Thèse soutenue

Planification kinodynamique de mouvements pour des systèmes aériens de type quadrirotor

FR  |  
EN
Auteur / Autrice : Alexandre Boeuf
Direction : Thierry SiméonJuan Cortés
Type : Thèse de doctorat
Discipline(s) : Mathematiques Appliquées
Date : Soutenance le 05/07/2017
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes (Toulouse ; 1968-....)
Jury : Président / Présidente : Rachid Alami
Examinateurs / Examinatrices : Thierry Siméon, Juan Cortés, Rachid Alami, Marilena Vendittelli
Rapporteurs / Rapporteuses : Thierry Fraichard, Paolo Robuffo Giordano

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La planification de mouvement est le domaine de l’informatique qui a trait au développement de techniques algorithmiques permettant la génération automatique de trajectoires pour un système mécanique. La nature d’un tel système varie selon les champs d’application. En animation par ordinateur il peut s’agir d’un avatar humanoïde. En biologie moléculaire cela peut être une protéine. Le domaine d’application de ces travaux étant la robotique aérienne, le système est ici un UAV (Unmanned Aerial Vehicle: véhicule aérien sans pilote) à quatre hélices appelé quadrirotor. Le problème de planification de mouvements consiste à calculer une série de mouvements qui amène le système d’une configuration initiale donnée à une configuration finale souhaitée sans générer de collisions avec son environnement, la plupart du temps connu à l’avance. Les méthodes habituelles explorent l’espace des configurations du système sans tenir compte de sa dynamique. Cependant, la force de poussée qui permet à un quadrirotor de voler est par construction parallèle aux axes de rotation des hélices, ce qui implique que certains mouvements ne peuvent pas être effectués. De plus, l’intensité de cette force de poussée, et donc l’accélération linéaire du centre de masse, sont limitées par les capacités physiques du robot. Pour toutes ces raisons, non seulement la position et l’orientation doivent être planifiées, mais les dérivées plus élevées doivent l’être également si l’on veut que le système physique soit en mesure de réellement exécuter le mouvement. Lorsque c’est le cas, on parle de planification kinodynamique de mouvements. Une distinction est faite entre le planificateur local et le planificateur global. Le premier est chargé de produire une trajectoire valide entre deux états du système sans nécessairement tenir compte des collisions. Le second est l’algorithme principal qui est chargé de résoudre le problème de planification de mouvement en explorant l’espace d’état du système. Il fait appel au planificateur local. Nous présentons un planificateur local qui interpole deux états comprenant un nombre arbitraire de degrés de liberté ainsi que leurs dérivées premières et secondes. Compte tenu d’un ensemble de limites sur les dérivées des degrés de liberté jusqu’au quatrième ordre (snap), il produit rapidement une trajectoire en temps minimal quasi optimale qui respecte ces limites. Dans la plupart des algorithmes modernes de planification de mouvements, l’exploration est guidée par une fonction de distance (ou métrique). Le meilleur choix pour celle-ci est le cost-to-go, c.a.d. le coût associé à la méthode locale. Dans le contexte de la planification kinodynamique de mouvements, il correspond à la durée de la trajectoire en temps minimal. Le problème dans ce cas est que calculer le cost-to-go est aussi difficile (et donc aussi coûteux) que de calculer la trajectoire optimale elle-même. Nous présentons une métrique qui est une bonne approximation du cost-to-go, mais dont le calcul est beaucoup moins coûteux. Le paradigme dominant en planification de mouvements aujourd’hui est l’échantillonnage aléatoire. Cette classe d’algorithmes repose sur un échantillonnage aléatoire de l’espace d’état afin de l’explorer rapidement. Une stratégie commune est l’échantillonnage uniforme. Il semble toutefois que, dans notre contexte, ce soit un choix assez médiocre. En effet, une grande majorité des états uniformément échantillonnés ne peuvent pas être interpolés. Nous présentons une stratégie d’échantillonnage incrémentale qui diminue considérablement la probabilité que cela ne se produise.