Thèse soutenue

Imagerie électromagnétique 2D par inversion des formes d'ondes complètes : Approche multiparamètres sur cas synthétiques et données réelles

FR  |  
EN
Auteur / Autrice : Hugo Pinard
Direction : Stéphane GaramboisLudovic Métivier
Type : Thèse de doctorat
Discipline(s) : Sciences de la Terre et de l'Univers et de l'Environnement
Date : Soutenance le 20/12/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences de la terre, de l’environnement et des planètes (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut des sciences de la Terre (Grenoble)
Jury : Président / Présidente : Denis Jongmans
Examinateurs / Examinatrices : Guy Sénéchal
Rapporteurs / Rapporteuses : Albane Saintenoy, Jean-François Girard

Résumé

FR  |  
EN

Le radar géologique est une méthode d'investigation géophysique basée sur la propagation d'ondes électromagnétiques dans le sous-sol. Avec des fréquences allant de 5 MHz à quelques GHz et une forte sensibilité aux propriétés électriques, le géoradar fournit des images de réflectivité dans des contextes et à des échelles très variés : génie civil, géologie, hydrogéologie, glaciologie, archéologie. Cependant, dans certains cas, la compréhension fine des processus étudiés dans la subsurface nécessite une quantification des paramètres physiques du sous-sol. Dans ce but, l'inversion des formes d'ondes complètes, méthode initialement développée pour l'exploration sismique qui exploite l'ensemble des signaux enregistrés, pourrait s'avérer efficace. Dans cette thèse, je propose ainsi des développements méthodologiques par une approche d'inversion multiparamètres (permittivité diélectrique et conductivité), pour des configurations en transmission, en deux dimensions.Ces développements sont ensuite appliqués à un jeu de données réelles acquises entre forages.Dans une première partie, je présente tout d'abord la méthode numérique utilisée pour modéliser la propagation des ondes électromagnétiques dans un milieu 2D hétérogène, élément indispensable pour mener à bien le processus d'imagerie. Ensuite, j’introduis puis étudie le potentiel des méthodes d’optimisation locale standards (gradient conjugué non linéaire, l-BFGS, Newton tronqué dans ses versions Gauss-Newton et Exact-Newton) pour découpler la permittivité diélectrique et la conductivité électrique. Je montre notamment qu’un découplage effectif n’est possible qu’avec un modèle initial suffisamment précis et la méthode la plus sophistiquée (Newton tronqué). Comme dans le cas général, ce modèle initial n’est pas disponible, il s’avère nécessaire d'introduire un facteur d'échelle qui répartit le poids relatif de chaque classe de paramètres dans l'inversion. Dans un milieu réaliste avec une acquisition entre puits, je montre que les différentes méthodes d'optimisation donnent des résultats similaires en matière de découplage de paramètres. C'est finalement la méthode l-BFGS qui est retenue pour l'application aux données réelles, en raison de coûts de calcul plus faibles.Dans une deuxième partie, j'applique cette méthodologie à des données réelles acquises entre deux forages localisés dans des formations carbonatées, à Rustrel (France, 84). Cette inversion est réalisée en parallèle d'une approche synthétique à l'aide d'un modèle représentatif du site étudié et des configurations d'acquisition similaires. Ceci permet de pouvoir comprendre, contrôler et valider les observations et conclusions obtenues sur les données réelles. Cette démarche montre que la reconstruction de la permittivité est très robuste. A contrario, l'estimation de la conductivité souffre de deux couplages majeurs, avec la permittivité diélectrique, d'une part, et avec l'amplitude de la source estimée, d'autre part. Les résultats obtenus sont confrontés avec succès à des données indépendantes (géophysique depuis la surface, analyse sur échantillons de roche), et permet de bénéficier d'une image haute-résolution des formations géologiques. Enfin, une analyse 3D confirme que les structures 3D à fort contraste de propriétés, telles que la galerie enfouie sur notre site, nécessiteraient une approche de modélisation 3D, notamment pour mieux expliquer les amplitudes observées.