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Discipline : Mathématiques et ses applications

présentée et soutenue par

Van Thanh NGUYEN

le 03 octobre 2017
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General Introduction

This thesis is devoted to the mathematical and numerical analysis of the optimal

partial transport and optimal constrained matching problems, which are variants

of the optimal transport. The common point of the two mentioned problems

is the presence of unknown active submeasures. For each problem, we are

interested in the characterizations, uniqueness of solution, equivalent formulations

and numerical approximations. The main tools which we have used are some

combinations of PDE techniques, optimal transport theory, Fenchel–Rockafellar

dual theory and augmented Lagrangian methods (first-order splitting methods).

The optimal transport problem (Fig. 1) was first proposed by French geometer

G. Monge in 1781 [72] which consists in transporting piles of sand into holes with

the least amount of work. In modern mathematics language, let µ and ν be two

X Y

T

Fig. 1: The optimal mass transport problem

non-negative finite Radon measures on RN satisfying the mass balance condition

µ(RN) = ν(RN) < +∞. Since the mass should be preserved during the transport

process, it is reasonable to see a transport way as a measure-preserving map T :

X −→ Y , i.e., T#µ = ν (by definition, T is measurable and µ(T−1(B)) = ν(B)

for every Borel set B ⊂ Y ), where X = supp(µ) and Y = supp(ν). We denote

by T (µ, ν) the set of all transport maps T as above. Monge’s optimal transport

problem reads as

inf
T∈T (µ,ν)

∫

X

|x− T (x)|dµ(x).

One can in general replace the cost function |.| by a measurable cost function
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c : X × Y −→ [0,+∞), where c(x, y) stands for the amount of work required to

move a unit of mass from the position x ∈ X to y ∈ Y . In this case, the Monge

problem is to study

inf
T∈T (µ,ν)

∫

X

c(x, T (x)) dµ(x).

It is well-known that Monge’s problem is quite difficult even for the usual question

about the existence of optimal map. The main difficulty comes from the fact that

the constraint T#µ = ν is so highly nonlinear that the admissible set T (µ, ν) is

not closed, in general, under usual topologies. Since the 1980s, many authors have

carried out deep analyses for the existence of optimal map. On this direction, we

refer to the non-exhaustive list [5, 24, 26, 32, 52, 85, 86] and the references therein.

In 1942, by applications in economics, L. Kantorovich [64] introduced an

optimal problem that is now seen as a relaxation of Monge’s optimal transport

problem. Kantorovich searched a measure on the product space X × Y instead of

a measure-preserving map as in Monge’s problem. The trick is first to introduce

the admissible set

π(µ, ν) := {γ ∈ M+
b (X×Y ) : γ(A×Y ) = µ(A), γ(X×B) = ν(B) ∀A ⊂ X,B ⊂ Y },

where A and B are Borel sets of X and Y , respectively. We can imagine as follows:

the quantity γ(A×B) is seen as the amount of mass moving from A to B. So all

the mass moved to B is γ(X ×B) while the demand mass at B is ν(B). To fulfill

the requirement, one should impose γ(X × B) = ν(B). Analogously, one requires

γ(A× Y ) = µ(A). In other words,

π(µ, ν) =
{
γ ∈ M+

b (X × Y ) : πx#γ = µ, πy#γ = ν
}
,

where πx and πy stand for the two canonical projections from X × Y onto X and

onto Y , respectively. Kantorovich’s problem reads as

min
γ∈π(µ,ν)

∫

X×Y

c(x, y) dγ, (MK)

which is a linear programming in the (possibly infinite-dimensional) spaceMb(X×
Y ) of finite Radon measures. The difference between the two problems is that

the Kantorovich problem allows to split mass, i.e. mass from x can be sent to

several destinations y. Moreover, for any transport map T ∈ T (µ, ν), one has

γ := (id, T )#µ ∈ π(µ, ν). Unlike Monge’s problem, under very general conditions
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on c, the Kantorovich problem admits optimal solutions, called optimal plans, by

using the standard direct method (see e.g. [90]). On the other hand, Kantorovich

also introduced a dual maximization problem which turns out to be very important

to the proofs of existence of optimal map for Monge’s problem (see e.g. [24, 52]).

Nowadays, Kantorovich’s problem (MK) is calledMonge–Kantorovich problem and

it appears quite naturally in applications.

Besides the applications in industry and in economics as motivated by

Monge and Kantorovich, this subject has got a lot of attention and has been

investigated under various points of view since the end of the eighties with

many surprising applications in partial differential equations (PDEs), differential

geometry, probability theory, geometric inequalities, image processing and other

areas. For more details on the optimal mass transport problem, we refer the reader

to the pedagogical books [3, 83, 89, 90]. Like many other mathematical topics,

the optimal transport problem has been generalized in different trends. Among

generalizations of the optimal transport, we are interested in two problems, called

optimal partial transport and optimal constrained matching problems, which are

closely connected to obstacle type PDEs.

Optimal partial transport aims to study the case where only a part of

the commodity (respectively, consumer demand) of total mass m needs to be

transported (respectively, fulfilled). More precisely, let µ, ν ∈ M+
b (R

N) be finite

Radon measures and c : RN × RN −→ [0,+∞) be a measurable cost function.

Given a prescribed total mass m ∈ [0,mmax] with mmax = min
{
µ(RN), ν(RN)

}
,

the optimal partial transport problem (or partial Monge–Kantorovich problem,

PMK for short) reads as follows

min



K(γ) :=

∫

RN×RN

c(x, y)dγ : γ ∈ πm(µ, ν)



 , (PMK)

where

πm(µ, ν) :=
{
γ ∈ M+

b (R
N × RN) : πx#γ ≤ µ, πy#γ ≤ ν, γ(RN × RN) = m

}
.

Here, πx#γ and πy#γ are marginals of γ. This generalized problem brings out new

unknown quantities ρ0 := πx#γ and ρ1 := πy#γ where the commodity is taken

and the consumer demand is fulfilled, respectively. The problem (PMK) was first

studied theoretically in Caffarelli & McCann [27, Ann. of Math., 2010] and Figalli

[48, Arch. Ration. Mech. Anal., 2010] with a particular attention to the quadratic

Optimal Partial Transport and Constrained Matching Problems 3



cost, c(x, y) = |x − y|2, with results on the existence, uniqueness and regularity

of active submeasures1. The regularities are also discussed in Indrei [61, J. Funct.

Anal., 2013] and Davila & Kim [36, Calc. Var., 2016] for c(x, y) = |x − y|2;
and in Chen & Indrei [33, J. Differential Equations, 2015] for general costs under

assumptions on ”smoothness” of c and regularity of µ, ν.

The main part of this thesis is devoted to the problem (PMK) with general

Finsler distance costs dF and Lagrangian costs cL which cover the Euclidean cost

c(x, y) = |x − y| and the quadratic cost c(x, y) = |x − y|2 as particular cases,

respectively. We will focus on the uniqueness and characterizations of solution

as well as variational aspects and numerical approximations. These will be the

subjects of Chapters 2, 3 and 4. Discussions on the existing techniques and results

will be considered in concrete contexts.

Chapter 2 concerns a rigorous theoretical study of (PMK) with Finsler distance

costs c := dF (including the case of Euclidean distance cost), where

dF (x, y) := inf
ξ∈Lip([0,1];RN )





1∫

0

F (ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y





with F (x, .) having a linear growth and satisfying some conditions that will be

clarified later. This chapter provides equivalent formulations, the characterizations

and uniqueness of active submeasures for these costs. In this setting, we

first introduce the Kantorovich–Rubinstein type duality for (PMK) with Finsler

distance costs. Recall that in the case c(x, y) = |x − y|2, the obstacle Monge–

Ampère equation (cf. Caffarelli & McCann [27] and Figalli [48]) plays an important

role to gather many informations on (PMK). In our case, we introduce the obstacle

Monge–Kantorovich (OMK) equation and show how it is information-rich PDE

for (PMK). Among the main issues of our approach, the uniqueness of the active

submeasures as well as their monotonicity hold true in the case where µ and ν are

absolutely continuous without disjointness condition of the supports. Note that

the methods used in [27, 48] do not work for the uniqueness of active submeasures

of (PMK) with Finsler distance costs by the fact that the authors there need the

strict convexity of c as well as the existence and uniqueness of optimal map. Our

point of view is to obtain the uniqueness via the study of the OMK equation by

using PDE techniques. On the other hand, our equivalent formulations will be

exploited in Chapter 3 to give interesting numerical simulations.

1The supports of active submeasures are called active regions in [27, 48].
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Our main result starts with the Kantorovich–Rubinstein type duality.

Theorem 0.1. Let µ, ν ∈ M+
b (R

N) be Radon measures with compact supports and

m ∈ [0,mmax]. Then the problem (PMK) with c = dF has an optimal plan σ∗ and

the Kantorovich–Rubinstein type duality can be written as

K(σ∗) = max
(λ,u)∈[0,+∞)×Lλ

dF

{
D(λ, u) :=

∫
u d(ν − µ) + λ(m− ν(RN))

}
, (0.1)

where

LλdF :=
{
u ∈ L1

µ∩L1
ν : u(y)−u(x) ≤ dF (x, y), 0 ≤ u(x) ≤ λ for all x, y ∈ RN

}
.

In addition, σ ∈ πm(µ, ν) and (λ, u) ∈ R+×LλdF are solutions of the PMK problem

and of the dual partial Monge–Kantorovich (DPMK) problem (0.1) if and only if

u(x) = 0 for (µ− πx#σ)-a.e. x ∈ RN , u(x) = λ for (ν − πy#σ)-a.e. x ∈ RN

and u(y)− u(x) = dF (x, y) for σ-a.e. (x, y) ∈ RN × RN .

Next, to introduce the OMK equation, we see that the dual maximization

formulation (0.1) may be written as

max
λ≥0

(
max
u

{
D(λ, u) : u ∈ LλdF

})
.

For any fixed λ ≥ 0, the primal-dual optimality condition associated with the

maximization problem

max
u

{
D(λ, u) : u ∈ LλdF

}

is given by the following PDE: Find (θ,Φ, u) ∈ Mb(RN)×Mb(RN)N × LλdF such

that





θ −∇ · Φ = ν − µ in D′
(RN)

Φ
|Φ|

(x) · ∇|Φ|u(x) = F
(
x, Φ

|Φ|
(x)
)

|Φ|-a.e. x ∈ RN

u = 0 θ−-a.e. in RN and u = λ θ+-a.e. in RN ,

(Pλ)

where θ+ and θ− are the positive and negative parts of the measure θ given by

the Hahn–Jordan decomposition. This is a double obstacle problem associated

with (PMK) for c = dF , called obstacle Monge–Kantorovich (OMK) equation. To

fix the idea, it is expected that ν − θ+ and µ − θ− are active submeasures. This

Optimal Partial Transport and Constrained Matching Problems 5



primarily requires that

θ+ ≤ ν and θ− ≤ µ, (0.2)

which are not explicitly stated in (Pλ). In other words, the estimates (0.2) are

important for (PMK) but the advantage of ignoring the constraints (0.2) in the

definition of (Pλ) lies in the use of augmented Lagrangian methods, which only give

dual solutions in the sense of the Fenchel–Rockafellar duality. This leads to the

question whether the estimates (0.2) are automatically satisfied for any solution

(θ,Φ, u) of (Pλ).

The central issues of Chapter 2 are the existence, estimates (0.2) and uniqueness

of solution for (Pλ) as well as its connection to (PMK). The existence of solution

for (Pλ) will be shown by duality arguments. On the other hand, although the

OMK equation is so degenerate that its flux Φ does not explicitly depend on the

gradient ∇u, it still admits somehow monotonicity because of the second equation

in (Pλ). This helps us to show that

θ− ≤ µ− µ ∧ ν ≤ µ and θ+ ≤ ν − µ ∧ ν ≤ ν for any solutions (θ,Φ, u).

This fulfils the requirement (0.2) (see Theorem 2.3). Concerning the uniqueness

of solution, we have the following result.

Theorem 0.2 (Uniqueness of θ). Assume that µ, ν ∈ L1(RN)+. Let θ1 and θ2 be

two solutions to the same OMK equation (Pλ). Then θ1, θ2 ∈ L1(RN) and θ1 = θ2.

Our proof will be based on doubling variables which was used for the first time

by Kruzkov [66] for first order quasilinear equations. In general, one cannot expect

the uniqueness of Φ and u because of the degeneracy of (Pλ).

Now, we come back on the connection between the OMK equation and (PMK).

Theorem 0.3 (Active submeasures and OMK equation). Let µ, ν ∈ M+
b (R

N) be

compactly supported.

(i) For any λ ≥ 0 and θλ a solution of the OMK equation (Pλ), the couple

(ρ0, ρ1) := (µ− θ−λ , ν − θ+λ )

is a couple of active submeasures corresponding to mλ = (µ− θ−λ )(R
N).

(ii) Conversely, if (ρ0, ρ1) ∈ Subm(µ, ν) is a given couple of active submeasures

and m ∈ [(µ ∧ ν)(RN),mmax], then for any λm ≥ 0 such that

λm ∈ argmax
λ≥0

{
max
u

{
D(λ, u) : u ∈ LλdF

}}
,
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the measure θλm defined by

θ−λm := µ− ρ0 and θ+λm := ν − ρ1,

is a solution of the OMK equation (Pλm).

Following Theorems 0.3 and 0.2, we deduce the uniqueness result for (PMK).

Corollary 0.4 (Uniqueness of active submeasures). Let µ, ν ∈ L1(RN)+ be

compactly supported and m ∈ [‖µ ∧ ν‖L1 ,mmax]. There exists a unique couple

of active submeasures.

For general Finsler metric F , this uniqueness result is derived by using the

doubling variables technique to the OMK equation. In Chapter 2, we also provide

an alternative proof for C2 Finsler metric F basing on the Lebesgue negligibility

of the set of endpoints of maximal transport rays.

The purpose of Chapter 3 is to complete Chapter 2 with the numerical analysis

of (PMK) for Finsler distance costs c = dF . For numerical approximations, Barrett

& Prigozhin [9, Interfaces Free Bound., 2009] studied numerically the case c(x, y) =

|x− y| using approximated nonlinear PDEs and Raviart–Thomas finite elements.

More recently, Benamou et al. [14, SIAM J. Sci. Comput., 2015] introduced a

general numerical framework to approximate solutions of linear programs related

to optimal transport such as barycenters in Wasserstein space, multi-marginal

optimal transport, optimal partial transport and optimal transport with capacity

constraints. Their idea is based on an entropic regularization of the initial linear

programs and Bregman–Dykstra iterations. In this trend, we also refer to the very

recent paper of Chizat et al. [35]. These approaches need to use (approximated)

values of dF .

In Chapter 3, we propose a different strategy basing on the theoretical results

from Chapter 2 and on augmented Lagrangian methods. We first show how one can

directly reformulate the unknown quantities (active submeasures) of the optimal

partial transport into an infinite-dimensional minimization problem of the form:

min
φ∈V

F(φ) + G(Λφ), (0.3)

where F ,G are l.s.c., convex functionals and Λ ∈ L(V, Z) is a continuous linear

operator between two Banach spaces. More precisely, the DPMK formulation (0.1)

Optimal Partial Transport and Constrained Matching Problems 7



will be rewritten in the form of (0.3). To do this, we show that the constraint

u(y)− u(x) ≤ dF (x, y) for all x, y

is equivalent to F ∗(x,∇u(x)) ≤ 1 a.e. x, where F ∗ is the polar function of F ,

by definition, F ∗(x, p) := sup
v∈RN

{〈p, v〉 : F (x, v) ≤ 1}. Then, the problem (0.3) is

approximated by finite-dimensional problems of the form

min
φh∈Vh

Fh(φh) + Gh(Λhφh). (0.4)

We prove the convergence of discretization, i.e. primal-dual solutions of (0.4)

converge to the ones of the original problem. At last, thanks to peculiar properties

of F and G in our situation, an augmented Lagrangian method is effectively applied

in the same spirit as Benamou & Brenier [12] (see also [13, 15]). For computation,

we just need to solve linear equations (with a symmetric positive definite coefficient

matrix) or to update explicit formulations. It is worth noting that this method

uses only elementary operations without evaluating dF . This is an advantage when

the evaluation of dF (x, y), for each pair (x, y), is difficult.

In Chapter 4, we extend our results to Lagrangian costs c = cL with

cL(x, y) := inf
ξ





1∫

0

L(ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y, ξ ∈ Lip([0, 1];RN)



 ,

where L(x, .) is convex and has superlinear growth (for example, L(x, v) = |v|q

q

with q > 1). Our main aims are to study equivalent dynamical formulations and

to provide a numerical approximation for the PMK problem with these Lagrangian

costs cL. By using the convex conjugate function H(x, p) := sup
v∈RN

〈p, v〉 − L(x, v),

we introduce the dual maximization formulation in the form

max
(λ,u)





∫

RN

u(1, .)dν −
∫

RN

u(0, .)dµ+ λ(m− µ(RN )) : λ ∈ R+, u ∈ Kλ
c



 , (0.5)

where

Kλ
c :=

{
u ∈ Lip([0, 1]× RN ) : ∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. (t, x) ∈ [0, 1]× RN ,

− λ ≤ u(0, x), u(1, x) ≤ 0 ∀x ∈ RN
}
.

The Fenchel–Rockafellar dual problem of (0.5) gives exactly the Benamou–Brenier

type formulation for the PMK problem. For rigorous proofs, the main difficulty
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in the study of general Lagrangian L remains in smooth approximation of the

elements in Kλ
c . This issue will be discussed in Chapter 4.

As we will see, the maximization problem (0.5) contains all informations on the

transportation and it falls into the scope of (0.3) which allows us to use augmented

Lagrangian methods for numerical computation. Again, note that we need to use

only the function L via elementary operations instead of the evaluation cL(x, y).

This approach provides at the same time active submeasures and their movement.

Thus the method should be a choice when one cares not only active submeasures

but also the optimal transportation.

The last chapter of the thesis deals with an optimal constrained matching

problem, which is a variant from Ekeland’s optimal matching problem (see Ekeland

[41, ESAIM Control Optim. Calc. Var., 2005]), consists in transporting two kinds

of goods and matching them into a target set with constraints on mass at the target.

For example, the target represents the capacities of some companies, the amount

of goods matching at each company should have a predetermined bound from

above. In mathematical language, the optimal matching problem with constraints

for the Euclidean costs can be modeled as follows: Let Ω ⊂ RN be a nonempty

convex set and f1, f2 ∈ M+
b (Ω) represent source measures of the same mass, i.e.,

f1(Ω) = f2(Ω). The constraint on the target set is represented by a measure

Θ ∈ M+
b (Ω) satisfying

f1(Ω) = f2(Ω) < Θ(Ω).

The optimal constrained matching problem reads as follows

W (f1, f2; Θ) := inf
(γ1,γ2)∈π(f1,f2;Θ)



∫

Ω×Ω

|x− y|dγ1 +
∫

Ω×Ω

|x− y|dγ2


 , (0.6)

where

π(f1, f2; Θ) :=
{
(γ1, γ2) ∈ M+

b (Ω×Ω)2 : πy#γ1 = πy#γ2 ≤ Θ, πx#γi = fi, i = 1, 2
}
.

This problem can be written as

inf
ρ∈M+

b
(Ω)

{
W1(f1, ρ) +W1(f2, ρ) : ρ ≤ Θ, ρ(Ω) = f1(Ω)

}
,

where W1(., .) is the 1-Wasserstein distance (see Chapter 1). An optimal solution

ρ is called optimal matching measure.

The optimal constrained matching problem (0.6) is recently studied
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theoretically by Mazon et al. [68] in connection with p–Laplacian type systems

by using PDE techniques. In [9], Barrett & Prigozhin also give a numerical

approximation to the problem (0.6) in the case where Θ = CLN D, i.e. Θ is

a constant C on the destination set D.

Chapter 5 is left to the uniqueness and numerical approximation of the optimal

matching measure. We note that the uniqueness of optimal matching measure does

not hold even with regular f1, f2,Θ (see Section 5.2). This interesting behaviour

is different from the PMK problem (see Chapter 2). An additional geometric

condition, as well as the absolute continuity of the measure Θ, is needed for the

uniqueness.

Theorem 0.5. Assume that Θ ∈ L1 and that S(f1, f2) ∩ supp(Θ) = ∅ with

S(f1, f2) :=
{
z = (1 − t)x + ty : x ∈ supp(f1), y ∈ supp(f2) and t ∈ [0, 1]

}
.

There exists a unique optimal matching measure ρ.

For the proof, we will make use of the special property of Kantorovich potentials

about the Lebesgue negligibility of endpoints of maximal transport rays. We also

give counterexamples to show that the above conditions are non-negligible.

Concerning numerical computation, we develop the variational study of the

problem. We introduce the following dual maximization formulation

max

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K

}
, (0.7)

where

K := {(u1, u2) ∈ Lip1(Ω)× Lip1(Ω) : u1 + u2 ≤ 0} .

Using the Fenchel–Rockafellar dual theory to the maximization problem (0.7), we

also introduce the minimal matching flow problem:

min
{
|Φ1|(Ω) + |Φ2|(Ω) : (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ)

}
, (MMF)

where

Ψ(f1, f2; Θ) :=
{
(Φ1,Φ2, ν) ∈ Mb(Ω)

N×Mb(Ω)
N×M+

b (Ω) : −∇·Φi = Θ−ν−fi in D′

(RN )
}
.

The interesting point to note here is, in contrast to the PMK problem, the optimal

solutions of Fenchel–Rockafellar dual formulation do not really give optimal

matching measure. In fact, it may in general happen ν � Θ for optimal solution

(Φ1,Φ2, ν). This is again different from the PMK problem. The following theorem
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provides a criterion for the reconstruction of optimal matching measure from

solutions of (MMF).

Theorem 0.6. Let f1, f2,Θ ∈ M+
b (Ω) be Radon measures. Assume that S(f1, f2)∩

supp(Θ) = ∅ holds. Let (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ) be an optimal solution for the

problem (MMF) and set ρ := Θ − ν. Then ρ ≥ 0 and it is an optimal matching

measure.

Based on these equivalent formulations, we also provide numerical

approximations for which the convergence of discretization and numerical

simulations are given.

At last, let us give the structure of this thesis. Chapter 1 provides some

preliminaries needed in the thesis. In Chapter 2, we study theoretically the

optimal partial transport with Finsler distance costs dF . We introduce equivalent

formulations for the optimal partial transport with a particular attention to the

so-called obstacle Monge–Kantorovich (OMK) equation. More precisely, active

submeasures are characterized as solutions of the OMK equation. And then,

we study some properties of this OMK equation which allow us to show the

uniqueness and monotonicity results for the active submeasures. To do this,

we will make use of tools from optimal transport theory, variational analysis

and PDE techniques. Chapter 3 concerns numerical approximations for the

optimal partial transport via augmented Lagrangian methods. The convergence

of our discretization is also shown in detail. We base on the so-called ALG2

algorithm to give numerical simulations. Chapter 4 provides a detailed exposition

of theoretical and numerical results for the PMK problem with Lagrangian costs.

In this case, we derive equivalent formulations basing the form of Hamilton–Jacobi

equations with constraints. In Chapter 5, we will be concerned with the optimal

constrained matching problem subject to constraints on capacity of the target.

For such a problem, we show the existence and uniqueness of solution under some

additional geometric conditions. Besides these issues, we also provide numerical

approximations, the convergence of discretization and numerical examples. The

contents of Chapters 2, 3, 4 and 5 are mainly taken from four papers [57–60], among

which [59] is published in IMA Journal of Numerical Analysis, [60] is accepted

for publication in SIAM Journal on Optimization and [57] is under revision for

publication in Journal of Differential Equations.
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Chapter 1

Preliminaries

The purpose of this chapter is to provide notations and some preliminaries in

optimal transport theory, the notion of tangential gradient to a measure and

Fenchel–Rockafellar dual theory as well as augmented Lagrangian methods.

1.1 Notations

Let us set up the basic notions which are used in the text. Ω ⊂ RN stands for a

non-empty domain (sometimes convex or bounded, which will be specified in the

context) with a Lipschitz boundary. We denote by |.| the usual Euclidean norm

on RN (or even Hilbertian norm) and when it is not ambiguous, we also use |µ|
for the total variation norm of the measure µ.

We denote by Cb(Ω) (respectively, C(Ω)) the spaces of bounded continuous

functions on Ω (respectively, continuous functions on Ω). We set Mb(Ω)

(respectively, M+
b (Ω)) for the space of signed (respectively, non-negative) finite

Radon measures defined on Ω. Given the Hahn–Jordan decomposition µ = µ+−µ−

with µ+, µ− ∈ M+
b (Ω), we set |µ|(Ω) := µ+(Ω) + µ−(Ω) for the total variation of

µ on Ω which turns out to be a norm on Mb(Ω). Moreover, this normed space

is the topological dual space of (Cb(Ω), ‖.‖∞). For two measures µ1, µ2 ∈ Mb(Ω),

we write µ1 ≤ µ2 if µ1(B) ≤ µ2(B) for any Borel set B ⊂ Ω, or equivalently∫
Ω

φ dµ1 ≤
∫
Ω

φ dµ2 for any φ ∈ Cb(Ω), φ ≥ 0. The notation µ ∧ ν stands for the

measure of common mass of µ and ν, i.e.

µ∧ν(A) = inf{µ(A1)+ν(A2) : disjoint Borel setsA1, A2, such that A1∪A2 = A}.

12



1. Preliminaries

If µ, ν ∈ L1(RN) then µ ∧ ν ∈ L1(RN) and

(µ ∧ ν)(x) = min{µ(x), ν(x)} for a.e. x ∈ RN .

We also denote by Mb(Ω)
N the space of RN−valued finite Radon measures, i.e.,

Φ ∈ Mb(Ω)
N if and only if Φ = (Φ1, ...,ΦN) with Φi ∈ Mb(Ω). We recall that the

total variation associated with Φ ∈ Mb(Ω), denoted by |Φ|(Ω) (or simply |Φ|), is
defined by

|Φ|(B) := sup

{
∞∑

i=1

|Φ(Bi)|: B =
∞⋃

i=1

Bi with pairwise disjoint Borel sets Bi ⊂ Ω

}
,

which coincides with the definition via the Hahn–Jordan decomposition whenever

N = 1. It is known that the space Mb(Ω)
N equipped with the total variation

norm is isometric to the topological dual of Cb(Ω)
N with the duality bracket

〈Φ, ξ〉 :=
N∑

i=1

∫

Ω

ξi dΦi

for any Φ = (Φ1, ...,ΦN) ∈ Mb(Ω)
N and ξ = (ξ1, ..., ξN) ∈ Cb(Ω)

N . The weak*

convergence in Mb(Ω)
N is understood in the usual sense, i.e., Φk → Φ weakly* in

Mb(Ω)
N as k → +∞ if and only if

〈Φk, ξ〉 → 〈Φ, ξ〉 for any ξ ∈ Cb(Ω)
N .

Let us now collect the basic notations used in the thesis.

RN the N−dimensional Euclidean space

|.| Euclidean (or generally Hilbertian) norm

B(x, r) the ball of center x and radius r in RN

[x, y] segment joining x to y, i.e., [x, y] := {(1− t)x+ ty : t ∈ [0, 1]}
[x, y[ [x, y[:= {(1− t)x+ ty : 0 ≤ t < 1[}
LN the N−dimensional Lebesgue measure

Lip(Ω) the set of Lipschitz functions on Ω w.r.t. the Euclidean norm

Lip1(Ω) the set of 1-Lipschitz functions on Ω w.r.t. the Euclidean norm

φk ⇒ φ φk converges uniformly to φ

Mb(X) the space of signed finite Radon measures on X

M+
b (X) the set of non-negative finite Radon measures on X

µ1 ≪ µ2 the measure µ1 is absolutely continuous w.r.t. µ2

Optimal Partial Transport and Constrained Matching Problems 13



1.2. Optimal Transport

Φ
|Φ|

Radon–Nikodym derivative of Φ w.r.t. |Φ|
supp(µ) the support of µ, i.e. the set {x ∈ X : µ(B(x, r)) > 0 ∀r > 0}
πx, πy the projections on the first component and the second component, i.e.

πx, πy defined on X × Y and πx(x, y) = x, πy(x, y) = y.

T#µ the push-forward measure of µ by T

Lpµ the Lebesgue spaces w.r.t. µ

δx the Dirac mass measure at x

f+, f− positive and negative parts of f

ProjK projection on the set K

χA characteristic function of A, i.e., χA(x) = 1 if x ∈ A and χA(x) = 0 if x /∈ A

IK indicator function of K, i.e., I(x) = 0 if x ∈ K and I(x) = +∞ otherwise

〈., .〉V,V ∗ duality bracket between V and V ∗

1.2 Optimal Transport

For the optimal mass transport theory, the two books of C. Villani [89, 90], the

monograph of L. Ambrosio et al. [3] and the new book of F. Santambrogio [83]

are used as basic references in the sequel.

1.2.1 Monge–Kantorovich problem

Given two non-negative Radon measures µ and ν with equal masses defined on two

subsets X ⊂ RN and Y ⊂ RN , respectively, the Monge optimal transport problem

is to find a map T : X −→ Y that transports µ onto ν, i.e., T#µ = ν (meaning

ν(B) = µ(T−1(B)) for all Borel sets B ⊂ Y ) and to minimize the transport cost

∫

X

|x− T (x)|dµ(x).

In other words, Monge’s problem reads as follows

inf
T#µ=ν

∫

X

|x− T (x)|dµ(x). (MP)

A competitor T for (MP) is called a transport map while a minimizer is indicated

as optimal transport map or simply optimal map.

It is well-known that the Monge problem is in general ill-posed. The set of

transport maps may be empty, nonconvex and noncompact under usual topologies
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(see e.g. [1, 87]). Moreover, it could happen that no transport map realizes

the minimum even if the set of transport maps is not empty. In addition, the

uniqueness of optimal transport map does not hold in general.

In 1942, L. Kantorovich [64] introduced a problem that he made several years

later [63] the connection with Monge’s work in the sense that Kantorovich’s

problem is a relaxation of Monge’s problem. The idea is to enlarge the admissible

set of Monge’s problem. Kantorovich’s problem reads as follows

inf
γ∈π(µ,ν)

∫

X×Y

|x− y|dγ(x, y), (MK)

where π(µ, ν) is the set of the so-called transport plans defined by

π(µ, ν) :=
{
γ ∈ M+

b (X × Y ) : πx#γ = µ, πy#γ = ν
}
.

The problem (MK) is nowadays called Monge–Kantorovich (MK) problem. It is

known that, for any transport map T , one always has γ := (id, T )#µ ∈ π(µ, ν).
Moreover, in contrast to Monge’s problem, the set π(µ, ν) is always non-empty

(for instance, by taking γ := 1
µ(X)

(µ ⊗ ν) ∈ π(µ, ν)) and the MK problem is a

linear programming in the (possibly infinite-dimensional) space Mb(X × Y ).

In the problem (MK), one can replace the cost function |x− y| by any proper

l.s.c. function c : X × Y −→ [0,+∞]. In this setting, the existence result can

be shown by means of the direct method in calculus of variations (see e.g. [90,

Chapter 4]).

An interesting feature of the MK problem is that it admits a dual problem.

Let us summarize some results in the following theorem.

Theorem 1.1. (cf. [90, Chapter 5]) Let c be an l.s.c. cost function and µ, ν ∈
M+

b (R
N) be such that µ(RN) = ν(RN). Then one has:

(i) The MK problem has an optimal plan and the Kantorovich duality holds, i.e.

min
γ∈π(µ,ν)





∫

RN×RN

c(x, y) dγ(x, y)





= sup

{∫

RN

u dµ+

∫

RN

v dν : (u, v) ∈ Sc(µ, ν)
}
,

(1.1)

where

Sc(µ, ν) :=
{
(u, v) ∈ L1

µ(R
N)× L1

ν(R
N) : u(x) + v(y) ≤ c(x, y) ∀x, y ∈ RN

}
.

(ii) It does not change the value of the supremum in the right-hand side of (1.1) if
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one restricts the definition of Sc(µ, ν) to those functions (u, v) which are bounded

and continuous.

(iii) If c(x, y) ≤ Cµ(x)+Cν(y) for some (Cµ, Cν) ∈ L1
µ×L1

ν then the dual problem

on the right-hand side (called Kantorovich dual problem) has an optimal solution.

(iv) If the cost function c is a distance then the Kantorovich dual problem can be

rewritten as

sup

{∫

RN

u d(ν − µ) : u ∈ L1
µ ∩ L1

ν , u(y)− u(x) ≤ c(x, y) ∀x, y ∈ RN

}
. (1.2)

A solution u of the Kantorovich dual problem (1.2) is called Kantorovich

potential. Without abusing, the term Kantorovich potential is also understood

for the general case.

The Kantorovich dual maximization problem in (1.1) turns out to be very

useful to show the existence of optimal map for (MP). In this direction, motivated

by problems in fluid mechanics, Y. Brenier [24] showed for the quadratic cost

c(x, y) := |x− y|2 and µ ≪ LN that there exists a unique optimal transport map

T in Monge’s problem which is the gradient of a convex function and

T (x) = ∇
(
1

2
|x|2−φ(x)

)
= x−∇φ(x),

for any φ Kantorovich potential transporting µ onto ν. Moreover, γ := (id, T )#µ

is an optimal plan for the MK problem. Similar results hold true if one replaces

the quadratic cost by c(x, y) := h(x− y), where h is strictly convex (see [52]). In

[71], R.J. McCann extended Brenier’s result to Riemannian manifolds.

The costs of the form c(x, y) = |x − y|p with 1 ≤ p ≤ +∞ play an important

role in applications. The applications need very often the fact that one can define

the quantity

Wp(µ, ν) :=



 min
γ∈π(µ,ν)

∫

X×X

|x− y|pdγ(x, y)





1
p

,

which turns out to be a metric on Pp(X) the space of probability measures with

finite pth order moment, i.e. η ∈ Pp(X) if
∫
X

|x|pdη < +∞, and it metrizes the weak

convergence (i.e. test functions are bounded continuous) on Pp(X) whenever X is

bounded (see e.g. [90, Chapter 6]). We call Wp(µ, ν) the p−Wasserstein distance

between µ and ν.
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1.2.2 Benamou–Brenier formula

Among equivalent formulations for the optimal transport, we should mention

the so-called dynamical formulation (or Benamou–Brenier formula) that, for the

quadratic cost c(x, y) = |x− y|2, reads as follows

W2(µ, ν)
2 = min

1∫

0

∫

RN

|υt(x)|2dρt(x)dt,

where the minimum is taken over all pairs (ρt, υt), with ρt a curve of measures

and υt a time-dependent velocity, such that the following continuity equation is

satisfied

∂tρt + divx(υtρt) = 0,

ρ0 = µ and ρ1 = ν. As usual, the continuity equation is understood in the weak

sense of distribution, that is,

1∫

0

∫

RN

∂tφdρ+

1∫

0

∫

RN

∇xφ · υdρ =
∫

RN

φ(1, .)dν −
∫

RN

φ(0, .)dµ, (1.3)

for any compactly supported smooth function φ ∈ C∞
c ([0, 1]×RN). For short, we

denote (1.3) by −divt,x (ρ, υρ) = δ1 ⊗ ν − δ0 ⊗ µ throughout the thesis.

