rockafellar duality

As we said in the introduction, the Fenchel-Rockafellar duality is an important
ingredient of our analysis, especially for the numerical analysis by augmented

Lagrangian methods.

Theorem 4.7. Under the assumptions of Theorem 4.5, we have

max t/ u(l,.)dv — /u(O, ddp 4 A(m — g(RY)) : (A u) € RT x £

(4.20)
— min //L(x,v(t,x))dp(t,x):(p,v,@o,«?l)eBc ,
Q

where
B, := {(p,v,eo,el) € MF(Q) x Lp(@Q)N x MF(RYN) x MF(RY) : °(RY) = p(RY) — m,

—divig (p,vp) =61 @ (v —0) — 6o @ (n — 6°) }
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Roughly speaking, the minimization in (4.20) is the Fenchel-Rockafellar dual
of the maximization problem. However, the interesting point to note here is that
the maximization problem in (4.20) does not satisfy the sufficient conditions to
use directly the dual theory of Fenchel-Rockafellar. To overcome this difficulty,
we approximate the maximization problem by a suitable supremum problem. To
this end, for general Lagrangian L, we make use of the smooth approximations

given in Lemma 4.6.

Proof of Theorem 4.7. Let us first show that

max {[R/ u(l,.)dv — /u(O, Jdp +AMm — g(RY)) 0 (A u) € RT x K2

Y (4.21)

< inf //L(x,v)dp :(p,v,0°,0") € B,
Q

Fix any u € K} and (p,v,6°, ') € B.. Let u. be the sequence of smooth functions

given in Lemma 4.6. Taking u. as a test function in the continuity equation

—divi, (p,vp) = 61 @ (v = 0') = 8o @ (u —0°),

we have
//@uedp—i-// Vouo(t,2)-v(t, 2)dp = /ug(l,.)d(y—el)—/uE(O,.)d(p—GO).
Q ¢ EN o

Since 0°(RY) = p(RY) — m, we get

[ uttgdy = [0 a2 - u(@))

Hi /ug(l,.)dl/Ri /ue(O,.)du—/\/dQO
— [ =0~ [ a0+ [ o000 - [ 00,4000
:é/ (Ot + Vaue - v)dp +R[ ue(1,.)do* —/(ug(o,.)quA) de°.

(4.22)
Letting ¢ — 0, using Lemma 4.6 and the fact that u(1,.) <0, u(0,.) + A > 0, we
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have

/u(l, )y — /u(O, )+ A(m — p(RY))

R; //L(w,v(ﬂj,vx))dp—ir/u(l,.)d91—/(uO,.)—l—A)d@O
Q

< / / Lz, v(t, x))dp(t,ﬂi). R
Q

This implies the desired inequality (4.21). Let us now prove the converse inequality.
Obviously, we have

RN RN

max { / u(l,.)dv — / w(0,.)dp + Am — p(RY)) - (A, u) € RY x IC;\}

> sup {/u(l, Jdv — /u(O7 g4 Am — p(RY) : (\u) e RT x KX ue C’l’l(Q)} .

RN RN

It is sufficient to show that

sup {/u(l, Jdv — /u(O, Jdp 4+ Am — p(RY) : (\u) e RT x KX u e CI’I(Q)}

RN RN

= min // L(z,v(t,z))dp : (p,v,6°,6%) € B,
Q

(4.23)
This will be proved by using the Fenchel-Rockafellar dual theory. Indeed, the

supremum problem in (4.23) can be written as

— infv]-"()\, u) + G(A(N, u)),

(Au)e

where

F(\u):=— / u(l,.)dv + / u(0,.)dp — A(m — M(RN)) for (\,u) € V := R x CH(Q),
RN RN

AN u) = (Vigu, =X —u(0,.), u(1,.)) € Z := Co(Q)N T x Cy(RY) x Cy(R™),

0 if z(z) <0,w(x) <0 and ¢ (t,z) + H(z,qn(t,z)) <0 V(t,x) € Q
G(g, z,w) := {

+o00 otherwise
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with q := (q1, qn) € Cp(Q) x Cp(Q)N for all (¢, z,w) € Z. Now, using the Fenchel-
Rockafellar dual theory, we have
inf F(A A(A
ot F s u) + GAR, u))
= max (=F*(—A*(2,6°,6")) — G*(@,6°,6")) .
(2,00,01) M (Q)N XMy (RN) x M (RN)
(4.24)

The proof is completed by computing explicitly these quantities.

e Let us compute F*(—A*(®,0° 60')). Since F is linear, F*(—A*(®,6°,6')) is

finite (and is equal to 0 whenever finite) if and only if

(—A*(@,0°,601), (\w)) = F(\u) = - /u(l, Vv + /u(O, ) dje— Am — p(RY))
for all (A, u) € V. Equivalently,

~(Veou, @) = (0%, =X —u(0,.)) = (0", u(1,.)) = —(u(l,.),v) + (u(0,.), ) = A(m — u(R™))
for all (A, u) € V. This implies that

—(Viou, @) = (u(0,.), u — 6°) — (u(1,.),r — 0") for all test functions u € C*(Q)

and that
0O (RY) = u(RY) - m.

Recall that ® € M, (Q)V ™!, writing ® = (p, E), the above computation gives
—divi, (p, E) =6, ® (v — ") — 5 @ (n — 0,

and
0°(RY) = p(RY) —m.

e For G*(®,6° 6%, since H(.,.) is continuous, using the same arguments as

in [83, Proposition 5.18], we have

o [[ L(z,v(t,z))dp if6°>0,0'>0 &= (p,E), p>0,E<p, E=uvp
G (®,0°,0") =< @
400 otherwise.

Substituting F* and G* into (4.24), we obtain the needed equality (4.23). O
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4.3.3 Optimality condition and constrained MFG system

To write down the optimality condition for the duality (4.20), we need to use the

notion of tangential gradient to a measure.

Optimality condition for the duality (4.20) is related to the following PDE

system:

(

— divy(p,vp) = 01 ® (v — V) — 5o @ (1 — 0°)

L(z,v(t,2)) = V,u(t,z) - (1, v(t,2)) pace. (tx)in Q
du(t,x) + H(z, Voul(t,z)) <0 ace. (t,x)in Q
60 € DT 100) (u(0, )

o' € 8]1(_0070] (u(l, ))

L (p,0,6°,0%) € MJ(Q) x Ly(Q)Y x M (RY) x M (RY),
(PDE,)
where the condition 6" € 91_ g (u(1,.)) means that

u(1,.) <0 and (0',¢ —u(1,.)) <0 Vo € Cy(RY), ¢ <0,

or equivalently
u(1,.) <0, 8' >0 and /u(l,.)d91 =0.
RN

Similarly, the condition —0° € OI_ 4o (u(0,.)) reads as

u(0,.) > =\, 8° >0 and /(u(O, )+ A)de? =o.

RN

Theorem 4.8. Assume that (p,v,0° 0') € B, and (\,u) € R* x K are optimal
for the two problems in the duality (4.20). Then (p,v,0° 0%, u) satisfies the system
(PDE,). Conversely, if (p,v,0° 0%, u) is a solution of (PDEy), then (p,v,0° 01)
and (\,u) are solutions to the duality (4.20) w.r.t. m = p(RY) — O(RY).

Remark 4.9. For the standard optimal transport problem, i.e., m = u(RY) =
v(RY) (in this case #° = §' = 0), the optimality conditions (PDE,) can be reduced
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to the following system:

—divi . (p,vp) =61 @V — 0o @
L(z,v(t,x)) = VPU(t, z) - (Lu(t,z)) pae in Q (4.25)
Owu(t,x) + H(x,Vyu(t,z)) <0 ae in Q.

In particular, if L(z,v) = L(v) is independent of the variable x then the system
(4.25) recovers the same PDE as in the work of Jimenez [62].

