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Abstract

In this thesis, we study the phase transition and thermodynamic properties of
classical and quantum spin models in thin films using both Green’s function
and standard Monte Carlo simulation.

In chapter 1, we study the Blume-Emery-Griffith model in a thin film of
stacked triangular lattices. The model is described by three parameters a
bilinear exchange interaction between spins J , a biquadratic exchange inter-
action K and a single ion anisotropy D. The spin Si at the lattice i takes
three values (±1, 0). This model has been introduced to describe the mixing
phase of superfluid He4 (Si = ± 1) and normal fluid He3 (Si= 0) at low
temperatures, such system undergoes two kinds of phase transition, first and
second-order ones. Our work has been motivated by the desire, on the one
hand to see if the nature of the phase transition is still conserved when we
reduce the film thickness and on the other hand to verify if the cross-over
from the second-order to first-order transition in the bulk is also conserved in
thin films. Using Monte Carlo simulations, we show that there exists a crit-
ical value of D below (above) which the transition is of second (first) order,
and that the first-order nature of the transition does not disappear when we
reduce the film thickness unlike in other systems where the bulk first-order
transition becomes a second-order one at a small-enough thickness. In the
Helium vocabulary, we show that the film surfaces have a deficit of He4 with
respect to the interior layers of the film.

In chapter 2 we first study quantum properties of a helimagnetic thin film
of simple cubic lattice with the Heisenberg spin model. Surface effects in thin
films have been intensively studied during the last three decades. However,
due to the complicated surface spin configurations, surface effects in helimag-
netic thin films have only been recently studied. Using the Green’s function
method for non-collinear spin configurations, we find that the spin configura-
tion across the film is strongly non-uniform. We show that there exist surface
acoustic and optical modes which affect the surface magnetization. We also
show that quantum fluctuations cause the spin contraction at T=0 and give
rise to a cross-over between layer magnetizations at low temperatures. In

i



ii

the second part of chapter 2, we are interested in the effect of an external
magnetic field applied along the c-axis perpendicular to the film surface us-
ing both classical and quantum Heisenberg spins. We show that spins react
to a moderate applied magnetic field by creating a particular spin configu-
ration along the c-axis. Using Monte Carlo simulation we study the phase
transition as functions of the magnetic field strength, the temperature and
the film thickness. We show that the system undergoes a phase transition
triggered by the destruction of the transverse (in-plane) xy spin-components
ordering of a number of layers, not all layers. This partial phase transition
is not usual in thin films where one observes more often the disordering of
the surface layer, not an interior layer. At low temperatures, we investigate
effects of quantum fluctuations using Green’s function method. The results
show that the zero-point spin contraction is different from layer to layer. We
also find a crossover of layer magnetizations which depends on the magnitude
of the helical angle.

In the third chapter, we introduce the in-plane Dzyaloshinskii-Moriya
interaction (DM). This kind of interaction was proposed to explain the weak
ferromagnetism which was observed in antiferromagnetic Mn compounds. It
has been shown in various works that the DM interaction is at the origin
of topological skyrmions and new kinds of magnetic domain walls. In this
chapter, we are interested in the spin-wave properties of a system of spins
interacting with each other via a DM interaction. Using the steepest descend
method we find a non-collinear ground state which is due to the competition
between the ferromagnetic and the asymmetric DM interactions. We use the
Green’s function theory to calculate the spin-wave spectrum and the layer
magnetization at finite temperatures in two and three dimensions as well as
in a thin film with free surfaces. We find that the spin-wave excitation in 2D
and 3D crystals is stable at T=0 without the need of an anisotropy, but in
the case of a thin film we need a small anisotropy to stabilize the spin-wave
spectrum because of the lack of neighbors at the surface. We find also that
the spin-wave energy is proportional to k2 for a small DM interaction and is
linear in k for a strong one.

Finally, in the fourth chapter we are interested in skyrmion crystals cre-
ated by the competition between the ferromagnetic interaction and the DM
interaction under an applied magnetic field. They arrange themselves in a pe-
riodic structure. These skyrmion crystals have been experimentally observed
in MnSi compounds and in doped semiconductors. Using Monte Carlo simu-
lations, we show that skyrmion crystals are stable at finite temperatures up
to a transition temperature where the topological structure of each skyrmion
and the periodic structure of the skyrmion crystal are destroyed. We also
investigate the relaxation of the skyrmions in the crystalline phase and find
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that the relaxation time follows a stretched exponential law which is a char-
acteristic of slowly-relaxed systems such as spin glasses.

Chapter 5 is devoted to the general conclusion with a summary of the
results of the thesis and a discussion on future developments of the present
work with regard to the transport properties.



Résumé

Dans cette thèse nous étudions les transitions de phase et les propriétés ther-
modynamiques des couches minces en se basant sur des simulations Monte
Carlo et sur le formalisme de la fonction de Green.

Dans le premier chapitre, nous étudions le modèle de Blume-Emery-
Griffith pour un film mince sur réseaux triangulaires empilés. Le modèle
se décrit par trois paramètres : une interaction d’échange bilinéaire J , une
interaction d’échange biquadratique K et un terme d’anisotropie D. Le spin
Si dans ce modèle prend trois valeurs (±1, 0). Ce modèle a été conçu afin de
décrire un mélange de He3 et He4. Ce mélange binaire montre deux types de
transition de phase, une du premier ordre et l’autre du second ordre. Notre
travail a été motivé par le désir de vérifier si la nature de la transition de
phase se conserve quand on réduit l’épaisseur du film. En utilisant la simula-
tion Monte Carlo, nous montrons qu’il existe une valeur critique de D où la
transition change de nature. Nous montrons ainsi que la nature du premier
ordre ne disparâıt pas lorsque nous réduisons l’épaisseur du film contraire-
ment à d’autres systèmes où la transition du premier ordre devient du second
ordre. Dans le vocabulaire de l’hélium, nous montrons que le surface du film
présente un déficit de He4 par rapport aux couches intérieures.

Dans le deuxième chapitre, nous étudions les propriétés quantiques des
couches minces hélimagnétiques pour une structure cubique en utilisant le
modèle de Heisenberg. Les effets de surface dans les films minces ont été in-
tensément étudiés au cours des trois dernières décennies, cependant en raison
des configurations compliquées de spin de surface, les effets de surface dans
les films minces hélimagnétiques n’ont été que récemment étudiés. Nous mon-
trons que la configuration de spin à travers le film est fortement non uniforme.
En utilisant la méthode de fonction de Green pour les configurations non-
colinéaires des spins, nous montrons qu’il existe des modes de d’ondes de spin
de surface qui affectent la magnétisation de surface, nous montrons également
que les fluctuations quantiques provoquent la contraction des spins à T = 0
et donnent lieu à un croisement entre les magnétisations de couche à basse
température. Dans la deuxième partie du chapitre, nous nous intéressons à
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l’effet d’un champ magnétique appliqué perpendiculairement à la surface du
film. Nous montrons que les spins réagissent en créant une configuration par-
ticulière. En utilisant la simulation Monte Carlo nous étudions la transition
de phase en fonction de l’intensité du champ appliqué. Nous montrons que
le système subit une transition de phase déclenchée par la destruction des
composantes transversales xy des spins de certaines couches. Cette transition
partielle n’est pas habituelle dans les films minces où on observe le plus sou-
vent la destruction des couches superficielles, et non les couches intérieures.
À basse température, nous étudions les effets des fluctuations quantiques en
utilisant la méthode des fonctions de Green. Les résultats montrent que la
contraction des spins à T = 0 est différente d’une couche à l’autre. Nous
trouvons également un croisement des magnétisations de couche qui dépend
de l’ampleur des angles hélicöıdaux.

Dans le troisième chapitre, nous introduisons l’interaction de Dzyaloshinskii-
Moriya (DM). Ce type d’interaction a été proposé pour expliquer le faible
ferromagnétisme qui a été observé dans les composés antiferromagnétiques
à base de Mn. Il a été montré dans de divers travaux que l’interaction DM
est à l’origine de la formation des skyrmions et de nouveaux genres de parois
de domaines magnétiques. Dans ce chapitre , nous nous intéressons aux
propriétés quantiques d’un système de spins qui interagissent les uns avec
les autres via une interaction DM et une interaction ferromagnétique. En
utilisant la méthode ”steepest descend”, nous trouvons un état fondamental
non-colinéaire qui est dû à la compétition entre l’interaction ferromagnétique
et l’interaction asymétrique DM. Utilisant la théorie des fonctions de Green,
nous calculons le spectre des ondes de spin et la magnétisation, couche par
couche, à température finie en deux et trois dimensions ainsi que dans un
film mince avec des effets de surface. Nous constatons que l’excitation des
ondes de spin dans les cristaux 2D et 3D est stable à T = 0 sans la nécessité
d’une anisotropie, mais dans le cas d’un film mince nous avons besoin d’une
faible anisotropie pour stabiliser le spectre en raison du manque de voisins
à la surface. On trouve aussi que l’énergie des ondes de spin est proportion-
nelle à k2 (k: vecteur d’onde) pour les faibles valeurs de DM et à k pour les
interactions fortes.

Dans le quatrième chapitre, nous nous intéressons aux cristaux de skyrmions
créés grâce à la compétition entre l’interaction ferromagnétique, l’interaction
DM et le champ magnétique appliqué. Ces skyrmions s’organisent dans une
structure périodique. Ils ont été observés expérimentalement dans les com-
posés MnSi, FeCoSi et dans les semiconducteurs dopés. En utilisant la simu-
lation Monte Carlo, nous montrons que les cristaux de skyrmions sont stables
à des températures finies et jusqu’à la transition où la structure topologique
de chaque skyrmion et la structure périodique du cristal de skyrmions sont



vi

détruites. Nous étudions également la relaxation des skyrmions dans la phase
cristalline et nous constatons que le temps de relaxation suit une loi expo-
nentielle étirée
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Introduction

Spin systems are the primary object of study in condensed matter, as well
as in statical mechanics. They are capital for our understanding of thermal
phase transition, critical phenomena and quantum properties.

The motivation of this thesis is to study the combined effects of the
presence of a surface and the existence of a frustration due to competing
interactions in thin films.

On the one hand, investigations of spin systems in unfrustrated thin films
have seen a spectacular development during the last 30 years. The ability to
control their properties lead to many applications in technology such as in
magnetic data storage devices and spin transport [1,2]. Thin films show fun-
damental magnetic and electronic properties different from those of the bulk
due to the loss of the spatial periodicity. In thin films, magnetic properties
are influenced by the presence of the surfaces. They destabilize bulk spin
wave modes by creating localized surface modes which affect physical behav-
iors of thin films at finite temperature such as the reduction of the critical
temperature and the low surface magnetization. Exchange interactions be-
tween spins lying on the surface are also affected due to the lack of neighbors
and to various neighboring defects: they are often different from those of the
interior layers. Thin films also offer a lot of opportunities to discover new
microscopic phenomena leading to potential electronic applications. One has
seen in recent years applications using phenomena such as giant magneto-
resistance, spin transfer torque and spin valves [3, 4]. Theoretically, surface
effects in thin films such as surface phonon, surface magnon, surface plasmon
have been widely studied [5].

On the other hand, during the last 30 years intensive researches have
been carried out to understand properties of frustrated spin systems [6]. The
frustration is due to competing interactions between spins or to the crystal
geometry which is incompatible with the magnetic interaction as in the anti-
ferromagnetic triangular lattice. The frustration leads to numerous spectac-
ular effects such as high ground state degeneracy, non-collinear ground state
spin configurations, partially disordered systems, reentrance, multiple phase
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transitions, order by disorder. The concept of frustration has been introduced
by Villain [7] and Toulouse [8] in the context of spin glasses to describe the
impossibility of simultaneously satisfying all exchange interactions. A sys-
tem of spins is said to be frustrated when the energy of the ground state
does not correspond to the minimum energy of each spin. In such a situa-
tion, the compromise between ferromagnetic ordering and antiferromagnetic
ordering leads to a non collinear ground state spin configuration such as the
helical structure or to a more complicated one, the skyrmion. As said, the
frustration can have two origins:

Geometric frustration arises when the exchange interaction between spins
are not compatible with the lattice geometry in the case of antiferromagnetic
couplings: on a square lattice neighboring spins put themselves in opposite
directions so all exchange interaction are satisfied, however on a triangular
lattice, there is no way to make all interactions satisfied.

Competing interactions can give rise to a frustration. It is at the origin of
very interesting phenomena in a variety of systems such as helimagnets which
result from the competition between ferromagnetic and antiferromagnetic
interactions. This kind of structures have been observed experimentally in
rare-earth metals like Holmium, Terbium and Dysprosium. We can mention
also the case of spin glasses. These interactions are generally symmetrical
with respect to the permutation of two spins. This is not the case with the
Dzyloshinskii-Moriya interaction. The competition between this interaction
and the symmetric one gives rise to an interesting structure which is non-
collinear. This kind of structure is observed in many system such as MnSi [9,
10] and FeCoSi [11].

We focus in this thesis on the study of properties of spin systems result-
ing from the combination of surface effects and frustration effects. To this
end we study different spin models in thin magnetic films with competing
interactions.

The methods we use are the Green’s function method and Monte Carlo
simulations. The Green’s function method is suitable for calculating quantum
properties for non-collinear magnets at low temperature such as the spin
wave spectrum, the layer magnetization and the zero-point spin contraction.
Monte Carlo simulations are used to investigate the phase transition and the
surface effect with the classical Heisenberg model.

We start by investigating the effect of the competition between symmetric
interactions in the Blume-Emery-Griffiths model. Such system has a phase
separation, due to the competition interaction between the exchange interac-
tion J , the biquadratic exchange interaction K and the single ion anisotropy
D. Using Monte Carlo simulations, we will see that the nature of the phase
transition is not altered, and that the cross-over phenomenon observed in the
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bulk is conserved when we reduce the film thickness, unlike in other systems
where the 3D first order transition becomes a second order transition at a
very small thickness. This model has been introduced to explain the phase
diagram of the mixtures He3-He4. Using this approach we will associate He4

atoms to spins ±1 and He3 atoms to spins 0. Under this identification purely
phenomenological, we will see that the film surface shows a deficit of He4

with respect to interior layers.
In chapter II we will study properties of a helimagnetic thin film with

both quantum and classical Heisenberg spin models. After determination of
the ground state, we will show that this spin configuration is not uniform
across the film due to the surface effect. Using the Green’s function method
we investigate quantum properties of the film. We will show that the exis-
tence of surface modes affects the surface magnetization and that quantum
fluctuations cause a spin contraction at T = 0. Then we will study the effect
of an applied magnetic field perpendicular to the film surface. Using Monte
Carlo simulations we will show that the spin arrange themselves in a non
uniform structure around the axis perpendicular to the film surface. This
structure undergoes a partial phase transition triggered by the destruction
of the transverse xy-spin components of some layers.

In chapter III we study quantum properties of a spin system with com-
petition interactions between a symmetric interaction and an asymmetric
interaction. As we will see the ground state is non collinear. We will show
that for this system the spin wave energy is stable at T = 0 without the need
of an anisotropy in the case of 2D and 3D crystals. However, in thin films
an anisotropy is needed to stabilize the spin wave spectrum. We show that
the spin wave energy is proportional to k2 like in a ferromagnet for a small
value of the asymmetric DM interaction, and that it is proportional to k as
in an antiferromagnet for a strong DM interaction.

In chapter IV we focus on the study of skyrmion crystals. In our model,
these structures are the result of the competition between a ferromagnetic
interaction and a DM interaction in an applied magnetic field. We will show,
using Monte Carlo simulations that our model can reproduce experimental
results. At zero field, spins of the system form a nano-size stripe domains
and when we increase the field, these stripe domains are transformed into
bubbles and arrange themselves in a periodic structure, namely a crystal of
skyrmions. We will show that these skyrmions are stable up to the transition
temperature where the bubble structure and the periodic structure of the
skyrmion crystal are destroyed. As we will see, the relaxation time follows a
stretched exponential law.

The last chapter is devoted to a general conclusion of the present thesis.



Chapter I

Blume-Emery-Griffiths Model

Contents

I.1 Introduction . . . . . . . . . . . . . . . . . . . . . 4

I.2 Phase Diagram . . . . . . . . . . . . . . . . . . . . 5

I.2.1 Order of the phase transition . . . . . . . . . . . . 7

I.3 The BEG Model . . . . . . . . . . . . . . . . . . . 8

I.3.1 Simulation Method . . . . . . . . . . . . . . . . . . 9

I.4 Simulation Results . . . . . . . . . . . . . . . . . 10

I.4.1 Bulk case . . . . . . . . . . . . . . . . . . . . . . . 10

I.4.2 Film case . . . . . . . . . . . . . . . . . . . . . . . 10

I.5 Size Effect . . . . . . . . . . . . . . . . . . . . . . . 15

I.6 Surface Effect . . . . . . . . . . . . . . . . . . . . . 18

I.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . 21

I.1 Introduction

The Blume-Emery-Griffiths (BEG) model is a spin-1 Ising model. It was orig-
inally introduced in 1971 by Blume, Emery and Griffiths in order to explain
the phase separation and superfluidity in the He3-He4 mixtures [12]. It has
been a great success since it was able to describe such mixtures and predict
the order of the phase transition. This model can also describe properties of a
variety of systems such as semiconductor alloys [13] and microemulsions [14].

From a theoretical point of view, the BEG model exhibits a rich phase
diagram and a multitude of critical behaviors. It has been studied with
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Section I.2 – Phase Diagram 5

a variety of techniques such as mean-field [12, 15], renormalization group
theory [16], and Monte Carlo (MC) simulations [17, 18].

We use this model to study magnetic properties of thin films. The spin
in this model has three states (±1, 0). A site with a value 0 represents a
vacant site. The system is considered as a dilute magnetic system in which
the number of vacant sites varies as a function of temperature (T ). In the
helium approach He3 is associated to spin 0 and He4 to spin ±1 [12,17]. Other
models extended from the original BEG model have been recently introduced
to study the effects of vacancies and of the continuous degrees of freedom in
the mixtures [19,20]. We note that this model has been studied by a number
of authors in thin films of simple cubic lattice structure using the mean-field
approximation, they found a very rich phase diagram with a tricritical point
and a staggered quadrupolar phase [21].

The aim of the chapter is to study the BEG model in a thin film of stacked
triangular lattices using Monte Carlo simulations, in order to now if results of
bulk BEG model remain valid in films, and to see if transition criticality can
be altered when we reduce the film thickness as we have seen in Refs. [22,23]:
there is a cross-over from three dimensional criticality to two dimensional
universality with decreasing thickness for a second order transition, and the
3D first-order transition becomes a second order transition at very small
thickness, and to show that at finite temperature in the superfluid phase, the
film thickness shows a deficit of He4 with respect to interiors layers.

The organization of the chapter is as follows: in section I.2 we present the
phase diagram of mixtures He3-He4, in section I.3 we present the model and
the simulation method. Results will be shown and discussed in section I.4.