The dynamical formulation was introduced by Benamou & Brenier [12] for

numerical computation. The approach is then generalized with theoretical point

of view for Lagrangian costs (see [19]) and for transport-type problems (see for

instance [23, 76] and the references therein).

1.2.3 Beckmann problem and Monge–Kantorovich

equation

In the case where c(x, y) := |x− y|, the Kantorovich dual problem can be written

as follows, called Kantorovich–Rubinstein dual formulation,

sup





∫

RN

ud(ν − µ) : u ∈ Lip1(R
N)



 . (1.4)

As shown by Evans & Gangbo [45] (see also [43]), under additional conditions on µ

and ν, that any Kantorovich potential u of (1.4) is characterized by the following
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PDE





−∇ · (a(x)∇u(x)) = ν − µ in D′
(RN)

a ∈ L∞, a ≥ 0, |∇u|≤ 1

a (|∇u|−1) = 0.

(1.5)

By using the functions a and u satisfied (1.5) via PDE methods, Evans &

Gangbo [45] constructed an optimal map for (MP) with c(x, y) := |x − y|. This

gives a deep result on the existence for this non-strictly convex cost function. There

is by now a large literature on the existence of optimal map by several techniques

(see for instance [4, 5, 18, 26, 32, 86]).

Bouchitté–Buttazzo–Seppecher [22] generalized the system (1.5) for general

Radon measures µ and ν via the notion of tangential gradient to a measure that

was introduced by themselves in [21] (see the next section if necessary). In this

case, the PDE (1.5), called Monge–Kantorovich (MK) equation, reads as





−∇ · Φ = ν − µ in D′
(RN)

Φ ∈ Mb(RN)N , |∇u|≤ 1

Φ
|Φ|

= ∇|Φ|u |Φ|-a.e..

On the other hand, by means of the Fenchel–Rockafellar duality, the

Kantorovich–Rubinstein dual problem (1.4) admits another dual problem reading

as

min





∫

RN

d|Φ|: Φ ∈ Mb(R
N)N , −∇ · Φ = ν − µ in D′

(RN)



 . (1.6)

This new formulation is called minimal flow or Beckmann problem in the

connection with a continuous model of transportation proposed by Beckmann [10].

1.3 Tangential gradient to a measure

The notion of tangential gradient to a measure was first introduced by Bouchitté–

Buttazzo–Seppecher [21] with applications to low dimensional structures. Here

we recall few useful notations and results from [21] with slight modifications as in

[62]. Given any (non-negative) finite Radon measure η on RN , it admits a tangent

space at η-a.e. point x ∈ RN , denoted by Tη(x), which is a linear subspace of RN .

18 Optimal Partial Transport and Constrained Matching Problems



1. Preliminaries

Set

Xη :=
{
φ ∈ L1

η(R
N ;RN) : div(φη) ∈ Mb(R

N)
}
,

where the divergence constraint is understood in the sense of distributions. In

other words, there is a constant M such that

∫

RN

∇ξ · φdη ≤M‖ξ‖∞ (1.7)

for any compactly supported smooth function ξ ∈ C∞
c (RN). Formally, if η is the

Hausdorff measure Hk over a k-dimensional smooth manifold S in RN , by taking

all nonzero test functions ξ which vanish on S in (1.7), every vector field φ ∈ Xη

must be tangent to S.

Tη(x) is defined as the envelope of all vectors φ(x) for φ running in Xη. This

is rigorously done by using the so-called η-essential union. Define

Tη(x) := η − ess ∪ {φ(x) : φ ∈ Xη} ,

where the η-essential union is defined as a η-measurable closed multifunction given

by

• φ ∈ Xη ⇒ φ(x) ∈ Tη(x) η-a.e.;

• the η-essential union is minimal among all the multifunctions Γ(x) satisfying

the previous properties, i.e. Tη(x) ⊂ Γ(x) η-a.e..

Example 1.2. (see e.g. [50, Theorem 3.1] or [21, Example 2.4]) Let η = Hk
S,

where S is a k-dimensional Lipschitz manifold in RN . Then Tη(x) = TS(x) for

η-a.e. x ∈ S with TS(x) being the classical tangent space to S at x.

We denote by Pη(x, .) the orthogonal projection on Tη(x) for η-a.e. x. Given

u ∈ C1(RN), the tangential gradient of u, denoted by ∇ηu, is defined by

∇ηu(x) := Pη(x,∇u(x)).

If moreover u ∈ C1(RN) ∩ Lip(RN) then ∇ηu ∈ L∞
η (RN ;RN). As in [21,

Proposition 2.1] or [62, Proposition 4.5], the tangential gradient operator ∇η :

C1(RN) ∩ Lip(RN) → L∞
η (RN ;RN) is closable for the uniform convergence and

weak* convergence, respectively. More precisely, one has

Proposition 1.3. Let {un} ⊂ C1(RN) be such that un ⇒ 0 on RN and ∇ηun ⇀ ξ

weakly* in L∞
η (RN ;RN). Then ξ = 0 η-a.e..
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This proposition allows to extend the tangential gradient to any Lipschitz

function u on RN . Indeed, let {un} be a sequence of equi-Lipschitz functions such

that un ⇒ u on RN . Following Proposition 1.3, there is a unique ξ ∈ L∞
η (RN ;RN)

such that ∇ηun ⇀ ξ weakly* in L∞
η (RN ;RN). One defines ∇ηu := ξ.

By approximation, the following integration by parts formula holds

〈−div(φη), u〉 =
∫
φ · ∇ηu dη for any φ ∈ Xη, u ∈ Lip(RN) ∩ Cb(RN).

Remark 1.4. (i) Let η ∈ M+
b (Ω) and u ∈ Lip(Ω). Then ∇ηu := ∇ηũ for any

Lipschitz extension ũ on RN of u (it does not depend on the choice of ũ).

(ii) If η = LN Ω then ∇ηu = ∇u a.e. for Lipschitz functions u on Lipschitz

domain Ω.

We will need the following chain rule for the tangential gradient.

Proposition 1.5 (Chain rule for the tangential gradient). Let η ∈ M+
b (R

N) and u

be a Lipschitz continuous function defined on RN . Let G be a Lipschitz continuous

function on R such that the set of non-differentiable points of G is finite. Then

∇ηG(u)(x) = G
′

(u(x))∇ηu(x) for η-a.e. x, (1.8)

where G
′
(u(x)) is the usual derivative with convention G

′
(u(x))∇ηu(x) = 0 when

∇ηu(x) = 0 even if G is not differentiable at u(x). In particular, we have

(i) ∇ηu
+ = χ[u>0]∇ηu and ∇ηu

− = −χ[u<0]∇ηu η-a.e. in RN ;

(ii) ∇ηu = 0 η-a.e. on the set [u = c] := {x ∈ RN : u(x) = c} for a constant c ∈ R.

Proof. Let us first assume that G is continuously differentiable. In order to prove

(1.8), it is enough to show that

∫

RN

∇ηG(u) · Φdη =

∫

RN

G
′

(u)∇ηu · Φdη,

for every Φ ∈ L1
η(R

N ;RN) such that Φ(x) ∈ Tη(x) η-a.e. x ∈ RN . Let uε ∈
C∞(RN) be the regularization of u by convolution. Since u and G are Lipschitz,

the sequences of equi-Lipschitz functions uε and G ◦ uε converge uniformly to u

and G ◦ u on RN , respectively. Thus ∇ηuε and ∇ηG(uε) converge to ∇ηu and

∇ηG(u) weakly* in L∞
η (RN ;RN), respectively. Since Φ(x) ∈ Tη(x) η-a.e. x ∈ RN ,
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we have

∫

RN

∇ηG(u) · Φdη = lim
ε→0

∫

RN

∇ηG(uε) · Φdη = lim
ε→0

∫

RN

∇G(uε) · Φdη

= lim
ε→0

∫

RN

G
′

(uε)∇uε · Φdη = lim
ε→0

∫

RN

G
′

(uε)∇ηuε · Φdη

=

∫

RN

G
′

(u)∇ηu · Φdη.

This gives the result (1.8) whenever G is continuously differentiable by taking

Φ = ∇ηG(u)−G
′

(u)∇ηu.

For (i), consider the function Gε(r) :=





√
r2 + ε2 − ε if r > 0

0 if r ≤ 0
. Then Gε is

continuously differentiable and Lipschitz on R. Thus we have

∫

RN

∇ηGε(u) · Φdη =

∫

RN

G
′

ε(u)∇ηu · Φdη =

∫

{[u>0]}

u√
u2 + ε2

∇ηu · Φdη

for every Φ ∈ L1
η(R

N ;RN) such that Φ(x) ∈ Tη(x) for η-a.e. x. Letting ε→ 0,

∫

RN

∇ηu
+ · Φdη =

∫

{[u>0]}

∇ηu · Φdη =

∫

RN

χ[u>0]∇ηu · Φdη.

The proof of the positive part ends up by choosing

Φ := ∇ηu
+ − χ[u>0]∇ηu.

A similar proof is done for the negative part.

For (ii), we can assume that c = 0. The proof follows from ∇ηu = ∇ηu
+−∇ηu

−.

Now, let us deal with a general Lipschitz function G satisfying our assumptions.

Let us call {r1, r2, ..., rn} the set of non-differentiable points of G and set open

subsets Ωi := u−1(R \ {ri}) and Ω :=
n⋂
i=1

Ωi. Since u is a constant on RN \ Ωi, i =

1, ..., n, we have

∇ηG(u)(x) = G
′

(u(x))∇ηu(x) = 0 η-a.e. x ∈ RN \ Ωi, i = 1, ..., n.
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It remains to verify that

∇ηG(u)(x) = G
′

(u(x))∇ηu(x) η-a.e. x ∈ Ω. (1.9)

Let us assume that Ω 6= ∅ (if not, there is nothing to prove). Let Gε be a smooth

approximation of G by convolution. Let Φ ∈ L1
η(R

N ;RN) be such that Φ(x) =

0 η-a.e. x in RN \ Ω. Then
∫

RN

∇ηG(u)Φ dη = lim
ε→0

∫

RN

∇ηGε(u)Φ dη

= lim
ε→0

∫

RN

G
′

ε(u)∇ηuΦdη

= lim
ε→0

∫

Ω

G
′

ε(u)∇ηuΦdη (since Φ(x) = 0 η-a.e. x in RN \ Ω)

=

∫

Ω

G
′

(u)∇ηuΦdη,

where we used the Lebesgue Dominated Convergence Theorem. Next, choosing

Φ = ∇ηG(u)−G
′

(u)∇ηu

as a test function, we obtain (1.9).

1.4 Fenchel–Rockafellar duality and ALG2

method

Let V and Z be Banach spaces. Let us consider an optimization problem of the

form

inf
φ∈V

F(φ) + G(Λφ) (1.10)

where F : V −→ (−∞,+∞] and G : Z −→ (−∞,+∞] are convex, l.s.c. and

Λ ∈ L(V, Z) the space of linear continuous functions from V to Z. Using F∗ and

G∗ the convex conjugate functions (given by the Legendre–Fenchel transformation)

of F and G respectively, and Λ∗ is the adjoint operator of Λ, it is easy to see that

sup
σ∈Z∗

(−F∗(−Λ∗σ)− G∗(σ)) ≤ inf
φ∈V

F(φ) + G(Λφ),
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where Z∗ is the topological dual space associated with Z. This is the so-called

weak duality. For the strong duality, which corresponds to equality we have the

following well-known result.

Proposition 1.6 (cf. [42]). Assume moreover that there exists φ0 such that

F(φ0) < +∞, G(Λφ0) < +∞ and G is continuous at Λφ0. Then the so-called

Fenchel–Rockafellar dual problem

sup
σ∈Z∗

(−F∗(−Λ∗σ)− G∗(σ)) (1.11)

has at least a solution σ ∈ Z∗ and inf (1.10) = max (1.11). Moreover, in this case,

φ is a solution to the primal problem (1.10) if and only if the optimality condition

holds 


−Λ∗σ ∈ ∂F(φ)

σ ∈ ∂G(Λφ).
(1.12)

We are now concerned with numerical approximations for the optimization

problems (1.10) and (1.11), or equivalently for the optimality condition (1.12).

Assume that V and Z are two Hilbert spaces. We introduce a new variable q ∈ Z

to the primal problem (1.10) and we rewrite it in the form

inf
(φ,q)∈V×Z : Λφ=q

F(φ) + G(q).

To solve (1.12), it is sufficient to determine saddle-points of the augmented

Lagrangian

Lr(φ, q; σ) := F(φ) + G(q) + 〈σ,Λφ− q〉+ r

2
|Λφ− q|2, r > 0.

In other words, we shall solve the problem

min
(φ,q)∈V×Z

max
σ∈Z∗

Lr(φ, q; σ). (1.13)

This problem is solved by the so-called ALG2 method, also known as Alternating

direction method of multipliers, which is given as follows: Given q0, σ0 ∈ Z, we

construct the sequences {φi}, {qi} and {σi}, i = 1, 2, ..., by

• Step 1:

φi+1 = argmin
φ∈V

Lr(φ, qi; σi) = argmin
φ∈V

{
F(φ) + 〈σi,Λφ〉+

r

2
|Λφ− qi|2

}
.
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• Step 2:

qi+1 = argmin
q∈Z

Lr(φi+1, q; σi) = argmin
q∈Z

{
G(q)− 〈σi, q〉+

r

2
|Λφi+1 − q|2

}
.

• Step 3:

σi+1 = argmax
σ∈Z∗

{
Lr(φi+1, qi+1; σ)−

1

2r
|σ − σi|2

}
= σi + r(Λφi+1 − qi+1).

Formally, if the sequences {φi}, {qi} and {σi} are convergent then their limits

should be solutions of (1.13). For the theory of this method and its interpretation,

we refer the reader to [40, 49, 51, 53, 54]. Here, we recall the convergence result

of this method which is enough for our discretized problems later.

Theorem 1.7 (cf. [40], Theorem 8). Fixed r > 0, assuming that V = Rn, Z = Rm

and that Λ has full column rank. If there exists a solution to the optimality relations

(1.12) then {φi} converges to a solution of the primal problem (1.10) and {σi}
converges to a solution of the dual problem (1.11). Moreover, {qi} converges to

Λφ∗, where φ∗ is the limit of {φi}.

The proof of this result in the case of finite-dimensional spaces V and Z can be

found in [40]. The result holds true in infinite-dimensional Hilbert spaces under

additional assumptions. One can see [53] and [49] for more details in this direction.
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Chapter 2

Optimal Partial Transport and

Obstacle Monge–Kantorovich

Equation

Optimal partial mass transport, which is a variant of the optimal transport

problem, consists in transporting effectively a prescribed amount of mass from a

source to a target. The problem was first studied by Caffarelli & McCann [27, Ann.

of Math., 2010] and Figalli [48, Arch. Ration. Mech. Anal., 2010] with a particular

attention to the quadratic cost. In this chapter, our aim is to study the optimal

partial transport problem with Finsler distance costs including the Monge cost

given by the Euclidian distance. Among our results, we introduce a PDE of Monge–

Kantorovich type with a double obstacle to characterize active submeasures,

Kantorovich potential and optimal flow for the optimal partial transport problem.

This new PDE enables us to study the uniqueness and monotonicity results w.r.t.

Lagrangian multiplier λ for the active submeasures. Another interesting issue of

our approach is its convenience for numerical analysis and computation that we

develop in Chapter 3.

2.1 Introduction

The partial Monge–Kantorovich (PMK) problem (or optimal partial transport) is

a very natural extension of the original optimal transport problem. Given µ, ν ∈
M+

b (R
N), a prescribed total mass m satisfying 0 ≤ m ≤ mmax with mmax :=

min
{
µ(RN), ν(RN)

}
and a measurable ground cost c : RN ×RN −→ [0,+∞), the
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PMK problem reads as follows

min
γ∈M+

b
(RN×RN )





∫

RN×RN

c(x, y)dγ : πx#γ ≤ µ, πy#γ ≤ ν, γ(RN × RN) = m



 .

This generalized problem brings out new unknown quantities ρ0 := πx#γ and

ρ1 := πy#γ. In other words, let us denote by Subm(µ, ν) the set of submeasures

of mass m which is defined by

Subm(µ, ν) := {(ρ0, ρ1) ∈ M+
b (R

N )×M+
b (R

N ) : ρ0 ≤ µ, ρ1 ≤ ν, ρ0(R
N ) = ρ1(R

N ) = m}.

Then the PMK problem reads

min
{
K(γ) :=

∫

RN×RN

c(x, y)dγ : γ ∈ πm(µ, ν)
}
, (PMK)

where

πm(µ, ν) :=
{
γ ∈ π(ρ0, ρ1) : (ρ0, ρ1) ∈ Subm(µ, ν)

}
.

An element (ρ0, ρ1) ∈ Subm(µ, ν) is called a couple of active submeasures if there

exists an optimal plan γ of (PMK) such that γ ∈ π(ρ0, ρ1).

As mentioned in the general introduction, the existence, uniqueness and

regularity issues for active submeasures were initially studied by Caffarelli &

McCann [27] with a special focus on the quadratic cost, i.e., c(x, y) = |x − y|2.
Thereafter, Figalli [48] improves the results. In particular, he removes the

disjointness assumption on the supports of the initial measures.

Our aim here is to give a complete and rigorous study of (PMK) with a Finsler

distance cost dF (x, y) (including the case of Euclidean distance cost). Before going

further, let us take a while to comment our approach and main ideas. It is not

difficult to see that (PMK) is a bilevel optimization problem that aims to find the

active submeasures with the constraint on the total mass as well as the optimal

plan. The authors in [27] introduce a Lagrange multiplier λ for the mass constraint,

add a point at infinity which acts as a tariff-free reservoir for transporting the extra

mass and study the relations given by classical duality results. In this way, they

could deduce existence and uniqueness of minimizers when the supports of µ and

ν are disjoint. As to the strategy of [48] is to study directly the minimization

problem by studying the convexity of the function that associates to each m the

total Monge–Kantorovich work. In particular, this allows the author to prove
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the uniqueness without disjointness condition. The techniques used in [7,15] also

deduce the uniqueness for costs which require existence and uniqueness of optimal

plan in the full transfer case (see [7, Proposition 2.9], [15, Renark 2.11] for precise

statements). However, these techniques do not work for the uniqueness of active

submeasures of (PMK) with Finsler costs. Our point of view is to obtain the

uniqueness via the study of the so-called OMK equation by PDE techniques.

We begin by handling directly the problem for general costs by adding two

arbitrary sites in RN to process the problem into a balanced optimal mass

transportation. Taking the cost for free to the new sites, we show that the new total

work coincides with the total work of the PMK problem. Moreover, combining

this with classical duality results, we introduce a bilevel maximization problem

to provide a natural dual partial Monge–Kantorovich (DPMK) problem for the

optimal partial transport. Then, using the triangle inequality satisfied by dF , we

give the Kantorovich–Rubinstein type duality for (PMK) with Finsler distance

costs. In the case of Finsler distances, the variable of the DPMK problem can

be expressed as a couple (λ, u) where u can be interpreted as the Kantorovich

potential associated with (PMK) and λ would be used to give informations on

active submeasures. Recall that in the case where the cost is given by the square

of the Euclidean distance (cf. [27]), the connection between the obstacle Monge–

Ampère PDE and (PMK) is given by a map that associates to each value parameter

λ a solution of the Monge–Ampère PDE. In our case, we introduce a map that

associates to each value λ a solution of the OMK equation. Then, we show how a

right value λm enters in connection with the Kantorovich potential to bring out the

solution of (PMK). Among the main issues of our approach, the uniqueness of the

active submeasures holds true in the case where µ and ν are absolutely continuous

without disjointness condition of the supports. As a consequence, we also obtain

the monotonicity of active submeasures with respect to Lagrange multiplier λ.

This chapter is organized as follows: In the next section 2.2, we introduce

our main results for the PMK problem with Finsler distances and the OMK

equation. The remaining sections aim to prove the main results. In section 2.3,

we first prove the Kantorovich type duality for the PMK problem with general

costs and then lead to the duality for Finsler distance costs. The existence and

uniqueness issues for the OMK equation are studied in section 2.4. In section 2.5,

we show the connection between the OMK equation and the active submeasures

by using the DPMK problem and the partial minimum flow problem. Thanks to

this connection and the results on the OMK equation, we deduce the uniqueness

of active submeasures. To finish the proofs of the main results, we also study
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some strong L1 continuous dependence and monotonicity of solution of the OMK

equation with respect to the obstacle in section 2.6.

2.2 Main results

We give in this section our main results for (PMK) with Finsler distance costs

c = dF . Let us begin with a reminder concerning Finsler distances. A continuous

function F : RN × RN −→ [0,+∞) is called Finsler metric on RN if

• F (x, .) is convex w.r.t. the second variable for fixed x ∈ RN ;

• F (x, .) is positively 1-homogeneous for fixed x ∈ RN , i.e.

F (x, tv) = tF (x, v) for every v ∈ RN and t > 0.

In addition, throughout the thesis, we assume that F is nondegenerate in the sense

that there exist M1,M2 > 0 such that

M1|v|≤ F (x, v) ≤M2|v| ∀(x, v) ∈ RN × RN .

The Finsler distance dF on RN is defined by

dF (x, y) := inf
ξ∈Lip([0,1];RN )





1∫

0

F (ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y



 . (2.1)

Under the above assumptions on F , the inf problem (2.1) is actually the minimum

and dF is a (not necessarily symmetric) distance, i.e. dF satisfies

• dF (x, y) ≥ 0; dF (x, y) = 0 if and only if x = y;

• dF (x, y) ≤ dF (x, z) + dF (z, y) for any x, y, z ∈ RN .

An example of a Finsler metric which is not a norm in R is given by F (x, v) =

av− + bv+ with 0 < a 6= b. More generally, for each x ∈ RN fixed, given vectors

dx1 , ..., d
x
k 6= 0 depending on x such that, for any 0 6= v ∈ RN , max

1≤i≤k
{〈v, dxi 〉} > 0,

we define

F (x, v) := max
1≤i≤k

{〈v, dxi 〉} for any v ∈ RN

which turns out to be a Finsler metric.

We say that a function u is 1-dF Lipschitz if and only if

u(y)− u(x) ≤ dF (x, y) for all x, y.
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The polar function F ∗ of F is defined by

F ∗(x, p) := sup
v∈RN

{〈v, p〉 : F (x, v) ≤ 1} for any x, p ∈ RN .

It is easy to see that F ∗ is also a continuous, nondegenerate Finsler metric and

〈v, p〉 ≤ F ∗(x, p)F (x, v) for all x, v, p ∈ RN .

Coming back to (PMK) with Finsler distances, our analysis begins with the

following Kantorovich–Rubinstein type duality.

Theorem 2.1. Let µ, ν ∈ M+
b (R

N) be Radon measures with compact supports and

m ∈ [0,mmax]. Then the PMK problem (PMK) with c = dF has an optimal plan

σ∗ and the Kantorovich–Rubinstein type duality can be written as

K(σ∗) = max
(λ,u)∈[0,+∞)×Lλ

dF

{
D(λ, u) :=

∫
u d(ν − µ) + λ(m− ν(RN))

}
, (2.2)

where

LλdF :=
{
u ∈ L1

µ∩L1
ν : u(y)−u(x) ≤ dF (x, y), 0 ≤ u(x) ≤ λ for all x, y ∈ RN

}
.

In addition, σ ∈ πm(µ, ν) and (λ, u) ∈ R+ × LλdF are solutions of (PMK) and of

the DPMK problem (2.2), respectively, if and only if

u(x) = 0 for (µ− πx#σ)-a.e. x ∈ RN , u(x) = λ for (ν − πy#σ)-a.e. x ∈ RN

and u(y)− u(x) = dF (x, y) for σ-a.e. (x, y) ∈ RN × RN .

Next, we introduce a new nonlinear PDE that we call the obstacle Monge–

Kantorovich (OMK) equation. Then, we use this PDE to show the uniqueness

of active submeasures whenever the data µ and ν are absolutely continuous with

respect to the Lebesgue measure.

To introduce our PDE, we see that the DPMK problem (2.2) reads as

max
λ≥0

(
max
u

{
D(λ, u) : u ∈ LλdF

})
.

Moreover, formally, for any fixed λ ≥ 0, the Euler–Lagrange equation associated

with the problem

max
u

{
D(λ, u) : u ∈ LλdF

}
(2.3)
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is given by the following PDE





θ −∇ · Φ = ν − µ in D′
(RN)

Φ · ∇u = F (.,Φ)

u ∈ LλdF , θ ∈ ∂I[0,λ](u).

(Pλ)

This is a double obstacle problem associated with (PMK) for c = dF . And,

formally we conclude that the study of (PMK) is closely connected to the study of

the dependence of solution of (Pλ) with respect to λ. Our aim now is to study this

connection to get a characterization of active submeasures. Before going further,

let us give the notion of solution to the OMK equation.

Definition 2.2. For a fixed λ ≥ 0, a triplet (θ,Φ, u) ∈ Mb(RN)×Mb(RN)N×LλdF
is said to be a solution to the OMK equation (Pλ) if





θ −∇ · Φ = ν − µ in D′
(RN)

Φ
|Φ|

(x) · ∇|Φ|u(x) = F
(
x, Φ

|Φ|
(x)
)

|Φ|-a.e. x ∈ RN

u = 0 θ−-a.e. in RN and u = λ θ+-a.e. in RN ,

where θ+ and θ− are the positive and negative parts of the measure θ given by the

Hahn–Jordan decomposition.

Without abusing, we also say that a Radon measure θ ∈ Mb(RN) is a solution

of (Pλ) if there exists (Φ, u) ∈ Mb(RN)N × LλdF such that (θ,Φ, u) satisfies the

OMK equation (Pλ).

It is to be expected that ν − θ+ and µ − θ− are active submeasures. The

important point to note here is that we do not impose any constraints of type

θ+ ≤ ν and θ− ≤ µ in the definition of the OMK equation. These estimates are

summarized in the following theorem and will be proved later via PDE techniques.

Theorem 2.3 (Existence and estimates for OMK equation). Given µ, ν ∈
M+

b (R
N) and λ ≥ 0, the OMK equation (Pλ) admits at least one solution (θ,Φ, u).

Moreover,

θ− ≤ µ− µ ∧ ν ≤ µ and θ+ ≤ ν − µ ∧ ν ≤ ν

for any solution (θ,Φ, u).

Because of the degeneracy of the OMK equation, the question of the uniqueness

of solution for (Pλ) is delicate. In fact, one cannot in general expect the uniqueness
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of components Φ and u of solution for the OMK equation (Pλ). However, we can

prove the uniqueness of component θ whenever µ and ν are absolutely continuous

with respect to the Lebesgue measure.

Theorem 2.4 (Uniqueness of θ). Assume that µ, ν ∈ L1(RN)+. Let θ1 and θ2 be

two solutions to the same OMK equation (Pλ). Then θ1, θ2 ∈ L1(RN) and θ1 = θ2.

Now, we come to the connection between the OMK equation and (PMK).

Theorem 2.5 (Active submeasures and OMK equation). Let µ, ν ∈ M+
b (R

N) be

compactly supported.

(i) For any λ ≥ 0 and θλ a solution of the OMK equation (Pλ), the couple

(ρ0, ρ1) := (µ− θ−λ , ν − θ+λ )

is a couple of active submeasures corresponding to mλ = (µ− θ−λ )(R
N).

(ii) Conversely, if (ρ0, ρ1) ∈ Subm(µ, ν) is a given couple of active submeasures

and m ∈ [(µ ∧ ν)(RN),mmax] then for any λm ≥ 0 such that

λm ∈ argmax
λ≥0

{
max
u

{
D(λ, u) : u ∈ LλdF

}}
,

the measure θλm defined by

θ−λm := µ− ρ0 and θ+λm := ν − ρ1

is a solution of the OMK equation (Pλm).

As a consequence of Theorems 2.5 and 2.4, we have the uniqueness for (PMK).

Corollary 2.6 (Uniqueness of active submeasures). Let µ, ν ∈ L1(RN)+ be

compactly supported and m ∈ [‖µ ∧ ν‖L1 ,mmax]. There exists a unique couple

of active submeasures.

To end up this section of main results, we propose to study the maps that

associate to each λ ≥ 0 the corresponding active submeasures and their total mass

in the case µ, ν ∈ L1(RN). Thanks to Theorems 2.3, 2.5 and 2.4, for any λ ≥ 0

there exist a unique mass mλ := (µ − θ−λ )(R
N) and a unique couple of active

submeasures (ρλ0 , ρ
λ
1) := (µ− θ−λ , ν − θ+λ ) corresponding to mλ. Set

m : [0,∞) → [(µ ∧ ν)(RN),mmax]

λ → m(λ) := mλ
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and
R : [0,∞) → L1(RN)× L1(RN)

λ → R(λ) := (ρλ0 , ρ
λ
1).

To simplify the presentation, let us denote

Subopt(µ, ν) :=
{
(ρ0, ρ1) : (ρ0, ρ1) is a couple of active submeasures

corresponding to some m ∈ [(µ ∧ ν)(RN),mmax]
}
.

Theorem 2.7. Let µ, ν ∈ L1(RN)+ be compactly supported. We have that

(i) The map m is continuous, non-decreasing and surjective.

(ii) The map R is continuous, non-decreasing and surjective from [0,∞) to

Subopt(µ, ν).

It is known that the monotonicity of active submeasures corresponding to

the mass m is obtained for continuous cost c (see [27, Theorem 3.4]) and that

the monotonicity corresponding to Lagrange multiplier λ is guaranteed for costs

satisfying the left twist condition (see [27, Sections 2 and 3]). Our result says

that, even if the Finsler distances do not satisfy the condition, the monotonicity

w.r.t. Lagrange multiplier λ still holds true. On the other hand, in the quadratic

case, Davila and Kim obtain a Lipschitz continuous dependence of mλ on λ (see

[36, Theorem 4.5]). In the case of Finsler distances, we do not know this kind of

estimates.

Remark 2.8. (i) There is in general no uniqueness of active submeasures when

m < (µ ∧ ν)(RN). Indeed, in this case, all feasible submeasures ρ0 ≡ ρ1 ≤ µ ∧ ν
are optimal. This is not a contradiction with our PDE approach by the fact that

there is no such an OMK equation with λ ≥ 0 characterizing (PMK).

(ii) In general, the uniqueness of active submeasures does not hold true if both

µ and ν are not in L1. For example, take µ = δ1 + δ3, ν = δ2, where δk is the

Direct mass at k in R. Then all feasbile submeasures are optimal for any m.

(iii) We show here that the uniqueness holds true whenever µ, ν ∈ L1(RN) by

using PDE techniques. We do not know if this holds true when one of µ, ν belongs

to L1(RN).
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2.3 Kantorovich-type duality

The aim of this section is to introduce the Kantorovich type duality for (PMK).

Our main result concerning duality for general costs is the following.

Theorem 2.9. Let µ, ν ∈ M+
b (R

N) be measures with compact supports X and Y ,

m ∈ [0,mmax]. Assume that c is l.s.c. and bounded on X ×Y . The PMK problem

has a solution σ∗ ∈ πm(µ, ν) and the Kantorovich type duality turns into

K(σ∗) = min
γ∈πm(µ,ν)





∫

RN×RN

c(x, y)dγ(x, y)





= max
(λ,φ,ψ)





∫

RN

φ dµ+

∫

RN

ψ dν + λm : λ ∈ R+, (φ, ψ) ∈ Sλc (µ, ν)



 ,

(2.4)

where

Sλc (µ, ν) :=
{
(φ, ψ) ∈ L1

µ × L1
ν : φ ≤ 0, ψ ≤ 0 and φ(x) + ψ(y) + λ ≤ c(x, y) ∀x, y ∈ RN

}
.

Moreover, σ ∈ πm(µ, ν) and (λ, φ, ψ) ∈ R+ ×Sλc (µ, ν) are solutions if and only if

φ(x) = 0 for (µ− πx#σ)-a.e. x ∈ RN , ψ(y) = 0 for (ν − πy#σ)-a.e. y ∈ RN

and φ(x) + ψ(y) + λ = c(x, y) for σ-a.e. (x, y) ∈ RN × RN .

(2.5)

The maximization problem on the right hand side of (2.4) is called dual partial

Monge–Kantorovich (DPMK) problem.

Remark 2.10. See that the duality formulations (2.4) is different from Caffarelli–

McCann’s duality (see [27, Corollary 2.7]) which reads as, for fixed parameter

λ,

min
γ∈π≤(µ,ν)





∫

RN×RN

(c− λ)dγ



 = max

u(x) + v(y) ≤ c(x, y)− λ

u(x) ≤ 0, v(y) ≤ 0

∫

RN

u(x)dµ+

∫

RN

v(y)dν,

where

π≤(µ, ν) :=
{
γ ∈ M+

b (R
N × RN) : πx#γ ≤ µ, πy#γ ≤ ν

}
.
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Note that in this formulation there is no mass constraint on variable γ. The duality

(2.4) follows the Caffarelli–McCann one in the case where the problem

min
γ∈π≤(µ,ν)

∫

RN×RN

(c− λ)dγ (2.6)

has a unique optimal plan γ for each λ. Indeed, given a total mass m, by using

[27, Corollary 2.11], one can choose a λ∗ such that the unique solution γλ∗ of (2.6)

w.r.t. λ∗ satisfies γλ∗(RN × RN) = m. It follows that the left hand side of (2.4)

is less than or equal the right hand side. The inverse inequality can be verified

directly. However, the uniqueness of the problem (2.6) is, in general, not satisfied.

On the other hand, in (2.4), λ is a variable and the duality is direct to

(PMK). This formulation reduces to the duality for linear programmings in finite-

dimensional space when µ and ν are sums of Dirac masses (see e.g. [73, Theorem

13.1]). For numerical computations, the formulation (2.4) with λ as a variable is

very useful. This issue will be discussed in Chapter 3.

Proof of Theorem 2.9. The existence of an optimal plan σ∗ ∈ πm(µ, ν) is

standard, which can be shown by the direct method. Next, for any σ ∈ πm(µ, ν)

and (λ, φ, ψ) ∈ R+ × Sλc (µ, ν), we have

∫

RN

φ(x) dµ(x) +

∫

RN

ψ(y) dν(y) + λm ≤
∫

RN

φ(x) dπx#σ +

∫

RN

ψ(y) dπy#σ + λm

=

∫

RN×RN

(φ(x) + ψ(y) + λ) dσ

≤
∫

RN×RN

c(x, y)dσ.

