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Introduction

Argumentation is an integral part of everyday life. Expressing our opinions is common in
our social worlds: from politics (in political debates), law (defense attorney vs. prosecutor),
academia (debates between authors and reviewers), business (convincing others to buy a prod-
uct) to our personal lives as shown in the following example:

Steven (x1) “The last movie of Christopher Nolan has received an overall rating of one out of

five stars by The New York Times, so I do not know whether I will watch it.”

Emma (x2) “My friend John, who works in film industry, watched the movie and really loved

it.”

Thus, we use arguments to defend an opinion, counter-arguments to attack another argu-
ment, etc. The existence of arguments for and arguments against an idea confronts us with
conflicting information, and we can be forced to deal with the resulting inconsistencies. Often,
we choose subconsciously in weighting information and select some items of information in
preference to others. But, in a more conscious way, like when the consequences of a choice
are “more” important, dealing with conflicting information is not so easy. For example, in
our previous exchange between Steven and Emma, Steven, who must take a decision between
watching the film or not, receives two conflicting information from The New York Times (it
is a bad movie) and from Emma (it is a good movie). Thus, he must decide between the two
options, which are inconsistent together (i.e. the movie is either good or bad), or seek addi-
tional information intended to increase or decrease the acceptability of the affirmation “the film
is good”. For example, if the following argument from Mike, which attacks the argument from
Emma, is added, then the possibility that Steven considers it is a good movie decreases.

Mike (x3) “But John is a big fan of Christopher Nolan so he is not objective.”

Thus, argumentation has the effect of increasing or decreasing the acceptance of an opinion,
usually with the aim of convincing someone with a different opinion.

By being as much at the heart of human reasoning and interactions, it is not surprising to
find many researches related to argumentation in disciplines such as psychology, linguistics or
philosophy. But argumentation is also by now an acknowledged branch of one of the main sub-
fields of artificial intelligence (AI), namely knowledge representation and reasoning (KR), that
is particularly concerned with reasoning with incomplete, uncertain and conflicting informa-
tion. It is widely used in areas such as multi-agent systems, common-sense reasoning, decision
making. Argumentation, in the field of artificial intelligence, is a formalism allowing to reason
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Introduction

with contradictory information as well as to model an exchange of arguments between one or
several agents.

A first step is sometimes needed to generate a set of arguments from “unstructured” data and
determine in which ways these arguments interact. According to the type of data, a large number
of works was introduced. For instance, some works [BESNARD & HUNTER 2008] investigate
the formalization of arguments in the setting of classical logic. The data are represented by a
knowledge base which is a finite set of formulae, and an argument is a pair whose the first item
is a minimal consistent set of formulae (premises) that entails the second item (claim). Then
an attack between arguments is captured for example when the claim of an argument refutes
the premises of another argument [ELVANG-GØRANSSON et al. 1993]. Another family of for-
malization concerns argument mining (see [LIPPI & TORRONI 2016] for a recent state of the
art) which aims at automatically recognizing argumentation structures in unstructured textual
documents (legal text, scientific articles, student essays, discourse, . . . ). The goal is segmenting
texts into argumentative units, classifying the types of units (premise, claim) and identifying
relations between them before evaluating automatically the quality of arguments.

The arguments and the conflicts between arguments involved in the argumentation process
(and potentially revealed with the previously stated methods) can be represented with an argu-
mentation framework. In this thesis, we focus on the one proposed in [DUNG 1995] which is
very abstract and allows to grasp the characteristics of many other argumentation frameworks.
An abstract argumentation framework is a set of abstract entities, called arguments, representing
any piece of information (e.g. beliefs, statements, actions to be performed), linked with some
attacks, which indicate the existence of conflicts between the arguments. Thus, an argumenta-
tion framework is often represented by a directed graph, in which nodes represent arguments
and arrows represent the attack relation between arguments. The debate discussed at the begin-
ning of this introduction can be represented by the argumentation framework shown in Figure 1
where the argument x3, given by Mike, attacks the argument x2, given by Emma, which attacks
the argument x1, given by Steven.

x1x2x3

Figure 1 – Argumentation framework representing the movie example

The goal of the argumentation process is to evaluate the arguments, taking into account the
existing conflicts between them, in order to determine their degree of acceptability. Given an
argumentation framework, the first main reasoning task was to find sets of arguments which can
be jointly considered as accepted [DUNG 1995]. These sets of arguments, called extensions, are
computed using acceptability semantics defined by a set of conditions that a set of arguments
must satisfy (e.g. the conflict-freeness) to be considered as acceptable with respect to a given
semantics. Thus, if we reason with the argumentation framework depicted in Figure 1, we can
first accept the argument x3 because there is no argument against it (i.e. it is not attacked). This
implies that x2, which is directly attacked by x3, must be rejected. Finally, the argument x1 is
attacked by x2, but since x2 is rejected, we can accept x1 and deducing that the movie is bad.

2



Thus, we obtain one extension containing the arguments x3 and x1. From these extensions,
several inference tasks were introduced to analyze if an argument is accepted or not. For ex-
ample, it can be the case if this argument belongs to all extensions. Since Dung introduced his
extension-based semantics [DUNG 1995], a lot of works have been made aiming to extend these
semantics (see [BARONI et al. 2011] for an overview of the existing semantics), to define alter-
native ones (e.g. the labelling-based semantics [CAMINADA 2006a]), to study their behavior
(e.g. [BARONI & GIACOMIN 2007]), to identify the complexity of computing the extensions
[DUNNE & WOOLDRIDGE 2009], etc.

The extension-based semantics can be used in applications like paraconsistent reasoning.
However, there exists some other applications where they are not appropriate. Indeed, some
aspects of these semantics, like the existence of multiple extensions, the non-existence of ex-
tensions or having only two levels of acceptability (accepted or not accepted), can be sometimes
problematic. It is the case, for example, for decision-making problems (see the discussion in
[AMGOUD & BEN-NAIM 2013]) or for online debate platforms, where additional information
are available (see the discussion in [LEITE & MARTINS 2011]).
Thus, alternative semantics, with many levels of acceptability, have been introduced to evaluate
arguments by directly reasoning on the arguments themselves by exploiting the topology of the
argumentation framework: the scoring semantics, which assign a numerical acceptability de-
gree to each argument, and the ranking-based semantics, which associate to any argumentation
framework a ranking on the arguments. These two families of semantics are not independent
because a scoring semantics can easily be transformed into a ranking one, since the scores as-
signed to each argument belong to an ordered scale, so it is possible to compare them in order
to obtain a ranking between arguments. Contrary to the classical semantics, these two families
of semantics are quite recent. Indeed, with few exceptions (e.g. [BESNARD & HUNTER 2001,
CAYROL & LAGASQUIE-SCHIEX 2005b]), all the ranking-based semantics have been intro-
duced from 2013 and have received more and more attention since then. However, these se-
mantics have been proposed independently and are often compared using one or two nicely
designed examples aiming to convince that, in some situations at least, they should be appro-
priate. But the behaviors of these semantics are not always clear, and thus make difficult the
choice of a particular ranking-based semantics for a user. This thesis aims to study and compare
the existing ranking-based semantics for abstract argumentation but also to propose new ones
with alternative behaviors, more appropriate for some applications.

Thesis Overview

This thesis is articulated in two parts. We first give, in Part I (State of the Art), the notions
required for a good understanding of our work.
Chapter 1 (Abstract Argumentation) recalls the bases of the theory of abstract argumentation
in focusing on Dung’s framework [DUNG 1995]. We give a brief overview of the main accept-
ability semantics (extension-based semantics and labelling-based semantics) and a presentation
of existing frameworks which extend or generalize Dung’s framework.
Chapter 2 (Ranking-based Semantics) highlights first the limits of Dung’s semantics for some
applications (or problems) and explains why the ranking-based semantics are a better choice for
those applications. Then, we provide a detailed presentation of the existing ranking-based se-
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mantics and of existing properties for these semantics.

In Part II (Contributions), we compare the ranking-based semantics studied in this thesis and
propose new semantics with interesting behaviors.
In Dung’s semantics, the non-attacked arguments have a great impact on the acceptability of the
arguments they attack, while, in existing ranking-based semantics, they have no special impact.
It is why we introduce, in Chapter 3 (Ranking-based Semantics based on Propagation), a
new family of ranking-based semantics, using the propagation principle, which allow us to con-
trol the influence of non-attacked arguments.
In Chapter 4 (Comparative Study of Ranking-based Semantics), we apply two methods to
compare the ranking-based semantics. An empirical comparison is first done to measure how
similar (or different) are the ranking-based semantics on the basis of the rankings returned by
these semantics from randomly generated argumentation frameworks. Then, we provide an ax-
iomatic comparison of all these semantics with respect to the proposed properties.
Following the results obtained in the previous chapter, we questioned, in Chapter 5 (Ranking-

based Semantics for Persuasion), the ability of the existing ranking-based semantics to cap-
ture persuasion settings. This leads us to introduce a new parametrized ranking-based semantics
which is more appropriate in this context.

Conclusion chapter summarizes the contributions of this thesis and points out some inter-
esting future works which are related to the contributions described in this document.

Appendices A, B and C contain the proofs of the propositions in Chapter 3, 4 and 5 re-
spectively. The proofs are separated from the contribution chapters for a matter of readability.
Appendix D contains all the properties (basic idea and formal definition) for ranking-based se-
mantics studied in this thesis. Finally, Appendix E contains a set of argumentation frameworks,
more or less complex, with, for each of them, the rankings computed for the ranking-based se-
mantics studied in this thesis.
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Chapter 1

Abstract Argumentation

Over the last two decades, a lot of researches on the topic of argumentation are based on
the abstract argumentation theory of Dung [DUNG 1995]. The central concept in this work con-
cerns argumentation frameworks which formalize arguments together with a relation denoting
conflicts between them. Such frameworks are represented by a directed graph in which the ar-
guments are represented as nodes and the attack relation is represented by the arrows. Given an
argumentation framework, one can then examine the question of which set(s) of arguments can
be accepted together: answering this question corresponds to defining an argumentation seman-
tics. Various proposals have been formulated in this respect. In this chapter, we introduce these
notions of abstract argumentation and recall some approaches which extend Dung’s framework
with additional elements.
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1.3 Extension of Dung’s framework . . . . . . . . . . . . . . . . . . . . . 24
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Chapter 1. Abstract Argumentation

1.1 Dung’s argumentation framework

Dung’s argumentation framework [DUNG 1995] is an abstract framework, in which there is
no assumption on the nature of the elements it contains. More precisely, neither the structure
nor the origin of the arguments are required. Then, an argumentation framework is composed
of a set of arguments and of a relation of conflict between them.

Definition 1.1.1 (Argumentation framework).
An (abstract) argumentation framework (AF) is a pair AF = 〈A,R〉 whereA is a finite and
non-empty set of (abstract) arguments andR is a binary relation on A, i.e.R ⊆ A×A, called
the attack relation. For two arguments x, y ∈ A, the notation (x, y) ∈ R means that x attacks
y.

Let us introduce some notation related to the argumentation frameworks.

Notation 1.1.1. Let AF = 〈A,R〉 be an argumentation framework.

• Arg(AF ) = A
• Att(AF ) = R
• For two argumentation frameworks F = 〈A,R〉 and G = 〈A′,R′〉, we define the union
F ∪G = 〈A ∪ A′,R∪R′〉
• AF represents the set of all argumentation frameworks

Example 1.1.1 (Example from [CAYROL et al. 2006]).
Consider the arguments exchanged during a meeting of the editorial board of a newspaper:

(a) Newspapers have no right to publish a private information about the person X because

everybody has a right to privacy.

(b) This information is not private because X is a prime minister and all information con-

cerning the prime minister is public.

Clearly, a conflict occurs between a and b. Indeed, the argument b contradicts the private
aspect of the information claimed by a in saying that the information is public because it con-
cerns the prime minister. So b attacks a which means that newspapers are allowed to publish
this information. Consider now an additional argument:

(c) But he is no longer prime minister since he resigned yesterday.

Here c attacks b because c contradicts the fact that X is a prime minister as suggested by b.
Then, the information is really private and cannot be published. But, during the meeting, one
last argument has been proposed which attacks c on the day for resignation:

(d) The resignation will be announced officially this evening on TV, so he is still the prime

minister.

So, at the end of the exchange, we conclude that the person X is still the prime minister
which is a public personality so newspapers are allowed to publish the information.

8



1.1. Dung’s argumentation framework

An argumentation framework can be represented as a directed graph whose nodes are argu-
ments of the framework and the arcs represent the attacks between them.

Example 1.1.1 (cont.). This dialogue can be formalized by an argumentation framework AF =
〈A,R〉 with four arguments A = {a, b, c, d} and R = {(b, a), (c, b), (d, c)} the interactions
between them. Its graphical representation is shown in Figure 1.1.

abcd

Figure 1.1 – Example of argumentation framework

If an attack between two arguments can be directly observed on an argumentation frame-
work, another implicit relation, called defense, exists and corresponds to two consecutive at-
tacks. The idea of a defense can be represented with the same principle than the famous expres-
sion “my enemy’s enemy is my friend”.

Definition 1.1.2 (Defense).
Let AF = 〈A,R〉 be an argumentation framework. Let x, y ∈ A be two arguments such that y
attacks x. An argument z ∈ A defends x against y if z attacks y.

Example 1.1.1 (cont.). Concretely, during the exchange, argument c has been proposed to de-
fend a against b. This allowed to justify the publication ban of this information. But, d has
been then introduced to defend b against c in order to finally conclude that the newspapers are
allowed to publish this information.

The previous notions of the attack and of the defense only concern two arguments (an argu-
ment and its target). But these notions can be extended to a set of arguments which attacks or
defends a single argument.

Definition 1.1.3 (Set attacks/defenses an argument).
Let AF = 〈A,R〉 be an argumentation framework and S ⊆ A.

• Let x ∈ A be an argument. S attacks x if ∃y ∈ S such that (y, x) ∈ R.

• Let x, y ∈ A be two arguments such that (y, x) ∈ R. S defends x against y if S attacks
y.

From a mathematical point of view, Dung’s argumentation framework is a directed graph.
Let us introduce different notions related to the graphs that we will use in this thesis. All these
notions are illustrated in Example 1.1.1 (page 10).

Definition 1.1.4 (Path).
Let AF = 〈A,R〉 be an argumentation framework and x, y ∈ A be two arguments. A path

P from y to x, noted P (y, x), is a sequence 〈x0, . . . , xn〉 of arguments in A such that x0 = x,
xn = y and ∀i < n, (xi+1, xi) ∈ R. The length of the path P is n (the number of attacks it is
composed of) and is denoted by lP = n.

9
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According to the length of a path between two arguments, the argument at the beginning of
this path can be an attacker or a defender of the argument at the end of the path.

Definition 1.1.5 (Attacker, Defender).
Let AF = 〈A,R〉 be an argumentation framework and x, y ∈ A be two arguments. Let
Rn(x) = {y | ∃P (y, x) with lP = n} be the multiset of arguments that are bound by a path of
length n to the argument x. Thus, an argument y ∈ Rn(x) is:

• a direct attacker of x if n = 1

• a direct defender of x if n = 2

• an attacker of x if n is odd

• a defender of x if n is even

Let us note R+(x) =
⋃

n∈2NRn(x) and R−(x) =
⋃

n∈2N+1Rn(x) the multisets of all the
defenders and all the attackers of x respectively.

Let us define two particular kinds of paths: branches and cycles.

A branch is a path such that the argument at the beginning of the path is not attacked.

Definition 1.1.6 (Branch, Root).
Let AF = 〈A,R〉 be an argumentation framework and x, y ∈ A be two arguments.
A defense root (respectively attack root) of x is a defender (respectively attacker) of x which
is not attacked. Let Bn(x) = {y ∈ Rn(x) | R1(y) = ∅} be the multiset of roots that are bound
by a path of length n to the argument x.
A path from y to x is a defense branch (respectively attack branch) for x if y is a defense root
(respectively attack root) of x.
Let us note B+(x) =

⋃

n∈2N Bn(x) and B−(x) =
⋃

n∈2N+1Rn(x) the multiset of all defense
roots and all the attack roots of x respectively.

A cycle is a path such that the first node is the same as the last one.

Definition 1.1.7 (Cycle, Loop).
Let AF = 〈A,R〉 be an argumentation framework and x ∈ A. A cycle is a path from x to x
and a loop is a cycle of length 1.

Example 1.1.2.

10
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a

a1

a2 a3

b1b2

c2 c1c3

d1

AF ′

On this graph, one can find:

• a path of length 2 〈c2, b1, a〉 from c2 to a whereas
〈b1, a, b2〉 is not a path,

• a cycle 〈a1, a2, a3, a1〉 of length 3,

• c1 and d1 are the attack roots of a,

• c1 and c2 are the defense roots of a,

• 〈c1, a〉 is an attack branch for a of length 1,
〈d1, c3, b2, a〉 is an attack branch for a of length 3,

• 〈d1, c3, b2〉, 〈c1, a, a2〉 and 〈c2, b1, a〉 are three possible
defense branches of length 2,

• b1, b2 and c1 are the direct attackers of a,

• c1, c2 and c3 are the direct defenders of a.

We also need to introduce the notion of ancestors’ graph of an argument x in an argumenta-
tion framework AF . It is a subgraph of AF , that contains x and all the attackers and defenders
of x, as well as all the attack relations between these arguments.

Definition 1.1.8 (Ancestors’ graph).
Let AF = 〈A,R〉 be an argumentation framework and x ∈ A. The ancestors’ graph of x
is denoted by AncAF(x) = 〈A′,R′〉 with A′ = {x} ∪ R+(x) ∪ R−(x) and R′ = {(x1, x2) ∈
R | x1 ∈ A′ and x2 ∈ A′}.

Example 1.1.2 (cont.). The argumentation framework AF ′, represented in the blue rectangle,
is the ancestors’ graph of a.

1.2 Acceptability semantics

Given an argumentation framework where conflicts are represented by the attack relation,
the main reasoning problem is to determine the positions that a rational agent 1 should accept.
Solutions to this problem can be represented by extensions, corresponding to sets of acceptable
arguments that are coherent together. Such extensions are computed by using acceptability se-
mantics that can be defined as a set of criteria that should be satisfied by a set of arguments in
order to be acceptable. Examples of such semantics are the admissible, complete, preferred, sta-
ble, grounded semantics introduced by [DUNG 1995] as well as their refinements: semi-stable
[CAMINADA 2006b], ideal [DUNG et al. 2007], prudent semantics [COSTE-MARQUIS et al. 2005],
etc (see [BARONI et al. 2011] for an overview). We will concentrate on Dung’s semantics in this
section.

Among the set of criteria, the property of conflict-freeness seems necessary to obtain a
coherent set of arguments such that no argument attacks another argument in the set.

1. In our case, a rational agent is an agent that always chooses to perform an action with the optimal expected
outcome for itself from among all feasible actions.

11
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a b c d e

f

g

Figure 1.2 – An argumentation framework AFa

Definition 1.2.1 (Conflict-free set).
Let AF = 〈A,R〉 be an argumentation framework. S ⊆ A is a conflict-free set in AF if and
only if there exists no x, y ∈ S such that (x, y) ∈ R.

Example 1.2.1. In the argumentation framework AFa depicted in Figure 1.2, the sets of ar-
guments {a}, {b, f}, {a, c, g} are conflict-free, among others, but {a, d, e} is not conflict-free
because d attacks e.

A rational agent accepts an argument if it is not attacked, or if it can be defended against
each attack targeting it. This idea of acceptability is transcribed in the following definition:

Definition 1.2.2 (Acceptable argument).
Let AF = 〈A,R〉 be an argumentation framework. An argument x ∈ A is acceptable with
respect to S ⊆ A in AF if and only if for each y ∈ A, if (y, x) ∈ R then S defends x against y.

Example 1.2.1 (cont.). The argument f is acceptable with respect to S = {d} because S
defends f against its only attacker e.

In order to calculate the sets of acceptable arguments with respect to a given set of argu-
ments, the following characteristic function has been introduced by Dung [DUNG 1995].

Definition 1.2.3 (Characteristic function).
Let AF = 〈A,R〉 be an argumentation framework. The characteristic function FAF : 2A →
2A of AF is defined such that for any S ⊆ A:

FAF(S) = {x | x ∈ A is acceptable with respect to S}

In other words, FAF(S) is the set containing all (and only) arguments in AF that S defends.

Therefore, the set of all arguments accepted by an agent is a conflict-free set of arguments
that can defend itself against any attacks. This notion, called admissibility, combines the notions
of conflict-freeness and of acceptability and constitutes a basic principle to build the Dung’s
semantics.

Definition 1.2.4 (Admissible set).
Let AF = 〈A,R〉 be an argumentation framework. S ⊆ A is an admissible set of AF if and
only if S is conflict-free in AF and, for each x ∈ S, x is acceptable with respect to S in AF .
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Example 1.2.1 (cont.). The admissible sets of AF are ∅, {a}, {d}, {a, c}, {a, d}, {d, f} and
{a, d, f}.

Note that every argumentation framework has at least one admissible set because the empty
set is admissible for every argumentation framework.

1.2.1 Extension-based semantics

Dung’s semantics propose to refine the admissibility principle in order to select admissible
sets satisfying some additional criteria.

Complete Semantics

Complete semantics can be regarded as a strengthening of the basic requirements enforced
by the idea of admissibility. Intuitively, while admissibility requires one to be able to give
reasons for accepted and rejected arguments but does not consider the eventuality to extend itself
with potential acceptable arguments, complete semantics also requires one to include in the set,
all the arguments which are acceptable with this set. For example, there is no particular reason
to consider the empty set as an extension when it exists at least one non-attacked argument in
the argumentation framework.

Definition 1.2.5 (Complete semantics).
Let AF = 〈A,R〉 be an argumentation framework. S ⊆ A is a complete extension of AF if
and only if S is an admissible set of AF and each argument which is acceptable with respect to
S belongs to S.

With the characteristic function, if S is conflict-free and FAF(S) = S then S is a complete
extension. Note that every argumentation framework has at least one complete extension.

Example 1.2.1 (cont.). The argumentation framework AFa, depicted in Figure 1.2 (page 14),
contains exactly three complete extensions: {a}, {a, c} and {a, d, f}.

Grounded Semantics

One can remark that the complete semantics may return more than one extension. But, if
one regards each complete extension as a reasonable position one can take when there exists
conflicting information in the argumentation framework, then a possible question is to examine
what is the position which is least questionable.
The grounded semantics aims to return such unique extension which contains only the unques-
tionable arguments.

Definition 1.2.6 (Grounded Semantics).
Let AF = 〈A,R〉 be an argumentation framework. S ⊆ A is a grounded extension of AF if
and only if S is the minimal (with respect to the set-theoretical inclusion⊆) complete extension.

The grounded extension of an argumentation framework AF can be calculated by iterative
applications of characteristic function FAF to the empty set, i.e. it is equal to

⋃∞
i=0F i

AF(∅), where
F i

AF(S) = FAF(FAF(. . .FAF
︸ ︷︷ ︸

i times

(S)) . . . ).
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Example 1.2.1 (cont.). The grounded extension of AFa (see Figure 1.2 page 14) is calculated
as follows: FAFa(∅) = {a}, FAFa({a}) = {a}. Thus, its grounded extension is the set {a}.

Preferred Semantics

While grounded semantics takes a skeptical standpoint, one can also consider the alternative
view oriented at accepting as many arguments as reasonably possible. This may give rise to
mutually exclusive alternatives for acceptance: for instance two arguments which attack each
other can be reasonably resolved by accepting one of the conflicting arguments, but not both in
order to keep conflict-freeness. The idea of maximizing accepted arguments is expressed by the
preferred semantics.

Definition 1.2.7 (Preferred Semantics).
Let AF = 〈A,R〉 be an argumentation framework. S ⊆ A is a preferred extension of AF if
and only if S is a maximal (with respect to the set-theoretical inclusion ⊆) admissible set.

Note that every argumentation framework has at least one preferred extension [DUNG 1995].

Example 1.2.1 (cont.). The argumentation framework AFa depicted in Figure 1.2 (page 14)
contains exactly two preferred extensions: {a, c} and {a, d, f}.

Stable Semantics

A stable extension is a conflict-free extension that makes a decision on all arguments. In
other words, we want that every argument to be a member of the extension, or to be attacked by
the extension.

Definition 1.2.8 (Stable Semantics).
Let AF = 〈A,R〉 be an argumentation framework. S ⊆ A is a stable extension of AF if and
only if S is conflict-free and attacks each argument x ∈ A\S.

Note that some argumentation framework do not have any stable extension.

Example 1.2.1 (cont.). The argumentation framework AFa in Figure 1.2 contains exactly one
stable extension: {a, d, f}. One can see that all the other arguments are attacked by this set: b
is attacked by a, c and e are attacked by d and finally g is attacked by f .

We denote by Eσ(AF ) the set of extensions of AF for the semantics σ ∈ {co(mplete),
gr(ounded), pr(eferred), st(able)}.

1.2.2 Labelling-based semantics

An alternative way to represent the concepts of admissibility, as well as Dung’s semantics,
is by using a labelling-based approach [CAMINADA 2006a]. Indeed, rather than stating in terms
of sets of arguments, a labelling function can be used to assign a label to each argument. The
idea of a labelling is to associate exactly one label to each argument, which can either be in,
out or undec. The label in indicates that the argument is explicitly accepted, the label out
indicates that the argument is explicitly rejected, and the label undec indicates that the status of
the argument is undecided, meaning that one abstains from a judgment whether the argument is
accepted or rejected.
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Definition 1.2.9 (Labelling).
Let AF = 〈A,R〉 be an argumentation framework. L is a labelling of AF if and only if L is
a mapping from A to {in, out, undec}. We define in(L) as {x ∈ A | L(x) = in}, out(L) as
{x ∈ A | L(x) = out} and undec(L) as {x ∈ A | L(x) = undec}.
L can also be represented by the set of pairs {(x,L(x)) | x ∈ A}.

The notion of reinstatement labelling allows to ensure that the mapping takes the attack
relation into account: an argument is labelled in if it is unattacked or if all its direct attackers
are labelled out and an argument is labelled out if at least one of its direct attackers is labelled
in, as it is stated in the following definition.

Definition 1.2.10 (Reinstatement Labelling).
Let AF = 〈A,R〉 be an argumentation framework. A labelling L is a reinstatement labelling

of AF if and only if

• ∀x ∈ A, L(x) = in if and only if ∀y ∈ R1(x), L(y) = out;

• ∀x ∈ A, L(x) = out if and only if ∃y ∈ R1(x), L(y) = in;

• ∀x ∈ A, L(x) = undec if and only if ∄y ∈ R1(x), L(y) = in and ∃z ∈ R1(x),
L(z) = undec.

Example 1.2.2.

Let us compute the reinstatement labelings on the two argumentation frameworks illustrated in
Figure 1.3.

a b c d e

AF 1 AF 2

Figure 1.3 – Two argumentation frameworks AF 1 and AF 2

For AF 1, there exists only one reinstatement labelling L1 with

in(L1) = {a, c}, out(L1) = {b}, undec(L1) = ∅

For AF 2, there exists three reinstatement labellings L2,L3,L4 with

in(L2) = {d}, out(L2) = {e}, undec(L2) = ∅,
in(L3) = {e}, out(L3) = {d}, undec(L3) = ∅,
in(L4) = ∅ , out(L4) = ∅ , undec(L4) = {d, e}.

Caminada defined two functions that, given an argumentation framework, allow a set of
arguments to be converted to a labelling and vice versa [CAMINADA 2006a]. The function
Ext2Lab takes a conflict-free set of arguments and converts it to a labelling. The function
Lab2Ext takes a labelling and converts it to a set of arguments.
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Definition 1.2.11 (Ext2Lab, Lab2Ext).
Let AF = 〈A,R〉 be an argumentation framework, S ⊆ A, and L a labelling of AF . We
denote:

• Lab2Ext(L) = in(L)

• Ext2Lab(S) = IN ∪ OUT ∪ UNDEC where:

IN = {(x, in) | x ∈ S}
OUT = {(x, out | S attacks x}
UNDEC = {(x, undec) | x /∈ S and S does not attack x}

Caminada showed that a link exists between extensions from Dung’s semantics and some
particular families of reinstatement labellings. Indeed, the complete extensions exactly match
the reinstatement labellings. Then, the other extensions can also be caught with restricted rein-
statement labellings (for example the stable semantics match the reinstatement labellings with
no undecided argument).

