Thèse soutenue

Raffinement des prédictions théoriques pour la physique du rayonnement cosmique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Yoann Genolini
Direction : Pierre SalatiPasquale D. Serpico
Type : Thèse de doctorat
Discipline(s) : Physique théorique
Date : Soutenance le 10/07/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Annecy-le-Vieux de Physique Théorique (Annecy-le-Vieux)
Jury : Président / Présidente : Laurent Derome
Examinateurs / Examinatrices : David Maurin
Rapporteurs / Rapporteuses : Philipp Mertsch, Fiorenza Donato

Résumé

FR  |  
EN

Il y a tout juste cent ans que les premières mesures du taux d'ionisation de l'air ont dévoilé que la terre est sans cesse bombardée par une pluie de particules énergétiques provenant du Cosmos. D'un point de vue astrophysique, l'origine de ces particules hautement relativistes, appelés rayons cosmiques (CRs), ainsi que leur mécanisme d'accélération restent très peu connus. Le paradigme actuel suppose une injection sporadique des CRs accélérés par la propagation d'ondes de choc au cours de la mort de certaines étoiles (SNRs).Les mesures récentes des flux de CRs (par les expériences PAMELA et AMS-02 par exemple) inaugurent une nouvelle ère de précision dans la mesure où les incertitudes statistiques sont désormais considérablement réduites. Dans ce mémoire de thèse, nous proposons et approfondissons de nouvelles pistes théoriques de manière à maximiser l'information extraite de ces nouvelles données.Après une introduction générale sur la physique des CRs, nous nous concentrons sur les espèces dites primaires, qui sont produites directement par les SNRs. De la nature discrète des SNRs et de la méconnaissance quasi-complète de leurs positions et de leurs ages résulte une incertitude théorique qui nécessite d'être estimée pour la prédiction des flux observés sur Terre. Jusqu'alors ces prédictions se contentent de calculer la moyenne d'ensemble de ce flux. Dans cette partie nous exposons la théorie statistique que nous avons élaborée, permettant de calculer la probabilité d'une déviation du flux mesuré par rapport à la moyenne d'ensemble. Nous sommes amenés à utiliser une version généralisée du théorème de la limite centrale, avec lequel nous montrons que la loi de probabilité est intimement reliée à la distribution des sources et qu'elle converge vers une loi stable. Cette dernière diffère de la loi gaussienne par sa queue lourde en loi de puissance. Le cadre théorique développé ici peut non seulement être étendu à d'autres observables du rayonnement cosmique, mais aussi enrichi en incluant une description plus complète des corrélations entre les sources. De plus, la méthode que nous avons développée peut être appliquée à d'autres problèmes de physique/astrophysique impliquant des distributions à queue lourde.Deuxièmement nous nous penchons sur les CRs dits secondaires (comme le bore), qui sont produits par les collisions des espèces primaires avec le milieu interstellaire. Plus précisément nous nous concentrons sur le rapport du flux du bore sur celui du carbone qui est traditionnellement utilisé pour comprendre la propagation des CRs. Ainsi, tout porte à croire que les mesures extrêmement précises de ce rapport nous donneraient de fortes contraintes sur les scénarios de propagation. Malheureusement il n'en est rien et nous montrons que le calcul théorique dépend fortement de certaines hypothèses telles que le lieu de production des secondaires et le choix du jeux de sections efficaces d’interaction. Nous estimons à au moins 20 % les incertitudes sur les paramètres de propagation dérivés jusqu'à maintenant. Grâce aux nouvelles données de l'expérience AMS-02, nous présentons les points de départ de notre nouvelle analyse pour laquelle nous utilisons le code semi-analytique USINE.Finalement, dans une troisième partie, nous utilisons ces données de précision pour réactualiser les analyses portant sur la recherche indirecte de matière noire. En effet, les CRs d'antimatière seraient -au même titre que le bore- des particules secondaires. La prédiction de leur fond astrophysique repose sur une connaissance précise de la propagation des CRs et de leurs interactions dans la Galaxy. Nous les traitons ici sous les hypothèses habituelles et réévaluons les flux de positrons et d'antiprotons à la lumière des nouvelles données d'AMS-02. Nous discutons ensuite les conséquences pour la matière noire et les possibles explications astrophysiques d'éventuels excès observés.