I.2 Phase Diagram

Helium has two stable isotopes, He3 which is a fermion, and He4 which is a
boson, we can represent the He4 atoms by wave-functions ϕ = |ϕ|eiθ. In the
Blume-Emery-Griffiths approximation, it was suggested to simplify the phase
of the wave-functions by plus one if θ ∈ [0, π[ and minus one if θ ∈ [π, 2π]. In
this representation He4 will be superfluid when all are aligned, like a magnetic
material which becomes magnetized when all spins are aligned. Using the
Blume-Emery-Griffiths model we can determine the phase diagram of the
mixture He3-He4 where He4 atoms are represented by (Si = ±1) and He3

atoms by (Si = 0).

The mixture presents a rich phase diagram as shown in Figure I.1 which
exhibits three distinct phases: a He4-rich phase called superfluid phase, where
He4 atoms are in majority and He3 atoms are randomly distributed between
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superfluid

norm
al phase

T

X

A

Lλ

L
+

Figure I.1: Schematic phase diagram of He3-He4 in the (T −X) plane, where
X present the He3 concentration.

them, a normal phase where He3 and He4 are equal in number and randomly
distributed, and a phase separation where we have the coexistence of the
normal and superfluid phases, namely a He4-rich and a He3 poor phases. In
pure He4, there is a second-order phase transition from a normal fluid to
a superfluid phase. When it is diluted with He3, the superfluid transition
temperature decreases, the phase separation increases and the second-order
Lλ-line terminates in the tricritical point A separating the second-order tran-
sition region from the first-order region. The order parameter for the mixture
is the uniform average of the total spin M defined by

M =
1

N

N∑

i

〈Si〉 (I.1)

The order parameter M is an Ising-like order parameter. In the Ising model
the spin Si takes the values ±1 and S2

i = 1 at every site, but in the present
model the spin can take the values ±1, 0 and S2

i can be zero or unity, we can
interpret 〈S2

i 〉 as the density of He4 atoms and 1−〈S2
i 〉 as the density of He3

atoms. The number of He3 and He4 atoms are given by

N̂3 =

N∑

i

(1 − S2
i ), N̂4 =

N∑

i

S2
i (I.2)
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where N̂3 + N̂4 = N , the total number of particles, the concentration of He3

atoms is given by

X = 〈N̂3〉/N (I.3)

In the mixture He3-He4, experiments [24] revealed that for a concentration
X of He3 atoms below the tricritical concentration Xtri = 63% and above
the tricritical temperature Ttri = 0.87, the mixture shows a phase transition
of second order between the normal phase and the superfluid phase. If the
temperature T < Ttri a phase separation appears and the transition becomes
of first order.

I.2.1 Order of the phase transition

Phase transitions are classified according to the analytical behavior of ther-
modynamic functions such as the free energy F . The order is given by the
order from which the derivative of F is no longer continuous. A phase tran-
sition is called of first order if physical quantities such as the average energy
E and the average magnetization M , which are the first derivatives of the
free energy F , are discontinuous. It is called of second order if specific heat
Cv and susceptibility χ, which are second derivatives of F , diverge. Figure
I.2 shows schematically the magnetization observed in the first- and second-
order transitions.

The mixture of He3-He4 shows two phase transitions, one of second order
from superfluid phase to normal phase, and the other of first order from the
phase-separation to both superfluid or normal phase.

M M

TT

Figure I.2: Schematic of order parameter M as a function of temperature.
Left: aspect of a second-order phase transition. Right: discontinuity of M
at a first-order transition.

Tricritical point: The tricritical nomenclature of point A shown in
Fig. I.1 comes from the fact that in a phase space, three transition lines
meet [25]. In the phase diagram, the lines L± represent the first-order phase
transition, they join the line Lλ which is the second-order transition line at
the tricritical point A.
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I.3 The BEG Model

The BEG model was proposed by Blume, Emery and Griffiths to describe a
system with three states per spin. It has two terms, the first is

Hs = −J
∑

〈i,j〉

SiSj (I.4)

where the spin variable takes the value Si = −1, 0, 1,
∑

〈i,j〉 denotes a sum-

mation over all nearest-neighbors (NN) and J denotes the bilinear spin in-
teraction which allows the appearance of the ferromagnetic order which is
interpreted as a superfluid, such identification is purely phenomenological,
when the concentration of He3 atoms is zero the Hamiltonian Hs becomes an
Hamiltonian for Ising ferromagnet. The presence of He3 atoms is similar to
an introduction of non magnetic impurities which affects the transition tem-
perature Tc and the superfluidity when the concentration is sufficiently large
because the mixture can support superfluid ordering by breaking into two
phases (phase separation). To modulate this phase separation they added a
second term which describes the isotropic interaction between the different
entities which is presented by the Hamiltonian:

HQ = −K33

∑

〈i,j〉

(1 − S2
i )(1 − S2

j ) −K44

∑

〈i,j〉

S2
i S

2
j

−K34

∑

〈i,j〉

[S2
i (1 − S2

j ) + S2
j (1 − S2

i )]
(I.5)

where Kαβ represents the effective interaction between Heα-Heβ. The full
model is represented by the following H where µ3 and µ4 are the chemical
potentials which are added to preserve the number of particles:

H = Hs + HQ − µ3〈N̂3〉 − µ4〈N̂4〉 (I.6)

which is rewritten under the form:

H = −J
∑

〈i,j〉

SiSj −K
∑

〈i,j〉

S2
i S

2
j + D

∑

i

S2
i −N(zK33 + µ3) (I.7)

where K = K33 + K44 − 2K34 is the biquadratic exchange interaction, z the
coordination number and D = µ3−µ4 + 2z(K33−K44) the single-ion crystal
field. Omitting the last term of Eq. (I.7) we write

H = −J
∑

〈i,j〉

SiSj −K
∑

〈i,j〉

S2
i S

2
j + D

∑

i

S2
i (I.8)
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The model is mapped over the triangular lattices stacked in the z-direction
with Lz layers, where each lattice site is occupied by a spin Si. A He3 atom at
site i corresponds to Si = 0 and a He4 atom to Si = ±1. We have chosen the
stacked triangular lattices to have a large coordination number of neighbors.
Since we worked with very thin films with small quantities of matter, such a
large coordination number reduces numerical errors on numerical statistical
fluctuations.

Since we work at a given temperature T (canonical method) we leave the
system to determine the concentration of He3 and He4 at equilibrium at each
given T . When the concentration of He3 is zero, all spins take the value ±1
and Eq. (I.8) becomes an Ising Hamiltonian. On the other hand, the presence
of He3 decreases the critical temperature, and when the concentration is
sufficiently large the system is broken into two phases, superfluid phase and
normal phase.

The He3 concentration depends also on the chemical potential D, where
a nonzero value of D favors the proliferation of zero spins in the system and
lowers the transition temperature between the superfluid and normal fluid
phase. By increasing D the system can support superfluid ordering but with
the appearance of a phase separation.

I.3.1 Simulation Method

We use the standard MC simulation to calculate properties of the system at
finite temperatures for the size of L×L×Lz, where Lz is the film thickness.
Periodic boundary conditions are used in the xy plane and two free symmet-
ric surfaces are supposed in the z-direction . The standard MC method is
used to study the phase transition. In general, we discard 105 MC steps per
spin to equilibrate the system at temperature T before averaging physical
quantities over the next 105 MC steps. For histograms, we record in gen-
eral 106 MC steps per spin. The lattice sizes used in our simulations are
L=20,30,...,120,300 and Lz=4,8,12,16.

The averaged energy and the specific heat per spin are defined by

〈E〉 =
〈H〉
N

(I.9)

Cv = N
〈E2〉 − 〈E〉2

KBT 2
(I.10)

where 〈...〉 indicates the thermal average. The order parameter is defined by
Eq. (I.1). The susceptibility is defined by
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χ =
〈M2〉 − 〈M〉2

KBT
(I.11)

I.4 Simulation Results

Let us take J = 1 and K = 1, namely ferromagnetic interaction between NN.
Before showing the results for thin films, let us show the results for the bulk
properties of the BEG model applied to the stacked triangular lattice. These
results by symmetry argument do not bring new physics with respect to the
case of simple cubic lattice [12]. However, these results provide elements for
comparison with the film case which will be shown in details below.

I.4.1 Bulk case

We show in Fig. I.3 the energy E, the magnetization M , the susceptibility χ,
and the specific heat Cv versus T in the bulk case for several values of D in
the tricritical region. As seen, the transition is continuous for D < Dc ≃ 7.5
and discontinuous for D > Dc. The magnetization shows also a discontinuity
for D > Dc.

We calculate the critical temperature as function of D. We keep D con-
stant, vary the temperature, and we take the critical temperature at the peak
of the magnetic susceptibility χ (see Fig. I.3). The results for the critical tem-
perature are shown in Fig. I.4(top). The second-order phase transition starts
at D = 0, Tc = 5.34 and Tc decreases as D increases. The cross-over from
the second order to the first order occurs at Dc ≃ 7.6.

In the first-order phase transition the concentration X of He3 atoms jumps
at the value Dc = 7.6 from a lower to higher concentration. This behavior is
observed in Fig. I.4 . Around the critical value Dc, the system jumps between
the states with high and low concentrations.

I.4.2 Film case

For a given film thickness, we study in the same manner the behavior of the
BEG model for different values of D by calculating the energy, specific heat,
the layer magnetization and the energy histogram.

The curves E and M in Fig. I.5 present a second-order phase transition at
Tc ≃ 3.82. With increasing D, the system undergoes a first-order transition.
We show in Fig. I.6 the case of D=7.3 where one observes a discontinuity at
the transition temperature Tc ≃ 2.694.
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Figure I.3: Energy E, magnetization M , susceptibility χ, and specific heat
Cv versus T around the tricritical D of the bulk case. From right to left:
D = 7.3, 7.4, 7.5 and 7.6.

Using the histogram technique, we explored the transition region to search
for the nature of the transition. For D=6, we obtain only a one-peak struc-
ture at the critical temperature as seen in Fig. I.7(top). The energy his-
togram taken at Tc in the case D=7.3 exhibits a double-peak structure as
shown in Fig. I.7(bottom), thus confirming the first-order character of the
transition [26].

At a first-order transition the order and disorder phases coexist. In most
cases, the system has mixed domains of two phases at the same time, the
energy of the system is thus the average of the energies of the two phases
(E1+E2)/2 . It is however possible that at the transition the system goes back
and forth between the two phases during the time evolution. This is what
we observe here: we show in Fig. I.8 how the energy and the magnetization
evolve during the equilibration time of 105 MC steps/spin. There are several
remarks:

(i) In a general manner, in MC simulations a trick to use to check the
equilibrium time is to do two simulations one with a random initial spin
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Figure I.4: Top: Phase diagram in T −D plane. The solid line represents the
second-order phase transition and dashed line represents the first-order tran-
sition, the arrow indicates the bulk tricritical point. Bottom: Concentration
X as a function of D.

configuration and the other one with the ground-state configuration. We
monitor various physical quantities with time evolution. The equilibrium is
attained when two initial spin configurations give the same results. We see
in Fig. I.8 that only after a few thousands of MC steps that the two initial
configurations give statistically the same results.

(ii) The evolutions of E and M show bimodal distributions over periods
of ≃ 104 MC steps. The time of 105 MC steps for equilibrating and 105 MC
steps for averaging is thus sufficient as said above.

We have calculated the transition temperature with D from 0 to 7.5.
The maximum value of D for a 4-layer film is 7.5 above which there is no
transition at all. This value depends on the film thickness. It comes from the
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Figure I.5: Energy (top) and magnetization (bottom) versus T for D = 6,
Lz=4 and L = 120.

fact that the maximum of D should cancel the energy from J and K terms.
For example, with Lz=4, the energy of J and K terms is:

E1 = −(7J + 7K)2 (2 surfaces)

−(8J + 8K)2 (2 interior layers) = −30

where J = K = 1. The energy from D is E2 = +2D (2 surface atoms)+2D
(two interior atoms)= 4D. The maximum of D is determined by setting
E1 +E2 = 0, from which D = 30/4 = 7.5. The same calculation can be done
for another thickness, yielding another value of maximal D.

To determine the critical value of D, namely Dc, where the transition
changes from second to first order, we follow the variation of the energy
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Figure I.6: Energy (top) and magnetization (bottom) versus T in the first-
order region of D: D = 7.3, Lz=4 and L = 120.

gap ∆E defined as the energy separation of the two peaks in the energy
distribution. This gap is zero when the transition is of second order because
the energy distribution is continuous. Using the histogram method with
various values of D, we show in Fig. I.9(top) the variation of ∆E versus D.
As seen, ∆E is not zero for D ∈]7.2, 7.5[. For D ≤ 7.2 the phase transition
is continuous and for D ≥ 7.5 there is no phase transition.

We show in Fig. I.9(bottom) Tc versus D. We note that the maximal
value of D and the tricritical value Dc depends on the film thickness. We
can notice this by looking at the bulk maximal value D = 8 (Lz = ∞) and
Dc = 7.5 as shown in Fig. I.4 . The four-layer film has Dc = 7.2. So, when
Lz goes to infinity Dc goes from 7.2 to 7.5.
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Figure I.7: Energy histograms at Tc=3.820 (top) and Tc=2.694 (bottom) for
D=6 and D=7.3, respectively.

I.5 Size Effect

When the system size is infinite, in second-order phase transitions the correla-
tion length is infinite at the critical point. However, in first-order transitions
the correlation length is finite at the transition temperature where the two
phases coexist and the energy is discontinuous. In simulations, in spite of
the fact that we use periodic boundary conditions to mimic large systems,
we cannot avoid finite-size effects on the results. The nature of the transition
may not be detected at small system sizes. It is therefore very important to
measure the size effects in numerical simulations. We show in Fig. I.10 the
energy versus T for L = 36 and L = 300. The size effect is extremely small.
The transition remains continuous though one observes a change in the slope
of the curve which is steeper for the larger size. In the first-order region, the
energy and magnetization are already discontinuous even for L as small as
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Figure I.8: Energy (top) and magnetization (bottom) versus MC time t (in
unit of 103) at the transition temperature Tc = 2.694 for D=7.3. Note that
the red and green curves are obtained with ferromagnetic and random initial
configurations, respectively.

36.

The film thickness affects on the other hand the value of the transition
temperature Tc as seen in Fig. I.11. As Lz increases, the transition tempera-
ture tends to that of the bulk. We have used the least mean-square fit with
the form

Tc(Lz) = Tc(∞) − A

Lz

(I.12)

where A = 2.692 ± 0.165 and Tc(∞) = 4.455 ± 0.024. The way how Tc

increases with increasing thickness is characterized by constant A in the above
equation of Tc(Lz). This constant is different from one material to another
depending on the coupling between film layers. In some materials A is very
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Figure I.9: Latent heat △E (top) and Tc (bottom) versus D, for Lz = 4,
L = 120. The critical value of D (≃ 7.2) is indicated by the arrow. The
dotted line between D = 7.4 and 7.5 is extrapolated.

small, meaning that the interlayer coupling is very small. This is not the case
here in spite of the fact that there are only two nearest neighbors for each
interior atom on the z-axis (with only one for surface atom). Knowing how
Tc varies with the film thickness can help determine the interlayer coupling.

At this stage, let us discuss about the criticality of the transition in the
second order region. If we compare Eq. (I.12) with the finite-size scaling
relation:

Tc(L) = Tc(∞) + AL−1/ν (I.13)
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Figure I.10: Size effect on E in the transition region for L=36 (red), L=300
(blue) and D=6, and a film thickness Lz=4.

we see that ν=1 which is the 2D Ising universality exponent. This is in
agreement with Ref. [22]: when the film thickness becomes small, the critical
exponents tend to the 2D criticality.

I.6 Surface Effect

So far, we have supposed J=K for any NN spin pair in the film. We inves-
tigate now the surface effect due to the surface parameter Ks taken to be
different from K. We write the biquadratic surface and bulk parts as follows:

αb

∑

ij

S2
i S

2
j + αs

∑

i′j′

S2
i′S

2
j′ (I.14)

where αb = K/J and αs = Ks/J denote respectively the bulk and surface
interactions and

∑
i′j′ denotes the sum over NN spin pairs in the surface

layer. We take αb = 1. Let us show the magnetization of the first and second
layer in Fig. I.12 for several values of αs. As seen, the weaker the surface
interaction is, the smaller the surface magnetization becomes. Only when
αs is much larger than 1, the surface layer magnetization becomes larger
than the second-layer. For the first-order region, the surface and interior
layer magnetizations have discontinuities at the transition as expected (see
Fig. I.13).
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We show now the average number of spins ±1 and the average number of
spins zero in each layer versus T in Fig. I.14 at the first-order transition with
D = 7.3. They are defined as M1,2(±1) =<

∑
i[δ(Si, 1) + δ(Si,−1)] > /L2

where the sum is made for each layer: M1(±1) and M2(±1) correspond
to the surface and second layers, respectively. For spins zero, M1,2(0) =<∑

i δ(Si, 0) > /L2. Several remarks are in order:

(i) below the transition temperature, the ordering results from spins ±1.
The number of spins zero increases slowly from 0 at T < Tc but becomes
dominant for T > Tc.
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Figure I.12: Layer magnetization of the first (red) and second (blue) layers
versus T , for αs=0.8 (top), 1 (middle), 1.2 (bottom) with D=6 and N = 120.

(ii) At T < Tc the surface has a smaller number of spins ±1 than the
second layer, namely there is a deficit of He4 at the surface. Experimentally,
it has been shown that in the mixture He3-He4 at low temperature, He3 atoms
are localized near the surface, giving rise to a deficit of He4 [27].
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versus T , for αs=1 and D = 7.3.

Figure I.14: The normalized numbers of spins ±1 (He4) and spins zero (He3)
versus T for the first and second layers. Red void circles and green circles
represent the number of He4 (spins ±1) on the first and second layers, while
blue void squares and magenta squares represent the number of He3 (spins
zero) on the first and second layers, respectively.

I.7 Conclusion

We have investigated in this chapter the BEG model used for a thin film of
stacked triangular lattices with a thickness Lz. There are three important
aspects of our results:



22 Chapitre I : Blume-Emery-Griffiths Model

(i) The nature of the first-order phase transition in a region of the phase
space (D, T ) is conserved down to a 4-layer film, unlike in other systems where
bulk first-order transition becomes second-order with small thickness [23],

(ii) The cross-over from second-order to first-order transition in the bulk
is conserved in thin films as shown above. The anisotropy of the BEG Hamil-
tonian affects the nature of the phase transition as it has been observed in the
bulk case of simple cubic lattice [17]: in 4-layer triangular films, for D ≤ 7.2
the transition is continuous and for 7.2 < D < 7.5 the transition is of first or-
der. This has been confirmed with the histogram technique where the latent
heat can be measured with precision,

(iii) The surface effect on the layer magnetizations has been shown. The
surface magnetization is smaller than the interior layer if the surface inter-
action is not so large. If we map the BEG model into a mixing of He-3
and He-4, then near the surface there is a He-3 enrichment (normal liquid)
in a film at low temperatures. This point is new with respect to the bulk
properties where the mixing of two liquids is uniform over the system.