Proposition 1. (Link between labellings and extensions [CAMINADA 2006a])
Let AF = 〈A,R〉 be an argumentation framework. Given ε ∈ Eσ(AF ) an extension of AF
under the semantics σ and L = Ext2Lab(ε),

• if ε is a complete extension, then L is a reinstatement labelling of AF ;

• if ε is a stable extension, then L is a reinstatement labelling of AF such that undec(L) =
∅;
• if ε is a preferred extension, then L is a reinstatement labelling of AF such that in(L) is

maximal (with respect to the set-theoretical inclusion ⊆);

• if ε is the grounded extension, then L is the reinstatement labelling of AF such that in(L)
is minimal (with respect to the set-theoretical inclusion ⊆);

Given L a reinstatement labelling of AF and ε = Lab2Ext(L),

• ε is a complete extension of AF ;

• if undec(L) = ∅, then ε is a stable extension of AF ;

• if in(L) is maximal (with respect to the set-theoretical inclusion ⊆), then ε is a preferred
extension of AF ;

• if in(L) is minimal (with respect to the set-theoretical inclusion⊆), then ε is the grounded
extension of AF ;

For each semantics σ, Labsσ(AF ) denotes the set of labellings associated to the argumen-
tation framework AF with respect to σ.
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Example 1.2.1 (cont.).
Let us consider again the argumentation framework AFa given at Figure 1.2 (page 14) and the
three following reinstatement labellings L1,L2 and L3:

in(L1) = {a} , out(L1) = {b} , undec(L1) = {c, d, e, f, g}
in(L2) = {a, c} , out(L2) = {b, d} , undec(L2) = {e, f, g}
in(L3) = {a, d, f}, out(L3) = {b, c, e, g}, undec(L3) = ∅

The labellings for the different semantics are:

• Labsco(AF ) = {L1,L2,L3}
• Labsgr(AF ) = {L1}
• Labspr(AF ) = {L2,L3}
• Labsst(AF ) = {L3}

The benefit of using labellings over extensions is that arguments that are explicitly rejected
(labelled out) and undecided (labelled undec) can be distinguished. By contrast, an exten-
sion only identifies the accepted arguments, and does not explicitly show a distinction between
arguments that are rejected or undecided.

1.2.3 Gabbay’s equational approach

The equational approach introduced by Gabbay [GABBAY 2012] is a numerical version of
the Dung’s approach. The goal is here to compute the extensions of an argumentation frame-
work by assigning a numerical value to each argument instead of the classical qualitative la-
belling (in, out and undec defined by Caminada [CAMINADA 2006a]). The graph of an abstract
argumentation framework AF = 〈A,R〉 is viewed as a system of equations Eq in which each
argument x ∈ A is represented by a distinct variable f(x) with a domain of real numbers in the
interval [0, 1]. Solutions to these systems of equations assign to each variable a value from the
domain. Thus, the evaluation function f : A → [0, 1] is defined recursively because each vari-
able associated to an argument depends of variables which represent the direct attackers of this
argument. Some of the possible evaluation functions f as defined in the following definition.

Definition 1.2.12 (Possible equational systems [GABBAY 2012]).
Let AF = 〈A,R〉 be an argumentation framework and x ∈ A. Some equational systems Eq
applied to f , denoted by Eq(f) are defined as follows:

(1) Eqinverse(f)

f(x) =
∏

y∈R1(x)

(1− f(y))

(2) Eqgeometrical(f)

f(x) =

∏

y∈R1(x)

(1− f(y))

∏

y∈R1(x)

(1− f(y)) +
∏

y∈R1(x)

(f(y))

17



Chapter 1. Abstract Argumentation

(3) Eqmax(f)
f(x) = 1− max

y∈R1(x)
f(y)

Example 1.2.2. Let us define the system of equations of the two argumentation frameworks
AF1. The system of equations is the same in using Eqinverse, Eqgeometrical and Eqmax.

a b cAF 1







f(a) = 1

f(b) = 1− f(a)

f(c) = 1− f(b)

This system of equations admits one solution where f(a) = 1 which implies that f(b) = 0
and so f(c) = 1.

Example 1.2.3. Let us define the system of equations of the argumentation framework AF2.
The system of equations is the same in using Eqinverse, Eqgeometrical and Eqmax.

d eAF 2

{

f(d) = 1− f(e)

f(e) = 1− f(d)

This system of equations admits an infinite number of solution. Among them, f(d) = 1 and
f(e) = 0, f(d) = 0 and f(e) = 1 or 0 < f(d) < 1 and 0 < f(e) < 1 with f(d) + f(e) = 1.

Gabbay proved [GABBAY 2012, Theorem 2.7] that the variable assignment with Eqmax cor-
responds to a complete labelling. Indeed, for a given solution, if the variable of an argument
is mapped to 1, then this argument is labelled in, if it is mapped to 0 then it is labelled out
and undecided otherwise (between 0 and 1). For example, the solution of the system of equa-
tions associated to AF1 allows to define a labelling which is exactly the only complete labelling
where a and c are in (because f(a) = f(c) = 1), b is out (because f(b) = 0) and there is no
argument labelled undec. The same reasoning holds for AF2 because it is possible to define
the three complete labellings from the solution of its system of equations. Indeed, the solution
where f(d) = 1 and f(e) = 0 corresponds to the labelling where d is in and e is out, the
solution where f(d) = 0 and f(e) = 1 corresponds to the labelling where d is out and e is in
and all the other solutions where f(d) and f(e) are between 0 and 1 corresponds to the labelling
where d and e are undec. This allows for easy identification of the labellings by inspecting the
variable assignments.

1.2.4 Status of arguments

In argumentation frameworks, two problems are conventionally associated with semantics
which returned several extensions (like the complete, preferred and stable semantics). The first
one consists in determining whether a given argument belongs to at least one extension of an
argumentation framework given a semantics. If it is the case, this argument is considered as
credulously accepted by the semantics. Such argument can be accepted if the agent does not
need an absolute certainty about its status.
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The second problem allows to know whether a given argument belongs to each extension of
an argumentation framework given a semantics. Such argument is considered as skeptically
accepted by the semantics and will be selected by an agent who wants no doubt about its ac-
ceptability.

Definition 1.2.13 (Status of an argument).
Let AF = 〈A,R〉 be an argumentation framework and x ∈ A be an argument. Given a
semantics σ and its set of extensions Eσ(AF ):

• x is skeptically accepted if and only if it belongs to each extension of AF : ∀ε ∈
Eσ(AF ), x ∈ ε

• x is credulously accepted if and only of it belongs to at least one extension of AF :
∃ε ∈ Eσ(AF ), x ∈ ε

• x is rejected if and only if it does not belong to any extension of AF : ∀ε ∈ Eσ(AF ), x /∈ ε

The set of credulously accepted arguments and the set of skeptically accepted arguments,
for a semantics σ and an argumentation framework AF = 〈A,R〉, are respectively defined like
this:

caσ(AF ) =
⋃

ε ∈ Eσ(AF )

ε

saσ(AF ) =
⋂

ε ∈ Eσ(AF )

ε

Note that when only one extension exists, any argument belonging to this extension will be
both skeptically and credulously accepted. More generally, any argument skeptically accepted
is also credulously accepted (∀AF ∈ AF, saσ(AF ) ⊆ caσ(AF )), the converse is not true.

Example 1.2.3 (cont.). Each set of credulously accepted arguments and skeptically accepted
arguments for the complete, grounded, preferred and stable semantics computed from AFa are
shown in Table 1.1.

Complete Grounded Preferred Stable
Eσ(AF ) {a}, {a, c}, {a, d, f} {a} {a, c}, {a, d, f} {a, d, f}
caσ(AF ) {a, c, d, f} {a} {a, c, d, f} {a, d, f}
saσ(AF ) {a} {a} {a} {a, d, f}

Table 1.1 – Set of credulously accepted arguments and skeptically accepted arguments from
Dung’s semantics on AFa

1.2.5 Link between Dung’s semantics

As can be observed in Table 1.2, the extensions returned by the different Dung’s semantics
are not always disconnected.
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Eσ(AF ) Complete Grounded Preferred Stable
{a} X X

{a, c} X X

{a, d, f} X X X

Table 1.2 – List of extensions from Dung’s semantics on AFa

Indeed, in this example, each extension is shared by at least two semantics. In addition,
one can see that the stable extension is included in the set of preferred extensions which is
included in the set of complete extensions. However, the grounded semantics does not share any
extension with the preferred and the stable semantics but seems included in the set of complete
extensions.
Even if these observations only concern a particular argumentation framework, Dung has proved
that they are valid for all argumentation frameworks.

Proposition 2. [DUNG 1995]
Let AF = 〈A,R〉 be an argumentation framework.

• Each stable extension is a preferred extension (Est(AF ) ⊆ Epr(AF ))

• Each preferred extension is a complete extension (Epr(AF ) ⊆ Eco(AF ))

• The grounded extension is a complete extension (Egr(AF ) ∈ Eco(AF ))

Figure 1.4 (page 22) gives an overview of the inclusion relations between the extension-
based semantics discussed here.

Stable Extension

Preferred Extension

Complete Extension

Grounded Extension

is a

is a

is a

Figure 1.4 – Inclusions between Dung’s semantics

Dung has also given some sufficient conditions on the argumentation framework for some
semantics to coincide. The first one concerns argumentation frameworks without controversial
arguments.

Definition 1.2.14 (Controversial argument).
Let AF = 〈A,R〉 be an argumentation framework. An argument y ∈ A is controversial with
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respect to x ∈ A if y is an attacker and a defender of x (y ∈ R−(x) and y ∈ R+(x)).
An argument is controversial if it is controversial with respect to at least one argument in A.

Example 1.2.4. In the argumentation framework depicted in Figure 1.5, c is controversial with
respect to a because c is an attacker of a (c ∈ R1(a)) but also a defender of a (c ∈ R2(a)).

ab

c

Figure 1.5 – Example of a controversial argument

Definition 1.2.15 (Uncontroversial argumentation framework).
An argumentation framework AF is uncontroversial if none of its arguments is controversial.

Proposition 3. [DUNG 1995]
Let AF = 〈A,R〉 be an uncontroversial argumentation framework.

• Each preferred extension of AF is also a stable extension (Epr(AF ) ⊆ Est(AF ))

• The grounded extension of AF coincides with the intersection of all preferred extensions
(Egr(AF ) =

⋂

ε ∈ Epr(AF )

ε)

In combining the first result from Proposition 3 with the first one from Proposition 2 (page
22), one can conclude that, in this particular case, the set of preferred extensions of AF and the
set of stable extensions of AF coincide (Epr(AF ) = Est(AF )).

The second case where some semantics coincide is when the argumentation framework is
well-founded.

Definition 1.2.16 (Well-founded argumentation framework).
An argumentation framework AF is well-founded if and only if AF does not contain any cycle.

Proposition 4. [DUNG 1995]
Every well-founded argumentation framework has exactly one complete extension which is also
grounded, preferred and stable.

We know that the grounded extension can easily be computed by iterative applications of
the characteristic function FAF to the empty set. So, according to the previous proposition, we
obtain, with this method, the extension of the other semantics too. Let us explain how work this
function through the following algorithm;

1. accept the non-attacked arguments (the existence of at least one non-attacked argument is
guarantee because the graph is acyclic);
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2. reject the arguments which are directly attacked by an accepted argument and accept the
arguments such that all their direct attackers are rejected;

3. iterate until each argument is either accepted or rejected.

Example 1.2.6.

Let us consider the well-founded argumentation framework AF represented in Figure 1.6.

gf

e

c

d

ba

Figure 1.6 – A well-founded argumentation framework

Arguments a and d are not attacked, so they are accepted. Consequently, b and e are re-
jected. As b is rejected, then c is accepted. So, f has one direct attacker (c) which is accepted
and one direct attacker (e) which is rejected. According to the algorithm, when an argument
has at least one accepted direct attacker then this argument is rejected, so f is rejected. Con-
sequently, g is accepted. Hence, the single extension for all Dung’s semantics is {a, c, d, g}
(∀σ ∈ {co, gr, pr, st}, Eσ(AF ) = {{a, c, d, g}}).

1.3 Extension of Dung’s framework

Thanks to its simple representation, Dung’s framework led many works which extend the
framework with additional elements (support relation, weight on the arguments and/or on the
attacks, preferences, votes, . . . ) in order to capture more information related to argumentation.
In this section, we briefly recall some of these frameworks.

1.3.1 Bipolar argumentation frameworks

In Dung’s framework, only one relation between arguments exists: the attack relation. This
relation is essential in argumentation to represent a conflict between two arguments, but another
relation has been introduced: the support relation, to represent the support, the help brought by
an argument to another argument. This new relation must not be confused with the defense, rep-
resented by two successive attacks. Indeed, the support relation is totally independent of the at-
tack relation. Thus, directly considering an explicit support relation gives the possibility to rep-
resent this positive link independently of any other argument. This positive interaction between
arguments has been first introduced by [KARACAPILIDIS & PAPADIAS 2001, VERHEIJ 2002]
and then included in the Dung’s framework to obtain bipolar argumentation frameworks by
[CAYROL & LAGASQUIE-SCHIEX 2005c, CAYROL & LAGASQUIE-SCHIEX 2013].
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Definition 1.3.1 (Bipolar argumentation framework[CAYROL & LAGASQUIE-SCHIEX 2005c]).
A bipolar argumentation framework (BAF) is a triplet 〈A,R,S〉, whereA is a finite and non-
empty set of arguments,R ⊆ A×A is an attack relation and S ⊆ A×A is a support relation.
For two arguments x, y ∈ A, the notation (x, y) ∈ R means that x attacks y and the notation
(x, y) ∈ S means that x supports y.

a be c dfg

Figure 1.7 – A bipolar argumentation framework

The graph represented in Figure 1.7 is an example of bipolar argumentation framework 2

where one can find the attack relation like in Dung’s framework (c attacks b, b attacks a and g
attacks f ) combined to the support relation (d supports c, f supports e and e supports a). When
two consecutive attacks are defined as a defense in Dung’s framework, additional combinations
like a supported attack (e.g. d supports c which attacks b) or an attacked support (e.g. g attacks
f which supports e) can be considered in a BAF. Indeed, new kinds of attack, called complex
attack, have been defined [CAYROL & LAGASQUIE-SCHIEX 2005c] from the interaction be-
tween attacks and supports. For instance, these complex attacks can be defined as a supported
attack (e.g. a supported attack from g to e) or as a secondary attack (e.g. a secondary attack
from d to b).

An abstract bipolar framework is useful as an analytic tool for studying different notions of
complex attacks and new semantics taking into account attack and support interactions between
arguments. However, the drawback is the lack of guidelines for choosing the appropriate defini-
tions and semantics depending on the application. Indeed, several interpretations of the support
exist in the literature. Among them, one can find:

• Deductive support [BOELLA et al. 2010] says that if (a, b) ∈ S then the acceptance of
a implies the acceptance of b, and its contrapositive the non-acceptance of b implies the
non-acceptance of a.

• Necessary support [NOUIOUA & RISCH 2010] considers that if (a, b) ∈ S then the ac-
ceptance of a is necessary to get the acceptance of b, or equivalently the acceptance of b
implies the acceptance of a. The argumentation frameworks with necessities refer to this
interpretation of the support relation [NOUIOUA & RISCH 2011].

• Evidential support [OREN & NORMAN 2008] is intended to capture the notion of support
by evidence: arguments can be accepted only if they are supported (directly or indirectly)
by prima-facie arguments which are the supports of some special argument called evi-
dence. Evidential argumentation frameworks are defined for this particular interpretation.

2. In [CAYROL & LAGASQUIE-SCHIEX 2005c] the graphical representation of the support relation is a single
arrow whereas the attack relation is represented by a crossed out arrow. But, in order to follow the original
notation which represents an attack by an simple arrow [DUNG 1995], we choose to represent the support relation
by a double arrow.
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Finally, concerning semantics, some basic notions (like conflict-freeness or acceptability),
used to build Dung’s semantics, have been redefined in order to take into account complex at-
tacks and support [CAYROL & LAGASQUIE-SCHIEX 2005c].

1.3.2 Partial argumentation framework

In Dung’s framework, in focusing on the attack from an argument x to another argument
y, an agent can consider that the attack exists, and in this case the attack is represented in
the argumentation framework, or she considers that there is no attack and then the attack is
not represented in the argumentation framework. However, in multi-agent settings where each
agent has its own argumentation framework, we cannot assume that one agent knows all the
arguments (and consequently all the attacks) which are known by the other agents. Indeed,
during an interaction between several agents, when one argument is added, this agent ignores
which are the relations between this argument and all the others she knows. So, three cases
must be considered:

• the agent believes that the interaction (x, y) exists (attack);

• the agent believes that the interaction (x, y) does not exist (non-attack);

• the agent does not know whether the interaction (x, y) exists (ignorance).

To represent these three possibilities, [COSTE-MARQUIS et al. 2007] introduced partial ar-

gumentation frameworks where an additional relation, called ignorance relation, is added to
Dung’s framework.

Definition 1.3.2 (Partial argumentation framework [COSTE-MARQUIS et al. 2007]).
A (finite) partial argumentation framework (PaAF) is a 4-tuple PaAF = 〈A,R, I,N〉
where A is a (finite) set of arguments, R ⊆ A × A is an attack relation, I ⊆ A × A is an
ignorance relation such that R ∩ I = ∅ and N ⊆ A × A is a non-attack relation such that
N = (A×A)\(R∪ I).

Each partial argumentation framework can be viewed as a compact representation of a set of
argumentation frameworks, called its completions. Indeed, a completion of a partial argumenta-
tion framework is a classical argumentation framework where each ignorance relation between
two arguments is replaced by an attack or a non-attack.

Definition 1.3.3 (Completion of a PaAF [COSTE-MARQUIS et al. 2007]).
Let PaAF = 〈A,R, I,N〉 be a partial argumentation framework and AF = 〈A′,R′〉 be an
argumentation framework. AF is a completion of PaAF if and only ifA = A′ andR ⊆ R′ ⊆
R ∪ I.

Example 1.3.1. Let us compute all the completions of the partial argumentation framework
PaAF = 〈{a, b, c}, {(a, b)}, {(a, c), (c, a)}, {(a, a), (b, b), (c, c), (b, a), (b, c), (c, b)}〉 depicted
in Figure 1.8.
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Figure 1.8 – A partial argumentation framework and its completions

This partial argumentation framework is used, for example, for the aggregation problem
aiming to aggregate a set of argumentation frameworks, coming from several agents, into a
single argumentation framework. Indeed, in this case, the sets of arguments reported by the
agents often differ from one another. It is why, before the aggregation, a preliminary step is
proposed by [COSTE-MARQUIS et al. 2007, CAYROL & LAGASQUIE-SCHIEX 2011a] where
they expand each initial argumentation framework with its corresponding partial argumentation
framework in order to all the agents shared the same set of arguments.

1.3.3 Weighted argumentation frameworks

Contrary to Dung’s framework where all the arguments have the same impact during an
attack, it seems quite natural that an argument could have different levels of impact on its target.
Suppose, for example, that an argument attacks another one. If the attacker is given by a trusted
person, it could be more natural to think that this argument will have more impact on the targeted
argument than if it comes from an unknown person.
Obviously, this information cannot be captured by the classical framework, that is why weighted

argumentation frameworks have been introduced where a positive weight is assigned to each
attack [DUNNE et al. 2011, COSTE-MARQUIS et al. 2012b].

Definition 1.3.4 (Weighted argumentation framework [COSTE-MARQUIS et al. 2012b]).
A weighted argumentation framework (WAF) is a triplet 〈A,R, w〉 where 〈A,R〉 is a Dung
abstract argumentation framework, and w : A × A → N is a function assigning a natural
number to each couple of arguments (i.e. w(x, y) > 0 if and only if (x, y) ∈ R), and a null
value otherwise (w(x, y) = 0 if and only if (x, y) /∈ R).

Several interpretations of weights on attacks are given in [DUNNE et al. 2011]. Among them:

• The veracity of the attack (greater the weight is, the more viable it is) which can express
the degree of trust assigned to the attack.
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Figure 1.9 – A weighted argumentation framework

• The relative strength of the attack which can be seen as a measure of inconsistency be-
tween two arguments. Thus, a higher weight on the attack between two arguments denotes
greater inconsistency between the arguments concerned than does a lower weight.

• The number of agents that support the attack used in a multi-agent setting. For example,
some works [CAYROL & LAGASQUIE-SCHIEX 2011b, DELOBELLE et al. 2015] endorse
this interpretation for the aggregation of argumentation frameworks aiming to define a
suitable representation (for example a WAF) at the beliefs of the group where each agent
in the group has its own argumentation framework.

Using Dung’s semantics can lead to the non-existence of extensions or the existence of
multiple extensions, thus some works propose to use such weights to fix these eventualities.
Indeed, when an argumentation framework is trivial 3 for a given semantics σ, a way to process
[DUNNE et al. 2011, COSTE-MARQUIS et al. 2012b] goes through a relaxation of the usual no-
tion of conflict-free sets of arguments where some inconsistencies are tolerated in a set of argu-
ments as long as the maximum (or any other aggregation function like the sum) of the weights
of attacks between arguments in the set does not exceed a given inconsistency budget β. For
example, if β = 2, all the attacks with a weight smaller or equal to 2 are not taken into consid-
eration to build the conflict-free sets of arguments. Admissibility is defined in the standard way,
and Dung’s semantics are considered leading to various notions of so-called β-extensions.
Conversely, an argumentation framework may admit a large number of extensions for a given
semantics. Within the WAF setting, it is possible to take advantage of the available weights,
in order to select the “best” extensions. In [COSTE-MARQUIS et al. 2012a], this selection goes
through a comparison of the extensions’ scores, expressing intuitively how good they are.

1.3.4 Preference-based / Value-based argumentation frameworks

Another way for representing the quality of arguments consists in directly distinguish-
ing the arguments themselves. For this, Amgoud and Cayrol [AMGOUD & CAYROL 2002b,
AMGOUD & CAYROL 2002a] introduce an additional relation, called preference relation, de-
fined on the set of arguments. The so-called preference based argumentation frameworks are
defined as follows:

Definition 1.3.5 (Preference-based argumentation framework[AMGOUD & CAYROL 2002b]).
A preference-based argumentation framework (PAF) is a triplet 〈A,R,≥pref〉 where A is

3. An argumentation framework AF is trivial for a given semantics σ if Eσ(AF ) = ∅.
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a set of arguments, R ⊆ A × A is an attack relation and ≥pref is a (total or partial) pre-order
(preference relation) defined on A.

While the success of an attack is always guaranteed in classical argumentation framework,
it is not always the case when the preference relation is taken into account. Indeed, Amgoud
and Cayrol redefine the attack relation in saying that an argument x defeats an argument y
if and only if there exists an attack from x to y and y is not preferred to x with respect to
the preference relation. Thus, in removing the attacks, from a preference-based argumentation
framework 〈A,R,≥pref〉, which do not respect the second condition then we obtain a new
Dung’s argumentation framework 〈A,R′〉 where R′ ⊆ R. The acceptability of the arguments
are then defined in the standard way from this new argumentation framework.

Example 1.3.2.

An example of preference-based argumentation framework is illustrated in Figure 1.10 (left)
where b is preferred to all the other arguments. So all the attacks from its direct attackers are
cancelled (the attack from c has no effect on b). Then, as c and e are preferred to a, d and f
so the attacks from d to c and e and from f to e have no effect too. Removing all these attacks
allows to obtain the Dung’s argumentation framework illustrated in Figure 1.10 (right) where
{b, c, e, f} is its only extension whatever the Dung’s semantics used (because the framework is
well-founded).
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b >pref c ≃pref e >pref a ≃pref d ≃pref f

Figure 1.10 – A preference-based argumentation framework (left) and its associated Dung’s
argumentation framework (right)

A framework introduced by Bench-Capon [BENCH-CAPON 2002, BENCH-CAPON 2003],
called value-based argumentation framework, is based on similar ideas. However, here it is
assumed that arguments promote specific values, and the preferences are among these values
rather than between the arguments themselves.

Definition 1.3.6 (Value-based argumentation framework [BENCH-CAPON 2002]).
A value-based argumentation framework (VAF) is a 5-tuple 〈A,R,V , v,≥vpref 〉 where A
is a set of arguments, R ⊆ A × A is an attack relation, V is a non-empty set of values, v is
a function which maps from elements of A to elements of V , and ≥vpref is a (total or partial)
pre-order (preference relation) defined on V .
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As for the preference-based argumentation framework, the attack relation is redefined: x
defeats y if and only if there exists an attack from x to y and v(y) is not preferred to v(x) ac-
cording to ≥vpref .

Thus, the advantage to include the preference or value information in argumentation frame-
works is not only to model the problem more accurately but also to reduce the number of
extensions we may obtain.

1.3.5 Probabilistic argumentation frameworks

In everyday life, the arguments, and the attacks provided between them, are often uncertain.
It is the case, for example, when one uses an argument based on the weather forecasts which is
not an exact science, or an argument based on a survey. Probabilistic argumentation framework
aims to model this notion of uncertainty in argumentation by combining Dung’s argumentation
framework with probability theory.

Definition 1.3.7 (Probabilistic argumentation framework [LI et al. 2011]).
A probabilistic argumentation framework (PrAF) is a 4-tuple 〈A,R, PA, PR〉 where 〈A,R〉
is a Dung’s argumentation framework, PA : A → [0, 1] is a probability function on A and
PR : R → [0, 1] is a probability function onR.

Work in the field of probabilistic argumentation can be divided [HUNTER 2013] into two
different uses: the constellation approach (see e.g. [LI et al. 2011]) and the epistemic one (see
e.g. [THIMM 2012, HUNTER & THIMM 2017]).

In the constellation approach, the uncertainty associated with each argument in the proba-
bilistic argumentation framework is interpreted as an uncertainty over the structure of the argu-
mentation framework. In other words, the probability on each argument or attack corresponds
to its chance of existence in this framework. The meaning of a probabilistic argumentation
framework is thus given in terms of possible worlds (i.e. Dung’s argumentation framework),
each of them representing a scenario that may occur in the reality. Indeed, for an argument x
in a probabilistic argumentation framework PrAF , PA(x) is the probability that x exists in all
the classical argumentation frameworks induced from PrAF , and 1 − PA(x) is the probabil-
ity that x does not exist in all the classical argumentation frameworks induced from PrAF .
Thus, combining the probabilities of each argument and attack in an argumentation framework
allows to obtain the probability to obtain this framework. Using all the argumentation frame-
works induced associated with their probability of existing, we can then explore the notions of
probability distributions over admissible sets, extensions, and inferences.

In the epistemic approach, the probability distribution over arguments allows to identify
which arguments are believed or not: the higher the probability of the argument, the more it is
believed. So for a probability function PA, and an argument x, PA(x) > 0.5 denotes that the
argument is believed, PA(x) < 0.5 denotes that the argument is disbelieved, and PA(x) = 0.5
denotes that the argument is neither believed or disbelieved. This approach leads to the notion of
an epistemic extension (or labellings) which is the subset of the arguments in the graph that are
believed to be acceptable to some degree (i.e. the arguments such that PA(x) > 0.5). However,
this definition is very general because it permits any set of arguments to be an epistemic exten-
sion. It is why a set of properties have been introduced (see [HUNTER & THIMM 2017] for an
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overview) to restrict the probability function which may take different aspects of the structure of
the argument graph into account. For example, the probability distribution is coherent (COH)
with the structure of the argument graph if the belief in an argument is high, then the belief in
the arguments it attacks is low.

1.3.6 Abstract dialectical frameworks

Abstract dialectical frameworks have been proposed by [BREWKA & WOLTRAN 2010] as
a generalization of Dung’s argumentation frameworks. Their main goal is to express a wide
range of relations (like the attack relation, the different kinds of support relation, . . . ) in order
to avoid the need of introducing a new relation each time it is needed. This is achieved by
adding to each argument a specific acceptance condition. More formally, an abstract dialectical
framework is a directed graph whose nodes represent arguments, statements or positions which
can be accepted or not. The links represent dependencies: the status of a node only depends
on the status of its parents (i.e. the nodes with a direct link to it). In addition, an acceptance
condition Cx is associated to each node x specifying the exact conditions under which x is
accepted.

Definition 1.3.8 (Abstract dialectical framework [BREWKA & WOLTRAN 2010]).
An abstract dialectical framework (ADF) is a triplet 〈S, L, C〉 where S is a set of statements
(positions, arguments), L ⊆ S×S is a set of links between two statements and C = {Cx}x∈S is
a set of acceptance conditions with one condition for each statement. An acceptance condition
is a total function Cx : 2par(x) → {⊤,⊥}, where par(x) = {y ∈ S | (y, x) ∈ L} is the set of
parents of an argument x.

