Thèse soutenue

Modèles cinétiques, de Kuramoto à Vlasov : bifurcations et analyse expérimentale d'un piège magnéto-optique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : David Métivier
Direction : Julien Barré
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 22/09/2017
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Laboratoire J.-A. Dieudonné (Nice) - Laboratoire Jean Alexandre Dieudonné
Jury : Président / Présidente : Pascal Viot
Examinateurs / Examinatrices : Julien Barré, Pascal Viot, Bastien Fernandez, Philip J. Morrison, Caroline Champenois, Alessandro Torcini, Médéric Argentina
Rapporteurs / Rapporteuses : Bastien Fernandez, Philip J. Morrison

Résumé

FR  |  
EN

Les systèmes en interaction à longue portée sont connus pour avoir des propriétés statistiques et dynamiques particulières. Pour décrire leur évolution dynamique, on utilise des équations cinétiques décrivant leur densité dans l'espace des phases. Ce manuscrit est divisé en deux parties indépendantes. La première traite de notre collaboration avec une équipe expérimentale sur un Piège Magnéto-Optique. Ce dispositif à grand nombre d'atomes présente des interactions coulombiennes effectives provenant de la rediffusion des photons. Nous avons proposé des tests expérimentaux pour mettre en évidence l'analogue d'une longueur de Debye, et son influence sur la réponse du système. Les expériences réalisées ne permettent pour l'instant pas de conclure de façon définitive. Dans la deuxième partie, nous avons analysé les modèles cinétiques de Vlasov et de Kuramoto. Pour étudier leur dynamique de dimension infinie, nous avons examiné les bifurcations autour des états stationnaires instables, l'objectif étant d'obtenir des équations réduites décrivant la dynamique de ces états. Nous avons réalisé des développements en variété instable sur cinq systèmes différents. Ces réductions sont parsemées de singularités, mais prédisent correctement la nature de la bifurcation, que nous avons testée numériquement. Nous avons conjecturé une réduction exacte (obtenue via la forme normale Triple Zero) autour des états inhomogènes de l'équation de Vlasov. Ces résultats génériques pourraient être pertinents dans un contexte astrophysique. Les autres résultats s'appliquent aux phénomènes de synchronisation du modèle de Kuramoto pour les oscillateurs avec inertie et/ou interactions retardées.