Chapter II

Helimagnetic Thin Films

Contents

II.1 Introduction . . . . . . . . . . . . . . . . . . . . . 23

II.2 Helimagnetic Thin Films . . . . . . . . . . . . . . 25

II.2.1 Model and classical ground state . . . . . . . . . . 25

II.2.2 Surface spin reconstruction . . . . . . . . . . . . . 26

II.3 Green’s Function Theory . . . . . . . . . . . . . . 27

II.3.1 Green’s function method . . . . . . . . . . . . . . . 28

II.3.2 Green’s functions applied to helimagnetic spin sys-

tems . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II.3.3 Equation of motion . . . . . . . . . . . . . . . . . . 31

II.4 Green’s Function Results . . . . . . . . . . . . . . 36

II.4.1 Spin-wave spectrum . . . . . . . . . . . . . . . . . 36

II.4.2 Spin contraction at T=0 . . . . . . . . . . . . . . . 38

II.4.3 Transition temperature . . . . . . . . . . . . . . . 41

II.5 Helimagnetic Thin Films in a Field . . . . . . . . 43

II.5.1 Phase transition . . . . . . . . . . . . . . . . . . . 48

II.5.2 Low-temperature quantum fluctuations . . . . . . 52

II.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 58

II.1 Introduction

Helimagnets have been a subject of intensive investigations both experi-
mental and theoretical, since their discovery by Yoshimori [28] and Villain
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[29]. Most of experiments have been made on the rare-earth (RE) metals
like Holmium (Ho), Terbium (Tb) and Dysprosium (Dy) [30–32], insulators
like NiBr2, Cu2OSeO3 [33, 34], and several others [35, 36]. In the simplest
model, the helimagnetic ordering is due to the competition between nearest-
neighbors (NN) and next-nearest-neighbors (NNN). This kind of structure
belongs to a large family of periodic non-collinear spin structures called frus-
trated systems. The frustration has several origins, it can be due to the
geometry of the lattice such as the triangular lattice [37], to the competi-
tion between the exchange interaction and the Dzyaloshinskii-Moriya (DM)
interaction [38,39], and the competition between exchange interactions such
as in the case of helimagnets. In spite of their long history, the nature of
the phase transition in non-collinear magnets has been elucidated only re-
cently [37, 40, 41]. Helical magnets present potential applications in spin
transport [42, 43]. There is a large number of experiments which has been
performed on thin films to study low-temperature properties of helimagnets
such as spin waves [44–47] and heat capacity [48] . Due to complicated
surface spin configurations, surface effects in helimagnets have only recently
studied [49].

The purpose of this chapter in the first part is to study a quantum Heisen-
berg helimagnetic thin film of simple cubic (sc) lattice using of the Green’s
function method. We will show that the spin configuration across the film
is strongly non-uniform. Using the exactly determined spin configuration
we calculate the spin-wave spectrum and the layer magnetizations as func-
tions of temperature T . we will show that there exist surface-localized modes
which strongly affect the surface magnetization. We also show that quantum
fluctuations cause interesting spin contractions at T = 0 and give rise to a
cross-over between layer magnetizations at low T .

In the second part of the chapter we study the effect of an external mag-
netic field applied along the c-axis perpendicular to the film surface of a
helimagnet with both classical and quantum Heisenberg spin models. As
will be seen, the applied magnetic field gives a very complex spin configu-
ration across the film. We will show by Monte carlo (MC) simulation that
the phase transition in the field is due to the destruction of a number of
layers inside the film. We identify the condition under which a layer becomes
disordered. This partial phase transition is not usual in thin films where one
observes more often the disordering of the surface layer, not an interior layer.
At low temperature, we investigate effects of quantum fluctuations using a
Green’s function (GF) method for non -collinear spin configurations.

The organization of the present chapter is as follows: In section II.2,
the model is presented and classical ground state of the helimagnetic film is
determined. In section II.3 we detail the principal steps used in the general
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GF method for non-collinear spin configurations. The GF results are shown
in section II.4. In section II.5 we investigate the effect of an applied magnetic
field. The conclusion is given in section II.6.

II.2 Helimagnetic Thin Films

The helimagnetic order results from the competition between ferromagnetic
and antiferromagnetic interactions. This screw-type structure consists of
spins screwing along a crystalline axis with a spatial repetition. To generate
the bulk helical structure in the c direction we take a ferromagnetic interac-
tion (J1 > 0) between NNs, and an antiferromagnetic interaction (J2 < 0)
between NNNs along the c-axis. The helical GS have parallel spins in the
plane perpendicular to the c-axis and a turn angle αij between two NNs in
the adjacent planes.

II.2.1 Model and classical ground state

We consider a thin film of sc lattice of Nz layers, with two symmetrical
surfaces perpendicular to the c axis, the exchange Hamiltonian is given by

He = −
∑

〈i,j〉

Ji,j

→

Si .
→

Sj (II.1)

where Jij being the exchange interaction between two quantum Heisenberg
spins Si and Sj occupying the lattice sites i and j. We write the classical
energy of a spin in the bulk helical GS as

E = −2J1 cosαb − 2J2 cos 2αb

where αb = αij is the bulk turn angle which is the same across the bulk. The
bulk GS configuration corresponds to the minimum of E

dE

dαb
= 2J1 sinαb + 2J2 sin 2αb = 0

For αb = 0, π the GS spin configuration is ferromagnetic and antiferromag-
netic respectively. The helimagnetic structure is possible for cosαb = − J1

4J2
,

namely for |J2| > 0.25J1. The critical value of J2 is |Jc
2 | = 0.25J1. The mag-

netic structure is seen as a chain of spins along the c-axis Fig. II.1 where each
spin represents the magnetic moment per lattice site. This bulk helical stabil-
ity has been experimentally observed in Holmium and MnSi films [30,50,51].
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c-axis

Figure II.1: Bulk helical structure with a turn angle αb = 30◦.

In thin films the spins lie in the basal plane as in the bulk, although they
are different from plane to plane, specially near the surface. The lack of
neighbors for surface atoms leads to the surface reconstruction.

We assume a non-zero J2 only on the c-axis, this assumption simplifies
formulas but does not change the physics of the problem since including the
uniform helical angles in two other directions parallel to the surface will not
introduce additional effects.

II.2.2 Surface spin reconstruction

We have used here the steepest descend method [52,53] to calculate the turn
angle between spins of adjacent layers. The main steps of the method are
i) generate a random spin configuration, ii) update one by one all spins as
follows: at each site we calculate the magnetic local field then align the spin
in its direction, iii) repeat the previous steps a sufficient number of times until
the convergence is reached. The results calculated for various J2 are shown
in Table II.1 for film of Nz = 8 layers. We note that unlike the bulk the turn
angle is heavily modified near the surface with oscillation for strong |J2| and
that the angle at the film center are close to the bulk value αb (see Fig. II.2).
This means that the surface reconstruction affects just a few atomic layers.

J2/J1 α◦
1,2 α◦

2,3 α◦
3,4 α◦

4,5 α◦
b

-0.6 34,21 76,18 60,86 68,36 65,37
-0.5 29,84 65,75 58,30 60,84 60
-0.4 22,52 50,72 51,38 51,30 51,31
-0.35 17,06 39,97 44,27 44,41 44,41
-0.3 9,78 24,73 31,14 32,53 33,55

Table II.1: Values of αi,j between two adjacent layers for various values of
J2/J1. The last column shows the value of the angle in the bulk case.

According to the theorem of Mermin and Wagner [54] continuous spin
models such as XY and Heisenberg spins do not have long-range ordering at
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Figure II.2: Angles α1,..., α7 in degree across the film for J2/J1= -0.6, -0.5,
-0.4, -0.35, -0.3 (from top) with Nz= 8.

finite temperatures in two dimensions. Since we have in our case a thin film,
it is useful to add an anisotropic interaction Iij to stabilize the long-range
ordering at finite temperatures. We suppose that it has the following form:

Ha = −
∑

〈i,j〉

Ii,jS
z
i S

z
j cos θij

where (Ii,j > 0) is supposed to be positive, small compared to J1 and limited
to NNs. The full Hamiltonian is thus H = He +Ha. The GS in the presence
of Ii,j is determined in the same manner. It is very slightly modified with
the order of one or two degrees when Ii,j ≃ 0.1J1. The small anisotropy does
not therefore alter the main features shown in Fig. II.2.

II.3 Green’s Function Theory

The double-time Green’s function developed by Zubarev [55] is a self-consistent
method in quantum statistical mechanics and solid state physics. It is used
for theoretical studies of spin systems and the calculation of their magnetic
properties at zero and finite temperatures. We propose here to recall briefly
the basic principle of this method and its application for non-collinear mag-
nets.
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II.3.1 Green’s function method

We define the retarded and advanced Green’s function by

Gr
AB(t− t′) =

〈〈
A(t);B(t′)

〉〉
= −iθ(t − t′) 〈[A(t), B(t′)]〉

Ga
AB(t′ − t′) =

〈〈
A(t);B(t′)

〉〉
= iθ(t′ − t) 〈[A(t), B(t′)]〉

(II.2)

where A(t) and B(t′) are the Heisenberg operators at times t and t′, 〈〈...〉〉
is a abbreviated notation for the Green’s function, 〈...〉 indicates the average
over a grand canonical ensemble and θ(t− t′) is the Heaviside step function.
The quantum equations of motion for the two Green’s functions are identical
since dθ(t−t′)

dt
= −dθ(t′−t)

dt
and have the form

i
dG

dt
=

dθ(t− t′)

dt
〈[A(t), B(t′)]〉 +

〈〈
i
dA(t)

dt
;B(t′)

〉〉
(II.3)

We take into account the relation between θ(t) and δ(t)

θ(t) =

∫ t

−∞

δ(t)dt (II.4)

We can write the equation of motion (II.3) under the form

i
dG

dt
= δ(t− t′) 〈[A(t), B(t′)]〉 +

〈〈
[A(t), H(t)];B(t′)

〉〉
(II.5)

We define the time correlation functions :

FAB(t− t′) = 〈A(t)B(t′)〉
FBA(t− t′) = 〈B(t′)A(t)〉 (II.6)

These functions do not contain the discontinuous factor θ(t− t′), in contrast
to the Green’s function they are defined also when (t = t′), they give then the
average values of products of operators and when the the times are different
(t 6= t′) these averages yield the time correlation functions which are essential
for transport processes. They satisfy the equations :

i
d

dt
FAB(t− t′) = 〈[A(t), H(t)]B(t′)〉

i
d

dt
FBA(t− t′) = 〈B(t′)[A(t), H(t)]〉

(II.7)

To solve the equations of motions of the Green’s functions, we apply the
Fourier transformation to have the spectral representation for the correlation
functions (II.6) and the Green’s function (II.2):
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FBA(t− t′) =

∫ +∞

−∞

J(ω)e−iω(t−t′)dw

FAB(t− t′) =

∫ +∞

−∞

J(ω)eβωe−iω(t−t′)dw

(II.8)

Gr
AB(t− t′) =

∫ +∞

−∞

Gr
AB(E)e−iE(t−t′)dE (II.9)

Gr
AB(E) =

1

2π

∫ +∞

−∞

Gr
AB(t− t′)eiE(t−t′)dt (II.10)

where we have FAB(t−t′) = FBA(t−t′+iβ), J(ω) being the spectral intensity.
We replace Gr

AB(t− t′) in Eq. (II.10) by the expression (II.2) we get

Gr
AB(E) =

1

2πi

∫ +∞

−∞

(
〈A(t)B(t′)〉 − 〈B(t′)A(t)〉

)
eiE(t−t′)θ(t− t′)dt (II.11)

Using the spectral representation (II.8) we have

Gr
AB(E) =

1

2πi

∫ +∞

−∞

ei(E−ω)(t−t′)θ(t− t′)dt

∫ +∞

−∞

J(ω)(eβω − 1)dω (II.12)

Gr
AB(E) =

1

2π

∫ +∞

−∞

J(ω)(eβω − 1)
dω

E − ω + iε
(II.13)

Repeating the same calculation for the advanced Green’s function we get

Ga
AB(E) =

1

2π

∫ +∞

−∞

J(ω)(eβω − 1)
dω

E − ω − iε
(II.14)

Combining the two functions we can obtain the spectral intensity

G(ω+ iε)−G(ω− iε) =
1

2π

∫ +∞

−∞

J(E)(eβω −1)

(
1

ω −E + iε
− 1

ω − E − iε

)

(II.15)

Using now the δ function δ(x) = 1
2πi

(
1

x−iε
− 1

x+iε

)
we obtain

G(ω + iε) −G(ω − iε) = −i(eβω − 1)J(ω) (II.16)

FBA(t− t′) = 〈A(t)B(t′)〉

=i

∫ +∞

−∞

G(ω + iε) −G(ω − iε)

eβω − 1
eβωe−iω(t− t′)dω

(II.17)
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II.3.2 Green’s functions applied to helimagnetic spin

systems

We apply the Green’s function technique to the helimagnetic system pre-
sented by the above Hamiltonian which we express in the local coordinates
(ξi, ηi, ζi), we obtain

→

ζi

→

ξi

→

ζj

→

ξj

θi,j

→

Sj

→

Si

→
ηi=

→
ηj

Figure II.3: Local coordinates in plane
perpendicular to the c-axis

→

ζj= cosθi,j
→

ζi +sinθi,j
→

ξj
→

ξj= cosθi,j
→

ξi −sinθi,j
→

ζj

→

Si= Sx
i

→

ξi +Sy
i

→
ηi +Sz

i

→

ζi
→

Sj= Sx
j

→

ξj +Sy
j

→
ηj +Sz

j

→

ζj

H = −
∑

〈i,j〉

Ji,j[
1

4
(S+

i S
+
j + S−

i S
−
j )(cos θij − 1)

+
1

4
(S+

i S
−
j + S−

i S
+
j )(cos θij + 1)

+
1

2
sin θij(S

+
i + S−

i )Sz
j −

1

2
sin θij(S

+
J + S−

j )Sz
i + Sz

i S
z
j cos θij ]

−
∑

〈i,j〉

Ii,jS
z
i S

z
j cos θij

(II.18)

We define the following two double-time Green’s functions in the real space:

Gij(t− t′) =<< S+
i (t);S−

j (t′) >>= −iθ(t− t′) < [S+
i (t), S−

j (t′)] >

Fij(t− t′) =<< S−
i (t);S−

j (t′) >>= −iθ(t− t′) < [S−
i (t), S−

j (t′)] >
(II.19)

We need these two functions because the equation of motion of the first
function generates the function of the second type and vice versa.
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II.3.3 Equation of motion

Writing the equations of motion of these functions

i
dGij(t− t′)

dt
=< [S+

i (t), S−
j (t′)] > δ(t− t′)− << [H,S+

i (t)], S−
j (t′) >>

i
dFij(t− t′)

dt
=< [S−

i (t), S−
j (t′)] > δ(t− t′)− << [H,S−

i (t)], S−
j (t′) >>

(II.20)
where the spin operators and their relations are given by

S±
j = Sx

j ξ̂j ± iSy
j η̂j

[S+
j , S

−
l ] = 2Sz

j δjl

[Sz
j , S

±
l ] = ±S±

j δjl

Expanding the commutators in Eq. (II.20), we have

i
dGi,j(t− t′)

dt
= 2 < Sz

i > δi,jδ(t− t′) −
〈〈∑

k

Ji,k

[
Sz
i S

−
k (cos θi,k − 1)

+ Sz
i S

+
k (cos θi,k + 1) + 2Sz

i S
z
k sin θi,k + sin θi,k(S+

i (S+
k + S−

k ))

− 2 cos θi,kS
+
i S

z
k

]
− 2

∑

k

Ii,kS
+
i S

z
k cos θi,k, S

−
j (t′)

〉〉

i
dFi,j(t− t′)

dt
=
〈〈∑

l

Ji,k

[
Sz
i S

+
k (cos θi,k − 1) + Sz

i S
−
k (cos θi,k + 1)

+ 2Sz
i S

z
k sin θi,k + sin θi,k(S

−
i (S+

k + S−
k )) − 2 cos θi,lS

−
i S

z
k

]

− 2
∑

k

Ii,kS
−
i S

z
k cos θi,k;S

−
j

〉〉

(II.21)
The equations of motion contain higher-order Green’s functions. In order
to reduce them and close the system of equations, we adopt the decoupling
scheme introduced by Tyablikov [56] which is called Random-Phase Approx-
imation (RPA) or Tyablikov decoupling:
〈〈
Sz
i S

+
k ;S−

j

〉〉
=

〈
Sz
i

〉〈〈
S+
k ;S−

j

〉〉
+
〈
S+
k

〉〈〈
Sz
i ;S−

j

〉〉
−

〈〈〈
Sz
i

〉〈
S+
k

〉
;S−

j

〉〉

=
〈
Sz
i

〉〈〈
S+
k ;S−

j

〉〉
=

〈
Sz
i

〉
Gk,j(t− t′)〈〈

Sz
i S

−
k ;S−

j

〉〉
=

〈
Sz
i

〉〈〈
S−
k ;S−

j

〉〉
=

〈
Sz
i

〉
Fk,j(t− t′)〈〈

Sz
i S

z
k ;S−

j

〉〉
= 0〈〈

Sα
i (S+

k + S−
k );S−

j

〉〉
= 0

(II.22)
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where we have considered
〈
S+
k

〉
=

〈
S−
k

〉
= 0, and

〈〈
Sz
k ;S−

j

〉〉
= 0. We obtain

the following general equations for non-collinear magnets

i
dGij(t− t′)

dt
= 2 < Sz

i > δ(t− t′) −
∑

k

Ji,k

[
(cos θik − 1) < Sz

i > Fk,j(t− t′)

+ (cos θi,k + 1) < Sz
i > Gk,j(t− t′) − 2 cos θi,k < Sz

k > Gi,j(t− t′)
]

+ 2
∑

k

Ii,k < Sz
k > Gi,j(t− t′) cos θi,k

i
dFij(t− t′)

dt
=
∑

k

Ji,k

[
(cos θi,k − 1) < Sz

i > Gk,j(t− t′)

+ (cos θi,k + 1) < Sz
i > Fk,j(t− t′) − 2 cos θi,k < Sz

k > Fi,j(t− t′)
]

− 2
∑

k

Ii,k < Sz
k > Fi,j(t− t′) cos θi,k

(II.23)
We now introduce the following in-plane Fourier transforms:

Gi,j (t, t′) =
1

∆

∫ ∫

BZ

dkxy
1

2π

∫ +∞

−∞

dωe−iω(t−t′)

×gni,nj
(ω,kxy) e

ikxy·(Ri−Rj)

Fi,j (t, t′) =
1

∆

∫ ∫

BZ

dkxy
1

2π

∫ +∞

−∞

dωe−iω(t−t′)

×fni,nj
(ω,kxy) e

ikxy·(Ri−Rj)

where ω is the spin-wave frequency, kxy denotes the wave-vector parallel to
xy planes and Ri is the position of the spin at the site i, ni, nj are respectively
the z-component indices of the layers where the sites Ri, Rj and belong to.
The integral over kxy is performed in the first Brillouin zone (BZ) whose
surface is ∆ in the xy reciprocal plane.