The most popular way to represent the acceptance conditions is with propositional formulas.
For example, a case where an argument x can only be accepted if its parent y is not accepted
(as it is the case for an attack) and its parent z is accepted (as it is the case with a necessary
support) can be easily expressed with a condition Cx = ¬y ∧ z. Then if the formula Cx is true
then x is accepted and if it is false then x is not accepted.
Dung’s argumentation frameworks can be recovered as a special case where the statements are
the arguments, the links between them represent the attack relation and the acceptance condition
of an argument x is defined as the formula Cx = ¬y1∧· · ·∧¬yn where y1, . . . , yn are the direct
attackers of x. Indeed, recall that an argument x is accepted if its direct attackers are all rejected.

Example 1.3.3. The classical argumentation framework depicted in Figure 1.11 (right) can be
represented as an abstract dialectical framework where Cd = ⊤ because d is unattacked so its
acceptability does not depend on any other argument, Cc = ¬b ∧ ¬d means that c is accepted
only if b and d are not accepted, Cb = ¬c and Ca = ¬b means that the acceptability of b depends
on the non-acceptability of c and the acceptability of a depends on the non-acceptability of b.

It is also possible to represent a bipolar argumentation framework with an abstract dialectical
framework, as shown in the following example.

Example 1.3.4. The bipolar argumentation framework, depicted in Figure 1.12 (right), where
the support is interpreted as a necessary support, can be represented as an abstract dialectical
framework where Cd = ⊤ because d is unattacked, Cc = ¬b ∧ d means that c is accepted only
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Figure 1.11 – A representation of the Dung’s argumentation framework (right) in terms of an
abstract dialectical framework (left)

if b is not accepted (attacker) and d is accepted (supporter), Cb = ¬c because c attacks d and
Ca = b because b supports a so the acceptability of a depends on the acceptability of b.
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Figure 1.12 – A representation of the bipolar argumentation framework (right) in terms of an
abstract dialectical framework (left)

Abstract dialectical frameworks also provide a new way to handle preferences and values
[BREWKA et al. 2013].

The semantics of ADFs [BREWKA & WOLTRAN 2010] concern the extension-based ap-
proach (even if other approaches, like labelling-based approach [BREWKA et al. 2013], were
subsequently studied). Indeed, a conflict–free extension can be simply seen as a set of argu-
ments having their acceptance condition satisfied and the admissibility generalizes the original
intuition from Dung by making sure that the extension can discard undesired arguments. The
definition of grounded, complete, preferred and stable semantics is then derived from these two
definitions.

1.3.7 Social argumentation frameworks

Recently, online debate platforms, like Debategraph (debategraph.org/home), De-
batabase (idebate.org/debatabase) or Argüman (en.arguman.org), are emerging
on the internet. On these debate platforms, agents argue for or against a particular topic or
other existing arguments. Less expert users who prefer to take a more observational role will
be provided with simple mechanisms to vote (positively if they agree or negatively if not) on
individual arguments. In order to represent these debates in their abstract form, social abstract

argumentation frameworks [LEITE & MARTINS 2011, CORREIA et al. 2014] (and its extended
version [EGILMEZ et al. 2013] where votes on the attacks are also allowed) have been intro-
duced as an extension of Dung’s argumentation framework to which an assignment of votes
(which is a couple of integers, one for the positive votes and one for the negative votes) is added
to each argument.

Definition 1.3.9 (Social abstract argumentation frameworks [LEITE & MARTINS 2011]).
A social abstract argumentation framework (SAF) is a triplet 〈A,R, v〉 where A is a set of
arguments, R ⊆ A × A is a binary attack relation between arguments and v : A → N × N

represents the number of positive and negative votes for each argument.
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Example 1.3.5 (Example from [LEITE & MARTINS 2011]).
A typical forum discussion about new generation phones could be of the form (argument +
positive vote / negative vote) depicted in Figure 1.13 with its associated graphical representation
(SAF).

(a) “The Wonder-Phone is the best new generation phone.” (20/20)

(b) “The Magic-Phone is the best new generation phone.” (20/20)

(c) links to a review of the M-Phone giving poor scores due to bad
battery performance. (60/10)

(d) “(c) is ignorant, since subsequent reviews noted only one of the
first editions had such problems: [links].” (10/40)

(e) “(d) is wrong. I found (c) knows about that but withheld the
information. Here’s a link to another thread proving it!” (40/10)

c

60/10

b

20/20

a

20/20

d

10/40

e

40/10

Figure 1.13 – A social argumentation framework (right) representing a debate about new gen-
eration phone (left)

Leite and Martins emphasize the limitations of classical acceptability semantics for this
kind of debate. For example, to accurately represent the opinions of thousands of voting users,
it could be more appropriate to evaluate arguments using degrees of acceptability or gradual
acceptability. In the next chapter, we will talk about these semantics allowing to distinguish
arguments using several levels of acceptability.
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Chapter 2

Ranking-based Semantics

While the acceptability of an argument depends on its membership or not to a set of exten-
sions in Dung’s theory, an alternative way to evaluate arguments consists in directly reasoning
on the arguments themselves by exploiting the topology of the argumentation framework. Fol-
lowing this idea, two kinds of semantics have been introduced: scoring semantics and ranking-
based semantics. Scoring semantics assign a numerical acceptability degree to each argument,
taking into account various criteria from the argumentation framework. Ranking-based seman-
tics associate to any argumentation framework a ranking on the arguments from the most to
the least acceptable ones. This allows to have a large number of levels of acceptability and
not only the classical accepted/rejected (or accepted/rejected/undecided) evaluations obtained
with extension-based semantics, but on the other hand the joint acceptability of arguments is no
longer captured.
In this chapter, we first put forward the limits of Dung’s semantics for some applications and
explain why the scoring semantics and the ranking-based semantics are a better choice for those
applications. Then, we formally define the scoring semantics and the ranking-based semantics
in abstract argumentation and show the link between them. We list the existing ranking-based
semantics in the literature in focusing on the semantics which return, for an argumentation
framework, only one ranking on arguments from the most to the least acceptable ones. Finally,
we present the properties introduced in the literature aiming to better understand the behavior
of these ranking-based semantics in various situations.
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2.1 Motivations and applications

Amgoud and Ben-Naïm [AMGOUD & BEN-NAIM 2013] give some characteristics specific
to extension-based semantics (and labellings-based-semantics):

• Killing: The impact of an attack from an argument y to an argument x is drastic, that
is, if y belongs to an extension (or is labelled in), then x is automatically excluded from
that extension (or is labelled out). This is especially noticeable in the definition of the
reinstatement labellings because an argument is labelled out if there exists at least one
direct attacker labelled in.

• Existence: One successful attack against an argument x has the same effect on an argu-
ment as any number of successful attacks. Indeed, one such attack is sufficient to kill x,
several attacks cannot kill x to a greater extent. Again, the definition of the reinstatement
labellings says that if there exists at least one direct attacker labelled in then the attacked
argument will be labelled out.

• Flatness: All the arguments with the same status have the same level of acceptability. For
example, all the accepted (respectively rejected or undecided) argument cannot be distin-
guish, i.e no accepted argument are more acceptable than another accepted argument.

These considerations seem rational to be satisfied in applications like paraconsistent rea-
soning [BESNARD & HUNTER 2008] where arguments are represented as formulas and attacks
correspond to contradictions between these formulas. Here, the killing and existence consider-
ation seem essential to capture the fact that one attack is lethal and prevent any contradiction
between arguments and thus obtain a consistent set of formulas.
However, in other applications like decision-making, online debate platforms or when addi-
tional information exist in the framework, some of these considerations are debatable.
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Decision-making

Decision-making aims to help someone to select one or several options among several alter-
native possibilities when potential conflicts exist between them. This process can be modelized
by an argumentation framework where the arguments are the options and the attacks represent
the conflicts between options. To find the compatible options, one can use the classical seman-
tics (i.e. Dung’s semantics) and the most acceptable arguments will be the selected option(s).
But, let us illustrate with the following example why the considerations defining standard se-
mantics are not always appropriate for the decision-making paradigm. This example involves
a debate between employees from an airline company who discuss to know if they will buy or
not the new Airbus. The two following arguments a and b are proposed:

(a) We should buy the new Airbus A350 in order to remain competitive with our competing
companies.

(b) A preliminary study showed that the economical impact of this purchase is maybe not
guaranteed for our company.

In this case, the argument b is not strong enough to defeat/kill a because it is a preliminary
study and the result of this study needs confirmation. Thus, its impact is not sufficient to con-
clude to avoid buying the new Airbus. However, it has certainly a negative impact on a, it is
why we consider that b only weakens a.
The existence principle is also debatable because if one considers an attack as a weakening then
several attacks should have more impact than just one. For example, consider the two additional
arguments c and d, clearly against the purchase of the new airbus:

(c) The design of this model should be improved.

(d) The price is too expensive.

With the negative impact from the three arguments b, c and d on a, it seems obvious that a is
now weaker than when b was the only direct attacker.
Finally, the flatness consideration is also debatable in decision-making. Let us consider the
following argumentation framework:

x y z

Then, x and z are both accepted according Dung’s semantics and have the same level of
acceptability (both are accepted). But, we saw that it is reasonable to consider that an attack
from an argument does not kill the targeted argument. So, if y is only weakened, then its attack
against z should still have some effect, and thus the level of acceptability of z should be lower
than that of x.

Thus, scoring semantics or ranking-based semantics with many levels of acceptability al-
lowing to better distinguish arguments seem more appropriate in a decision-making context.

For more details about the link between decision-making and argumentation, we refer the
reader to [AMGOUD et al. 2008, AMGOUD & PRADE 2009, AMGOUD & VESIC 2012].

35



Chapter 2. Ranking-based Semantics

Argumentation framework with additional information

Among Dung’s framework extensions presented in the previous chapter (see section 1.3),
the weighted argumentation frameworks, the value-based semantics and preference-based se-
mantics allow to represent the strength of an attack or an argument. However, these additional
information are only used to improve the extensions computed with extension-based seman-
tics. For example, in a weighted argumentation framework 4, the weights are used to relax the
extensions in removing some attacks, or to select the best extensions when a large number of
extensions exists. But it could be more intuitive to use them to rank arguments. Indeed, in fo-
cusing on the weighted argumentation frameworks illustrated in Figure 2.1, without taking into
account the weights on the attacks, the only extension computed with any Dung’s semantics
contains only the non-attacked arguments: {a1, b1, c1}. The set of extensions is not trivial and
contains only one extension so it is not necessary to relax the extensions or select the best one,
so a, b and c are all rejected and the weights are not used.

aa1 b1 b c1 c
10 6 2

Figure 2.1 – A weighted argumentation framework

However, it is clear that the three rejected arguments receive different impact from their
direct attackers. Indeed, if we adopt the interpretation such that the higher the weight on the
attack, the stronger its impact, then the attack from a1 with a weight of 10 has more impact on
a than the attack from b1 to b with a weight of 6, and the attack from c1 to c with a weight of
2. Following this, it could be reasonable to say that even if the three arguments are rejected, the
different impacts of their direct attackers allow to say that c is more acceptable than b (and a)
which is more acceptable than a. This questions the flatness principle of classical semantics.

Debate-centric systems

In some online debate platforms, like debatepedia.com, debate.org, whysaurus.com, users
contribute arguments for and against a topic, a question, etc. For example, the question of
the debate from debatepedia.com represented in Figure 2.2 (page 39) is “Can teacher-student
friendships improve learning?” and the arguments “pro” are represented in the left-hand col-
umn while the arguments “con” are listed in the right-hand column. Thus the arguments “pro”
support the question while the arguments “con” attack it. So this debate can be modelized by a
bipolar argumentation framework where the question, seen as an argument and called question
argument, is the only argument which is supported or attacked by other arguments.
Here, the goal is not to find the arguments which can be accepted together but to evaluate how
accepted is the question. Indeed, using the classical Dung’s semantics, it is clear that just one
attack rejects the question (existence principle) which is not an appropriate answer. A first (in-
tuitive) solution should be to evaluate the question argument in just counting the number of its
supports and its attacks. If there exists strictly more supports than attacks then the question

4. Please note that the same reasoning holds for the value-based and preference-based semantics.

36



2.2. Formal definition

argument is accepted, if the number of supports and attacks are the same so the question can
be seen as undecided and the question is not accepted otherwise. 5 For example, the question
argument in Figure 2.2 is accepted because it is attacked by four arguments but supported by
five arguments. But one can go further in saying that there exists several levels of acceptability
among these groups. Indeed, it seems natural to say that it is better for the question argument
to have many supports and no attack. Thus, a ranking with many levels of acceptability would
allow to capture this idea.

Figure 2.2 – Debate from the website debatepedia.com

Recent works [LEITE & MARTINS 2011, EVRIPIDOU & TONI 2012, BARONI et al. 2015,
RAGO et al. 2016, CERUTTI et al. 2016] draw a parallel between argumentation and online de-
bates.

2.2 Formal definition

Let us formally define, in this section, the ranking-based and the scoring semantics.
First, a ranking-based semantics rank-orders a set of arguments in an argumentation framework
from the most acceptable to the weakest one(s). Thus, unlike classical semantics which assign
an absolute status (accepted, rejected, undecided) to each argument, this semantics compares
pairs of arguments.

5. Clearly, the method used for this kind of debate is naive because only the topic argument can be supported
or attacked. But, for debates where agents have the possibility to attack or support other arguments then one needs
more sophisticated
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Definition 2.2.1 (Ranking-based semantics).
A ranking-based semantics σ associates to any argumentation framework AF = 〈A,R〉 a
ranking �σ

AF on A, where �σ
AF is a preorder (a reflexive and transitive relation) on A.

• x �σ
AF y means that x is at least as acceptable as y;

• x ≃σ
AF y (shortcut for x �σ

AF y and y �σ
AF x) means that x and y are equally acceptable;

• x ≻σ
AF y (shortcut for x �σ

AF y and y �σ
AF x) means that x is strictly more acceptable than

y;

• x �σ
AF y and y �σ

AF x means that x and y are incomparable.

We denote by σ(AF ) the ranking on A returned by σ.

A scoring semantics assigns to each argument in an argumentation framework a score de-
pending on different criteria. This value must be selected among an ordered scale as the interval
[0, 1], the interval [−1, 1], the set of natural numbers N, the set of positive real numbers R+, etc.
However, this score should not be confused with the weight assigned in weighted argumentation
framework or value-based semantics coming from external sources. Indeed, the scores assigned
here are only computed on the basis of the argumentation framework itself.

Definition 2.2.2 (Scoring semantics).
A scoring semantics is a function which associates to any argumentation framework AF =
〈A,R〉 a scoring S on A, where S is a function from A to R.

It is important to note that these two families of semantics are not independent. Indeed,
as illustrated in Figure 2.3, most of the time the ranking between arguments is based on the
comparison of the score computed with a scoring semantics. In other words, a scoring semantics
is used to assign a score to each argument and, as these score belong to an ordered scale, it is
possible to compare them to obtain a ranking between arguments.

argumentation framework

assign a score to each argument

ranking between arguments

ranking semantics

scoring semanticsStep 1

comparing the scoreStep 2

Figure 2.3 – Ranking process
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However, most of the scores assigned to each argument only make sense when they are
compared with each other. In addition, while it is always possible to build a ranking-based
semantics using a scoring semantics, there exist other methods which do not use scoring se-
mantics to build a ranking between arguments as we shall see in the next section. It is why we
choose to focus on the ranking-based semantics in this thesis.

Finally, let us define the notion of lexicographical order which will be useful to define some
ranking-based semantics.

Definition 2.2.3 (Lexicographical order).
A lexicographical order between two vectors of real numbers V = 〈V1, . . . , Vn〉 and V ′ =
〈V ′1 , . . . , V ′n〉 is defined as

V ≻lex V ′ if and only if ∃i ≤ n such that Vi > V ′i and ∀j < i, Vj = V ′j

V ≃lex V ′ means that V ⊁lex V ′ and V ′ ⊁lex V ; and V �lex V ′ means that V ′ ⊁lex V .

2.3 Existing ranking-based semantics

In this section, we introduce ranking-based semantics from the literature in focusing on
those that return, for a given argumentation framework, a unique ranking between arguments
from the most to the least acceptable ones. In order to correctly illustrate each of these ranking-
based semantics, we choose to apply all of them on the argumentation framework illustrated
in Figure 2.4. We find this argumentation framework interesting because it contains several
configurations of arguments. Indeed, in addition to the non-attacked arguments a, e and j
which directly attack b, d and h once and i twice, the argument c has one defense branch while
f and g have two distinct defense branches with the difference that the defender of g is the same
for these two branches.

a b c d e

f g h i

j

Figure 2.4 – The argumentation framework AFc

2.3.1 Categoriser-based ranking semantics

Originally, Besnard and Hunter [BESNARD & HUNTER 2001] have proposed a categoriser

function used for “deductive” arguments, where an argument is structured as a pair 〈Φ, α〉,
where Φ is a consistent set of propositional formula, called support or premise, α is a formula,
called claim or consequent of the argument such that Φ ⊢ α. The categoriser function allows to
assign a value to each argument belonging to a tree of arguments. Such a value allows to capture
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the relative strength of an argument taking into account the strength of its attackers, which itself
takes into account the strength of its attackers, and so on. Recall that the notationRi(x) selects
the arguments that are bound by a path of length i to the argument x.

Definition 2.3.1 (Categoriser function).
Let AF = 〈A,R〉 be an argumentation framework. The categoriser function Cat : A → ]0, 1]
is defined such that ∀x ∈ A,

Cat(x) =

{

1 ifR1(x) = ∅
1

1+
∑

y∈R1(x)
Cat(y)

otherwise

The values returned by the categoriser function are called the categoriser values. Thus, Cat(x)
is the categoriser value of x.

To understand the idea behind the categoriser function, one can divide the formulae into two
parts:

• The first part (1 +
∑

y∈R1(x)
Cat(y)) allows to combine the categoriser values of all the

direct attackers of an argument. Then, the smaller this value, the better it is for the ar-
gument. So, except if it has no direct attacker and in this case the value is minimal, the
“better” case is when an argument has few direct attackers and many direct defenders. In-
deed, even if the number of direct attackers of an argument is low, if they are not attacked
then the categoriser value of this argument can be greater than a large number of direct
attackers with a small categoriser value. It is why the number of direct defenders is also
important to decrease the categoriser value of the direct attackers.

• The second part aims to transform the value obtained during the first step into a restricting
value by using the reciprocal function 1/x. Thus, the smaller the value obtained during
the first step, the higher the final value and consequently the higher the categoriser value
of this argument.

The categoriser function was initially introduced for acyclic argumentation framework, but
Pu et al. [PU et al. 2014] proved the existence and uniqueness of such solution for any argu-
mentation framework. In this case, the categoriser values correspond to the solution of the
non-linear system of equations with one equation per argument (see Definition 2.3.1) and can
be computed via a fixed point technique for any argumentation framework. The categoriser-
based ranking semantics builds a ranking from the categoriser values obtained. The higher the
categoriser value of an argument, the more acceptable the argument.

Definition 2.3.2 (Categoriser-based ranking semantics [PU et al. 2014]).
The Categoriser-based ranking semantics (Cat) associates to any argumentation framework
AF = 〈A,R〉 a ranking �Cat

AF on A such that ∀x, y ∈ A,

x �Cat
AF y if and only if Cat(x) ≥ Cat(y)

Let us compute the categoriser values of each argument in AFc (Figure 2.4 page 41).
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a

1

b

0.5

c

0.667

d

0.5

e

1

f

0.5

g

0.5

h

0.5

i

0.333

j

1

Figure 2.5 – The categoriser values of arguments of AFc

Example 2.3.1 (cont.). As illustrated in Figure 2.5, the categoriser values of each argument are
Cat(a) = Cat(e) = Cat(j) = 1, Cat(c) ≈ 0.667, Cat(i) ≈ 0.333 and Cat(b) = Cat(d) =
Cat(f) = Cat(g) = Cat(h) = 0.5.

We can now compare the categoriser values of each argument and obtain the following
ranking:

a ≃Cat e ≃Cat j ≻Cat c ≻Cat b ≃Cat d ≃Cat f ≃Cat g ≃Cat h ≻Cat i

As described above, this semantics assigns high values to arguments with low-valued at-
tackers, a maximal value of 1 to non-attacked arguments (like a, e and j). In this way, we can
see that even if an argument is always defended (like f and g) it is still attacked anyway. It is
why f and g have exactly the same level of acceptability that arguments directly attacked only
once but by one stronger argument (like b, d and h).

2.3.2 Discussion-based semantics

Amgoud and Ben-Naim [AMGOUD & BEN-NAIM 2013] have introduced the discussion-
based semantics which compares arguments by counting the number of paths ending to them.
A distinction is done concerning the polarity of the number of paths computed according to the
attack relation meaning (positive for the attackers and negative for the defenders).

Definition 2.3.3 (Discussion count).
Let AF = 〈A,R〉 be an argumentation framework, x ∈ A, and i ∈ N\{0}.

Disi(x) =

{
−|Ri(x)| if i is even
|Ri(x)| if i is odd

The discussion count of a is denoted by Dis(x) = 〈Dis1(x), Dis2(x), . . .〉.

This semantics was proposed to take into account only the number of attackers/defenders of
a given argument, whatever their quality: the less attackers and the more defenders an argument
has, the more acceptable the argument. The method lexicographically ranks the arguments on
the basis of the number of attackers and defenders. Concretely, we start by comparing the
number of direct attackers of each argument. If some arguments are still equivalent (they have
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the same number of direct attackers), the size of paths is recursively increased until a difference
is found or the threshold 6 is reached.

Definition 2.3.4 (Discussion-based semantics).
The Discussion-based semantics (Dbs) associates to any argumentation framework AF =
〈A,R〉 a ranking �Dbs

AF on A such that ∀x, y ∈ A,

x �Dbs
AF y if and only if Dis(y) �lex Dis(x)

Let us compute the discussion count of each argument in AFc (Figure 2.4 ).

Example 2.3.1 (cont.).
In Figure 2.6, we first represent the discussion count of each argument in AFc.

step a, e, j c b, d, h f, g i
1 0 1 1 2 2
2 0 -1 0 -2 0
3 0 0 0 0 0

Dis(a) = Dis(e) = Dis(j) = 〈0, 0, 0〉
Dis(c) = 〈1,−1, 0〉
Dis(b) = Dis(d) = Dis(h) = 〈1, 0, 0〉
Dis(f) = Dis(g) = 〈2,−2, 0〉
Dis(i) = 〈2, 0, 0〉

a

〈0, 0, 0〉

b

〈1, 0, 0〉

c

〈1,−1, 0〉

d

〈1, 0, 0〉

e

〈0, 0, 0〉

f

〈2,−2, 0〉

g

〈2,−2, 0〉

h

〈1, 0, 0〉

i

〈2, 0, 0〉

j

〈0, 0, 0〉

Figure 2.6 – Discussion count of arguments of AFc

During the first step where only the direct attackers are considered, we have three groups of
arguments: one contains the non-attacked arguments (a, e and j), one contains the arguments
directly attacked once (b, c, d and h) and the last one contains arguments directly attacked twice
(f, g and i). The first distinction between arguments in AFc can be done at the end of the first
step:

a ≃ e ≃ j ≻ b ≃ c ≃ d ≃ h ≻ f ≃ g ≃ i

Then, during the second step, in some group of arguments with the same level of acceptability,
one can distinguish arguments in taking into account the direct defenders. Indeed, c which is
defended once by a is now strictly more acceptable than b, d and h which are not defended and,
with the same idea, f and g are strictly more acceptable than i.

a ≃Dbs e ≃Dbs j ≻Dbs c ≻Dbs b ≃Dbs d ≃Dbs h ≻Dbs f ≃Dbs g ≻Dbs i

There exists no path of length 3 so the process ends and the final ranking is the one obtained
during the previous step.

6. If there is no cycle, the threshold is equal to the longest branch in the argumentation framework. But if cycles
are permitted, the discussion count of some arguments can be infinite because Disi(x) evolve cyclically. However,
the authors strongly conjecture that there exists a threshold t after which it is no longer possible to distinguish the
arguments: if ∀i ≤ t, Disi(x) = Disi(y), then ∀i > t, Disi(x) = Disi(y).
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2.3.3 Burden-based semantics

Amgoud and Ben-Naim [AMGOUD & BEN-NAIM 2013] have also introduced the burden-
based semantics which follows the same idea than the discussion-based semantics in consider-
ing only direct attackers of arguments. However the approach is different. Indeed, instead of
computing all the possible paths that lead to an argument, each argument receives, at each step,
a burden number which are simultaneously computed on the basis of the burden numbers of
their direct attackers at the previous step.

Definition 2.3.5 (Burden vector).
Let AF = 〈A,R〉 be an argumentation framework, x ∈ A and i ∈ N. The burden number of x
at step i is computed as follow:

Buri(x) =

{
1 if i = 0
1 +

∑

y∈R1(x)
1

Buri−1(y)
otherwise

The burden vector of x is denoted by Bur(x) = 〈Bur0(x), Bur1(x), . . .〉.
Two arguments are then lexicographically compared on the basis of their burden vector.

Definition 2.3.6 (Burden-based semantics).
The Burden-based semantics (Bbs) associates to any argumentation framework AF = 〈A,R〉
a ranking �Bbs

AF on A such that ∀x, y ∈ A,

x �Bbs
AF y if and only if Bur(y) �lex Bur(x)

Let us compute the burden vector of each argument in AFc (Figure 2.4).

Example 2.3.1 (cont.).

step a, e, j c b, d, h f, g i
0 1 1 1 1 1
1 1 2 2 3 3
2 1 1.5 2 2 3
3 1 1.5 2 2 3

Bur(a) = Bur(e) = Bur(j) = 〈1, 1, 1, 1〉
Bur(c) = 〈1, 2, 1.5, 1.5〉
Bur(b) = Bur(d) = Bur(h) = 〈1, 2, 2, 2〉
Bur(f) = Bur(g) = 〈1, 3, 2, 2〉
Bur(i) = 〈1, 3, 3, 3〉

a

〈1, 1, 1, 1〉

b

〈1, 2, 2, 2〉

c

〈1, 2, 1.5, 1.5〉

d

〈1, 2, 2, 2〉

e

〈1, 1, 1, 1〉

f

〈1, 3, 2, 2〉

g

〈1, 3, 2, 2〉

h

〈1, 2, 2, 2〉

i

〈1, 3, 3, 3〉

j

〈1, 1, 1, 1〉

Figure 2.7 – Burden vector of arguments of AFc

Using lexicographical order to compare the burden vector of each argument, one obtains the
following ranking:

a ≃Bbs e ≃Bbs j ≻Bbs c ≻Bbs b ≃Bbs d ≃Bbs h ≻Bbs f ≃Bbs g ≻Bbs i
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As in this example, Dbs and Bbs often return the same result because they only consider the
number of attackers/defenders of arguments. However, we will see later that some particular
cases exist where the two semantics return different rankings.

2.3.4 α-Burden-based semantics

Amgoud, Ben-Naim, Doder and Vesic [AMGOUD et al. 2016] have introduced the α-Burden-
based semantics which is a broad class of ranking semantics that allows to choose between the
importance of the quality of attacks or their quantity. This principle, called compensation, can
be checked when several weak attacks (i.e. direct attackers of an argument are attacked) could
have the same impact as one strong attack (i.e. direct attackers are not attacked). For example,
with AFc (see Figure 2.4 page 41), the argument f which has two weak attacks (b and d are
attacked) could be more (if one prefers the quality over the quantity), less (if the quantity is
preferred to the quality) or as acceptable (if both have the same importance) as the argument b
which has one strong attack (a is not attacked).
Formally, the formula is quite similar to the one used by the burden-based semantics (see Defi-
nition 2.3.5 page 45) because a burden number is assigned to each argument too. But, in order
to satisfy the principle of compensation, Amgoud et al. [AMGOUD et al. 2016] introduce a pa-
rameter α where different values of α give different behaviors (the greater the value of α, the
bigger the influence of the quality of attackers).

Definition 2.3.7 (sα).
Let α ∈ ]0,+∞[ and AF = 〈A,R〉 be an argumentation framework. The function sα : A →
[1,+∞[ is defined such that ∀x ∈ A,

sα(x) = 1 +




∑

y∈R1(x)

1

(sα(y))α





1/α

The parameter α is both used for the compensation and to ensure the uniqueness of the
solution of a system of equations, with one equation per argument. Indeed, contrary to the
burden-based semantics where the lexicographical order is used, the α-burden-based semantics
uses a fixed-point form to compute the burden number of each argument. Thus, the higher the
score sα of an argument, the less acceptable the argument.