(2.7)

As a consequence,

sup





∫

RN

φ dµ+

∫

RN

ψ dν + λm : λ ∈ R+, (φ, ψ) ∈ Sλc (µ, ν)



 ≤ min

σ∈πm(µ,ν)
K(σ).

To prove the converse inequality, we add two points x̂ ∈ RN \X and ŷ ∈ RN \Y as

extra production and consumption positions, respectively. Let us consider X̂ :=

X ∪ {x̂}, Ŷ := Y ∪ {ŷ} as metric spaces (induced by the Euclidean distance) and

the measures on X̂ and Ŷ defined by, respectively,

µ̂ = µ+ (ν(Y )−m))δx̂ and ν̂ = ν + (µ(X)−m)δŷ.
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Obviously, µ̂(X̂) = ν̂(Ŷ ). Then, let us consider the extra cost on X̂ × Ŷ

ĉ(x, y) :=




c(x, y) if (x, y) ∈ X × Y

0 if x = x̂ or y = ŷ.

From the assumptions on c, we have that ĉ is l.s.c. and bounded on the compact

metric space X̂ × Ŷ . It follows from Theorem 1.1 that

min
γ̂∈π(µ̂,ν̂)

∫

X̂×Ŷ

ĉ(x, y) dγ̂ = max
(û,v̂)∈Sĉ(µ̂,ν̂)

∫

X̂

û dµ̂+

∫

Ŷ

v̂ dν̂.

Fix any γ̂ ∈ π(µ̂, ν̂), set γ1 := γ̂ X×Y the restricted measure of γ̂ on X × Y . It

is easy to see that πx#γ1 ≤ µ, πy#γ1 ≤ ν and γ1(X × Y ) ≥ m. Let us define

γ := m
γ1(X×Y )

γ1 ∈ πm(µ, ν) so that

∫

X×Y

c(x, y)dγ ≤
∫

X×Y

c(x, y)dγ1 =

∫

X̂×Ŷ

ĉ(x, y)dγ̂.

Then,

min
γ∈πm(µ,ν)

∫

X×Y

c(x, y)dγ ≤ min
γ̂∈π(µ̂,ν̂)

∫

X̂×Ŷ

ĉ(x, y)dγ̂ = max
(û,v̂)∈Sĉ(µ̂,ν̂)

∫

X̂

û dµ̂+

∫

Ŷ

v̂ dν̂.

To finish the proof, for any (û, v̂) ∈ Sĉ(µ̂, ν̂), we can moreover assume that û, v̂

always take values in R. Set

u1 := û+ v̂(ŷ), v1 := v̂ + û(x̂) and λ := −û(x̂)− v̂(ŷ) ≥ 0.

Since û(x)+v̂(y) ≤ ĉ(x, y), we see that u1 ≤ 0 inX, v1 ≤ 0 in Y and u1(x)+v1(y) ≤
c(x, y) − λ for any (x, y) ∈ X × Y. So, extending arbitrarily u1 and v1 up to RN

such that (u1, v1) ∈ Sλc (µ, ν), we get

∫

X̂

û(x) dµ̂+

∫

Ŷ

v̂(y) dν̂ =

∫

X

û(x) dµ+

∫

Y

v̂(y) dν + (ν(Y )−m)û(x̂) + (µ(X)−m)v̂(ŷ)

=

∫

X

(û(x) + v̂(ŷ)) dµ+

∫

Y

(v̂(y) + û(x̂)) dν − (û(x̂) + v̂(ŷ))m

=

∫

X

u1(x) dµ+

∫

Y

v1(y) dν + λm.
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Consequently,

min
γ∈πm(µ,ν)

∫

X×Y

c(x, y) dγ ≤ max
(û,v̂)∈Sĉ(µ̂,ν̂)

∫

X̂

û dµ̂+

∫

Ŷ

v̂ dν̂

≤ sup





∫

RN

φ dµ+

∫

RN

ψ dν + λm : λ ≥ 0, (φ, ψ) ∈ Sλc (µ, ν)



 .

From the above arguments, the last supremum is actually the maximum.

At last, by (2.4), σ ∈ πm(µ, ν) and (λ, φ, ψ) ∈ R+ × Sλc (µ, ν) are solutions of

(PMK) and the DPMK problem, respectively, if and only if the inequalities in

(2.7) are equalities. This is equivalent to the optimality criterion (2.5).

We have a further structure of the duality (2.4) for the costs satisfying triangle

inequality. The following theorem is a more general form of Theorem 2.1.

Theorem 2.11. Under the assumptions and notations of Theorem 2.9, assume

moreover that the cost function c satisfies triangle inequality and c(x, x) = 0 for

any x ∈ RN . Then the DPMK problem can be rewritten as

K(σ∗) = max
(λ,u)

{
D(λ, u) :=

∫
u d(ν − µ) + λ(m− ν(RN )) : λ ≥ 0 and u ∈ Lλc

}
, (2.8)

where

Lλc :=
{
u ∈ L1

µ ∩L1
ν : u(y)− u(x) ≤ c(x, y), 0 ≤ u(x) ≤ λ for any x, y ∈ RN

}
.

In addition, σ ∈ πm(µ, ν) and (λ, u) ∈ R+ × Lλc are solutions of (PMK) and of

the DPMK (2.8), respectively, if and only if

u(x) = 0 for (µ− πx#σ)-a.e. x ∈ RN , u(x) = λ for (ν − πy#σ)-a.e. x ∈ RN

and u(y)− u(x) = c(x, y) for σ-a.e. (x, y) ∈ RN × RN .

(2.9)

Proof of Theorem 2.11. We see that

min
γ∈πm(µ,ν)

∫

RN×RN

c(x, y)dγ ≥ sup
{
D(λ, u) : λ ≥ 0 and u ∈ Lλc

}
.
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Indeed, for any γ ∈ πm(µ, ν) and u ∈ Lλc , we have

∫

RN

u d(ν − µ) + λ(m− ν(RN )) =
∫

RN

−u(x) dµ+

∫

RN

(u(y)− λ)dν + λm

≤
∫

RN

−u dπx#γ +

∫

RN

(u(y)− λ) dπy#γ + λm

≤
∫

R×RN

c(x, y) dγ(x, y).

(2.10)

Conversely, for a given λ ≥ 0 and (φ, ψ) ∈ Sλc (µ, ν), we consider

u1(x) := sup
y∈Y

(ψ(y) + λ− c(x, y)) ≤ λ and u(x) := max{u1(x), 0} ∀x ∈ RN .

By using the triangle inequality, u is 1-Lipschitz with respect to c. Moreover,

−u ≥ φ and u(y) − λ ≥ ψ(y) ∀y ∈ Y (where we use the condition c(y, y) = 0).

Thus ∫

RN

u d(ν − µ) + λ(m− ν(RN)) ≥
∫

RN

φ dµ+

∫

RN

ψ dν + λm.

By Theorem 3.1, the duality and the existence of a solution (λ∗, u∗) are proved.

For the optimality condition (2.9), we use again the duality and (2.10) similarly

to the case of general costs.

Remark 2.12. If c satisfies triangle inequality and c(x, x) = 0 for any x ∈ RN

then the DPMK problem can be also written as

max
(λ,u)

{∫
u d(ν − µ) + λ(m− µ(RN )) : λ ∈ R+, u(y)− u(x) ≤ c(x, y), −λ ≤ u ≤ 0 ∀x, y

}
.

Indeed, in the construction of u from (φ, ψ), we can take

u1(y) := inf
x∈X

(c(x, y)− φ(x)− λ) and u(y) := min{u1(y), 0} ∀y ∈ RN .

2.4 OMK equation

The aim of this section is to study the existence and uniqueness of solution for

the OMK equation (Pλ). We also show some estimates for solution θ, which are

useful for later use. We will make use of variational techniques for the existence

while the uniqueness and estimates of θ are shown by using PDE techniques. In
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this section, we do not really need the compactness of the supports of µ and ν.

2.4.1 Existence of solution to the OMK equation

The existence of solution to the OMK equation is based on the dual approach.

More precisely, by using the Fenchel–Rockafellar dual theory to the problem (2.3),

we introduce a minimal flow-type problem. The OMK equation is then derived by

optimality condition.

Proposition 2.13. Let µ, ν ∈ M+
b (R

N) and λ ≥ 0 be fixed. We have

max
u∈Lλ

dF

∫

RN

ud(ν − µ) = min
{ ∫

RN

F (x,
Φ

|Φ|(x))d|Φ|+λ
∫

RN

dθ1 : (Φ, θ0, θ1) ∈ S
}
, (2.11)

where

S :=
{
(Φ, θ0, θ1) ∈ Mb(R

N)N×M+
b (R

N)×M+
b (R

N) : −∇·Φ = ν−θ1−(µ−θ0)
}
.

Lemma 2.14. Let F be a nondegenerate Finsler metric and u be 1-dF Lipschitz,

i.e., u(y) − u(x) ≤ dF (x, y) for all x, y. Let uε := ρε ⋆ u be the convolution of u

with the standard mollifiers ρε on RN . Then

lim sup
ε→0

F ∗(x,Duε(x)) ≤ 1 for all x ∈ RN . (2.12)

Proof. Fix x ∈ RN . There exists some ‖ξε‖= 1 such that

F ∗(x,Duε(x)) =
〈Duε(x) · ξε〉
F (x, ξε)

= lim
h→0+

uε(x+ hξε)− uε(x)

F (x, hξε)

= lim
h→0+

∫
RN

ρε(t) (u(x+ hξε − t)− u(x− t)) dt

F (x, hξε)
.

This implies that

F ∗(x,Duε(x)) ≤ lim sup
h→0+

∫
RN

ρε(t)dF (x− t, x− t+ hξε) dt

F (x, hξε)

≤ lim
h→0+

∫
RN

ρε(t)
1∫
0

F (x− t+ τhξε, hξε) dτ dt

F (x, hξε)

=

∫
RN

ρε(t)F (x− t, ξε) dt

F (x, ξε)
.

(2.13)

38 Optimal Partial Transport and Constrained Matching Problems



Chapter 2 : Optimal Partial Transport and Obstacle Monge–Kantorovich
Equation

On the other hand, there is a sequence εn → 0 such that

lim sup
ε→0

F ∗(x,Duε(x)) = lim
εn→0

F ∗(x,Duεn(x)). (2.14)

Since ‖ξεn‖= 1, up to a subsequence of {ξεn}, we can assume moreover that

ξεn → ξ as εn → 0. (2.15)

Thanks to (2.13), we get

F ∗(x,Duεn(x)) ≤

∫
RN

ρεn(t)F (x− t, ξεn) dt

F (x, ξεn)
. (2.16)

Let εn → 0, using (2.14), (2.16) and (2.15), we obtain

lim sup
ε→0

F ∗(x,Duε(x)) = lim
εn→0

F ∗(x,Duεn(x)) ≤ lim
εn→0

∫
RN

ρεn(t)F (x− t, ξεn) dt

F (x, ξεn)
= 1.

Remark 2.15. The lower semicontinuity of F is not enough to hold (2.12).

Indeed, we take the lower semicontinuous, nondegenerate Finsler metric F and

1–dF Lipschitz function u on R defined by, respectively,

F (x, v) =




|v| if x ≤ 0

2|v| if x > 0
for x, v ∈ R and u(x) =




x if x ≤ 0

2x if x > 0
for x ∈ R.

Then,

F ∗(x, p) =




|p| if x ≤ 0
1

2
|p| if x > 0

and u′ε(x) =

∫

R

ρε(s)u
′(x− s)ds.

Therefore, u′ε(0) =
∫

[s≥0]

ρε(s)ds+ 2
∫

[s<0]

ρε(s)ds =
3

2
and F ∗(0, u′ε(0)) =

3

2
> 1.

It is known that if u ∈ C1(RN) then

u(y)− u(x) ≤ dF (x, y) ∀x, y ∈ RN if and only if F ∗(x,∇u(x)) ≤ 1 ∀x ∈ RN .
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The latter is equivalent to

q · ∇u(x) ≤ F (x, q) ∀x ∈ RN , ∀q ∈ RN .

In the case where u is non-smooth, we have the following characterization via the

tangential gradient.

Lemma 2.16. For any 1-dF Lipschitz function u and Φ ∈ Mb(RN)N such that

∇ · Φ ∈ Mb(RN), we have

Φ

|Φ|(x) · ∇|Φ|u(x) ≤ F (x,
Φ

|Φ|(x)) |Φ|-a.e. x ∈ RN .

Proof. Taking uε as in Lemma 2.14, for any Borel subset B, we have

∫

B

Φ

|Φ| ·∇|Φ|ud|Φ|= lim
ε→0

∫

B

Φ

|Φ|(x)·∇uε(x)d|Φ|≤ lim sup
ε→0

∫

B

F ∗(x,∇uε(x))F (x,
Φ

|Φ|(x))d|Φ|.

Letting ε→ 0, using Fatou’s Lemma and Lemma 2.14, we get

∫

B

Φ

|Φ|(x) · ∇|Φ|u(x)d|Φ|(x) ≤
∫

B

F (x,
Φ

|Φ|(x))d|Φ|(x).

The proof ends up by the arbitrariness of Borel set B.

Proof of Proposition 2.13. The case λ = 0 is obvious. We now assume that λ > 0.

1. Let us first show that

max
u∈Lλ

dF

∫

RN

ud(ν − µ) ≤ inf
{ ∫

RN

F (x,
Φ

|Φ|(x))d|Φ|+λ
∫

RN

dθ1 : (Φ, θ0, θ1) ∈ S
}
.

Fix any u ∈ LλdF and (Φ, θ0, θ1) ∈ S. Taking u as a test function in the equation

−∇ · Φ = ν − θ1 − (µ− θ0), using Lemma 2.16, we have

∫

RN

ud(ν − µ) =

∫

RN

Φ

|Φ|∇|Φ|ud|Φ|+
∫

RN

udθ1 −
∫

RN

udθ0

≤
∫

RN

F (x,
Φ

|Φ|(x))d|Φ|+λ
∫

RN

dθ1.

Thus, sup
u∈Lλ

dF

∫
RN

ud(ν−µ) ≤ inf
{ ∫

RN

F (x, Φ
|Φ|

(x))d|Φ|+λ
∫
RN

dθ1 : (Φ, θ0, θ1) ∈ S
}
. It

is easy to see that the supremum is actually the maximum by the direct method.
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2. Obviously, we have

max
{ ∫

RN

ud(ν − µ) : u ∈ LλdF

}
≥ sup

{ ∫

RN

ud(ν − µ) : u ∈ LλdF , u ∈ C1,1(RN)
}
.

It remains to show that

sup
{ ∫

RN

ud(ν − µ) : u ∈ C1,1(RN)
⋂

LλdF

}

= min
{ ∫

RN

F (x,
Φ

|Φ|(x))d|Φ|+λ
∫

RN

dθ1 : (Φ, θ0, θ1) ∈ S
}
.

(2.17)

On the other hand,

sup
{ ∫

RN

ud(ν − µ) : u ∈ C1,1(RN)
⋂

LλdF

}

= sup
{ ∫

RN

ud(ν − µ) : u ∈ C1,1(RN), F ∗(x,∇u(x)) ≤ 1, 0 ≤ u(x) ≤ λ ∀x ∈ RN
}

= − inf
u∈V

{
F(u) + G(Λu)

}
,

where

F(u) := −
∫

RN

ud(ν − µ) ∀u ∈ V := C1,1(RN)
⋂

Cb(R
N),

Λ(u) := (∇u,−u, u) ∈ Z := Cb(R
N ;RN)× Cb(R

N)× Cb(R
N)

and, for all (q, z, w) ∈ Z,

G(q, z, w) :=




0 if z(x) ≤ 0, w(x) ≤ λ and F ∗(x, q(x)) ≤ 1 ∀x ∈ RN

+∞ otherwise.

We use the W 1,∞-norm and L∞-norm for the spaces V and Z, respectively, i.e.

‖u‖V := ‖u‖L∞+‖∇u‖L∞ and ‖(q, z, w)‖Z := ‖q‖L∞+‖z‖L∞+‖w‖L∞ .

Now, using the Fenchel–Rockafellar dual theory (see e.g. Proposition 1.6 with the

choice φ0 ≡
λ

2
> 0 there), we have
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inf
u∈V

F(u) + G(Λ(u))

= max
(Φ,θ0,θ1)∈Mb(RN )N×Mb(RN )×Mb(RN )

(
−F∗(−Λ∗(Φ, θ0, θ1))− G∗(Φ, θ0, θ1)

)
.

The proof of (2.17) is completed by computing explicitly the quantities in this

maximization problem.

• Since F is linear, F∗(−Λ∗(Φ, θ0, θ1)) is finite (and is equal to 0) if and only if

〈−Λ∗(Φ, θ0, θ1), u〉 = F(u) = −
∫

RN

ud(ν − µ) for any u ∈ V,

or equivalently

〈Φ,∇u〉 − 〈θ0, u〉+ 〈θ1, u〉 = 〈ν − µ, u〉 for any u ∈ V, i.e.

−∇ · Φ = ν − θ1 − (µ− θ0) in D′

(RN).

• For G∗(Φ, θ0, θ1), we have

G∗(Φ, θ0, θ1) = sup
q∈Cb(RN ;RN ):F ∗(x,q(x))≤1,∀x

〈Φ, q〉+ sup
z∈Cb(RN ):z≤0

〈θ0, z〉+ sup
w∈Cb(RN ):w≤λ

〈θ1, w〉

=





∫

RN

F (x, Φ
|Φ|(x))d|Φ|+λ

∫

RN

dθ1 if θ0 ≥ 0 and θ1 ≥ 0

+∞ otherwise.

Proposition 2.17. Given µ, ν ∈ M+
b (R

N) and λ ≥ 0, we have that:

(i) If u and (Φ, θ0, θ1) are solutions for the duality (2.11) then (θ,Φ, u) := (θ1 −
θ0,Φ, u) is a solution to the OMK equation (Pλ). Moreover θ+ = θ1, θ− = θ0 if

λ > 0.

(ii) Conversely, if (θ,Φ, u) is a solution to the OMK equation (Pλ) then u and

(Φ, θ0, θ1) := (Φ, θ−, θ+) are solutions for the duality (2.11).

Proof. (i) Let u ∈ LλdF and (Φ, θ0, θ1) ∈ S be solutions for the duality (2.11). Then

(θ,Φ, u) := (θ1−θ0,Φ, u) is a solution to the OMK equation (Pλ). Indeed, we have

θ −∇ · Φ = ν − µ in D′

(RN)
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and ∫
ud(ν − µ) =

∫
Φ

|Φ|∇|Φ|ud|Φ|+
∫
udθ1 −

∫
udθ0

≤
∫
F (x,

Φ

|Φ|(x))d|Φ|+λ
∫

dθ1 (by Lemma 2.16).

By the optimality of u and (Φ, θ0, θ1), Proposition 2.13 and Lemma 2.16, we have

that
Φ

|Φ|(x)∇|Φ|u(x) = F (x,
Φ

|Φ|(x)) |Φ|-a.e. x,

u = 0 θ0-a.e. and u = λ θ1-a.e..

By the Hahn–Jordan decomposition, we get θ− ≤ θ0, θ+ ≤ θ1 and thus

u = 0 θ−-a.e. and u = λ θ+-a.e..

Therefore (θ,Φ, u) is a solution to the OMK equation (Pλ). It remains to verify

that θ− = θ0 and θ+ = θ1 in the case λ > 0. Since λ > 0, we deduce that θ0 and

θ1 are concentrated on two disjoint sets. Thus θ+ = θ1 and θ− = θ0 by virtue of

the Hahn–Jordan decomposition.

(ii) Conversely, let (θ,Φ, u) be a solution to the OMK equation (Pλ). We see that

∫

RN

ud(ν − µ) =

∫

RN

Φ

|Φ|∇|Φ|ud|Φ|+
∫

RN

udθ

=

∫

RN

F (x,
Φ

|Φ|(x))d|Φ|+
∫

RN

λdθ+.

The optimality of u and (Φ, θ−, θ+) follows immediately from the duality (2.11).

We have the following estimates for solution θ of the OMK equation.

Proposition 2.18 (Estimate for the component θ). Assume that µ, ν ∈ M+
b (R

N)

and λ ≥ 0. Let (θ,Φ, u) be a solution to the OMK equation (Pλ). Then

θ− ≤ µ− µ ∧ ν ≤ µ and θ+ ≤ ν − µ ∧ ν ≤ ν.

Proof. Case 1: If λ = 0, then u ≡ 0, Φ ≡ 0 and

θ ≡ ν − µ = ν − µ ∧ ν − (µ− µ ∧ ν).

By the Hahn–Jordan decomposition, we get that θ+ ≤ ν−µ∧ν and θ− ≤ µ−µ∧ν.
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Case 2: Let us now assume that λ > 0. For 0 < ε < λ, we consider the Lipschitz

continuous functions of one variable

T 1
ε (r) :=





0 if r ≤ λ− ε

r − (λ− ε)

ε
if λ− ε ≤ r ≤ λ

1 if r ≥ λ

∀r ∈ R.

For ξ ∈ C∞
c (RN) such that ξ ≥ 0, we take T 1

ε (u)ξ as a test function in the equation

θ −∇ · Φ = ν − µ. We get

∫
T 1
ε (u)ξdθ +

∫
Φ

|Φ| · ∇|Φ|

(
T 1
ε (u)ξ

)
d|Φ|=

∫
T 1
ε (u)ξd(ν − µ). (2.18)

Thanks to the chain rule given in Proposition 1.5, we get

∫
Φ

|Φ| · ∇|Φ|

(
T 1
ε (u)ξ

)
d|Φ| =

∫
(T 1
ε )

′
(u)∇|Φ|u · Φ

|Φ|ξd|Φ|+
∫

Φ

|Φ| · ∇ξT
1
ε (u)d|Φ|

≥
∫

Φ

|Φ| · ∇ξT
1
ε (u)d|Φ|.

(2.19)

Using (2.18) and (2.19), we see that

∫
T 1
ε (u)ξ dθ +

∫
Φ

|Φ| · ∇ξT
1
ε (u) d|Φ| ≤

∫
T 1
ε (u)ξ d(ν − µ)

=

∫
T 1
ε (u)ξ d(ν − µ ∧ ν − (µ− µ ∧ ν))

≤
∫
T 1
ε (u)ξ d(ν − µ ∧ ν).

(2.20)

Since u ≤ λ, for any x ∈ RN , we have

T 1
ε (u)(x) → χ[u=λ](x) as ε→ 0.

Now, using Proposition 1.5 (ii), the nondegeneracy of F and the definition of

solution for (Pλ), we have |Φ|([u = λ]) = 0. Consequently,

∫
Φ

|Φ| · ∇ξT
1
ε (u)d|Φ|→ 0 as ε→ 0.

Letting ε→ 0 in (2.20), we get

∫

[u=λ]

ξdθ ≤
∫

[u=λ]

ξd(ν − µ ∧ ν) for any ξ ∈ C∞
c (RN), ξ ≥ 0.
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Using the definition of solution for (Pλ), we have u = 0 for θ−-a.e.. Since λ > 0,

we obtain

∫

[u=λ]

ξdθ+ =

∫

[u=λ]

ξdθ ≤
∫

[u=λ]

ξd(ν − µ ∧ ν) for any ξ ∈ C∞
c (RN), ξ ≥ 0.

This implies that θ+ ≤ ν − µ ∧ ν on [u = λ] and that θ+ ≤ ν − µ ∧ ν (since θ+ is

concentrated on [u = λ]).

At last, using T 2
ε (u)ξ as a test function in the equation θ −∇ · Φ = ν − µ, where

T 2
ε (r) :=





−1 if r ≤ 0

−1 +
r

ε
if 0 ≤ r ≤ ε

0 if r ≥ ε

∀r ∈ R,

we can prove in much the same way that θ− ≤ µ− µ ∧ ν.

Proof of Theorem 2.3. The proof follows from Propositions 2.13, 2.17 and 2.18.

As a consequence of Proposition 2.13, we have the duality result for λ = +∞.

Corollary 2.19. Let µ, ν ∈ M+
b (R

N) be such that ν(RN) ≤ µ(RN). We have

sup
{ ∫

RN

ud(ν − µ) : u is 1-dF Lispchitz, u ≥ 0
}

= min
(Φ,θ0)∈Mb(RN )N×M+

b
(RN )

{ ∫

RN

F (x,
Φ

|Φ|(x))d|Φ|: −∇ · Φ = ν − (µ− θ0)
}
.

Proof. Using the assumption ν(RN) ≤ µ(RN), there exists (Φ̃, θ̃0) ∈ Mb(RN)N ×
M+

b (R
N) such that −∇ · Φ̃ = ν − (µ− θ̃0). This implies that

inf
(Φ,θ0)∈Mb(RN )N×M+

b
(RN )

{ ∫

RN

F (x,
Φ

|Φ|(x))d|Φ|: −∇·Φ = ν−(µ−θ0)
}
:= C < +∞.

Now, taking u as a test function in the equation −∇ · Φ = ν − (µ− θ0), we get

∫

RN

ud(ν − µ) =

∫

RN

Φ

|Φ|∇|Φ|ud|Φ|−
∫

RN

udθ0 ≤
∫

RN

F (x,
Φ

|Φ|(x))d|Φ|.
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Hence,

sup
{ ∫

RN

ud(ν − µ) : u is 1-dF Lispchitz, u ≥ 0
}

≤ inf
(Φ,θ0)∈Mb(RN )N×M+

b
(RN )

{ ∫

RN

F (x,
Φ

|Φ|(x))d|Φ|: −∇ · Φ = ν − (µ− θ0)
}
= C.

(2.21)

Conversely, let us consider a sequence λn → +∞ as n → +∞. Thanks to

Proposition 2.13, there exist un ∈ LλndF and (Φn, θ
0
n, θ

1
n) ∈ S such that

∫

RN

F (x,
Φn

|Φn|
(x))d|Φn|+λn

∫

RN

dθ1n =

∫

RN

und(ν − µ) ≤ C. (2.22)

It is not difficult to see that {(Φn, θ
0
n, θ

1
n)} is bounded in Mb(RN)N ×Mb(RN)×

Mb(RN). Thus, up to a subsequence, (Φn, θ
0
n, θ

1
n) converges to some (Φ, θ0, θ1)

weakly* in Mb(RN)N ×Mb(RN) ×Mb(RN). It is clear that θ1 = 0, θ0 ≥ 0 and

−∇ · Φ = ν − (µ − θ0). Now, using the lower semicontinuity of the functional∫
F (x, Φ

|Φ|
(x))d|Φ| w.r.t. the weak* convergence in the variable Φ (see e.g. [2,

Theorem 2.38]) and passing to the limit in (2.22), we obtain

∫

RN

F (x,
Φ

|Φ|(x))d|Φ| ≤ lim
n→+∞

∫

RN

F (x,
Φn

|Φn|
(x))d|Φn|

≤ sup
{ ∫

RN

ud(ν − µ) : u is 1-dF Lispchitz, u ≥ 0
}
.

The proof is completed by combining this with (2.21).

2.4.2 Uniqueness of solution θ to the OMK equation

In this subsection, we focus on the uniqueness of solution θ of the OMK equation

(Pλ) which is then used to show the uniqueness of active submeasures. The result

of uniqueness is somehow optimal in view of Theorem 2.5 and Remark 2.8 (ii). We

will give two proofs of the uniqueness. For C2 Finsler metrics F , an alternative

proof will be given in Subsection 2.5.3 basing a combination of PDE and optimal

transport theory. We provide right here the proof for general Finsler metric F .

Our proof will be based on doubling variables technique due to Kruzkov [66] (see

also [31] and the references therein). It uses mainly the following result.
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Lemma 2.20. Let λ ≥ 0 and µ, ν ∈ L1(RN)+. Suppose that (θi,Φi, ui), i = 1, 2

are solutions to the same OMK equation (Pλ). Then θ1, θ2 ∈ L1(RN) and, for any

ξ ∈ C∞
c (RN × RN) such that ξ ≥ 0, we have

∫

RN

∫

RN

(θ1(x)− θ2(y))
+ξ(x, y)dxdy ≤

∫

RN

∫

RN

|(∇xξ +∇yξ) |d|Φ1|(x)dy

+

∫

RN

∫

RN

|(∇xξ +∇yξ) |d|Φ2|(y)dx

+

∫

RN

∫

RN

|(ν − µ)(x)− (ν − µ)(y)|ξ(x, y) dxdy.

(2.23)

Before giving the proof of this lemma, let us show how it enables us to prove

the main result of uniqueness in section 2.2.

Proof of Theorem 2.4. Fix any α ∈ C∞
c (RN), α ≥ 0, let us choose

ξε(x, y) := ρε(x− y)α(x+ y)

as test functions in (2.23). Note that ∇xξε + ∇yξε = 2ρε(x − y)∇α(x + y). We

have

∫

RN

∫

RN

|∇xξε +∇yξε|d|Φ1|(x)dy =

∫

RN

∫

RN

|∇xξε +∇yξε|dyd|Φ1|(x)

= 2

∫

RN

∫

RN

ρε(x− y)|∇α(x+ y)| dyd|Φ1|(x)

= 2

∫

RN

∫

RN

ρε(t)|∇α(2x− t)| dtd|Φ1|(x)

→ 2

∫

RN

|∇α(2x)|d|Φ1|(x).

Similarly,
∫
RN

∫
RN

|∇xξε+∇yξε|d|Φ2|(y)dx→ 2
∫
RN

|∇α(2y)|d|Φ2|(y). Next, since f :=

ν − µ ∈ L1, we have

∫

RN

∫

RN

|f(x)− f(y)|ξε(x, y) dxdy =

∫

RN

∫

RN

|f(x)− f(y)|ρε(x− y)α(x+ y) dxdy
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≤ ‖α‖∞
∫

RN

∫

RN

|f(x)− f(y)|ρε(x− y) dydx

= ‖α‖∞
∫

RN

∫

RN

|f(x)− f(x− t)|ρε(t) dtdx

= ‖α‖∞
∫

RN

Fε(x)dx→ 0,

by the fact that Fε(x) :=
∫
RN

|f(x) − f(x − t)|ρε(t) dt, Fε → 0 in L1. Thus (2.23)

leads to

∫

RN

(θ1(x)− θ2(x))
+α(2x)dx ≤ 2

∫

RN

|∇α(2x)|d|Φ1|(x) + 2

∫

RN

|∇α(2y)|d|Φ2|(y). (2.24)

Take a sequence αn ∈ C∞
c (RN) such that χB(0,n) ≤ αn ≤ χB(0,n+1) and |∇αn|≤ C.

By substituting αn into (2.24) and letting n→ +∞, using the finiteness of Φi, we

get
∫
RN

(θ1(x)− θ2(x))
+ dx ≤ 0. Hence θ1 ≤ θ2. Since θ1 and θ2 have the same role,

we obtain θ1 = θ2.

Now, we give the proof of Lemma 2.20. Let us consider the Lipschitz continuous

function of real variable

Hε(r) := min(r+/ε, 1) for any r ∈ R.

Proof of Lemma 2.20. Thanks to Proposition 2.18, we have θ1, θ2 ∈ L1(RN). Now,

let us consider the test functions

ξε(x, y) := Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)

where ξ ∈ C∞
c (RN × RN), ξ ≥ 0, ρ ∈ C∞(RN × RN) and 0 ≤ ρ ≤ 1. For each y,

considering ξε(., y) as a test function, we have

∫

RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)θ1(x) dx

+

∫

RN

Φ1

|Φ1|
(x).∇|Φ1|,x (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) d|Φ1|(x)

=

∫

RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) (ν − µ)(x)dx.
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Integrating with respect to y, we get

∫

RN

∫

RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)θ1(x) dxdy

+

∫

RN

∫

RN

Φ1

|Φ1|
(x).∇|Φ1|,x (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) d|Φ1|(x)dy

=

∫

RN

∫

RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) (ν − µ)(x)dxdy.

(2.25)

Similarly, applying for (θ2,Φ2, u2), we get

∫

RN

∫

RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)θ2(y) dydx

+

∫

RN

∫

RN

Φ2

|Φ2|
(y).∇|Φ2|,y (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) d|Φ2|(y)dx

=

∫

RN

∫

RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) (ν − µ)(y)dydx.

(2.26)

From (2.25) and (2.26), we have

I1(ε) + I2(ε) + I3(ε) = 0, (2.27)

where

I1(ε) :=

∫

RN

∫

RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)(θ1(x)− θ2(y)) dxdy

−
∫

RN

∫

RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) (ν − µ)(x)dxdy

+

∫

RN

∫

RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) (ν − µ)(y)dxdy;

I2(ε) :=

∫

RN

∫

RN

Φ1

|Φ1|
(x).∇|Φ1|,x (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) d|Φ1|(x)dy

and

I3(ε) := −
∫

RN

∫

RN

Φ2

|Φ2|
(y).∇|Φ2|,y (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) d|Φ2|(y)dx.
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Recall that ∫

RN

∇g(x)dx = 0 for any g ∈ Lip(RN) ∩ Cc(RN). (2.28)

For short, in the following computation, we denote by Hε := Hε(u1(x) − u2(y) +
ερ(x, y)) and H

′

ε := H
′

ε(u1(x)− u2(y) + ερ(x, y)). By the chain rule, we have

I2(ε)

=

∫

RN

∫

RN

Φ1

|Φ1|
(x)
(
∇xξHε +∇|Φ1|u1H

′

εξ + ε∇xρH
′

εξ
)
d|Φ1|(x)dy

=

∫

RN

∫

RN

Φ1

|Φ1|
(x)
(
(∇xξ +∇yξ)Hε + (∇|Φ1|u1 −∇u2)H

′

εξ + ε(∇xρ+∇yρ)H
′

εξ
)
d|Φ1|(x)dy

≥
∫

RN

∫

RN

Φ1

|Φ1|
(x) (∇xξ +∇yξ)Hεd|Φ1|(x)dy + ε

∫

RN

∫

RN

Φ1

|Φ1|
(x)(∇xρ+∇yρ)H

′

εξd|Φ1|(x)dy,

(2.29)

where, in the second equality, we used (2.28) and the fact that ξ ∈ C∞
c (RN ×RN):

∫

RN

∫

RN

Φ1

|Φ1|
(x)
(
∇yξHε −∇u2(y)H

′

εξ + ε∇yρH
′

εξ
)
d|Φ1|(x)dy

=

∫

RN

Φ1

|Φ1|
(x)

∫

RN

∇y (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) dyd|Φ1|(x) = 0.

On the other hand,

ε

∫

RN

∫

RN

Φ1

|Φ1|
(x)(∇xρ+∇yρ)H

′

ε(u1(x)− u2(y) + ερ(x, y))ξd|Φ1|(x)dy

=

∫

RN

∫

RN

Φ1

|Φ1|
(x)(∇xρ+∇yρ)χ[−ερ≤u1(x)−u2(y)≤ε(1−ρ)]ξd|Φ1|(x)dy → 0.