Remark 4.10. If m = p(RY) = v(R"Y) and assume moreover that p < LN

then the conditions (4.25) can be rewritten as

( —divy . (p,vp) =01 @V — Jy @

Owu(t,z) + H(x,Vyu(t,z)) <0 ae. (t,z)in Q
Owu(t,x) + H(x,Vyu(t,z)) =0 p-ae. (t,z)in Q
\U(t,l‘) € 0H(z,Vu(t,x)) p-ae. (t,z)in Q,

where OH is the subdifferential of H w.r.t. the second variable. Indeed, the
condition L (z,v(t,x)) = V,u(t,z) - (1,v(t, z)) p-a.e. implies that

L(z,v(t,r)) = Viuu(t,z) (Lv(t,z)) pLY T ae. inQ

= Owl(t,z) +v(t,x) - Veu(t,x) pLN-ae. in Q.
This implies that
L (z,v(t,x)) < O+ H(z, Vyu(t,z)) + L(z,v(t,z)) < L(z,v(t,z)) pLY-ae. in Q.

Hence Owu(t,z) + H(z,V,u(t,z)) = 0 p-ae in @ and ov(t,z) €
O0H (z,V,u(t,x)) p-ae. in Q.

To prove Theorem 4.8, we need a similar estimate for (4.13) for any u € K.
Since u is not smooth in general, we will characterize the estimate (4.13) via the

tangential gradient instead of the usual one.

Lemma 4.11. Let u be a Lipschitz function on QQ and yu(t, z)+H (x, Vu(t, z)) <
0 ae (t,z) € Q. For any (p,v) € M (Q) x L})(Q)N satisfying the continuity
equation,

—div,, (p,vp) = 61 ® p1 — do @ po,
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we have
Vou(t,z) - (1,v(t,x)) < L(z,v(t,z)) p-a.e. (t,z) in Q.

Proof. Let u. be the sequence as in Lemma 4.6. Since —dive, (p,vp) = 6 @ p1 —
do ® po, we see that (1,v(t,z)) € T,(t,x) for p-a.e. (t,z), where T,(t,z) is the
tangential space w.r.t. p. Using Lemma 4.6 and the continuity of the tangential

gradient operator (see e.g. Chapter 1 or [62, Proposition 4.5]), we have

// V- (1,0)6 dp — 15%// V. - (1,0)¢ dp
Q Q

= hH(l) // Vt,xua ' (172))6 dp
Q

T, v X N+1 .
séyL<,<n>kdefeD®. ), €20

Thus the result of the lemma follows. O

Proof of Theorem 4.8. Let (p,v,0° 0') € B, and (\,u) € Rt x K} be admissible
elements, respectively. Let u. be the sequence given by Lemma 4.6. By (4.22) and

Lemma 4.11, we have

/u(l, )dv — /u(O, )dp+ Mm — p(RY))

= lim ugdu—/uedu—l—)\(m—u(RN))

e—0

e—0

~ lim // (8tu5+VIug-v)dp+/ua(1,.)d01—/(uE(O,.)vL)\)dHO

RN RN

e—0
ggﬂwwﬂww
Q
= // Vou- (1,v)dp
Q
< //L(m,v(t,a:))dp.
Q

1. From the assumptions on optimalities and the duality (4.20), the inequalities

¢
:lim// (Orue + V. - v) dp+/U(1a-)d91 —/(“(0"”” ae* (4.26)
g RN Y |
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in (4.26) become equalities. These imply that

// V- (1,0)dp = //L(x,v(t,x))dp,
Q Q

or equivalently
L(z,v(t,x)) = V,u(t,z) - (1,v(t,z)) p-a.e. in Q (by Lemma 4.11),

and that [ w(1,.)d6" =0, [ (u(0,.)+ A)dg° = 0. These show that (p,v,8°,6", u)
RN RN
satisfies the system (PDE,).

2. Conversely, if (p,v,0° 0", u) satisfies the system (PDE,), the inequalities in
(4.26) are equalities. Using the duality (4.20), we obtain the desired optimalities.
O

Remark 4.12. A solution (®* 0% 6'%) of the Fenchel-Rockafellar dual
formulation (4.24) gives a couple of inactive submeasures and therefore active

submeasures pf = u — 0% and p} = v — 6.

This remark allows us to solve the PMK problem by using numerical methods

for approximation of the Fenchel-Rockafellar dual problem.

4.4 Numerical approximation

We will apply the ALG2 algorithm to the dual formulation on the right hand
side of (4.12) in order to give numerical approximations for the optimal partial
transport problem. We will solve for active submeasures py = p — 6°, p; = v — 01
and the optimal movement of density p; from py to p;.

Recall that the dual maximization formulation in (4.12) can be rewritten as
inf {F(\,u) + GA\w): (\u) eV},
where

FA\u) = —/u(l, .)dz/—i—/u(O, Ydp—A(m—p(RY)) for (\,u) € V :=RxC(Q),

AN u) = (Vigu, =X —u(0,.), u(1,.)) € Z := Co(Q)N™ x Cy(RY) x Cy(RY)
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and, for all (¢, z,w) € Z,

G(q,z,w) ==

0 if2(2) < 0,uw(x) <0 and g = (@ (t,2), an (£, 7)) € K, V(t,2) € Q
+o00 otherwise

with K, == {(a,b) e Rx RN : a+ H(z,b) <0} ,z € RV.

Let us discuss the details of computation. Actually, in computation, we
replace V, Z by finite-dimensional spaces, for example, using Lagrangian piecewise

polynomials. We denote by P, the space of piecewise polynomials of degree ¢,
N times

, : N+1 N (P
i=1,2. Wewilluse V = (R, P,) and Z = (P," ™, Py, P5), where P," := (P, ..., P\).

We use L?norm for Pp, Py, PN

e Step 1: We split into two steps: First using \; to compute u; 1 and then using

u;11 to calculate \;yq.

1. For u;.1, we solve

ngn {_ ((u(l, ')7 V> - <U’(O’ ')7 :U'>> + <<0i7 Q?, ‘911)7 (vt,ﬂ:u’ _u<07 ')7 u(l’ ))>
r
5 1(Viatt, =h = u(0,.), u(L, ) - (i, 2 wi) 2}
This is a quadratic problem which is equivalent to a linear equation with a positive-

definite coefficient matrix. So this step can be solved effectively by many solvers.

The linear equation is detailed as (by taking derivative w.r.t. )

r<vt,xui+1a Vt,x¢> + T<Ui+1(1, ')7 ¢(1> )) + T<Ui+1 (07 ')7 ¢(07 ))
= <¢(17 ')7 I/> - <¢(07 ‘)7 :u> - <(Uia 9?7 911)’ (Vt,m(ba _¢(O7 ')7 d)(la )))
+ (g, 20, wi) , (Vied, =0(0,.),0(1,.))) = r{Xi; 9(0,.)) forall (t,¢)€V.

2. For )‘H—la

min {—A(m — () + (03, 60,61, (0, =, 0)) + g|—/\ —u;1(0,.) — zi|2} ,

AR
which is equivalent to

m — u(Q) + [ 07 — 7 [(2i + ui11(0,.))
A1 = - !
rf1
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e Step 2: Since the function G(g, z,w) has the form of G (q) + Ga(z) + G3(w), we
solve separately for the variables ¢, z, w.

1. For Zid1,

: r
Zi41 € argmin {H[zgo] — (02, 2) + =|=Nig1 — uis1(0,.) — z|2}
zePs 2

. 6;
= PI‘OJ{[zePQ:Z§0]} (_/\i—l—l - ui+1(07 ) + ?) :

This is computed in pointwise, i.e., given a grid with vertices x;, then

zi+1() = Projiseris<o) (_)‘Hl = uir1 (0, ) () + =

09(x;
= min {_)\i+1 —ui11(0, ) (7;) + %%)7 0} '

2. For w;41, similarly,

o1

Wit1 = Projipe pyrw<a)y <Uz'+1(1a )+ 71> :

3. For ¢;.1, similarly,
. 0
Giv1 = Projg, (Vt,xum + 7) .

e Step 3: Update Lagrangian multipliers.