ωgni,nj
= 2 < Sz

ni > δni,nj
−
∑

nk

Jni,nk
[(cos θni,nk

− 1)

< Sz
ni > fnk,nj

eikxy(Rni
,Rnk

) + (cos θni,nk
+ 1) < Sz

ni > gnk,nj
eikxy(Rni

,Rnk
)

− 2 cos θni,nk
< Sz

nk > gni,nj
] + 2

∑

nk

Ini,nk
cos θni,nk

< Sz
nk > gni,nj
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ωfni,nj
=

∑

nk

Jni,nk
[(cos θni,nk

− 1)

< Sz
ni > gnk,nj

eikxy(Rni
,Rnk

) + (cos θni,nk
+ 1) < Sz

ni > fnk,nj
eikxy(Rni

,Rnk
)

− 2 cos θni,nk
< Sz

nk
> fni,nj

] + 2
∑

nk

Ini,nk
cos θni,nk

< Sz
nk > fni,nj

For convenience, we denote ni=1 for all sites on the surface layer, ni=2 for
all sites on the second layer and so on, we finally obtain the following matrix
equation :

M(ω)h = u (II.24)

where M(ω) is a square matrix of dimension (2Nz × 2Nz), h and u are the
column which are defined as follows :

h =




g1,n′

f1,n′

...
gn,n′

fn′

n

...
gNz,n′

fnz,n′




, u =




2 < Sz
1 >

0
...

2 < Sz
n >

0
...

2 < Sz
Nz

>
0




(II.25)

M(ω) =




ω+A1 0 B+

1
C+

1
D+

1
E+

1
0 0 0 0 0 0

0 ω−A1 −C+

1
−B+

1
−E+

1
−D+

1
0 0 0 0 0 0

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
··· D−

n E−

n B−

n C−

n ω+An 0 B+
n C+

n D+
n E+

n ···

··· −E−

n −D−

n −C−

n −B−

n 0 ω−An −C+
n −B+

n −E+
n −D+

n ···
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
0 0 0 0 0 0 D−

Nz
E−

Nz
B−

Nz
C−

Nz
ω+ANz 0

0 0 0 0 0 0 −E−

Nz
−D−

Nz
−C−

Nz
−B−

Nz
0 ω−ANz




where n = 1, 2, ..., Nz, dn = I1/J
⊥
1 , and

An = −8J
//
1 〈Sz

n〉 (1 + dn − γ)

−2
〈
Sz
n+1

〉
cos θn,n+1(dn + J⊥

1 )

−2
〈
Sz
n−1

〉
cos θn,n−1(dn + J⊥

1 )

−2J2

〈
Sz
n+2

〉
cos θn,n+2

−2J2

〈
Sz
n−2

〉
cos θn,n−2

B±
n = J⊥

1 〈Sz
n〉 (cos θn,n±1 + 1)

C±
n = J⊥

1 〈Sz
n〉 (cos θn,n±1 − 1)

E±
n = J2 〈Sz

n〉 (cos θn,n±2 − 1)

D±
n = J2 〈Sz

n〉 (cos θn,n±2 + 1)

Note that to use the above formulas, we have to apply the following rules:
(i) if n = 1 then there are no n−1 and n−2 terms in the matrix coefficients,
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(ii) if n = 2 then there are no n− 2 terms, (iii) if n = Nz then there are no
n + 1 and n + 2 terms, (iv) if n = Nz − 1 then there are no n + 2 terms.

Solving det|M| = 0, we obtain the spin-wave spectrum ω for each value
(kx, ky). There are 2Nz eigenvalues of ω corresponding to two opposite spin
precessions as in antiferromagnets.

The solution for gn,n is given by

gn,n(ω) =
|M|2n−1

|M|

where |M|2n−1 is the determinant made by replacing the 2n− 1th column of
|M| by u given by (II.25). Writing now

|M| =
∏

i

[ω − ωi(kxy)] (II.26)

where ωi(kxy), i = 1, ..., 2Nz are poles of gn,n. ωi(kxy) can be obtained by
solving |M| = 0. In this case, gn,n can be expressed as

gn,n(ω) =
∑

i

D2n−1[ωi(kxy)]∏
i[ω − ωi(kxy)]

(II.27)

where D2n−1[ωi(kxy)] is

D2n−1[ωi(kxy)] =
|M|2n−1[ωi(kxy)]∏

j 6=i[ωj(kxy) − ωi(kxy)]
(II.28)

Using the spectral theorem which relates the correlation function < S−
i S

+
j >

to the Green’s function, we have

< S−
i S

+
j >= lim

ε→0

1

∆

∫ ∫
dkxy

∫ +∞

−∞

i

2π
[gn,n′(ω + iε) − gn,n′(ω − iε)]

× dω

eβω − 1
eikxy(Ri−Rj)

(II.29)
where ε is an infinitesimal positive constant and β = (kbT )−1, kB being the
Boltzmann constant.

Using the Green’s function presented above, we can calculate self-consistently
various physical quantities as a function of temperature T . The magnetiza-
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tion < Sz
n > of the n− th layer is given by

< Sz
n > =

1

2
− < S−

i S
+
j >

=
1

2
− lim

ε→0

1

∆

∫ ∫
dkxy

∫ +∞

−∞

i

2π
[gn,n′(ω + iε) − gn,n′(ω − iε)]

× dω

eβω − 1
eikxy(Ri−Rj)

(II.30)
Replacing Eq. (II.28) in Eq. (II.30) and making use of the following identity

1

x− iη
− 1

x + iη
= 2πδ(x)

we obtain

< Sz
n >=

1

2
− 1

∆

∫ ∫
dkxy

2Nz∑

i=1

D2n−1[ωi(kxy)]

eβωi − 1
(II.31)

< Sz
n > depends on the magnetizations of the neighboring layers via ωi(i =

1, ..., 2Nz), therefore we should solve by iteration Eq. (II.31) written for all
layers, namely for n = 1, ..., Nz, to obtain the layer magnetizations at a given
temperature T . Note that by symmetry < Sz

1 >=< Sz
Nz

> , < Sz
2 >=<

Sz
Nz−1 >, < Sz

3 >=< Sz
Nz−2 >, and so on. Thus, only Nz/2 self-consistent

layer magnetizations are to be calculated.
The value of the spin in the layer n at T = 0 is calculated by

< Sz
n > (T = 0) =

1

2
+

1

∆

∫ ∫
dkxy

2Nz∑

i=1

D2n−1[ωi(kxy)] (II.32)

where the sum is performed over Nz negative values of ωi. For positive values,
the Bose-Einstein factor is equal to zero at T = 0.

The transition temperature Tc can be calculated in a self consistent man-
ner by iteration, letting all < Sz

n > tend to zero, namely, ωi → 0. Expanding
eβωi − 1 → βcωi on the right hand side of Eq. (II.31) where βc = (kBTc)

−1,
we have, by putting < Sz

n >= 0 on the left hand side,

βc =
2

∆

∫ ∫
dkxy

2Nz∑

i=1

D2n−1(ωi)

ωi

(II.33)

There are Nz such equations using Eq. (II.31) with n = 1, ..., Nz. Since the
layer magnetizations tend to zero at the transition temperature with different
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values, it is obvious that we have to look for a convergence of the solution of
Eq. (II.33) to a single value Tc.

II.4 Green’s Function Results

We consider the helimagnetic case where J2 is negative and |J2| > 0.25J1.
The GS spin configuration across the film has been determined for each value
of J2/J1. Using the values of θi,j to calculate the matrix elements of M, then
solving det|M| = 0, we find the eigenvalues ωi(i = 1, ..., 2Nz) for each kxy

with an input set of < Sz
n > (1, ..., Nz) at a given T . Using Eq. (II.31) for

n = 1, ..., Nz we calculate the output < Sz
n > (1, ..., Nz). Using this output

set as input, we calculate again < Sz
n > until the input and output are

identical within a desired precision P = 1%. Numerically we use a Brillouin
zone of 1002 wave-vector values, and use the obtained values < Sz

n > at a
given T as input for a neighboring T . At low T and up to ∼ 3

5
Tc, only a few

iterations suffice to get the convergence precision. Near Tc, the convergence
is much harder.

II.4.1 Spin-wave spectrum

In spin systems, collective excitations are called spin waves or magnons when
they are quantized. They propagate in magnetically ordered systems like
phonons in crystalline solids. At finite temperatures, as long as the magnetic
order exists (T < Tc), spin waves are the only physical process to determines
the magnetic properties of the system. In the semiclassical approach the spins
are treated as precessing vectors, the spin waves are illustrated schematically
in Fig. II.4.

Figure II.4: Semiclassical representation of a spin wave.

In the bulk case, making a 3D Fourier transformation of Eq. (II.23) we
obtain the spin wave dispersion relation in the absence of anisotropy:

~ω = ±
√
A2 −B2 (II.34)
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where

A =J1 〈Sz〉 [8γ − 8 + z2(cos θ + 1) cos kz − 2z2 cos θ)]

+ J2 〈Sz〉 [(cos 2θ + 1)z2 cos 2kz − 2z2 cos 2θ]

B =J1 〈Sz〉 (cos θ − 1)z2 cos kz + +J2 〈Sz〉 (cos 2θ − 1)z2 cos 2kz

where z2=2 the number of NNN on the c-axis, and γ=1
2
(cos kx + cos ky). We

see that ~ω is zero when A=±B, namely, at kx=ky=kz=0 and at kz=θ along
the helical axis (see Fig. II.5).
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Figure II.5: Spin-wave spectrum versus kz at T=0, in the bulk case d = 0,
J2 = −0.5, and kx = ky = 0.

The amplitude of a bulk spin-wave mode does not vary in space (see
Fig. II.4), but near a magnetic perturbation such as surface, the spin waves
can be spatially localized. Such modes are called ”surface localized modes”.
Their amplitudes decay when they propagate from the surface into the bulk
for an acoustic surface mode, and increases for an optical surface mode.

Let us take J
//
1 =J⊥

1 =J = 1 everywhere except on the surface where

J
//
1 =Js. We have calculated the spin-wave spectrum ω versus kx=ky for

various values of Js. In the case of an eight-layer film with an anisotropy
d=0.1, there are 8 positive and 8 negative modes corresponding two opposite
spin precessions which describe the opposite circular motions of each lattice
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spin. The negative sign does not mean spin-wave negative energy, but it
indicates just the precession contrary to the trigonometric sense.

We can mention here the existence of two degenerate acoustic surface
modes for Js=0.6, which lie in the low energy region [Fig. II.6(middle)] and
two optical surface branches which lie outside the bulk-mode energy region
for Js=1.6 [Fig. II.6(bottom)], whereas no such modes exist in the case when
Js = 1 [Fig. II.6(top)]. This degeneracy comes from the two symmetrical
surfaces of the film. These surface modes propagate parallel to the film
surface and their presence affects directly the surface magnetization: acoustic
modes diminish the surface magnetization according to Eq. (II.31), while
optical modes increase it (see Fig. II.7). As T increases, layer magnetizations
decrease, reducing therefore the spin wave energy as seen in Fig. II.8.

II.4.2 Spin contraction at T=0

It is known that in antiferromagnets, quantum fluctuations give rise to a
contraction of the spin length at zero temperature [57]. We will see here
that a spin under a stronger antiferromagnetic interaction has a stronger
zero-point contraction. The spins near the surface serve for such a test. In
the case of the film considered above, spins in the first and second layers
have only one antiferromagnetic NNN while interior spins have two NNN,
so the contraction at a given J2/J1 is expected to be stronger for interior
spins. This is verified with the results shown in Fig. II.9. When |J2|/J1

increases, namely the antiferromagnetic interaction becomes stronger, we
observe stronger contractions. Note that the contraction tends to zero when
the spin configuration becomes ferromagnetic, namely J2 tend to −0.25. We
show the layer magnetizations in Fig. II.10 in the case where J2/J1 = −0.7
and Nz = 8. Some remarks are in order: (i) The shown result is obtained
with a convergence of 1%. For temperatures close to the transition temper-
ature Tc, we have to lower the precision to a few percents which reduces the
clarity because of their close values, (ii) The surface magnetization, which has
a large value at T=0 as seen in Fig. II.9, crosses the interior layer magnetiza-
tions at T ≃ 0.6 to become smaller than the interior layer magnetizations at
higher temperatures. This cross-over phenomenon is due to the competition
between quantum fluctuations, which dominate the low-T behavior, and the
low-lying surface spin-wave modes which strongly diminish the surface mag-
netization at higher T . Note that the second-layer magnetization makes also
a crossover at T ≃ 0.6. Similar cross-overs have been observed in quantum
antiferromagnetic thin films [57] and quantum superlattices [58].
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Figure II.6: Spin-wave spectrum versus k=kx=ky at T = 0.19, in the case
where Nz=8, d=0.1, and J2=-0.5 for JS=1 (top), Js=0.6 (middle) and Js=1.6
(bottom).
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Figure II.7: Layer magnetizations as function of T for J2=-0.5 with d=0.1,
Nz=8: red circles, green squares, blue void squares and magenta void circles
are magnetization of the first, second, third and fourth layers, respectively,
for JS=1 (top), Js=1 (middle), Js=1.6 (bottom).
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Figure II.8: Spin-wave spectrum versus k=kx=ky at T=0.19 (red) and
T=2.22 (green), in the case where Nz=8, d=0.1, J2=-0.5 and Js=1.
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Figure II.9: Spin lengths at T = 0 for several values of J2 with d = 0.1,
Nz = 8, for spins in first (red), second (green), third (blue) and fourth layers
(magenta), respectively.

II.4.3 Transition temperature

Layer magnetizations are different at low temperatures, they will tend to zero
at a unique transition temperature as seen in Fig. II.11(top). The reason is
that as long as an interior layer magnetization is not zero, it will act on the
surface spins as an external field, preventing them to become zero.
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Figure II.10: Layer magnetizations as functions of T for J2=-0.7 with d=0.1,
Nz=8, for spins in first (red), second (green), third (blue) and fourth layers
(magenta), respectively.
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Figure II.11: Layer magnetization (top) and pseudo transition temperatures
Tcs (bottom) as functions of T for J2 = −0.5 with Js = 0.6, Nz = 8, for
spins in first (red), second (green), third (blue) and fourth layers (magenta),
respectively.

Since the convergence is rather good at low T but it is difficult near
Tc, we explain how to determine Tc by another way which is easier. As
said earlier, each Eq. (II.33) for a given n gives a pseudo transition Tcs as
long as T is not close to the temperature where all layers magnetizations
vanish. To determine this temperature, we have to use the self-consistent
layer magnetizations obtained as described above at a temperature as close
as possible to Tc as input for Eq. (II.33), we find four pseudo-transition
temperatures Tcs as seen in Fig. II.11 (bottom). The convergence of these
temperatures to a single one occurs when T=Tc. It is obtained by a short
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extrapolation from temperatures when they rather close to each other. Tc is
thus obtained with a very small extrapolation error. The results for several
J2/J1 are shown in Fig. II.12.

2. 25

2. 3

2. 35

2. 4

2. 45

2. 5

- 1. 2 - 1 - 0. 8 - 0. 6 - 0. 4

T

J2

c

/J1

Figure II.12: Transition temperature Tc as a function of J2/J1.

II.5 Helimagnetic Thin Films in a Field

In a film, the angles between NN in adjacent planes are not uniform across the
film, a strong variation is observed near the surface. An exact determination
is made by the numerical steepest descent method explained above. The
latter is particularly efficient for complex situations such as the present case
where the spins are no longer in the xy planes in an applied magnetic field.
The spin in the i-th layer is determined by two parameters which are the
angle with its NN in the adjacent plane αi,j, and the azimuthal angle βi

formed with the c-axis. The spins here are supposed to be classical and the
Hamiltonian is given by

H = −
∑

〈i,j〉

Ji,j

→

Si .
→

Sj −
∑

i

H.
→

Si (II.35)

where Ji,j is the interaction between two spins Si and Sj occupying the lattice
sites i and j and H denotes an external magnetic field applied along the c-
axis. We use the steepest descent method to determine the classical ground
state. Note that we have used several different initial conditions to check the
convergence to a single GS for each set of parameters. Figures II.13(a) and
II.13(b) show that whatever the initial spin configuration is used, one has Sz

1

and Sz
Nz

converge, following different paths, to the same value. Figure II.13(c)
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shows the convergence of the energy per spin to the same value whatever the
initial condition is. Figure II.13(d) shows that the energy calculated by the
steepest descent method at T = 0 is on the extrapolation of the energy
calculated by MC simulation at finite T . There is thus no problem of meta-
stability: the spin configuration obtained by the steepest descent method is
the GS.

- 3. 5

- 3

- 2. 5

- 2

- 1. 5

- 1

- 0. 5

0

0. 5

0 10 20 30 40 50

E

TM
t

(c)

- 3. 5

- 3

- 2. 5

- 2

- 1. 5

- 1

- 0. 5

0 0. 4 0. 8 1. 2 1. 6

E

T

(d)

- 0. 9

- 0. 6

- 0. 3

0

0. 3

0. 6

0. 9

0 400 800 1200 1600 2000

S
z

t

1 (a)

- 0. 9

- 0. 6

- 0. 3

0

0. 3

0. 6

0. 9

0 400 800 1200 1600 2000

S
z

t

(b)
12

Figure II.13: Time evolution of (a) Sz
1 , (b) Sz

Nz
, (c) energy for different spin

configuration, (d) energy versus temperature T .

We show in Fig. II.15 the GS configuration obtained for J2 = −1 and
H = 0.2. The circles in the xy planes with radius equal to 1 are plotted to
help identify the orientation of each spin. We describe qualitatively the spin
configuration in a field:

i) First of all, the spin configuration depends on the film thickness even
in the case where all interactions are the same.

ii) Several planes have negative z spin components.This may be surprising
at the first sight since all spins do not turn themselves to the field direction.
However, this can be understood by examining the competition between
the magnetic field which tends to align spins in the c direction, and the
antiferromagnetic interaction J2 which tries to preserve the antiferromagnetic
ordering. This is very similar to the the case of collinear antiferromagnet: in
weak magnetic field the spins remain antiparallel, and in a moderate field,
the so called ”spin flop” occurs: the neighboring spins stay antiparallel with
each other but turn themselves perpendicular to the field direction to reduce
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the field effect [59].

iii) Due to the symmetry of the two surfaces, their z components are
identical (see Fig. II.18), i.e. Sz

1 = Sz
N−z. The same is observed for any

two symmetrical planes with respect to the middle of the film, for example
Sz
2 = Sz

Nz−1, S
z
3 = Sz

Nz−2 etc. Note that while le z components are equal, the
x and y components are antiparallel (see Fig. II.14) Sy

1 = −Sy
Nz

, Sx
1 = −Sx

Nz
.

The spins preserve their antiferromagnetic interaction for the transverse com-
ponents. Only at a very strong field that all spins turn into the field direction.
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Figure II.14: Spin components across the film in the case where H=0.2. Sx

(red), Sy (blue).