(2.30)

Indeed, since Φ1 gives no mass on the set [u1 = u2(y)] for each y (using Proposition

1.5 (ii), the nondegeneracy of F and the definition of solution for (Pλ)),

Fε(y) :=

∫

RN

Φ1

|Φ1|
(x)(∇xρ+∇yρ)χ[−ερ≤u1(x)−u2(y)≤ε(1−ρ)]ξd|Φ1|(x)

→
∫

RN

Φ1

|Φ1|
(x)(∇xρ+∇yρ)χ[u1(x)=u2(y)]ξd|Φ1|(x) = 0;
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and moreover,

|Fε(y)|≤
∫

RN

|(∇xρ+∇yρ)|ξd|Φ1|(x) ∈ L1(RN).

Using the Lebesgue Dominated Convergence Theorem, we get (2.30). Next, from

(2.29) and (2.30), we obtain

lim inf
ε

I2 ≥ −
∫

RN

∫

RN

|(∇xξ +∇yξ) |d|Φ1|(x)dy. (2.31)

In the same way, we have

lim inf
ε

I3 ≥ −
∫

RN

∫

RN

|(∇xξ +∇yξ) |d|Φ2|(y)dx. (2.32)

Concerning I1(ε), we have the convergence in pointwise (x, y),

Hε(u1(x)− u2(y) + ερ(x, y)) → Sign+
0 (u1(x)− u2(y)) + ρ(x, y)χ[u1(x)=u2(y)],

where

Sign+
0 (r) =




1 if r > 0

0 if r ≤ 0.

Since ν − µ ∈ L1, then

I1(ε) →
∫

RN

∫

RN

(θ1(x)− θ2(y))
(
Sign+0 (u1(x)− u2(y)) + ρ(x, y)χ[u1(x)=u2(y)]

)
ξ dxdy

−
∫

RN

∫

RN

((ν − µ)(x)− (ν − µ)(y))
(
Sign+0 (u1(x)− u2(y)) + ρ(x, y)χ[u1(x)=u2(y)]

)
ξ dxdy

≥
∫

RN

∫

RN

(θ1(x)− θ2(y))
(
Sign+0 (u1(x)− u2(y)) + ρ(x, y)χ[u1(x)=u2(y)]

)
ξ dxdy

−
∫

RN

∫

RN

|(ν − µ)(x)− (ν − µ)(y)|ξ(x, y) dxdy,

where we used the assumption 0 ≤ ρ(x, y) ≤ 1 and therefore

Sign+
0 (u1(x)− u2(y)) + ρ(x, y)χ[u1(x)=u2(y)] ≤ 1.
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Now, by density, we can choose ρ(x, y) := Sign+
0 (θ1(x)− θ2(y)), so that

lim inf
ε

I1(ε) ≥
∫

RN

∫

RN

(θ1(x)−θ2(y))+ξ−
∫

RN

∫

RN

|(ν−µ)(x)−(ν−µ)(y)|ξ(x, y) dxdy.

Combining this with (2.27), (2.31) and (2.32), we obtain Lemma 2.20.

2.5 OMK equation vs active submeasures

2.5.1 Partial minimum flow problem

Recall that in the connection between balanced MK problem and the Monge–

Kantorovich equation the so called minimal flow problem is a key ingredient. For

the PMK problem, the definition of minimal flow problem, that we call here the

partial minimal flow problem as well as its connection with (PMK) are given in

the following proposition.

Proposition 2.21 (Partial minimal flow problem). Let µ, ν ∈ M+
b (R

N) be

compactly supported. For any m ∈ [0,mmax], we have

min {K(σ) : σ ∈ πm(µ, ν)} = max
{
D(λ, u) : (λ, u) ∈ R+ × LλdF

}

= min





∫

RN

F

(
x,

Φ

|Φ|(x)
)

d|Φ|(x) : (Φ, θ0, θ1) ∈ Ψm(µ, ν)



 ,

(2.33)

where

Ψm(µ, ν) :=
{
(Φ, θ0, θ1) ∈ Mb(R

N )N ×M+
b (R

N )×M+
b (R

N ) : θ0(RN ) = µ(RN )−m,

θ1(RN ) = ν(RN )−m and −∇ · Φ = ν − θ1 − (µ− θ0) in D′
(RN )

}
.

The last minimization problem in (2.33) is called the partial minimal flow

(PMF) problem. It actually introduces the Beckmann problem (see [10] or Chapter

1) for (PMK) with Finsler distance costs. See here that in the balanced case, i.e.,

m = µ(RN) = ν(RN), the PMF problem becomes

min
{ ∫

RN

F (x,
Φ

|Φ|(x))d|Φ| : Φ ∈ Mb(R
N)N ,−∇ · Φ = ν − µ in D′

(RN)
}
,

which is a generalization of (1.6) to the case of Finsler distances.

52 Optimal Partial Transport and Constrained Matching Problems



Chapter 2 : Optimal Partial Transport and Obstacle Monge–Kantorovich
Equation

Corollary 2.22. If (Φ, θ0, θ1) ∈ Ψm(µ, ν) is an optimal solution to the PMF

problem and θ0 ≤ µ, θ1 ≤ ν then ρ0 := µ − θ0 and ρ1 := ν − θ1 are active

submeasures of the PMK problem. Conversely, if ρ0 and ρ1 are active submeasures

to the PMK problem then there exists a vector measure Φ such that (Φ, θ0, θ1) :=

(Φ, µ− ρ0, ν − ρ1) is a solution to the PMF problem.

Note that we do not have any constraints of type θ0 ≤ µ or θ1 ≤ ν in the

definition of the PMF problem. However, following Theorem 2.23 below and

Proposition 2.18, these constraints are automatically satisfied for any optimal

solutions (Φ, θ0, θ1) whenever m ∈ [(µ∧ν)(RN),mmax]. The case m < (µ∧ν)(RN)

is not interesting for (PMK) because of the obviousness of solutions.

Proof of Proposition 2.21. The first equality has been shown in Theorem 2.1. Let

us prove the second equality. First, for any (λ, u) ∈ R+ × LλdF and a triplet

(Φ, θ0, θ1) ∈ Ψm(µ, ν), using Lemma 2.16, we have

∫

RN

ud(ν − µ) + λ(m− ν(RN)) =

∫

RN

ud(ν − µ)− λ

∫

RN

dθ1

≤
∫

RN

ud(ν − µ) +

∫

RN

udθ0 −
∫

RN

udθ1

=

∫

RN

∇|Φ|u(x)
Φ

|Φ|(x)d|Φ|≤
∫

RN

F (x,
Φ

|Φ|(x))d|Φ|.

This shows that

max
(λ,u)∈R+×Lλ

dF

D(λ, u) ≤ inf

{∫
F

(
x,

Φ

|Φ|(x)
)
d|Φ|(x) : (Φ, θ0, θ1) ∈ Ψm(µ, ν)

}
.

Now, let (ρ0, ρ1) be a couple of active submeasures for (PMK) w.r.t. m. By

Corollary 2.19, there exists Φ ∈ Mb(RN)N such that −∇ · Φ = ρ1 − ρ0 and

∫

RN

F (x,
Φ

|Φ|(x))d|Φ| = sup
{ ∫

RN

ud(ρ1 − ρ0) : u is 1-dF Lipschitz, u ≥ 0
}

= min {K(σ) : σ ∈ πm(ρ0, ρ1)} .

Let us set

θ0 := µ− ρ0 and θ1 := ν − ρ1.

Optimal Partial Transport and Constrained Matching Problems 53



2.5. OMK equation vs active submeasures

Then (Φ, θ0, θ1) ∈ Ψm(µ, ν) and

∫
F (x,

Φ

|Φ|(x))d|Φ|= min {K(σ) : σ ∈ πm(ρ0, ρ1)} = max
{
D(λ, u) : (λ, u) ∈ R+ × LλdF

}
.

2.5.2 Link between the OMK equation and the PMK

problem

The connection between the OMK equation and (PMK) appears when we deal with

the extremal condition between the PMF problem and DPMK problem. Roughly

speaking, the optimality condition in the duality of the DPMK and PMF problems

corresponds to (Pλ) for some λ.

Theorem 2.23. Let µ, ν ∈ M+
b (R

N) be compactly supported.

(i) Given m ∈ [0,mmax] and a solution (Φ, θ0, θ1) to the PMF problem and (λ, u)

is a solution to the DPMK problem. Setting θ := θ1 − θ0, the triplet (θ,Φ, u)

is a solution to the OMK equation (Pλ). Moreover, θ+ = θ1 and θ− = θ0 if

m ≥ (µ ∧ ν)(RN).

(ii) Given λ ≥ 0 and (θ,Φ, u) a solution to the OMK equation (Pλ). Then (λ, u)

is a solution to the DPMK problem corresponding to m = (µ − θ−)(RN) and

(Φ, θ0, θ1) := (Φ, θ−, θ+) is a solution to the associated PMF problem.

Proof. (i) From the optimality of (Φ, θ0, θ1) and of (λ, u), using Proposition 2.21,

we have ∫

RN

ud(ν − µ) + λ(m− ν(RN)) =

∫

RN

F (x,
Φ

|Φ|(x))d|Φ|,

or ∫

RN

ud(ν − µ) =

∫

RN

F (x,
Φ

|Φ|(x))d|Φ|+λ
∫

RN

dθ1.

Thanks to Proposition 2.13, we have that u and (Φ, θ0, θ1) are solutions for the

duality (2.11). Using Proposition 2.17, we have that (θ,Φ, u) is a solution to the

OMK equation (Pλ). Now, let us show that θ+ = θ1 and θ− = θ0 for the case

m ≥ (µ ∧ ν)(RN). We divide into two cases: If m = (µ ∧ ν)(RN), then the total

cost of the associated optimal partial transport problem is zero. This implies that

Φ ≡ 0 and θ := θ1 − θ0 = ν − µ = ν − µ ∧ ν − (µ− µ ∧ ν). By the Hahn–Jordan

decomposition, we have

θ+ = ν − µ ∧ ν ≤ θ1 and θ− = µ− µ ∧ ν ≤ θ0.
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Using the constraints on the total mass of θ0 and of θ1, we obtain

θ+ = ν − µ ∧ ν = θ1 and θ− = µ− µ ∧ ν = θ0.

If m > (µ ∧ ν)(RN) then λ > 0 and the conclusion follows from Proposition 2.17.

(ii) The proof is similar to the one of Proposition 2.17 (ii) with the use of the

duality (2.33).

We are now ready to give the proof of the connection between active

submeasures and solutions θ of the OMK equation.

Proof of Theorem 2.5. First, let θλ be a solution of the OMK equation (Pλ).

Thanks to Proposition 2.18, 0 ≤ µ − θ−λ ≤ µ and 0 ≤ ν − θ+λ ≤ ν. Then,

using Theorem 2.23 (ii) and Corollary 2.22, we deduce that ρ0 := µ − θ−λ and

ρ1 := ν − θ+λ are active submeasures.

Conversely, let m ∈ [(µ ∧ ν)(RN),mmax] and (ρ0, ρ1) be a couple of active

submeasures. Let (λm, um) be a solution of the DPMK problem. Thanks to

Corollary 2.22, there exists a flow Φ such that (Φ, µ − ρ0, ν − ρ1) is a solution

of the corresponding PMF problem. And, thanks to Theorem 2.23 (i), θλm :=

ν − ρ1 − µ+ ρ0 is a solution of the OMK equation (Pλm) and

θ+λm = ν − ρ1, θ
−
λm

= µ− ρ0.

Thanks to the above connection, let us give the proof of the uniqueness of

active submeasures by using the result of the OMK equation.

Proof of Corollary 2.6. Assume that (ρ0, ρ1) and (η0, η1) ∈ Subm(µ, ν) are two

pairs of active submeasures. We will show that ρ0 = η0 and ρ1 = η1. Let λm ≥ 0

be fixed such that

λm ∈ argmax
λ≥0

{
max
u

{
D(λ, u) : u ∈ LλdF

}}
.

Let θ1, θ2 be Lebesgue functions with negative and positive parts defined by

θ+1 = ν − ρ1, θ
−
1 = µ− ρ0,

and θ+2 = ν − η1, θ
−
2 = µ− η0.

Thanks to Theorem 2.5, θ1 and θ2 are solutions to the same OMK equation (Pλm).

So, using the uniqueness in Theorem 2.4, we deduce that θ1 = θ2 and that θ−1 = θ−2 ,

θ+1 = θ+2 . This implies that ρ0 = η0 and ρ1 = η1.
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2.5.3 Alternative proof of the uniqueness for regular

Finsler metrics

We provide here an alternative proof for the case where Finsler metric is regular

in the sense that

• the function (x, v) → F (x, v) is C2 outside of the zero section (i.e., {(x, 0)});
• for each x ∈ RN , the function v → F (x, v)2 has positive definite Hessian at all

vector v 6= 0.

In this case, we make use of the special property on the Lebesgue negligibility of

the endpoints of maximal transport rays (see e.g. [18, Corollary 15] for Finsler

metrics or [1, Corollary 6.1], [5, Theorem 6.2] for the Euclidean metric).

It is not difficult to see that the common mass µ∧ν must be contained in active

submeasures. So, without losing generality, we assume that µ and ν are disjoint,

i.e., µ ∧ ν = 0.

Lemma 2.24. Let (θ,Φ, u) satisfy the OMK equation (Pλ). Then

• µ [u=λ] = ν [u=0] = 0;

• LN(supp(Φ) ∩ [u = λ]) = LN(supp(Φ) ∩ [u = 0]) = 0.

Proof. • Let γ be an optimal plan which sends µ [u=λ] to some ν1 ≤ ν. Thanks

to [90, Theorem 5.9], u is also a Kantorovich potential of the optimal transport

problem restricted on µ [u=λ] to ν1. Using the fact u ≤ λ, we get

0 ≤ min
σ∈π(µ [u=λ],ν1)

∫
dF (x, y) dσ =

∫
u d(ν1 − µ [u=λ]) ≤ 0.

Since µ and ν are disjoint, we obtain µ [u=λ] = 0. In much the same way, we also

have ν [u=0] = 0.

• We will prove that

LN(supp(Φ) ∩ [u = λ]) = 0. (2.34)

We denote by E the set of right endpoints of maximal transport rays w.r.t. u. It

is well-known that LN(E) = 0 (see e.g. [18, Corollary 15]). To prove (2.34), it is

enough to show that

supp(Φ) ∩ [u = λ] ⊂ E.

Assume on the contrary that there exists z ∈ supp(Φ) ∩ [u = λ] such that z /∈ E.
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From z ∈ supp(Φ), there is (x, y) ∈ supp(µ)× supp(ν) such that




u(y) = u(x) + dF (x, y)

u(y) = u(z) + dF (z, y).
(2.35)

Since z /∈ E, we can assume moreover that z 6= y. From (2.35), we get u(y) > λ,

a contradiction.

Alternative proof of Corollary 2.6. Assume that λ > 0. If not, there is nothing to

prove. The first equation in the OMK equation implies that

ν − θ+ − (µ− θ−) is concentrated on supp(Φ). (2.36)

Since u = 0 θ− -a.e. and the fact that λ > 0, we get θ− [u=λ] = 0. Thanks to

Lemma 2.24,

(µ− θ−) [u=λ] = 0.

Combining this with (2.36), the measure (ν − θ+) [u=λ] is concentrated on

supp(Φ) ∩ [u = λ] so that (ν − θ+) [u=λ] = 0, where we used Lemma 2.24 and

the absolute continuity of ν. Since u = λ θ+-a.e., we get θ+ = ν [u=λ] . In the

same way, we get θ− = µ [u=0] . Since the Kantorovich potential u is independent

of active submeasures, we get the uniqueness of θ.

2.6 Monotonicity

To study the maps m and R defined in section 2.2, we study the monotone

and continuous dependence of the solution θλ of the OMK equation (Pλ) on the

parameter λ.

Proposition 2.25 (Monotonicity and continuity of θλ). Let µ, ν ∈ M+
b (R

N)

be compactly supported and absolutely continuous. Suppose that (θλ,Φλ, uλ) is

a solution to the OMK equation (Pλ).

(i) Let 0 ≤ λ1 ≤ λ2 and θλ1 , θλ2 be solutions to the OMK equations (Pλ1) and

(Pλ2), respectively. Then

θ+λ1 ≥ θ+λ2 and θ−λ1 ≥ θ−λ2 .

(ii) If a nonnegative sequence λn → λ then θλn → θλ strongly in L1(RN).
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Lemma 2.26 (Monotonicity of total mass). For any λ ≥ 0, let θλ be the solution of

the OMK equation (Pλ) and mλ := (µ− θ−λ )(R
N) = (ν − θ+λ )(R

N). If 0 ≤ λ1 ≤ λ2

then

(µ ∧ ν)(RN) ≤ mλ1 ≤ mλ2 ≤ mmax.

Proof. Thanks to Proposition 2.18, we see that µ ∧ ν ≤ µ − θ−λ and therefore

(µ ∧ ν)(RN) ≤ mλ. Since µ − θ−λ ≤ µ and ν − θ+λ ≤ ν, we have mλ ≤ mmax. For

the monotonicity, due to Theorem 2.23, (λ1, uλ1) and (λ2, uλ2) are solutions to the

DPMK problem w.r.t. mλ1 and mλ2 . By optimality, we have

∫
uλ1d(ν − µ) + λ1(mλ1 − ν(RN)) ≥

∫
uλ2d(ν − µ) + λ2(mλ1 − ν(RN))

and

∫
uλ2d(ν − µ) + λ2(mλ2 − ν(RN)) ≥

∫
uλ1d(ν − µ) + λ1(mλ2 − ν(RN)).

Adding both sides, we obtain

λ1mλ1 + λ2mλ2 ≥ λ2mλ1 + λ1mλ2 ,

or

(λ2 − λ1)(mλ2 −mλ1) ≥ 0.

In order to prove Proposition 2.25, we use the following result whose proof is

given in [27] for general costs.

Theorem 2.27. ([27, Theorem 3.4]) Let Γm
opt be the set of optimal transport plans

of the mass m ≥ 0. There is a curve m ∈ [0,mmax] −→ γm ∈ Γm
opt along which

the left and right marginals γm+ε dominate those of γm whenever ε > 0.

Proof of Proposition 2.25. (i) Setmi := mλi ≥ (µ∧ν)(RN), i = 1, 2. Since λ1 ≤ λ2

and Lemma 2.26, we have m1 ≤ m2. Thanks to Theorem 2.27, there exist pairs

of active submeasures (ρλi0 , ρ
λi
1 ) corresponding to mi, i = 1, 2 such that

ρλ10 ≤ ρλ20 and ρλ11 ≤ ρλ21 . (2.37)

By Theorem 2.23 (ii), (λ1, uλ1) is a solution to the DPMK with mass m1. Setting

θ := ν − ρλ11 − µ + ρλ10 . By Theorem 2.23 (i), there is Φ such that (θ,Φ, uλ1) is a

solution to the OMK equation (Pλ1). By the uniqueness in Theorem 2.4, we get

θλ1 ≡ θ = ν − ρλ11 − µ+ ρλ10 .
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Following the proof of Theorem 2.5, we obtain

θ−λ1 = µ− ρλ10 and θ+λ1 = ν − ρλ11 .

In the same way, we have

θ−λ2 = µ− ρλ20 and θ+λ2 = ν − ρλ21 .

Combining these with (2.37), we get θ−λ1 ≥ θ−λ2 and θ+λ1 ≥ θ+λ2 .

(ii) Since θ−λn ≤ µ, θ+λn ≤ ν as in Proposition 2.18, we have that |θλn |≤ µ+ ν ∈ L1

and therefore {θλn} is equi-integrable. By the Dunford–Pettis theorem, up to a

subsequence, θλn converges weakly to some θ ∈ L1(RN). Now, let us show that

θ is a solution of the OMK equation (Pλ). Once this is done, by the uniqueness

in Theorem 2.4, we deduce that θ ≡ θλ and thus the whole sequence θλn → θλ

weakly in L1(RN). By the nondegeneracy of F and the definition of solution for

the OMK equation (Pλn), it is clear that {uλn} is bounded and equi-Lipschitz; and

that {Φλn} is bounded in Mb(RN)N . So, up to subsequence,

uλn → u uniformly on each compact subset of RN

and

Φλn → Φ weakly* in Mb(R
N)N .

Let us show that (θ,Φ, u) is a solution to the OMK equation (Pλ). First, it is clear

that u ∈ LλdF , ∫
u dθ− = lim

λn→λ

∫
uλn dθ

−
λn

= 0

and ∫
(u− λ) dθ+ = lim

λn→λ

∫
(uλn − λn) dθ

+
λn

= 0.

Moreover,

∫
ξ dθ+

∫
Φ

|Φ|∇ξ d|Φ|= lim
λn→λ

∫
ξ dθλn+

∫
Φλn
|Φλn |

∇ξ d|Φλn |=
∫
ξd(ν−µ) ∀ξ ∈ C∞

c (RN ),

which means that

θ −∇ · Φ = ν − µ in D′

(RN).

It remains to check that Φ
|Φ|

(x)∇|Φ|u(x) = F (x, Φ
|Φ|

(x)) |Φ|-a.e. x in RN . Thanks

to Lemma 2.16, this is equivalent to
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∫

RN

F (x,
Φ

|Φ|(x))d|Φ|≤
∫

RN

Φ

|Φ|(x)∇|Φ|u(x)d|Φ|. (2.38)

Since Φλn → Φ weakly* in Mb(RN)N , we have (see e.g. [2, Theorem 2.38])

∫

RN

F (x,
Φ

|Φ|(x))d|Φ|≤ lim inf
λn→λ

∫

RN

F (x,
Φλn

|Φλn |
(x))d|Φλn |. (2.39)

On the other hand,

lim
λn→λ

∫

RN

F (x,
Φλn
|Φλn |

(x))d|Φλn | = lim
λn→λ

∫
Φλn
|Φλn |

∇|Φλn |
uλnd|Φλn |

= lim
λn→λ

∫
uλn d(ν − µ) +

∫
uλndθλn

=

∫
u d(ν − µ) +

∫
u dθ =

∫
Φ

|Φ|(x)∇|Φ|u(x)d|Φ|.
(2.40)

From (2.39) and (2.40), we deduce (2.38). We have just proved that θλn → θλ

weakly in L1(RN). At last, by the monotonicity of the first part, we deduce the

strong convergence in L1(RN).

Proof of Theorem 2.7. The fact that mλ ∈ [(µ ∧ ν)(RN),mmax] and the

monotonicity of mλ are given in Lemma 2.26 while the continuity of mλ follows

from the continuity of θλ. Let us show the surjectivity of mλ. Fix any m ∈
[(µ ∧ ν)(RN),mmax]. Let (ρ0, ρ1) be a couple of active submeasures w.r.t. m.

Taking λ := λm as in Theorem 2.5 (ii), then mλ = m. Finally, for the properties

of R, we use again Theorem 2.5 and Proposition 2.25.
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Chapter 3

Augmented Lagrangian Method

for Optimal Partial Transport

with Finsler Distance Costs

In this chapter, we study numerically the PMK problem basing on the theoretical

results from the previous chapter and on augmented Lagrangian methods. The

use of augmented Lagrangian algorithm for optimal transport problems goes back

to Benamou & Brenier [12, Numer. Math., 2000] in the case where the cost

corresponds to the square of the Euclidean distance. It was recently extended by

Benamou & Carlier [13, J. Optim. Theory Appl., 2015] to the optimal transport

with the Euclidean distance and mean field games theory and by Benamou et al.

[15, ESAIM Math. Model. Numer. Anal., 2016] to the optimal transportation with

Finsler distances. Our aim here is to show how one can use this method to solve

the optimal partial transport problem with Finsler distance costs. A convergence

study for the potential together with the flow and the active submeasures is given

to validate the approach.

For the purpose of practical implementation, we consider in this part of the

thesis the PMK problem with Finsler distance costs on bounded domains. Given

a bounded Lipschitz domain Ω ⊂ RN , we are interested in cost functions c = dF

with

dF (x, y) := inf
ξ∈Lip([0,1];Ω)





1∫

0

F (ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y



 ,

where F is a continuous Finsler metric on Ω, i.e., F : Ω × RN −→ [0,+∞) is
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continuous and F (x, .) is convex, positively homogeneous of degree 1 in the sense

F (x, tv) = tF (x, v) ∀t > 0, v ∈ RN .

Concerning numerical approximations for the optimal partial transport problem,

Barrett & Prigozhin [9] studied the case of the Euclidean distance by using an

approximation based on nonlinear approximated PDEs and Raviart–Thomas finite

elements. Benamou et al. [14] and Chizat et al. [35] introduced general numerical

frameworks to approximate solutions to linear programs related to the optimal

transport. Their idea is based on an entropic regularization of the initial linear

programs. This approach needs to use (approximated) values of dF (x, y).

Here, we use a different approach. We first show how one can directly

reformulate the unknown quantities (variables) of the optimal partial transport

into an infinite-dimensional minimization problem of the form

min
φ∈V

F(φ) + G(Λφ),

where F ,G are l.s.c. convex functionals and Λ ∈ L(V, Z) is a continuous linear

operator between two Banach spaces. Thanks to peculiar properties of F and G,
an augmented Lagrangian method is effectively used in the same spirit of [12] (see

also related works [13, 15–17]). We just need to solve linear equations or to update

explicit formulations. Like the standard optimal transport, it is worth noting that

this method uses only elementary operations without evaluating dF .

3.1 Partial transport and its equivalent

formulations

The equivalent formulations for the PMK problem are presented in the previous

chapter with Ω = RN . Here we explain and summarize the results for bounded

Lipschitz domains Ω. Although the results remain the same, the technique issues

should be mentioned (especially smooth approximation, see Lemmas 3.2 and 3.5,

needed in passing rigorously from the Kantorovich–Rubinstein dual formulation

to the minimal flow problem).

Assume that F is nondegenerate in the sense that there exist positive constants

M1,M2 such that

M1|v|≤ F (x, v) ≤M2|v| ∀x ∈ Ω, v ∈ RN .
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Following Chapter 2, to study the PMK problem we use the DPMK problem.

Theorem 3.1. Let µ, ν ∈ M+
b (Ω) be Radon measures and m ∈ [0,mmax]. The

PMK problem with c = dF has a solution σ∗ ∈ πm(µ, ν) and

K(σ∗) = max




D(λ, u) :=

∫

Ω

u d(ν − µ) + λ(m− ν(Ω)) : λ ≥ 0 and u ∈ LλdF




, (3.1)

where

LλdF :=
{
u ∈ C(Ω) : u(y)− u(x) ≤ dF (x, y), 0 ≤ u(x) ≤ λ for all x, y ∈ Ω

}
.

Moreover, σ ∈ πm(µ, ν) and (λ, u) ∈ R+ × LλdF are solutions, respectively, if and

only if

u(x) = 0 for (µ− πx#σ)-a.e. x ∈ Ω, u(x) = λ for (ν − πy#σ)-a.e. x ∈ Ω

and u(y)− u(x) = dF (x, y) for σ-a.e. (x, y) ∈ Ω× Ω.

Proof. The proof follows in the same way of Theorem 2.1.

The DPMK problem (3.1) contains all the informations concerning the optimal

partial mass transportation. However, for numerical approximation of the optimal

partial transportation and to use the augmented Lagrangian method, we need to

rewrite the problem into the form

inf
φ∈V

F(φ) + G(Λφ).

To do that, recall that the polar function F ∗ of F is defined by

F ∗(x, p) := sup {〈v, p〉 : F (x, v) ≤ 1} for x ∈ Ω, p ∈ RN .

Note that F ∗(x, .) is not the Legendre–Fenchel transform. We need the following

lemma that gives a smooth approximation of 1–dF Lipschitz continuous function.

This result is evident for the Euclidean distance, i.e., Ω is convex and F (x, v) ≡ |v|
for x ∈ Ω, v ∈ RN . However, we could not find any rigorous proofs for general

Finsler metrics F in the literature.

Lemma 3.2. Let Ω be a bounded Lipschitz domain and F be a continuous

nondegenerate Finsler metric on Ω. For any Lipschitz continuous function u on
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Ω satisfying

F ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω, (3.2)

there exists a sequence of functions uε ∈ C∞
c (RN) such that

F ∗(x,∇uε(x)) ≤ 1 ∀x ∈ Ω

and

uε ⇒ u uniformly on Ω.

Note that F and F ∗ are defined only in Ω and that the gradient of u is controlled

only inside of Ω by (3.2). If we use the standard convolution to define uε, the value

of uε(x) is affected by the value of u(y) outside of Ω which remains uncontrolled.

To overcome this difficulty, if x is near the boundary, we move it a little into inside

of Ω before taking the convolution. To do this, we use the smooth partition of

unity tool to deal with approximation of u near the boundary.

Proof. Set

∀x ∈ RN , ũ(x) :=




u(x) if x ∈ Ω

0 otherwise.

Step 1: Fix z ∈ ∂Ω. Since Ω is a Lipschitz domain, there exist rz > 0 and

a Lipschitz continuous function γz : RN−1 −→ R such that (up to rotating and

relabeling if necessary)

Ω ∩ B(z, rz) = {x | xN > γz(x1, ..., xN−1)} ∩ B(z, rz).

Set Uz := Ω ∩ B(z, rz
2
). For any x ∈ RN , taking

xεz := x+ ελzen (3.3)

where we choose a sufficiently large fixed λz and all small ε, say fixed λz ≥ Lip(γz)+

1, 0 < ε <
rz

2(λz + 1)
. By this choice and the Lipschitz property of γz, we see that

B(xεz, ε) ⊂ Ω ∩ B(z, rz) for all x ∈ Uz. (3.4)

Defining

ũε(x) :=

∫

RN

ρε(y)ũ(x
ε
z − y)dy =

∫

B(xεz ,ε)

ρε(x
ε
z − y)ũ(y)dy for all x ∈ RN , (3.5)
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where ρε is the standard mollifier on RN . Obviously, ũε ∈ C∞
c (RN). Using (3.4),

(3.5) and the continuity of u on Ω, we get

ũε ⇒ u on U z.

Step 2: Now, using the compactness of ∂Ω and ∂Ω ⊂ ⋃
z∈∂Ω

B(z, rz
2
), there exist

z1, ..., zn ∈ ∂Ω such that

∂Ω ⊂
n⋃

i=1

B(zi,
rzi
2
).

For short, we write ri, Ui, xi instead of rzi , Uzi , xzi . Taking an open set U0 ⋐ Ω

such that

Ω ⊂
n⋃

i=1

B(zi,
ri
2
)
⋃

U0.

Let {φ}ni=0 be a smooth partition of unity on Ω, subordinate to{
U0, B(z1,

r1
2
), ..., B(zn,

rn
2
)
}
, that is,





φi ∈ C∞
c (RN), 0 ≤ φi ≤ 1 ∀i = 0, ..., n

supp(φi) ⋐ B(zi,
ri
2
) ∀i = 1, ..., n, supp(φ0) ⋐ U0

n∑
i=0

φi(x) = 1 for all x ∈ Ω.

Because of Step 1, there exist ũ1ε, ..., ũ
n
ε ∈ C∞

c (RN) such that

ũiε ⇒ u on U i, i = 1, ..., n.

For i = 0, since U0 ⋐ Ω, we can take ũ0ε := ρε ⋆ ũ ∈ C∞
c (RN) and ũ0ε ⇒ u on U0.

Set

uε :=
1

1 + Cε+ w(ε)

n∑

i=0

φiũ
i
ε,

where C is to be chosen later and

w(ε) := sup{|F ∗(x, p)− F ∗(y, p)|: x, y ∈ Ω, |x− y|≤Mε, |p|≤ ‖∇u‖L∞}

with constantM := max
1≤i≤n

{λzi+1}, λzi is given in Step 1. We show that uε satisfies

all the desired properties. By the construction, uε ∈ C∞
c (RN) and

uε ⇒

n∑

i=0

φiu = u on Ω.

Optimal Partial Transport and Constrained Matching Problems 65



3.1. Partial transport and its equivalent formulations

At last, we show that

F ∗(x,∇uε(x)) ≤ 1 ∀x ∈ Ω.

For any x ∈ Ω, if x ∈ Ui, i = 1, ..., n (near the boundary of Ω), we move x a bit

into inside of Ω to xεi := xεzi (see (3.3) and (3.4)), if x ∈ U0, set x
ε
0 = x. We have

∇uε(x) =
1

1 + Cε+ w(ε)

(
n∑

i=0

∇φi(x)ũiε(x) +
n∑

i=0

φi(x)∇ũiε(x)
)

=
1

1 + Cε+ w(ε)




n∑

i=0

∇φi(x)
∫

B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy

+
n∑

i=0

φi(x)

∫

B(xεi ,ε)

ρε(x
ε
i − y)∇u(y)dy


 .

The first sum on the right hand side has a small norm. Indeed, using the fact that

n∑

i=0

∇φi(x)u(x) = 0 for all x ∈ Ω,

we have

n∑

i=0

∇φi(x)
∫

B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy =

n∑

i=0

∇φi(x)




∫

B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy − u(x)


 .

(3.6)

Moreover,

∣∣∣∣∣∣∣

∫

B(xεi ,ε)

ρε(x
ε
i − y)u(u) dy − u(x)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣

∫

B(xεi ,ε)

ρε(x
ε
i − y) (u(y)− u(xεi )) dy

∣∣∣∣∣∣∣
+ |u(xεi )− u(x)|

≤ C1ε ∀i = 0, ..., n,

where the constant C1 depends only on Lip(γzi) and the Lipschitz constant of u

on Ω. Combining this with (3.6) gives

∣∣∣∣∣∣∣

n∑

i=0

∇φi(x)
∫

B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy

∣∣∣∣∣∣∣
≤ C2ε ∀x ∈ Ω,

where C2 depends only on C1 and ‖∇φi‖L∞ .
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By the nondegeneracy of F , we have

F ∗


x,

n∑

i=0

∇φi(x)
∫

B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy


 ≤ C3ε for all x ∈ Ω.

Fix any x ∈ Ω, if y ∈ B(xεi , ε) then |x− y|≤ |x− xεi |+|xεi − y|≤Mε. So we obtain

F ∗(x,∇uε(x)) ≤
1

1 + Cε+ w(ε)
[F ∗(x,

n∑

i=0

∇φi(x)
∫

B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy)

+ F ∗(x,
n∑

i=0

φi(x)

∫

B(xεi ,ε)

ρε(x
ε
i − y)∇u(y)dy)]

≤ 1

1 + Cε+ w(ε)


C3ε+

n∑

i=0

φi(x)

∫

B(xεi ,ε)

ρε(x
ε
i − y)F ∗(x,∇u(y))dy




≤ 1

1 + Cε+ w(ε)
[C3ε+

n∑

i=0

φi(x)

∫

B(xεi ,ε)

ρε(x
ε
i − y)F ∗(y,∇u(y)) dy

+

n∑

i=0

φi(x)

∫

B(xεi ,ε)

ρε(x
ε
i − y) (F ∗(x,∇u(y))− F ∗(y,∇u(y))) dy]

≤ C3ε+ 1 + w(ε)

1 + Cε+ w(ε)

≤ 1 (choose a constant C ≥ C3).