Definition 2.3.8 (α-Burden-based semantics).
Let α ∈ ]0,+∞[. The α-Burden-based semantics (α-Bbs) associates to any argumentation
framework AF = 〈A,R〉 a ranking �α-Bbs

AF on A such that ∀x, y ∈ A,

x �α-Bbs
AF y if and only if sα(x) ≤ sα(y)

As mentioned when we introduced this semantics, the greater the value of α, the bigger the
influence of the quality of attackers. It is why, for different values of α, the computed ranking
can vary as shown in the following example which computes the function sα of each argument
in AFc (Figure 2.4 page 41).
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a

1

b

2

c

1.5

d

2

e

1

f

3

g

3

h

2

i

5

j

1

Figure 2.8 – Values returned by the function sα when α = 0.5 of arguments of AFc

Example 2.3.1 (cont.). As illustrated in Figure 2.8, if α = 0.5, we have sα(a) = sα(e) =
sα(j) = 1, sα(c) = 1.5, sα(b) = sα(d) = sα(h) = 2, sα(f) = sα(g) = 3 and sα(i) = 5. Thus,
according the α-burden-based semantics, we obtain the following ranking:

α = 0.5 a ≃α-Bbs e ≃α-Bbs j ≻α-Bbs c ≻α-Bbs b ≃α-Bbs d ≃α-Bbs h ≻α-Bbs f ≃α-Bbs g ≻α-Bbs i

However, if we increase the value of α, the quality becomes more important than the quantity
and we obtain different preorders:

α = 1 a ≃α-Bbs e ≃α-Bbs j ≻α-Bbs c ≻α-Bbs b ≃α-Bbs d ≃α-Bbs f ≃α-Bbs g ≃α-Bbs h ≻α-Bbs i

α = 5 a ≃α-Bbs e ≃α-Bbs j ≻α-Bbs c ≻α-Bbs f ≃α-Bbs g ≻α-Bbs b ≃α-Bbs d ≃α-Bbs h ≻α-Bbs i

2.3.5 Tuples-based semantics

Cayrol and Lagasquie-Schiex [CAYROL & LAGASQUIE-SCHIEX 2005b] have introduced
the tuples-based semantics defined as a “global” approach where only the defense and attack
branches of an argument are taken into consideration to compare arguments. The quantity and
the quality of the branches are stored in tupled values:

Definition 2.3.9 (Tupled value).
Let AF = 〈A,R〉 be an argumentation framework and x ∈ A.

• Let vp(x) be the (ordered) tuple of even integers representing the lengths of all the defense
branches of x, i.e. vp(x) is the smallest ordered tuple such that

∀n ∈ 2N, |Bn(x)| = k ⇒ n ∈k vp(x)

where ∈k means "appears at least k times".

• Let vi(x) be the (ordered) tuple of odd integers representing the lengths of all the attack
branches of x, i.e. vi(x) is the smallest ordered tuple such that

∀n ∈ 2N+ 1, |Bn(x)| = k ⇒ n ∈k vi(x)

If x is not attacked then vp(x) = (0, 0, . . . ) = 0∞ and vi(x) = ().
A tupled value for x is the pair v(x) = [vp(x), vi(x)].
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a

[0∞, ()]

b

[(), (1)]

c

[(2), ()]

d

[(), (1)]

e

[0∞, ()]

f

[(2, 2), ()]

g

[(2, 2), ()]

h

[(), (1)]

i

[(), (1, 1)]

j

[0∞, ()]

Figure 2.9 – Tupled values of each argument in AFc

Let us compute the tupled value of each argument in AFc (Figure 2.4 page 41).

Example 2.3.1 (cont.).

• v(a) = v(e) = v(j) = [0∞, ()] because they are non-attacked;

• v(c) = [(2), ()] because it has one defense branch with a length of 2 from a and no attack
branch;

• v(b) = v(d) = v(h) = [(), (1)] because they have one attack branch with a length of 1
and no defense branch;

• v(f) = v(g) = [(2, 2), ()] because they have two defense branches with a length of 2
(from a and e for f and twice e for g);

• v(i) = [(), (1, 1)] because it has two attack branches with a length of 1 from e and j.

When cycles are admitted, there may have no non-attacked argument in the graph and thus
no branch. The solution proposed in [CAYROL & LAGASQUIE-SCHIEX 2005b] is to consider
that a cycle is like an infinity of branches which gives an infinite acyclic graph. This process
is called the rewriting process of a cycle and is illustrated in Figure 2.10. From a simple cycle
argumentation framework where a and b attack each others, there exists two representations of
infinite graphs which are acyclic (one with a as a leaf and the other one with b instead).

a b ⇒

a

b2b1 b3

a1 a2

b4

. . .

v(a) = [(2, 4, . . . ), (1, 3, . . . )]

b

a2a1 a3

b1 b2

a4

. . .

v(b) = [(2, 4, . . . ), (1, 3, . . . )]

Figure 2.10 – The rewriting process of a cycle

Consequently, the existence of cycles implies that some tuples can be now infinite as shown
the Figure 2.10 where v(a) = v(b) = [(2, 4, . . . ), (1, 3, . . . )].
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Once the tupled values have been computed for each argument, the next step consists in
comparing them. To do so, the number of attack and defense branches of two arguments (i.e.

the length of vp and vi) are first compared and, in case of a tie (i.e. both arguments have the
same number of attack and defense branches), the values inside each tuples (so the length of
each branches) are lexicographically compared (see Algorithm 1). Thus, the priority is given
to the quantity, and the quality is taken into consideration only if the quantity cannot allow to
decide between two arguments.

Algorithm 1 Tuples comparaison [CAYROL & LAGASQUIE-SCHIEX 2005b]
Require: v(a), v(b) two tupled values of arguments a and b
Ensure: A ranking �T between a and b

1: if vi(a) = vi(b) and vp(a) = vp(b) then a �T b and b �T a
2: else

3: if |vi(a)| = |vi(b)| and |vp(a)| = |vp(b)| then

4: if vp(a) �lex vp(b) and vi(a) �lex vi(b) then a ≻T b
5: else

6: if vp(a) �lex vp(b) and vi(a) �lex vi(b) then a ≺T b
7: else a 6�T b and a 6�T b
8: end if

9: end if

10: else

11: if |vi(a)| ≥ |vi(b)| and |vp(a)| ≤ |vp(b)| then a ≺T b
12: else

13: if |vi(a)| ≤ |vi(b)| and |vp(a)| ≥ |vp(b)| then a ≻T b
14: else a 6�T b and a 6�T b
15: end if

16: end if

17: end if

18: end if

Example 2.3.1 (cont.). Let us apply Algorithm 1 to compare the previously computed tuples.
We obtain the following ranking:

a ≃T e ≃T j ≻T f ≃T g ≻T c ≻T b ≃T d ≃T h ≻T i

Let us remark that two arguments can be incomparable. It is the case, for example, if an
argument has strictly more attack branches and strictly more defense branches than another one
(see line 14 in Algorithm 1). Thus, an argument included in a cycle with a infinite number of
attack and defense branches will be always incomparable with an argument (except the non-
attacked arguments) in an acyclic argumentation framework. For instance the argument a in
Figure 2.10 (page 48) is incomparable with all the attacked arguments in AFc in Figure 2.4
(page 41). Consequently, this semantics returns a partial preorder between arguments.
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2.3.6 Matt & Toni

Matt and Toni [MATT & TONI 2008] compute the strength of an argument using a two-
person zero-sum strategic game. This game confronts two players, a proponent and an oppo-
nent for a given argument, where the strategies of the players are sets of arguments. For an
argumentation framework AF = 〈A,R〉 and an argument x ∈ A, the set of strategies for the
proponent is all the subsets of arguments that contain x: SP (x) = {P | P ⊆ A, x ∈ P} and
for the opponent it is all the subsets of arguments: SO = {O | O ⊆ A}. The goal of the game
is to evaluate the interactions between the strategies chosen by the two players. In a classical
argumentation framework, the only interaction is the attack relation between arguments, so let
us define how a strategy (i.e. a set of arguments) can attack another one.

Definition 2.3.10 (Attacks from a set of arguments to another one).
Let AF = 〈A,R〉 be an argumentation framework and X, Y ⊆ A. The set of attacks from X
to Y is defined by Y ←X

AF = {(x, y) ∈ X × Y | (x, y) ∈ R}.
Thus, the set of attacks from a set of arguments to another one is composed of all the attacks

in AF such that an argument from the first set directly attacks an argument from the targeted
set. Matt and Toni ensure that, in a dispute, it is better for the proponent of an argument to have
more attacks against opponents to the argument and fewer attacks from them. To capture this
idea, they introduced the notion of degree of acceptability of a set of arguments with respect to
another one.

Definition 2.3.11 (Degree of acceptability).
Let AF = 〈A,R〉 be an argumentation framework and X, Y ⊆ A. The degree of acceptability

of X with respect to Y is given by the following formula:

φ(X, Y ) =
1

2

[
1 + f(|Y ←X

AF |)− f(|X←Y
AF |)

]
with f(n) =

n

n+ 1

Please note that another mapping f can be used as long as f is a monotonic increasing map-
ping f : N→ [0, 1[ such that f(0) = 0 and lim

n→∞
f(n) = 1.

To defend her argument properly, the proponent should avoid to contradict herself, i.e. her
opinions should always correspond to sets of arguments that are at least conflict-free. Also,
since the opponent’s role in the game is to criticize the proponent, the opponent should get a
maximal penalty whenever her opinion fails to attack the proponent’s one. Finally, the game
should provide an incentive for the proponent to attack the opponent’s opinion with as many
attacks as possible and at the same time force her to avoid the opponent’s attacks. To implement
these principles, Matt and Toni choose to use a reward function to represent the relative degree
of acceptability of the players opinions.

Definition 2.3.12 (Rewards of the game).
Let AF = 〈A,R〉 be an argumentation framework. Given an argument x ∈ A, P ∈ SP (x)
(respectively O ∈ SO) represents a strategy chosen by the proponent (respectively opponent).
The rewards of P over O, denoted by rAF(P,O), are defined by :

rAF(P,O) =







0 if and only if ∃x, y ∈ P, (x, y) ∈ R
1 if and only if |P←O

AF | = 0
φ(P,O) otherwise
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Recall that each player has to change her strategy (if needed) in order to prevent her ad-
versary to adapt her own strategy, and thus get a better reward. Thus, proponent and opponent
have the possibility to use a strategy according to some probability distributions, respectively
p = (p1, p2, . . . , pm) and q = (q1, q2, . . . , qn), with m = |SP | and n = |SO|. Thus, for the
proponent (respectively opponent), the probability of choosing her ith strategy is equal to pi
(respectively qi). For each argument x ∈ A, the proponent’s expected payoff E(x, p, q) is then
given by E(x, p, q) =

∑n
j=1

∑m
i=1 piqjri,j with ri,j = rAF (Pi, Oj) where Pi (respectively Oj)

represents the ith (respectively jth) strategy of in SP (x) (respectively SO). The proponent can
therefore expect to get at least minq E(x, p, q), where the minimum is taken over all the strate-
gies available to the opponent. Hence the proponent can choose a strategy which will guarantee
her a reward of maxp minq E(x, p, q). The opposite is also true with minq maxp E(x, p, q). The
value of the zero-sum game for an argument x is:

s(x) = max
p

min
q

E(x, p, q) = min
q

max
p

E(x, p, q)

Definition 2.3.13 (Ranking-based semantics M&T).
The ranking-based semantics M&T associates to any argumentation framework AF = 〈A,R〉
a ranking �MT

AF on A such that ∀x, y ∈ A,

x �MT
AF y if and only if s(x) ≥ s(y)

Let us compute the value of the zero-sum game for each argument in AFc (Figure 2.4).

Example 2.3.1 (cont.). As illustrated in Figure 2.11, the strength of each argument is: s(a) =
s(e) = s(j) = 1, s(c) = s(f) = s(g) = 0.5, s(b) = s(d) = s(h) = 0.25 and s(i) ≃ 0.16.

a

1

b

0.25

c

0.5

d

0.25

e

1

f

0.5

g

0.5

h

0.25

i

0.16

j

1

Figure 2.11 – The value of the zero-sum game for each argument in AFc

Thus, we obtain the following ranking:

a ≃MT e ≃MT j ≻MT c ≃MT f ≃MT g ≻MT b ≃MT d ≃MT h ≻MT i

2.3.7 Fuzzy labelling

Da Costa Pereira, Tettamanzi and Villata [DA COSTA PEREIRA et al. 2011] study how an
agent changes her mind in response to new information/arguments. For this, they combine be-
lief revision and argumentation in a single framework close to the Dung’s framework, called
fuzzy argumentation framework, where a degree of trust is first assigned to each argument.
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Indeed, an argument could come from different sources with a more or less important trustwor-
thiness. Thus, when a new argument is proposed, it has more or less influence on the evaluation
of existing arguments according to its degree of trust. Then, to compute the influence of an
argument on the others, it is necessary to solve a system of non-linear equations (with an equa-
tion for each argument). The obtained values express how much the agent tends to accept an
argument coming from not fully trusted agents.
Even if this work does not directly propose a ranking-based semantics, the score obtained by
each argument after computation could be used to rank the arguments. In order to compare this
semantics with the existing ranking-based semantics in the classical framework, we consider
that all arguments are totally trusted.

Definition 2.3.14 (Fuzzy reinstatement labelling).
Let AF = 〈A,R〉 be an argumentation framework and i ∈ N. The function f : A → [0, 1] is
defined such that ∀x ∈ A,

fi(x) =

{
1 if i = 0
1
2
(fi−1(x) + (1− max

y∈R1(x)
fi−1(y))) otherwise

A fuzzy reinstatement labelling for AF is, ∀x ∈ A, f(x) = lim
i→∞

fi(x).

According to the formula, the score of an argument during the step i depends both on its
score at the previous step (fi−1(a)) and on the score of its direct attacker with the highest score
at the previous step (1−max(fi−1(b))). Indeed, its score (and so its acceptability) should not be
greater than the degree to which its direct attackers are unacceptable: f(a) ≤ 1 − max

b∈R1(a)
f(b).

For instance, an argument with a score of 0 is necessarily attacked by at least one argument with
a score of 1.

Definition 2.3.15 (Fuzzy labelling).
The Fuzzy labelling (FL) associates to any argumentation framework AF = 〈A,R〉 a ranking
�FL

AF on A such that ∀x, y ∈ A,

x �FL
AF y if and only if f(x) ≥ f(y)

Let us compute the value of each argument in AFc (Figure 2.4).

Example 2.3.1 (cont.). As illustrated in Figure 2.12, the fuzzy reinstatement labeling returns
the following values : f(a) = f(e) = f(j) = f(c) = f(f) = f(g) = 1 and f(b) = f(d) =
f(h) = f(i) = 0.
Thus, we obtain the following ranking:

a ≃FL e ≃FL j ≃FL c ≃FL f ≃FL g ≻FL b ≃FL d ≃FL h ≃FL i

2.3.8 Iterated graded defense

The next semantics, introduced by Grossi and Modgil [GROSSI & MODGIL 2015], proposes
a generalisation of Dung’s notion of acceptability. The theory is based on two assumptions:
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a

1

b

0

c

1

d

0

e

1

f

1

g

1

h

0

i

0

j

1

Figure 2.12 – The values returned by the fuzzy reinstatement labelling for each argument in
AFc

(A1) having fewer direct attackers is better than having more; and (A2) having more direct
defenders is better than having fewer. To catch these two principles, Grossi and Modgil define
a generalisation of the notion of defense initially defined by Dung.
Let x be an argument among a set of arguments X ⊆ A. Let m be the number of direct
attackers of x (R1(x) = {y1, ..., ym}) and, for each yi, let ni be the number of direct attackers
of yi in X with n ≤ ni, ∀i (all direct attackers have at least n counter-attackers: ∀yi ∈ R1(x),
|R1(yi)| ≥ n).

Definition 2.3.16 (Graded defense).
Let AF = 〈A,R〉 be an argumentation framework and m,n ∈ N. The graded defense of a
subset of arguments X ⊆ A is :

dm
n
(X ) = {x ∈ A | ∄≥my ∈ A : [(y, x) ∈ R and ∄≥nz ∈ A, (z, y) ∈ R and z ∈ X ]}

where ∄≥n means “it does not exist at least n”.

Thus, dm
n
(X ) contains the arguments which do not have at least m direct attackers (i.e.,

which have at most m− 1 direct attackers) that are not counter-attacked by at least n arguments
in X . For example, d1

2
(X ) selects the arguments such that none of their direct attackers are

directly attacked at most once. To better understand the definition of the graded defense, one
can use the graded neutrality function:

Definition 2.3.17 (Graded neutrality function).
Let AF = 〈A,R〉 be an argumentation framework and m ∈ N. The graded neutrality func-

tion Nm : 2A → 2A is defined such that for any X ⊆ A, Nm(X ) = {x ∈ A | ∄≥my ∈
X such that (y, x) ∈ R}.

For example, N1(X ) is the set of arguments which are not attacked by the arguments in X
while N2(X ) contains the arguments which are attacked at most once by the arguments in X
(i.e. the arguments belonging to N1(X ) and the arguments attacked exactly once by X ), and so
on. Grossi and Modgil showed that it is possible to define the graded defense from the graded
neutrality function: dm

n
(X ) = Nm(Nn(X )). Thus, d1

2
(X ) can be rewritten N1(N2(X )) which

selects the arguments which are not attacked (N1) among the arguments directly attacked at
most once by X (N2(X )).
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Example 2.3.1 (cont.). Given the argumentation framework AFc in Figure 2.4, let us compute
some graded defenses of the set X = {a, e, j} which contains the non-attacked arguments of
AFc:

d1
1
(X ) = N1(N1(X )) = N1({a, c, e, f, g, j}) = {a, c, e, f, g, j}

d1
2
(X ) = N1(N2(X )) = N1({a, b, c, d, e, f, g, h, j}) = {a, e, j}

d2
1
(X ) = N2(N1(X )) = N2({a, c, e, f, g, j}) = {a, b, c, d, e, f, g, h, j}

d2
2
(X ) = N2(N2(X )) = N2({a, b, c, d, e, f, g, h, j}) = {a, b, c, d, e, h, j}

Thus, in agreement with the assumptions (A1) and (A2) (defined on the previous page),
the arguments belonging to dm

n
(X ) are at least as strong as the arguments belonging to ds

t
(X )

when m ≤ s (less direct attackers) and n ≥ t (more direct defenders). However, this method
can be insufficient on its own to compare arguments: the set of arguments computed that way
may be not strong enough to defend itself. It is why this method must be recursively applied
until obtaining a “stabilized” set of arguments. Thus, for an ordinal α, the α-fold iteration
of dm

n
is denoted by dαm

n
(with d0m

n
(X ) = X , d1m

n
(X ) = dm

n
(X ), d2m

n
(X ) = dm

n
(dm

n
(X )), . . . ).

A set of arguments is stabilized if and only if there exists an ordinal α such that dαm
n
(X ) =

dα+1
m
n

(X ). Grossi and Modgil explain that since dm
n

is monotonic the existence of such α is

always guaranteed according to the Knaster-Tarski theorem. 7 Thus, the indefinite iteration of
dm
n
(X ) is defined as

d∗m
n
(X ) =

⋃

0≤i≤α

dim
n
(X )

Take two arguments x and y, and some fixed set X . Is it the case that every time y is defended
through the iteration of some graded defense function of X , x also is? If it is the case then
every kind of defense met by y (with respect to X ) is also met by x and consequently x is at
least more acceptable than y (because x may belong to a more graded defense).

Definition 2.3.18 (Iterated Graded Defense semantics).
The Iterated Graded Defense semantics (IGD) associates to any argumentation framework
AF = 〈A,R〉 a ranking �IGD

AF on A with respect to X ⊆ A such that ∀x, y ∈ A,

x �IGD
AF y if and only if ∀m,n ≥ 0 if y ∈ d∗m

n
(X ) then x ∈ d∗m

n
(X )

Please note that two arguments can be incomparable. Indeed, this occurs when, for two
arguments a and b and a subset of arguments X , a ∈ d∗m

n
(X ) and a /∈ d∗s

t
(X ) but b /∈ d∗m

n
(X ) and

b ∈ d∗s
t
(X ).

Example 2.3.1 (cont.). Given the argumentation framework in Figure 2.4, let us compute the
indefinite iteration of the graded defense of the empty set (X = ∅) for all the values of 1 ≥
m,n ≥ 3. 8 The results are given in Table 2.1 (page 55).

7. also called Tarski’s fixed point theorem [TARSKI 1955]
8. It is useless to check the values greater than 3 because the maximal number of direct attackers in AFc is 2.
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d∗m
n
(∅) m

1 2 3

n
1 {a, c, e, f, g, j} {a, b, c, d, e, f, g, h, j} A
2 {a, e, j} {a, b, c, d, e, h, j} A
3 {a, e, j} {a, b, c, d, e, h, j} A

Table 2.1 – The indefinite iteration of the graded defense of the empty set for all the values of
m,n ∈ {1, 2, 3}

One can remark that f (respectively g) and b (respectively d and h) are incomparable because
f ∈ d∗1

1
(∅) but b /∈ d∗1

1
(∅) and b ∈ d∗2

2
(∅) but f /∈ d∗2

2
(∅). Thus, we obtain the partial preorder

represented in Figure 2.13 by a Hasse diagram 9 ranking arguments where each argument in
{b, d, h} are incomparable with each argument in {f, g}.

{a, e, j}

{c}

{b, d, h}{f, g}

{i}

Figure 2.13 – Partial preorder, between arguments of AFc, returned by IGD semantics and
represented by a Hasse diagram

2.3.9 Counting semantics

Pu et al. [PU et al. 2015c] introduced the counting semantics which allows to rank argu-
ments by counting the number of their respective attackers and defenders. However, contrary
to the tuples-based semantics which only focuses on the branches, the counting semantics takes
into account a large part of paths that leads to a given argument (and which continues the pro-
cess even if a difference is found contrary to the Discussion-based semantics). In order to assign
a value to each argument, they consider an argumentation framework as a dialogue game be-
tween proponents of a given argument x (i.e. the defenders of x) and opponents of x (i.e. the
attackers of x). The idea is that an argument is more acceptable if it has many arguments from
proponents and few arguments from opponents.

9. Concretely, for a partially ordered set (A,≻) one represents each argument of A as a vertex in the diagram
and draws a line segment that goes upward from x to y whenever y ≻ x
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Formally, they first convert a given AF into a matrix Mn×n (where n is the number of argu-
ments in AF ) which corresponds to the adjacency matrix of AF (as an AF is a directed graph).
Thus, the matrix M , depicted in Figure 2.14, is the adjacency matrix of AFm where Mij = 1 if
(xi, xj) ∈ R. As shown in Figure 2.14, the particularity of this matrix is that the matrix product
of k copies of M , denoted by Mk, represents, for all the arguments in AF , their number of
defenders (if k is even) or attackers (if k is odd) situated at the beginning of a path of length k.

x1 x2

x3 x4 AFm

M =







0 0 0 0
1 0 0 1
1 0 0 0
0 0 1 0







M2 =







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0







M3 =







0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0







M4 =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







Figure 2.14 – An argumentation framework and its adjacency matrix M

Finally, a normalization factor N (e.g. the matrix infinite norm [HORN & JOHNSON 2012])
is applied to M in order to guarantee the convergence, and a damping factor α is used to
have a more refined treatment on different length of attacker and defenders (i.e. shorter at-
tacker/defender lines are preferred).

Definition 2.3.19 (Counting model).
Let AF = 〈A,R〉 be an argumentation framework with A = {x1, . . . , xn}, α ∈ ]0, 1[ be a
damping factor and k ∈ N. The n-dimensional column vector w over A at step k is defined by,

wk
α =

k∑

i=0

(−1)iαiM̃ iI

where M̃ is the normalized matrix such that M̃ = M/N with N as normalization factor and I
the n-dimensional column vector containing only 1s.
The counting model of AF is wα = lim

k→+∞
wk

α. The strength value of xi ∈ A is the ith

component of wα, denoted by w(xi).

In [PU et al. 2015a], they deepen their work by presenting some complements about how
the damping factor α allows to control the convergence speed of the computation for the count-
ing semantics.

Following the previous definition, for any argumentation framework, the counting model
can range the strength value of each argument into the interval [0, 1]. Thus, an argument is at
least as acceptable as another argument if and only if its strength value is equal or higher than
the strength value of the other argument.
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Definition 2.3.20 (Counting semantics).
The Counting semantics (CS) associates to any argumentation framework AF = 〈A,R〉 a
ranking �CS

AF on A such that ∀x, y ∈ A,

x �CS
AF y if and only if w(x) ≥ w(y)

Example 2.3.1 (cont.). M is the adjacency matrix associated to AFc illustrated in Figure 2.4
(page 41).
We first compute the normalization factor which is the matrix infinite norm:

N = ||M ||∞ = max
1≤i≤n

n∑

j=0

|mij| = 2

Then, we compute the adjacency matrix of AF divided by the normalization factor N previ-
ously computed:

M̃ =
M

N
=



















0 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0.5 0 0.5 0 0 0 0 0 0
0 0 0 0.5 0 0 0 0.5 0 0
0 0 0 0 0.5 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0.5
0 0 0 0 0 0 0 0 0 0



















Assume α = 0.9, the different steps to compute the counting values of each argument,
representing by its transpose 10 form, are summarized below:

w0
α = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T

w1
α = w0

α − 0.9M̃I = (1, 0.55, 0.55, 0.55, 1, 0.1, 0.1, 0.55, 0.1, 1)T

w2
α = w1

α + 0.92M̃2I = (1, 0.55, 0.7525, 0.55, 1, 0.505, 0.505, 0.55, 0.1, 1)T

So, we obtain the following values for each argument:

wα = (1, 0.55, 0.7525, 0.55, 1, 0.505, 0.505, 0.55, 0.1, 1)T

And so, when one compares these values between them (see Figure 2.15 for the graphical
representation), we obtain the following ranking:

a ≃CS e ≃CS j ≻CS c ≻CS b ≃CS d ≃CS h ≻CS f ≃CS g ≻CS i

10. The transpose of a matrix A is an operator which switches the row and column indices of the matrix by
producing another matrix denoted as AT .
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a

1

b

0.55

c

0.7525

d

0.55

e

1

f

0.505

g

0.505

h

0.55

i

0.1

j

1

Figure 2.15 – The values returned by the counting model when α = 0.9 for AFc

2.4 Alternative semantics

In the previous section, we focused on ranking-based semantics which return only one rank-
ing for a given argumentation framework. These rankings have the particularity to return a
(total or partial) preorder between arguments from the most to the least acceptable ones. How-
ever, there also exists other kinds of semantics which return several results (several rankings
for example) for a given argumentation framework (or several values are computed for a same
argument) or propose alternative rankings.

2.4.1 Several results

Social model

In addition to have introduced the social argumentation framework (see Section 1.3.7), Leite
and Martins [LEITE & MARTINS 2011] also proposed a class of semantics where the social
value assigned to arguments is computed from their social support based on the votes assigned to
each arguments and the values of their direct attackers. Let us first define the main components
used to determine a social model corresponding to a social argumentation framework.

Definition 2.4.1 (Social abstract argumentation semantics).
Let SAF = 〈A,R, v〉 be a social argumentation framework. A social abstract argumentation

semantics is a 5-tuple 〈L, τ,f,g,¬〉 where:

• L is a totally ordered set with top ⊤ and bottom ⊥ elements, containing all possible
valuations of an argument;

• τ : N × N → L is a vote aggregation function which produces the social support of an
argument based on its positive and negative votes.

• f : L × L → L is a binary algebraic operation on argument valuations used to deter-
mine the valuation of an argument based on its social support and the score of its direct
attackers.

• g : L×L → L is a binary algebraic operation on argument valuations used to aggregate
the score of direct attackers.

• ¬ : L → L is a unary algebraic operation on argument valuations used to restrict the
value of the attacked arguments.
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Please note that v+(x) and v−(x) represent the number of positive votes of x and the number
of negative votes of x respectively: v(x) = (v+(x), v−(x)).

Definition 2.4.2 (Social model).
Let SAF = 〈A,R, v〉 be a social argumentation framework and S = 〈L, τ,f,g,¬〉 be a social
argumentation framework semantics. The total mapping M : A → L is a social model of SAF
under the semantics S such that ∀x ∈ A,

MS(x) = τ(v+(x), v−(x))f ¬g {MS(y) | y ∈ R1(x)}

A model is then a solution to the equation system with one equation for each argument.

The above definitions are intentionally general to be able to accommodate semantics with
many distinct features. But Leite and Martins focused on a particular class of semantics follow-
ing some desired properties for social debates, and defined well-behaved social argumentation
framework semantics.

