Thèse soutenue

Etude des mécanismes de conduction électrique à basse température pour la mesure des teneurs en dopants dans le silicium photovoltaïque

FR  |  
EN
Auteur / Autrice : Aurélie Fauveau
Direction : Anne Kaminski-CachopoFrédérique Ducroquet
Type : Thèse de doctorat
Discipline(s) : Nano electronique et nano technologies
Date : Soutenance le 12/10/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'innovation pour les technologies des énergies nouvelles et les nanomatériaux (Grenoble)
Jury : Président / Présidente : Daniel Mathiot
Examinateurs / Examinatrices : Jordi Veirman, Benoit Martel, Thomas Rivera
Rapporteurs / Rapporteuses : Jean-Paul Kleider, Erwann Fourmond

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L’objectif de ces travaux de thèse est double : développer des méthodes de caractérisation alternatives des teneurs en dopants dans le silicium compensé, et améliorer la compréhension de l’influence à l’échelle nanométrique de la compensation du dopage sur les mécanismes de transport. Pour cela, les différents mécanismes de conduction électrique à l’œuvre dans le silicium compensé, et plus précisément l’influence des teneurs en dopants sur ceux-ci, ont été étudiés en détail dans la gamme de température [15K-350K] à partir d’un dispositif à effet Hall. Un premier travail a consisté à enrichir les modèles théoriques utilisés pour décrire la variation avec la température de la densité de porteurs libres, et a permis d’optimiser une méthode de caractérisation préexistante basée sur l’ajustement de ces modèles aux données expérimentales mesurées par effet Hall. Un second volet a consisté à étudier la possibilité d’utiliser le phénomène de conduction électrique par « hopping » pour la quantification des teneurs en dopants, via la préparation d’échantillons d’étude à degrés de compensation contrôlés. Fort des résultats obtenus, trois techniques inédites basées sur la mesure de résistivité en température ont ainsi été proposées. Celles-ci ont ensuite été utilisées pour la caractérisation de matériaux issus de procédés industriels (lingot issu du recyclage de cellules photovoltaïques d’une part, et lingot issu de la purification bas coût de Si métallurgique d’autre part). Les résultats ont ensuite été confrontés aux techniques de caractérisation usuelles. Enfin, des simulations (de type Monte-Carlo) de la répartition spatial du potentiel électrique dans le matériau ont permis de préciser l’influence de la compensation sur le désordre électrostatique dans le matériau, et notamment sur la mobilité des porteurs de charge.