By the continuity of ∇uε and of F ∗, we also have F ∗(x,∇uε(x)) ≤ 1 ∀x ∈ Ω.

Lemma 3.3. Let F be a continuous nondegenerate Finsler metric on a bounded

Lipshitz domain Ω. Then the set of 1-dF Lipschitz functions coincides with the set

BF ∗ :=
{
u : Ω −→ R | u is Lipschitz and F ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω

}
.

Proof. Let u be 1-dF Lipschitz. Then u is Lipschitz and u is differentiable a.e. in

Ω. Let x ∈ Ω be any point where u is differentiable. We have, for any v ∈ RN ,

〈∇u(x), v〉
F (x, v)

= lim
h→0

u(x+ hv)− u(x)

F (x, hv)
≤ lim sup

h→0

dF (x, x+ hv)

F (x, hv)
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≤ lim sup
h→0

1∫
0

F (x+ thv, hv)dt

F (x, hv)
= 1.

Hence, F ∗(x,∇u(x)) ≤ 1. Thus u ∈ BF ∗ .

Conversely, fix any u ∈ BF ∗ . We divide the argument into two cases. Case 1: If

u is smooth then F ∗(x,∇u(x)) ≤ 1 ∀x ∈ Ω. For any x, y ∈ Ω and any Lipschitz

curve ξ in Ω joining x and y, we have

u(y)−u(x) =
1∫

0

∇u(ξ(t))ξ̇(t)dt ≤
1∫

0

F ∗(ξ(t),∇u(ξ(t)))F (ξ(t), ξ̇(t))dt ≤
1∫

0

F (ξ(t), ξ̇(t))dt.

It follows that u is 1-dF Lipschitz. Case 2: For general Lipschitz continuous

function u satisfying F ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω, thanks to Lemma 3.2, there

exist uε ∈ BF ∗

⋂
C∞
c (RN) such that uε ⇒ u on Ω. According to Case 1 above, uε

is 1-dF Lipschitz and so is u.

As a consequence of Lemmas 3.2 and 3.3, for any 1–dF Lipschitz continuous

function u, there exists a sequence of 1–dF Lipschitz continuous functions uε ∈
C∞
c (RN) and uε ⇒ u uniformly on Ω.

By virtue of Lemma 3.3, the DPMK problem (3.1) can be written as

max {D(λ, u) : 0 ≤ u(x) ≤ λ, u is Lipschitz continuous, F ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω} .

Moreover, we have

Theorem 3.4. Under the assumptions of Theorem 3.1, setting V := R × C1(Ω)

and Z := C(Ω)N × C(Ω)× C(Ω), we have

K(σ∗) = − inf
{
F(λ, u) + G(Λ(λ, u)) : (λ, u) ∈ V

}
,

where Λ ∈ L(V, Z) is given by

Λ(λ, u) := (∇u,−u, u− λ) ∀(λ, u) ∈ V

and F : V −→ (−∞,+∞], G : Z −→ (−∞,+∞] are the l.s.c. convex functions

given by

F(λ, u) := −
∫

Ω

u d(ν − µ)− λ(m− ν(Ω)) ∀(λ, u) ∈ V ;
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G(q, z, w) :=




0 if z(x) ≤ 0, w(x) ≤ 0, F ∗(x, q(x)) ≤ 1 ∀x ∈ Ω

+∞ otherwise
for (q, z, w) ∈ Z.

To prove this theorem we need the following lemma.

Lemma 3.5. Let λ ≥ 0 be fixed. For any u ∈ LλdF , there exists a sequence of

smooth functions uε ∈ C∞
c (RN)

⋂
LλdF such that uε ⇒ u uniformly on Ω.

Proof. Since 0 ≤ u ≤ λ, the sequence uε in the proof of Lemma 3.2 satisfies

0 ≤ uε ≤ λ. So uε ∈ C∞
c (RN) ∩ LλdF and uε ⇒ u on Ω.

Proof of Theorem 3.4. Thanks to Lemmas 3.3 and 3.5, we have

− inf
(λ,u)∈V

F(λ, u) + G(Λ(λ, u))

= sup





∫

Ω

ud(ν − µ) + λ(m− ν(Ω)) : λ ≥ 0, u ∈ C1(Ω) ∩ LλdF





= max
{
D(λ, u) : λ ≥ 0 and u ∈ LλdF

}
.

Using the duality (3.1), the proof is completed.

To end up this section, by using the Fenchel–Rockafellar duality as in

Proposition 2.13, we get the following result that will be useful for the proof of the

convergence of our discretization.

Theorem 3.6. Under the assumptions of Theorem 3.1, we have

− inf
(λ,u)∈V

F(λ, u)+G(Λ(λ, u)) = min
{∫

Ω

F (x,
Φ

|Φ|(x))d|Φ| : (Φ, θ
0, θ1) ∈ Ψm(µ, ν)

}
,

(3.7)

where

Ψm(µ, ν) :=
{
(Φ, θ0, θ1) ∈ Mb(Ω)

N×Mb(Ω)×Mb(Ω) : θ
0 ≥ 0, θ1 ≥ 0, θ1(Ω) = ν(Ω)−m

and −∇ · Φ = ν − θ1 − (µ− θ0) in D′
(RN )

}
.
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Remark 3.7. The optimality relations for the duality (3.7) reads





−∇ · Φ = ν − θ1 − (µ− θ0) in D′
(RN)

θ1(Ω) = ν(Ω)−m

〈Φ,∇u〉 ≥ 〈Φ, q〉 ∀q ∈ C(Ω), F ∗(x, q(x)) ≤ 1 ∀x ∈ Ω

λ ∈ R+, u ∈ C1(Ω)
⋂
LλdF

u = 0 θ0-a.e. in Ω

u = λ θ1-a.e. in Ω.

In fact, the optimality condition −Λ∗σ ∈ ∂F(φ) gives the first two equations and

σ ∈ ∂G(Λφ) gives the last four equations. Moreover, if Φ ∈ L1(Ω)N then the

condition

〈Φ,∇u〉 ≥ 〈Φ, q〉 ∀q ∈ C(Ω), F ∗(x, q(x)) ≤ 1 ∀x ∈ Ω

can be replaced by

F (x,Φ(x)) = 〈∇u(x),Φ(x)〉 for a.e. x ∈ Ω. (3.8)

However, it is not clear in general that Φ belongs to L1(Ω)N . In the case where Ω is

convex and F (x, v) := |v| the Euclidean norm (or some other uniformly convex and

smooth norms), the Lp regularity results are known under suitable assumptions on

µ and ν (see e.g. [37, 38, 46, 83]). In the case where Φ is a vector-valued measure,

the condition (3.8) should be adapted to the tangential gradient as

Φ

|Φ|(x) · ∇|Φ|u(x) = F

(
x,

Φ

|Φ|(x)
)

for |Φ|-a.e. x ∈ Ω.

On the other hand, from the definition of Ψm(µ, ν), it is expected that Φ is

an optimal flow of transporting µ − θ0 onto ν − θ1. This requires that θ0 ≤ µ

and θ1 ≤ ν for optimal solutions (Φ, θ0, θ1). These estimates hold whenever m ∈
[(µ ∧ ν)(Ω),mmax].

Proposition 3.8. Let m ∈ [(µ ∧ ν)(Ω),mmax] and (Φ, θ0, θ1) ∈ Ψm(µ, ν) be

optimal. Then θ0 ≤ µ and θ1 ≤ ν. Moreover, (µ − θ0, ν − θ1) is a couple of

active submeasures and Φ is an optimal flow of transporting µ− θ0 onto ν − θ1.

Proof. The proof follows in the same way as Theorem 2.23 and Proposition 2.18.
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Our next work is to compute an approximation of optimal flow Φ (in fact,

approximations of Φ, u, λ, θ0, θ1). To do that, we will apply the ALG2 method to

the DPMK problem (3.1).

3.2 Discretization and convergence

Coming back to the DPMK problem (3.1), our aim now is to give, by using a finite

element approximation, the discretized problem associated with (3.1). To begin

with, let us consider regular triangulations Th of Ω. For a fixed integer k ≥ 1,

Pk is the set of polynomials of degree less or equal k. Let Eh ⊂ H1(Ω) be the

space of continuous functions on Ω and belonging to Pk on each triangle of Th. We

denote by Yh the space of vectorial functions such that their restrictions belong

to (Pk−1)
N on each triangle of Th. Let f = ν − µ and fh ∈ Eh such that {fh}

converges weakly* to f in Mb(Ω).

Considering the finite-dimensional spaces

Vh := R× Eh, Zh := Yh × Eh × Eh,

we set

Λh(λ, u) := (∇u,−u, u− λ) ∈ Zh for (λ, u) ∈ Vh,

Fh(λ, u) := −〈u, fh〉 − λ(m− ν(Ω)) ∀(λ, u) ∈ Vh

and

Gh(q, z, w) :=




0 if z ≤ 0, w ≤ 0, F ∗(x, q(x)) ≤ 1 a.e. x ∈ Ω

+∞ otherwise
for (q, z, w) ∈ Zh.

Then the finite-dimensional approximation of (3.1) reads

inf
(λ,u)∈Vh

Fh(λ, u) + Gh(Λh(λ, u)). (3.9)

The following result shows that this is a suitable approximation of (3.1).

Theorem 3.9. Assume that m < ν(Ω). Let (λh, uh) ∈ Vh be an optimal solution

to the approximated problem (3.9) and (Φh, θ
0
h, θ

1
h) be an optimal dual solution to

(3.9). Then, up to a subsequence, (λh, uh) converges in R × C(Ω) to (λ, u) an

optimal solution of the DPMK problem (3.1) and (Φh, θ
0
h, θ

1
h) converges weakly* in

Mb(Ω)
N × Mb(Ω) × Mb(Ω) to (Φ, θ0, θ1) ∈ Ψm(µ, ν) an optimal solution of the

PMF problem in (3.7).
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Proof. Sincem < ν(Ω), {λh} is bounded in R and {uh} is bounded in (C(Ω), ‖.‖∞).

From the nondegeneracy of F and the definitions of Fh,Gh,Λh, we have that {uh}
is equi-Lipschitz and

uh(y)− uh(x) ≤ dF (x, y) ∀x, y ∈ Ω.

Using the Ascoli–Arzela Theorem, up to a subsequence, uh ⇒ u uniformly on Ω

and λh → λ. Obviously, λ ≥ 0 and u ∈ LλdF . Now, by the optimality of (λh, uh)

and of (Φh, θ
0
h, θ

1
h), we have

−Λ∗
h(Φh, θ

0
h, θ

1
h) = −(m− ν(Ω), fh) in V

∗
h

and

Fh(λh, uh) + Gh(Λh(λh, uh)) = −F∗
h(−Λ∗

h(Φh, θ
0
h, θ

1
h))− G∗

h(Φh, θ
0
h, θ

1
h).

More concretely,

〈Φh,∇v〉 − 〈θ0h, v〉+ 〈θ1h, v − s〉 = s(m− ν(Ω)) + 〈fh, v〉 ∀(s, v) ∈ Vh, (3.10)

θ0h ≥ 0, θ1h ≥ 0, θ1h(Ω) = ν(Ω)−m (3.11)

and

〈uh, fh〉+ λh(m− ν(Ω)) = sup {〈q,Φh〉 : q ∈ Yh, F
∗(x, q(x)) ≤ 1 a.e. x ∈ Ω} .

(3.12)

In (3.10), taking v = 0 and s = 1 (respectively, v = s = 1), we see that

{θ1h} (respectively, {θ0h}) is bounded in Mb(Ω). Moreover, using (3.12) and the

boundedness of (λh, uh) we deduce that {Φh} is bounded in Mb(Ω)
N . So, up to a

subsequence,

(Φh, θ
0
h, θ

1
h)⇀ (Φ, θ0, θ1) weakly* in Mb(Ω)

N ×Mb(Ω)×Mb(Ω).

Using (3.10) and (3.11), it is clear that (Φ, θ0, θ1) satisfies

〈Φ,∇v〉 − 〈θ0, v〉+ 〈θ1, v − s〉 = s(m− ν(Ω)) + 〈f, v〉 ∀(s, v) ∈ V

and

θ0 ≥ 0, θ1 ≥ 0, θ1(Ω) = ν(Ω)−m,
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i.e., (Φ, θ0, θ1) ∈ Ψm(µ, ν). Next, let us show the optimality, i.e.

∫

Ω

F (x,
Φ

|Φ|(x))d|Φ|= 〈u, ν − µ〉+ λ(m− ν(Ω)). (3.13)

We fix q ∈ C(Ω)N such that F ∗(x, q(x)) ≤ 1 ∀x ∈ Ω, and we consider qh ∈ Yh such

that ‖qh − q‖L∞(Ω)→ 0 as h→ 0. We see that

F ∗(x, qh(x)) = F ∗(x, q(x))+F ∗(x, qh(x))−F ∗(x, q(x)) ≤ 1+O(h) for a.e. x ∈ Ω.

By taking
qh

1 +O(h)
, we can assume that qh ∈ Yh, F

∗(x, qh(x)) ≤ 1 for a.e. x ∈ Ω

and ‖qh − q‖L∞(Ω)→ 0 as h→ 0. Using (3.12), we have

〈q,Φ〉 = 〈qh,Φh〉+ 〈q,Φ− Φh〉+ 〈q − qh,Φh〉

≤ sup {〈qh,Φh〉 : qh ∈ Yh, F
∗(x, qh(x)) ≤ 1, a.e. x ∈ Ω}+O(h)

= 〈uh, fh〉+ λh(m− ν(Ω)) +O(h).

Letting h→ 0, we get

〈q,Φ〉 ≤ 〈u, ν − µ〉+ λ(m− ν(Ω)) for any q ∈ C(Ω)N , F ∗(x, q(x)) ≤ 1 ∀x ∈ Ω.

Taking supremum in q, we obtain

∫

Ω

F (x,
Φ

|Φ|(x))d|Φ|≤ 〈u, ν − µ〉+ λ(m− ν(Ω)).

At last, thanks to the duality equality (3.7), this implies (3.13), the optimality of

(λ, u) and of (Φ, θ0, θ1).

Remark 3.10. In the case m = mmax (called the unbalanced transport), the

DPMK problem has a simpler formulation. So for the purpose of implementation,

we distinguish the two cases: the partial transport and the unbalanced transport.

In the unbalanced case, let us assume that m = mmax = ν(Ω) (i.e., µ(Ω) ≥ ν(Ω)),

the DPMK problem (3.1) can be written as

max





∫

Ω

ud(ν − µ) : u ∈ Lip(Ω), u ≥ 0, F ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω



 . (3.14)
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By using Vh := Eh, Zh := Yh × Eh,Λhu := (∇u,−u) and

Gh(q, z) :=




0 if z ≤ 0, F ∗(x, q(x)) ≤ 1 for a.e. x ∈ Ω

+∞ otherwise,

a finite-dimensional approximation can be given by

inf
u∈Vh

−〈u, fh〉+ Gh(Λhu). (3.15)

As in Theorem 3.9, we can prove the convergence of this finite dimensional

approximation to the original one (3.14). More precisely, we have

Proposition 3.11. Assume that m = ν(Ω). Let uh ∈ Vh be an optimal solution

to the approximated problem (3.15) and (Φh, θ
0
h) be an optimal dual solution to

(3.15). Then, up to a subsequence and translation by constant, uh converges to u

an optimal solution of the DPMK problem (3.14) and (Φh, θ
0
h) converges to (Φ, θ0)

an optimal solution of the PMF problem in (3.7) with θ1 = 0.

3.3 Solving the discretized problems

Our task now is to solve the finite dimensional problems (3.9) and (3.15). We use

the ALG2 method (see Chapter 1) for the discretized problems. To simplify the

notations, let us drop out the subscript h in (λh, uh) and (Φh, θ
0
h, θ

1
h). Thanks to

Remark 3.10, we treat separately the case where m = ν(Ω) and the case where

m < ν(Ω).

3.3.1 Partial transport (m < ν(Ω))

Given (qi, zi, wi), (Φi, θ
0
i , θ

1
i ) at the iteration i, we compute

• Step 1:

(λi+1, ui+1) = argmin
(λ,u)∈Vh

Fh(λ, u) + 〈(Φi, θ
0
i , θ

1
i ),Λh(λ, u)〉+

r

2
|Λh(λ, u)− (qi, zi, wi)|2

= argmin
(λ,u)∈Vh

−〈u, fh〉 − λ(m− ν(Ω)) + 〈Φi,∇u〉+ 〈θ0i ,−u〉+ 〈θ1i , u− λ〉

+
r

2
|∇u− qi|2+

r

2
|u+ zi|2+

r

2
|u− λ− wi|2.
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• Step 2:

(qi+1, zi+1, wi+1)

= argmin
(q,z,w)∈Zh

Gh(q, z, w)− 〈(Φi, θ0i , θ1i ), (q, z, w)〉+
r

2
|Λh(λi+1, ui+1)− (q, z, w)|2

= argmin
(q,z,w)∈Zh

I[F ∗(.,q(.))≤1](q) + I[z≤0](z) + I[w≤0](w)− 〈Φi, q〉 − 〈θ0i , z〉 − 〈θ1i , w〉

+
r

2
|∇ui+1 − q|2+r

2
|ui+1 + z|2+r

2
|ui+1 − λi+1 − w|2.

• Step 3: Update the multiplier

(Φi+1, θ
0
i+1, θ

1
i+1) = (Φi, θ

0
i , θ

1
i ) + r(∇ui+1 − qi+1,−ui+1 − zi+1, ui+1 − λi+1 − wi+1).

Before giving numerical results, let us take a while to comment the above

iteration. Overall, Step 1 is a quadratic programming. Step 2 can be computed

easily in many cases and Step 3 updates obviously.

• In Step 1, we split the computation of the couple (λi+1, ui+1) into two steps:

We first minimize w.r.t. u to compute ui+1 and then we use ui+1 to compute λi+1.

More precisely, we proceed for Step 1 as follows:

1. For ui+1,

ui+1 ∈ argmin
u∈Eh

−〈u, fh〉+ 〈Φi,∇u〉+ 〈θ0i ,−u〉+ 〈θ1i , u〉

+
r

2
|∇u− qi|2+

r

2
|u+ zi|2+

r

2
|u− λi − wi|2.

This is equivalent to

r〈∇ui+1,∇v〉+ 2r〈ui+1, v〉 = 〈fh, v〉 − 〈Φi,∇v〉+ 〈θ0i , v〉 − 〈θ1i , v〉
+ r〈qi,∇v〉 − r〈zi, v〉+ r〈λi + wi, v〉 ∀v ∈ Eh.

Remark here that the equation is linear with a symmetric positive definite

coefficient matrix.

2. For λi+1, it is computed explicitly

λi+1 ∈ argmin
s∈R

−s(m− ν(Ω)) + 〈θ1i , ui+1 − s〉+ r

2
〈ui+1 − s− wi, ui+1 − s− wi〉

= −
ν(Ω)−m−

∫

Ω

θ1i + r
∫
Ω

(wi − ui+1)

r
∫
Ω

1
.
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• In Step 2, the variables q, z, w are independent. So, we solve them separately:

1. For zi+1 and wi+1, if we choose P2 finite element for zi+1 and wi+1, at vertex

xk,

zi+1(xk) = Proj[r∈R: r≤0]

(
−ui+1(xk) +

θ0i (xk)

r

)

= min

(
−ui+1(xk) +

θ0i (xk)

r
, 0

)

and

wi+1(xk) = Proj[r∈R: r≤0]

(
ui+1(xk)− λi+1 +

θ1i (xk)

r

)

= min

(
ui+1(xk)− λi+1 +

θ1i (xk)

r
, 0

)
.

2. For qi+1, if we choose P1 finite element for qi+1 then, at each vertex xl,

qi+1(xl) = ProjBF∗(xl,.)

(
∇ui+1(xl) +

Φi(xl)

r

)
,

where BF ∗(x,.) :=
{
q ∈ RN : F ∗(x, q) ≤ 1

}
the unit ball for F ∗(x, .).

It remains to explain how we compute the projection onto BF ∗(xl,.). This issue

is recently discussed in [15] for Riemann-type Finsler distances and for crystalline

norms. For the convenience of the reader, we retake here the case where the

unit ball of F (x, .) is (not necessarily symmetric) convex polygon. For short, we

ignore the dependence of x in F and F ∗. Given d1, ..., dk 6= 0 such that, for any

0 6= v ∈ RN , max
1≤i≤k

{〈v, di〉} > 0. We consider the nonsymmetric Finsler metric

given by

F (v) := max
1≤i≤k

{〈v, di〉} for any v ∈ RN .

It is not difficult to see that the unit ball B∗ corresponding to F ∗ is exactly the

convex hull of {di},
B∗ = conv(di, i = 1, ..., k).

Thus we need to compute the projection onto the convex hull of finite points. In

dimension 2, the projection onto B∗ can be performed as follows: Compute the

successive vertices S1, ..., Sn. If q /∈ B∗ then compute the projections of q onto the

segments [Si, Si+1] and compare among these projections to chose the right one.

Another way is as the one in [15]: Compute outward orthogonal vectors v1, ..., vn

(Fig. 3.1). If q belongs to [Si, Si+1] + R+vi then the projection coincides with the

one on the line through Si, Si+1. If q belongs to the sector Si+R+vi−1 +R+vi the

projection is Si.
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Fig. 3.1: Illustration of the projection

3.3.2 Unbalanced transport (m = ν(Ω))

Thanks to Remark 3.10, we can reduce the algorithm in this particular case by

ignoring the variable λ. With similar considerations for Λhu = (∇u,−u), we get

the following iteration

• Step 1:

ui+1 ∈ argmin
u∈Eh

−〈u, fh〉+ 〈Φi,∇u〉+ 〈θ0i ,−u〉+
r

2
|∇u− qi|2+

r

2
|u+ zi|2.

Equivalently,

r〈∇ui+1,∇v〉+r〈ui+1, v〉 = 〈fh, v〉−〈Φi,∇v〉+〈θ0i , v〉+r〈qi,∇v〉−r〈zi, v〉 ∀v ∈ Eh.

• Step 2:

1. For zi+1, choosing P2 finite element for zi+1, then at each vertex xk,

zi+1(xk) = Proj[r∈R: r≤0]

(
−ui+1(xk) +

θ0i (xk)

r

)
= min

(
−ui+1(xk) +

θ0i (xk)

r
, 0

)
.

2. For qi+1, choosing P1 finite element, at vertex xl,

qi+1(xl) = ProjBF∗(xl,.)

(
∇ui+1(xl) +

Φi(xl)

r

)
.

• Step 3: (Φi+1, θ
0
i+1) = (Φi, θ

0
i ) + r(∇ui+1 − qi+1,−ui+1 − zi+1).
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3.4 Numerical experiments

We use the FreeFem++ software [55] and base on [12, 13]. We use P2 finite element

for ui, zi, wi, θ
0
i , θ

1
i and P1 finite element for Φi, qi.

3.4.1 Stopping criterion

In computational version, the measures µ and ν are approximated by nonnegative

regular functions that we denote again by µ and ν. We use the stopping criteria:

• For the partial transport:

1. MIN-MAX := min

{
min
Ω
u(x), λ−max

Ω
u(x),min

Ω
θ0(x),min

Ω
θ1(x)

}
.

2. Max-Lip := sup
Ω

F ∗(x,∇u(x)).

3. DIV := ‖∇ · Φ + ν − θ1 − µ+ θ0‖L2 .

4. DUAL := ‖F (x,Φ(x))− Φ(x) · ∇u‖L2 .

5. MASS :=
∣∣∫ (ν − θ1)dx−m

∣∣.

• For the unbalanced transport: We change

1. MIN-MAX := min

{
min
Ω
u(x),min

Ω
θ0(x)

}
.

2. DIV := ‖∇ · Φ + ν − µ+ θ0‖L2 .

We expect MIN-MAX ≥ 0,Max-Lip ≤ 1; DIV, DUAL and MASS are small.

3.4.2 Some examples

In all the examples below, we take Ω = [0, 1]× [0, 1]. We test for the Riemannian

case and the crystalline case. For the latter, we consider the Finsler metric of

the form F (x, v) = max
1≤i≤k

{〈v, di〉} with given directions d1, ..., dk such that for any

0 6= v ∈ R2,

max
1≤i≤k

{〈v, di〉} > 0.
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IsoValue
-1.40845
1.77465
4.95775
8.14086
11.324
14.5071
17.6902
20.8733
24.0564
27.2395
30.4226
33.6057
36.7888
39.9719
43.155
46.3381
49.5212
52.7043
55.8874
59.0705

Vec Value
0
0.0740338
0.148068
0.222101
0.296135
0.370169
0.444203
0.518236
0.59227
0.666304
0.740338
0.814371
0.888405
0.962439
1.03647
1.11051
1.18454
1.25857
1.33261
1.40664

Fig. 3.2: Optimal flow for µ = 3, ν = δ(0.5,0.5), F (x, v) = |v|.
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Fig. 3.3: Stopping criterion at each iteration

For the unbalanced transport

Example 3.12. Taking µ = 3L2
Ω and ν = δ(0.5,0.5) the Dirac mass at (0.5, 0.5).

The Finsler metric is the Euclidean one. The optimal flow is given in Fig. 3.2.

The stopping criterion at each iteration is given in Fig. 3.3.

Example 3.13. We take µ and ν as in the previous example, and the Finsler

metric given by F (x, v) := |v1|+|v2|, for v = (v1, v2) ∈ R2. This corresponds to the

crystalline norm with d1 = (1, 1), d2 = (−1, 1), d3 = (−1,−1) and d4 = (1,−1).

The optimal flow is given in Fig. 3.4 and the stopping criterion at each iteration

is given in Fig. 3.5.
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IsoValue
-1.40845
1.77465
4.95775
8.14086
11.324
14.5071
17.6902
20.8733
24.0564
27.2395
30.4226
33.6057
36.7888
39.9719
43.155
46.3381
49.5212
52.7043
55.8874
59.0705

Vec Value
0
0.172759
0.345519
0.518278
0.691037
0.863797
1.03656
1.20932
1.38207
1.55483
1.72759
1.90035
2.07311
2.24587
2.41863
2.59139
2.76415
2.93691
3.10967
3.28243

Fig. 3.4: Optimal flow for µ = 3, ν = δ(0.5,0.5), F (x, (v1, v2)) = |v1|+|v2|.
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Fig. 3.5: Stopping criterion at each iteration

For the partial transport

Example 3.14. Taking µ = 4χ[(x−0.3)2+(y−0.2)2<0.03] and ν =

4χ[(x−0.7)2+(y−0.8)2<0.03]. The mass of the transport is m := ν(Ω)
2
. We test for

different Finsler metrics. On each figure below, the subfigure at left illustrates the

unit ball of F and the subfigure at right gives the numerical result (see Figs 3.6,

3.7, 3.8 and 3.9). The stopping criteria are summarized in Table 3.1.
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(a) The unit ball of F

IsoValue
-4.21111
-3.74444
-3.27778
-2.81111
-2.34444
-1.87778
-1.41111
-0.944444
-0.477778
-0.0111111
0.455556
0.922222
1.38889
1.85556
2.32222
2.78889
3.25556
3.72222
4.18889
4.65556

Vec Value
0
0.0369496
0.0738992
0.110849
0.147798
0.184748
0.221697
0.258647
0.295597
0.332546
0.369496
0.406445
0.443395
0.480345
0.517294
0.554244
0.591193
0.628143
0.665092
0.702042

(b) Optimal flow

Fig. 3.6: Case 1: F (x, v) = |v|.

(a) The unit ball of F

IsoValue
-4.21111
-3.74444
-3.27778
-2.81111
-2.34444
-1.87778
-1.41111
-0.944444
-0.477778
-0.0111111
0.455556
0.922222
1.38889
1.85556
2.32222
2.78889
3.25556
3.72222
4.18889
4.65556

Vec Value
0
0.0308273
0.0616546
0.0924819
0.123309
0.154137
0.184964
0.215791
0.246619
0.277446
0.308273
0.3391
0.369928
0.400755
0.431582
0.46241
0.493237
0.524064
0.554892
0.585719

(b) Optimal flow

Fig. 3.7: Case 2: The crystalline case with d1 = (1, 1), d2 = (−1, 1), d3 = (−1,−1) and
d4 = (1,−1).

Case DIV DUAL MASS MIN-MAX Max-Lip Time execution
1 2.48182e-05 9.5294e-06 0.000161361 -0.0149942 1.00068 357 s
2 3.38395e-05 5.58717e-05 0.000195881 -0.0012012 1.00248 867 s
3 7.44768e-05 5.5997e-05 6.66404e-06 -0.0027238 1.00351 1269 s
4 6.33726e-05 3.20691e-05 0.000120909 -0.0104915 1.02572 1123 s

Tab. 3.1: Stopping criteria for 800 iterations

Optimal Partial Transport and Constrained Matching Problems 81



3.4. Numerical experiments

(a) The unit ball of F

IsoValue
-4.21111
-3.74444
-3.27778
-2.81111
-2.34444
-1.87778
-1.41111
-0.944444
-0.477778
-0.0111111
0.455556
0.922222
1.38889
1.85556
2.32222
2.78889
3.25556
3.72222
4.18889
4.65556

Vec Value
0
0.051695
0.10339
0.155085
0.20678
0.258475
0.31017
0.361865
0.41356
0.465255
0.51695
0.568645
0.62034
0.672035
0.72373
0.775425
0.82712
0.878815
0.93051
0.982205

(b) Optimal flow

Fig. 3.8: Case 3: The crystalline case with d1 = (1, 0), d2 = ( 15 ,
1
5 ), d3 = (− 1

5 ,
1
5 ), d4 = (− 1

5 ,− 1
5 )

and d5 = ( 15 ,− 1
5 ) makes the transport more expensive in the direction of the vector (1, 0).

(a) The unit ball of F

IsoValue
-4.21111
-3.74444
-3.27778
-2.81111
-2.34444
-1.87778
-1.41111
-0.944444
-0.477778
-0.0111111
0.455556
0.922222
1.38889
1.85556
2.32222
2.78889
3.25556
3.72222
4.18889
4.65556

Vec Value
0
0.0705831
0.141166
0.211749
0.282332
0.352915
0.423498
0.494082
0.564665
0.635248
0.705831
0.776414
0.846997
0.91758
0.988163
1.05875
1.12933
1.19991
1.2705
1.34108

(b) Optimal flow

Fig. 3.9: Case 4: The crystalline case with d1 = (1,−1), d2 = (1,− 4
5 ), d3 = (− 4

5 , 1), d4 = (−1, 1)
and d5 = (−1,−1) makes the transport cheaper in the direction of the vector (1, 1).

Example 3.15. Let µ = 2χ[(x−0.2)2+(y−0.2)2<0.03] + 2χ[(x−0.6)2+(y−0.1)2<0.01] and

ν = 2χ[(x−0.6)2+(y−0.8)2<0.03]. In this example, we take the Euclidean norm and we

let m vary by taking the values mi =
i
6
min{µ(Ω), ν(Ω)}, i = 1, ..., 6. The results

are given in Fig. 3.10.
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IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.00883173
0.0176635
0.0264952
0.0353269
0.0441586
0.0529904
0.0618221
0.0706538
0.0794856
0.0883173
0.097149
0.105981
0.114812
0.123644
0.132476
0.141308
0.150139
0.158971
0.167803

(a) m1

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.0127298
0.0254596
0.0381893
0.0509191
0.0636489
0.0763787
0.0891084
0.101838
0.114568
0.127298
0.140028
0.152757
0.165487
0.178217
0.190947
0.203676
0.216406
0.229136
0.241866

(b) m2

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.0167022
0.0334044
0.0501066
0.0668088
0.083511
0.100213
0.116915
0.133618
0.15032
0.167022
0.183724
0.200426
0.217129
0.233831
0.250533
0.267235
0.283938
0.30064
0.317342

(c) m3

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.0219044
0.0438088
0.0657132
0.0876176
0.109522
0.131426
0.153331
0.175235
0.197139
0.219044
0.240948
0.262853
0.284757
0.306661
0.328566
0.35047
0.372375
0.394279
0.416183

(d) m4

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.0254916
0.0509833
0.0764749
0.101967
0.127458
0.15295
0.178441
0.203933
0.229425
0.254916
0.280408
0.3059
0.331391
0.356883
0.382375
0.407866
0.433358
0.45885
0.484341

(e) m5

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.031821
0.063642
0.095463
0.127284
0.159105
0.190926
0.222747
0.254568
0.286389
0.31821
0.350031
0.381852
0.413673
0.445494
0.477315
0.509136
0.540957
0.572778
0.604599

(f) m6

Fig. 3.10: Optimal flows

Optimal Partial Transport and Constrained Matching Problems 83



Chapter 4

Optimal Partial Transport with

Lagrangian Costs

4.1 Introduction

This chapter presents some theoretical and numerical results for the PMK problem

with Lagrangian costs c = cL, where

cL(x, y) := inf
ξ∈Lip([0,1];Ω)





1∫

0

L(ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y



 (4.1)

with L satisfying some conditions such that, in contrast to the previous chapters,

the class cL includes c(x, y) = |x − y|2 as a particular case. Our main

aims are to develop rigorously the variational approach to provide equivalent

dynamical formulations and use them to supply numerical approximations. For

the uniqueness, using basically the idea of [75], we establish the uniqueness of

active submeasures in the case where the densities are absolutely continuous.

Recall that the PMK problem reads as follows

min



K(γ) :=

∫

RN×RN

cL(x, y)dγ : γ ∈ πm(µ, ν)



 . (4.2)

To introduce and comment our main results, let us take a while to focus on the

typical situation where the cost is given by

L(x, z) := k(x)
|z|q
q

for any (x, z) ∈ RN × RN (4.3)
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Chapter 4: Optimal Partial Transport with Lagrangian costs

with q > 1 and k being a (positive) continuous function. Recall here that if k ≡ 1

and q = 2, the cost function cL corresponds to the quadratic case:

cL(x, y) = |y − x|2 for any x, y ∈ RN .

This is more or less the most studied case in the literature (cf. [27, 33, 36, 48, 61]).