Definition 2.4.3 (Well-behaved social argumentation framework semantics).
A social abstract argumentation semantics 〈L, τ,f,g,¬〉 is well-behaved if:

• τ is monotonic with respect to the first argument and antimonotonic with respect to the
second argument;

• f is continuous, commutative, associative, monotonic with respect to both values and ⊤
is its identity element;

• g is continuous, commutative, associative, monotonic with respect to both values and ⊥
is its identity element;

• ¬ is antimonotonic, continuous, ¬⊥ = ⊤, ¬⊤ = ⊥ and ¬¬a = a.

The simple product semantics is one possible choice of well-behaved social argumentation
framework semantics proposed in [LEITE & MARTINS 2011] such that SPǫ = 〈[0, 1], τǫ,f,g,¬〉
where:

• τǫ(x, y) =
x

x+y+ǫ
(with ǫ > 0);

• x1 f x2 = x1 × x2 (Product T-Norm);

• x1 g x2 = x1 + x2 − x1 × x2 (Probabilistic Sum T-CoNorm);

• ¬x1 = 1− x1.

In [CORREIA et al. 2014], the authors present an iterative algorithm to efficiently approxi-
mate one model of the equation system established from the Definition 2.4.2 with the simple
product semantics.

Leite and Martins proved that the existence of at least one social model is guaranteed when
the semantics is well-behaved for any L. However, if it is true when L is an infinite set, it is not
the case when L is a finite discrete set, as shown by the following example:
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Example 2.4.1. Let us define another well-behaved semantics, similar to the simple product
semantics, except that L contains only the value 0 and 1; and ǫ does not belong to τ anymore.
This semantics remains well-behaved according to the Definition 2.4.3. So, we have SP =
〈{0, 1}, τ,f,g,¬〉 where:

• τ = x
x+y

;

• x1 f x2 = x1 × x2;

• x1 g x2 = x1 + x2 − x1 × x2;

• ¬x1 = 1− x1.

Let us now compute the social model of the following social argumentation framework:

a

1/0

b

1/0

c

1/0

The social supports are τ(a) = τ(b) = τ(c) =
1 and the equation system is:







MSP (a) = 1−MSP (c)
MSP (b) = 1−MSP (a)
MSP (c) = 1−MSP (b)

Thus if MSP (a) = 1 then MSP (a) = 1 ⇒ MSP (b) = 0 ⇒ MSP (c) = 1 ⇒ MSP (a) = 0
and if MSP (a) = 0 then MSP (a) = 0 ⇒ MSP (b) = 1 ⇒ MSP (c) = 0 ⇒ MSP (a) = 1. In
both cases, we find a contradiction about the value of a (the same reasoning holds for b and c).
So there exists no solution for the equation system with the well-behaved semantics SP.

Another important property that could be required is the uniqueness of the model which
means that there exists only one social model satisfying the equation from definition 2.4.2. Leite
and Martins showed that when |R1(x)| × τ(v+(x), v−(x)) < 1 for all arguments x in the social
argumentation framework, the uniqueness of the model can be proven [LEITE & MARTINS 2011,
Theorem 13]. They also conjecture [LEITE & MARTINS 2011, Conjoncture 14] that the simple
product semantics satisfies this property for social abstract argumentation frameworks in gen-

eral. However, we proved in [AMGOUD et al. 2017b] that this conjecture only holds up to 3
arguments in the social argumentation framework (i.e. from 4 arguments, several social models
may exist).

Example 2.4.2 (Non-uniqueness of models [AMGOUD et al. 2017b]).
The example contains four arguments involved in pairwise reciprocal attacks, as illustrated (in
Figure 2.16).

a1/0 b 1/0

d1/0 c 1/0

Figure 2.16 – Example of SAF with multiple valid models

Thus, by taking ǫ = 0.1, the social support of all the arguments is: τǫ(a) = τǫ(b) = τǫ(c) =
τǫ(d) =

1
1+0+ǫ

= 1
1.1
≈ 0.909.
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Let us now write the equation system (with one equation for each argument) from the AF
illustrated in Figure 2.16.

{

MSPǫ
(a) = MSPǫ

(c) = 1
1.1
× (1− (MSPǫ

(b) +MSPǫ
(d)−MSPǫ

(b)×MSPǫ
(d)))

MSPǫ
(b) = MSPǫ

(d) = 1
1.1
× (1− (MSPǫ

(a) +MSPǫ
(c)−MSPǫ

(a)×MSPǫ
(c)))

It can be checked, in Table 2.2, that this equation system has three distinct valid models:

MSPǫ
(a) MSPǫ

(b) MSPǫ
(c) MSPǫ

(d)
model 1 0.36573 0.36573 0.36573 0.36573
model 2 0.01125 0.88875 0.01125 0.88875
model 3 0.88875 0.01125 0.88875 0.01125

Table 2.2 – The three distinct valid models from the SAF illustrated in Figure 2.16

The U-approach using Eqinverse

In [GABBAY & RODRIGUES 2016], Gabbay and Rodrigues explain that the equational ap-
proach (see Section 1.2.3 page 19) cannot distinguish the arguments which are labelled in
(respectively out). Indeed, all the arguments labelled in (respectively out) have a score of 1
(respectively 0) and cannot be compared. Thus, the previous approach is only able to distin-
guish the undecided arguments with a value between 0 and 1. The proposed solution, called
U-approach, is to make all nodes undecided with an external additional node U which attacks
every node in the argumentation framework (including itself). Solving the new system of equa-
tions using Eqinverse for this “augmented” network will give the degree of in, out as well as
undec.

Example 2.4.1 (cont.).
Let us build the “augmented” network of AF1 where the new argument U attacks itself and all
the arguments in AF1:

a b c

U

Using Eqinverse, the new system of equations is:







f(U) = 0.5

f(a) = 1− f(U)

f(b) = (1− f(a))(1− f(U))

f(c) = (1− f(b))(1− f(U))
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These equations have only one solution: f(U) = f(a) = 0.5, f(b) = 0.25 and f(c) = 0.375.
From this solution, we have f(a) > f(c) > f(b). Consequently, a and c are both labelled in
but a is more in than c.

Example 2.4.2 (cont.).
Let us build the “augmented” network of AF2:

d e

U

Using Eqinverse, the new system of equations is:






f(U) = 0.5

f(d) = (1− f(e))(1− f(U))

f(e) = (1− f(d))(1− f(U))

These equations have only one solution: f(U) = 0.5 and f(d) = f(e) = 1
3
. From this solution,

we have f(d) = f(e), so d and e are both labelled undec at the same level.

2.4.2 Alternative ranking

The works studied until now rank arguments from the most to the least acceptable one. In-
tuitively, for a particular labelling, which can be seen as a particular ranking with three levels of
acceptability, the arguments labelled in are more acceptable than the arguments labelled undec
which are more acceptable than the arguments labelled out. Another possibility suggested in
[THIMM & KERN-ISBERNER 2014] consists in assigning a measure of controversiality to the
arguments, i.e. the larger the value of an argument the more controversial the argument can be
seen. Thus, given a semantics, a ranking is associated to an argumentation framework where
the arguments are ranked from the most to the least controversial one. The idea behind this
ranking is that the arguments labelled in are less controversial than the arguments labelled out
(although they are not accepted they are uncontroversially classified as out) which are less con-
troversial than the arguments labelled undec (because we do not know if this argument is in
or out). They justify this new way to rank arguments in comparing the definition of contro-
versiality order with the dynamics of argumentation frameworks and, specifically, the notion of
enforcement [BAUMANN 2012]: how much must an argumentation framework be changed in
order to accept a given argument? Arguments uncontroversially classified as out are (basically)
more easily enforced.
Thus, stratified labelings are introduced to assign to each argument of an argumentation frame-
work some natural number (or infinity) representing its degree of controversiality.

Definition 2.4.4 (Stratified labellings).
Let AF = 〈A,R〉 be an argumentation framework and let σ be a classical semantics. A strati-

fied labelling S with respect to σ for AF is a function S : A → N ∪ {∞} such that there is a
labelling L with respect to σ for AF and
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• if in(L) = ∅ then for all x ∈ A, S(x) =∞

• if in(L) 6= ∅ then there is a stratified labelling S ′ with respect to σ for AF ′ = (A′,R′)
with A′ = A\in(L) andR′ = {(x, y) | x ∈ A′ and y ∈ A′} such that

– S(x) = 0 for all x ∈ in(L) and

– S(x) = 1 + S ′(x) for all x ∈ A′.

A ranking between arguments can be computed based on the value returned by the function
S: the larger the value the more controversial the argument. The idea of the previous definition
is to build the rank by successively taking the arguments labelled in (so the accepted argu-
ments) of an argumentation framework according to a given semantics, assigning them a rank,
then considering the argumentation framework resulting from the removal of these accepted
arguments and then re-calculating the arguments in the next rank until the framework is empty
or the absence of accepted arguments.

Let us illustrate the previous definition with the following example.

Example 2.4.3. Consider again the argumentation framework AF illustrated in Figure 1.2 and
recalled below:

a b c d e

f

g

Under the preferred semantics, there exists two reinstatement labellings Labspr(AF ) = {L2,L3}
for AF (see Section 1.2.2 page 16) where

in(L2) = {a, c} , out(L2) = {b, d} , undec(L2) = {e, f, g}
in(L3) = {a, d, f}, out(L3) = {b, c, e, g}, undec(L3) = ∅

Let us first compute the stratified labelling of L2.

b d e

f

g

AF1

e

g

AF2

e

AF3

In L2, a and c are labelled in so according to the definition S(a) = S(c) = 0. In removing a
and c from AF , we obtain AF1 where Labspr(AF1) = L4 where in(L4) = {b, d, f}, out(L4) =
{e, g} and undec(L4) = ∅, so S(b) = S(d) = S(f) = 1. In removing b, d and f from
AF1, we obtain AF2 where Labspr(AF2) = L5 where in(L5) = {g}, out(L5) = {e} and
undec(L5) = ∅. So S(g) = 2. Finally, we obtain AF3 where e is the only argument so e is
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labelled in which implies S(e) = 3.
Following the same reasoning, for L3, one obtains that S(a) = S(d) = S(f) = 0, S(b) =
S(g) = 1 and S(c) = S(e) = 2.

2.5 Properties for ranking-based semantics

Figure 2.17 recalls the argumentation AFc and all the rankings returned by the ranking-
based semantics introduced in Section 2.3. One can remark that they are rarely identical de-

a b c d e

f g h i

j

AFc

Semantics Ranking between arguments

M&T a ≃ e ≃ j ≻ c ≃ f ≃ g ≻ b ≃ d ≃ h ≃ i

FL a ≃ e ≃ j ≃ c ≃ f ≃ g ≻ b ≃ d ≃ h ≃ i

Cat
a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ f ≃ g ≃ h ≻ i

1-Bbs

Dbs

a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≃ g ≻ i
Bbs

0.5-Bbs

CS

5-Bbs
a ≃ e ≃ j ≻ c ≻ f ≃ g ≻ b ≃ d ≃ h ≻ i

IGD

Tuples a ≃ e ≃ j ≻ f ≃ g ≻ c ≻ b ≃ d ≃ h ≻ i

Figure 2.17 – Rankings on the arguments in AFc computed by the different ranking-based
semantics

spite the small number of arguments because there exists nine distinct rankings. However the
differences between these semantics are not always obvious which makes difficult the choice
of a particular ranking-based semantics for a user. Indeed, it seems important to answer to
some questions like: which arguments should be the most acceptable? Is an argument more
acceptable if it has less direct attackers than another one? Following this idea, some works
[CAYROL & LAGASQUIE-SCHIEX 2005b, MATT & TONI 2008, AMGOUD & BEN-NAIM 2013]
propose a set of properties (postulates), each of which represents a specific criterion, allowing
a better understanding of these semantics. In this section, we recall the intuition and the formal
definition of these existing properties and, for completeness, we also give the basic idea (the
formal definition and some examples will be given in Chapter 4, Section 4.2) of the additional
properties that we introduced.
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2.5.1 Existing properties

We choose to categorise the existing properties into four groups focusing on different aspects
of an argumentation framework: the general properties, the properties aiming to select the most
acceptable argument(s) and the least acceptable argument(s), the properties focusing on the
direct attackers of arguments and the ones focusing on their direct defenders.

General properties

It seems natural that the ranking on the set of abstract arguments should be defined only
on the basis of the attacks between arguments and should not depend on the identity of the
arguments.

Definition 2.5.1 (Isomorphism).
An isomorphism γ between two argumentation frameworks AF = 〈A,R〉 and AF ′ = 〈A′,R′〉
is a bijective function γ : A → A′ such that ∀x, y ∈ A, (x, y) ∈ R if and only if (γ(x), γ(y)) ∈
R′. With a slight abuse of notation, we will note AF ′ = γ(AF ).

The property Abstraction (Abs) states that if there exists an isomorphism between two ar-
gumentation frameworks, then they should have the same ranking for a given ranking-based
semantics.

Property 1 (Abstraction (Abs)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Abstraction if and only if for any AF,AF ′ ∈ AF, for
every isomorphism γ such that AF ′ = γ(AF ), we have x �σ

AF y if and only if γ(x) �σ
AF′ γ(y).

Example 2.5.1. Consider the two argumentation frameworks depicted in Figure 2.18.

a b c d

Figure 2.18 – Abstraction

The property Abstraction ensures that the ranking between a and b is the same as the one
between c and d.

The next property considers that the ranking between two arguments x and y should be
independent of any argument that is neither connected to x nor to y. In other words, if the graph
which represents the argumentation framework is composed of several disconnected subgraphs
then the arguments in a subgraph have no influence on the arguments in another subgraph. The
set of such subgraphs is called connected components.

Definition 2.5.2 (Connected components).
The connected components of an argumentation framework AF are the set of largest subgraphs
of AF , denoted by cc(AF ), where two arguments are in the same component of AF if and only
if there exists some path (ignoring the direction of the edges) between them.
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Property 2 (Independence (In)). [MATT & TONI 2008, AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Independence if and only if for any argumentation frame-
work AF such that ∀AF ′ ∈ cc(AF ), ∀x, y ∈ Arg(AF ′), x �σ

AF′ y if and only if x �σ
AF y.

Example 2.5.1 (cont.). Consider again the two argumentation frameworks depicted in Figure
2.18. The property Independence ensures that the ranking between a and b (and the ranking
between c and d) remains the same after the union of the two frameworks (which contains the
four arguments).

Best and worst arguments

We may have expectations regarding the best and worst arguments that we may find in an
argumentation framework.

If one considers that an attack always weaken its target, then it seems natural to consider the
non-attacked arguments as the best arguments in an argumentation framework. Following this
idea, the property Void Precedence (VP) states that a non-attacked argument should be strictly
more acceptable than an attacked argument.

Property 3 (Void Precedence (VP)). [MATT & TONI 2008, AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Void Precedence if and only if for any AF = 〈A,R〉 and
∀x, y ∈ A, ifR1(x) = ∅ andR1(y) 6= ∅ then x ≻σ

AF y.

Example 2.5.2. Consider the argumentation framework depicted in Figure 2.19.

abc

Figure 2.19 – Void Precedence

The property Void Precedence ensures that c which is not attacked (R1(c) = ∅) is strictly
more acceptable than a and b which are attacked (R1(b) = {c} andR1(a) = {b}).

Conversely, the worst arguments can be those which attacks themselves as proposed in
[MATT & TONI 2008]. Thus, the property Self-Contradiction (SC) states that an argument that
attack itself should be strictly less acceptable than an argument that does not.

Property 4 (Self-Contradiction (SC)). [MATT & TONI 2008]
A ranking-based semantics σ satisfies Self-Contradiction if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A, if (x, x) /∈ R and (y, y) ∈ R then x ≻σ

AF y.

Example 2.5.3. Consider the argumentation framework depicted in Figure 2.20.

The property Self-Contradiction ensures that d which attacks itself (R1(d) = {d}) is strictly
less acceptable than c and b which are not attacked and a which is attacked twice but by other
arguments.
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ab cd

Figure 2.20 – Self-Contradiction

Direct attackers

During the presentation of existing ranking-based semantics in section 2.3, the cardinality
and the quality (i.e. level of acceptability) of the direct attackers are often considered as a major
criteria to evaluate the arguments. Amgoud and Ben-Naïm [AMGOUD & BEN-NAIM 2013]
showed that these two principles can be opposed in using the following example.

Example 2.5.4. Consider the argumentation framework depicted in Figure 2.21.

a

ch

dg

e b

Figure 2.21 – Cardinality Precedence and Quality Precedence

In this example, a is directly attacked by c and d which are also directly attacked, while b
is directly attacked by e which is not attacked. So, one needs to make a choice between giving
precedence to cardinality over quality (i.e. two attacked attackers are worse for the target than
one non-attacked attacker) and considers b as more acceptable than a, or giving precedence to
quality over cardinality (i.e. one non-attacked attacker is worse for the target than two attacked
attackers) and considers a as more more acceptable than b.

In order to know if a ranking-based semantics gives precedence to cardinality or quality,
Amgoud and Ben-Naïm [AMGOUD & BEN-NAIM 2013] defined two properties: Cardinality
precedence (CP) and Quality precedence (QP).

The first one focuses on the cardinality of direct attackers in saying that the greater the num-
ber of direct attackers for an argument, the weaker the level of acceptability of this argument.

Property 5 (Cardinality Precedence (CP)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Cardinality Precedence if and only if for any AF =
〈A,R〉 and ∀x, y ∈ A, if |R1(x)| < |R1(y)| then x ≻σ

AF y.

Example 2.5.4 (cont.). Consider the argumentation framework depicted in Figure 2.21 (page
67). The property Cardinality Precedence ensures that b is strictly more acceptable than a
because |R1(b)| = 1 < 2 = |R1(a)|.
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The second property focuses on the quality of direct attackers in saying that the greater the
acceptability of one direct attacker for an argument, the weaker the level of acceptability of this
argument.

Property 6 (Quality Precedence (QP)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Quality Precedence if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A, if ∃y′ ∈ R1(y) such that ∀x′ ∈ R1(x), y′ ≻σ

AF x
′ then x ≻σ

AF y.

Example 2.5.4 (cont.). Consider the argumentation framework depicted in Figure 2.21 (page
67). If we suppose that e is strictly more acceptable than c and d, then the property Quality
Precedence ensures that a is strictly more acceptable than b.

We saw that the “problem” of choosing between the cardinality precedence and the quality
precedence occurs when an argument x has less direct attackers than another argument y and
the direct attackers of x are less acceptable than the direct attackers of x. But one can wonder
what happens when x has less direct attackers (or the same number) than y and that all the direct
attackers of y are at least as acceptable as the direct attackers of x. This is this idea which is
caught by the two following properties.
To compare the direct attackers of two arguments, let us introduce a relation that compares sets
of arguments on the basis of their rankings.

Definition 2.5.3 ((Strict) group comparison [AMGOUD & BEN-NAIM 2013]).
Let�σ

AF be a ranking onA. For any S1, S2 ⊆ A, S1 ≥σ
S S2 if and only if there exists an injective

mapping f from S2 to S1 such that ∀a ∈ S2, f(a) �σ
AF a. And S1 >

σ
S S2 if and only if S1 ≥σ

S S2

and (|S2| < |S1| or ∃a ∈ S2, f(a) ≻σ
AF a).

Example 2.5.5. Consider the two argumentation frameworks depicted in Figure 2.22.
If the ranking-based semantics σ considers that b1 ≃σ b2 ≃σ a2 ≃σ a3 ≻σ a1 then it exists a

a

a1a2

a3

b

b1

b2

Figure 2.22 – (Strict) Counter-Transitivity and Defense Precedence

injective function f fromR1(a) toR1(b) such that ∀a′ ∈ R1(a), f(a′) �σ a′ because b1 �σ a1
and b2 �σ a3. So we have R1(b) ≥σ

S R1(a). In addition, b1 (or b2) is strictly more acceptable
than a1 soR1(b) >

σ
S R1(a).

The first property Counter-Transitivity (CT) states that if the direct attackers of y are at least
as numerous and acceptable as those of x with respect to a ranking-based semantics σ, then x
should be at least as acceptable as y.

Property 7 (Counter-Transitivity (CT)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Counter-Transitivity if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A, ifR1(y) ≥σ

S R1(x) then x �σ
AF y.
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Its strict version, called Strict Counter-Transitivity (SCT), states that if counter-transitivity
is satisfied and either the direct attackers of y are strictly more numerous or acceptable than
those of x, then x should be strictly more acceptable than y.

Property 8 (Strict Counter-Transitivity (SCT)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Strict Counter-Transitivity if and only if for any AF =
〈A,R〉 and ∀x, y ∈ A, ifR1(y) >

σ
S R1(x) then x ≻σ y.

Example 2.5.5 (cont.). Consider again the two argumentation frameworks depicted in Figure
2.22. As R1(b) ≥σ

S R1(a), then the counter-transitivity property ensures that a is at least as
acceptable as b. But, we also have R1(b) >σ

S R1(a) so the strict counter-transitivity property
ensures that a is strictly more acceptable than b.

Direct defenders

The property Defense Precedence (DP) states that, when two arguments have the same num-
ber of direct attackers, an argument with at least one direct defender should be strictly more
acceptable than an argument without any direct defender.

Property 9 (Defense Precedence (DP)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Defense Precedence if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A such that |R1(x)| = |R1(y)|, ifR2(x) 6= ∅ andR2(y) = ∅ then x ≻σ

AF y.

Example 2.5.5. Consider the two argumentation frameworks depicted in Figure 2.22. The two
arguments a and b have the same number of attackers (R1(a) = {a1, a3} andR1(b) = {b1, b2})
but a is defended (R2(a) = {a2}) whereas b is not (R2(b) = ∅). Thus, the property DP ensures
that a is strictly more acceptable than b.

When DP says that it is better for an argument to be defended, it could be interesting to
know if different kinds of defense of an argument have the same impact on it. Two kinds of
defense of an argument are then defined: the simple defense and the distributed defense.

Definition 2.5.4 (Simple defense and distributed defense [AMGOUD & BEN-NAIM 2013]).
Let AF = 〈A,R〉 be an argumentation framework and x ∈ A.

• The defense of x is simple if and only if every direct defender of x directly attacks exactly
one direct attacker of x (i.e.

⋂

y∈R1(x)

R1(y) = ∅).

• The defense of x is distributed if and only if every direct attacker of x is attacked by at
most one argument (i.e. ∀y ∈ R1(x),R1(y) = ∅ or ∃!z ∈ R2(x) such that (z, y) ∈ R).

The idea is to compare two arguments having the same number of direct attackers and the
same number of direct defenders with the condition that all the direct defender attacks exactly
one direct attacker. The property states that, in this case, it is preferable for an argument that
each of its defender attacks a distinct direct attacker in order to weaken all of them instead of
focusing on a specific direct attacker so as to greatly weaken it (but at the price of leaving its
others attackers unaffected).
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Property 10 (Distributed-Defense Precedence (DDP)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Distributed-Defense Precedence if and only if for any
AF = 〈A,R〉 and ∀x, y ∈ A such that |R1(x)| = |R1(y)| and |R2(x)| = |R2(y)|, if the
defense of x is simple and distributed and the defense of y is simple but not distributed, then
x ≻σ

AF y.

Example 2.5.6. Consider the two argumentation frameworks depicted in Figure 2.23.

a

a1a2

a3a4

b

b1b2

b3

b4

Figure 2.23 – Distributed-Defense Precedence

The two arguments a and b have the same number of attackers (R1(a) = {a1, a3} and
R1(b) = {b1, b4}) and the same number of defenders (R2(a) = {a2, a4} andR2(b) = {b2, b3}).
The defense of a is simple because a2 directly attacks a1 and a4 directly attacks a3 and dis-
tributed because a1 and a3 are attacked by exactly one argument (a2 and a4 respectively). Con-
versely, the defense of b is also simple but not distributed because b1 is directly attacked by two
arguments (b2 and b3). Thus, the property DDP ensures that a is more acceptable than b.

2.5.2 Additional properties

Finally, for completeness, let us list the new properties that we introduced in this thesis.
Their formal definition illustrated by examples can be found in Chapter 4, Section 4.2.
The five following properties check if some change in an argumentation framework can im-
prove or degrade the ranking of an argument. These properties have been proposed informally
by Cayrol and Lagasquie-Schiex [CAYROL & LAGASQUIE-SCHIEX 2005b], in the context of
their semantics but we propose to generalize them for any argumentation framework.

Strict addition of a Defense Branch (⊕DB). Adding a defense branch to any argument in-
creases its level of acceptability.

Addition of a Defense Branch (+DB). Adding a defense branch to any attacked argument in-
creases its level of acceptability.

Increase of an Attack branch (↑AB). Increasing the length of an attack branch of an argument
increases its level of acceptability.

Addition of an Attack Branch (+AB). Adding an attack branch to any argument decreases its
level of acceptability.
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Increase of a Defense branch (↑DB). Increasing the length of a defense branch of an argument
decreases its level of acceptability.

The last five properties catch additional parameters that are important for a better under-
standing of the behavior of ranking-based semantics.
Total (Tot). All pairs of arguments can be compared.

Non-attacked Equivalence (NaE). All the non-attacked arguments should have the same rank.

Argument Equivalence (AE). If there exists an isomorphism between the ancestors’ graph of
two arguments, then they are equally acceptable.

Ordinal Equivalence (OE). If two arguments x and y have the same number of direct attack-
ers and that, for each direct attacker of x, there exists a direct attacker of y such that the two
attackers are equally acceptable, then x and y are equally acceptable too.

Attack vs Full Defense (AvsFD). An argument without any attack branch is ranked higher than
an argument only attacked by one non-attacked argument.

2.6 Conclusion

In this chapter, we introduced ranking-based semantics which is an alternative way to the
classical semantics (extension-based semantics and labelling-based semantics), aiming to com-
pare arguments between them. Such semantics allow to rank-order the arguments from the
most to the least acceptable one and thus provide many levels of acceptability for the argu-
ments more appropriate for applications like decision-making, online debate platforms, etc.
The study of these semantics is still quite recent: a large majority of ranking-based seman-
tics, among those studied in this chapter, have been introduced after 2013. Scoring seman-
tics have been introduced earlier but keep the same goal which is to compare arguments be-
tween them (as shown by the categoriser function, originally introduced as a scoring semantics
[BESNARD & HUNTER 2001] and then defined as a ranking-based semantics [PU et al. 2014]).
However, all these semantics have never been compared between them, making it difficult for a
potential user to choose between them. It is why, we regrouped the postulates for ranking-based
semantics, from different papers, having for objective to better understand the behavior of these
semantics. Thus a natural contribution will be to study the existing ranking-based semantics in
the light of the proposed properties. This allows us to propose a better reading of the different
choices one has on this matter but also to provide additional semantics not yet introduced but
which would be compatible for specific applications.
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Chapter 3

Ranking-based Semantics based on

Propagation

In this chapter, we will introduce a new family of ranking-based semantics for abstract
argumentation framework à la Dung. While existing ranking-based semantics compare the ar-
guments only focusing on the quality and the quantity of paths towards arguments, we propose
another principle which takes specifically into account the role and impact of non-attacked ar-
guments. Indeed, non-attacked arguments play a key role in the classical semantics (extension-
based semantics and labelling-based semantics) to select accepted arguments. So, it could
be interesting to observe what is happening when more importance are given to them in the
ranking-based semantics. In order to take into account this new principle while preserving
those concerning the quality and the quantity of attackers or defenders, we introduce the prop-
agation semantics where an initial value is assigned to each argument and then propagated into
the graph. The values received by each argument are then aggregated to be compared allowing
to rank-order the arguments.
We first motivate and formally define the propagation principle used by our propagation seman-
tics. Three propagation semantics are then introduced with different levels of impact given to
the non-attacked arguments. Finally, we compare these propagation semantics between them
showing that, in some cases, they return the same ranking. Interestingly, we also prove that for
some instance of our semantics, the result is the same as existing ranking-based semantics.