4.5 Some examples

In all the examples below, we work on the square 2 = [0,1] x [0,1] in R? and
use the discretization size 36 x 36 x 9 for the spatial-time variable. We test the

examples for costs of the form

1
(o) = int { [ L))t € € Lin(0.1]:2).60) = 2,60 =y
0
with L(z,v) = k(x)[v|?, k € C(Q),k(x) > 0 for all x € Q,v € R% For this cost,
the last projection in the Step 2 (the projection on K,) is converted to a problem

on R and the latter is computed easily by the bisection method.

Example 4.13. The source and the target are Gaussian distributions of the same

mass for the Lagrangian L(z,v) = |v|>. We want to transport optimally a half of
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the mass. More details,
p = 10 exp(—40(z; — 0.25)% — 40(z, — 0.75)?),

v = 10exp(—40(x; — 0.75)% — 40(xy — 0.25)?).

The active submeasures and the optimal displacement are given in Figure 4.1.
Timestep 0 and timestep 9 (py and p;) are active submeasures of the source and
the target, respectively. The intermediate timesteps show the optimal movement

of density from py to p;.

Source Timestep 0 Timestep 1 Timestep 2

| ] P i
/ i
| / |
/ | / |
| |
| | : :
LY |
L 4 |
| |
u | - %
| =
|
|
|
|
|
|

Timestep 3 Timestep 4 Timestep 5 Timestep 6

Timestep 7 Timestep 8 Timestep 9 Target

Fig. 4.1: Active submeasures and their displacement

Example 4.14. We take the similar data to the previous example but the source

and the target are taken as the sums of two distributions,
1 = 10 exp(—40(z1—0.25)2—40(25—0.25)%)+10 exp(—40(z; —0.75)*—40(x,—0.75)?),

v = 10 exp(—40(x;—0.75)*—40(22—0.25)%)+10 exp(—40(;—0.25)*—40 (1, —0.75)?).
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The result is given in Figure 4.2.

Source Timestep 0

Timestep 2

Timestep 4 Timestep 5 Timestep 6

Timestep 7 Timestep 8 Timestep 9 Target

Fig. 4.2: Active submeasures and their displacement

Example 4.15. In this example, we take L(z,v) = k(z)|v|? with
k(z1,29) = 14 15 exp(—45(z; — 0.5)* — 45(25 — 0.5)?),

1 = 20 exp(—60(z; — 0.2)* — 60(x5 — 0.8)?),
v = 20 exp(—60(x; — 0.8)% — 60(zy — 0.2)%),

and
mmax

2

This cost means that we have to pay much if we transport through around (0.5, 0.5)

m =

(where k(z) is big). The numerical result is illustrated in Figure 4.3.
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Source Timestep 0 Timestep 1 Timestep 2

Timestep 3 Timestep 5 Timestep 6

Timestep 7 Timestep 8 Timestep 9 Target

Fig. 4.3: Active submeasures and their displacement
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Chapter 5

Optimal Constrained Matching
Problem for the Euclidean

Distance

This last chapter deals with some theoretical and numerical aspects for an optimal
matching problem with constraints. It is known that the uniqueness of optimal
matching measure does not hold even with L? sources and targets. In this chapter,
the uniqueness is proved under geometric conditions. On the other hand, we also
introduce a dual formulation with a linear cost functional on convex set and show
that its Fenchel-Rockafellar dual formulation gives right solution to the optimal
matching problem. Based on our formulations, a numerical approximation is given.
We compute at the same time the optimal matching measure, optimal flows and

Kantorovich potentials. The convergence of discretization is studied in detail.

5.1 Introduction

Optimal matching problem (see [30, 34, 41] and the references therein) deals
with the problem to transport two measures of commodities into a prescribed
location and to match them there in such a way to minimize the total cost
of both transportations. The problem with uniformly convex costs is studied
in [29, 30, 34, 41] with applications in economic theory. The case where costs
are governed by the Euclidean distance is studied in [69] with connection to
p—Laplacian type equations.

Optimal constrained matching problem (see [9, 68]), which is a variant from

the optimal matching problem and the partial transport problem, consists in
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transporting two kinds of goods and matching them into a target set with
constraints on the amount of matter at the target. Mathematically, the optimal
matching problem with constraints for the Euclidean costs can be modeled as
follows: Let ©Q be a bounded, convex set of RY and fi, fo € M (Q) represent
source measures of the same mass, i.e., fi(2) = f2(Q2). The constraint on the

target set is represented by a measure © € M; (), which must satisfy

fi() = £2(2) < 6(Q).

The optimal matching problem reads

W(f f2:0) =  inf /  — yldy + / T—yldn |, 61
(71,72 Eﬂ- fl?fzy 090

with
7T(f1>f2;@) = {(717’72) € M;(Q X Q)Q : 7-[-2ﬂ'%£’y1 = Wy#'ﬁ < @771-33#72' = fle = 1a2}

An optimal solution (7y1,72) is called a couple of optimal plans and p := 7, #v1 =
Ty #72 s called an optimal matching measure. Obviously, we can write (5.1) as

follows

W(fi,f20) = inf {Wilfi.p)+Wilfaip) : p< O, p(Q) = A(Q)}. (OM)
PEM ()
where Wy(.,.) is the 1-Wasserstein distance.
The problem can be also reformulated by saying that masses moving from f; to
f2 are forced to pass through an unknown (optimal) distribution less than © and
the transportation cost should be optimal. In applications, f; and f; can be
distributions of consumers while © would be a distribution of commodities.
Using the direct method, it is not difficult to prove the existence of an optimal
matching measure. Our main interest lies in the uniqueness and numerical
approximation of solution. As we will see, the uniqueness of optimal matching
measure does not hold even with regular fi, fo,©. An additional geometric
condition, as well as the absolute continuity of the measure O, is needed for the
uniqueness. Concerning numerical computation, we develop the variational study
of the problem.
The optimal constrained matching problem (OM) is recently studied
theoretically in [68] in connection with p-Laplacian type systems by using PDE
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techniques. Inspiring from the work of Evans and Gangbo [45] on the optimal
transport theory, the authors in [68] show that an optimal matching measure and
associated Kantorovich potentials can be obtained from limits in p-Laplacian type
equations as p — +o0. In [9], Barrett and Prigozhin use approximated nonlinear
PDEs and Raviart-Thomas elements to give a numerical approximation to the
problem (5.1) in the case where © = CLNLp, ie., © is a constant C' on the

destination set D.

In this chapter, we focus more on variational aspects and the uniqueness
of optimal matching measure. We introduce some equivalent formulations for
the problem (5.1). We give a sufficient condition to ensure the uniqueness of
optimal matching measure and show that a solution of the Fenchel-Rockafellar
dual formulation is the right solution to the optimal matching problem under a
suitable geometric condition. Numerical aspects are also studied with the help of
the equivalent formulations. We show the convergence of discretization and give

details in solving the discretized problems.

It is important to mention at the beginning that the optimal constrained
matching problem behaves differently from the optimal partial transport. Firstly,
in contrast to the PMK problem, the Fenchel-Rockafellar duality does not give the
right solution, in general. Secondly, the uniqueness of optimal matching measure

does not hold even with regular sources and targets.

The chapter is organized as follows: In the following section we present our main
results such as the uniqueness of optimal matching measure, dual maximization
problem, connection between a minimal matching flow problem and (OM), the
convergence of discretization and a numerical example illustrating our approach.
The proofs are discussed in the next sections. More precisely, section 5.3 is devoted
to the duality issue while the uniqueness is discussed in section 5.4. Numerical
analysis of the problem is given in section 5.5 with a study of the convergence of

discretization. In the last section, we give some numerical examples.

5.2 Main results

Throughout this chapter, Q C R" is a bounded convex domain and f;, f», © €

M (Q) are nonnegative Radon measures such that

() = /() <6(9Q).
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It is not difficult to see that the feasible set 7T(f1, f2; ©) is closed under the weak
convergence of Radons measures. This observation gives easily the existence of
a couple of optimal plans (71,72) and thus an optimal matching measure p :=
Ty#Y1 = my#y2. However, in general the uniqueness of optimal matching measures
does not hold. For instance, let fi = LL[0,1], fo = LL[5,6] and © = L1 [2,4],
where £ is the Lebesgue measure on R. We see that there are infinitely many
optimal matching measures with the total cost W(f1, f2;©) = 5 (one can verify
this by using the duality in Theorem 5.3 below).