A full view of the ”chain” of Nz spins along the c-axis between the two
surfaces is shown in Fig. II.15. Note that the angle in the xy plane is deter-
mined by the NNN interaction J2. Without field, the symmetry is about the
c-axis, so x and y spin components are equivalents. Under the field, due to
the surface effect, the spins make different angles with the c-axis, giving rise
to different z components for the layers across the film as shown in Fig. II.18.
Of course, the symmetry axis is still the c-axis, so all Sx and Sy are invariant
under a rotation around the c-axis. Figure II.14 is thus an instantaneous
configuration of Sx and Sy for each layer across the film. As the simulation
time is going on these components rotate about the c axis but their symme-
try remains at any time. The xy spin modulus Sxy shown in Fig II.18, on
the other hand, is time-invariant.

The z components are quite different from plane to plane with the sym-
metry mentioned above. The reason comes from the fact that the local fields
acting on spins near the surface are very different due to the lack of neighbors.
The finite ”chain” of Nz spins along the c-axis between the two surfaces have
a particular symmetry: the z components at the two ends are symmetric
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and the spins between these two ends form a non-collinear domain-wall-like
configuration.

Figure II.15: Spin configuration in the case where H=0.2, J2=-1, Nz=12.

The ground state spin configuration depends on the field magnitude H . If
H increases, we observe an interesting phenomenon: Fig. II.16 shows the spin
configuration projected on the xy plane (top view) for increasing magnetic
field. We see that the spins of each chain tend progressively to lie in the same
plane perpendicular to the xy planes [see Fig. II.16(a-b-c)]. The ”planar
zone” observed in Fig. II.16(c) occurs between H ≃ 0.05 and 0.35. For
stronger fields they are no more planar [Fig. II.16(d-e-f)]. Note that the larger
the xy component is, the smaller the z component becomes: for example in
Fig. II.16(a) the spins are in the xy plane without field (H = 0) and in
Fig. II.16(f) they are almost parallel to the c axis because of a very high
field.

We show in Fig. II.17 the angles αi between a spin of layer i with its NN
in layer (i+1) projected on the xy plane. As seen, for 0.05 ≤ H ≤ 0.35 the
α angles between NN are 0 or 180 degrees. This is a striking aspect which
results certainly from a competition between the action of the field and the
antiferromagnetic interaction in analogy with the spin-flop phenomenon in
antiferromagnets: spins prefer to align in a way to preserve at least a part of
their antiferromagnetic interaction.
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(a) (b) (c)

(d) (e) (f)

Figure II.16: Top view of Sxy (projection of spins on xy plane) across the film
for several values of H : (a) 0, (b) 0.03, (c) 0.2, (d) 0.4, (e) 0.7, (f) 1.7. The
radius of the circle, equal to 1, is the spin full length. For high fields, spins
are strongly aligned along the c-axis, Sxy is therefore much smaller than 1.
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Figure II.17: Projection on the xy plane of the angle αi between a spin in
layer i and its NN in the layer i+1 (in degree) as a function of H for Nz = 12,
J2=-1. Dark olive green void squares are for α1, maroon void triangles for
α2, red circles for α3, indigo triangles for α4, dark blue squares for α5, dark
void circles for α6.
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and 0.7.
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Figure II.19: Spin configuration at T = 0 for H=0.6. For clarity only columns
at the front edges are shown.

II.5.1 Phase transition

As described above, the planar helical spin configuration in zero field become
non planar in a perpendicular field. In order to interpret the phase transition
shown below, let us mention that a layer having a large z spin-component
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parallel to the field cannot have a phase transition because its magnetiza-
tion will never become zero. This is similar to a ferromagnet in a field.
However layers having large negative z spin-components (antiparallel to the
field) can undergo a transition due to the magnetization reversal at higher
temperature similarly to an antiferromagnet in a field. In addition, the xy
spin-components whose xy fluctuations are not affected by the perpendicular
field can make a transition. Having mentioned these, we expect that some
layers will undergo a phase transition, while others will not. This is indeed
what we observed in MC simulations shown in the following.

For MC simulations, we use the Metropolis algorithm (see Appendix) and
a sample size N ×N ×Nz with N=20, 40, 60, 100 for detection lateral size
effects and Nz=8, 12, 16 for thickness effects. The equilibrium time is 105

MC steps/spin and the thermal average is performed with the following 105

MC steps/spin.
In order to appreciate the effect of the applied field, let us show first the

case where H=0 in Fig. II.20(top). We see that all layers undergo a phase
transition within a narrow region of T .

In an applied, as seen earlier, in the GS all layers do not have the same
characteristics so one expects different behaviors. Figure II.20(bottom) shows
the layer magnetizations and the layer susceptibility as functions of T for H=
0.2 with J2= -1, Nz= 12 (only the first six layers are shown, the other six
are symmetric). Several remarks are listed below:

(i) Only layer 3 and layer 5 have a phase transition: their magnetizations
strongly fall down at the transition temperature. This can be understood
from what we have anticipated above: these layers have the largest xy com-
ponents (see Fig. II.14). Since the correlation between xy components do not
depend on the applied field, the temperature destroys the in-plane ferromag-
netic ordering causing the transition. It is not the case for the z components
which are kept non zero by the field. By symmetry, layers 8 and 10 have the
same transition.

(ii) Layers with small amplitudes of xy components do not have a strong
transverse ordering at finite T , the absence of pronounced peaks in the sus-
ceptibility indicate that they do not make a transition as seen in Fig. II.20(bottom).

(iii) Note that the xy spin components of layers 3 and 5 are disordered
at Tc ≃ 1.275 as indicated by pronounced peaks of the susceptibility.

Under an applied magnetic field the film can have a partial transition:
some layers with large xy spin-components undergo a phase transition (de-
struction of their transverse xy correlation). This picture is confirmed by sev-
eral simulations for various field strengths. Another example is shown in the
case of a strong field H= 0.7. The GS has been shown in Fig. II.18(bottom)
where we observe larger xy spin-components of layers 3, 4 and 5 (and their
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Figure II.20: Layer magnetization and layer magnetic susceptibility as func-
tions of T for H=0 (top) and H=0.2 (bottom), J2=-1, Nz=12. Dark olive
green void squares are for the first layer, maroon void triangles for the second,
red circles for the third, indigo triangles for the fourth, dark blue squares for
the fifth, dark void circles for the sixth layer.

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2
T

Sz

0

0.2

0.4

0.6

0.8

1

0 0. . 2

xy

Figure II.21: Sz and Sxy of each layer versus T for an applied magnetic field
H=0.2. Dark olive green void squares are for the first layer, maroon void
triangles for the second, red circles for the third, indigo triangles for the
fourth, dark blue squares for the fifth, dark void circles for the sixth layer.
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symmetric layers 7, 8 and 9). We should expect a transition of each of these
layers. This is indeed the case: we show this transition in Fig. II.22 where
sharp peaks of the susceptibilities of these layers are observed. This transi-
tion mechanism is also observed for other fields.
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Figure II.22: Layer magnetization and layer magnetic susceptibility as func-
tion of T for H=0.7, J2=-1, Nz=12,Dark olive green void squares for the first
layer, maroon void triangles for the second, red circles for the third, indigo
triangles for the fourth, dark blue squares for the fifth, dark void circles for
the sixth layer.

We close this section by showing some size effects. Figure II.23 shows the
effect of the lateral size (xy planes) on the layer susceptibility. As expected
in a continuous transition, the peaks of the susceptibilities of the layers un-
dergoing a transition grow strongly with the layer lattice size.
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Figure II.23: Magnetic susceptibility of the third layer as a function of T
for H=0.2, J2=-1, Nz=12. Dark green void circles, dark blue squares, indigo
triangles, red circles are susceptibilities for layer lattice size 100×100, 60×60,
40×40 and 20×20, respectively.

As for the thickness effects we note that changing the thickness (odd or
even number of layers) will change the GS spin configuration so that the
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layers with largest xy components are not the same for different thicknesses.
As a consequence, the layers which undergo the transition are not the same
for different thicknesses. We show in Fig. II.24 the layer susceptibilities for
Nz=8 and 16. For Nz=8, the layers which undergo a transition are the first
, third and fourth layers with pronounced peaks, while for Nz=16, the layers
which undergo a transition are the third, fifth, seventh and eighth layers.
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Figure II.24: Magnetic susceptibility as a function of T for two thicknesses
with H=0.2, J2=-1. Left: Nz=8. Right: Nz=16. Dark olive green void
squares are for the first layer, maroon void triangles for the second, red
circles for the third, indigo triangles for the fourth, dark blue squares for the
fifth, dark void circles for the sixth layer, black diamonds for the seventh,
dark brown void diamonds for the eight.

Let us show the case of an odd number of layers. Figure II.25 shows
the results for Nz=9 with H=0.2, J2=-1. Due to the odd layer number, the
center of symmetry is the middle layer (5th layer). As seen, the layers 1
and 4 and their symmetric counterparts (layers 9 and 6) have largest xy spin
modulus as seen in Fig. II.25(middle). The transition argument shown above
predicts that these layers have transversal phase transitions. This is indeed
seen in Fig. II.25(bottom) where the susceptibility of layer 4 has a strong
peak at the transition. The first layer, due to the lack of neighbors, has a
weak peak. The other layers do not undergo a transition. They show only a
rounded maximum.

II.5.2 Low-temperature quantum fluctuations

We extend here the Green’s function used in the above section for zero field
to the case where an applied magnetic field is present. The method remains
essentially the same except the fact that each spin is defined not only by
its angles with the NN in the adjacent layers but also by its azimuthal an-
gle formed with the c-axis. We use in the following Hamiltonian (II.35) but
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Figure II.25: Case of 9-layer film. Spin components across the film for H=0.2.
Top: Sz, middle: Sxy, bottom: layer susceptibilities versus T . Dark olive
green void squares are for the first layer, maroon void triangles for the second,
red circles for the third, indigo triangles for the fourth, dark blue squares for
the fifth layer, respectively.

with quantum Heisenberg spins Si of magnitude 1/2. In addition, we add an
anisotropic interaction to stabilize the long-range ordering at finite temper-
ature:
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Ha = −I1
∑

<i,j>

Sz
i S

z
j cos θij (II.36)

where I1 is supposed to be positive, small compared to J1, and limited to
NN. The general method has been described in section II.3. We express the
Hamiltonian in the local coordinates of spin Si:

H = −
∑

〈i,j〉

Ji,j[
1

4
(S+

i S
+
j + S−

i S
−
j )(cos θij − 1)

+
1

4
(S+

i S
−
j + S−

i S
+
j )(cos θij + 1)

+
1

2
sin θij(S

+
i + S−

i )Sz
j −

1

2
sin θij(S

+
J + S−

j )Sz
i + Sz

i S
z
j cos θij ]

−
∑

〈i,j〉

Ii,jS
z
i S

z
j cos θij −

∑

i

H.Si

(II.37)

We define the following two double-time Green’s functions in the real space:

Gi,j(t, t
′) = << S+

i (t);S−
j (t′) >>

= −iθ(t − t′) <
[
S+
i (t), S−

j (t′)
]
> (II.38)

Fi,j(t, t
′) = << S−

i (t);S−
j (t′) >>

= −iθ(t − t′) <
[
S−
i (t), S−

j (t′)
]
> (II.39)

Writing the equations of motion of these functions and using the Tyablikov
decoupling scheme to reduce the higher-order functions, we obtain the general
equations for non-collinear magnets. We next introduce the following in-
plane Fourier transforms gn,n′ and fn,n′ of the G and F Green’s functions, we
finally obtain the following coupled equations:

D−
n gn−2,n′ + E−

n fn−2,n′ + B−
n gn−1,n′ + C−

n fn−1,n′

+(ω + An)gn,n′ + B+
n gn+1,n′ + C+

n fn+1,n′ + D+
n gn+2,n′

+E+
n fn+2,n′ = 2 〈Sz

n〉 δn,n′ (II.40)

−E−
n gn−2,n′ −D−

n fn−2,n′ − C−
n gn−1,n′ − B−

n fn−1,n′

+(ω − An)fn,n′ − C+
n gn+1,n′ − B+

n fn+1,n′

−E+
n gn+2,n′ −D+

n fn+2,n′ = 0 (II.41)
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where n = 1, 2, ..., Nz, dn = I1/J
q

1, γ = (cos kxa+ cos kya)/2. The coefficients
are given by

An = −8J q

1 < Sz
n > (1 + dn − γ)

−2 < Sz
n+1 > cos θn,n+1(dn + J⊥

1 )

−2 < Sz
n−1 > cos θn,n−1(dn + J⊥

1 )

−2J2 < Sz
n+2 > cos θn,n+2

−2J2 < Sz
n−2 > cos θn,n−2 −H cos ζn

B±
n = 2J⊥

1 〈Sz
n〉 (cos θn,n±1 + 1)

C±
n = 2J⊥

1 〈Sz
n〉 (cos θn,n±1 − 1)

E±
n = J2 〈Sz

n〉 (cos θn,n±2 − 1)

D±
n = J2 〈Sz

n〉 (cos θn,n±2 + 1)

where ω is the spin-wave frequency, kx and ky denote the wave-vector compo-
nents in the xy planes, n is the index of the layer along the c axis with n = 1
being the surface layer, n = 2 the second layer and so on. The angle ζn is
the azimuthal angle formed by a spin in the layer n with the c axis. Besides,
we have distinguished the in-plane NN interaction J q

1 from the inter-plane
NN one J⊥

1 . If we write all equations explicitly for n = 1, ..., Nz we can put
these equations under a matrix of dimension 2Nz × 2Nz . Solving this matrix
equation, one gets the spin-wave frequencies ω at a given wave vector and a
given T .

We show in Fig. II.26(top) the spin length of different layers at T = 0 for
Nz=12 and J2=-1 as a function of H . All spin contractions are not sensi-
tive for H lower than 0.4, but rapidly become smaller for further increasing
H . The spin lengths are all saturated at the same value for H > 2. Fig-
ure II.26(bottom) shows the spin lengths as functions of J2. When J2 ≥ −0.4,
the spin configuration becomes ferromagnetic, and as a consequence, the con-
traction tends to 0. Note that in zero field, the critical value of J2 is -0.25.
The surface layer and third layer have smaller contractions than the other
layers. This can be understood by examining the antiferromagnetic contri-
bution of the GS energy of a spin in these layers: they are smaller than those
of the other layers.

We show in Fig. II.27(top) the layer magnetizations versus T for the
case where J2=-1 and Nz=12. The low-T region is enlarged in the inset
where one observes a cross-over between the magnetizations of layer 1, 3
and 6 at T ≃0.8: below this temperature M1 < M3 < M6 and above they
become M1 > M3 < M6. This cross-over is due to the competition between
several complex factors: for example quantum fluctuations have less effect
on the surface magnetization making it larger than the magnetizations of
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Figure II.26: Spin lengths at T=0 as a function of an applied magnetic field
H (top) and versus J2 (bottom). Dark olive green void squares are for the
first layer, maroon void triangles for the second, red circles for the third,
indigo triangles for the fourth, dark blue squares for the fifth, dark void
circles for the sixth layer.

interior planes at low T , while the missing of neighbors for surface spins tend
to diminish the surface magnetization at high T [57, 60]. The case where
J2=−0.5 closer to the ferromagnetic limit is shown in Fig. II.27(middle).
The spin length at T=0 is almost 0.5 (very small contraction) and there is no
visible cross-over observed in the top figure. Figure II.27(bottom) shows the
case J2=-2 which is the case of a strong helical angle. We observe then a cross-
over at a higher T (≃1.2) which is in agreement with the physical picture
given above on the competition between quantum and thermal fluctuations.
Note that we did not attempt to get closer to the transition temperature,
namely M <0.1 because the convergence of the self-consistency then becomes
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Figure II.27: Layer magnetizations as function of T for several value of J2

with H=0.2, and Nz=12. TOP: j2=-1, Middle: J2 =-0.5, Bottom: j2=-2.
Dark olive green void squares for the first layer, maroon void triangles for
the second, red circles for the third, indigo triangles for the fourth, dark blue
squares for the fifth, dark void circles for the sixth layer. The inset in the
top figure shows an enlarged region at low T.

Let us discuss about the spin-wave spectrum. We remind that to solve
self-consistently equation (II.40) at each T , we use as inputs < Sz

1 >,< Sz
2 >

, ..., < Sz
Nz

> to search for the eigenvalues ω for each vector (kx, ky) and then
calculate the outputs < Sz

1 >,< Sz
2 >, ..., < Sz

Nz
> using equation (II.31).

The self-consistent solution is obtained when the outputs are equal to the
inputs at a desired convergence precision fixed at the fifth digit, namely
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10−5. Figure II.28 shows the spin-wave spectrum in the direction kx = ky
of the Brillouin zone at T=0.353 and T=1.212 for comparison. As seen, as
T increases the spin-wave frequency decreases. At the transition it tends to
zero.
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Figure II.28: Spin-wave spectrum versus kx = ky where W stands for spin-
wave frequency ω, for T=0.353 (left), T=1.212 (right), with H=0.2.
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Figure II.29: Spin-wave spectrum versus kx = ky at T=0.353 where W stands
for spin-wave frequency ω, for J2=-0.5 (left), J2=-2 (right), with H=0.2.

Figure II.29 shows the spin-wave spectrum at T = 0.353 for J2=-0.5 and
-1, for comparison. Examining them closely, we see that the distribution of
the spin-wave modes are quite different for the two cases. When summed up
for calculating the layer magnetizations, this results in the difference observed
for the two cases shown in Fig. II.27.

II.6 Conclusion

In this chapter, we have studied first the surface effect in a helimagnetic
thin film of simple cubic lattice in zero field with quantum Heisenberg spins.
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We have found a strong surface spin rearrangement which is experimentally
observed on MnSi films and Holmium . We have calculated self-consistently
physical quantities such as the spin-wave excitation, the spin length at T=0
and the layer magnetizations as functions of temperature. We have shown
that when varying the surface exchange interaction, we observe surface-
localized acoustic and optical modes which lie outside the bulk magnon en-
ergy band. These modes cause a strong deviation of the surface magnetiza-
tion with respect to the interior one [49]. Another interesting phenomenon is
the cross-over of layer magnetizations at low temperatures due to the com-
petition between quantum fluctuations and thermal effects. Secondly, we
have investigated the effect of an applied magnetic field along the c-axis per-
pendicular to the film using Monte Carlo simulation. We have found that
when increasing the temperature, the layers with large xy spin-components
undergo a phase transition where the ordering of the transverse (in-plane)
xy spin-components is destroyed. This ”transverse” transition is possible be-
cause the xy spin-components do not depend on the field. Other layers with
small xy components, namely large z components, do not make transition
because the ordering in Sz is maintained by the applied field. The transi-
tion of a number of layers with large xy spin components, not all layers, is
a new phenomenon discovered here with our present model. We have also
investigated the quantum version of the model by using the Green’s function
method. The results show that the zero-point spin contraction is different
from layer to layer. We also found a cross-over of layer magnetizations which
depends on the antiferromagnetic interaction strength, namely on the mag-
nitude of helical angles.
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III.1 Introduction

The Dyaloshinskii-Moriya (DM) interaction was proposed to explain the weak
ferromagnetism which was observed in antiferromagnetic crystals, such as
MnCO3, CoCO3 and α-Fe2O3. Based on the lack of inversion symmetry in
these kinds of materials I. Dzyaloshinskii has introduced an interaction term
[61] which was later microscopically derived by T. Moriya where he found
the mechanism behind this interaction which stems from a spin-orbit cou-
pling [62]. Hence, the interaction was named as the Dzyaloshinkii-Moriya
interaction. There has been a large number of investigations on the effect

60
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of DM interaction in various materials, both experimentally and theoreti-
cally for weak ferromagnetism in perovskite compounds [63–67]. However,
the interest in the DM interaction goes beyond the weak ferromagnetism:
for example, it has been recently shown in various works that the DM in-
teraction is at the origin of spin spirals and topological skyrmions [9, 68–74]
and new kinds of magnetic domain walls [75–79]. The increasing interest in
skyrmions results from the fact that skyrmions may play an important role
in the electronic transport which is at the heart of technological application
devices [80–83].