However, let us mention here that our approach is variational and goes after our

program of studying the optimal partial transportation from the theoretical and

numerical viewpoints of Chapters 2 and 3. To begin with, it is not difficult to

see that using standard results concerning the Eulerian formulation of the optimal

mass transport problem in the balanced case, i.e. equal mass for the source and

the target, an Eulerian formulation associated with the problem (4.2)-(4.3) can be

given by minimizing ∫∫

Q

k(x)
|υ(t, x)|q

q
dρ(t, x) (4.4)

among all the couples (ρ, υ) ∈ M+
b (Q)×L1

ρ(Q)
N satisfying the continuity equation

∂tρ+∇ · (υρ) = 0 in Q := [0, 1]× RN (4.5)

in a weak sense with ρ(0) ≤ µ and ρ(1) ≤ ν and ρ(0)(RN) = m. However, to

use the augmented Lagrangian method, we will prove rigorously that in fact the

minimization problem of the type (4.4)-(4.5) is the Fenchel–Rockafellar dual of a

new dual problem to (4.2). Indeed, using the general duality result on the optimal

partial transportation in Chapter 2, we prove that a dynamical formulation of the

dual problem of (4.2) consists in maximizing

∫

RN

u(1, .)dν −
∫

RN

u(0, .)dµ+ λ(m− µ(RN)) (4.6)

among the couples (λ, u) ∈ [0,∞) × Lip(Q), where u satisfies the following

constrained Hamilton–Jacobi equation





∂tu(t, x) + k−α(x) |∇xu(t,x)|q
′

q′
≤ 0 for a.e. (t, x) ∈ Q

−λ ≤ u(0, x), u(1, x) ≤ 0 ∀x ∈ RN .

(4.7)

Here q′ := q

q−1
denotes the usual conjugate of q and α = q′

q
. Then, even if the

regularity of the solutions here creates an obstruction to the application of the
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general theory, we will prove that the minimization problem (4.4) remains to be

the Fenchel–Rockafellar dual of the maximization problem (4.6)-(4.7). Using these

equivalents, we overbalance the problem into the scope of augmented Lagrangian

methods and give numerical approximations to the optimal partial transport

problem. In particular, we will see that this approach does not need to evaluate

cL(x, y), for each pair of endpoints x and y, but requires only some values of L.

Also, the method provides at the same time active submeasures and the associated

optimal transportation.

In addition, let us mention that the Fenchel–Rockafellar duality between the

maximization problem (4.6) and the minimization problem (4.4) brings up (as

optimality condition) a new type of ”constrained” Mean Field Game (MFG)

system. For the particular case (4.3), this system aims to find (ρ, υ) ∈ M+
b (Q)×

L1
ρ(Q)

N satisfying both the usual MFG system associated with the cost (4.2)-(4.3):





∂tu(t, x) + k−α(x) |∇xu(t,x)|q
′

q′
≤ 0 for a.e. (t, x) in Q

∂tρ+∇ · (υρ) = 0 in (0, 1)× RN

υ(t, x) = k(x)−α|∇xu(t, x)|q′−2∇xu(t, x) ρ-a.e. (t, x) in Q

(4.8)

and the following non-standard initial boundary values:

ρ(0)− µ ∈ ∂I[−λ,+∞)(u(0, .)) and ν − ρ(1) ∈ ∂I(−∞,0](u(1, .)). (4.9)

In other words, these initial boundary values may be written as: −λ ≤
u(0, .), u(1, .) ≤ 0, ρ(0) ≤ µ, ρ(1) ≤ ν, ρ(0) = µ in the set [u(0, .) > −λ] and
ρ(1) = ν in the set [u(1, .) < 0]. In the system (4.8), λ is an arbitrary non-negative

parameter and the couple (ρ(0), ρ(1)) ∈ M+
b (R

N) ×M+
b (R

N) is unknown. Once

the system is solved with the optimal λ for (4.4), the couple (ρ(0), ρ(1)) gives the

active submeasures and ρ gives the optimal transportation.

Actually, for a given λ ≥ 0, (4.8)-(4.9) is a new type of constrained MFG

system. In this direction, one can see some variant of constrained MFG systems

and their connection with the Mean Field Games under congestion effects in the

paper [82]. However, let us mention that (4.8)-(4.9) is different from the class of

MFG systems introduced in [82]. In particular, one sees that the constraints in

(4.9) focus only the state at time t = 0 and t = 1. As to the constraints in [82],

they are maintained on all the trajectory for every time t ∈ [0, 1] to handle some
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kind of congestion.

At last, let us mention that the main difficulty in the study of the above

variational approach of the problem (4.2) for general Lagrangian L remains in the

regularity of solutions of the optimization problems like (4.4)-(4.5) and (4.6)-(4.7).

To handle this difficulty we prove some new results concerning approximation

of the solutions of general constrained Hamilton–Jacobi equation like (4.7) by

regular function. Moreover, we show how to use the notion of tangential gradient

to study MFG system like (4.8)-(4.9) in the general case. In particular, when

m = µ(RN) = ν(RN) and L(x, v) = L(v) is independent of x, this MFG system

reduces to the PDE as in the work of Jimenez [62].

To avoid unnecessary difficulties, in our theoretical study, we will work with

Ω = RN in the definition (4.1) of cL . Throughout this chapter, we drop the

subscript L and write simply c instead of cL.

Assumption (A): Assume that the Lagrangian L : RN × RN → [0,+∞) is

continuous and satisfies:

• L(x, .) is convex and L(x, 0) = 0 for each fixed x ∈ RN ;

• (Superlinearity) for any R > 0, there exists a function θR : R+ → R+ such that

θR(t)

t
→ +∞ as t→ +∞ and L(x, v) ≥ θR(|v|) ∀x ∈ B(0, R).

For example, the function L(x, v) := k(x) |v|
q

q
, q > 1 satisfies the above assumption

whenever k is (positive) continuous.

As usual, the convex conjugate H of L is defined by

H(x, p) := sup
v∈RN

{〈p, v〉 − L(x, v)} for any x ∈ RN , p ∈ RN .

Note that, under the assumption (A) on L, the function H(., .) is continuous in

both variables and that c(., .) is locally Lipschitz.

We set Q := [0, 1] × RN . The usual derivatives of u are denoted by ∂tu,∇xu,

and ∇t,xu := (∂tu,∇xu). Recall that the continuity equation ∂tρ + ∇ · (υρ) =

0, ρ(0) = µ, ρ(1) = ν is understood in the sense of distribution, i.e.

∫∫

Q

∂tφdρ+

∫∫

Q

∇xφ · υdρ =
∫

RN

φ(1, .)dρ(1)−
∫

RN

φ(0, .)dρ(0)

=

∫

RN

φ(1, .)dν −
∫

RN

φ(0, .)dµ

(4.10)
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for any compactly supported smooth function φ ∈ C∞
c (Q). As before, we denote

(4.10) by

−divt,x (ρ, υρ) = δ1 ⊗ ν − δ0 ⊗ µ.

4.2 Uniqueness of active submeasures

The existence of active submeasures follows from Chapter 2. The present section

concerns the uniqueness.

Theorem 4.1 (Uniqueness). Assume moreover that L(x, v) = L(v) is independent

of x and that L(v) = 0 if and only if v = 0. If µ, ν ∈ L1 and m ∈ [µ∧ν(RN),mmax]

then there is at most one couple of active submeasures.

The idea of the proof is based on the recent paper [75, Proposition 5.2]. For

completeness, we give here an adaptation to our case.

Lemma 4.2. Assume that L satisfies the assumption (A). Let (ρ0, ρ1) be a couple

of active submeasures and γ ∈ π(ρ0, ρ1) be an optimal plan. If (x∗, y∗) ∈ supp(γ)

then ρ0 = µ a.e. on Bc(y
∗, R) := {t ∈ RN : c(t, y∗) < R} and ρ1 = ν a.e. on

Bc(x
∗, R) := {w ∈ RN : c(x∗, w) < R)}, where R := c(x∗, y∗) = cL(x

∗, y∗).

Proof. We prove that ρ1 = ν a.e. on Bc(x
∗, R). If the conclusion is not true then

there exists a compact set K ⋐ Bc(x
∗, R) with a positive Lebesgue measure such

that ρ1 < ν a.e. on K. The proof consists in the construction of a better plan γ̃.

Since (x∗, y∗) ∈ supp(γ), we have

0 < γ(B(x∗, r)× B(y∗, r)) ≤
∫

B(y∗,r)

νdx→ 0 as r → 0,

where B(x, r) is the ball w.r.t. the Euclidean norm. Now, geometrically speaking,

instead of transporting mass from x∗ to around y∗, we can give more mass on K.

To be more precise, we construct a new plan γ̃ as follows

γ̃ := γ − γ B(x∗,r)×B(y∗,r) +η

with

η :=
πx#(γ B(x∗,r)×B(y∗,r))⊗ (ν − ρ1) K∫

K

(ν − ρ1)dx
.
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Then πx#γ̃ = ρ0 and

πy#γ̃ ≤ πy#γ +
γ(B(x∗, r)× B(y∗, r))∫

K

(ν − ρ1)dx
(ν − ρ1) K ≤ ρ1 + (ν − ρ1) K ≤ ν

for all sufficiently small r. It follows that γ̃ ∈ πm(µ, ν). Furthermore, we have

∫
c(x, y)dγ̃

=

∫
c(x, y)dγ −

∫

B(x∗,r)×B(y∗,r)

c(x, y)dγ +

∫

B(x∗,r)×K

c(x, y)dη

≤
∫
c(x, y)dγ −

(
inf

(x,y)∈B(x∗,r)×B(y∗,r)
c(x, y)− sup

(x,y)∈B(x∗,r)×K

c(x, y)

)
γ(B(x∗, r)×B(y∗, r)).

<

∫
c(x, y)dγ for small r,

where we used the fact that

(
inf

(x,y)∈B(x∗,r)×B(y∗,r)
c(x, y)− sup

(x,y)∈B(x∗,r)×K

c(x, y)

)
> 0 for small r.

This holds because of the definition of K and the continuity of c.

The next lemma provides an expression for active submeasures.

Lemma 4.3. Under the assumptions of Theorem 4.1, let (ρ0, ρ1) be couple of active

submeasures. Then

ρ0 = χBc
0
µ and ρ1 = χBc

1
ν

for some measurable sets B0, B1.

Proof. Since L(x, v) = L(v), we get c(x, y) := cL(x, y) = L(y−x). Thus c(x, y) = 0

if and only if x = y. This implies that the common mass µ ∧ ν must belong to

active submeasures, i.e., µ ∧ ν ≤ ρ0 and µ ∧ ν ≤ ρ1. So without loss of generality,

we can assume that the initial measures µ and ν are disjoint, i.e., µ∧ ν = 0. Now,

let us define

B0 := Leb(µ) ∩ Leb(ν) ∩ Leb(ρ0) ∩ {ρ0 < µ}(1)

and

B1 := Leb(µ) ∩ Leb(ν) ∩ Leb(ρ1) ∩ {ρ1 < ν}(1).

Here, Leb(g) is the set of Lebesgue points of g and A(1) is the set of points of
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density 1 w.r.t. A. We see that

Bc
0 = (Leb(µ) ∩ Leb(ν) ∩ Leb(ρ0))

c ∪ ({ρ0 < µ}(1))c = Z ∪ {ρ0 = µ},

with LN(Z) = 0. So ρ0 = µ a.e. on Bc
0. Next, we show that ρ0 = 0 on B0. Indeed,

if ρ0(x) > 0 for some x ∈ B0 then x ∈ supp(ρ0). Hence there exists y ∈ supp(ρ1)

such that (x, y) ∈ supp(γ) for some optimal plan γ ∈ π(ρ0, ρ1). Since µ ∧ ν = 0,

we can take y 6= x and thus R := c(x, y) = L(y−x) > 0. Since Bc(y, R) is convex,

it has the cone property, i.e. there is a finite cone with vertex at x contained in

Bc(y, R). It follows that there exists a sequence of subsets of Bc(y, R) shrinking to

x nicely (see e.g. [79, Theorem 7.10]). Using Lemma 4.2, ρ0 = µ a.e. on Bc(y, R),

we obtain ρ0(x) = µ(x), which is impossible. Consequently, the proof of the

expression ρ0 = χBc
0
µ is completed. In much the same way, we get ρ1 = χBc

1
ν.

Proof of Theorem 4.1. Let (ρ0, ρ1) and (ρ̃0, ρ̃1) be couples of active submeasures.

By Lemma 4.3, we have ρ0 = χBc
0
µ, ρ1 = χBc

1
ν, ρ̃0 = χB̃c

0
µ and ρ̃1 = χB̃c

1
ν. By

the convexity of the total cost, we see that 1
2
(ρ0, ρ1) +

1
2
(ρ̃0, ρ̃1) is also an optimal

couple. If (ρ0, ρ1) 6= (ρ̃0, ρ̃1) then
1
2
(ρ0, ρ1)+

1
2
(ρ̃0, ρ̃1) does not admit any expression

as in Lemma 4.3, a contradiction.

Remark 4.4. (i) Following the proof, Theorem 4.1 is still true for any general

cost c (not necessary to be of the form cL) if we have the following properties:

• c is continuous.

• c(x, y) = 0 if and only if x = y.

• The balls w.r.t. c defined by Bc(y, R) := {t ∈ RN : c(t, y) < R} and

Bc(x,R) := {w ∈ RN : c(x, w) < R)} are regular in the sense that given any

point on the boundary of a ball, there exists a sequence of subsets of the ball

which shrinks nicely to that point.

(ii) In the case where L(x, v) = L(v) is strictly convex, Figalli [48] studied the

strict convexity of the function that associates to each m ∈ (µ∧ ν(RN),mmax] the

total Monge–Kantorovich cost to deduce the uniqueness.

(iii) When L(x, .) is positively 1-homogeneous, i.e., L(x, tv) = tL(x, v) ∀x ∈
RN , v ∈ RN , t > 0, the uniqueness can be obtained via PDE techniques applied to

the OMK equation (see Chapter 2).
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4.3 Equivalent formulations

In the present section, under the general assumptions of section 4.1, we introduce

and study the equivalent formulations for the PMK problem of the type (4.4)-(4.5)

and also (4.6)-(4.7).

4.3.1 Dual formulation

We start with the Kantorovich-type dual formulation. It follows from Theorem

2.9 that the DPMK problem can be rewritten as

max
(λ,φ,ψ)

{∫
ψ dν −

∫
φ dµ+ λ(m− µ(RN)) : λ ∈ R+, (φ, ψ) ∈ Φλ

c (µ, ν)

}
,

(4.11)

where

Φλc (µ, ν) :=
{
(φ, ψ) ∈ L1

µ × L1
ν : −λ ≤ φ, ψ ≤ 0, ψ(y)− φ(x) ≤ c(x, y) ∀x, y ∈ RN

}
.

Moreover, we have

Theorem 4.5. Let µ, ν ∈ M+
b (R

N) be compactly supported and m ∈ [0,mmax].

Suppose that L satisfies the assumption (A). Then

min
γ∈πm(µ,ν)




K(γ) :=

∫

RN×RN

c(x, y)dγ





= max
(λ,u)





∫

RN

u(1, .)dν −
∫

RN

u(0, .)dµ+ λ(m− µ(RN )) : λ ∈ R+, u ∈ Kλ
c



 ,

(4.12)

where

Kλ
c :=

{
u ∈ Lip(Q) : ∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 for a.e. (t, x) ∈ Q,

− λ ≤ u(0, x) and u(1, x) ≤ 0 ∀x ∈ RN
}
.

Note that if u ∈ Kλ
c and u is smooth then we get

∂tu(t, x) + 〈∇xu(t, x), v〉 ≤ L(x, v) ∀(t, x) ∈ Q, v ∈ RN . (4.13)

In general, for any u ∈ Kλ
c , we can approximate u by smooth functions satisfying a

similar estimate for (4.13). This is the content of the following lemma. Although

we obtain here only the estimate at the limit, this is enough for later use.
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Lemma 4.6. Fix any u ∈ Kλ
c . There exists a sequence of smooth functions uε ∈

C∞(R× RN) such that uε converges uniformly to u on Q and

lim sup
ε→0

(∂tuε(t, x) + 〈∇xuε(t, x), v〉) ≤ L(x, v) ∀(t, x) ∈ Q, v ∈ RN (4.14)

and, for all ξ ∈ Lip([0, 1];RN),

lim sup
ε→0

1∫

0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt ≤

1∫

0

L(ξ(t), ξ̇(t))dt. (4.15)

Proof. Let αε, βε be standard mollifiers on R and RN , respectively, such that

supp(αε) ⊂ [−ε, ε]. (4.16)

Set ηε(t, x) := αε(t)βε(x). Let ũ be a Lipschitz extension of u on R × RN . By

means of convolution in both time and spacial variables, let us define

ũε := ηε ⋆ ũ and uε(t, x) := ũε(ε+ (1− 2ε)t, (1− 2ε)x) for (t, x) ∈ R× RN .

Let us show that uε satisfies all the requirements. First, since ũ is Lipschitz, uε

converges uniformly to u on Q. Now, for all t ∈ [0, 1], using (4.16), we have

uε(t, x) =

∫

R

∫

RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)ũ(s, y)dy ds

=

1∫

0

∫

RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)u(s, y)dy ds.

Fix any v ∈ RN , for all t ∈ [0, 1], we have

∂tuε(t, x) + 〈v,∇uε(t, x)〉

= (1− 2ε)

1∫

0

∫

RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)∂su(s, y) dy ds

+ (1− 2ε)

〈
v,

1∫

0

∫

RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)∇yu(s, y) dy ds

〉

≤ (1− 2ε)

1∫

0

∫

RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)L(y, v) dy ds

= (1− 2ε)

∫

RN

βε((1− 2ε)x− y)L(y, v) dy.

(4.17)
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Letting ε → 0, we obtain (4.14). Next, let us fix any ξ ∈ Lip([0, 1];RN). Using

(4.14) with x = ξ(t), v = ξ̇(t), we have

lim sup
ε→0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
≤ L(ξ(t), ξ̇(t)) for a.e. t ∈ [0, 1]. (4.18)

Recall that (the Reverse Fatou’s Lemma) if there exists an integrable function g

on a measure space (X, η) such that gε ≤ g for all ε, then

lim sup
ε

∫
gεdη ≤

∫
lim sup

ε

gεdη.

In our case, on X := [0, 1] with the Lebesgue measure, the functions gε(t) :=

∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉 for a.e. t ∈ [0, 1] are bounded by a common

constant depending Lipschitz constants of u and of ξ. Applying the Reverse Fatou’s

Lemma and (4.18), we deduce that

lim sup
ε→0

1∫

0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt

≤
1∫

0

lim sup
ε→0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt

≤
1∫

0

L(ξ(t), ξ̇(t))dt.

Note that we can do even better in the case where L(x, v) = L(v) is independent

of x. Indeed, from our argument (4.17), we can choose uε such that

∂tuε(t, x) + 〈∇xuε(t, x), v〉 ≤ L(x, v) ∀(t, x) ∈ Q, v ∈ RN

without passing ε to 0.

Now, we are ready to prove the duality (4.12). We check directly that the

maximization is less than the minimum in (4.12) with the help of Lemma 4.6. For

the converse inequality, we make use of the theory of Hamilton–Jacobi equations.

Proof of Theorem 4.5. Fix any u ∈ Kλ
c . Let uε be the sequence of smooth functions

given in Lemma 4.6. Fix any ξ ∈ Lip([0, 1];RN) such that ξ(0) = x, ξ(1) = y. By
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using (4.15), we have

u(1, y)− u(0, x) = lim
ε→0

(uε(1, ξ(1))− uε(0, ξ(0)))

= lim
ε→0

1∫

0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt

≤
1∫

0

L(ξ(t), ξ̇(t))dt.

Since ξ is arbitrary, we get

u(1, y)− u(0, x) ≤ c(x, y) ∀x, y ∈ RN .

In view of (4.11), we deduce that

K(σ∗) ≥ sup
(λ,u)





∫

RN

u(1, .)dν −
∫

RN

u(0, .)dµ+ λ(m− µ(RN )) : λ ∈ R+, u ∈ Kλ
c



 .

(4.19)

Conversely, let (φ, ψ) ∈ Φλ
c (µ, ν) be a maximizer in (4.11). Set

φ1(x) := sup
y∈supp(ν)

(ψ(y)− c(x, y)) and φ∗(x) := max{φ1(x),−λ} for x ∈ supp(µ).

Since c(., y) is locally Lipschitz w.r.t. the variable x, φ∗ is Lipschitz on the compact

set supp(µ). Moreover, φ∗ is non-positive (since ψ ≤ 0 and c ≥ 0) and (φ∗, ψ) is

also a maximizer of the DPMK problem. By extension, we can assume that φ∗ is

non-positive and Lipschitz on RN . Now, we set

u∗(t, x) := inf
ξ





t∫

0

L(ξ(s), ξ̇(s))ds+ φ∗(ξ(0)) : ξ ∈ Lip([0, t];RN), ξ(t) = x



 .

Then (see e.g. [44, Chapter 10] or [28, Chapter 6]) u∗ is Lipschitz on Q and u∗ is

a viscosity solution of the Hamilton–Jacobi equation

∂tu(t, x) +H(x,∇xu(t, x)) = 0

with u∗(0, x) = φ∗(x). It is not difficult to see that u∗(1, y) ≤ φ∗(y) ≤ 0, u∗(0, x) =
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φ∗(x) ≥ −λ ∀x, y ∈ RN and that

u∗(1, y) = inf
ξ





1∫

0

L(ξ(s), ξ̇(s))ds+ φ∗(ξ(0)) : ξ ∈ Lip([0, 1];RN), ξ(1) = y





≥ inf
x∈RN

{c(x, y) + φ∗(x)}

≥ ψ(y) ∀y ∈ RN .

These imply that u∗ ∈ Kλ
c and that

u∗(1, y)− u∗(0, x) ≥ ψ(y)− φ∗(x) ∀x, y ∈ RN .

Thus

∫

RN

u∗(1, .)dν −
∫

RN

u∗(0, .)dµ+ λ(m− µ(RN)) ≥
∫
ψdν −

∫
φ∗dµ+ λ(m− µ(RN))

= K(σ∗).

Combining this with (4.19), the duality (4.12) holds and u∗ is a solution of the

maximization problem on the right hand side of (4.12).

4.3.2 Eulerian formulation by Fenchel–Rockafellar duality

As we said in the introduction, the Fenchel–Rockafellar duality is an important

ingredient of our analysis, especially for the numerical analysis by augmented

Lagrangian methods.

Theorem 4.7. Under the assumptions of Theorem 4.5, we have

max





∫

RN

u(1, .)dν −
∫

RN

u(0, .)dµ+ λ(m− µ(RN)) : (λ, u) ∈ R+ ×Kλ
c





= min





∫∫

Q

L(x, υ(t, x))dρ(t, x) : (ρ, υ, θ0, θ1) ∈ Bc



 ,

(4.20)

where

Bc :=
{
(ρ, υ, θ0, θ1) ∈ M+

b (Q)× L1
ρ(Q)N ×M+

b (R
N )×M+

b (R
N ) : θ0(RN ) = µ(RN )−m,

− divt,x (ρ, υρ) = δ1 ⊗ (ν − θ1)− δ0 ⊗ (µ− θ0)
}
.
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Roughly speaking, the minimization in (4.20) is the Fenchel–Rockafellar dual

of the maximization problem. However, the interesting point to note here is that

the maximization problem in (4.20) does not satisfy the sufficient conditions to

use directly the dual theory of Fenchel–Rockafellar. To overcome this difficulty,

we approximate the maximization problem by a suitable supremum problem. To

this end, for general Lagrangian L, we make use of the smooth approximations

given in Lemma 4.6.

Proof of Theorem 4.7. Let us first show that

max





∫

RN

u(1, .)dν −
∫

RN

u(0, .)dµ+ λ(m− µ(RN)) : (λ, u) ∈ R+ ×Kλ
c





≤ inf





∫∫

Q

L(x, υ)dρ : (ρ, υ, θ0, θ1) ∈ Bc



 .

(4.21)

Fix any u ∈ Kλ
c and (ρ, υ, θ0, θ1) ∈ Bc. Let uε be the sequence of smooth functions

given in Lemma 4.6. Taking uε as a test function in the continuity equation

−divt,x (ρ, υρ) = δ1 ⊗ (ν − θ1)− δ0 ⊗ (µ− θ0),

we have

∫∫

Q

∂tuεdρ+

∫∫

Q

∇xuε(t, x)·υ(t, x)dρ =
∫

RN

uε(1, .)d(ν−θ1)−
∫

RN

uε(0, .)d(µ−θ0).

Since θ0(RN) = µ(RN)−m, we get

∫

RN

uε(1, .)dν −
∫

RN

uε(0, .)dµ+ λ(m− µ(RN))

=

∫

RN

uε(1, .)dν −
∫

RN

uε(0, .)dµ− λ

∫

RN

dθ0

=

∫

RN

uε(1, .)d(ν − θ1)−
∫

RN

uε(0, .)d(µ− θ0) +

∫

RN

uε(1, .)dθ
1 −

∫
(uε(0, .) + λ) dθ0

=

∫∫

Q

(∂tuε +∇xuε · υ) dρ+
∫

RN

uε(1, .)dθ
1 −

∫
(uε(0, .) + λ) dθ0.

(4.22)

Letting ε → 0, using Lemma 4.6 and the fact that u(1, .) ≤ 0, u(0, .) + λ ≥ 0, we
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have ∫

RN

u(1, .)dν −
∫

RN

u(0, .)dµ+ λ(m− µ(RN))

≤
∫∫

Q

L(x, υ(t, x))dρ+

∫

RN

u(1, .)dθ1 −
∫

RN

(u0, .) + λ) dθ0

≤
∫∫

Q

L(x, υ(t, x))dρ(t, x).

This implies the desired inequality (4.21). Let us now prove the converse inequality.

Obviously, we have

max





∫

RN

u(1, .)dν −
∫

RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλ
c





≥ sup





∫

RN

u(1, .)dν −
∫

RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλ
c , u ∈ C1,1(Q)



 .

It is sufficient to show that

sup





∫

RN

u(1, .)dν −
∫

RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλ
c , u ∈ C1,1(Q)





= min





∫∫

Q

L(x, υ(t, x))dρ : (ρ, υ, θ0, θ1) ∈ Bc




.

(4.23)

This will be proved by using the Fenchel–Rockafellar dual theory. Indeed, the

supremum problem in (4.23) can be written as

− inf
(λ,u)∈V

F(λ, u) + G(Λ(λ, u)),

where

F(λ, u) := −
∫

RN

u(1, .)dν +

∫

RN

u(0, .)dµ− λ(m− µ(RN )) for (λ, u) ∈ V := R×C1,1(Q),

Λ(λ, u) := (∇t,xu, −λ− u(0, .), u(1, .)) ∈ Z := Cb(Q)
N+1 × Cb(R

N)× Cb(R
N),

G(q, z, w) :=




0 if z(x) ≤ 0, w(x) ≤ 0 and q1(t, x) +H(x, qN (t, x)) ≤ 0 ∀(t, x) ∈ Q

+∞ otherwise
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with q := (q1, qN) ∈ Cb(Q)×Cb(Q)N for all (q, z, w) ∈ Z. Now, using the Fenchel–

Rockafellar dual theory, we have

inf
(λ,u)∈V

F(λ, u) + G(Λ(λ, u))

= max
(Φ,θ0,θ1)∈Mb(Q)N+1×Mb(RN )×Mb(RN )

(
−F∗(−Λ∗(Φ, θ0, θ1))− G∗(Φ, θ0, θ1)

)
.

(4.24)

The proof is completed by computing explicitly these quantities.

• Let us compute F∗(−Λ∗(Φ, θ0, θ1)). Since F is linear, F∗(−Λ∗(Φ, θ0, θ1)) is

finite (and is equal to 0 whenever finite) if and only if

〈−Λ∗(Φ, θ0, θ1), (λ, u)〉 = F(λ, u) = −
∫
u(1, .) dν +

∫
u(0, .) dµ− λ(m− µ(RN))

for all (λ, u) ∈ V . Equivalently,

−〈∇t,xu,Φ〉−〈θ0,−λ−u(0, .)〉−〈θ1, u(1, .)〉 = −〈u(1, .), ν〉+ 〈u(0, .), µ〉−λ(m−µ(RN ))

for all (λ, u) ∈ V. This implies that

−〈∇t,xu,Φ〉 = 〈u(0, .), µ− θ0〉 − 〈u(1, .), ν − θ1〉 for all test functions u ∈ C1,1(Q)

and that

θ0(RN) = µ(RN)−m.

Recall that Φ ∈ Mb(Q)
N+1, writing Φ = (ρ, E), the above computation gives

−divt,x (ρ, E) = δ1 ⊗ (ν − θ1)− δ0 ⊗ (µ− θ0),

and

θ0(RN) = µ(RN)−m.

• For G∗(Φ, θ0, θ1), since H(., .) is continuous, using the same arguments as

in [83, Proposition 5.18], we have

G∗(Φ, θ0, θ1) =





∫∫
Q

L(x, υ(t, x))dρ if θ0 ≥ 0, θ1 ≥ 0, Φ = (ρ,E), ρ ≥ 0, E ≪ ρ, E = υρ

+∞ otherwise.

Substituting F∗ and G∗ into (4.24), we obtain the needed equality (4.23).
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4.3.3 Optimality condition and constrained MFG system

To write down the optimality condition for the duality (4.20), we need to use the

notion of tangential gradient to a measure.

Optimality condition for the duality (4.20) is related to the following PDE

system:





− divt,x(ρ, υρ) = δ1 ⊗ (ν − θ1)− δ0 ⊗ (µ− θ0)

L(x, υ(t, x)) = ∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. (t, x) in Q

∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. (t, x) in Q

−θ0 ∈ ∂I[−λ,+∞)(u(0, .))

θ1 ∈ ∂I(−∞,0](u(1, .))

(ρ, υ, θ0, θ1) ∈ M+
b (Q)× L1

ρ(Q)
N ×M+

b (R
N)×M+

b (R
N),

(PDEλ)

where the condition θ1 ∈ ∂I(−∞,0](u(1, .)) means that

u(1, .) ≤ 0 and 〈θ1, φ− u(1, .)〉 ≤ 0 ∀φ ∈ Cb(R
N), φ ≤ 0,

or equivalently

u(1, .) ≤ 0, θ1 ≥ 0 and

∫

RN

u(1, .)dθ1 = 0.

Similarly, the condition −θ0 ∈ ∂I[−λ,+∞)(u(0, .)) reads as

u(0, .) ≥ −λ, θ0 ≥ 0 and

∫

RN

(u(0, .) + λ) dθ0 = 0.

Theorem 4.8. Assume that (ρ, υ, θ0, θ1) ∈ Bc and (λ, u) ∈ R+ × Kλ
c are optimal

for the two problems in the duality (4.20). Then (ρ, υ, θ0, θ1, u) satisfies the system

(PDEλ). Conversely, if (ρ, υ, θ0, θ1, u) is a solution of (PDEλ), then (ρ, υ, θ0, θ1)

and (λ, u) are solutions to the duality (4.20) w.r.t. m = µ(RN)− θ0(RN).

Remark 4.9. For the standard optimal transport problem, i.e., m = µ(RN) =

ν(RN) (in this case θ0 = θ1 = 0), the optimality conditions (PDEλ) can be reduced
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to the following system:





−divt,x(ρ, υρ) = δ1 ⊗ ν − δ0 ⊗ µ

L(x, υ(t, x)) = ∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. in Q

∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. in Q.

(4.25)

In particular, if L(x, v) = L(v) is independent of the variable x then the system

(4.25) recovers the same PDE as in the work of Jimenez [62].

Remark 4.10. If m = µ(RN) = ν(RN) and assume moreover that ρ ≪ LN+1,

then the conditions (4.25) can be rewritten as





−divt,x(ρ, υρ) = δ1 ⊗ ν − δ0 ⊗ µ

∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. (t, x) in Q

∂tu(t, x) +H(x,∇xu(t, x)) = 0 ρ-a.e. (t, x) in Q

υ(t, x) ∈ ∂H(x,∇xu(t, x)) ρ-a.e. (t, x) in Q,

where ∂H is the subdifferential of H w.r.t. the second variable. Indeed, the

condition L (x, υ(t, x)) = ∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. implies that

L (x, υ(t, x)) = ∇t,xu(t, x) · (1, υ(t, x)) ρLN+1-a.e. in Q

= ∂tu(t, x) + υ(t, x) · ∇xu(t, x) ρLN+1-a.e. in Q.

This implies that

L (x, υ(t, x)) ≤ ∂tu+H(x,∇xu(t, x)) + L(x, υ(t, x)) ≤ L (x, υ(t, x)) ρLN+1-a.e. in Q.

Hence ∂tu(t, x) + H(x,∇xu(t, x)) = 0 ρ-a.e. in Q and υ(t, x) ∈
∂H(x,∇xu(t, x)) ρ-a.e. in Q.

To prove Theorem 4.8, we need a similar estimate for (4.13) for any u ∈ Kλ
c .

Since u is not smooth in general, we will characterize the estimate (4.13) via the

tangential gradient instead of the usual one.

Lemma 4.11. Let u be a Lipschitz function on Q and ∂tu(t, x)+H(x,∇xu(t, x)) ≤
0 a.e. (t, x) ∈ Q. For any (ρ, υ) ∈ M+

b (Q) × L1
ρ(Q)

N satisfying the continuity

equation

−divt,x (ρ, υρ) = δ1 ⊗ ρ1 − δ0 ⊗ ρ0,
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we have

∇ρu(t, x) · (1, υ(t, x)) ≤ L(x, υ(t, x)) ρ-a.e. (t, x) in Q.

Proof. Let uε be the sequence as in Lemma 4.6. Since −divt,x (ρ, υρ) = δ1 ⊗ ρ1 −
δ0 ⊗ ρ0, we see that (1, υ(t, x)) ∈ Tρ(t, x) for ρ-a.e. (t, x), where Tρ(t, x) is the

tangential space w.r.t. ρ. Using Lemma 4.6 and the continuity of the tangential

gradient operator (see e.g. Chapter 1 or [62, Proposition 4.5]), we have

∫∫

Q

∇ρu · (1, υ)ξ dρ = lim
ε→0

∫∫

Q

∇ρuε · (1, υ)ξ dρ

= lim
ε→0

∫∫

Q

∇t,xuε · (1, υ)ξ dρ

≤
∫∫

Q

L(x, υ(t, x))ξ dρ ∀ξ ∈ D(RN+1), ξ ≥ 0.

Thus the result of the lemma follows.

Proof of Theorem 4.8. Let (ρ, υ, θ0, θ1) ∈ Bc and (λ, u) ∈ R+ × Kλ
c be admissible

elements, respectively. Let uǫ be the sequence given by Lemma 4.6. By (4.22) and

Lemma 4.11, we have

∫
u(1, .) dν −

∫
u(0, .) dµ+ λ(m− µ(RN))

= lim
ǫ→0

∫
uǫ dν −

∫
uǫ dµ+ λ(m− µ(RN))

= lim
ǫ→0



∫∫

Q

(∂tuε +∇xuε · υ) dρ+
∫

RN

uε(1, .)dθ
1 −

∫

RN

(uε(0, .) + λ) dθ0




= lim
ǫ→0

∫∫

Q

(∂tuε +∇xuε · υ) dρ+
∫

RN

u(1, .)dθ1 −
∫

RN

(u(0, .) + λ) dθ0

≤ lim
ǫ→0

∫∫

Q

∇t,xuε · (1, υ)dρ

=

∫∫

Q

∇ρu · (1, υ)dρ

≤
∫∫

Q

L(x, υ(t, x))dρ.