Here, we prove that under additional conditions on the supports of O, f;, for
¢t = 1,2 and the absolute continuity of ©, there is a unique optimal matching

measure. Let us fix the assumption

S(f1, f2) Nsupp(©) = 0, (H)

where S(f1, f2) = {z =(1—t)x+ty:x €supp(fi), y € supp(f2) and t € [0, 1]}

Theorem 5.1. Assume that © € L' and that (H) holds. There exists a unique

optimal matching measure p.

Notice that the absolute continuity of © is necessary for the uniqueness. Indeed,
taking fi = d(,—1), fo = d1) and © = d(_1,0) + d(1,0) in R?, then S(fi, f2) N
supp(©) = 0 and there are again infinitely many optimal matching measures of
form p = ad_10) + B0 with a > 0,8 > 0,a + 3 = 1. So, the conditions in
Theorem 5.1 are somehow optimal for the uniqueness.

Now, to build numerical computation of the solution to the optimal matching
problem (OM), our main objective is to prove rigorously all the necessary materials
to use the augmented Lagrangian method. Our approach is variational. To this
aim, we introduce a suitable dual formulation to (OM) which moves the problem

into the scope of the general formulation
llel‘f; F(u) + G(Au), (5.2)

where V' and Z are two Hilbert spaces, F : V — (—oo0,+o0] and G : 7 —
(—o00, +00] are convex and ls.c., and A € L(V, Z) the space of continuous linear
operators. Once such a dual formulation is given, the ALG2 method (see Chapter
1) can be applied to give numerical solutions to both the problem (5.2) and the
Fenchel-Rockafellar dual problem of (5.2):

sup (—F*(—=A%0) — G*(0)). (5.3)

oEL*
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Recall that the necessary and sufficient condition for optimality of (5.2) and (5.3)

reads as

—ANo € 0F(u) and o € 0G(Au). (5.4)

It is expected that the Fenchel-Rockafellar dual form (5.3) will give informations
on the original matching problem. We will see that this is again true under the
necessary geometric condition (H).

We come back to the duality issue for (OM). As usual, let us denote by Lip; (€2)
the set of 1-Lipschitz functions on 2. By extension, we usually identify Lip;((2)
with Lip;(Q). Let us recall that the duality issue was already studied in [68] with

the following result:

Theorem 5.2 ([68]). Assume that fi, fo € L>(Q). One has

W(fl,fz; @) = max {—/uldfl — /UQde — /(Ul + Ug)id@ T Up, U € LZpI(Q)} .
(5.5)

However, even if the problem (5.5) falls into the scope of (5.2), unfortunately
the corresponding F is nonlinear on its variable u := (u1, ug) and (5.5) is not very
useful for numerical computation. Here, we introduce a new dual formulation with

the following linear cost functional:

max {/(m us)dO — /uldfl - /uzde (g, up) € K} (56

where
K = {(uy,us) € Lip1 () x Lip1(Q) : uy +us < 0}.

Using the Fenchel-Rockafellar dual theory to the maximization problem (5.6),

we also introduce the minimal matching flow (MMF) problem:

min {|91](€) + |@](€) : (@1, B2,v) € U(i, £5:0) }, (MMF)
where
U(f1, f2;0) = {(@1,q>2,u) e My(@N x My( )N x M (Q) : —V-®; = O—v—f; in D’(RN)}.

As usual, the divergence constraint is understood in the sense of distributions, i.e.

(V6. 03) e an ) /w d|<I>|—/¢d S
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for any smooth compactly supported function ¢ € C(RY).
Our main result concerning duality and quivalent formulations is summarized

in the following theorem.

Theorem 5.3. Let f1, fo,0 be Radon measures. We have

W(fi, f2:0©) = max{/(ul + ug)dO — /Uldfl - /UQde D (ug,u) € K}

= min {\qm(ﬁ) (D] () : (B, B, v) € T(fr, o @)}.
(5.7)

Moreover, we have that

e (71,72) € T(f1,[2;0) and (uy,uz) € K are optimal for the optimal
constrained matching problem (5.1) and the mazimization problem (5.6),

respectively, if and only if

u +us =0, (0 — p)-a.e., with p = m#y = T,#72
ui(y) — wi(x) = |y — 2| for all (z,y) € supp(y1) (5.8)
uz(y) — uz(x) = [y — x| for all (z,y) € supp(y2).

o (u1,uz) € K and (Py, Do, v) € U(f1, f2;0) are optimal for (5.6) and (MMF),
respectively, if and only if the following system holds

V- &, =0—-v—f; in D(RN), i=1,2

;?' = Vie,u; |P]-a.e. in Q,i=1,2 (5.9)

U +uy =0 v-ae in Q.

Remark 5.4. If © is absolutely continuous, the optimality condition (5.9) can be
simplified by using the usual gradient instead of the tangential gradient. In fact,
in this case, it is known that ®; is also absolutely continuous (see for instance [1])
and that v is then differentiable |®;|-a.e.. By regularization via convolution, we

can use u as test function in the first equation of (5.9), and using the duality (5.7),

we get ;q = Vu; for |®;|-a.e. in Q.

Roughly speaking, the dual maximization formulation (5.6), the problem
(MMF) and the system (5.9) correspond to (5.2), (5.3) and the optimality condition
(5.4), respectively. In the optimal mass transportation problem, these three

formulations contain all the informations concerning the optimal transportation.
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This is extensively used to give numerical approximations for some variants of
the optimal mass transport problem (see for instance [12, 13, 15, 59]). For the
optimal matching problem, we need to compute moreover the optimal matching
measure. As an immediate consequence of the duality equalities in Theorem 5.3,

the following result shows how this can be carried out.

Corollary 5.5. Let p be an optimal matching measure and ®; be optimal flows for
transporting f; onto p, i = 1,2. Then (1, Py, v) := (1, D2, © — p) is an optimal
solution for the associated problem (MMF). Conversely, if (®1, ®o,v) is an optimal
solution for the problem (MMF) and v < O, then p := ©—v is an optimal matching

measure and ®; is an optimal flow of transporting f; onto p, 1 =1,2.

This result shows that the connection between (MMF) and (OM) lies in the
condition v < O for an optimal solution (®1, ®s,v) of (MMF). Unfortunately, this

does not hold in general as shown in the following example.

Fig. 5.1: Example of v £ ©

Example 5.6. On R, taking f; = 0o, fo = 04,0 = 07 + I3, where 9; is the
Dirac mass at 7 on R (see Fig. 5.1). Let v = J, and ®; be the optimal flow
of transporting f; + v onto © (the corresponding plan is described as follows:
fi =090 — d1,v = dy — d3) and P, be the optimal flow of transporting f> + v onto
© (the corresponding plan is described as follows: fo = 04 — 3,7 = do — d7).
Then (®q, Po,v) is an optimal solution of the problem (MMF). Indeed, it is not
difficult to see that the total cost of matching f; and f5 into © is 4. The cost of
the problem (MMF) corresponding to this choice of (®1, @5, ) is also 4. From our
duality results, we have the optimality of (®1, ®o,v), but v £ ©.

However, under the assumption (H), we prove that the constraint v < O is

fulfilled. More precisely, we have

Theorem 5.7. Let f1, f2,© € M, (Q) be Radon measures. Assume that (H) holds.
Let (91, Py, v) € U(f1, f2;0) be an optimal solution for the problem (MMF) and

set p:=0© —wv. Then p > 0 and it is an optimal matching measure.
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Before ending up this section let us show how we use the ALG2 method to

solve numerically the optimal matching problem (OM). For any u = (uy,us) €

V= C0YQ) x CH(Q), we set

Fu) ::/uldf1+/u2df2—/(u1+u2)d@

A(u) := (Vuy, Vug, uy + us),

and for any (p,q,s) € Z .= C(Q)N x C(Q)N x C(Q), we set

0 if |p(z)|<1,|q(x)|<1,s(x) <0 Vo eQ
G(p.q,5) =

+00  otherwise.