In this chapter, we are interested in the spin-wave (SW) properties of a
system of spins interacting with each other via a DM interaction in addition
to the symmetric isotropic Heisenberg exchange interaction. The competition
between these interactions gives rise to a non-collinear spin configuration in
the ground state (GS). Unlike helimagnets where the helical GS spin configu-
ration results from the competition between the symmetric nearest-neighbor
(NN) and next-nearest neighbor (NNN) interactions [28, 29], the DM inter-
action, as said above, is antisymmetric. This gives rise to a non trivial SW
behavior as will be seen below. Note that there has been a number of works
dealing with the SW properties in DM systems [84–88].

This chapter is organized as follows. Section III.3 is devoted to the de-
scription of the model and the determination of the GS. Section III.4 shows
results on the SW spectrum and the magnetization in two dimensions (2D)
and three dimensions (3D). The case of thin films with free surfaces is shown
in section III.5 where layer magnetizations at finite temperature (T ) and the
thickness effect are presented.

III.2 Dzyaloshinskii-Moriya Interaction

The Dzyaloshinskii Moriya interaction is related to the lack of inversion sym-
metry of the compound and a strong spin-orbit coupling. The DM interaction
between two spins Si and Sj is written as

HDM = Di,j · (Si ∧ Sj) (III.1)

The Hamiltonian HDM contains the cross product Si ∧ Sj which is a vector
perpendicular to Si and Sj times the Di,j vector which results from the
displacement of non magnetic ions located between Si and Sj , for example
in Mn-O-Mn bonds. The direction of Di,j depends on the symmetry of the
displacement [62]. It can be obtained by the cross product ri ∧ rj . This
implies that Dij is perpendicular to the displacement plane (Fig III.1). In
the case where the three atoms are aligned Dij=0.
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Figure III.1: Schematic view of the DM interaction for two spins.

The DM interaction favors a canted spin structure [61,89], unlike symmet-
ric interaction J which favors a collinear configuration. These two exchange
interactions are in competition. J is usually the leading term, that is why
in many situations the DM effect is hidden. However, in a recent work it
was demonstrated for the first time that on some surfaces the DM interac-
tion dominates the symmetric exchange interaction [90] and induces a spatial
rotating magnetic ground state. In ultra-thin magnetic films the DM inter-
action is crucial for the creation of non-collinear long-range spin order. The
resulting structure depends on the direction of the D vector which depends
on the symmetry of the displacement.

III.3 Model and Ground State

We consider a thin film of simple cubic (SC) lattice of N layers stacked in the
y-direction perpendicular to the film surface. The Hamiltonian H is given
by:

H = He + HDM

He = −
∑

〈i,j〉

Ji,jSi · Sj

HDM =
∑

〈i,j〉

Di,j · Si ∧ Sj

(III.2)

where Ji,j and Di,j are the exchange and DM interactions, respectively, be-
tween two Heisenberg spins Si and Sj of magnitude S=1/2 occupying the
lattice sites i and j.

For simplicity, let us consider the case where the in-plane and inter-plane
exchange interactions between NN are both ferromagnetic and denoted by Jq

and J⊥, respectively. The DM interaction is supposed to be between NN in
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the plane with a constant D. Due to the competition between the exchange
J term which favors the collinear configuration, and the DM term which
favors the perpendicular one, we expect that the spin Si makes an angle θi,j
with its neighbor Sj. Therefore, the quantization axis of Si is not the same as

that of Sj . Let us call ζ̂i the quantization axis of Si and ξ̂i its perpendicular
axis in the xz plane. The third axis η̂i, perpendicular to the film surface, is
chosen in such a way to make (ξ̂i, η̂i, ζ̂i) an orthogonal direct frame. Writing
Si and Sj in their respective local coordinates, one has

Si = Sx
i ξ̂i + Sy

i η̂i + Sz
i ζ̂i (III.3)

Sj = Sx
j ξ̂j + Sy

j η̂j + Sz
j ζ̂j (III.4)

We choose the vector Di,j perpendicular to the xz plane, namely

Di,j = Dei,j η̂i (III.5)

where ei,j =+1 (-1) if j > i (j < i) for NN on the ξ̂i or ζ̂i axis. Note that
ej,i = −ei,j .

To determine the GS, the easiest way is to use the steepest descent
method. Note that we have used different initial conditions to check the
convergence to a single GS for each set of parameters. Choosing Di,j lying
perpendicular to the spin plane (i.e. xz-plane) as indicated in Eq. (III.5),
we determine the GS as a function of D. An example is shown in Fig.III.2
for θ = π/6 (D = −0.577) with Jq = J⊥ = 1. We see that each spin has
the same angle with its four NN in the plane (angle between NN in adjacent
planes is zero). Let us show the relation between θ and Jq, the energy of the
spin Si is written as

Ei = −4JqS
2 cos θ − 2J⊥S

2 + 4DS2 sin θ (III.6)

where θ = |θi,j| and care has been taken on the signs of sin θi,j and ei,j when
counting NN, namely two opposite NN have opposite signs. The minimiza-
tion of Ei yields

dEi

dθ
= 0 ⇒ −D

Jq

= tan θ ⇒ θ = arctan(−D

Jq

) (III.7)

The value of θ for a given D
Jq

is precisely what obtained by the steepest descent
method.

In the present model, the DM interaction is supposed in the plane, so in
the GS the angle between in-plane NN is not zero. We show in Fig. III.2 the
relative orientation of the two NN spins in the plane.
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Figure III.2: Top: the ground state is a planar configuration on the xz plane.
The figure shows the case where θ = π/6 (D = −0.577), Jq = J⊥ = 1 using
the steepest descent method. Bottom: a zoom is shown .

The DM term of Eq. (III.2) can be rewritten in the locale coordinate
(ξ̂i, η̂i, ζ̂i) of spin Si as

Si ∧ Sj = (−Sz
i S

y
j − Sy

i S
x
j sin θi,j + Sy

i S
z
j cos θi,j)ξ̂i

+(Sx
i S

x
j sin θi,j + Sz

i S
z
j sin θi,j)η̂i

+(Sx
i S

y
j − Sy

i S
z
j sin θi,j − Sy

i S
x
j cos θi,j)ζ̂i

(III.8)
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Using Eq. (III.5), we have

HDM =
∑

〈i,j〉

Di,j · Si ∧ Sj

= D
∑

〈i,j〉

(Sx
i S

x
j ei,j sin θi,j + Sz

i S
z
j ei,j sin θi,j)

=
D

4

∑

〈i,j〉

[(S+
i + S−

i )(S+
j + S−

j )ei,j sin θi,j

+4Sz
i S

z
j ei,j sin θi,j ]

(III.9)

where we have replaced Sx = (S++S−)/2. Note that ei,j sin θi,j is always pos-
itive since for a NN on the positive axis direction, ei,j = 1 and sin θi,j = sin θ
where θ is positively defined, while for a NN on the negative axis direction,
ei,j = −1 and sin θi,j = sin(−θ) = − sin θ.

For non-collinear spin configurations, the local spin coordinates allow one
to use the commutation relations between spin operators which are valid only
when the spin lies on its quantification axis defined as the z axis. This method
has been applied for helimagnets in chapter II. Expressing the Hamiltonian
in the local coordinates, we obtain

H = −
∑

<i,j>

Ji,j

{
1

4
(cos θi,j − 1)

(
S+
i S

+
j + S−

i S
−
j

)

+
1

4
(cos θi,j + 1)

(
S+
i S

−
j + S−

i S
+
j

)

+
1

2
sin θi,j

(
S+
i + S−

i

)
Sz
j −

1

2
sin θi,jS

z
i

(
S+
j + S−

j

)

+ cos θi,jS
z
i S

z
j

}

+
D

4

∑

〈i,j〉

[(S+
i + S−

i )(S+
j + S−

j )ei,j sin θi,j

+4Sz
i S

z
j ei,j sin θi,j]

(III.10)

As said in the above, the spins lie in the xz planes, each on its quanti-
zation local z axis (see Fig.II.3). Note that unlike the sinus term of the DM
Hamiltonian, Eq. (III.9), the sinus terms of He, the 3rd line of Eq. (III.10),
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are zero when summed up on opposite NN (no ei,j to compensate). The 3rd
line disappears therefore in the following.

At this stage it is very important to note that the standard commutation
relations between spin operators Sz and S± are defined with z as the spin
quantization axis. In non-collinear spin configurations, calculations of SW
spectrum using commutation relations without paying attention to this are
wrong.

It is known that in two dimensions (2D) there is no long-range order at
finite temperature (T ) for isotropic spin models with short-range interaction
[54]. Thin films have small thickness, therefore to stabilize the ordering at
finite T it is useful to add an anisotropic interaction. We use the following
anisotropy between Si and Sj which stabilizes the angle determined above
between their local quantization axes Sz

i and Sz
j :

Ha = −
∑

<i,j>

Ii,jS
z
i S

z
j cos θi,j (III.11)

where Ii,j is supposed to be positive, small compared to Jq, and limited to
NN. Hereafter we take Ii,j=I1 for NN pair in the xz-plane, for simplicity. As
it turns out, this anisotropy helps stabilize the ordering at finite T in 2D
as discussed. It helps also stabilize the SW spectrum at T = 0 in the case
of thin films but it is not necessary for 2D and 3D at T = 0. The total
Hamiltonian is finally given by

H = He + HDM + Ha (III.12)

We use the Green’s function (GF) described in chapter II for the calcula-
tion of magnetization and the spin wave spectrum, where we define the two
double-time GF’s G and F depending on two times t and t′. The quantum
equations of motion for G and F have the form

i~
dGi,j(t, t

′)

dt
= <

[
S+
i (t), S−

j (t′)
]
> δ(t− t′)

− <<
[
H, S+

i

]
;S−

j >> (III.13)

i~
dFi,j(t, t

′)

dt
= <

[
S−
i (t), S−

j (t′)
]
> δ(t− t′)

− <<
[
H, S−

i

]
;S−

j >> (III.14)

For the He and Ha parts, the above equations of motion generate terms
such as << Sz

l S
±
i ;S−

j >> and << S±
l S

±
i ;S−

j >>. These functions can be
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approximated by using the Tyablikov decoupling to reduce to the above-
defined G and F functions as explained in chapter II. For the DM term, the
commutation relations [H, S±

i ] give rise to the following term:

D
∑

l

sin θ[∓Sz
i (S+

l + S−
l ) ± 2S±

i S
z
l ] (III.15)

Note that we have replaced ei,j sin θi,j by sin θ where θ is positive. Using the
in-plane Fourier transformation of the G and F , we obtain a chain of coupled
equations

(E + An)gn,n′ + Bnfn,n′

+Cn(gn+1,n′ + gn−1,n′) = 2 〈Sz
n〉 δn,n′ (III.16)

(E −An)fn,n′ − Bngn,n′

−Cn(fn+1,n′ + fn−1,n′) = 0 (III.17)

which can be rewritten in the following matrix equation

M (E)h = u (III.18)

where M (E) is a square matrix of dimension (2N × 2N), h and u are the
column matrices which are defined as follows

h =




g1,n′

f1,n′

...
gn,n′

fn,n′

...
gN,n′

fN,n′




, u =




2 〈Sz
1〉 δ1,n′

0
...

2 〈Sz
N〉 δN,n′

0




, (III.19)

where E = ~ω and M (E) is given by

M(E) =




E+A1 B1 C1 0 0 0 0 0 0
−B1 E−A1 0 −C1 0 0 0 0 0
··· ··· ··· ··· ··· ··· ··· ··· ···
··· 0 Cn 0 E+An Bn Cn 0 0
··· 0 0 −Cn −Bn E−An 0 −Cn 0
··· ··· ··· ··· ··· ··· ··· ··· ···
0 0 0 0 0 CN 0 E+AN BN

0 0 0 0 0 0 −CN −BN E−AN


 (III.20)

The coefficients are given by
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An = −Jq[8 < Sz
n > cos θ(1 + dn)

−4 < Sz
n > γ(cos θ + 1)]

−2J⊥(< Sz
n−1 > + < Sz

n+1 >)

−4D sin θ < Sz
n > γ

+8D sin θ < Sz
n > (III.21)

Bn = 4Jq < Sz
n > γ(cos θ − 1)

−4D sin θ < Sz
n > γ (III.22)

Cn = 2J⊥ < Sz
n > (III.23)

where n = 1, 2, ..., N , dn = I1/Jq, γ = (cos kxa+ cos kza)/2, kx and kz denote
the wave-vector components in the xz planes, a the lattice constant. Note
that (i) if n = 1 (surface layer) then there are no n− 1 terms in the matrix
coefficients, (ii) if n = N then there are no n + 1 terms. Besides, we have
distinguished the in-plane NN interaction Jq from the inter-plane NN one
J⊥. In the case of a thin film, the SW eigenvalues at a given wave vector
~k = (kx, kz) are calculated by diagonalizing the matrix.

III.4 Two and Three Dimensions: Spin-Wave

Spectrum and Magnetization

Consider just one single xz plane. The above matrix is reduced to two coupled
equations

(E + An)gn,n′ + Bnfn,n′ = 2 < Sz
n > δ(n, n′)

−Bngn,n′ + (E − An)fn,n′ = 0 (III.24)

where An is given by (III.21) but without J⊥ term for the 2D case considered
here. Coefficients Bn and Cn are given by (III.22) and (III.23) with Cn = 0.
The poles of the GF are the eigenvalues of the SW spectrum which are given
by the secular equation

(E + An)(E −An) + B2
n = 0

[E + An][E − An] + B2
n = 0

E2 − A2
n + B2

n = 0

E = ±
√

(An + Bn)(An − Bn) (III.25)

where ± indicate the left and right SW precessions. Several remarks are in
order: (i) if θ = 0, we have Bn = 0 and the last three terms of An are zero.
We recover then the ferromagnetic SW dispersion relation:
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E = 2ZJq < Sz
n > (1 − γ) (III.26)

where Z = 4 is the coordination number of the square lattice (taking dn = 0),
(ii) if θ = π, we have An = 8Jq < Sz

n >, Bn = −8Jq < Sz
n > γ. We recover

then the antiferromagnetic SW dispersion relation:

E = 2ZJq < Sz
n >

√
1 − γ2 (III.27)

(iii) in the presence of a DM interaction, we have 0 < cos θ < 1, (0 < θ <
π/2). If dn = 0, the quantity in the square root of Eq. (III.25) is always ≥ 0
for any θ. It is zero at γ = 1. The SW spectrum is therefore stable at the
long-wavelength limit. The anisotropy dn gives a gap at γ = 1.

As said earlier, the necessity to include an anisotropy has a double pur-
pose: it permits a gap and stabilizes a long-range ordering at finite T in 2D
systems.

Figure III.3 shows the SW spectrum calculated from Eq. (III.25) for
θ = 30 degrees (π/6 radian) and 80 degrees (1.396 radian). The spectrum
is symmetric for positive and negative wave vectors and for left and right
precessions. Note that for small θ (i.e. small D) E is proportional to k2 at low
k [Fig.III.3(Left)], as in ferromagnets. However, as θ increases, we observe
that E becomes linear in k as seen in Fig. III.3(Right). This is similar to
antiferromagnets. The change of behavior is progressive with increasing θ,
we do not observe a sudden transition from k2 to k behavior. This feature is
also observed in three dimensions (3D) and in thin films as seen below.
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Figure III.3: Spin-wave spectrum E(k) versus k ≡ kx = kz for θ = 0.524
radian (Left) and θ = 1.393 (Right) in two dimensions at T = 0.1. Positive
and negative branches correspond to right and left precessions. A small d
(= 0.001) has been used to stabilize the ordering at finite T in 2D.

It is noted that, thanks to the existence of the anisotropy d, we avoid the
logarithmic divergence at k = 0 so that we can observe a long-range ordering
at finite T in 2D. We show in Fig. III.4 the magnetization M ≡< Sz >
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calculated by Eq. (II.31) for one layer using d = 0.001. It is interesting to
observe that M depends strongly on θ: at high T , larger θ yields stronger
M . However, at T = 0 the spin length is smaller for larger θ due to the spin
contraction calculated by Eq. (II.32). As a consequence, there is a cross-over
of magnetizations calculated with different θ at low T as shown in Fig. III.4.
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Figure III.4: Magnetizations M versus temperature T for a monolayer (2D)
θ = 0.175 (radian), θ = 0.524, θ = 0.698, θ = 1.047 (void magenta squares,
green filled squares, blue void circles and filled red circles, respectively). A
small d (= 0.001) has been used to stabilize the ordering at finite T in 2D.

Let us study the 3D case. The crystal is periodic in three directions. We
can use the Fourier transformation in the y direction, namely gn±1 = gne±ikya

and fn±1 = fne±ikya. The matrix is reduced to two coupled equations of g
and f functions, omitting index n,

(E + A′)g + Bf = 2 < Sz >

−Bg + (E −A′)f = 0 (III.28)
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where

A′ = −Jq[8 < Sz > cos θ(1 + d)

−4 < Sz > γ(cos θ + 1)]

+4J⊥ < Sz > cos(kya)

−4D sin θ < Sz > γ

+8D sin θ < Sz > (III.29)

B = 4Jq < Sz > γ(cos θ − 1)

−4D sin θ < Sz > γ (III.30)

The spectrum is given by

E = ±
√

(A′ + B)(A′ −B) (III.31)

If cos θ = 1 (ferromagnetic), one has B = 0. By regrouping the Fourier
transforms in three directions, one obtains the 3D ferromagnetic dispersion
relation E = 2Z < Sz > (1−γ2) where γ = [cos(kxa)+cos(kya)+cos(kza)]/3
and Z = 6, coordination number of the simple cubic lattice. Unlike the 2D
case where the angle is inside the plane so that the antiferromagnetic case can
be recovered by setting cos θ = −1 as seen above, one cannot use the above
formula to find the antiferromagnetic case because in the 3D formulation it
was supposed a ferromagnetic coupling between planes, namely there is no
angle between adjacent planes in the above formulation.