(4.26)

1. From the assumptions on optimalities and the duality (4.20), the inequalities
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in (4.26) become equalities. These imply that

∫∫

Q

∇ρu · (1, υ)dρ =
∫∫

Q

L(x, υ(t, x))dρ,

or equivalently

L(x, υ(t, x)) = ∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. in Q (by Lemma 4.11),

and that
∫
RN

u(1, .)dθ1 = 0,
∫
RN

(u(0, .) + λ)dθ0 = 0. These show that (ρ, υ, θ0, θ1, u)

satisfies the system (PDEλ).

2. Conversely, if (ρ, υ, θ0, θ1, u) satisfies the system (PDEλ), the inequalities in

(4.26) are equalities. Using the duality (4.20), we obtain the desired optimalities.

Remark 4.12. A solution (Φ∗, θ0∗, θ1∗) of the Fenchel–Rockafellar dual

formulation (4.24) gives a couple of inactive submeasures and therefore active

submeasures ρ∗0 = µ− θ0∗ and ρ∗1 = ν − θ1∗.

This remark allows us to solve the PMK problem by using numerical methods

for approximation of the Fenchel–Rockafellar dual problem.

4.4 Numerical approximation

We will apply the ALG2 algorithm to the dual formulation on the right hand

side of (4.12) in order to give numerical approximations for the optimal partial

transport problem. We will solve for active submeasures ρ0 = µ− θ0, ρ1 = ν − θ1

and the optimal movement of density ρt from ρ0 to ρ1.

Recall that the dual maximization formulation in (4.12) can be rewritten as

inf {F(λ, u) + G(Λ(λ, u)) : (λ, u) ∈ V } ,

where

F(λ, u) := −
∫
u(1, .) dν+

∫
u(0, .) dµ−λ(m−µ(RN )) for (λ, u) ∈ V := R×C1,1(Q),

Λ(λ, u) := (∇t,xu, −λ− u(0, .), u(1, .)) ∈ Z := Cb(Q)
N+1 × Cb(R

N)× Cb(R
N)

102 Optimal Partial Transport and Constrained Matching Problems



Chapter 4: Optimal Partial Transport with Lagrangian costs

and, for all (q, z, w) ∈ Z,

G(q, z, w) :=




0 if z(x) ≤ 0, w(x) ≤ 0 and q = (q1(t, x), qN (t, x)) ∈ Kx ∀(t, x) ∈ Q

+∞ otherwise

with Kx :=
{
(a, b) ∈ R× RN : a+H(x, b) ≤ 0

}
, x ∈ RN .

Let us discuss the details of computation. Actually, in computation, we

replace V, Z by finite-dimensional spaces, for example, using Lagrangian piecewise

polynomials. We denote by Pi the space of piecewise polynomials of degree i,

i = 1, 2. We will use V = (R, P2) and Z = (PN+1
1 , P2, P2), where P

N
1 := (

N times︷ ︸︸ ︷
P1, ..., P1).

We use L2-norm for P1, P2, P
N+1
1 .

• Step 1: We split into two steps: First using λi to compute ui+1 and then using

ui+1 to calculate λi+1.

1. For ui+1, we solve

min
u

{
− (〈u(1, .), ν〉 − 〈u(0, .), µ〉) + 〈(σi, θ0i , θ1i ), (∇t,xu,−u(0, .), u(1, .))〉

+
r

2
|(∇t,xu,−λi − u(0, .), u(1, .))− (qi, zi, wi)|2

}
.

This is a quadratic problem which is equivalent to a linear equation with a positive-

definite coefficient matrix. So this step can be solved effectively by many solvers.

The linear equation is detailed as (by taking derivative w.r.t. u)

r〈∇t,xui+1,∇t,xφ〉+ r〈ui+1(1, .), φ(1, .)〉+ r〈ui+1(0, .), φ(0, .)〉
= 〈φ(1, .), ν〉 − 〈φ(0, .), µ〉 − 〈(σi, θ0i , θ1i ), (∇t,xφ,−φ(0, .), φ(1, .))〉
+ r〈(qi, zi, wi) , (∇t,xφ,−φ(0, .), φ(1, .))〉 − r〈λi, φ(0, .)〉 for all (t, φ) ∈ V.

2. For λi+1,

min
λ∈R

{
−λ(m− µ(Ω)) + 〈(σi, θ0i , θ1i ), (0,−λ, 0)〉+

r

2
|−λ− ui+1(0, .)− zi|2

}
,

which is equivalent to

λi+1 =

m− µ(Ω) +
∫
Ω

θ0i − r
∫
Ω

(zi + ui+1(0, .))

r
∫
Ω

1
.
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• Step 2: Since the function G(q, z, w) has the form of G1(q) + G2(z) + G3(w), we

solve separately for the variables q, z, w.

1. For zi+1,

zi+1 ∈ argmin
z∈P2

{
I[z≤0] − 〈θ0i , z〉+

r

2
|−λi+1 − ui+1(0, .)− z|2

}

= Proj{[z∈P2:z≤0]}

(
−λi+1 − ui+1(0, .) +

θ0i
r

)
.

This is computed in pointwise, i.e., given a grid with vertices xj, then

zi+1(xj) = Proj{[s∈R:s≤0]}

(
−λi+1 − ui+1(0, .)(xj) +

θ0i (xj)

r

)

= min

{
−λi+1 − ui+1(0, .)(xj) +

θ0i (xj)

r
, 0

}
.

2. For wi+1, similarly,

wi+1 = Proj{[w∈P2:w≤0]}

(
ui+1(1, .) +

θ1i
r

)
.

3. For qi+1, similarly,

qi+1 = ProjKx

(
∇t,xui+1 +

σi
r

)
.

• Step 3: Update Lagrangian multipliers.

4.5 Some examples

In all the examples below, we work on the square Ω = [0, 1] × [0, 1] in R2 and

use the discretization size 36 × 36 × 9 for the spatial-time variable. We test the

examples for costs of the form

c(x, y) = inf
ξ





1∫

0

L(ξ(t), ξ̇(t)dt : ξ ∈ Lip([0, 1]; Ω), ξ(0) = x, ξ(1) = y



 ,

with L(x, v) = k(x)|v|2, k ∈ C(Ω), k(x) > 0 for all x ∈ Ω, v ∈ R2. For this cost,

the last projection in the Step 2 (the projection on Kx) is converted to a problem

on R and the latter is computed easily by the bisection method.

Example 4.13. The source and the target are Gaussian distributions of the same

mass for the Lagrangian L(x, v) = |v|2. We want to transport optimally a half of
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the mass. More details,

µ = 10 exp(−40(x1 − 0.25)2 − 40(x2 − 0.75)2),

ν = 10 exp(−40(x1 − 0.75)2 − 40(x2 − 0.25)2).

The active submeasures and the optimal displacement are given in Figure 4.1.

Timestep 0 and timestep 9 (ρ0 and ρ1) are active submeasures of the source and

the target, respectively. The intermediate timesteps show the optimal movement

of density from ρ0 to ρ1.

IsoValue
-0.526316
0.263158
0.789474
1.31579
1.84211
2.36842
2.89474
3.42105
3.94737
4.47368
5
5.52632
6.05263
6.57895
7.10526
7.63158
8.15789
8.68421
9.21053
10.5263

Source

IsoValue
-0.579797
0.168792
0.667851
1.16691
1.66597
2.16503
2.66409
3.16315
3.6622
4.16126
4.66032
5.15938
5.65844
6.1575
6.65656
7.15562
7.65468
8.15373
8.65279
9.90044

Timestep 0

IsoValue
-0.409258
0.188779
0.587471
0.986162
1.38485
1.78354
2.18224
2.58093
2.97962
3.37831
3.777
4.17569
4.57438
4.97308
5.37177
5.77046
6.16915
6.56784
6.96653
7.96326

Timestep 1

IsoValue
-0.366258
0.170111
0.527691
0.88527
1.24285
1.60043
1.95801
2.31559
2.67317
3.03075
3.38833
3.74591
4.10349
4.46107
4.81864
5.17622
5.5338
5.89138
6.24896
7.14291

Timestep 2

IsoValue
-0.347182
0.157459
0.493886
0.830313
1.16674
1.50317
1.83959
2.17602
2.51245
2.84888
3.1853
3.52173
3.85816
4.19458
4.53101
4.86744
5.20387
5.54029
5.87672
6.71779

Timestep 3

IsoValue
-0.342306
0.154687
0.486015
0.817344
1.14867
1.48
1.81133
2.14266
2.47399
2.80531
3.13664
3.46797
3.7993
4.13063
4.46196
4.79329
5.12461
5.45594
5.78727
6.61559

Timestep 4

IsoValue
-0.342352
0.154612
0.485922
0.817231
1.14854
1.47985
1.81116
2.14247
2.47378
2.80509
3.1364
3.46771
3.79901
4.13032
4.46163
4.79294
5.12425
5.45556
5.78687
6.61514

Timestep 5

IsoValue
-0.347132
0.157469
0.493869
0.83027
1.16667
1.50307
1.83947
2.17587
2.51227
2.84867
3.18507
3.52147
3.85787
4.19427
4.53068
4.86708
5.20348
5.53988
5.87628
6.71728

Timestep 6

IsoValue
-0.366485
0.169848
0.527404
0.88496
1.24252
1.60007
1.95763
2.31518
2.67274
3.0303
3.38785
3.74541
4.10296
4.46052
4.81807
5.17563
5.53319
5.89074
6.2483
7.14219

Timestep 7

IsoValue
-0.409275
0.188694
0.58734
0.985986
1.38463
1.78328
2.18192
2.58057
2.97922
3.37786
3.77651
4.17515
4.5738
4.97245
5.37109
5.76974
6.16838
6.56703
6.96568
7.96229

Timestep 8

IsoValue
-0.579495
0.169071
0.668115
1.16716
1.6662
2.16525
2.66429
3.16333
3.66238
4.16142
4.66047
5.15951
5.65855
6.1576
6.65664
7.15568
7.65473
8.15377
8.65282
9.90043

Timestep 9

IsoValue
-0.526316
0.263158
0.789474
1.31579
1.84211
2.36842
2.89474
3.42105
3.94737
4.47368
5
5.52632
6.05263
6.57895
7.10526
7.63158
8.15789
8.68421
9.21053
10.5263

Target

Fig. 4.1: Active submeasures and their displacement

Example 4.14. We take the similar data to the previous example but the source

and the target are taken as the sums of two distributions,

µ = 10 exp(−40(x1−0.25)2−40(x2−0.25)2)+10 exp(−40(x1−0.75)2−40(x2−0.75)2),

ν = 10 exp(−40(x1−0.75)2−40(x2−0.25)2)+10 exp(−40(x1−0.25)2−40(x2−0.75)2).

Optimal Partial Transport and Constrained Matching Problems 105



4.5. Some examples

The result is given in Figure 4.2.

IsoValue
-0.526316
0.263158
0.789474
1.31579
1.84211
2.36842
2.89474
3.42105
3.94737
4.47368
5
5.52632
6.05263
6.57895
7.10526
7.63158
8.15789
8.68421
9.21053
10.5263

Source

IsoValue
-0.430252
0.0908771
0.438296
0.785716
1.13314
1.48055
1.82797
2.17539
2.52281
2.87023
3.21765
3.56507
3.91249
4.25991
4.60733
4.95475
5.30217
5.64959
5.99701
6.86555

Timestep 0

IsoValue
-0.302817
0.136771
0.42983
0.722888
1.01595
1.30901
1.60206
1.89512
2.18818
2.48124
2.7743
3.06736
3.36042
3.65347
3.94653
4.23959
4.53265
4.82571
5.11877
5.85141

Timestep 1

IsoValue
-0.276234
0.124799
0.392154
0.65951
0.926865
1.19422
1.46158
1.72893
1.99629
2.26364
2.531
2.79835
3.06571
3.33306
3.60042
3.86778
4.13513
4.40249
4.66984
5.33823

Timestep 2

IsoValue
-0.264929
0.116464
0.370725
0.624987
0.879249
1.13351
1.38777
1.64203
1.8963
2.15056
2.40482
2.65908
2.91334
3.1676
3.42187
3.67613
3.93039
4.18465
4.43891
5.07457

Timestep 3

IsoValue
-0.256217
0.113175
0.359436
0.605697
0.851958
1.09822
1.34448
1.59074
1.837
2.08326
2.32952
2.57579
2.82205
3.06831
3.31457
3.56083
3.80709
4.05335
4.29961
4.91527

Timestep 4

IsoValue
-0.256183
0.112651
0.358541
0.60443
0.85032
1.09621
1.3421
1.58799
1.83388
2.07977
2.32566
2.57155
2.81744
3.06332
3.30921
3.5551
3.80099
4.04688
4.29277
4.9075

Timestep 5

IsoValue
-0.263155
0.117339
0.371001
0.624664
0.878326
1.13199
1.38565
1.63931
1.89298
2.14664
2.4003
2.65396
2.90763
3.16129
3.41495
3.66861
3.92228
4.17594
4.4296
5.06376

Timestep 6

IsoValue
-0.277858
0.122348
0.389152
0.655956
0.922759
1.18956
1.45637
1.72317
1.98997
2.25678
2.52358
2.79039
3.05719
3.32399
3.5908
3.8576
4.1244
4.39121
4.65801
5.32502

Timestep 7

IsoValue
-0.302171
0.136641
0.429183
0.721724
1.01427
1.30681
1.59935
1.89189
2.18443
2.47697
2.76951
3.06206
3.3546
3.64714
3.93968
4.23222
4.52476
4.8173
5.10985
5.8412

Timestep 8

IsoValue
-0.384869
0.135835
0.48297
0.830106
1.17724
1.52438
1.87151
2.21865
2.56578
2.91292
3.26005
3.60719
3.95433
4.30146
4.6486
4.99573
5.34287
5.69
6.03714
6.90498

Timestep 9

IsoValue
-0.526316
0.263158
0.789474
1.31579
1.84211
2.36842
2.89474
3.42105
3.94737
4.47368
5
5.52632
6.05263
6.57895
7.10526
7.63158
8.15789
8.68421
9.21053
10.5263

Target

Fig. 4.2: Active submeasures and their displacement

Example 4.15. In this example, we take L(x, v) = k(x)|v|2 with

k(x1, x2) = 1 + 15 exp(−45(x1 − 0.5)2 − 45(x2 − 0.5)2),

µ = 20 exp(−60(x1 − 0.2)2 − 60(x2 − 0.8)2),

ν = 20 exp(−60(x1 − 0.8)2 − 60(x2 − 0.2)2),

and

m =
mmax

2
.

This cost means that we have to pay much if we transport through around (0.5, 0.5)

(where k(x) is big). The numerical result is illustrated in Figure 4.3.
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IsoValue
-1.05082
0.525408
1.57622
2.62704
3.67786
4.72867
5.77949
6.83031
7.88112
8.93194
9.98276
11.0336
12.0844
13.1352
14.186
15.2368
16.2877
17.3385
18.3893
21.0163

Source

IsoValue
-0.788189
0.315923
1.052
1.78807
2.52415
3.26022
3.9963
4.73237
5.46845
6.20452
6.9406
7.67667
8.41275
9.14882
9.8849
10.621
11.357
12.0931
12.8292
14.6694

Timestep 0

IsoValue
-0.645507
0.319435
0.96273
1.60602
2.24932
2.89261
3.53591
4.1792
4.8225
5.46579
6.10909
6.75238
7.39568
8.03897
8.68227
9.32556
9.96886
10.6122
11.2554
12.8637

Timestep 1

IsoValue
-0.671855
0.332662
1.00234
1.67202
2.3417
3.01137
3.68105
4.35073
5.02041
5.69009
6.35976
7.02944
7.69912
8.3688
9.03848
9.70816
10.3778
11.0475
11.7172
13.3914

Timestep 2

IsoValue
-0.687655
0.34065
1.02619
1.71172
2.39726
3.08279
3.76833
4.45387
5.1394
5.82494
6.51047
7.19601
7.88155
8.56708
9.25262
9.93815
10.6237
11.3092
11.9948
13.7086

Timestep 3

IsoValue
-0.704916
0.349202
1.05195
1.75469
2.45744
3.16019
3.86293
4.56568
5.26842
5.97117
6.67391
7.37666
8.07941
8.78215
9.4849
10.1876
10.8904
11.5931
12.2959
14.0527

Timestep 4

IsoValue
-0.705913
0.349722
1.05348
1.75724
2.46099
3.16475
3.86851
4.57226
5.27602
5.97978
6.68354
7.38729
8.09105
8.79481
9.49856
10.2023
10.9061
11.6098
12.3136
14.073

Timestep 5

IsoValue
-0.68805
0.340846
1.02678
1.71271
2.39864
3.08457
3.7705
4.45643
5.14236
5.82829
6.51422
7.20015
7.88608
8.57201
9.25794
9.94388
10.6298
11.3157
12.0017
13.7165

Timestep 6

IsoValue
-0.671711
0.332589
1.00212
1.67166
2.34119
3.01072
3.68026
4.34979
5.01932
5.68886
6.35839
7.02792
7.69746
8.36699
9.03652
9.70605
10.3756
11.0451
11.7147
13.3885

Timestep 7

IsoValue
-0.645015
0.319188
0.96199
1.60479
2.24759
2.8904
3.5332
4.176
4.8188
5.4616
6.1044
6.74721
7.39001
8.03281
8.67561
9.31841
9.96122
10.604
11.2468
12.8538

Timestep 8

IsoValue
-0.790055
0.314187
1.05035
1.78651
2.52267
3.25883
3.99499
4.73115
5.46731
6.20347
6.93964
7.6758
8.41196
9.14812
9.88428
10.6204
11.3566
12.0928
12.8289
14.6693

Timestep 9

IsoValue
-1.05082
0.525408
1.57622
2.62704
3.67786
4.72867
5.77949
6.83031
7.88112
8.93194
9.98276
11.0336
12.0844
13.1352
14.186
15.2368
16.2877
17.3385
18.3893
21.0163

Target

Fig. 4.3: Active submeasures and their displacement
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Chapter 5

Optimal Constrained Matching

Problem for the Euclidean

Distance

This last chapter deals with some theoretical and numerical aspects for an optimal

matching problem with constraints. It is known that the uniqueness of optimal

matching measure does not hold even with Lp sources and targets. In this chapter,

the uniqueness is proved under geometric conditions. On the other hand, we also

introduce a dual formulation with a linear cost functional on convex set and show

that its Fenchel–Rockafellar dual formulation gives right solution to the optimal

matching problem. Based on our formulations, a numerical approximation is given.

We compute at the same time the optimal matching measure, optimal flows and

Kantorovich potentials. The convergence of discretization is studied in detail.

5.1 Introduction

Optimal matching problem (see [30, 34, 41] and the references therein) deals

with the problem to transport two measures of commodities into a prescribed

location and to match them there in such a way to minimize the total cost

of both transportations. The problem with uniformly convex costs is studied

in [29, 30, 34, 41] with applications in economic theory. The case where costs

are governed by the Euclidean distance is studied in [69] with connection to

p−Laplacian type equations.

Optimal constrained matching problem (see [9, 68]), which is a variant from

the optimal matching problem and the partial transport problem, consists in
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transporting two kinds of goods and matching them into a target set with

constraints on the amount of matter at the target. Mathematically, the optimal

matching problem with constraints for the Euclidean costs can be modeled as

follows: Let Ω be a bounded, convex set of RN and f1, f2 ∈ M+
b (Ω) represent

source measures of the same mass, i.e., f1(Ω) = f2(Ω). The constraint on the

target set is represented by a measure Θ ∈ M+
b (Ω), which must satisfy

f1(Ω) = f2(Ω) < Θ(Ω).

The optimal matching problem reads

W (f1, f2; Θ) := inf
(γ1,γ2)∈π(f1,f2;Θ)



∫

Ω×Ω

|x− y|dγ1 +
∫

Ω×Ω

|x− y|dγ2


 , (5.1)

with

π(f1, f2; Θ) :=
{
(γ1, γ2) ∈ M+

b (Ω× Ω)2 : πy#γ1 = πy#γ2 ≤ Θ, πx#γi = fi, i = 1, 2
}
.

An optimal solution (γ1, γ2) is called a couple of optimal plans and ρ := πy#γ1 =

πy#γ2 is called an optimal matching measure. Obviously, we can write (5.1) as

follows

W (f1, f2; Θ) = inf
ρ∈M+

b
(Ω)

{
W1(f1, ρ) +W1(f2, ρ) : ρ ≤ Θ, ρ(Ω) = f1(Ω)

}
, (OM)

where W1(., .) is the 1-Wasserstein distance.

The problem can be also reformulated by saying that masses moving from f1 to

f2 are forced to pass through an unknown (optimal) distribution less than Θ and

the transportation cost should be optimal. In applications, f1 and f2 can be

distributions of consumers while Θ would be a distribution of commodities.

Using the direct method, it is not difficult to prove the existence of an optimal

matching measure. Our main interest lies in the uniqueness and numerical

approximation of solution. As we will see, the uniqueness of optimal matching

measure does not hold even with regular f1, f2,Θ. An additional geometric

condition, as well as the absolute continuity of the measure Θ, is needed for the

uniqueness. Concerning numerical computation, we develop the variational study

of the problem.

The optimal constrained matching problem (OM) is recently studied

theoretically in [68] in connection with p–Laplacian type systems by using PDE
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techniques. Inspiring from the work of Evans and Gangbo [45] on the optimal

transport theory, the authors in [68] show that an optimal matching measure and

associated Kantorovich potentials can be obtained from limits in p–Laplacian type

equations as p → +∞. In [9], Barrett and Prigozhin use approximated nonlinear

PDEs and Raviart–Thomas elements to give a numerical approximation to the

problem (5.1) in the case where Θ = CLN D, i.e., Θ is a constant C on the

destination set D.

In this chapter, we focus more on variational aspects and the uniqueness

of optimal matching measure. We introduce some equivalent formulations for

the problem (5.1). We give a sufficient condition to ensure the uniqueness of

optimal matching measure and show that a solution of the Fenchel–Rockafellar

dual formulation is the right solution to the optimal matching problem under a

suitable geometric condition. Numerical aspects are also studied with the help of

the equivalent formulations. We show the convergence of discretization and give

details in solving the discretized problems.

It is important to mention at the beginning that the optimal constrained

matching problem behaves differently from the optimal partial transport. Firstly,

in contrast to the PMK problem, the Fenchel–Rockafellar duality does not give the

right solution, in general. Secondly, the uniqueness of optimal matching measure

does not hold even with regular sources and targets.

The chapter is organized as follows: In the following section we present our main

results such as the uniqueness of optimal matching measure, dual maximization

problem, connection between a minimal matching flow problem and (OM), the

convergence of discretization and a numerical example illustrating our approach.

The proofs are discussed in the next sections. More precisely, section 5.3 is devoted

to the duality issue while the uniqueness is discussed in section 5.4. Numerical

analysis of the problem is given in section 5.5 with a study of the convergence of

discretization. In the last section, we give some numerical examples.

5.2 Main results

Throughout this chapter, Ω ⊂ RN is a bounded convex domain and f1, f2, Θ ∈
M+

b (Ω) are nonnegative Radon measures such that

f1(Ω) = f2(Ω) < Θ(Ω).

110 Optimal Partial Transport and Constrained Matching Problems



Chapter 5: Optimal Constrained Matching Problem for the Euclidean Distance

It is not difficult to see that the feasible set π(f1, f2; Θ) is closed under the weak

convergence of Radons measures. This observation gives easily the existence of

a couple of optimal plans (γ1, γ2) and thus an optimal matching measure ρ :=

πy#γ1 = πy#γ2. However, in general the uniqueness of optimal matching measures

does not hold. For instance, let f1 = L [0, 1], f2 = L [5, 6] and Θ = L [2, 4],

where L is the Lebesgue measure on R. We see that there are infinitely many

optimal matching measures with the total cost W (f1, f2; Θ) = 5 (one can verify

this by using the duality in Theorem 5.3 below).

Here, we prove that under additional conditions on the supports of Θ, fi, for

i = 1, 2 and the absolute continuity of Θ, there is a unique optimal matching

measure. Let us fix the assumption

S(f1, f2) ∩ supp(Θ) = ∅, (H)

where S(f1, f2) :=
{
z = (1− t)x+ ty : x ∈ supp(f1), y ∈ supp(f2) and t ∈ [0, 1]

}
.

Theorem 5.1. Assume that Θ ∈ L1 and that (H) holds. There exists a unique

optimal matching measure ρ.

Notice that the absolute continuity of Θ is necessary for the uniqueness. Indeed,

taking f1 = δ(0,−1), f2 = δ(0,1) and Θ = δ(−1,0) + δ(1,0) in R2, then S(f1, f2) ∩
supp(Θ) = ∅ and there are again infinitely many optimal matching measures of

form ρ = αδ(−1,0) + βδ(1,0) with α ≥ 0, β ≥ 0, α + β = 1. So, the conditions in

Theorem 5.1 are somehow optimal for the uniqueness.

Now, to build numerical computation of the solution to the optimal matching

problem (OM), our main objective is to prove rigorously all the necessary materials

to use the augmented Lagrangian method. Our approach is variational. To this

aim, we introduce a suitable dual formulation to (OM) which moves the problem

into the scope of the general formulation

inf
u∈V

F(u) + G(Λu), (5.2)

where V and Z are two Hilbert spaces, F : V −→ (−∞,+∞] and G : Z −→
(−∞,+∞] are convex and l.s.c., and Λ ∈ L(V, Z) the space of continuous linear

operators. Once such a dual formulation is given, the ALG2 method (see Chapter

1) can be applied to give numerical solutions to both the problem (5.2) and the

Fenchel–Rockafellar dual problem of (5.2):

sup
σ∈Z∗

(−F∗(−Λ∗σ)− G∗(σ)) . (5.3)
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Recall that the necessary and sufficient condition for optimality of (5.2) and (5.3)

reads as

−Λ∗σ ∈ ∂F(u) and σ ∈ ∂G(Λu). (5.4)

It is expected that the Fenchel–Rockafellar dual form (5.3) will give informations

on the original matching problem. We will see that this is again true under the

necessary geometric condition (H).

We come back to the duality issue for (OM). As usual, let us denote by Lip1(Ω)

the set of 1-Lipschitz functions on Ω. By extension, we usually identify Lip1(Ω)

with Lip1(Ω). Let us recall that the duality issue was already studied in [68] with

the following result:

Theorem 5.2 ([68]). Assume that f1, f2 ∈ L∞(Ω). One has

W (f1, f2; Θ) = max

{
−
∫
u1df1 −

∫
u2df2 −

∫
(u1 + u2)

−dΘ : u1, u2 ∈ Lip1(Ω)

}
.

(5.5)

However, even if the problem (5.5) falls into the scope of (5.2), unfortunately

the corresponding F is nonlinear on its variable u := (u1, u2) and (5.5) is not very

useful for numerical computation. Here, we introduce a new dual formulation with

the following linear cost functional:

max

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K

}
, (5.6)

where

K := {(u1, u2) ∈ Lip1(Ω)× Lip1(Ω) : u1 + u2 ≤ 0} .

Using the Fenchel–Rockafellar dual theory to the maximization problem (5.6),

we also introduce the minimal matching flow (MMF) problem:

min
{
|Φ1|(Ω) + |Φ2|(Ω) : (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ)

}
, (MMF)

where

Ψ(f1, f2; Θ) :=
{
(Φ1,Φ2, ν) ∈ Mb(Ω)

N×Mb(Ω)
N×M+

b (Ω) : −∇·Φi = Θ−ν−fi in D′

(RN )
}
.

As usual, the divergence constraint is understood in the sense of distributions, i.e.

〈∇φ,Φi〉(C(Ω)N ,Mb(Ω)N ) =

∫

Ω

∇φ · Φi

|Φi|
d|Φi|=

∫

Ω

φd(Θ− ν − fi),
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for any smooth compactly supported function φ ∈ C∞
c (RN).

Our main result concerning duality and quivalent formulations is summarized

in the following theorem.

Theorem 5.3. Let f1, f2,Θ be Radon measures. We have

W (f1, f2; Θ) = max

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K

}

= min
{
|Φ1|(Ω) + |Φ2|(Ω) : (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ)

}
.

(5.7)

Moreover, we have that

• (γ1, γ2) ∈ π(f1, f2; Θ) and (u1, u2) ∈ K are optimal for the optimal

constrained matching problem (5.1) and the maximization problem (5.6),

respectively, if and only if





u1 + u2 = 0, (Θ− ρ)-a.e., with ρ := πy#γ1 = πy#γ2

u1(y)− u1(x) = |y − x| for all (x, y) ∈ supp(γ1)

u2(y)− u2(x) = |y − x| for all (x, y) ∈ supp(γ2).

(5.8)

• (u1, u2) ∈ K and (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ) are optimal for (5.6) and (MMF),

respectively, if and only if the following system holds





−∇ · Φi = Θ− ν − fi in D′
(RN), i = 1, 2

Φi

|Φi|
= ∇|Φi|ui |Φi|-a.e. in Ω, i = 1, 2

u1 + u2 = 0 ν–a.e. in Ω.

(5.9)

Remark 5.4. If Θ is absolutely continuous, the optimality condition (5.9) can be

simplified by using the usual gradient instead of the tangential gradient. In fact,

in this case, it is known that Φi is also absolutely continuous (see for instance [1])

and that u is then differentiable |Φi|-a.e.. By regularization via convolution, we

can use u as test function in the first equation of (5.9), and using the duality (5.7),

we get Φi

|Φi|
= ∇ui for |Φi|-a.e. in Ω.

Roughly speaking, the dual maximization formulation (5.6), the problem

(MMF) and the system (5.9) correspond to (5.2), (5.3) and the optimality condition

(5.4), respectively. In the optimal mass transportation problem, these three

formulations contain all the informations concerning the optimal transportation.
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This is extensively used to give numerical approximations for some variants of

the optimal mass transport problem (see for instance [12, 13, 15, 59]). For the

optimal matching problem, we need to compute moreover the optimal matching

measure. As an immediate consequence of the duality equalities in Theorem 5.3,

the following result shows how this can be carried out.

Corollary 5.5. Let ρ be an optimal matching measure and Φi be optimal flows for

transporting fi onto ρ, i = 1, 2. Then (Φ1,Φ2, ν) := (Φ1,Φ2,Θ− ρ) is an optimal

solution for the associated problem (MMF). Conversely, if (Φ1,Φ2, ν) is an optimal

solution for the problem (MMF) and ν ≤ Θ, then ρ := Θ−ν is an optimal matching

measure and Φi is an optimal flow of transporting fi onto ρ, i = 1, 2.

This result shows that the connection between (MMF) and (OM) lies in the

condition ν ≤ Θ for an optimal solution (Φ1,Φ2, ν) of (MMF). Unfortunately, this

does not hold in general as shown in the following example.

Fig. 5.1: Example of ν 
 Θ

Example 5.6. On R, taking f1 = δ0, f2 = δ4,Θ = δ1 + δ3, where δi is the

Dirac mass at i on R (see Fig. 5.1). Let ν = δ2 and Φ1 be the optimal flow

of transporting f1 + ν onto Θ (the corresponding plan is described as follows:

f1 = δ0 → δ1, ν = δ2 → δ3) and Φ2 be the optimal flow of transporting f2 + ν onto

Θ (the corresponding plan is described as follows: f2 = δ4 → δ3, ν = δ2 → δ1).

Then (Φ1,Φ2, ν) is an optimal solution of the problem (MMF). Indeed, it is not

difficult to see that the total cost of matching f1 and f2 into Θ is 4. The cost of

the problem (MMF) corresponding to this choice of (Φ1,Φ2, ν) is also 4. From our

duality results, we have the optimality of (Φ1,Φ2, ν), but ν 
 Θ.

However, under the assumption (H), we prove that the constraint ν ≤ Θ is

fulfilled. More precisely, we have

Theorem 5.7. Let f1, f2,Θ ∈ M+
b (Ω) be Radon measures. Assume that (H) holds.

Let (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ) be an optimal solution for the problem (MMF) and

set ρ := Θ− ν. Then ρ ≥ 0 and it is an optimal matching measure.
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Before ending up this section let us show how we use the ALG2 method to

solve numerically the optimal matching problem (OM). For any u = (u1, u2) ∈
V := C1(Ω)× C1(Ω), we set

F(u) :=

∫
u1df1 +

∫
u2df2 −

∫
(u1 + u2)dΘ

Λ(u) := (∇u1,∇u2, u1 + u2),

and for any (p, q, s) ∈ Z := C(Ω)N × C(Ω)N × C(Ω), we set

G(p, q, s) :=




0 if |p(x)|≤ 1, |q(x)|≤ 1, s(x) ≤ 0 ∀x ∈ Ω

+∞ otherwise.

Then the problem

inf
u∈V

F(u) + G(Λu) (5.10)

provides all informations on the optimal matching problem. Indeed, u1, u2 give

Kantorovich potentials and dual variables Φ1,Φ2, ν give information on optimal

flows and optimal matching measure. To solve numerically the problem (5.10)

and its Fenchel–Rockafellar dual formulation (MMF), we consider a regular

triangulation Th of Ω. As before, we fixe an integer k ≥ 1, and we consider Pk the

set of polynomials of degree less or equal than k. Let Eh ⊂ H1(Ω) be the space of

continuous functions on Ω and belonging to Pk on each triangle of Th. We denote

by Yh the space of vectorial functions such that their restrictions belong to (Pk−1)
N

on each triangle of Th. Let f1,h, f2,h,Θh ∈ Eh such that f1,h(Ω) = f2,h(Ω) < Θh(Ω)

and f1,h ⇀ f1, f2,h ⇀ f2, Θh ⇀ Θ weakly* in Mb(Ω). Set Vh := Eh × Eh

and Zh := Yh × Yh × Eh. We approximate the problem (5.10) by the following

finite-dimensional problem: For any (u1, u2) ∈ Vh, we set

Λh(u1, u2) := (∇u1,∇u2, u1 + u2) ∈ Zh,

Fh(u1, u2) := 〈u1, f1,h〉+ 〈u2, f2,h〉 − 〈u1 + u2,Θh〉

and for any (p, q, s) ∈ Zh,

Gh(p, q, s) :=




0 if |p(x)|≤ 1, |q(x)|≤ 1, s(x) ≤ 0 a.e. x ∈ Ω

+∞ otherwise.

The finite-dimensional approximation of (5.10) is given by

Optimal Partial Transport and Constrained Matching Problems 115



5.2. Main results

inf
(u1,u2)∈Vh

Fh(u1, u2) + Gh(Λh(u1, u2)). (5.11)

Note that the cost functional does not change under the translation ũ1 :=

u1 + C, ũ2 := u2 − C, for C ∈ R. In particular, the new couple(
ũ1 := u1 − |Ω|

2

∫
Ω

(u1 − u2), ũ2 := u2 +
|Ω|
2

∫
Ω

(u1 − u2)

)
satisfies

∫
Ω

ũ1 =
∫
Ω

ũ2 and

is optimal if (u1, u2) is optimal.