Then the problem
inf F(u) + G(Au) (5.10)

ueV
provides all informations on the optimal matching problem. Indeed, u,uy give
Kantorovich potentials and dual variables ®;, ®,, v give information on optimal
flows and optimal matching measure. To solve numerically the problem (5.10)
and its Fenchel-Rockafellar dual formulation (MMF), we consider a regular
triangulation 7T, of €. As before, we fixe an integer k > 1, and we consider P, the
set of polynomials of degree less or equal than k. Let Ej, C H*(2) be the space of
continuous functions on € and belonging to P, on each triangle of 7. We denote
by Y}, the space of vectorial functions such that their restrictions belong to (Py_1)Y
on each triangle of 7. Let fi 4, fon, ©n € Ej such that f1,(Q) = f2,(Q) < ©,(2)
and fin — fi, fan — f2, On — O weakly® in My(Q). Set V, := Ej, x E
and Z = Y, X Y}, X E,. We approximate the problem (5.10) by the following

finite-dimensional problem: For any (uq,us) € Vj, we set
Ah(ul,u2) = (Vul, VU27 Uy + UQ) € Zh,

Fr(ur,ug) := (uy, frn) + (ua, fon) — (ur + ug, Op)

and for any (p,q,s) € Zp,

0 if [p(x)|< 1, |g(2)|< 1, s(z) <0 ae. z€Q
gh(p7Q7 S) =
+o0o  otherwise.

The finite-dimensional approximation of (5.10) is given by
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inf  Fp(ur, u2) + Gn(Ap(ug, ug)). (5.11)

(u1,u2)€Vi
Note that the cost functional does not change under the translation @; :=
up, + C, iy = uy — C, for C € R In particular, the new couple
(111 =y — % [ (w1 — uz), @9 := us + % J(ur — ug)) satisfies [@; = [y and
is optimal if (ulg,)uz) is optimal. ! ? N
The next theorem shows that (5.11) is a suitable approximation of (5.10) in

the sense that primal and dual solutions converge to a solution of (5.10) (i.e., a

solution of the maximization problem (5.6)) and a solution of (MMF).

Theorem 5.8. Let (uyp,u2p) € Vi be an optimal solution to the approximated

problem (5.11) such that [uyp = [uap and let (P14, Poyp,vp) be an optimal dual
Q Q

solution to (5.11). Then, up to a subsequence, (uyp,usp) converges uniformly
to (ui,u}) an optimal solution of the dual mazimization problem (5.6) and

(D1 py Pop, ) converges weakly™ to (®y, Py, v) an optimal solution of (MMF).

At last, we solve the finite-dimensional problem (5.11). The details of the
method are given in section 5.5. Here, we just give an illustration of our numerical

results on the following example (see Fig. 5.2): In R? we take Q = [0, 1] x [0, 1],

fi= 4X[(x70.2)2+(y70.8)2<0.01]7 Ja= 4X[(x70.2)2+(y70.2)2<0.01],

and

O = 4X[(x70.8)2+(y70.2)2<0.04]-

Fig. 5.2: Optimal matching measure p and optimal flows ®; and ®9
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5.3 Proofs of the equivalent formulations

The present section deals with the proofs of dual formulations as well as the
connection between the minimal matching flow and the optimal constrained

matching problem. To begin with, let us recall that for pu, s € M (Q) such

that pq(2) = p2(Q2), one has

Wi (1, p2) = max /ud(uz — 1) 1 u € Lipy(Q)
2 (5.12)
—  min {|<1>|(§) VB =y — iy in D’(RN)}.
@GMb(Q)N

Optimality condition reads as

Coming back to the optimal constrained matching problem, we start with the
Fenchel-Rockafellar duality between (5.6) and (MMF).

Lemma 5.9. Let fi, 2,0 € M (Q) be Radon measures. We have

max{/(ul—l—uQ)d@—/uldfl —/UQde (w1, up) € K}

— min {|<1>1|(§) 1 Do|(Q) : (@1, B, 1) € \If(fl,fg;@)}.

Keeping in mind the use of augmented Lagrangian methods for numerical

approximation, we use the Fenchel-Rockafellar duality to prove Lemma 5.9.

Proof of Lemma 5.9. We observe that, using the standard smooth approximation

by convolution,

max{/(u1+u2)d®—/u1df1 —/Uzdfz :(ug,u) € K}

= sup{/(m + u9)dO — /uldfl — /uzdfz s (ur, u2) € K, up,ug € Cl(ﬁ)}

= — 1n§ . f(Uh u2) + g(A(ubu?))?
(ul,ug)eCl(Q)xcl(Q)
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where F, G and A are given in section 5.2. Now, using the Fenchel-Rockafellar
duality, we have
inf _ F(uy,uz) + G(A(ug,uz))
(u1,u2)€CT(Q)xC1(Q)

= “max A=F (A (P, Do, v)) — G (D1, Do, 1)}
(@1,P2,0)EM(Q)N XM (Q)N x M,y (02)

(5.13)

Thus, it is enough to compute explicitly the above quantities. Since F is linear,
F*(=A*(Pq, Po,v)) is finite (and is thus equal to 0) if and only if

(= A*(D1, B, 1), (ur, z)) —]-"(ul,ug)—/uldf1+/u2df2—/(u1+uQ)d®

for all (u1,uy) € CHQ) x CH(Q), or
—<<I>1,Vu1> - <(I)2, VU2> — <V, U + U2> = /uldfl -+ /Ugdfg — /(U1 + UQ)d@

for all (uj,uy) € CH) x C1(Q). This implies that (by taking (u;,us) = (u1,0)

and (uy,us) = (0,us) as test functions)
V-, =0—v—f; inD(RY),i=1,2
Next, it is easy to see that

P1](Q) +[@2](Q) if v >0,
G (P, Py, v) = |D4[(€2) +[D2[(2) if v =

400, otherwise.

Therefore the proof is completed by substituting F* and G* into (5.13). O

Following immediately from (5.12), we see that

min {|@4](@) + [©:/(0) : (21,®5,0) € V11, £2:0)}

= ueﬁigtﬁ) {Wi(fi +v,0) + Wi(fa+1,0) : v(Q) =0(Q) — /1(Q)}.

(5.14)

This proposes an alternative formulation of (OM) that we prove directly in the

following lemma.
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Lemma 5.10. Assume that fi, fo,© € M (Q) are Radon measures. We have

min {Wl(fl,p)+Wl(f2ap) 1p <0, p(Q) =f1(9)}
pPEM ()

= min (Wi(fi +1,0) + Wi(fo+1,0) : v(Q) = O(Q) — ()}

(5.15)

Moreover, if v is optimal for the right hand side of (5.15) then there exist 0 <
01,05 < O, 0:(Q2) = 0:(2) = f1(QQ) such that

Wi(f1,62) = Wi(fi,61) + Wi(6:,02), (5.16)
Wi(fa,01) = Wi(f2,62) + Wi(6y,62) (5.17)

and
W1<l/, 0 — 01) + Wl(V, O — 02) = W1(91, 02) (518)

Proof. The existence of minimizers follows from the direct method. Now, fix any
p € M (Q) with p <O, p(Q) = f1(Q) and set v := © — p. By (5.12), we have

Wi(f1, p) + Wilfo, p) = Wilf1 +v,0) + Wi(fe +v,0).