The same consideration as in the 2D case treated above shows that for
d = 0 the spectrum E ≥ 0 for positive precession and E ≤ 0 for negative
precession, for any θ. The limit E = 0 is at γ = 1 (~k = 0). Thus, there is no
instability due to the DM interaction. Using Eq. (III.31), we have calculated
the 3D spectrum. This is shown in Fig. III.5 for a small and a large value
of θ. As in the 2D case, we observe E ∝ k when k → 0 for large θ. Main
properties of the system are dominated by the in-plane DM behavior.

Figure III.6 displays the magnetization M versus T for several values of θ.
As in the 2D case, when θ is not zero, the spins have a contraction at T = 0:
a stronger θ yields a stronger contraction. This generates a magnetization
cross-over at low T shown in the inset of Fig. III.6. The spin length at T = 0
versus θ is displayed in Fig. III.7. Note that the spin contraction in 3D is
smaller than that in 2D. This is expected since quantum fluctuations are
stronger at lower dimensions.
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Figure III.5: Spin-wave spectrum E(k) versus k ≡ kx = kz for θ = π/6 (red
circles) and θ = π/3 (blue circles) in three dimensions at T = 0.1, with d = 0.
Note the linear-k behavior at low k for the large value of θ (inset).
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Figure III.6: Magnetization M versus temperature T for a 3D crystal θ =
0.175 (radian), θ = 0.524, θ = 0.785, θ = 1.047 (red circles, green squares,
blue triangles and void magenta circles, respectively), with d = 0. Inset:
Zoom showing the cross-over of magnetizations at low T for different θ.
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Figure III.7: The spin length S0 at T = 0 versus θ in the 3D case.

III.5 The Case of a Thin Film: Spin-Wave

Spectrum, Layer Magnetizations

In the 2D and 3D cases shown above, there is no need at T = 0 to use a
small anisotropy d. However in the case of thin films shown below, due to
the lack of neighbors at the surface, the introduction of a DM interaction
destabilizes the spectrum at long wave-length ~k = 0. Depending on θ, we
have to use a value for dn larger or equal to a ”critical value” dc to avoid
imaginary SW energies at ~k = 0. The critical value dc is shown in Fig. III.8
for a 4-layer film. Note that at the perpendicular configuration θ = π/2,
no SW excitation is possible: SW cannot propagate in a perpendicular spin
configuration since the wave-vectors cannot be defined.

We show now a SW spectrum at a given thickness N . There are 2N
energy values half of them are positive and the other half negative (left and
right precessions): Ei (i = 1, ..., 2N). Figure III.9 shows the case of a film
of 8 layers with Jq = J⊥ = 1 for a weak and a strong value of D (small and
large θ). As in the 2D cases, for strong D, E is proportional to k at small k
[cf. Fig. III.9(Right)]. It is noted that this behavior concerns only the first
mode. The upper modes remain in the k2 behavior.

Figure III.10 shows the layer magnetizations of the first four layers in an
8-layer film (the other half is symmetric) for several values of θ. In each case,
we see that the surface layer magnetization is smallest. This is a general
effect of the lack of neighbors for surface spins even when there is no surface-
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Figure III.8: Value dc above which the SW energy E(~k = 0) is real as a
function of θ (in radian), for a 4-layer film. Note that no spin-wave excitations
are possible near the perpendicular configuration θ = π/2.

- 15

- 10

- 5

0

5

10

15

- 3 - - 1 0 1 3

E

k

- 20

- 15

- 10

- 5

0

5

10

15

20

- 3 - 2 - 1 0 1 2 3

E

k

Figure III.9: Spin-wave spectrum E(k) versus k ≡ kx = kz for a thin film of 8
layers: θ = π/6 (Left), θ = π/3 (Right), using d = dc for each case (dc = 0.012
and 0.021, respectively). Positive and negative branches correspond to right
and left precessions. Note the linear-k behavior at low k for the large θ case.

localized SW as in the present simple cubic lattice case [5].
The spin length at T = 0 for an 8-layer film is shown in Fig. III.11 as a

function of θ. One observes that the spins are strongly contracted with large
θ.

Let us touch upon the surface effect in the present model. We know
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Figure III.10: 8-layer film: layer magnetizations M versus temperature T
for (Left) θ = π/6, (Right) θ = π/3, with d = 0.1. Red circles, blue void
circles, green void triangles and magenta squares correspond respectively to
the first, second, third and fourth layer.
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Figure III.11: Spin length S0 at T = 0 of the first 4 layers as a function of
θ, for N = 8, d = 0.1. Red circles, blue void circles, green void triangles
and magenta squares correspond respectively to the first, second, third and
fourth layer.

that for the simple cubic lattice, if the interactions are the same everywhere
in the film, then there is no surface localized mode, and this is true with
DM interaction (see spectrum in Fig. III.9) and without DM interaction (see
Ref. [91]). In order to create surface modes, we have to take the surface
exchange interactions different from the bulk ones. Low-lying branches of
surface modes which are ”detached” from the bulk spectrum are seen in the
SW spectrum shown in Fig. III.12(top) with Js

q
= 0.5 and Js

⊥ = 0.5.
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Figure III.12: Surface effect: (Top) spin-wave spectrum E(k) versus k =
kx = kz for a thin film of 8 layers: θ = π/6, d = 0.2, Js

q
= 0.5, Js

⊥ = 0.5, the
gap at k = 0 is due to d. The surface-mode branches are detached from the
bulk spectrum; (Bottom) layer magnetizations versus T for the first, second,
third and fourth layers (red circles, green void circles, blue void circles and
magenta filled squares, respectively).

These surface modes strongly affect the surface magnetization as observed
in Fig. III.12(bottom): the surface magnetization is strongly diminished with
increasing T . The role of surface-localized modes on the strong decrease of
the surface magnetization as T increases has already been analyzed more
than 30 years ago [91].



Section III.6 – Thickness Effect 77

III.6 Thickness Effect

We show now the effect of the film thickness in the present model. The
case of thickness N = 12 is shown in Fig. III.13 with θ = π/6 where the
layer magnetizations versus T are shown in details. The gap at k = 0 due
to d is shown in Fig. III.14(left) as a function of the film thickness N for
d = 0.1 and θ = π/6, at T = 0. We see that the gap depends not only
on d but also on the value of the surface magnetization which is larger for
thicker films. The transition temperature Tc versus the thickness N is shown
in Fig. III.14(right) where one observes that Tc tends rapidly to the bulk
value (3D) which is ≃ 2.82 for d = 0.1.
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Figure III.13: 12-layer film: Layer magnetizations versus T for θ = π/6 and
anisotropy d = 0.1. Red circles, blue squares, green void squares magenta
circles, void turquoise triangles and brown triangles correspond respectively
to first, second, third, fourth, fifth and sixth layer.
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Figure III.14: Left: Gap at k = 0 as a function of the film thickness N for
θ = π/6, d = 0.1, at T = 0.1. Right: Critical temperature Tc versus the film
thickness N calculated with θ = π/6 and d = 0.1. Note that for the infinite
thickness (namely 3D), Tc ≃ 2.8.
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III.7 Conclusion

By a self-consistent Green’s function theory, we obtained the expression of the
spin-wave dispersion relation in 2D and 3D as well as in a thin film. Due to
the competition between ferromagnetic interaction J and the perpendicular
DM interaction D, the GS is non linear with an angle θ which is shown to
explicitly depend on the ratio D/J . The spectrum is shown to depend on
θ and the layer magnetization is calculated self-consistently as a function of
temperature up to the critical temperature Tc.

We have obtained new and interesting results. In particular we have
shown that (i) the spin-wave excitation in 2D and 3D crystals is stable at T =
0 with the non-collinear spin configuration induced by the DM interaction
D without the need of an anisotropy, (ii) in the case of thin films, we need
a small anisotropy d to stabilize the spin-wave excitations because of the
lack of neighbors at the surface, (iii) the spin-wave energy E depends on D,
namely on θ: at the long wave-length limit, E is proportional to k2 for small
D but E is linear in k for strong D, in 2D and 3D as well as in a thin film,
(iv) quantum fluctuations are inhomogeneous for layer magnetizations near
the surface.
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IV.1 Introduction

Skyrmions have been extensively investigated in condensed matter physics
since its theoretical formulation by T. H. R. Skyrme [92] in the context of
nuclear matter. Their existence in magnetically ordered crystals has been
predicted about thirty years ago [93] but it was only recently that skyrmion
lattices have been observed in crystals with non-centrosymmetric lattices,
in particular in B20 structures such as MnSi [10, 94–96], FeCoSi [11] and
FeGe [70] crystals. Although skyrmions are formed only at low tempera-
tures, in recent publications these nanoscale magnetic structures have been
observed at room temperature [97,98]. Skyrmions have been identified also in
hexagonal Fe monolayers on Ir(111) [99, 100]. It appears that thin magnetic
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films are compatible with technology development [101]. There are several
mechanisms and interactions leading to the appearance of skyrmions in var-
ious kinds of matter, among them the dipole-dipole interaction [102, 103],
and the most popular one is certainly the Dzyaloshinskii-Moriya (DM) in-
teraction which was initially proposed to explain the weak ferromagnetism
observed in antiferromagnetic Mn compounds. The order of magnitude of
DM interaction, D, is very small. However, in many recent papers using the
DM interaction, the assumption of small D is not always respected. There-
fore, we can think that the demonstration of Moriya [62] is a special case and
the general Hamiltonian may have the same form but different microscopic
origin. This is similar to the case of the Hubbard model which was initially
originated from a second-order perturbation of exchange interaction, but it
has been used with liberty for arbitrary ratio t/U . This is also the case of
the Ising model if we think of it as a limiting case of the Heisenberg model.

The DM interaction has been shown to generate skyrmions in various
kinds of crystals. For example, it can generate a crystal of skyrmions in which
skyrmions arrange themselves in a periodic structure [104–107]. Skyrmions
have been shown to exist in crystal liquids [108–110] as well as quantum
Hall systems [111, 112]. A single skyrmion has also been found [100, 113].
Effects of skyrmions have been investigated in thin films [71, 114]. Artificial
skyrmion lattices have been devised for room temperature [115]. Experimen-
tal observations of skyrmion lattices have been realized in MnSi in 2009 [9]
and in doped semiconductors in 2010 [72] . Needless to say, many potential
applications using properties of skyrmions are expected in the years to come.
At this stage, it should be noted that skyrmion crystals can also be created
by competing exchange interactions without DM interactions [116, 117]. So,
mechanisms for creating skyrmions are multiple.

In this chapter, we study a skyrmion crystal created by the competition
between the nearest-neighbor (NN) ferromagnetic interaction J and the DM

interaction of magnitude D under an applied magnetic field ~H . We show by
Monte Carlo (MC) simulation that the skyrmion crystal is stable at finite
temperatures up to a transition temperature Tc where the topological struc-
ture of each skyrmion and the periodic structure of skyrmions are destroyed.

The chapter is organized as follows. Section IV.2 is devoted to the descrip-
tion of the model and the method to determine the ground state (GS).The
results from MC simulations are shown in section IV.3. Concluding remarks
are given in section IV.4.
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IV.2 Model and Ground State

The DM interaction between two spins Si and Sj is written as

Di,j · Si ∧ Sj (IV.1)

where Di,j is a vector which results from the displacement of non magnetic
ions located between Si and Sj . As said in chapter III, the direction of
Di,j depends on the symmetry of the displacement. For two spins, the DM
interaction is antisymmetric with respect to the inversion symmetry. We
consider in this chapter the two-dimensional case where the spins are on
a square lattice in the xy plane. We are interested in the stability of the
skyrmion crystal generated by a DM interaction and a symmetric isotropic
Heisenberg exchange interaction in an applied field perpendicular to the xy
plane. All interactions are limited to NN. The full Hamiltonian is given by

H = −J
∑

〈ij〉

Si · Sj + D
∑

i

Si ∧ Si+x.x̂ + Si+y.ŷ) −H
∑

i

Sz
i (IV.2)

where the DM interaction and the exchange interaction are taken between
NN on both x and y directions. Rewriting it in a convenient form, we have

H = −J
∑

〈ij〉

~Si. ~Sj + D
∑

i

[Sy
i S

z
i+x − Sz

i S
y
i+x − Sx

i S
z
i+y

+Sz
i S

x
i+y] −H

∑

i

Sz
i

= −J
∑

〈ij〉

~Si. ~Sj + D
∑

i

[Sy
i (Sz

i+x − Sz
i−x)

−Sz
i (Sy

i+x − Sy
i−x) − Sx

i (Sz
i+y − Sz

i−y)

+Sz
i (Sx

i+y − Sx
i−y)] −H

∑

i

Sz
i (IV.3)

For the i-th spin, one has

Hi = −Sx
i H

x
i − Sy

i H
y
i − Sz

i H
z
i y

where the local-field components are given by

Hx
i = J

∑

NN

Sx
j + D(Sz

i+y − Sz
i−y)

Hy
i = J

∑

NN

Sy
j −D(Sz

i+x − Sz
i−x)

Hz
i = J

∑

NN

Sz
j + D(Sy

i+x − Sy
i−x) −D(Sx

i+y − Sx
i−y) + H
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To determine the ground state (GS), we minimize the energy of each spin,
one after another. This can be numerically achieved as the following. At
each spin, we calculate its local-field components acting on it from its NN
using the above equations. Next we align the spin in its local field, i. e.
we take Sx

i = Hx
i /

√
Hx

i ∗ ∗2 + Hy
i ∗ ∗2 + Hz

i ∗ ∗2 etc. The denominator is
the modulus of the local field. In doing so, the spin modulus is normalized
to 1. As seen from Eq. (IV.4), the energy of the spin Si is minimum. We
take another spin and repeat the same procedure until all spins are visited.
This achieves one iteration. We have to do a sufficient number of iterations
until the system energy converges. For the skyrmion case, it takes about one
thousand iterations to have a fifth-digit convergence. An example of GS are
shown in Fig. IV.1 using D = 1 and H = 0.5 (in unit of J = 1): a crystal of
skyrmions is seen.
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Figure IV.1: Ground state for D/J = 1 and H/J = 0.5, a crystal of
skyrmions is observed (a) skyrmion crystal viewed in the xy plane; (b) a
3D view; (c) zoom of the structure of a single vortex. The value of Sz is
indicated on the color scale.



Section IV.3 – Stability of Skyrmion Crystal at Finite Temperatures 83

In Fig. IV.2(Left) we show a GS at H = 0 where domains of long and
round islands of up spins separated by labyrinths of down spins are mixed.
When H is increased, vortices begin to appear. The GS is a mixing of long
islands of up spins and vortices as seen in Fig. IV.2(Right) obtained with
D = 1 and H = 0.25. This phase can be called ”labyrinth phase” or ”stripe
phase”.
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Figure IV.2: (Left) Ground state for D/J = 1 and H/J = 0: a mixing of
domains of long and round islands; (Right) Ground state for D/J = 1 and
H/J = 0.25: a mixing of domains of long islands and vortices. We call these
structure the ”labyrinth phase”.

We have performed the GS calculation for many values in the plane
(D,H). The phase diagram is established in Fig. IV.3. Above the blue line
is the field-induced ferromagnetic phase. Below the red line is the labyrinth
phase with a mixing of skyrmions and rectangular domains. The skyrmion
crystal phase is found in a narrow region between these two lines.

Experimentally the TEM images observed for the (001) thin plate of SC-
doped barium ferrite [118]) show a magnetic domain Fig. IV.4(A), and a
mixed structure of stripe and skyrmions Fig. IV.4(B). The hexagonal struc-
ture of skyrmion is observed when we increase the magnetic field Fig. IV.4(C)

In the following section, we are interested in the stability of the skyrmion
crystal phase as the temperature (T ) is increased from zero.

IV.3 Stability of Skyrmion Crystal at Finite

Temperatures

In this section, we show results obtained from MC simulations on a sheet of
square lattice of size N × N with periodic boundary conditions. The first
step is to determine the GS spin configuration by minimizing the spin energy
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Figure IV.3: Phase diagram in the (D,H) plane for size N = 100.

Figure IV.4: TEM images observed for (001) thin plate of Sc-doped barium
showing changes in magnetic domain structure produced by a magnetic field
normal to the plate (Ref. [118]).
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by iteration as described above. Using this GS configuration, we heat the
system from T = 0 to a temperature T during an equilibration time t0 before
averaging physical quantities over the next 106 MC steps per spin. The time
t0 is the ”waiting time” during which the system relaxes before we perform
averaging during the next ta steps.

The definition of an order parameter for a skyrmion crystal is not obvious.
Taking advantage of the fact that we know the GS, we define the order
parameter as the projection of an actual spin configuration at a given T on
its GS and we take the time average. This order parameter is thus defined
as

M(T ) =
1

N2(ta − t0)

∑

i

|
ta∑

t=t0

Si(T, t) · S0
i (T = 0)| (IV.4)

where Si(T, t) is the i-th spin at the time t, at temperature T , and Si(T = 0)
is its state in the GS. The order parameter M(T ) is close to 1 at very low
T where each spin is only weakly deviated from its state in the GS. M(T )
is zero when every spin strongly fluctuates in the paramagnetic state. The
above definition of M(T ) is similar to the Edward-Anderson order parameter
used to measure the degree of freezing in spin glasses [119]: we follow each
spin with time evolving and take the spatial average at the end.

We show in Fig. IV.5 the order parameter M versus T (red data points)
as well as the average z spin component (blue data points) calculated by the
projection procedure for the total time t=105+106 MC steps per spin. As
seen, both curves indicate a phase transition at Tc ≃ 0.26J/kB. The fact
that M does not vanish above Tc is due to the effect of the applied field.
It should be said that each skyrmion has a center with spins of negative z
components (the most negative at the center), the spins turn progressively
to positive z components while going away from the center.

We can also define another order parameter: since the field acts on the
z direction. In the GS and in the skyrmion phase we have both positive
and negative Sz. In the paramagnetic state, the negative Sz will turn to the
field direction. We define thus the following parameters using the z spin-
components

Q+(T ) =
1

N2(ta − t0)

∑

Sz
i >0

ta∑

t=t0

Sz
i (T, t) (IV.5)

Q−(T ) =
1

N2(ta − t0)

∑

Sz
i <0

ta∑

t=t0

Sz
i (T, t) (IV.6)

Figure IV.6 shows Q+ and Q− versus T . As seen, at the transition Q+
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Figure IV.5: Red circles: order parameter defined in Eq. (IV.4) versus T , for
H = 0.5 and N = 1800, averaged during ta=105 MC steps per spin after an
equilibrating time t0=105 MC steps. Blue crosses: the projection of the Sz

on S0
z of the ground state as defined in Eq. (IV.4) but for the z components

only.

undergoes a change of curvature and Q− becomes zero. All spins have positive
Sz after the transition due to spin reversal by the field.

At this stage, it is worth to ask ourselves if the results obtained at the end
of the simulation depend on the overall time t = t0+ta. In simple systems, the
choices of t0 and ta can be guided by testing the time-dependence of physical
quantities, and the values of t0 and ta are chosen when physical quantities do
not depend on these run times. However, in disordered systems such as spin
glasses and in complicated systems such as frustrated systems, the relaxation
time is very long and often out of the reach of simulation time. In such cases,
we have to recourse to some scaling relations in order to deduce the values of
physical quantities at equilibrium [120, 121]. We show below how to obtain
the value of an order parameter at the infinite time.

