Thèse soutenue

La couche limite extrême du Plateau Antarctique et sa représentation dans les modèles de climat

FR  |  
EN
Auteur / Autrice : Etienne Vignon
Direction : Christophe Genthon
Type : Thèse de doctorat
Discipline(s) : Sciences de la Terre et de l'Environnement
Date : Soutenance le 10/10/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences de la terre, de l’environnement et des planètes (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut des géosciences de l'environnement (Grenoble)
Jury : Président / Présidente : Sylvie Joussaume
Examinateurs / Examinatrices : Bas J. H. Van de Wiel, Frédéric Hourdin
Rapporteurs / Rapporteuses : John Christopher King, Fleur Couvreux

Résumé

FR  |  
EN

L’observation des couches limites atmosphériques au dessus du plateau antarctique a mis en évidence les plus fortes inversions de température proches de la surface de la planète. Bien paramétriser ces couches limites extrêmes dans un modèle de circulation générale est essentiel pour represéntercorrectement l’inversion climatologique de température au dessus du plateau, mais également pour reproduire des vents catabatiques réalistes en aval du plateau et de surcroit, une circulation atmosphérique correcte dans l’hémisphère sud. Les conclusions des précédentes "Gewex AtmosphericBoundary Layer Studies" (GABLS) ont conduit au constat que la paramétrisation des couches limites stables dans les modèles climatiques est une des priorités pour la communauté des modélisateurs.Ceci est dû au fait que la nature même des processus physiques en jeu est mal connue mais aussi parce que les lois de similitudes, sur lesquelles les paramétrisations du mélange turbulent sont fondées, ne sont pas applicables en condition très stable. L’objectif de ces travaux de thèse est d’évaluer et d’améliorer la représentation des couches limites sur le plateau antarctique dans le modèle français de circulation générale Laboratoire de MétéorologieDynamique-Zoom (LMDZ), composante atmosphérique du modèle de climat IPSL. Avant l’évaluation même du modèle, une étude approfondie de la couche limite de surface et de la structure de la couche limite stable a été conduite à partir de l’analyse de mesures in situ au Dôme C. Il en a résulté une caractérisation de la hauteur de rugosité aérodynamique, une estimation des flux turbulents de surface sur une année entière ainsi que la mise en évidence de sursaturations de la vapeur d’eau par rapport à la glace. L’analyse des mesures de température et de vent le long d’une tour de 45 m a aussi montré que la couche limite se comporte tel un système dynamique à deux régimes distincts. La relation entrevitesse du vent et inversion de température décrit un "S renversé", suggérant une transition de régime suivant un hystérésis. Une étude complémentaire a révélé que ce comportement dynamique à deux régimes est une caractéristique générale et robuste des couches limites stables, qui peuvent transiter,selon l’intensité des forçages, d’un régime ’turbulent’ peu stable à un régime ’radiatif’ très stable et vice et versa.Le modèle LMDZ a ensuite été évalué en configuration 1D sur un cycle diurne d’été dans le cadre de la quatrième expérience GABLS. Des tests de sensibilité aux paramètres de surface et à la paramétrisation du mélange turbulent ont été réalisés. Ils ont conduit à de nettes améliorations des performancesdu modèle ainsi qu’à la mise en place d’une configuration adaptée aux conditions antarctiques. Des simulations complémentaires en 3D ont par la suite soulevé l’importance du transfert radiatif infrarouge et de la paramétrisation des flux turbulents de surface pour la modélisation de la couchelimite sur le plateau pendant la nuit polaire. Enfin, les travaux de thèse ont été étendus à la modélisation des couches limites stables continentales. Les paramétrisations locales de turbulence ont en effet tendance à sous-estimer le mélange sous-maille continental, en raison de la multitude des processusde mélange en jeu. Un réflexion a donc été portée sur la façon de palier ce manque de mélange, avec comme idée directrice de transférer la perte d’énergie cinétique grande échelle perdue lors du freinage de l’écoulement par les ondes de gravité, vers de l’énergie cinétique turbulente.