This shows that the left hand side of (5.15) is greater than or equal to the right
hand side. Conversely, take v € M; (Q) with v(Q) = () — £1(Q2). Consider the
optimal plan ~; between f; + v and ©. It sends f; to some #; < ©, ¢ = 1,2 such
that

Wl(fl—l—l/, @) = W1 (fl, 01>+W1(V, @—01), Wl(fg—f—l/, @) = W1 (fg, 92)+W1(1/, @—92),

fl(Q) = 91(9) = 92(9)-

By triangular inequality and W;(© — 61,0 — 05) = Wy(64,0s), we get

Wi(fi +v,0) + Wi(fa+v,0) = Wi(f1,01) + Wi(v,© — 61) + Wi(f2,62) + Wi (v, © — 03)
> Whi(f1,601) + Wi(fa,02) + Wi(61,62)
> irg%{Wﬂflﬁi) + Wi(f2,0:)}

> lnzli% {Wl(fl,gi) + Wl(f% 9@)}

> min {Wi(f1,0)+ Wilfa,p) : p <O, p(@) = A},
pEM; ()
(5.19)
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Thus the proof of the equality (5.15) is done. At last, if v is optimal then all the
inequalities in (5.19) become equalities. This implies (5.16), (5.17) and (5.18). O

Proof of Theorem 5.3. The duality (5.7) follows from Lemma 5.9, (5.14) and
Lemma 5.10. It remains to show the optimality conditions (5.8) and (5.9).
Let us begin with the proof of (5.8). For any admissible (u;,us) € K and

(71, 72) € T(f1, fo; ©), taking p := m,#7v1 = m,#72, we have

/(u1 +us)dO — /uldfl _ /quf2
< /(U1+u2)dp_/U1df1 _/UQde

~ [ wn) —w@)dn+ [ () - w)

/!x —yldy + /Ix — y|da.

From the duality equalities (5.7), we deduce that (v1,72) and (uq, us) are optimal

(5.20)

if and only if all the inequalities in (5.20) become equalities. The latter conditions

read as
f(ul +U2)d@ = f U1+UQ)dp

J(wi(y) —wi(z))dy = [lo —yldn
J (ua(y) = ua(x)) dye = [lz = yldye.
This condition is equivalent to (5.8).

For the proof of (5.9), we see that, for any admissible (®1, P9, v) € U(f, f2;0),

by the integration by parts formula, we have

—/uldfl—/ugdf2+/(u1+u2)d@§—/uldfl—/u2df2+/(u1+uz)d(@—y)

_/uld(@—l/—fl)—I—/UQd(@_V_f2)

081
@] v|<1>1uld|‘1>1|+/ @] - Vg, u2d| P2
Q

< |21](Q2) + @2/ (2).
(5.21)

Thanks to (5.7), (u1, uz) and (®1, ®y, v) are optimal if and only if all the inequalities
in (5.21) become equalities. This is equivalent to the system (5.9). O

We end up this section by giving the proof of Theorem 5.7 concerning relation

between (MMF) and (OM).
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Proof of Theorem 5.7. Assume that (®;,®,v) is optimal for (MMF) which
implies that v is optimal for the alternative formulation of (OM) given in Lemma
5.10. Take 6, and 6y given by Lemma 5.10. Then (5.16) and (5.17) mean that
0y is on a geodesic joining 61 to fs and #; is on a geodesic joining 0y to f;. The
assumption (H) imposes that 6; = 6,. To convince the reader, take vy, 1,712 and
V2,7, the optimal plans from f; to 6y, from 6; to 0, and from 65 to f,. Using the
gluing lemma (see e.g. [89, Lemma 7.6]), we build 7y, 1 2 obtained by gluing vy, 1
to 71,2 and 12,4, obtained by gluing ;2 to 72 ,. Then, it holds

Wi(f1,01) + Wi(0y,02) = /|$1 — 21|42 — 2z2|dy g 12(x1, 21, 22)
=3

Q

= Wi(f1,62) < /|$1 — 2o|dyp 12(21, 21, 22).
53

By triangular inequality and the continuity of the integrands, we get

|21 — 21| +|21 — 22|= |21 — 22|, Le., 21 € [21, 2] for all (x1, 21, 22) € supp(vy,,1,2)-
(5.22)

In the same way,

|21 — 22| +|20 — ma|= |21 — 2|, Le., 20 € [21,22] for all (21, 29, 22) € supp(mi,2,7,)-

(5.23)
If there exists (21, 22) € supp(v12) such that z; # 25 then, using (5.22) and (5.23),
there are x; € supp(fi), o € supp(f2) such that z; € [z1,29], 20 € [21,22] and
therefore 21, 29 € [x1,29] (by 21 # 22), a contradiction with the assumption (H).
This shows that 6; = 0. At last, by (5.18), we obtain vy =0 -0, < 0,71 =1,2. [

5.4 Uniqueness of optimal matching measure

This section concerns the proof for the uniqueness of optimal matching measure.
Let p be an optimal matching measure. Following Corollary 5.5 and Theorem 5.3,

setting v := © — p, we have

V- & =0—-v—f inDRY),i=1,2

gq = Vip,u; |®;]-ae in Q,i=1,2 (5.24)

up +uy =0 v-a.e. in €,
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where ®; and u; are optimal flows and Kantorovich potentials, respectively. To
prove the uniqueness of optimal matching measures under the assumption (H), we
establish precise expression of v w.r.t. © and u;, for i = 1,2. More precisely, we

have

Proposition 5.11. Assume that © € L'(Q)%, fi € MJ(Q) and that
(P1, Pa, v, up, u9) € My(Q)N x My(Q)N x MF(Q) x Lipi(Q) x Lipi(Q) satisfies
the PDE (5.24). Under the assumption (H), we have v < © and

VvV = @L[Ul + Uug = O],
where the set [uy +ug = 0] := {z € Q: uy(x) + uz(x) =0} .
The proof of this result follows as a consequence of the following lemmas.

Lemma 5.12. Let u,v be I-Lipschitz functions on §2 such that u+ v < 0 on Q.
Assume that u(y,) —u(xy) = |y1 — 21| and that u(z)+v(z) = 0 for some z € [x1,y1]

the segment joining x1 to y,. Then
u(s) +v(s) =0 Vs e [z,y). (5.25)

Moreover, if x5 € Q is such that v(y,) — v(xa) = |y1 — 22|, then z,y; and x5 are

aligned.

Proof. We first prove that

v(s)=wv(z) —|s—z| Vsé€lzuy) (5.26)
Since w is 1-Lipschitz and u(y;) — u(z1) = |y1 — 21|, we have

u(s) =u(z) +|s—z| Vse€lzuyl (5.27)
Using the fact that u + v < 0, we have

v(s) < —u(s)
= —u(z)—[s— 2

=uv(z)—|s—z| Vsé€lz,y]

Since v is 1-Lipschitz, we get the equality (5.26) and thus (5.25) (by u(z)4v(z) =0
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and (5.27)). At last, following (5.26) with s = y,
v(y1) = v(z) = [y — 2,
we get, for x5 as in the hypothesis,

|2 — 2] > v(2) — v(z2)
= |z = yil+v(y1) — v(z2)
= |z — y1|+|y1 — 2.

This implies that z,y; and z are aligned. O]

We need the following behaviors of f; and ®;, i = 1,2 on the set [u; +us = 0].

Lemma 5.13. Assume that fi,f2,© € M (Q) and that (H) holds. Let
(Pq, Do, v, ur, us) satisfy the PDE (5.24). Then

(Z) flL[U1+U2 :0] :fQL[U1+U2 :0] :O;

(i1) LN (supp(®;) N [ug +up = 0]) = LY (supp(P2) N [ug +uy = 0]) = 0, where LY

is the Lebesque measure on RY.

Proof. (i) Thanks to Theorem 5.7, we have v < ©O. Let us show that
filfu; +ug=0] = 0. Assume on the contrary that the conclusion is not
true. Then there exist 1 € [u; + uz = 0] and y; € supp(®© — v) such that
(z1,y1) € supp(v1), where = is the optimal plan from f; to © — v. Since u; is a
Kantorovich potential for Wi (f;,© — v), we get

ul(yl) - Ul(l’l) = ‘531 - y1|-

Similarly, since y; € supp(© — v), there is x5 € supp(f2) such that (zo,y1) €
supp(7z2) and

u2(y1) — Up(xg) = ‘552 - Z/l’-

By Lemma 5.12, we deduce that xy,y;, xs are aligned which contradicts with (H).
In much the same way, we get fol[u; + us = 0] = 0.