This chapter develops the results published in [BONZON et al. 2016b].
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3.4.1 Links between propagation semantics . . . . . . . . . . . . . . . 86

3.4.2 Link with existing ranking-based semantics . . . . . . . . . . . 87

3.4.3 Link with Dung’s semantics . . . . . . . . . . . . . . . . . . . . 88

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1 Motivations

It is undeniable that, in addition to belonging to all the extensions, non-attacked arguments
play a key role (when they exist) in extension-based semantics and labelling-based semantics.
Indeed, take the example of the grounded semantics which selects the unquestionable argu-
ments. A basic algorithm [MODGIL & CAMINADA 2009, Algorithm 6.1] to find the grounded
labellings consists in assigning first the label in to all non-attacked arguments, and then itera-
tively: the label out is assigned to any argument attacked by at least one argument just labelled
in, and then labelled in the arguments which have all their direct attackers labelled out. The
iteration continues until no more new arguments are labelled in or out. All the non-labelled
arguments are labelled undec. It is clear that the non-attacked arguments are the basis of this
algorithm because without them, the only grounded labelling is the one containing only argu-
ments labelled undec.

a b c d e

f g h i

j

Figure 3.1 – Recall of the argumentation framework AFc

For the existing ranking-based semantics listed in Section 2.3 (page 41), the results com-
puted from AFc suggest that non-attacked arguments are always among the most acceptable
arguments. Indeed, the rankings computed on the argumentation framework AFc (recall in Ta-
ble 2.17 page 64) show that the non-attacked arguments a, e and j are more acceptable than
all the other arguments. However, the impact they have on the other arguments are not always
clear: should the arguments directly attacked by them be less acceptable than the other argu-
ments? Should the impact of a non-attacked argument be the same as an attacked argument? So,
in Dung’s semantics, non-attacked arguments have too much impact while, in existing ranking-
based semantics, they have no special impact. Thus, a median approach which allows to control
their impact in the argumentation framework, could be interesting to define. For this purpose,
we introduce three ranking-based semantics for which the influence of non-attacked arguments
are more or less important.
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3.2 The propagation principle

In order to control the impact of non-attacked arguments while taking into account as best
as possible the quality and the quantity of attackers or defenders, we propose to use meth-
ods based on the propagation principle. This method has already proved its effectiveness in
graph theory, for example to compute the centrality measure of the nodes [FREEMAN 1978,
BONACICH 1987]. Such indicators of centrality provide a ranking which identifies the most
“important” nodes within a graph. Applications of these centrality measures are multiple,
like selecting the most influential person(s) in a social network. They are also used in the
PageRank algorithm, developed by Google, to rank websites in their search engine results
[PAGE et al. 1999]. The idea is to propagate a value from each argument and select those such
that a maximum number of values go through them. In argumentation, the propagation princi-
ple is also used to compute the grounded extension or labelling or to compute the only existing
extension in a well-founded argumentation framework.

The propagation method that we define for our ranking-based semantics has two steps:

1. During the first step, a positive initial weight is assigned to each argument. The score of 1
attached to non-attacked arguments is set to be higher (or equal) than the score of attacked
arguments, which is an ǫ between 0 and 1. The value of this ǫ is chosen accordingly
to the degree of influence of the non-attacked arguments that we want: the smaller the
value of ǫ is, the more important the influence of non-attacked arguments on the order
prevails. But it is also possible to assign the same initial weight to all the arguments in
the argumentation framework if one considers that all the arguments should have the same
influence.

2. Then, during the second step, each argument propagates step by step its value into the
argumentation framework in changing their polarities in order to comply with the attack
relation meaning (attack or defense). For each argument, the weights from its attackers
and defenders are then accumulated and stored.

Before formally defining the propagation principle, we want to pay close attention to a
particular case concerning the selection of attackers and defenders of an argument. It could
happen that an argument attacks or defends another argument through several paths with the
same length. For example, on the argumentation framework AFc described in Figure 3.1, two
paths of length 2 exist from e to g: 〈e, d, g〉 and 〈e, h, g〉. So there are two possibilities for e
to propagate its value to g (or equally g receives the value from e): either g receives one value
from e because it is its only defender or g receives two values from e because there exists two
paths between both arguments. We consider that none of these options is better than the other,
it is why we include a new parameter ⊕ aiming to select the set (S) of arguments at the end of
the path without taking into account the number of possible paths, or the multiset (M ) which
encodes the fact that there are several possible paths.

Definition 3.2.1 (Attacker, Defender according to ⊕).
Let AF = 〈A,R〉 be an argumentation framework and x, y ∈ A be two arguments. Let
⊕ ∈ {M,S}, where M (respectively S) stands for multiset (respectively set). The (multi)set
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of arguments such that there exists a path to x with a length of n is denoted by R⊕n (x) =
{y | ∃P (y, x) with lP = n}.

Obviously there is no change for the direct attackers because an argument cannot be directly
attacked several times by the same argument but only concerns the path with a length greater
than one. To return to AFc, with the set, the result is RS

2 (g) = {e}, whereas with the multiset,
the result is RM

2 (g) = {e, e}. Until now, the multiset was used to select the attackers and de-
fenders (see Definition 1.1.5 page 12). Indeed, for the discussion-based semantics which counts
the number of paths of arguments and for the tuple semantics which only considers the branches
of arguments, the multiset is the best choice. It is also the case during the matrix process used in
the counting semantics. But surprisingly, none of these existing ranking-based semantics used
the set to select the attackers and defenders of arguments.

Let us now formally define the propagation principle and more precisely the propagation
vector of an argument which contains all the values received by its attackers and defenders.

Definition 3.2.2 (Propagation vector).
Let AF = 〈A,R〉 be an argumentation framework and ⊕ ∈ {M,S}. The valuation P of
x ∈ A, at step i, is given by:

P ǫ,⊕
i (x) =







vǫ(x) if i = 0
P ǫ,⊕
i−1(x) + (−1)i ∑

y∈R⊕
i (x)

vǫ(y) otherwise

where vǫ : A → R
+ is a valuation function giving an initial weight to each argument, with

ǫ ∈ [0, 1] such that ∀y ∈ A,

vǫ(y) =

{
1 ifR⊕1 (y) = ∅
ǫ otherwise

The propagation vector of x is denoted P ǫ,⊕(x) = 〈P ǫ,⊕
0 (x), P ǫ,⊕

1 (x), . . .〉.
The first step of the propagation principle is ensured by the valuation function vǫ where 1

is assigned to the non-attacked arguments and ǫ for the attacked arguments. The propagation
is then defined step by step: at step i, we add or remove (according the value of (−1)i) the
accumulated score of x until the previous step (P ǫ,⊕

i−1(x)) and the initial score (vǫ) received from
arguments at the beginning of a path with a length of i (R⊕i ).

Example 3.2.1. Let us compute the valuations P with ǫ = 0.75 for each argument in AFc

(Figure 3.1 page 76). These results are given in Table 3.1. If no distinction exists between the
set and multiset then the value is put in the same cell. Otherwise, the cell is divided into two
parts (valuation for set at left and for multiset at right). For instance, when i = 2, P 0.75,S

2 (c) =
P 0.75,M
2 (c) = 1 but P 0.75,S

2 (g) = 0.25 whereas P 0.75,M
2 (g) = 1.25.

In focusing on the argument f , its initial weight is 0.75 because it is attacked by at least one
argument,

P 0.75,⊕
0 (f) = 0.75

Then, during the step i = 1, the direct attackers (b and d which are also attacked) propagate
negatively their weights of 0.75 to f ,

P 0.75,⊕
1 (f) = P 0.75,⊕

0 (f)− (v0.75(d) + v0.75(b)) = −0.75
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P 0.75,⊕
i

a, e, j b, d, h c f g i

S M S M S M S M S M S M

0 1 0.75 0.75 0.75 0.75 0.75

1 1 -0.25 0 -0.75 -0.75 -1.25

2 1 -0.25 1 1.25 0.25 1.25 -1.25

Table 3.1 – Valuation P when ǫ = 0.75 for each argument in AFc

Finally, during the step i = 2, f receives positively the weights of 1 from a and e which are
non-attacked,

P 0.75,⊕
2 (f) = P 0.75,⊕

1 (f) + (v0.75(a) + v0.75(e)) = 1.25

As there exists no path to f with a length higher than 2, this score remains the same, and
P 0.75,⊕(f) = 〈0.75,−0.75, 1.25〉.
Figure 3.2 represents AFc with the propagation vector associated to each argument.

a

〈1, 1, 1〉

b

〈0.75,-0.25,-0.25〉

c

〈0.75, 0, 1〉

d

〈0.75,-0.25,-0.25〉

e

〈1, 1, 1〉

f〈0.75,-0.75, 1.25〉 g

〈0.75,-0.75, 1.25〉

h

〈0.75,-0.25,-0.25〉

i

〈0.75,-1.25,-1.25〉

j

〈1, 1, 1〉

Figure 3.2 – The propagation vectors of each argument belonging to AFc when ǫ = 0.75 and
⊕ = M

We deliberately focused on one argument in this example to explain the propagation prin-
ciple, but it is important to keep in mind that all the propagations are done in parallel at each
step.

It is important to note that P ǫ,⊕(x) may be infinite (this may occur when an argument is
involved in at least one cycle). Moreover, the valuation P ǫ,⊕

n (x) of an argument x is not even
necessarily bounded as n → ∞ (see definition 3.2.2 page 78). For example, for a simple
argumentation framework where x attacks y and y attacks x, then their propagation number are
P ǫ,⊕(x) = P ǫ,⊕(y) = 〈ǫ, 0, ǫ, 0, . . .〉. But, after a finite number of steps though, an argument
is bound to receive the influence of exactly the same arguments than in a previous step of the
vector which means that the vector can be finitely encoded (this cyclic aspect can be observed
on the example because the propagation vector of x and y is composed by ǫ followed by 0
repeated again and again). More precisely, this number of steps is in the order of the least
common multiplier of the cycle lengths occurring in the argumentation graph. As a ranking-
based semantics is not concerned with the exact values of arguments, but only in their relative
ordering, this is sufficient for our purpose.
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3.3 Propagation semantics

Once the propagation vector is computed for each argument in the argumentation frame-
work, the goal is now to compare these vectors in order to provide a ranking between all the
arguments. For this purpose, we introduce three ranking-based semantics (more exactly six
ranking-based semantics since we have the set/multiset version of each semantics which can
return different rankings between arguments for a same argumentation framework) giving more
and more importance to non-attacked arguments: Propaǫ, Propa1+ǫ and Propa1→ǫ.

3.3.1 Propaǫ

Our first ranking-based semantics, called Propaǫ, compares the propagation vectors of each
argument in using the lexicographical order like it is the case with the discussion-based seman-
tics or the burden-based semantics. We want the influence of arguments to quickly decrease
with the length of a path, and the lexicographical comparison is a good option to capture this
idea. Thus, an argument x is at least as acceptable as an argument y if the propagation vector of
x is at least as large as the propagation vector of y for the lexicographical order.

Definition 3.3.1 (Propaǫ).
Let ⊕ ∈ {M,S} and ǫ ∈ ]0, 1]. The ranking-based semantics Propaǫ,⊕ǫ associates to any
argumentation framework AF = 〈A,R〉 a ranking �P

AF on A such that ∀x, y ∈ A,

x �P

AF y if and only if P ǫ,⊕(x) �lex P ǫ,⊕(y)

Example 3.3.1 (cont.). Let us compute the ranking returned by Propa0.75,Sǫ step by step (see
Table 3.2), and lexicographically compare the propagation vectors of each argument in AFc.

P 0.75,S
i a, e, j b, d, h c f g i a ≃ b ≃ c ≃ d ≃ e ≃ f ≃ g ≃ h ≃ i ≃ j

0 1 0.75 0.75 0.75 0.75 0.75 a ≃ e ≃ j ≻ b ≃ c ≃ d ≃ f ≃ g ≃ h ≃ i

1 1 -0.25 0 -0.75 -0.75 -1.25 a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≃ g ≻ i

2 1 -0.25 1 1.25 0.25 -1.25 a ≃P e ≃P j ≻P c ≻P b ≃P d ≃P h ≻P f ≻P g ≻P i

Table 3.2 – The evolution of the ranking step by step using Propa0.75,Sǫ on AFc

So, the ranking returned by Propa0.75,Sǫ is:

⊕ = S a ≃P e ≃P j ≻P c ≻P b ≃P d ≃P h ≻P f ≻P g ≻P i

With the same reasoning, when the multiset (⊕ = M ) is used, Propa0.75,Mǫ provides the fol-
lowing ranking:

⊕ = M a ≃P e ≃P j ≻P c ≻P b ≃P d ≃P h ≻P f ≃P g ≻P i

This semantics mainly focuses on the attackers and defenders, like existing semantics, with
the difference that the non-attacked arguments begin with a greater initial value (except if ǫ = 1
which implies that all the arguments begin with the same initial value 1). Thus, the non-attacked
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arguments can have more influence when they propagate their value than the attacked arguments
(or similarly the attacked argument have less influence when they propagate their value). But
this influence is variable and depends on the value of ǫ. Indeed, if the value of ǫ is close to
1, then the value propagated by the non-attacked arguments and the value propagated by the
attacked arguments are almost the same. This implies, in this case, that the difference for an
argument between to be attacked (or defended) by a non-attacked argument and to be attacked
(or defended) by an attacked argument, is weak. And conversely, if the value of ǫ is close to 0,
then the influence of the non-attacked arguments will be high. Consequently, as shown in the
following example, two values of ǫ can lead to different rankings.

Example 3.3.1 (cont.). Let us recall the ranking returned by Propa0.75,Sǫ on AFc:

⊕ = S a ≃P e ≃P j ≻P c ≻P b ≃P d ≃P h ≻P f ≻P g ≻P i

If we focus on f , which is directly attacked twice but defended twice, and h, which is at-
tacked once but not defended, one can see that h is strictly more acceptable than f because
P 0.75,⊕(f) < P 0.75,⊕(h). However, let us show that if ǫ = 0.3, then the result is different.
Let us compute the ranking returned by Propa0.3,Sǫ step by step (see Table 3.3), and lexico-
graphically compare the propagation vectors of each argument in AFc.

P 0.3,S
i a, e, j b, d, h c f g i a ≃ b ≃ c ≃ d ≃ e ≃ f ≃ g ≃ h ≃ i ≃ j

0 1 0.3 0.3 0.3 0.3 0.3 a ≃ e ≃ j ≻ b ≃ c ≃ d ≃ f ≃ g ≃ h ≃ i

1 1 -0.7 0 -0.3 -0.3 -1.7 a ≃ e ≃ j ≻ c ≻ f ≃ g ≻ b ≃ d ≃ h ≻ i

2 1 -0.7 1 1.7 0.7 -1.7 a ≃P e ≃P j ≻P c ≻P f ≻P g ≻P b ≃P d ≃P h ≻P i

Table 3.3 – The evolution of the ranking step by step using Propa0.3,Sǫ on AFc

So, the ranking returned by Propa0.3,Sǫ is:

⊕ = S a ≃P e ≃P j ≻P c ≻P f ≻P g ≻P b ≃P d ≃P h ≻P i

Thus, one can remark that, when ǫ = 0.3, we have P 0.3,⊕(f) = 〈0.3,−0.3, 1.7〉 and
P 0.3,⊕(h) = 〈0.3,−0.7,−0.7〉. So, in using the lexicographical order to compare these two
propagation vectors, we have P 0.3,⊕

1 (f) > P 0.3,⊕
1 (h) which implies that f is now more accept-

able than h.

So, with the semantics Propaǫ, an argument with only (but numerous) defense branches can
be worse than an argument only attacked by one non-attacked argument. It is a possible point
of view to focus only on the attackers in saying that the more an argument is directly attacked,
the less acceptable the argument. This idea is found with the discussion-based semantics or the
burden-based semantics [AMGOUD & BEN-NAIM 2013]. But other approaches are possible, as
we shall see now.
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3.3.2 Propa1+ǫ

With Propaǫ, the impact of non-attacked arguments is related to the value of ǫ: the smaller
the value of ǫ, the more important the influence of non-attacked arguments (and similarly the
less important the influence of attacked arguments). Especially, when ǫ is null, all the attacked
argument propagate the value 0 which has no impact on the other arguments. So, in this case,
the non-attacked arguments are the only ones to propagate their values in the argumentation
framework. However, for several reasons developed further in section 3.4 (page 85), taking into
account only this particular case is not always appropriate (for example when all arguments
are attacked at least once). Thus, we chose to combine this particular case giving an absolute
priority to non-attacked arguments, with the case where ǫ is non-null in order to still take into
account the attacked arguments. To combine these two propagation vectors (one for a null value
of ǫ and one for a non-null value of ǫ), we need to define the shuffle operation.

Definition 3.3.2 (Shuffle).
The shuffle ∪s between two vectors of real numbers V = 〈V1, . . . , Vn〉 and V ′ = 〈V ′1 , . . . , V ′n〉
is defined as

V ∪s V
′ = 〈V1, V

′
1 , V2, V

′
2 , . . . , Vn, V

′
n〉

The goal of the ranking-based semantics Propa1+ǫ is to simultaneously look at the result
of the two propagation vectors P 0,⊕ and P ǫ,⊕ step by step, using the shuffle operation, starting
with the first value of the propagation vector P 0,⊕ (i.e. the one that only takes into account non-
attacked arguments). In the case where two arguments are still equally acceptable, we compare
the first value of the propagation vector P ǫ,⊕. Then, in case of equality, we move to the second
step and so on.

Definition 3.3.3 (Propa1+ǫ).
Let ⊕ ∈ {M,S} and ǫ ∈ ]0, 1]. The ranking-based semantics Propaǫ,⊕1+ǫ associates to any
argumentation framework AF = 〈A,R〉 a ranking �P̂

AF on A such that ∀x, y ∈ A,

x �P̂

AF y if and only if P 0,⊕(x) ∪s P
ǫ,⊕(x) �lex P 0,⊕(y) ∪s P

ǫ,⊕(y)

Example 3.3.2 (cont.). Let us first compute the propagation number of each argument in AFc

when ǫ = 0 and when ǫ = 0.75 (see Figure 3.3).

P 0,⊕
i

a, e, j b, d, h c f g i

S M S M S M S M S M S M

0 1 0 0 0 0 0

1 1 -1 0 0 0 -2

2 1 -1 1 2 1 2 -2

P 0.75,⊕
i

a, e, j b, d, h c f g i

S M S M S M S M S M S M

0 1 0.75 0.75 0.75 0.75 0.75

1 1 -0.25 0 -0.75 -0.75 -1.25

2 1 -0.25 1 1.25 0.25 1.25 -1.25

Figure 3.3 – Valuation P for each argument in AFc when ǫ = 0 (left) and when ǫ = 0.75 (right)

Let us focus on the argument f . According to Figure 3.3, its propagation vector when ǫ = 0
is P 0,⊕(f) = 〈0, 0, 2〉 and P 0.75,⊕(f) = 〈0.75,−0.75, 1.25〉 when ǫ = 0.75. Let us now use the
shuffle ∪s to combine these two propagation vectors:

P 0,⊕(f) ∪s P
0.75,⊕(f) = 〈0, 0, 2〉 ∪s 〈0.75,−0.75, 1.25〉 = 〈0, 0.75, 0,−0.75, 2, 1.25〉
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3.3. Propagation semantics

Of course, the same method is used for all the others arguments. Comparing them with the
lexicographical order gives the following ranking:

⊕ = S a ≃P̂ e ≃P̂ j ≻P̂ c ≻P̂ f ≻P̂ g ≻P̂ b ≃P̂ d ≃P̂ h ≻P̂ i

⊕ = M a ≃P̂ e ≃P̂ j ≻P̂ c ≻P̂ f ≃P̂ g ≻P̂ b ≃P̂ d ≃P̂ h ≻P̂ i

Recall that when Propa0.75,Sǫ is used, h is strictly more acceptable than f . But, in taking into
account first the values propagated by the non-attacked argument, one can remark that f is now
strictly more acceptable that h. Indeed, f is directly attacked twice but by attacked arguments
while h is attacked only once but by one non-attacked argument. So, during the step i = 1, h
first receives the negative value from e while f does not receive any value which implies that
P 0,⊕
1 (h) = −1 < 0 = P 0,⊕

1 (f).

It is also important to notice that Propa1+ǫ, conversely to Propaǫ, returns the same ranking
whatever the value of ǫ, that removes the problem of choosing “a good” ǫ.

Proposition 5. Let ⊕ ∈ {M,S}. For any argumentation framework AF , for any ǫ, ǫ′ ∈ ]0, 1],
it holds that

Propaǫ,⊕1+ǫ(AF ) = Propaǫ
′,⊕
1+ǫ(AF )

The ranking obtained in the example 3.3.2 is thus the same for any value of ǫ ∈ ]0, 1]. How-
ever, it is necessary to keep the parameter ǫ in the process in order to make a distinction between
non-attacked and attacked arguments.

Thus, while with Propaǫ, an argument with many attacked direct attackers can be more
acceptable than an argument directly attacked by one non-attacked argument, it is not possible
when Propa1+ǫ is used. This shows that being directly attacked by non-attacked argument is
bad for the acceptability of such arguments.

3.3.3 Propa1→ǫ

A last possibility is to give a higher priority to the non-attacked arguments, by propagating
only their weights in the graph. In other words, the acceptability of an argument depends only
on its attack and defense roots. But if two arguments are still equivalent for this comparison
(i.e. they have the same number of roots at each step), they are compared using the Propaǫ
method. Technically, the priority to the non-attacked arguments is given by using ǫ = 0. So, we
first compare the propagation vectors P 0,⊕. And if the two propagation vectors are identical,
we restart with a non-zero ǫ and compare the propagation vectors P ǫ,⊕.

Definition 3.3.4 (Propa1→ǫ).
Let ⊕ ∈ {M,S} and ǫ ∈ ]0, 1]. The ranking-based semantics Propaǫ,⊕1→ǫ associates to any
argumentation framework AF = 〈A,R〉 a ranking �P

AF on A such that ∀x, y ∈ A,

x �P

AF y if and only if P 0,⊕(x)≻lexP
0,⊕(y) or (P 0,⊕(x)≃lexP

0,⊕(y) and P ǫ,⊕(x)�lexP
ǫ,⊕(y))
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Chapter 3. Ranking-based Semantics based on Propagation

The fact to first focus on the non-attacked argument allows an argument with a lot of defense
branches to receive a lot of positive weights, and conversely, an argument with a lot of attack
branches, to receive a lot of negative weights. Let us explain, with the following example, the
importance of the non-attacked arguments in this semantics.

Example 3.3.3 (cont.). Let us compute the ranking returned by Propa0.75,S1→ǫ , step by step, for
AFc (see Table 3.4 page 84) in beginning by the case ǫ = 0 and then the case ǫ = 0.75.

P 0,S
i a, e, j b, d, h c f g i a ≃ b ≃ c ≃ d ≃ e ≃ f ≃ g ≃ h ≃ i ≃ j

0 1 0 0 0 0 0 a ≃ e ≃ j ≻ b ≃ c ≃ d ≃ f ≃ g ≃ h ≃ i

1 1 -1 0 0 0 -2 a ≃ e ≃ j ≻ c ≃ f ≃ g ≻ b ≃ d ≃ h ≻ i

2 1 -1 1 2 1 -2 a ≃ e ≃ j ≻ f ≻ c ≃ g ≻ b ≃ d ≃ h ≻ i

P 0.75,S
i a, e, j b, d, h c f g i

0 1 0.75 0.75 0.75 0.75 0.75 a ≃ e ≃ j ≻ f ≻ c ≃ g ≻ b ≃ d ≃ h ≻ i

1 1 -0.25 0 -0.75 -0.75 -1.25 a ≃ e ≃ j ≻ f ≻ c ≻ g ≻ b ≃ d ≃ h ≻ i

2 1 -0.25 1 1.25 0.25 -1.25 a ≃P e ≃P j ≻P f ≻P c ≻P g ≻P b ≃P d ≃P h ≻P i

Table 3.4 – The evolution of the ranking step by step using Propa0.75,S1→ǫ on AFc

One can remark that f has one more defense branch than c and g (when ⊕ = S), which
have also one more defense branch than b, d and h. This difference has a direct impact on the
ranking between these arguments because one can see that at the end of the step i = 2 (when
ǫ = 0), f is strictly more acceptable than g and c which are strictly more acceptable than b, d
and h.
As some argument are still equally acceptable (in particular c and g which have both only one
defense root), we restart the process with ǫ = 0.75. Thank to this second process, c, which is
directly attacked only once, is now strictly more acceptable than g which is directly attacked
twice (P 0.75,S

1 (c) = 0 > −0.75 = P 0.75,S
1 (g)). So we obtain the following ranking:

⊕ = S a ≃P e ≃P j ≻P f ≻P c ≻P g ≻P b ≃P d ≃P h ≻P i

Following the same reasoning, we obtain the following ranking when the multiset is used:

⊕ = M a ≃P e ≃P j ≻P f ≃P g ≻P c ≻P b ≃P d ≃P h ≻P i

However, as shown by Example 3.3.4, focusing only on ǫ = 0 cannot distinguish the argu-
ments with the same number of defense and attack branches at each step. In this case, those are
the attacked argument that will be used to distinguish arguments.

Example 3.3.4. Let us consider the two argumentation frameworks described in Figure 3.4.
Clearly, a and a′ cannot be distinguished only by comparing their propagation vectors when

ǫ = 0: P 0,⊕(a) = P 0,⊕(a′) = 〈0, 0, 2〉. However, with a non-zero ǫ, a, directly attacked
once, becomes strictly more acceptable than a′, directly attacked twice, because P ǫ,⊕(a) =
〈ǫ, 0, 2〉 ≻lex 〈ǫ, -ǫ, 2− ǫ〉 = P ǫ,⊕(a′).

Without surprise, Propa1→ǫ returns the same ranking whatever the value of ǫ.
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c

d

b a c′ b′ a′

e′ d′

Figure 3.4 – Two distinct argumentation frameworks where a and a′ have the same number of
defense branches

Proposition 6. Let ⊕ ∈ {M,S}. For any argumentation framework AF , for any ǫ, ǫ′ ∈ ]0, 1],
it holds that

Propaǫ,⊕1→ǫ(AF ) = Propaǫ
′,⊕
1→ǫ(AF )

This result confirms that the influence of the attacked arguments is only taken into consid-
eration if non-attacked arguments fail to distinguish the arguments.

3.4 Relation between semantics

Table 3.5 recalls the different rankings on the arguments of AFc, returned by our propaga-
tion semantics. One can clearly see, in this recall, the different degrees of the influence given to

a b c d e

f g h i

j

AFc

Propa0.75,Mǫ a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≃ g ≻ i

Propa0.75,Sǫ a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≻ g ≻ i

Propa0.3,Mǫ a ≃ e ≃ j ≻ c ≻ f ≃ g ≻ b ≃ d ≃ h ≻ i
Propaǫ,M1+ǫ

Propa0.3,Sǫ a ≃ e ≃ j ≻ c ≻ f ≻ g ≻ b ≃ d ≃ h ≻ i
Propaǫ,S1+ǫ

Propaǫ,S1→ǫ a ≃ e ≃ j ≻ f ≻ c ≻ g ≻ b ≃ d ≃ h ≻ i

Propaǫ,M1→ǫ a ≃ e ≃ j ≻ f ≃ g ≻ c ≻ b ≃ d ≃ h ≻ i

Table 3.5 – Rankings on the arguments of AFc computed by the different propagation semantics

the non-attacked arguments by the three propagation semantics. Indeed, if we focus on the ar-
gument f , one can remark that when Propaǫ is used with a high value of ǫ (which corresponds
to the case where the non-attacked and the attacked argument have the lowest difference), f ,
which is directly attacked twice, is among the less acceptable arguments. When Propa1+ǫ is
used (or for Propaǫ with a small value of ǫ), f is now more acceptable than the arguments (b,
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Chapter 3. Ranking-based Semantics based on Propagation

d and h) directly attacked by the non-attacked arguments showing their strong negative impact.
Finally, when Propa1→ǫ is used, f , which is directly defended by two non-attacked arguments,
is strictly more acceptable than c directly defended only once.

Our propagation semantics are all based on the propagation principle. Thus, it could be
natural to think that there exists particular cases where these semantics return the same ranking
between arguments. In this section, we present the particular cases where the ranking returned
by our propagation semantics coincide but also with existing semantics.

3.4.1 Links between propagation semantics

One can remark that in the definitions of the three propagation semantics, the value of ǫ
cannot be 0. Recall that, in this case, only the weights propagated by the non-attacked arguments
are taken into account, which means that the acceptability of an argument only depends on its
attack and defense roots. Thus, the influence given to the non-attacked argument, initially
different according to the propagation semantics used, is at its maximum. So, if we suppose
that the value of ǫ can be null for the propagation semantics, the ranking returned by these
semantics will be identical.

Proposition 7. Let ⊕ ∈ {M,S}. For any argumentation framework AF ,

Propa0,⊕ǫ (AF ) = Propa0,⊕1+ǫ(AF ) = Propa0,⊕1→ǫ(AF )

The idea to compute the score of an argument only on the basis of its attack and de-
fense roots, is close to the one proposed by [CAYROL & LAGASQUIE-SCHIEX 2005b] with
the tuples-based semantics. Recall that, with this semantics, the arguments are first compared
on the basis of their number of attack and defense roots and then of their quality in case of tie.
However, as illustrated with the two argumentation frameworks depicted in Figure 3.4 (page
85), some argument can have the “same” number of attack roots and of defense roots with the
same length, but with different configuration. In this case, the tuples-based semantics considers
that a and a′ are equally acceptable without ever take into account the attacked arguments. We
choose to use the attacked arguments to distinguish the arguments in this case. Thus, our prop-
agation semantics, Propaǫ, Propa1+ǫ and Propa1→ǫ can be seen as a kind of “improvement”
of the tuples-based semantics in this sense.