In order to detect the dependence of M(T ) on the total MC time t =
t0 + ta, we calculate the average of M(T ) over 106 MC steps per spin, after a
waiting time t0 as said above. We record the values of M(T ) in different runs
with t0 varying from 104 to 106 MC steps per spin. We plot these results as
a function of different total time t in Fig. IV.7 for three temperatures. To
find the value extrapolated at infinite time we use the stretched exponential
relaxation defined by

M(T, t) = A exp [−(t/τ)α] + c (IV.7)
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Figure IV.6: Order parameters defined in Eqs. (IV.5)-(IV.6) versus T , for
H = 0.5 and N = 800, t0 = 105, ta = 106. Red circles: total positive z
component Q+(T ). Green circles: total negative z component Q−(T ). Blue
circles: total z component.

where t is the total simulation time, α is the stretched exponent, A a temperature-
dependent constant, and τ the relaxation time. Note that this definition,
without the constant c, has been used by many previous authors in the con-
text of spin glasses [122–126]. We have introduced c which is the infinite-time
limit of M(T ). We have taken t from 104 to 106 MC steps per spin in the
simulation. At the infinite-time limit, c is zero for T ≫ Tc, and c 6= 0 for
T < Tc. Figure IV.7 shows M(T, t) as a function of time t in unit of 103 MC
steps per spin, for three temperatures T = 0.01, 0.094 and 0.17. As seen,
the fit with Eq. (IV.7) presented by the continuous line is very good for the
whole range of t.

Several remarks are in order:

(i) the precision of all parameters are between 1% to 5% depending on
the parameter.

(ii) the value of α can vary a little bit according to the choice and the
precision of the other parameters in the fitting but this variation is within
a very small window of values around the given values. For example, at
T = 0.17, α can only be in the interval [0.8 ± 0.02]. The value of α can vary
with temperature as seen here: at low T , α = 0.6, and at a higher T , we
have α = 0.8. This variation has been seen in other systems, in particular in
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Figure IV.7: The order parameter M defined by Eq. (IV.4) versus MC time
t in unit of 1000 MC steps per spin, for H = 0.5 and N = 800 (a) T = 0.01,
values of fitting parameters α = 0.6, A = 0.008±0.00001, τ = (364±19)103,
c = 0.984505 ± 0.00012; (b) T = 0.094, α = 0.6, A = 0.0653 ± 0.0013,
τ = (277±36)103, c = 0.822±0.018); (c) T = 0.17, α = 0.8, A = 0.31±0.01,
τ = 891 ± 100)103, c = 0.43 ± 0.017.
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spin glasses [127].

(iii) the relaxation time, within statistical errors, is approximatively con-
stant at low T , but it increases rapidly when T tends to Tc as seen in the value
of τ at T = 0.17. This increase is a consequence of the so-called ”critical
slowing-down” when the system enters the critical region.

Let us show M(T ) as function of T in Fig. IV.8 using the results of
different run times from t = 104 + 106 MC steps per spin to t = 106 + 106.
The extrapolated values of at the infinite time for each T deduced from Eq.
(IV.7) is also shown. We see that while the total time 105+106 MC steps per
spin is sufficient at low T , it is not enough at higher T . That was the reason
why we should use Eq. (IV.7) to find the value of M(T ) at the infinite time
to be sure that the skyrmion crystal is stable at finite temperatures.
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Figure IV.8: The order parameter M(T ) versus T for several waiting times
t, for H = 0.5 and N = 800: from above t = 105, 2 × 105, 106, ∞ (by fitting
with Eq. (IV.7).

We have studied finite-size effects on the phase transition at Tc and we
have seen that from N = 800, all curves coincide within statistical errors:
there is thus no observable finite size effects for N ≥ 800. The skyrmion
lattice phase remains stable for very large sizes (up to N = 1800 used in our
simulation), unlike other two-dimensional continuous spin systems such as
ferromagnetic XY and Heisenberg spins [54, 128].
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IV.4 Conclusion

In this chapter, we have shown that the competition between a ferromagnetic
interaction J and a Dzyaloshinskii-Moriya interaction D under an applied
magnetic field H in two dimensions generate a skyrmion crystal in a region
of the phase space (D,H). The spin model is the classical Heisenberg model.
We have numerically determined the ground state by minimizing the energy
of spin by spin using an iteration procedure. The skyrmion lattice is then
slowly heated to high temperatures by the use of Monte Carlo simulations.
We have shown that the skyrmion lattice is stable up to a finite temperature
Tc beyond which the system becomes disordered. We have also shown that
the relaxation follows a stretched exponential law. This stability is observed
in MnSi [9, 10] and FeCoSi [11, 72].



General Conclusion

In this thesis we have studied the phase transition in different spin systems
with competing interactions using both Monte Carlo simulations and the
Green’s function method. Our investigations have been carried out on the
BEG model, helimagnetic thin films with and without an applied field, and
thin films with an antisymmetric Dzyaloshinshi interaction.

In the first chapter we have investigated the BEG model in a thin film
of stacked triangular lattices with a thickness Lz. We have found that the
nature of the first order phase transition is conserved when we reduce the
film thickness and that the cross-over from second to first order transition
observed in the bulk crystal is also conserved when varying the anisotropy.
We have investigated also the surface effect on the layer magnetization. We
found that the film shows a deficit of He4 at the surface when we map the
BEG model into a mixing of He3 and He4.

We have next studied in the second chapter a helimagnetic thin film of
simple cubic lattice, this structure results from the competition between fer-
romagnetic and antiferromagnetic interactions. We have shown that due to
the surface effect the helimagnetic structure undergoes a strong surface spin
rearrangement. Using the Green’s function method we have shown that when
varying the surface exchange interaction, the surface localized acoustic and
optical modes are detached from the bulk spin wave spectrum. These modes
affect the critical temperature and cause a strong deviation of the surface
magnetization from the bulk value. We have also investigate the effect of an
applied magnetic field H on this spin structure. We have found that for a
given value of H the spins of successive planes arrange themselves in a highly
non-uniform structure out of the film surface, symmetric around the c axis
perpendicular to the film surface. We call it the c-fan phase which results
from the competition between the applied field and the antiferromagnetic
interaction analogous to the spin flop phenomenon in an antiferromagnetic
spin system in a field. Using Monte Carlo simulations, we have shown that
the layers with large xy spin-components make a transition at a finite tem-
perature while others do not. This ”transverse” transition is possible because
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the xy spin-components do not depend on the field applied along the c axis.
This transition is a new phenomenon discovered here with our model. Using
the quantum version of the model we have investigated the effect of quantum
fluctuations. The results show that the zero-point spin contraction is different
from layer to layer and there is a cross-over between the layer magnetizations
at low temperature.

In the third chapter we have studied spin systems with the competition
between the ferromagnetic interaction and a Dzyaloshinskii-Moriya interac-
tion restricted in the xy plane. This competition gives rise to a non-collinear
spin structure with a turn angle θ between neighboring spins in the xy planes.
Using the Green’s function method we have found that the spin-wave exci-
tation in 2D and 3D crystals is stable at T = 0 without the need of an
anisotropy. However, in the case of thin films we need a small anisotropy to
stabilize it because of the lack of neighbors at the surface. Among the results,
we have found that the spin-wave energy E depends on the magnitude of DM
interaction D and that in the long wave-length limit, E is proportional to k2

for small D but is linear in k for strong D.
In chapter IV we have investigated the phase diagram of a 2D spin system

with a ferromagnetic interaction J , a Dzyaloshinskii-Moriya interaction of
strength D and an applied field H perpendicular to the plane. We have
found that the competition between these interactions entails the generation
of a skyrmion crystal in a region of the phase space (D,H). By Monte Carlo
simulations we have shown that the skyrmion lattice is stable up to a finite
temperature Tc and that the relaxation follows a stretched exponential law.

The work in this thesis shows that the competition of various interactions
between spins in the system gives rise to spectacular phenomena. We have
seen in this work that the combination of the frustration and the surface effect
enhances the possibility to discover unexpected behaviors in thin films. The
next step in our investigations would focus on the spin transport properties
of the systems considered in this thesis. This project is motivated by the
fact that the transport of itinerant spins in magnetically ordered systems
depends on the local spin-spin relaxation, so that our highly non-uniform
spin systems found in this thesis would be excellent candidates to find exotic
transport properties which are of application interest [80–83].
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Appendix A

Monte Carlo Techniques

A.1 Simple Sampling

The goal behind a Monte Carlo (MC) simulation is the calculation of the
average value of observable Q, such as magnetization or internal energy.
This average value is defined by averaging the quantity of interest over all
states µ of the system, weighting each with its own Boltzmann probability:

〈Q〉 =

∑
µQµe

−βEµ

∑
µ e

−βEµ
(A.1)

The total number of states in a system of N Ising spins is 2N . This is
a huge number when N is large. In most numerical calculations it is only
possible to sample a very small set of states among the total number of states.
The results depend on the manner in which the subset of states is chosen.
The simplest procedure is to choose a subset C of states in a random manner
and average over them:

Qc =

∑c
i Qµi

e−βEµi∑c
i e

−βEµi

(A.2)

Qc is called the estimator of 〈Q〉, it is obvious that, as the number C of states
sample increases the more precise Qc becomes, and when C → ∞ we have
Qc = 〈Q〉. However this is a poor choice, because the probability of obtaining
the most important states at a finite temperature is very low, this makes a
very inaccurate estimation of the average value 〈Q〉.
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A.2 Importance Sampling

The importance sampling is based on the principle that instead of picking our
C states in a random manner, we pick them using the canonical probability, so
that the probability that a particular state µ gets chosen is Pµ = Z−1e−βEµ,
then the average value 〈Q〉 becomes

〈Q〉 =
1

C

c∑

µ

Qµ (A.3)

The remaining question is how to generate our states according to the canon-
ical probability. An answer of this question is to generate a series of states
in an independent manner called Markov chain.

A.2.1 Markov processes

In all Monte Carlo simulations the generation of states is assured by the
Markov processes, which starts from a given state µ and generates a new
state ν according to the transition probability P (µ → ν) which depends on
the properties of the states µ and ν. This transition probability should not
vary over time and should satisfy the constraint

∑
ν P (µ → ν) = 1.

We use this process to generate a Markov chain of states starting from
any state of the system. In order to achieve the equilibrium, the Markov
process must obey two conditions, the conditions of ergodicity and detailed
balance.

A.2.2 Ergodicity and Detailed Balance

The condition of ergodicity is the requirement that any state of the system
should be accessible from any other state with non-zero probability. The
second condition placed on our Markov process is the condition of detailed
balance, it requires that the rate at which the system makes transition into
and out of state must be equal:

pµP (µ → ν) = pνP (ν → µ) (A.4)

This condition guarantees that it is the Boltzmann probability that we gen-
erate by the Markov process when our system is in equilibrium. It tells us
that the transition probabilities should satisfy the equation:

P (µ → ν)

P (ν → µ)
=

pν
pµ

= e−β(Eν−Eµ) (A.5)
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A.3 The Metropolis Algorithm

Our computer program is based on the Metropolis algorithm. This algorithm
used here uses a single-spin flip dynamics which guarantees the ergodicity,
since we can change from any state to another by flipping one spin by which
the two states differ. It uses also the transition probability P (µ → ν) which
depends on the energy difference between the initial and final states in the
following way: if the selected new state has an energy lower than or equal
to the present one, we should accept the transition to that state. If not, we
accept it with the probability P (µ → ν) = e−β(Eν−Eµ).

A.3.1 Implementing the Metropolis algorithm

The way the Metropolis algorithm is implemented can be described as follows:
to start we should chose the spin model, the lattice system and apply the
periodic boundary condition (PBC). Since the simulation is performed on
a finite system the PBC ensures that all spins have the same number of
neighbors. In the canonical method, we need to fix the temperature at which
we want to perform our simulation. We choose the initial spin configuration
of the system. although the nature of this initial state µ is not too important,
a good choice can reduce the time taken to reach the equilibrium state. The
first step in the simulation is to generate a new state ν: this new state
differs from the the present by the flip of just one spin. In the second step
we calculate the energy difference ∆E = Eν − Eµ between the two states,
then we apply the Metropolis criterion: if ∆E 6 0 we accept the new state
and if ∆E > 0, we accept the new state with a probability e−β(Eν−Eµ). We
can do this by comparing the transition probability to a random number ”r”
between [0, 1[: if this number is less than our transition probability we accept
the new state, if not we reject it.

We repeat these procedures until the system reaches equilibrium at the
selected temperature. As we perform our simulation over a range of tem-
peratures, we use the final state of this simulation as an initial state for the
nearby temperature, the justification for doing this is to help our system
come to equilibrium much faster than if we start with a random initial state.

A.4 Equilibration

Once the computer program is written, we have to run our simulation during
a period of time called ”equilibration time” τeq until our system reaches
equilibrium. This means that the probability to find our system in any
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particular state is proportional to the Boltzmann weight e−βEµ

To judge if our system has reached equilibrium or not, we can look at
the evolution of some quantities like magnetization per spin or the energy as
functions of Monte Carlo time.

It is possible that the system is stuck in some metastable region of its state
space. To resolve this problem we can perform many different simulations
of the same system, starting them in different initial states using different
”seeds” for the random generator. This ensures that the system takes dif-
ferent paths to equilibrium: if this is the case, then the magnetization or
energy, has the same value within statistical errors for different paths.



Appendix B

Single Histogram Method

The single histogram method proposed by Ferrenberg and Swendsen [129] is
a technique which allows us to perform a single Monte Carlo simulation at
a specific temperature then extrapolate the results to other nearby temper-
atures. This method is based on the idea that, from the energy histogram
established at temperature T0 we can estimate the density of states and from
this distribution we can calculate the canonical probability P (T,E) at neigh-
boring temperatures T around T0. Using these probabilities, we can calculate
average values of physical quantities as continuous functions of T .

The method is described in the following : we perform a Monte Carlo
simulation at T = T0 which generates configurations according to the Boltz-
mann weight e−β0E. The energy histogram of these states is recorded during
the simulation and it provides an estimation of the probability P (T0, E) =
H(E)/N , where N is the number of Monte Carlo steps. This estimation
becomes exact in the limit of an infinite-length run. We have

H(E) =
N

Z(T0)
W (E)e−β0E (B.1)

where Z(T0) is the partition function at T0 and W (E) is an estimation of the
density of states. We invert this equation to determine W (E):

W (E) =
Z(T0)

N
H(E)eβ0E (B.2)

We consider now a temperature T near T0, the probability P (T,E) is written
by

P (T,E) = W (E)
Z(T )

e−βE (B.3)
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We use equation (B.2) to replace W (E) in equation (B.3), we find the rela-
tionship between the histogram H(E) established at T = T0 and the proba-
bility distribution for nearby temperatures:

P (T,E) =
H(E)e(β0−β)E

∑
E H(E)e(β0−β)E

(B.4)

From these probabilities we can calculate the average value of any function
of E, denoted by A(E), as a continuous function of T :

〈A(E)〉 =
∑

E

A(E)P (T,E) (B.5)

In the standard Metropolis Monte Carlo simulation, we calculate this av-
erage at discrete temperatures then we extrapolate the results between them.
However, near the transition temperature, extrapolation is not possible be-
cause thermodynamic derivations such as Cv and χ diverge at the transition
temperature. Thus, we cannot find the exact location of their peaks. On the
contrary, with the ability to continuously vary T offered by the histogram
method we can locate this critical point Tc and study the critical behavior.
We have used here the histogram of internal energy, however we can ap-
ply also the histogram method to other variables, such as magnetization for
example.

We use a very large number of Monte Carlo steps to establish the his-
togram H(E) at T0 in order to include as many as possible microscopic
states in the sum. The estimation of the histogram of energy at temperature
T far from T0 is calculated by re-weighting the bins of the histogram H(E)
with an exponential factor which depends on the difference of temperature.
However, if the number of states sampled by a Monte Carlo simulation is
relatively small, then we cannot calculate an histogram at T too far from the
temperature T0 of the original simulation. We will have a histogram with
large statistical errors leading to unreliable results when we calculate average
values of physical quantities.
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[108] A. N. Bogdanov, U. K. Rößler, and A. A. Shestakov. Skyrmions in
nematic liquid crystals. Phys. Rev. E, 67:016602, Jan 2003.

[109] A. O. Leonov, I. E. Dragunov, U. K. Rößler, and A. N. Bogdanov.
Theory of skyrmion states in liquid crystals. Phys. Rev. E, 90:042502,
Oct 2014.

[110] Paul J. Ackerman, Rahul P. Trivedi, Bohdan Senyuk, Jao van de Lage-
maat, and Ivan I. Smalyukh. Two-dimensional skyrmions and other
solitonic structures in confinement-frustrated chiral nematics. Phys.
Rev. E, 90:012505, Jul 2014.

[111] N.R. Cooper. Skyrmions in quantum hall systems with realistic
force laws. Physica E: Low-dimensional Systems and Nanostructures,
1(1–4):62 – 64, 1997.



BIBLIOGRAPHY 111

[112] Skyrmions in quantum hall systems. International Journal of Modern
Physics B, 17(28):5007–5010, 2003.

[113] Condensed-matter physics: Single skyrmions spotted. Nature, 465,
2010.

[114] Mark Vousden, Maximilian Albert, Marijan Beg, Marc-Antonio Bisotti,
Rebecca Carey, Dmitri Chernyshenko, David Cortés-Ortuño, Weiwei
Wang, Ondrej Hovorka, Christopher H. Marrows, and Hans Fangohr.
Skyrmions in thin films with easy-plane magnetocrystalline anisotropy.
Applied Physics Letters, 108(13):132406, 2016.

[115] Brian B. Balk Andrew L. Kirby Brian J. Fischer Peter. Pierce Daniel T.
Unguris John. Borchers Julie A. Liu Kai Gilbert, Dustin A. Maranville.
Realization of ground-state artificial skyrmion lattices at room temper-
ature. Nature Communications, 6, 2015.

[116] Satoru Hayami, Shi-Zeng Lin, and Cristian D. Batista. Bubble and
skyrmion crystals in frustrated magnets with easy-axis anisotropy.
Phys. Rev. B, 93:184413, May 2016.

[117] Tsuyoshi Okubo, Sungki Chung, and Hikaru Kawamura. Multiple-
q states and the skyrmion lattice of the triangular-lattice heisenberg
antiferromagnet under magnetic fields. Phys. Rev. Lett., 108:017206,
Jan 2012.

[118] Xiuzhen Yu, Maxim Mostovoy, Yusuke Tokunaga, Weizhu Zhang, Koji
Kimoto, Yoshio Matsui, Yoshio Kaneko, Naoto Nagaosa, and Yoshi-
nori Tokura. Magnetic stripes and skyrmions with helicity reversals.
Proceedings of the National Academy of Sciences, 109(23):8856–8860,
2012.
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