(ii) Now, we prove that
LY (supp(®1) N [uy + ug = 0]) = 0. (5.28)

Thanks to [1, Corollary 6.1] or [5, Theorem 6.2, we know that the set E of right

endpoints of maximal transport rays w.r.t. the Kantorovich potential u; satisfies
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LN(E) = 0. To prove (5.28), it is enough to show that
supp(®1) N u; +up =0] C E.

Assume on the contrary that there exists z € supp(®;) N [u1 + ug = 0] such that
z ¢ E. Then there exists (x1,y1) € supp(f1) X supp(© — v) such that z € [z, y]
and uy(y1) = ui(x1) + |y1 — x1]. On the other hand, since y; € supp(© — v), there
exists xy € supp(f2) such that

uz(y1) — ua(w2) = [y1 — 12].

Since u1(z) 4+ ug(z) = 0, using Lemma 5.12, we deduce that z,y; and xs are on
a straight line. Thus z1,y; and x5 are aligned (by z € [x1,y1[). This is again a
contradiction with (H). O

Proof of Proposition 5.11. We use notations of the above lemmas. By Theorem
5.7, we have v < ©. Following directly from the PDE (5.24), we have

-V ((I)l + (I)g) = 2(@ - l/) - (fl + fg)
This implies that
the measure 2(0© — v) — (f; + f2) is concentrated on supp(®; + P2).

In particular, 2(© — v)L[uy + us = 0] — (f1 + f2)L[ug + u2 = 0] is concentrated
on [u; + uy = 0] Nsupp(P; + P). Thanks to Lemma 5.13 (i), we deduce that
2(© — v)L[u; + ug = 0] is concentrated on [u; + us = 0] N supp(P; + P2). Since
(©—v) € L', using Lemma 5.13 (ii) and the fact that supp(®; +®,) C supp(®;)U
supp(P,), we get

(© —v)L[u; + up = 0] = 0.

Since uy +us =0 wv-a.e. in ﬁ, we deduce that
v=0L[u; +uy =0].

O

We can now conclude the proof for the uniqueness of optimal matching

measures with the following arguments.
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Proof of Theorem 5.1. We fix a maximizer (uj,us) of the maximization problem
(5.6). Then if p; and py are optimal matching measures then v; ;= © — p;, i = 1,2
satisfies the PDE (5.24). Thanks to Proposition 5.11, we get

p1:®—l/1:@L[U1+U2<0]:@—V2:p2.
O

Remark 5.14. Following from the proof, the unique optimal matching measure
has the form
P = @I_[u1 + uo < 0],

for any maximizer (uq,uy) of the dual problem (5.6).

5.5 Numerical analysis for the problem

The present section concerns on numerical aspects of the matching problem.

5.5.1 Convergence of the discretization

Proof of Theorem 5.8. The optimality condition of (5.11) is
—Ny (P g, Pop,vn) = OFn(urp,usp) in Vy
(or equivalently, —((®1 n, Pop, vh), Ap(u,v)) = Frn(u,v) V(u,v) € V4), and
((I)Lh, Dy 5, Vh) € agh<Ah(u1,h7 Uz,h))-
Writing these in detail, we have

—(Dy p, Vu)— (Do, VU) — (v, u+v) = (fin, u)+{fon, v)—(On, u+v) V(u,v) € V4,
(5.29)

and
Qi € iy, oy (VUrn)

Do € Ollpy, |0y (Vin)
Vp € 8H{z€Eh:z§0} (w1 + ugp).

Choosing test functions v = 1,v = 0 in (5.29) and using the fact that
f1.r(Q) < 6,(Q), we have that v, # 0 and {v,} is bounded in L'(2). Since
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v € Olpaep, <oy (U1n + ugp), we get v, > 0 and (uyp, + ugp, va) = 0. Since
v, # 0, there exists zj, € Q such that u; j,(z5,) + ugp(zp) = 0. Combining this
with the fact [uip = [uoy, we imply that {ui,} and {usy} are bounded in
C(Q). Since Uy p, U2, are 1-Lipschitz functions, up to a subsequence (using the

Ascoli-Arzela Theorem),
U1 p = Uy, Uz, = us uniformly on Q.

It is clear that u},u} are 1-Lipschitz and u* +u} < 0 on Q.

On the other hand, using the optimality of (w1, u2p), (P14, Pop, vn) and the
duality equality for (5.11), we have

fh(ul,h, u2,h)+gh(Ah<U1,h7 Uz,h)) = —FZ(—AZ(‘bl,h, Cbz,h, Vh)) —QZ(@Lh, (I>2,h7 Vh),
or more explicitly,
(frn,urn) + (fin, uan) — (Op,urp + uap)
= —sup{(P14,q) : ¢ € Y, |q(x)|< 1, ae. z € Q} (5.30)
—sup{(Pao1,q) : ¢ € Y, |q(z)|< 1, ae. z€Q}.

Using the boundedness of (uy 4, us,), we obtain that ®; 5, and @4, are bounded in

LY ()N, Thus, up to a subsequence,
(P14, Do, vn) — (B1, o, v) weakly™ in M, ()Y x My(Q)N x M, (Q).

Then (®q, ®y, v) is feasible for the problem (MMF). Indeed, thanks to (5.29) and

the nonnegativity of v}, we obtain that

(®1, Vu)+(Po, VU)+ (v, u+v) = —(f1,u)—{fa2,0)+(O, u+v)¥(u,v) € V := CH(Q)xC*(Q),

and
v>0

Y

i.e. the feasibility of (®,Ps,v). Now, we show the optimality of (uf,u}) and
(P, Po, v). Thanks to Theorem 5.3, it is sufficient to show that

—(frul) = (2, uz) +(0,u] +uz) > [21](Q) + [P (). (5.31)
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To this aim, let qi,q2 € C(Q)Y be such that |¢(z)|< 1, |g(2)|< 1 Ve € Q and
q1,hs Q2,0 € Yi be such that ||g;, — ¢il| @)= 0 as h — 0,7 = 1,2. By the fact that

|4 (2)= |6i(2)[+gin(2)[=lgi(x)|[< T+ O(h) ae. z € Q,

and, taking HqiTJEh) if necessary, we can assume that

Gin € Yo, |lgip(x)|[< 1ae € and |¢n — ¢l ey— 0 as h —0,i=1,2.
We see that

(D1, q1) = (Prpqrn) + (P1 — Py a) + (Pop, it — un)
<sup{(P1,q) : ¢ € Ya,|¢(z)|< 1 ae. x€Q}+O(h).

Similarly,
(Pg, q2) < sup {(Po,q) : ¢ € Ya,[g(z)|< 1 ae. x € Q} + O(h).

Combining these with (5.30) gives

—(fip, win) — (fon, Uan) + (On, urp + ugp) + O(h) > (@1, q1) + (P2, ¢a).

Letting h — 0 and taking supremum in ¢, o, we get the inequality (5.31). O

5.5.2 Solving the discretized problem

Our task is now to solve the finite-dimensional problem (5.11). We use the
ALG2 method (see Chapter 1) to our discretized problem (5.11). To simplify
the notations, let us drop out the subscript A in wy p, g, @14, Pop, vn. We denote
by @, ®% v ul, ub, pt, ¢', s° the values at iteration i. Known (p', ¢', s*), (B}, %, v/,
e Step 1:

(0¥ 5*) = angmin P, ) + (@4, @5,0), Ao, 0a) + 1A, 0) = 0 ')

= (argnglin (ur, frn) + (2, fon) — (U +uz, Op) + (@7, Vur) + (9, Vug)
u1,u2)€EVh

. r . r . r .
+ <I/’L,U1 + U2> + §|VU1 —p’|2+§|VuQ — q1|2+§|u1 “+ Uy — S’L|2.