In addition to the case where ǫ = 0, there is another particular situation where all the
propagation semantics return the same ranking whatever the value of ǫ: when there exists no
non-attacked argument in the argumentation framework.

Proposition 8. Let ⊕ ∈ {M,S} and ǫ ∈ ]0, 1]. For any argumentation framework AF =
〈A,R〉 such that ∄x ∈ A,R⊕1 (x) = ∅, Propaǫ,⊕ǫ (AF ) = Propaǫ,⊕1+ǫ(AF ) = Propaǫ,⊕1→ǫ(AF ).

Indeed, if there is no non-attacked argument, for Propa1+ǫ and Propa1→ǫ, the first case
where ǫ = 0 returns the same propagation vector for all the arguments (for all argument x,
P 0,⊕(x) = 〈0, 0, . . .〉). Consequently the only way to make a difference between arguments is
with an ǫ 6= 0 exactly like Propaǫ. In other words, when there is no non-attacked argument, the
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semantics compare the arguments only on the number of attackers and defenders.

Finally, the last link only concerns Propaǫ and Propa1+ǫ. We saw that different values of ǫ
can lead to different rankings with Propaǫ. This is due to several attacked arguments can have
more influence than a non-attacked arguments with a value of ǫ high enough. However, there
exists a maximal value of ǫ based on the maximal indegree of an argumentation framework
which guarantees that this situation does not occur when the semantics Propaǫ is used.

Definition 3.4.1 (Maximal indegree).
Given an argumentation framework AF = 〈A,R〉, the maximal indegree of AF , denoted by
maxdeg(AF ), is defined as maxdeg(AF ) = maxx∈A |R⊕1 (x)|.

In other words, we compute the number of direct attackers of each argument in an argumen-
tation framework and the maximum value corresponds to the maximal indegree. For example,
in the argumentation framework AFc (see Figure 3.1 page 76), the maximal indegree is 2 which
corresponds to the number of direct attackers of f , g and i, while all the other arguments have
less direct attackers.
The following proposition shows that if ǫ is lower than the multiplicative inverse of the maxi-
mal indegree then several attacked arguments cannot have more influence than a non-attacked
argument. In this case, Propaǫ and Propa1+ǫ return the same ranking between arguments.

Proposition 9. Let ⊕ ∈ {M,S}. For any argumentation framework AF = 〈A,R〉 such that
∃x ∈ A, |R⊕1 (x)| > 0,

if ǫ <
1

maxdeg(AF )
, then Propaǫ,⊕ǫ (AF ) = Propaǫ,⊕1+ǫ(AF )

Example 3.4.1. Let us consider the argumentation framework AFc, depicted in Figure 3.1
page 76, where maxdeg(AFc) = 2. Following the previous proposition, if ǫ < 0.5 then
Propaǫ,⊕ǫ (AFc) = Propaǫ,⊕1+ǫ(AFc).

Just a word on the case maxdeg(AF ) = 0 which means that there exists only non-attacked
arguments in the argumentation framework. Both ranking-based semantics obviously return the
same ranking in this case because all the arguments are equally acceptable.

3.4.2 Link with existing ranking-based semantics

In this part, we list the links between our propagation semantics and ranking-based seman-
tics from the literature. Indeed, the discussion-based semantics (Dbs) and the propagation se-
mantics (Propaǫ, Propa1+ǫ and Propa1→ǫ) share similar principles regarding the way paths are
counted and the use of the lexicographical comparison. However, let us recall that, in the gen-
eral case, our semantics also take into account the role of the non-attacked arguments which has
consequences on the order between arguments. But, in the case where there is no non-attacked
argument, the ranking returned by these semantics is the same.

Proposition 10. Let ǫ ∈ ]0, 1]. For any argumentation framework AF = 〈A,R〉 such that
∄x ∈ A,RM

1 (x) = ∅, Propaǫ,Mǫ (AF ) = Propaǫ,M1+ǫ(AF ) = Propaǫ,M1→ǫ(AF ) = Dbs(AF ).
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This proposition confirms that when there is no non-attacked argument, our propagation
semantics focus on the number of attackers and defenders at each step, like it is done by the
discussion-based semantics. Note that this result is obtained with the multiset version of the
three kinds of semantics. The set versions are not equivalent.

A last link can be established between Propaǫ and the discussion-based semantics (Dbs).
Let us recall that the only way for Propaǫ to give more impact to the non-attacked arguments
is through the value of ǫ. But the previous proposition shows that when all the arguments begin
with the same initial weight (it is the case when there is no non-attacked argument because all
the arguments begin with an initial score of ǫ) then the result is similar to the one returned by the
discussion-based semantics. But, according to the definition of Propaǫ, it is possible to assign
an initial value of 1 to all the arguments (included the attacked argument) with ǫ = 1. Thus, in
this case, all the arguments also begin with the same initial score and the following proposition
states that the ranking returned by both semantics is similar too.

Proposition 11. For any argumentation framework AF = 〈A,R〉,
Propa1,Mǫ (AF ) = Dbs(AF )

Again, only the multiset version allows to obtain this result.

3.4.3 Link with Dung’s semantics

Recall that the goal of the propagation semantics we introduced is to give more impact
to the non-attacked arguments than existing ranking-based semantics but also less influence
than Dung’s semantics. If the first part, consisting to give more impact to the non-attacked
argument, can be easily observed (see Table 3.5 page 85), one can wonder if our propagation
semantics refine the Dung’s semantics. In other words, for all the argumentation frameworks,
if an argument x is accepted and that an argument y is not accepted with respect to a Dung’s
semantics σ (i.e. x is strictly more acceptable than y), does x is more acceptable than y when
our propagation semantics are used? The argumentation framework AF depicted in Figure 3.5,
shows that it is not the case.

aa4a5

a6

a1a2a3

b8 b7 b6 b5 b

b4 b3 b2 b1

b12 b11 b10 b9

Figure 3.5 – Argumentation framework AF showing the incompatibility between the propaga-
tion semantics and the Dung’s semantics

As AF is well-founded, its extension is unique and shared by the complete, grounded, stable
and preferred semantics:

∀σ ∈ {co, gr, pr, st}, Eσ(AF ) = {a1, a3, a5, a6, b2, b4, b6, b8, b10, b12, b}
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One can remark that ∀σ ∈ {co, gr, pr, st}, b ∈ Eσ(AF ) and a /∈ Eσ(AF ). So, if our propagation
semantics refine the Dung’s semantics, then b should be strictly more acceptable than a with
Propaǫ, Propa1+ǫ and Propa1→ǫ. Let us now compute the propagation vectors of a and b.

P 0,⊕
i a b

0 0 0
1 0 0
2 2 0
3 1 0
4 1 3

P ǫ,⊕
i a b

0 ǫ ǫ

1 -ǫ -2ǫ
2 2 ǫ

3 1 -2ǫ
4 1 3-2ǫ

Table 3.6 – Valuation P for a and b in AF (Figure 3.5 page 88) when ǫ = 0 (left) and when
ǫ = 0.75 (right)

From the propagation vectors of a and b (see Table 3.6), let us now see which one is more
acceptable than the other one according to the propagation semantics used.

(Propaǫ) a ≻P

AF b because ∀ǫ ∈ ]0, 1], P ǫ,⊕(a) ≻lex P ǫ,⊕(b)
⇒ P ǫ,⊕

1 (a) = −ǫ > −2ǫ = P ǫ,⊕
1 (b)

(Propa1+ǫ) a ≻P̂

AF b because P ǫ,⊕(a) ∪s P
0,⊕(a) ≻lex P ǫ,⊕(b) ∪s P

0,⊕(b)
⇒ P ǫ,⊕

1 (a) = −ǫ > −2ǫ = P ǫ,⊕
1 (b))

(Propa1→ǫ) a ≻P

AF b because P 0,⊕(a) ≻lex P 0,⊕(b)
⇒ P ǫ,⊕

2 (a) = 2 > 0 = P ǫ,⊕
2 (b)

Clearly, for all the propagation semantics, a is strictly more acceptable than b, in contradiction
with the result returned by the Dung’s semantics.

However, this is not surprising because, for Propaǫ and Propa1+ǫ, the attacked arguments
still play a role in the acceptability of the argument. It is why, b, which is directly attacked
three times, is less acceptable than a which is directly attacked twice. Dung’s semantics are, by
definition, blind to the number of attackers/defenders, which explains this difference.
For Propa1→ǫ, recall that the non-attacked arguments are the only arguments to propagate their
value, so as the defense branches of b are shorter than the defense branches of a then b is the first
to receive its positive value. Dung’s semantics are blind to the length of the defense or attack
paths, which explains this difference.

3.5 Conclusion

In this chapter we proposed new ranking-based semantics based on the propagation of the
weights of arguments, with a higher initial weight given to non-attacked arguments. The dif-
ferences between our semantics lie in the choice of the interaction between attacked and non-
attacked arguments (i.e. how much priority do we give to non-attacked arguments), and in the
choice of sets or multisets to select the attackers and the defenders of the arguments.
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Some relationships exist between our semantics and existing ones: the ranking returned
by all the propagation semantics based on multisets coincide with the one returned by the se-
mantics Discussion-based semantics when there is no non-attacked arguments in the argumen-
tation framework. Our ranking-based semantics Propaǫ goes further in the relation with the
discussion-based semantics because when all the arguments begin with the same weight then
the ranking returned by both semantics (when multiset version is used) are similar. So they can
be viewed as improvement of the discussion-based semantics allowing to take into account the
impact of non-attacked arguments.
By many respects, Propa1→ǫ, the semantics which gives the more influence to the non-attacked
arguments, is close to the tuples-based semantics [CAYROL & LAGASQUIE-SCHIEX 2005b].
Indeed, both focus on the attack and defense roots of arguments to compare them. However, the
tuples-based semantics does not necessarily provide a total preorder between arguments, and it
cannot be applied (easily) if there is a cycle in the argumentation framework. So, in a sense,
Propa1→ǫ could be seen as a refinement of the ideas of the tuples-based semantics that allows
to overcome these limitations.

However, based solely on the formal definition, the comparison with the other existing
ranking-based semantics is still difficult. It is why, in the next chapter, we provide a full com-
parison study between all the ranking-based semantics detailed in this thesis in order to better
understand their behavior. This will also make it possible to put forward the differences of our
semantics with the existing ones.
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Chapter 4

Comparative Study of Ranking-based

Semantics

Recently, a number of ranking-based semantics have been proposed independently (see
Chapter 2, Section 2.3), each with more or less different behaviors, and often associated with
some desirable properties (see Chapter 2, Section 2.5). However, all these semantics have never
been thoroughly compared between them, making the choice of a particular ranking-based se-
mantics difficult for a potential user. In this chapter we propose such a comparative study.

We propose two ways to compare the ranking-based semantics. The first one is an experi-
mental comparison where we examine the rankings returned by these semantics on a benchmark
of argumentation framework, in order to evaluate the degree of similarity between each pair of
semantics. The second comparison allows to understand where the similarity and the differ-
ences between the rankings come from. For this, we study the ranking-based semantics in the
light of a set of proposed properties. We also generalize some existing properties only defined
in the context of a particular semantics and propose new ones which allow to capture other
aspects playing on the diversity between the rankings. Finally, we analyse the obtained results
and discuss the different properties.

This chapter develops the results obtained in [BONZON et al. 2016a, BONZON et al. 2016c].
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4.1 Concordance of ranking-based semantics

As it can be easily checked with the running-example on AFc (the argumentation framework
and the associated rankings are recalled below in Table 4.1) used to illustrate the ranking-based
semantics studied in this thesis (see Chapter 2, Section 2.3), these ranking-based semantics
mostly return distinct rankings between arguments even though AFc contains “only” ten argu-
ments.

a b c d e

f g h i

j

AFc

Semantics Ranking between arguments

M&T a ≃ e ≃ j ≻ c ≃ f ≃ g ≻ b ≃ d ≃ h ≃ i

FL a ≃ e ≃ j ≃ c ≃ f ≃ g ≻ b ≃ d ≃ h ≃ i

Cat
a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ f ≃ g ≃ h ≻ i

1-Bbs

Dbs

a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≃ g ≻ i

Bbs

0.5-Bbs

CS

Propa0.75,Mǫ

Propa0.75,Sǫ a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≻ g ≻ i

5-Bbs

a ≃ e ≃ j ≻ c ≻ f ≃ g ≻ b ≃ d ≃ h ≻ i
IGD

Propa0.3,Mǫ

Propaǫ,M1+ǫ

Propa0.3,Sǫ a ≃ e ≃ j ≻ c ≻ f ≻ g ≻ b ≃ d ≃ h ≻ i
Propaǫ,S1+ǫ

Propaǫ,S1→ǫ a ≃ e ≃ j ≻ f ≻ c ≻ g ≻ b ≃ d ≃ h ≻ i

Tuples
a ≃ e ≃ j ≻ f ≃ g ≻ c ≻ b ≃ d ≃ h ≻ i

Propaǫ,M1→ǫ

Table 4.1 – Rankings on the arguments in AFc computed by the different ranking-based seman-
tics

One can first remark that the differences between these rankings only concerns a subset of
arguments (here b, c, d, f, g, h) and not all the arguments. Conversely, some common behaviors
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seem to appear between the semantics like the fact that a, e and j are always equally accept-
able and more acceptable than all the other arguments (except for the semantics FL) or that
i is always ranked last (even if it can be a tie). Thus, it could be interesting to know if such
observations can be generalized to all argumentation frameworks or if they only concern this
particular argumentation framework. The goal of this section consists in evaluating how differ-
ent or similar are these ranking-based semantics. To this purpose, we choose to compute and to
compare the ranking of each ranking-based semantics on several randomly generated argumen-
tation frameworks. But before, we explain how to compute and compare the different rankings,
we choose to exclude some ranking-based semantics from this study. Indeed, it is difficult to
compare total and partial preorders (because some arguments could be incomparable), it is why
the semantics that return a partial preorder, like IGD [GROSSI & MODGIL 2015] and Tuples
[CAYROL & LAGASQUIE-SCHIEX 2005b], are excluded. The semantics M&T is also excluded
from this study because, according to the authors, this semantics can only be used for argumen-
tation frameworks with less than a dozen of arguments (see [MATT & TONI 2008]). Indeed, the
size of the players strategy spaces grows exponentially fast with the total number of arguments
in the argumentation framework considered so when it contains more than twelve arguments,
the computation becomes almost impossible.

4.1.1 Computation process

The number of softwares aiming to evaluate argumentation frameworks under different
usual acceptability semantics and to perform the usual inference tasks, continues to increase
these last years (e.g. [EGLY et al. 2008, CERUTTI et al. 2014, LAGNIEZ et al. 2015]). This in-
terest to create solvers more and more effective even led to the creation of a first competition in
argumentation [THIMM & VILLATA 2015]. However there exists no available software aiming
to compute the ranking of a given argumentation framework with respect to a given ranking-
based semantics. So we first started by implementing all the ranking-based semantics used for
this experimental study (i.e. Cat, Dbs, Bbs, α-Bbs, FL, CS and the propagation semantics).
We chose the aspartix format (apx) to represent an argumentation framework (see Figure 4.1
for an example): each argument of this argumentation framework is defined by arg(‹name of
the argument›) and each attack is defined by att(‹name of the attacking argument›,‹name of the
attacked argument›), one by line. Each line finishes with a dot.

a b

cd

arg(a).
arg(b).
arg(c).
arg(d).
att(a, b).
att(b, c).
att(c, d).
att(d, c).

aspartix format

Figure 4.1 – An argumentation framework and its representation in the aspartix format
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Thus, our software accepts as input an argumentation framework in aspartix format and a
ranking-based semantics, sometimes together with a parameter, and returns the ranking between
arguments.

Let us now create a set of randomly generated argumentation frameworks which will be
used to compare the rankings computed by each ranking-based semantics thanks to our soft-
ware. Our generation algorithm (see Algorithm 2) is based on one of the three algorithms used
to create the benchmarks of the competition 11 ICCMA’15 [THIMM & VILLATA 2015]. The al-
gorithm that we implemented, first randomly chooses the number of arguments (with a given
minimum and maximum value). Then, attacks between arguments are added with a given prob-
ability. And finally, random attacks are added between the not-yet connected arguments (i.e.

the arguments without direct attacker and which attacks no argument) and the other arguments
in order to avoid isolated arguments.

Algorithm 2 Argumentation Framework Generator
Require: max_arg is the maximum number of arguments, min_arg is the minimum number

of arguments, propa_attack is the probability of an attack (between 0 and 1)
Ensure: One randomly generated argumentation framework AF which contains between

min_arg and max_arg arguments
1: function RANDOM(i, j)
2: return an integer between i and j
3: end function

4: nb_arg ← RANDOM(min_arg,max_arg) ⊲ Number of arguments in AF
5: for i← min_arg to nb_arg do

6: for j ← min_arg to nb_arg do

7: if (RANDOM(0, 100)/100) < propa_attack then “ai” attacks “aj”
8: end if

9: end for

10: end for

11: for all argument ak unconnected do

12: l ← RANDOM(min_arg, nb_arg)
13: “ak” attacks “al” or “al” attacks “ak”
14: end for

Thus, in using Algorithm 2, we create 1000 randomly generated argumentation frame-
works 12 which contain between 5 and 100 arguments (5 ≤ |A| ≤ 100). 13 For each of these
argumentation frameworks, we used our software to compute the ranking of each ranking-based
semantics. Let us now detail how to compare these rankings in order to represent the concor-
dance of the ranking-based semantics.

11. http://argumentationcompetition.org/2015/results.html
12. This set of argumentation frameworks can be found on the following address:

http://www.cril.univ-artois.fr/~delobelle/bench.zip

13. A lot of differences between the rankings obtained from AFc (see Table 4.1 page 92) are already evident
despite the “low” number of arguments, so studying argumentation frameworks with less that 100 arguments is
sufficient enough to have a good approximation of the concordance of the ranking-based semantics.
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4.1.2 Experimental comparison

A way to compare the ranking-based semantics on the basis of the rankings previously com-
puted consists in using the Kendall’s tau coefficient [KENDALL 1938]. This value corresponds
to the total number of rank disagreements over all unordered pairs of arguments between two
rankings from distinct semantics. It therefore allows us to obtain a dissimilarity degree between
two rankings.

Definition 4.1.1 (Kendall’s tau coefficient).
Let AF = 〈A,R〉 be an argumentation framework and σ1 and σ2 be two ranking-based seman-
tics. The Kendall’s tau coefficient between σ1(AF ) and σ2(AF ) is calculated as follow:

K(σ1(AF ), σ2(AF )) =

∑

{i,j}∈AKi,j(σ1(AF ), σ2(AF ))

0.5× |A| × (|A| − 1)

with :

• Ki,j(σ1(AF ), σ2(AF )) = 0 if i ≻σ1
AF j and i ≻σ2

AF j, or i ≺σ1
AF j and i ≺σ2

AF j, or i ≃σ1
AF j and

i ≃σ2
AF j,

• Ki,j(σ1(AF ), σ2(AF )) = 1 if i ≻σ1
AF j and i ≺σ2

AF j or vice versa,

• Ki,j(σ1(AF ), σ2(AF )) = 0.5 if i ≻σ1
AF j or i ≺σ1

AF j and i ≃σ2
AF j or vice versa.

A Kendall’s tau coefficient of 1 (K(σ1(AF ), σ2(AF )) = 1) between two rankings means
that both rankings are opposite (i.e. for all arguments x, y ∈ A, if x ≻σ1 y then y ≻σ2 x)
while a Kendall’s tau coefficient of 0 (K(σ1(AF ), σ2(AF )) = 0) means that both rankings are
identical. So, the smaller the Kendall’s tau coefficient between two rankings, the higher their
similarity.

Example 4.1.1. Given an argumentation framework AF = 〈A,R〉, let us compute the Kendall’s
tau coefficient between the two following rankings σ1(AF ) and σ2(AF ):

σ1(AF ) = a ≻σ1 b ≃σ1 c ≻σ1 d ≻σ1 e

σ2(AF ) = a ≻σ2 c ≻σ2 d ≻σ2 b ≻σ2 e

Both rankings clearly disagree on pair {b, d} (b ≻σ1 d and d ≻σ2 b) and, the semantics σ1
considers that b and c are equally acceptable while σ2 considers that c is strictly more acceptable
than b (b ≃σ1 c and c ≻σ2 b). Thus, as

∑

{i,j}∈AKi,j(σ1(AF ), σ2(AF )) = 1 + 0.5 = 1.5

and the number of arguments in AF is 5 (|A| = 5) then the Kendall’s tau coefficient is 0.15
(K(σ1(AF ), σ2(AF )) = 0.15).

The goal is to measure the dissimilarity degree between the ranking-based semantics using
the Kendall’s tau coefficient. For this purpose, from the rankings computed for each the argu-
mentation framework in input, we compute the Kendall’s tau coefficient between all pairs of
rankings. Finally, for each pair of ranking-based semantics, we average the Kendall’s tau coef-
ficients computed from rankings for each argumentation frameworks and multiply the result by
100 to obtain a percentage of dissimilarity. All the process to compute these values is sum up
in the diagram depicted in Figure 4.2.
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AF1

AF2

...

AFn

Cat(AF1)

Dbs(AF1)

Bbs(AF1)

. . .

Cat(AF2)

Dbs(AF2)

Bbs(AF2)

. . .

...

Cat(AFn)

Dbs(AFn)

Bbs(AFn)

. . .

K1
1 = K(Cat(AF1), Dbs(AF1))

K1
2 = K(Cat(AF1), Bbs(AF1))

K1
3 = K(Dbs(AF1), Bbs(AF1))

. . .

K2
1 = K(Cat(AF2), Dbs(AF2))

K2
2 = K(Cat(AF2), Bbs(AF2))

K2
3 = K(Dbs(AF2), Bbs(AF2))

. . .

...

Kn
1 = K(Cat(AFn), Dbs(AFn))

Kn
2 = K(Cat(AFn), Bbs(AFn))

Kn
3 = K(Dbs(AFn), Bbs(AFn))

. . .

avg(K1
1 ,K

2
1 , . . . ,K

n
1 ) × 100

avg(K1
2 ,K

2
2 , . . . ,K

n
2 ) × 100

avg(K1
n,K

2
n, . . . ,K

n
n ) × 100

. . .

Figure 4.2 – Diagram showing how to compute the percentage of dissimilarity between ranking-
based semantics from a set of n argumentation frameworks in input
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Cat 0 8.49 8.57 0.72 0 1.38 21.86 5.91 5.50 4.45 1.58 1.23 3.82 8.32

Bbs 8.49 0 0.26 8.17 8.49 9.73 22.38 3.11 3.95 4.30 9.27 9.08 11.68 16.75

Dbs 8.57 0.26 0 8.18 8.57 9.81 22.37 2.92 4.03 4.35 9.35 9.14 11.76 16.82

0.3-Bbs 0.72 8.17 8.18 0 0.72 1.98 22.01 5.47 5.53 4.54 2.28 1.95 4.42 8.79

1-Bbs 0 8.49 8.57 0.72 0 1.38 21.86 5.91 5.50 4.45 1.58 1.23 3.82 8.32

10-Bbs 1.38 9.73 9.81 1.98 1.38 0 21.56 7.15 6.45 5.47 1.13 0.76 3.01 7.15

FL 21.86 22.38 22.37 22.01 21.86 21.56 0 22.16 21.11 21.90 21.40 21.63 21.39 21.66

CS 5.91 3.11 2.92 5.47 5.91 7.15 22.16 0 2.28 2.04 6.96 6.69 9.20 14.04

Propa0.5,Sǫ 5.50 3.95 4.03 5.53 5.50 6.45 21.11 2.28 0 1.17 5.32 5.80 7.76 13.39

Propa0.5,Mǫ 4.45 4.30 4.35 4.54 4.45 5.47 21.90 2.04 1.17 0 5.10 4.79 7.52 12.47

Propa
ǫ,S
1+ǫ 1.58 9.27 9.35 2.28 1.58 1.13 21.40 6.96 5.32 5.10 0 0.48 2.43 8.06

Propa
ǫ,M
1+ǫ 1.23 9.08 9.14 1.95 1.23 0.76 21.63 6.69 5.80 4.79 0.48 0 2.90 7.68

Propa
ǫ,S
1→ǫ 3.82 11.68 11.76 4.42 3.82 3.01 21.39 9.20 7.76 7.52 2.43 2.90 0 5.73

Propa
ǫ,M
1→ǫ 8.32 16.75 16.82 8.79 8.32 7.15 21.66 14.04 13.39 12.47 8.06 7.68 5.73 0

Table 4.2 – Percentage of dissimilarity between the ranking-based semantics obtained from the
rankings computed on the 1000 randomly generated argumentation frameworks (5 ≤ |A| ≤
100)

All the dissimilarity degrees are given in a symmetric matrix represented by Table 4.2. Thus,
the biggest dissimilarity degree between two ranking-based semantics is observed between the
burden-based semantics (Bbs) and the fuzzy labellings (FL) with a value of 22.38%. FL clearly
stands out from the other semantics with a degree of dissimilarity always greater than 21%.
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This is not surprising since FL extends the complete semantics by considering varying degrees
of acceptability (rather than the three classical ones: in, outand undec) and thus does not take
into account the number of attackers, while all the other semantics do. But, globally, the others
ranking-based semantics seems to share a solid common basis with a dissimilarity degree often
smaller than 10%.

In order to better represent the “closeness” between these ranking-based semantics, from the
previous matrix, we compute a dendrogram, which is a graphical representation of the results
of hierarchical cluster analysis. In our case, the method used is a stepwise algorithm for n
semantics which merges two semantics or clusters with the least dissimilarities at each step until
obtaining a unique cluster. Several operators exist [TAN et al. 2006] to compute the distance
between the new cluster and the other clusters like the single link (minimum), complete link
(maximum), group average, median, etc. However, a few number of inputs make the differences
negligible between these methods, so we choose the average method to compute the dendrogram
illustrated in Figure 4.3.

Figure 4.3 – Dendrogram representing the relationships between the ranking-based semantics
studied in this thesis

On this dendrogram, the height of the branch between two clusters indicates how different
they are from each other: the greater the height, the greater the difference. Two groups emerge
from this study: one containing the semantics Dbs, Bbs, CS and Propaǫ (which have a dissim-
ilarity degree always smaller than 4.5% in Table 4.2) and another one containing the semantics
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Cat, α-Bbs (for three values of α ∈ {0.3, 1, 10}), Propa1+ǫ (which have a dissimilarity degree
always smaller than 2.5% in Table 4.2). The propagation semantics PropaS1→ǫ seems closer that
the second group of semantics with a dissimilarity degree between 8% and 9% with all these
ranking-based semantics. Among these groups, one can observe that some semantics are very
close like Bbs and Dbs.
But, an important observation is that the categoriser-based semantics and the α-Burden-based
semantics when α = 1 always returned the same ranking (their dissimilarity degree is 0% in
Table 4.2).

Proposition 12. ([AMGOUD et al. 2016]) Let AF be an argumentation framework,

Cat(AF ) = 1-Bbs(AF )

4.2 Properties for ranking-based semantics

Our goal is now to explain the similarity and the dissimilarity between the ranking-based se-
mantics, highlighted in the previous section. To this purpose, some properties were introduced
in the literature (see Chapter 2, Section 2.5.1 for a recall). But, before checking which ones are
satisfied by the different ranking-based semantics, we want to propose some additional prop-
erties in this section. These properties are separated into two parts. The first one contains the
properties which are a generalization of properties only introduced in the context of a particular
semantics. The second part includes some additional properties which capture characteristics
we think important to satisfy in a particular context.

4.2.1 Generalized properties

Cayrol and Lagasquie-Schiex [CAYROL & LAGASQUIE-SCHIEX 2005b] introduced prop-
erties checking if some change related to the branches in an argumentation framework can
improve or degrade the ranking of one argument. Indeed, what is the effect on the accept-
ability of a given argument with an additional attack branch? Is the effect the same if it is a
defense branch? Does the length of the branch matter? Such questions seem interesting to an-
swer in order to better understand the behavior of semantics. However, these properties have
been proposed informally, in the context of the tuples-based semantics. It is why we propose
a formal definition of these properties, that generalizes them for any argumentation frameworks.

First of all, let us introduce how we formally define the addition of an attack branch and the
addition of a defense branch to an argument.