The next theorem shows that (5.11) is a suitable approximation of (5.10) in

the sense that primal and dual solutions converge to a solution of (5.10) (i.e., a

solution of the maximization problem (5.6)) and a solution of (MMF).

Theorem 5.8. Let (u1,h, u2,h) ∈ Vh be an optimal solution to the approximated

problem (5.11) such that
∫
Ω

u1,h =
∫
Ω

u2,h and let (Φ1,h,Φ2,h, νh) be an optimal dual

solution to (5.11). Then, up to a subsequence, (u1,h, u2,h) converges uniformly

to (u∗1, u
∗
2) an optimal solution of the dual maximization problem (5.6) and

(Φ1,h,Φ2,h, νh) converges weakly* to (Φ1,Φ2, ν) an optimal solution of (MMF).

At last, we solve the finite-dimensional problem (5.11). The details of the

method are given in section 5.5. Here, we just give an illustration of our numerical

results on the following example (see Fig. 5.2): In R2, we take Ω = [0, 1]× [0, 1],

f1 = 4χ[(x−0.2)2+(y−0.8)2<0.01], f2 = 4χ[(x−0.2)2+(y−0.2)2<0.01],

and

Θ = 4χ[(x−0.8)2+(y−0.2)2<0.04].

Fig. 5.2: Optimal matching measure ρ and optimal flows Φ1 and Φ2
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5.3 Proofs of the equivalent formulations

The present section deals with the proofs of dual formulations as well as the

connection between the minimal matching flow and the optimal constrained

matching problem. To begin with, let us recall that for µ1, µ2 ∈ M+
b (Ω) such

that µ1(Ω) = µ2(Ω), one has

W1(µ1, µ2) = max





∫

Ω

ud(µ2 − µ1) : u ∈ Lip1(Ω)





= min
Φ∈Mb(Ω)N

{
|Φ|(Ω) : −∇ · Φ = µ2 − µ1 in D′

(RN)
}
.

(5.12)

Optimality condition reads as





−∇ · Φ = µ2 − µ1 in D′
(RN)

Φ
|Φ|

= ∇|Φ|u |Φ|-a.e. in Ω

u ∈ Lip1(Ω).

Coming back to the optimal constrained matching problem, we start with the

Fenchel–Rockafellar duality between (5.6) and (MMF).

Lemma 5.9. Let f1, f2,Θ ∈ M+
b (Ω) be Radon measures. We have

max

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K

}

= min
{
|Φ1|(Ω) + |Φ2|(Ω) : (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ)

}
.

Keeping in mind the use of augmented Lagrangian methods for numerical

approximation, we use the Fenchel–Rockafellar duality to prove Lemma 5.9.

Proof of Lemma 5.9. We observe that, using the standard smooth approximation

by convolution,

max

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K

}

= sup

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K, u1, u2 ∈ C1(Ω)

}

= − inf
(u1,u2)∈C1(Ω)×C1(Ω)

F(u1, u2) + G(Λ(u1, u2)),
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where F , G and Λ are given in section 5.2. Now, using the Fenchel–Rockafellar

duality, we have

inf
(u1,u2)∈C1(Ω)×C1(Ω)

F(u1, u2) + G(Λ(u1, u2))

= max
(Φ1,Φ2,ν)∈Mb(Ω)N×Mb(Ω)N×Mb(Ω)

{−F∗(−Λ∗(Φ1,Φ2, ν))− G∗(Φ1,Φ2, ν)} .
(5.13)

Thus, it is enough to compute explicitly the above quantities. Since F is linear,

F∗(−Λ∗(Φ1,Φ2, ν)) is finite (and is thus equal to 0) if and only if

〈−Λ∗(Φ1,Φ2, ν), (u1, u2)〉 = F(u1, u2) =

∫
u1df1 +

∫
u2df2 −

∫
(u1 + u2)dΘ

for all (u1, u2) ∈ C1(Ω)× C1(Ω), or

−〈Φ1,∇u1〉 − 〈Φ2,∇u2〉 − 〈ν, u1 + u2〉 =
∫
u1df1 +

∫
u2df2 −

∫
(u1 + u2)dΘ

for all (u1, u2) ∈ C1(Ω) × C1(Ω). This implies that (by taking (u1, u2) = (u1, 0)

and (u1, u2) = (0, u2) as test functions)

−∇ · Φi = Θ− ν − fi in D′

(RN), i = 1, 2.

Next, it is easy to see that

G∗(Φ1,Φ2, ν) =




|Φ1|(Ω) + |Φ2|(Ω) if ν ≥ 0,

+∞, otherwise.

Therefore the proof is completed by substituting F∗ and G∗ into (5.13).

Following immediately from (5.12), we see that

min
{
|Φ1|(Ω) + |Φ2|(Ω) : (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ)

}

= min
ν∈M+

b
(Ω)

{
W1(f1 + ν,Θ) +W1(f2 + ν,Θ) : ν(Ω) = Θ(Ω)− f1(Ω)

}
.

(5.14)

This proposes an alternative formulation of (OM) that we prove directly in the

following lemma.
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Lemma 5.10. Assume that f1, f2,Θ ∈ M+
b (Ω) are Radon measures. We have

min
ρ∈M+

b
(Ω)

{
W1(f1, ρ) +W1(f2, ρ) : ρ ≤ Θ, ρ(Ω) = f1(Ω)

}

= min
ν∈M+

b
(Ω)

{
W1(f1 + ν,Θ) +W1(f2 + ν,Θ) : ν(Ω) = Θ(Ω)− f1(Ω)

}
.

(5.15)

Moreover, if ν is optimal for the right hand side of (5.15) then there exist 0 ≤
θ1, θ2 ≤ Θ, θ1(Ω) = θ2(Ω) = f1(Ω) such that

W1(f1, θ2) = W1(f1, θ1) +W1(θ1, θ2), (5.16)

W1(f2, θ1) = W1(f2, θ2) +W1(θ1, θ2) (5.17)

and

W1(ν,Θ− θ1) +W1(ν,Θ− θ2) = W1(θ1, θ2). (5.18)

Proof. The existence of minimizers follows from the direct method. Now, fix any

ρ ∈ M+
b (Ω) with ρ ≤ Θ, ρ(Ω) = f1(Ω) and set ν := Θ− ρ. By (5.12), we have

W1(f1, ρ) +W1(f2, ρ) = W1(f1 + ν,Θ) +W1(f2 + ν,Θ).

This shows that the left hand side of (5.15) is greater than or equal to the right

hand side. Conversely, take ν ∈ M+
b (Ω) with ν(Ω) = Θ(Ω)− f1(Ω). Consider the

optimal plan γi between fi + ν and Θ. It sends fi to some θi ≤ Θ, i = 1, 2 such

that

W1(f1+ν,Θ) = W1(f1, θ1)+W1(ν,Θ−θ1),W1(f2+ν,Θ) = W1(f2, θ2)+W1(ν,Θ−θ2),

f1(Ω) = θ1(Ω) = θ2(Ω).

By triangular inequality and W1(Θ− θ1,Θ− θ2) = W1(θ1, θ2), we get

W1(f1 + ν,Θ) +W1(f2 + ν,Θ) =W1(f1, θ1) +W1(ν,Θ− θ1) +W1(f2, θ2) +W1(ν,Θ− θ2)

≥W1(f1, θ1) +W1(f2, θ2) +W1(θ1, θ2)

≥ max
i=1,2

{W1(f1, θi) +W1(f2, θi)}

≥ min
i=1,2

{W1(f1, θi) +W1(f2, θi)}

≥ min
ρ∈M+

b
(Ω)

{
W1(f1, ρ) +W1(f2, ρ) : ρ ≤ Θ, ρ(Ω) = f1(Ω)

}
.

(5.19)
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Thus the proof of the equality (5.15) is done. At last, if ν is optimal then all the

inequalities in (5.19) become equalities. This implies (5.16), (5.17) and (5.18).

Proof of Theorem 5.3. The duality (5.7) follows from Lemma 5.9, (5.14) and

Lemma 5.10. It remains to show the optimality conditions (5.8) and (5.9).

Let us begin with the proof of (5.8). For any admissible (u1, u2) ∈ K and

(γ1, γ2) ∈ π(f1, f2; Θ), taking ρ := πy#γ1 = πy#γ2, we have

∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2

≤
∫

(u1 + u2)dρ−
∫
u1df1 −

∫
u2df2

=

∫
(u1(y)− u1(x)) dγ1 +

∫
(u2(y)− u2(x)) dγ2

≤
∫

|x− y|dγ1 +
∫

|x− y|dγ2.

(5.20)

From the duality equalities (5.7), we deduce that (γ1, γ2) and (u1, u2) are optimal

if and only if all the inequalities in (5.20) become equalities. The latter conditions

read as 



∫
(u1 + u2) dΘ =

∫
(u1 + u2) dρ

∫
(u1(y)− u1(x)) dγ1 =

∫
|x− y|dγ1

∫
(u2(y)− u2(x)) dγ2 =

∫
|x− y|dγ2.

This condition is equivalent to (5.8).

For the proof of (5.9), we see that, for any admissible (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ),

by the integration by parts formula, we have

−
∫
u1df1 −

∫
u2df2 +

∫
(u1 + u2)dΘ ≤ −

∫
u1df1 −

∫
u2df2 +

∫
(u1 + u2)d(Θ− ν)

=

∫
u1d(Θ− ν − f1) +

∫
u2d(Θ− ν − f2)

=

∫

Ω

Φ1

|Φ1|
· ∇|Φ1|u1d|Φ1|+

∫

Ω

Φ2

|Φ2|
· ∇|Φ2|u2d|Φ2|

≤ |Φ1|(Ω) + |Φ2|(Ω).
(5.21)

Thanks to (5.7), (u1, u2) and (Φ1,Φ2, ν) are optimal if and only if all the inequalities

in (5.21) become equalities. This is equivalent to the system (5.9).

We end up this section by giving the proof of Theorem 5.7 concerning relation

between (MMF) and (OM).

120 Optimal Partial Transport and Constrained Matching Problems



Chapter 5: Optimal Constrained Matching Problem for the Euclidean Distance

Proof of Theorem 5.7. Assume that (Φ1,Φ2, ν) is optimal for (MMF) which

implies that ν is optimal for the alternative formulation of (OM) given in Lemma

5.10. Take θ1 and θ2 given by Lemma 5.10. Then (5.16) and (5.17) mean that

θ2 is on a geodesic joining θ1 to f2 and θ1 is on a geodesic joining θ2 to f1. The

assumption (H) imposes that θ1 = θ2. To convince the reader, take γf1,1, γ1,2 and

γ2,f2 the optimal plans from f1 to θ1, from θ1 to θ2 and from θ2 to f2. Using the

gluing lemma (see e.g. [89, Lemma 7.6]), we build γf1,1,2 obtained by gluing γf1,1

to γ1,2 and γ1,2,f2 obtained by gluing γ1,2 to γ2,f2 . Then, it holds

W1(f1, θ1) +W1(θ1, θ2) =

∫

Ω
3

|x1 − z1|+|z1 − z2|dγf1,1,2(x1, z1, z2)

= W1(f1, θ2) ≤
∫

Ω
3

|x1 − z2|dγf1,1,2(x1, z1, z2).

By triangular inequality and the continuity of the integrands, we get

|x1 − z1|+|z1 − z2|= |x1 − z2|, i.e., z1 ∈ [x1, z2] for all (x1, z1, z2) ∈ supp(γf1,1,2).

(5.22)

In the same way,

|z1 − z2|+|z2 − x2|= |z1 − x2|, i.e., z2 ∈ [z1, x2] for all (z1, z2, x2) ∈ supp(γ1,2,f2).

(5.23)

If there exists (z1, z2) ∈ supp(γ1,2) such that z1 6= z2 then, using (5.22) and (5.23),

there are x1 ∈ supp(f1), x2 ∈ supp(f2) such that z1 ∈ [x1, z2], z2 ∈ [z1, x2] and

therefore z1, z2 ∈ [x1, x2] (by z1 6= z2), a contradiction with the assumption (H).

This shows that θ1 = θ2. At last, by (5.18), we obtain ν = Θ−θi ≤ Θ, i = 1, 2.

5.4 Uniqueness of optimal matching measure

This section concerns the proof for the uniqueness of optimal matching measure.

Let ρ be an optimal matching measure. Following Corollary 5.5 and Theorem 5.3,

setting ν := Θ− ρ, we have





−∇ · Φi = Θ− ν − fi in D′
(RN), i = 1, 2

Φi

|Φi|
= ∇|Φi|ui |Φi|-a.e. in Ω, i = 1, 2

u1 + u2 = 0 ν–a.e. in Ω,

(5.24)
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where Φi and ui are optimal flows and Kantorovich potentials, respectively. To

prove the uniqueness of optimal matching measures under the assumption (H), we

establish precise expression of ν w.r.t. Θ and ui, for i = 1, 2. More precisely, we

have

Proposition 5.11. Assume that Θ ∈ L1(Ω)+, fi ∈ M+
b (Ω) and that

(Φ1,Φ2, ν, u1, u2) ∈ Mb(Ω)
N × Mb(Ω)

N × M+
b (Ω) × Lip1(Ω) × Lip1(Ω) satisfies

the PDE (5.24). Under the assumption (H), we have ν ≤ Θ and

ν = Θ [u1 + u2 = 0],

where the set [u1 + u2 = 0] := {x ∈ Ω : u1(x) + u2(x) = 0} .

The proof of this result follows as a consequence of the following lemmas.

Lemma 5.12. Let u, v be 1-Lipschitz functions on Ω such that u + v ≤ 0 on Ω.

Assume that u(y1)−u(x1) = |y1−x1| and that u(z)+v(z) = 0 for some z ∈ [x1, y1]

the segment joining x1 to y1. Then

u(s) + v(s) = 0 ∀s ∈ [z, y1]. (5.25)

Moreover, if x2 ∈ Ω is such that v(y1) − v(x2) = |y1 − x2|, then z, y1 and x2 are

aligned.

Proof. We first prove that

v(s) = v(z)− |s− z| ∀s ∈ [z, y1]. (5.26)

Since u is 1-Lipschitz and u(y1)− u(x1) = |y1 − x1|, we have

u(s) = u(z) + |s− z| ∀s ∈ [z, y1]. (5.27)

Using the fact that u+ v ≤ 0, we have

v(s) ≤ −u(s)
= −u(z)− |s− z|
= v(z)− |s− z| ∀s ∈ [z, y1].

Since v is 1-Lipschitz, we get the equality (5.26) and thus (5.25) (by u(z)+v(z) = 0
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and (5.27)). At last, following (5.26) with s = y1,

v(y1) = v(z)− |y1 − z|,

we get, for x2 as in the hypothesis,

|z − x2| ≥ v(z)− v(x2)

= |z − y1|+v(y1)− v(x2)

= |z − y1|+|y1 − x2|.

This implies that z, y1 and x2 are aligned.

We need the following behaviors of fi and Φi, i = 1, 2 on the set [u1 + u2 = 0].

Lemma 5.13. Assume that f1, f2,Θ ∈ M+
b (Ω) and that (H) holds. Let

(Φ1,Φ2, ν, u1, u2) satisfy the PDE (5.24). Then

(i) f1 [u1 + u2 = 0] = f2 [u1 + u2 = 0] = 0;

(ii) LN(supp(Φ1)∩ [u1+u2 = 0]) = LN(supp(Φ2)∩ [u1+u2 = 0]) = 0, where LN
is the Lebesgue measure on RN .

Proof. (i) Thanks to Theorem 5.7, we have ν ≤ Θ. Let us show that

f1 [u1 + u2 = 0] = 0. Assume on the contrary that the conclusion is not

true. Then there exist x1 ∈ [u1 + u2 = 0] and y1 ∈ supp(Θ − ν) such that

(x1, y1) ∈ supp(γ1), where γ1 is the optimal plan from f1 to Θ − ν. Since u1 is a

Kantorovich potential for W1(f1,Θ− ν), we get

u1(y1)− u1(x1) = |x1 − y1|.

Similarly, since y1 ∈ supp(Θ − ν), there is x2 ∈ supp(f2) such that (x2, y1) ∈
supp(γ2) and

u2(y1)− u2(x2) = |x2 − y1|.

By Lemma 5.12, we deduce that x1, y1, x2 are aligned which contradicts with (H).

In much the same way, we get f2 [u1 + u2 = 0] = 0.

(ii) Now, we prove that

LN(supp(Φ1) ∩ [u1 + u2 = 0]) = 0. (5.28)

Thanks to [1, Corollary 6.1] or [5, Theorem 6.2], we know that the set E of right

endpoints of maximal transport rays w.r.t. the Kantorovich potential u1 satisfies
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LN(E) = 0. To prove (5.28), it is enough to show that

supp(Φ1) ∩ [u1 + u2 = 0] ⊂ E.

Assume on the contrary that there exists z ∈ supp(Φ1) ∩ [u1 + u2 = 0] such that

z /∈ E. Then there exists (x1, y1) ∈ supp(f1)× supp(Θ− ν) such that z ∈ [x1, y1[

and u1(y1) = u1(x1) + |y1 − x1|. On the other hand, since y1 ∈ supp(Θ− ν), there

exists x2 ∈ supp(f2) such that

u2(y1)− u2(x2) = |y1 − x2|.

Since u1(z) + u2(z) = 0, using Lemma 5.12, we deduce that z, y1 and x2 are on

a straight line. Thus x1, y1 and x2 are aligned (by z ∈ [x1, y1[). This is again a

contradiction with (H).

Proof of Proposition 5.11. We use notations of the above lemmas. By Theorem

5.7, we have ν ≤ Θ. Following directly from the PDE (5.24), we have

−∇ · (Φ1 + Φ2) = 2(Θ− ν)− (f1 + f2).

This implies that

the measure 2(Θ− ν)− (f1 + f2) is concentrated on supp(Φ1 + Φ2).

In particular, 2(Θ − ν) [u1 + u2 = 0] − (f1 + f2) [u1 + u2 = 0] is concentrated

on [u1 + u2 = 0] ∩ supp(Φ1 + Φ2). Thanks to Lemma 5.13 (i), we deduce that

2(Θ − ν) [u1 + u2 = 0] is concentrated on [u1 + u2 = 0] ∩ supp(Φ1 + Φ2). Since

(Θ−ν) ∈ L1, using Lemma 5.13 (ii) and the fact that supp(Φ1+Φ2) ⊂ supp(Φ1)∪
supp(Φ2), we get

(Θ− ν) [u1 + u2 = 0] = 0.

Since u1 + u2 = 0 ν–a.e. in Ω, we deduce that

ν = Θ [u1 + u2 = 0].

We can now conclude the proof for the uniqueness of optimal matching

measures with the following arguments.
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Proof of Theorem 5.1. We fix a maximizer (u1, u2) of the maximization problem

(5.6). Then if ρ1 and ρ2 are optimal matching measures then νi := Θ− ρi, i = 1, 2

satisfies the PDE (5.24). Thanks to Proposition 5.11, we get

ρ1 = Θ− ν1 = Θ [u1 + u2 < 0] = Θ− ν2 = ρ2.

Remark 5.14. Following from the proof, the unique optimal matching measure

has the form

ρ = Θ [u1 + u2 < 0],

for any maximizer (u1, u2) of the dual problem (5.6).

5.5 Numerical analysis for the problem

The present section concerns on numerical aspects of the matching problem.

5.5.1 Convergence of the discretization

Proof of Theorem 5.8. The optimality condition of (5.11) is

−Λ∗
h(Φ1,h,Φ2,h, νh) = ∂Fh(u1,h, u2,h) in V ∗

h

(or equivalently, −〈(Φ1,h,Φ2,h, νh),Λh(u, v)〉 = Fh(u, v) ∀(u, v) ∈ Vh), and

(Φ1,h,Φ2,h, νh) ∈ ∂Gh(Λh(u1,h, u2,h)).

Writing these in detail, we have

−〈Φ1,h,∇u〉−〈Φ2,h,∇v〉−〈νh, u+v〉 = 〈f1,h, u〉+〈f2,h, v〉−〈Θh, u+v〉 ∀(u, v) ∈ Vh,

(5.29)

and 



Φ1,h ∈ ∂IB(Yh,‖.‖∞)
(∇u1,h)

Φ2,h ∈ ∂IB(Yh,‖.‖∞)
(∇u2,h)

νh ∈ ∂I{z∈Eh:z≤0}(u1,h + u2,h).

Choosing test functions u ≡ 1, v ≡ 0 in (5.29) and using the fact that

f1,h(Ω) < Θh(Ω), we have that νh 6= 0 and {νh} is bounded in L1(Ω). Since
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νh ∈ ∂I{z∈Eh:z≤0}(u1,h + u2,h), we get νh ≥ 0 and 〈u1,h + u2,h , νh〉 = 0. Since

νh 6= 0, there exists xh ∈ Ω such that u1,h(xh) + u2,h(xh) = 0. Combining this

with the fact
∫
u1,h =

∫
u2,h, we imply that {u1,h} and {u2,h} are bounded in

C(Ω). Since u1,h, u2,h are 1-Lipschitz functions, up to a subsequence (using the

Ascoli–Arzela Theorem),

u1,h ⇒ u∗1, u2,h ⇒ u∗2 uniformly on Ω.

It is clear that u∗1, u
∗
2 are 1-Lipschitz and u∗1 + u∗2 ≤ 0 on Ω.

On the other hand, using the optimality of (u1,h, u2,h), (Φ1,h,Φ2,h, νh) and the

duality equality for (5.11), we have

Fh(u1,h, u2,h)+Gh(Λh(u1,h, u2,h)) = −F∗
h(−Λ∗

h(Φ1,h,Φ2,h, νh))−G∗
h(Φ1,h,Φ2,h, νh),

or more explicitly,

〈f1,h, u1,h〉+ 〈f1,h, u2,h〉 − 〈Θh, u1,h + u2,h〉

= − sup {〈Φ1,h, q〉 : q ∈ Yh, |q(x)|≤ 1, a.e. x ∈ Ω}

− sup {〈Φ2,h, q〉 : q ∈ Yh, |q(x)|≤ 1, a.e. x ∈ Ω} .

(5.30)

Using the boundedness of (u1,h, u2,h), we obtain that Φ1,h and Φ2,h are bounded in

L1(Ω)N . Thus, up to a subsequence,

(Φ1,h,Φ2,h, νh)⇀ (Φ1,Φ2, ν) weakly* in Mb(Ω)
N ×Mb(Ω)

N ×Mb(Ω).

Then (Φ1,Φ2, ν) is feasible for the problem (MMF). Indeed, thanks to (5.29) and

the nonnegativity of νh, we obtain that

〈Φ1,∇u〉+〈Φ2,∇v〉+〈ν, u+v〉 = −〈f1, u〉−〈f2, v〉+〈Θ, u+v〉∀(u, v) ∈ V := C1(Ω)×C1(Ω),

and

ν ≥ 0,

i.e. the feasibility of (Φ1,Φ2, ν). Now, we show the optimality of (u∗1, u
∗
2) and

(Φ1,Φ2, ν). Thanks to Theorem 5.3, it is sufficient to show that

−〈f1, u∗1〉 − 〈f2, u∗2〉+ 〈Θ, u∗1 + u∗2〉 ≥ |Φ1|(Ω) + |Φ2|(Ω). (5.31)
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To this aim, let q1, q2 ∈ C(Ω)N be such that |q1(x)|≤ 1, |q2(x)|≤ 1 ∀x ∈ Ω and

q1,h, q2,h ∈ Yh be such that ‖qi,h− qi‖L∞(Ω)→ 0 as h→ 0, i = 1, 2. By the fact that

|qi,h(x)|= |qi(x)|+|qi,h(x)|−|qi(x)|≤ 1 +O(h) a.e. x ∈ Ω,

and, taking
qi,h

1+O(h)
if necessary, we can assume that

qi,h ∈ Yh, |qi,h(x)|≤ 1 a.e. x ∈ Ω and ‖qi,h − qi‖L∞(Ω)→ 0 as h→ 0, i = 1, 2.

We see that

〈Φ1, q1〉 = 〈Φ1,h, q1,h〉+ 〈Φ1 − Φ1,h, q1〉+ 〈Φ1,h, q1 − q1,h〉
≤ sup {〈Φ1,h, q〉 : q ∈ Yh, |q(x)|≤ 1 a.e. x ∈ Ω}+O(h).

Similarly,

〈Φ2, q2〉 ≤ sup {〈Φ2,h, q〉 : q ∈ Yh, |q(x)|≤ 1 a.e. x ∈ Ω}+O(h).

Combining these with (5.30) gives

−〈f1,h, u1,h〉 − 〈f2,h, u2,h〉+ 〈Θh, u1,h + u2,h〉+O(h) ≥ 〈Φ1, q1〉+ 〈Φ2, q2〉.

Letting h→ 0 and taking supremum in q1, q2, we get the inequality (5.31).

5.5.2 Solving the discretized problem

Our task is now to solve the finite-dimensional problem (5.11). We use the
ALG2 method (see Chapter 1) to our discretized problem (5.11). To simplify
the notations, let us drop out the subscript h in u1,h, u2,h,Φ1,h,Φ2,h, νh. We denote
by Φi

1,Φ
i
2, ν

i, ui1, u
i
2, p

i, qi, si the values at iteration i. Known (pi, qi, si), (Φi
1,Φ

i
2, ν

i),
• Step 1:

(ui+1
1 , ui+1

2 ) = argmin
(u1,u2)∈Vh

Fh(u1, u2) + 〈(Φi
1,Φ

i
2, ν

i),Λh(u1, u2)〉+
r

2
|Λh(u1, u2)− (pi, qi, si)|2

= argmin
(u1,u2)∈Vh

〈u1, f1,h〉+ 〈u2, f2,h〉 − 〈u1 + u2,Θh〉+ 〈Φi
1,∇u1〉+ 〈Φi

2,∇u2〉

+ 〈νi, u1 + u2〉+
r

2
|∇u1 − pi|2+r

2
|∇u2 − qi|2+r

2
|u1 + u2 − si|2.
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• Step 2:

(pi+1, qi+1, si+1) = argmin
(p,q,s)∈Zh

Gh(p, q, s)− 〈(Φi
1,Φ

i
2, ν

i), (p, q, s)〉+ r

2
|Λh(u

i+1
1 , ui+1

2 )− (p, q, s)|2

= argmin
(p,q,s)∈Zh

IB(Yh,‖.‖∞)
(p) + IB(Yh,‖.‖∞)

(q) + I{s∈Eh: s≤0}(s)− 〈Φi
1, p〉 − 〈Φi

2, q〉

− 〈νi, s〉+ r

2
|∇ui+1

1 − p|2+r
2
|∇ui+1

2 − q|2+r
2
|ui+1

1 + ui+1
2 − s|2.

• Step 3:

(Φi+1
1 ,Φi+1

2 , νi+1) = (Φi
1,Φ

i
2, ν

i) + r(∇ui+1
1 − pi+1,∇ui+1

2 − qi+1, ui+1
1 + ui+1

2 − si+1).

Let us give more details of the above iteration.

• In Step 1: We split the variables u1 and u2, i.e. first minimizing w.r.t. u1 and

using ui+1
1 to calculate ui+1

2 .

1. For ui+1
1 ,

ui+1
1 ∈ argmin

u∈Eh

〈u, f1,h −Θh〉+ 〈Φi
1,∇u〉+ 〈νi, u〉+ r

2
|∇u− pi|2+r

2
|u+ ui2 − si|2.

This is a quadratic problem with the associated linear equation:

r〈∇ui+1
1 ,∇φ〉+r〈ui+1

1 , φ〉 = 〈Θh−f1,h−νi, φ〉+〈rpi−Φi
1,∇φ〉+r〈si−ui2, φ〉 ∀φ ∈ Eh.

2. Similarly for ui+1
2 ,

r〈∇ui+1
2 ,∇φ〉+r〈ui+1

2 , φ〉 = 〈Θh−f2,h−νi, φ〉+〈rqi−Φi
2,∇φ〉+r〈si−ui+1

1 , φ〉 ∀φ ∈ Eh.

• In Step 2: Since the function G(p, q, s) has the form of G1(p) + G2(q) + G3(s),

we solve them separately.

1. For si+1, if we choose P2 finite element for si+1,

si+1 ∈ argmin
s∈P2

{
I[s≤0] − 〈νi, s〉+ r

2
|ui+1

1 + ui+1
2 − s|2

}
= Proj{s∈P2:s≤0}

(
ui+1
1 + ui+1

2 +
νi

r

)
.

This is computed in pointwise, i.e., at vertices xk of a given grid,

si+1(xk) = Proj[r∈R: r≤0]

(
ui+1
1 (xk) + ui+1

2 (xk) +
νi(xk)

r

)
.
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2. For pi+1 and qi+1, similarly, at each vertice xl,

pi+1(xl) = ProjB(0,1)

(
∇ui+1

1 (xl) +
Φi

1(xl)

r

)

and

qi+1(xl) = ProjB(0,1)

(
∇ui+1

2 (xl) +
Φi

2(xl)

r

)
.

5.6 Numerical experiments

We base on [12, 13, 59] and on FreeFem++ [55] to give some numerical examples.

We use P2 finite element for ui1, u
i
2, s

i, νi and P1 finite element for Φi
1,Φ

i
2, p

i, qi.

5.6.1 Stopping criterion

The measures f1, f2 and Θ are approximated by nonnegative regular functions

that we denote again by f1, f2 and Θ. We use the PDE of optimality condition as

stopping criteria:

1. MIN := min

{
min
Ω

(−u1(x)− u2(x)) ,min
Ω
ν(x)

}
.

2. Lip := max

{
max
Ω

|∇u1(x)|,max
Ω

|∇u2(x)|
}
.

3. DIV := Div1+Div2
2

, where

Div1 := ‖∇ · Φ1 +Θ− ν − f1‖L2 , Div2 := ‖∇ · Φ2 +Θ− ν − f2‖L2 .

4. DUAL := Dual1+Dual2
2

, with

Dual1 := ‖|Φ1(x)|−Φ1(x) · ∇u1‖L2 , Dual2 := ‖|Φ2(x)|−Φ2(x) · ∇u2‖L2 .

We expect that MIN ≥ 0,Lip ≤ 1; DIV and DUAL are small.

5.6.2 Some examples

In all the examples below, we take Ω = [0, 1] × [0, 1] and work on a grid 60 × 60.

Computation time for each example is about 8 minutes on a PC Mac OSX 10.9.
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Example 5.15. We take

f1 = 4χ[(x−0.2)2+(y−0.8)2<0.01],

f2 = 2χ[(x−0.8)2+(y−0.8)2<0.01] + 2χ[(x−0.2)2+(y−0.2)2<0.01],

Θ = 4χ[(x−0.5)2+(y−0.5)2<0.04].

The optimal matching measure and optimal flows are given in Fig. 5.3. Stopping

criterion is given in Fig. 5.4.

Fig. 5.3: Optimal matching measure and optimal flows
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Fig. 5.4: Stopping criterion
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Example 5.16. The results are given in Figs 5.5 and 5.6 for

f1 = 2χ[(x−0.2)2+(y−0.8)2<0.01] + 2χ[(x−0.8)2+(y−0.2)2<0.01],

f2 = 2χ[(x−0.8)2+(y−0.8)2<0.01] + 2χ[(x−0.2)2+(y−0.2)2<0.01],

Θ = 4χ[(x−0.5)2+(y−0.5)2<0.04].

Fig. 5.5: Optimal matching measure and optimal flows
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Fig. 5.6: Stopping criterion

Optimal Partial Transport and Constrained Matching Problems 131



5.6. Numerical experiments

Example 5.17. We take

f1 = 4χ[(x−0.1)2+(y−0.9)2<0.01],

f2 = 4χ[(x−0.7)2+(y−0.3)2<0.01],

Θ = 4χ[(x−0.2)2+(y−0.2)2<0.04] + 4χ[(x−0.6)2+(y−0.6)2<0.0064].

The results are given in Figs 5.7 and 5.8.

Fig. 5.7: Optimal matching measure and optimal flows
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Problèmes de transport partiel optimal et d’appariement avec contrainte

Résumé : Cette thèse est consacrée à l’analyse mathématique et numérique
pour les problèmes de transport partiel optimal et d’appariement avec contrainte
(constrained matching problem). Ces deux problèmes présentent de nouvelles
quantités inconnues, appelées parties actives. Pour le transport partiel optimal
avec des coûts qui sont donnés par la distance finslerienne, nous présentons
des formulations équivalentes caractérisant les parties actives, le potentiel de
Kantorovich et le flot optimal. En particulier, l’EDP de condition d’optimalité
permet de montrer l’unicité des parties actives. Ensuite, nous étudions en détail
des approximations numériques pour lesquelles la convergence de la discrétisation
et des simulations numériques sont fournies. Pour les coûts lagrangiens, nous
justifions rigoureusement des caractérisations de solution ainsi que des formulations
équivalentes. Des exemples numériques sont également donnés. Le reste de la thèse
est consacré à l’étude du problème d’appariement optimal avec des contraintes pour
le coût de la distance euclidienne. Ce problème a un comportement différent du
transport partiel optimal. L’unicité de solution et des formulations équivalentes
sont étudiées sous une condition géométrique. La convergence de la discrétisation
et des exemples numériques sont aussi établis. Les principaux outils que nous
utilisons dans la thèse sont des combinaisons des techniques d’EDP, de la théorie
du transport optimal et de la théorie de dualité de Fenchel–Rockafellar. Pour le
calcul numérique, nous utilisons des méthodes du lagrangien augmenté.

Mots clés : Transport optimal, transport partiel optimal, problème
d’appariement optimal, dualité de Fenchel–Rockafellar, équation de Monge–
Kantorovich, doublant des variables, méthodes du lagrangien augmenté.

Optimal Partial Transport and Constrained Matching Problems

Abstract: The manuscript deals with the mathematical and numerical
analysis of the optimal partial transport and optimal constrained matching
problems. These two problems bring out new unknown quantities, called
active submeasures. For the optimal partial transport with Finsler distance
costs, we introduce equivalent formulations characterizing active submeasures,
Kantorovich potential and optimal flow. In particular, the PDE of optimality
condition allows to show the uniqueness of active submeasures. We then study
in detail numerical approximations for which the convergence of discretization
and numerical simulations are provided. For Lagrangian costs, we derive and
justify rigorously characterizations of solution as well as equivalent formulations.
Numerical examples are also given. The rest of the thesis presents the study of
the optimal constrained matching with the Euclidean distance cost. This problem
has a different behaviour compared to the partial transport. The uniqueness of
solution and equivalent formulations are studied under geometric condition. The
convergence of discretization and numerical examples are also indicated. The main
tools which we use in the thesis are the combinations of PDE techniques, optimal
transport theory and Fenchel–Rockafellar dual theory. For numerical computation,
we make use of augmented Lagrangian methods.

Keywords: Optimal transport, optimal partial transport, optimal matching,
Fenchel–Rockafellar duality, Monge–Kantorovich equation, doubling variables,
augmented Lagrangian methods.