Optimal Partial Transport and Constrained Matching Problems 127



5.5. Numerical analysis for the problem

e Step 2
(P gt st = 2t Gi(p.¢,s) = (@1, 95,0, (p,g,9)) + glAh(Ui“7 ust) = (p, g, 5)|?
B (21«;%22 LB, 1) (P) + LBy, 4y (9) + Loy s} (5) = (@1,9) = (@5,0)
—(Vs) + VU P VT — g gt P
e Step 3:

i+1 i+1 i1\ A 7 % i+1 141 i+1 i+1 , i+1 i+1 i+1
((I)l 7(1)2 vV )—(@1,®2,V)+T(VU1 —p ,VU2 —q y Uq +u2 - S )

Let us give more details of the above iteration.

e In Step 1: We split the variables u; and us, i.e. first minimizing w.r.t. u; and

using u!*! to calculate ub™.

1. For u{™,
/12

. ) . . r . r .
uit € argmin(u, fi, — O4) + (@, Vu) + (V' u) + §]Vu - pZ|2—|—§\u +usy — s
ucFEy

This is a quadratic problem with the associated linear equation:

r{(Vurt', Vo) +r{ur™, ¢) = (On—fin—1", ¢)+{(rp' = @1, Vo) +1(s'~u3, ¢) Vo € Ej,.

2. Similarly for uéﬂ,

T<VU§+17 v¢>+7ﬂ<u;+17 (b) = <@h_f2,h_yi7 ¢>—|—<qu—®12, V¢>+r<si—u§+1, (b) v¢ € Eh-

e In Step 2: Since the function G(p,q, s) has the form of Gi(p) + Ga(q) + Gs(s),

we solve them separately.

1. For s"*!, if we choose P, finite element for s+!,

. . . roo. . . . . l/i
s e argmin {]I[sgo] — (V' s) + 5!%“ + ubtt — s|2} = Projse pyus<o) <u’1+1 +ubtt 4 7n) .
SEP;

This is computed in pointwise, i.e., at vertices x; of a given grid,

. , ; ; vi(x
S 0) = Projcserzy (1) + 157 o) + 22 ).
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2. For p'*t! and ¢**!, similarly, at each vertice z;,

P (z) = PI'O_].E(OJ) (Vu’frl(xl) +

and

"' (z1) = Projg (Vué“(xl) +

5.6 Numerical experiments

We base on [12, 13, 59] and on FreeFem-++ [55] to give some numerical examples.

We use P finite element for uf, ub, s', v and Py finite element for &%, &% p’ ¢

5.6.1 Stopping criterion

The measures fi, fo and © are approximated by nonnegative regular functions
that we denote again by fi, fo and ©. We use the PDE of optimality condition as

stopping criteria:

1. MIN := min {m{;n (—ui(x) — ug(x)) ,mﬁin V(ZL')} :
2. Lip := max {mgx|Vu1(x)|, mgX|Vuz(I)|} .
3. DIV := w, where

Divy = ||V - P, + 0O —v — fi||2, Divy:= ||V -Po+0 —v — fol12.
4. DUAL := DuehiDual ' yith

Dualy := |||®1(x)|—P1(x) - Vugl||z2, Dualy := |||P2(x)|—Pa(x) - Vusgl| 2.

We expect that MIN > 0, Lip < 1; DIV and DUAL are small.

5.6.2 Some examples

In all the examples below, we take 2 = [0, 1] x [0, 1] and work on a grid 60 x 60.

Computation time for each example is about 8 minutes on a PC Mac OSX 10.9.
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Example 5.15. We take

Ji= 4X[(m—0.2)2+(y—0.8)2 <0.01]>

Jo= 2X[(w—0.8)2+(y—0,8)2<0.01} + 2X[(:c—0.2)2+(y—0.2)2<0.01],

O = 4X[(x70.5)2+(y70.5)2<0.04]-

The optimal matching measure and optimal flows are given in Fig. 5.3. Stopping

criterion is given in Fig. 5.4.
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Fig. 5.3: Optimal matching measure and optimal flows
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Fig. 5.4: Stopping criterion
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Example 5.16. The results are given in Figs 5.5 and 5.6 for

Log 10 of Errors

= 2X[(m—0,2)2+(y—0.8)2<0.01] + 2X[(m—0.8)2+(y—0.2)2<0.01]v

fo= 2X[(x—0.8)2+(y—0.8)2<0.01] + 2X[(x—0.2)2+(y—0.2)2<O.01]7

© = 4X[(2—0.5)2+(y—0.5)2<0.04]-
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Fig. 5.5: Optimal matching measure and optimal flows
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Fig. 5.6: Stopping criterion
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5.6. Numerical experiments

Example 5.17. We take
fi= 4X[(m—0.1)2+(y—0.9)2<0.01]7

Jo = 4X[(x—0.7)2+(y—0.3)2<0.01]7
© = 4X[(2-0.2)2+ (y—0.2)2<0.04] T 4X[(2—0.6)2+(y—0.6)2<0.0064]

The results are given in Figs 5.7 and 5.8.
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Problémes de transport partiel optimal et d’appariement avec contrainte

Résumé : Cette these est consacrée a I'analyse mathématique et numérique
pour les problemes de transport partiel optimal et d’appariement avec contrainte
(constrained matching problem). Ces deux problemes présentent de nouvelles
quantités inconnues, appelées parties actives. Pour le transport partiel optimal
avec des colits qui sont donnés par la distance finslerienne, nous présentons
des formulations équivalentes caractérisant les parties actives, le potentiel de
Kantorovich et le flot optimal. En particulier, 'EDP de condition d’optimalité
permet de montrer 1'unicité des parties actives. Ensuite, nous étudions en détail
des approximations numériques pour lesquelles la convergence de la discrétisation
et des simulations numériques sont fournies. Pour les couts lagrangiens, nous
justifions rigoureusement des caractérisations de solution ainsi que des formulations
équivalentes. Des exemples numériques sont également donnés. Le reste de la these
est consacré a I’étude du probleme d’appariement optimal avec des contraintes pour
le cotit de la distance euclidienne. Ce probleme a un comportement différent du
transport partiel optimal. L’unicité de solution et des formulations équivalentes
sont étudiées sous une condition géométrique. La convergence de la discrétisation
et des exemples numériques sont aussi établis. Les principaux outils que nous
utilisons dans la these sont des combinaisons des techniques d’EDP, de la théorie
du transport optimal et de la théorie de dualité de Fenchel-Rockafellar. Pour le
calcul numérique, nous utilisons des méthodes du lagrangien augmenté.

Mots clés : Transport optimal, transport partiel optimal, probléeme
d’appariement optimal, dualité de Fenchel-Rockafellar, équation de Monge—
Kantorovich, doublant des variables, méthodes du lagrangien augmenté.

Optimal Partial Transport and Constrained Matching Problems

Abstract: The manuscript deals with the mathematical and numerical
analysis of the optimal partial transport and optimal constrained matching
problems.  These two problems bring out new unknown quantities, called
active submeasures. For the optimal partial transport with Finsler distance
costs, we introduce equivalent formulations characterizing active submeasures,
Kantorovich potential and optimal flow. In particular, the PDE of optimality
condition allows to show the uniqueness of active submeasures. We then study
in detail numerical approximations for which the convergence of discretization
and numerical simulations are provided. For Lagrangian costs, we derive and
justify rigorously characterizations of solution as well as equivalent formulations.
Numerical examples are also given. The rest of the thesis presents the study of
the optimal constrained matching with the Euclidean distance cost. This problem
has a different behaviour compared to the partial transport. The uniqueness of
solution and equivalent formulations are studied under geometric condition. The
convergence of discretization and numerical examples are also indicated. The main
tools which we use in the thesis are the combinations of PDE techniques, optimal
transport theory and Fenchel-Rockafellar dual theory. For numerical computation,
we make use of augmented Lagrangian methods.

Keywords: Optimal transport, optimal partial transport, optimal matching,
Fenchel-Rockafellar duality, Monge-Kantorovich equation, doubling variables,
augmented Lagrangian methods.