Definition 4.2.1 (Attack and defense branch added to an argument).
Let AF = 〈A,R〉 be an argumentation framework and x ∈ A be an argument. A defense
branch added to x is P+(x) = 〈A′,R′〉, with A′ = {x0, . . . , xn} such that n ∈ 2N, x0 = x,
A∩A′ = {x}, andR′ = {(xi, xi−1) | i ≤ n}. The attack branch added to x, denoted P−(x) is
defined similarly except that the sequence is of odd length (i.e. n ∈ 2N+ 1).

In order to evaluate the impact of an additional attack (or defense) branch on a given ar-
gument x of an argumentation framework AF , we “clone” this argumentation framework with
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an isomorphism γ (see Definition 2.5.1 page 65). Then, we can modify the argumentation
framework γ(AF ) and analyse the impact on γ(x) compared to x.

Addition of a branch

The first property concerns the attack branches and states that adding an attack branch to
any argument decreases its level of acceptability.

Property 11 (Addition of an Attack Branch (+AB)).
A ranking-based semantics σ satisfies Addition of an Attack Branch if and only if for any
AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ), if
AF ⋆ = AF ∪ AF ′ ∪ P−(γ(x)), then x ≻σ

AF⋆ γ(x).

a1 a2 a3 a4

b2

c2

b3

c3

d3

e3

b4

c4

d4

Figure 4.4 – Argumentation framework with different configurations of branches

Example 4.2.1. Let us consider the argumentation framework illustrated in Figure 4.4. If σ
satisfies +AB then a1, which has no attack branch, should be more acceptable than b2, b3, d3
and b4 which have one attack branch. In addition, a2 should be more acceptable than a4 because
both have one defense branch with the same length but a4 has also an attack branch while a2
has not.

The two following properties concerns the defense branches. The first one states that adding
a defense branch to any argument increases its level of acceptability.

Property 12 (Strict Addition of a Defense Branch (⊕DB)).
A ranking-based semantics σ satisfies Strict Addition of a Defense Branch if and only if for
any AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ), if
AF ⋆ = AF ∪ AF ′ ∪ P+(γ(x)), then γ(x) ≻σ

AF⋆ x.

Example 4.2.2 (cont.). If σ satisfies ⊕DB then a3 should be more acceptable than a2 which
should be more acceptable than a1. Indeed, a3 has one more defense branch than a2 which has
one more defense branch than a1. In addition, a4 with one defense branch and one attack branch
should be more acceptable than b2, b3, d3 and b4 which have no defense branch.

However, it could make sense to treat differently non-attacked arguments. It is why, in
[CAYROL & LAGASQUIE-SCHIEX 2005b], this property is defined in a more specific way:
adding a defense branch to any attacked argument increases its level of acceptability.
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Property 13 (Addition of a Defense Branch (+DB)).
A ranking-based semantics σ satisfies Addition of a Defense Branch if and only if for any
AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ), if
AF ⋆ = AF ∪ AF ′ ∪ P+(γ(x)) andR1(x) 6= ∅, then γ(x) ≻σ

AF⋆ x.

Example 4.2.3 (cont.). If σ satisfies +DB, the same conclusion as ⊕DB can be done except for
a2 and a1. Indeed, a1 is not attacked so nothing can be said about its ranking in comparison
with the other arguments.

Increasing the length of a branch

Let us now define the properties based on the increase of the length of a branch. Formally,
increasing the length of a branch consists in adding a defense branch 14 to the argument at the
beginning of the branch.

d2 c2 b2 a2

b1 a1

e4 d4 c4 b4 a4

c3 b3 a3

Figure 4.5 – Argumentation framework with different lengths of branch

The first property states that increasing the length of an attack branch of an argument in-
creases its level of acceptability.

Property 14 (Increase of an Attack Branch (↑AB)).
A ranking-based semantics σ satisfies Increase of an Attack Branch if and only if for any
AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ), if
∃y ∈ B−(x), y /∈ B+(x) and AF ⋆ = AF ∪ AF ′ ∪ P+(γ(y)), then γ(x) ≻σ

AF⋆ x.

Example 4.2.4. Let us consider the argumentation framework illustrated in Figure 4.5. If σ
satisfies ↑AB then a2 should be more acceptable than a1 because a2 has an attack branch of
length 3 while a1 has an attack branch of length 1.

The second property concerns the defense branch and states that increasing the length of a
defense branch of an argument decreases its level of acceptability.

Property 15 (Increase of a Defense Branch (↑DB)).
A ranking-based semantics σ satisfies Increase of a Defense Branch if and only if for any
AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ), if
∃y ∈ B+(x), y /∈ B−(x) and AF ⋆ = AF ∪ AF ′ ∪ P+(γ(y)), then x ≻σ

AF⋆ γ(x).

Example 4.2.5 (cont.). If σ satisfies ↑DB then a3 should be more acceptable than a4 because
a3 has a defense branch of length 2 while a4 has a defense branch of length 4.

14. We add here a defense branch in order to to leave the “role” of the branch unchanged: a defense (respectively
attack) branch stays a defense (respectively attack) branch.
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Please note that in [CAYROL & LAGASQUIE-SCHIEX 2005b], the dual properties also ex-
ist: removing a branch of an argument or decreasing the length of a branch of an argument.
However, we intentionally defined the properties in order to catch these two aspects. Indeed,
for example, a semantics which satisfies the property +AB means that adding an attack branch
to an argument decreases its acceptability. But if we remove this branch then intuitively the
acceptability should revert to its original level (see Abstraction), which means that removing an
attack branch to an argument increases its acceptability.

4.2.2 Additional properties

In addition to the properties proposed until here, we want to add some other interesting
properties.

The first one, called Total, allows to make a distinction between the semantics which return
a total preorder or a partial preorder between arguments. Indeed, too many incompatibilities
can be problematic, especially if we want to use argumentation for decision-making or for the
online debate platforms (see the discussion in [LEITE & MARTINS 2011]), the users could be
requested to give arguments for or against two opposite topics in order to compare them and
know which one is the most popular. Thus, it could be frustrating for the users to obtain an
incomparability between both arguments after spending some time to deliberate. In this case,
one will prefer to select a semantics that satisfies Total.

Property 16 (Total (Tot)).
A ranking-based semantics σ satisfies Total if and only if for any AF = 〈A,R〉 and ∀x, y ∈ A,
x �σ

AF y or y �σ
AF x.

Argument Equivalence ensures that the acceptability of an argument depends only on (the
structure of) its attackers and defenders. This property is related to a well-known property
satisfied by the classical semantics, called Directionality [BARONI et al. 2011], which states
that an argument can only be affected by arguments following the direction of the attacks (i.e.

an argument a cannot be affected by another argument b if there exists no path from b to a).
Formally, if there exists an isomorphism between the ancestors’ graph of two arguments, then
they are equally acceptable.

Property 17 (Argument Equivalence (AE)).
A ranking-based semantics σ satisfies Argument Equivalence if and only if for any AF =
〈A,R〉 and ∀x, y ∈ A, for every isomorphism γ such that AncAF(x) = γ(AncAF(y)) then
x ≃σ

AF y.

Please note that the reverse is not true because two arguments can be equally acceptable but
with different ancestors’ graphs.

The property Non-attacked Equivalence is a particular case of Argument Equivalence be-
cause it focuses on the comparison between the non-attacked arguments. Indeed, if the ar-
guments are affected only by the arguments in their ancestors’ graph, then the non-attacked
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arguments should be unaffected by the remaining part of the argumentation framework (be-
cause they have no attacker and defender). Thus, they should have the same ranking. If one
agrees with this idea then Non-attacked Equivalence must be satisfied.

Property 18 (Non-attacked Equivalence (NaE)).
A ranking-based semantics σ satisfies Non-Attacked Equivalence if and only if for any AF =
〈A,R〉 and ∀x, y ∈ A,R1(x) = ∅ andR1(y) = ∅ then x ≃σ

AF y.

Another possibility to detect when two arguments are equally acceptable consists in just
taking into account their direct attackers. Suppose that two arguments, x and y, have the same
number of direct attackers. If, for each direct attacker of x, there exists a direct attacker of y
such that the two attackers are equally acceptable, then x and y are equally acceptable too.

Property 19 (Ordinal Equivalence (OE)).
A ranking-based semantics σ satisfies Ordinal Equivalence if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A, if there exists a bijective function f from R1(x) to R1(y) such that ∀z ∈
R1(x), z ≃σ

AF f(z) then x ≃σ
AF y.

The last property describes the behavior adopted by a semantics concerning the notion of
defense, which plays a key role in the obtained rankings. Indeed, back to AFc, it is clear that
there is a consensus between the ranking-based semantics (see Table 4.1) to say that c, which
is defended once, is always more acceptable than b which is directly attacked by a non-attacked
argument. But if we compare b and f , which have two distinct defense branches, we can
remark, that for some semantics, b is either more acceptable (e.g. Discussion-based semantics),
equally acceptable (e.g. Categoriser-based ranking semantics) or less acceptable (e.g. Tuples
or Propa1→ǫ) than f . However, there is no guarantee that the ranking will change again if we
increase the number of defense branches. Moreover, existing properties which are related to the
defense (e.g. Defense Precedence (DP) or Addition of Defense Branch (+DB)) are not able to
catch this difference. It is why we introduce the property Attack vs Full Defense which allows
to make this distinction between the semantics which consider a defense as a weak attack and
the semantics which consider a defense as a reinforcement for the targeted argument.

Property 20 (Attack vs Full Defense (AvsFD)).
A ranking-based semantics σ satisfies Attack vs Full Defense if and only if for any acyclic
AF = 〈A,R〉 and ∀x, y ∈ A, if |B−(x)| = 0, |R1(y)| = 1 and |R2(y)| = 0 then x ≻σ

AF y.

For example, as illustrated in Figure 4.6, the property states that an argument which is (only)
attacked once by a non-attacked argument (it is the case of b only attacked by b1) is worse than
an argument that have any number of attacks that all belong to defense branches (it is the case
of a which have four defense branches and no attack branch).

4.2.3 Relationships between properties

Each property studied in this thesis aims to capture a particular principle. However, some
of them can focus on the same aspect of the argumentation framework (e.g. direct attackers,
the number of defenders). Thus, one can wonder whether some overlaps exist between them.
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Figure 4.6 – Illustration of the property Attack vs Full Defense

Conversely, like it is the case with the properties Cardinality Precedence and Quality Prece-
dence (see Figure 2.21 page 67), one can also wonder whether some additional incompatibil-
ities exist. To this purpose, we continue the work initiated in [AMGOUD & BEN-NAIM 2013,
BESNARD et al. 2017] about the incompatibilities and the dependencies between properties.
All the results obtained in this section are summed up in Figure 4.7 (page 105).

Let us first recall when two properties are incompatible (i.e. they cannot be simultaneously
satisfy).

Definition 4.2.2 (Incompatibility).
Two properties are incompatible if there exists an argumentation framework AF = 〈A,R〉 and
x, y ∈ A such that when one property states that x ≻AF y, the other property states that y �AF x.

The next proposition recalls some results, and proves new ones, about the incompatibility
of some properties.

Proposition 13. For every ranking-based semantics, the following pairs of properties are in-
compatible :

(1) Cardinality Precedence (CP) and Quality Precedence (QP) [AMGOUD & BEN-NAIM 2013]

(2) Self-Contradiction (SC) and Cardinality Precedence (CP) [BESNARD et al. 2017]

(3) Self-Contradiction (SC) and Counter-Transitivity (CT) [BESNARD et al. 2017]

(4) Self-Contradiction (SC) and Strict Counter-Transitivity (SCT) [BESNARD et al. 2017]

(5) Cardinality Precedence (CP) and Attack vs Full Defense (AvsFD)

(6) Cardinality Precedence (CP) and Addition of a Defense Branch (+DB)

(7) Cardinality Precedence (CP) and Strict Addition of a Defense Branch (⊕DB)

(8) Void Precedence (VP) and Strict Addition of a Defense Branch (⊕DB)

(9) Strict Counter-Transitivity (SCT) and Strict Addition of a Defense Branch (⊕DB)

(10) Argument Equivalence (AE) and Self-Contradiction (SC)

Proposition 14. No ranking-based semantics can simultaneously satisfy Addition of a Defense
Branch (+DB), Strict Counter-Transitivity (SCT) and Argumentation Equivalence (AE).

101



Chapter 4. Comparative Study of Ranking-based Semantics

Some of these results are not surprising. Indeed, some properties have different views on the
notion of defense (see the discussion in the previous section when we introduced the property
Attack vs Full Defense). It is the case, for example, with the properties CP and SCT which
consider that any additional (defense or attack) branch should have a negative effect on a given
argument while +DB or ⊕DB state that an additional defense branch should have a positive
impact on this argument.

Then, let us first define when a property implies another property.

Definition 4.2.3 (Implication).
A property P implies another property Q if and only if for any ranking-based semantics σ, if σ
satisfies P then σ satisfies Q.

The next proposition recalls some results, and proves new ones, about the implication be-
tween properties.

Proposition 15.

(1) Strict Counter-Transitivity (SCT) implies Void Precedence (VP)
[AMGOUD & BEN-NAIM 2013]

(2) Counter-Transitivity (CT) and Strict Counter-Transitivity (SCT) imply Defense Prece-
dence (DP) [AMGOUD & BEN-NAIM 2013]

(3) Counter Transitivity (CT) implies Non-attacked Equivalence (NaE)

(4) Counter Transitivity (CT) implies Ordinal Equivalence (OE)

(5) Strict Counter-Transitivity (SCT) and Ordinal Equivalence (OE) imply Counter-Transitivity
(CT)

(6) Strict Addition of Defense Branch (⊕DB) implies Addition of a Defense Branch (+DB)

(7) Argument Equivalence (AE) implies Non-attacked Equivalence (NaE)

(8) Ordinal Equivalence (OE) implies Non-attacked Equivalence (NaE)

(9) Void Precedence (VP) and Quality Precedence (QP) imply Attack vs Full Defense (AvsFD)

(10) Cardinality Precedence (CP) implies Addition of an Attack Branch (+AB)

Interestingly, even if each property aims to catch a particular behavior, some of them remain
connected. For example, if the properties SCT and OE are both satisfied, then one can directly
considered VP, DP, CT and NaE satisfied too.

4.3 Properties × Ranking-based semantics

We are now able to check which properties are satisfied by the ranking-based semantics
studied in this thesis. Recall that, among these ranking-based semantics, some of them (e.g.

α-burden-based semantics, the propagation semantics) are configurable with one or several pa-
rameters. Thus, two values of a parameter could give different rankings. It is why we consider
that a property is satisfied by these ranking-based semantics only if the property is satisfied for
all the values of a parameter.
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Figure 4.7 – Graph which represents the relation between properties (X → Y means that
X implies Y, X−6 −Y means that X and Y are not compatible and the properties into the red
rectangle cannot be simultaneously satisfied.)

Proposition 16. The properties that are satisfied by each ranking-based semantics (the other
properties 15 are not satisfied by the corresponding ranking-based semantics):

• The categoriser-based ranking semantics (Cat) satisfies Abs, In, VP, DP, CT, SCT, ↑AB,
↑DB, +AB, Tot, NaE, AE and OE.

• The discussion-based semantics (Dbs) satisfies Abs, In, VP, DP, CT, SCT, CP, ↑AB, ↑DB,
+AB, Tot, NaE, AE and OE.

• The burden-based semantics (Bbs) satisfies Abs, In, VP, DP, CT, SCT, CP, DDP, ↑AB,
↑DB, +AB, Tot, NaE, AE and OE.

• Let α ∈ ]0,+∞[. The α-burden-based semantics (α-Bbs) satisfies Abs, In, VP, DP, CT,
SCT, ↑AB, ↑DB, +AB, Tot, NaE, AE and OE.

• The fuzzy labeling (FL) satisfies Abs, In, CT, QP, Tot, NaE, OE and AvsFD.

• Let α ∈ ]0, 1[. The counting semantics (CS) satisfies Abs, VP, DP, CT, SCT, ↑AB, ↑DB,
+AB, Tot, NaE, AE and OE.

• Tuples-based semantics (Tuples) satisfies Abs, In, VP, +DB, ↑AB, ↑DB, +AB, NaE, AE,
OE and AvsFD.

• The ranking-based semantics M&T satisfies Abs, In, VP, +AB, SC, Tot, NaE and AvsFD.

• The iterated graded defense semantics (IGD) satisfies Abs, In, VP, +AB, and NaE.

15. except for the property AE with the semantics FL, M&T and IGD and the property OE with the semantics
IGD
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For a better reading, we do not include the proofs directly in the main text but we strongly
recommend to the reader to look at the Appendix B (page 145) where the proofs and the counter-
examples are detailed because this is really illuminating on the behavior of the different seman-
tics.

Let us now check which properties are satisfied by our propagation semantics.

Proposition 17. Let ⊕ ∈ {M,S} and ǫ ∈ ]0, 1].

• The ranking-based semantics Propaǫ,⊕ǫ satisfies Abs, In, VP, DP, ↑AB, ↑DB, +AB, NaE,
Tot and AE. The other properties are not satisfied.

• The ranking-based semantics Propaǫ,⊕1+ǫ satisfies Abs, In, VP, DP, DDP, ↑AB, ↑DB, +AB,
Tot, NaE, AE and AvsFD. The other properties are not satisfied.

• The ranking-based semantics Propaǫ,⊕1→ǫ satisfies Abs, In, VP, DP, DDP, +DB, ↑AB, ↑DB,
+AB, Tot, NaE, AE and AvsFD. The other properties are not satisfied.

Among the set of properties, some of them allow to make a distinction between the rankings
returned by the propagation semantics when the multiset or the set is used to select the attackers
or defenders.

Proposition 18. Let ǫ ∈ ]0, 1].

• The ranking-based semantics Propaǫ,Mǫ satisfies CT, SCT and OE.

• The ranking-based semantics Propaǫ,M1+ǫ satisfies CT, SCT and OE.

• The ranking-based semantics Propaǫ,M1→ǫ satisfies OE.

We also checked what are the properties satisfied by the usual Dung’s grounded seman-
tics which is the only semantics to return an unique extension for any argumentation frame-
work. The idea is to give some hints on the compatibility of these properties with classical
semantics. Note that, in this case, this is a degenerate ranking semantics with only two levels
(accepted/rejected):

Proposition 19. The grounded semantics (Gr) satisfies Abs, In, Tot, NaE, AE and AvsFD. The
other properties are not satisfied.

We summarize all the results obtained in this section in Table 4.3 where a cross × means
that the property is not satisfied, symbol X means that the property is satisfied, symbol XM

is specific to the propagation semantics and means that the property is only satisfied when
⊕ = M , symbol ? means that we do not know if the property is satisfied or not, and the shaded
cells highlight the results already proven in the literature.

4.4 Discussion

Several observations can be made regarding the properties and the results reported in Table
4.3:
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Properties Cat Dbs Bbs α-Bbs FL CS Propaǫ Propa1+ǫ Propa1→ǫ Tuples M&T IGD Gr
Abs X X X X X X X X X X X X X

In X X X X X × X X X X X X X

VP X X X X × X X X X X X X ×
DP X X X X × X X X X × × × ×
CT X X X X X X XM XM × × × × ×

SCT X X X X × X XM XM × × × × ×
CP × X X × × × × × × × × × ×
QP × × × × X × × × × × × × ×

DDP × × X × × × × X X × × × ×
SC × × × × × × × × × × X × ×
⊕DB × × × × × × × × × × × × ×
+DB × × × × × × × × X X × × ×
↑AB X X X X × X X X X X × × ×
↑DB X X X X × X X X X X × × ×
+AB X X X X × X X X X X × X ×
Tot X X X X X X X X X × X × X

NaE X X X X X X X X X X X X X

AE X X X X ? X X X X X × ? X

OE X X X X X X XM XM XM X × ? ×
AvsFD × × × × X × × X X X X × X

Table 4.3 – Properties satisfied by the ranking-based semantics studied in this thesis.

• Some properties seem to be widely shared by almost all semantics. It is the case of the
properties Abs, In, VP, +AB, Tot, NaE and AE. We recall that the input is a Dung’s abstract ar-
gumentation framework where there is no information about the nature of arguments (abstract
arguments), so only the attacks have to be taken into account, hence the importance of the prop-
erty Abstraction (Abs). Concerning the property Independence (In), it seems difficult to justify
the fact that an argument can influence other arguments without being linked, even indirectly, to
them. The only semantics which does not satisfy this property is the counting semantics which
needs the maximal indegree of the argument graph to guarantee the convergence. One of the
remarks, done from the rankings in Table 4.1 (pages 92), was that the non-attacked arguments
are often more acceptable than the attacked arguments. This observations is confirmed because
all the semantics (except FL) satisfy the property Void Precedence (VP).
Non-attacked Equivalence (NaE) and Argument Equivalence (AE) are satisfied by all semantics.
This is a kind of compatibility principle with usual Dung’s semantics (the grounded semantics
satisfies them too), where only your attackers should impact your ranking, not the arguments
you attack.
It is also interesting to note that almost all the semantics satisfy the property Total (Tot) which
can be a possible request (but not necessary) in applications like online debate platforms where
distinguishing all the arguments is necessary.
A last property satisfied by almost all semantics is +AB, which states that adding an attack
branch towards an argument degrades its level of acceptability. This also seems to be a per-
fectly natural requirement for ranking-based semantics: the more you have attackers, the less
acceptable you are. This property is one of the main reasons to explain the high degree of dis-
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similarity, observed in section 4.1, between the semantics FL, which does not satisfy +AB, and
all the other semantics.

• Some properties are compatible with the grounded semantics. One can note that Abs, In,
AE, NaE, Tot and AvsFD are satisfied by the grounded semantics. However, among the prop-
erties widely accepted by the ranking-based semantics, VP and +AB are not satisfied by the
grounded semantics. An explanation is related to the fact that the extension-based semantics
(and in particular the grounded semantics) consider that the impact of an attack from an argu-
ment to another one is drastic. In other words, the grounded semantics falsifies VP and +AB
because an attack can “kill” another argument (see the Killing principle in Section 2.1 page 36)
while the ranking-based semantics suppose that an attack does not “kill” but just weaken the
attacked argument. Thus, VP and +AB implicitly suppose that the ranking-based semantics sat-
isfied this principle (called Resilience in [AMGOUD & BEN-NAIM 2016]). However, these two
principles are not totally incompatible with grounded semantics to some extent. Indeed, as sug-
gested in [THIMM & KERN-ISBERNER 2014], a weak version of Void Precedence, which states
that non-attacked arguments should at least as acceptable as (and not strictly more acceptable)
attacked arguments, can also be defined.

Property 21 (Weak Void Precedence (WVP)). [THIMM & KERN-ISBERNER 2014]
A ranking-based semantics σ satisfies Weak Void Precedence if and only if for any AF =
〈A,R〉 and ∀x, y ∈ A, ifR1(x) = ∅ andR1(y) 6= ∅ then x �σ

AF y.

Clearly, Void Precedence implies Weak Void Precedence so all the semantics which satisfy
VP also satisfy WVP. But it is interesting to note that the grounded semantics satisfies WVP be-
cause the non-attacked arguments are always accepted but can be equal to some other attacked
arguments. Following the same reasoning, it might be interesting to define the weak version of
some other existing properties (e.g. DP, +AB).

• Some properties are very discriminatory and provide a classification of semantics. If some
incompatibilities between properties exist (see Proposition 13 page 103), some other properties
allow to separate the ranking-based semantics into sub-classes. It is the case with the seman-
tics which satisfy the properties (S)CT and the semantics which satisfy the properties AvsFD or
+DB. Indeed, one can remark that a semantics always belongs to at least one of these two groups
(except for Propa1+ǫ where all these properties are accepted). Different visions (without being
incompatible) concerning the defense are considered by these properties. The semantics which
satisfy AvsFD take care of the whole defense branches. Whereas for the semantics which satisfy
(S)CT, a defense branch (that still ends by an attack towards the argument) always penalizes it.

• More specific properties. As already mentioned, the properties operate at different levels.
There are “local” properties (e.g. CP, QP, DP, DDP, (S)CT) focusing on the direct attackers or
direct defenders, which can be justified in some situations, but seem hardly general (and some-
times impossible to reconcile with some global properties, as Proposition 13 page 103 shows).
Properties related to “change” (e.g. ⊕DB, +DB, ↑AB, ↑DB, +AB) seem very appealing because
they specify how the ranking should be affected on the basis of the comparison of attack and
defense branches. They allow, for example, to categorize the semantics according to the behav-
ior towards some basic requirements. These properties are also interesting because they allow
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to make a distinction between some semantics which satisfied the same “local” properties. It is
the case with the tuples-based semantics (Tuples), which satisfies +DB, ↑AB, ↑DB, +AB, and
the semantics M&T, which satisfies none of them.

• Defining axiomatically the least acceptable arguments is not obvious. Interestingly, while
all semantics agree axiomatically on which arguments should be the most acceptable in an ar-
gumentation framework (see the Void Precedence property), there is no consensus regarding
the least acceptable arguments. The Self Contradiction property (SC) is very interesting in that
respect. It makes the observation that a self-contradicting argument is intrinsically flawed, with-
out even requiring other arguments to defeat it. But, as can be observed, none of the semantics
comply with it, except the one from [MATT & TONI 2008] (M&T) who introduced the prop-
erty. The explanation is that all ranking-based semantics consider that an argument that attacks
itself is just a single path, like the other ones. So an argument which is attacked by itself (and
by no other argument) is more acceptable than an argument which is directly attacked several
times.
On the other hand, another possibility is when the properties +AB and ↑AB are satisfied to-
gether. Indeed, one can consider the least acceptable argument as the one which is directly
attacked by a maximum number (+AB) of non-attacked arguments (↑AB).

• The interplay of properties is often instructive. In section 4.2.3, we have identified some
implications and incompatibilities between properties. Let us focus, for example, on the re-
lation of incompatibility between VP and ⊕DB. One can easily remark that ⊕DB is more
general than +DB, and in a sense more natural: the property is stated for any cases, it does
not treat some arguments (the non-attacked arguments here) differently. But it contradicts
VP in this case. +DB is a less “systematic” property (it was the original one proposed in
[CAYROL & LAGASQUIE-SCHIEX 2005b]) but is compatible with VP : if one accepts that non-
attacked arguments should be the best (VP), then adding a defense branch cannot always im-
prove the situation of a given argument.

• This set of properties is yet to be augmented . . . This can be observed with the semantics
Categoriser, α-Burden-based semantics and Propaǫ,Mǫ which satisfy the same set of proper-
ties, whereas they have quite different definitions and behaviors, as it is revealed in Section
4.1 (except for Categoriser and α-Burden-based semantics when α = 1, which return similar
rankings). This means that some property is missing to discriminate these operators. In this di-
rection, [AMGOUD & BEN-NAIM 2016] have recently introduced a set of properties for scoring
semantics, aiming, in their words, to “set up the foundations of acceptability semantics”. Some
semantics like Abstraction (Abs) or Independence (In) are kept but other properties (e.g. Strict
Counter-Transitivity (SCT), Void Precedence (VP)) are deconstructed in several other “primi-
tive” properties. However, only Dung’s classical semantics and the categoriser-based ranking
semantics are studied.
. . . but some differences between semantics can be hardly caught with properties. Indeed, in
some cases, the differences between two semantics concern just a very specific part of an argu-
mentation framework or a subset of the argumentation frameworks. For example, the semantics
M&T does not satisfy the property Addition of an Attack Branch (+AB) because an argument
that attacks itself has the minimal score and adding an attack branch cannot decrease its score.
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But, if the self-attacks are not allowed, then the property would be satisfied. Another example
concerns the ranking-based semantics using a parameter to capture different notions. It is the
case for example with α-Burden-based semantics, where α allows to choose the degree of im-
portance between the quality and the quantity of the direct attackers, or with Propaǫ, where ǫ
controls the impact of the non-attacked arguments on the others arguments. We know that two
values of ǫ (or α) can lead to different rankings (see Table 4.1 page 92). Recall that in order to
consider a property satisfied by these particular semantics, the property must be satisfied for all
the values of the parameter. However, it seems difficult to capture these differences specific to
rankings with classical properties (either accepted or rejected). A possible solution could be to
define parametrized properties in order to capture these specific aspects.

4.5 Conclusion

In this chapter, we provided a general comparison of all ranking-based semantics studied in
this thesis with respect to all the properties of the literature. This study allows to understand
the similarities and the differences of behavior between the existing ranking-based semantics
revealed by our empirical comparison and which cannot be directly interpreted from the math-
ematical definition of each ranking-based semantics. However, following the previous discus-
sion, there is still work needed on this topic.
Concerning the properties, an ambitious goal would be to fully characterize classes of seman-
tics with respect to a subset of properties. Thus, a possible user would have the opportunity
to select a set of consistent properties (i.e. without incompatibility between properties) that
she thinks important to respect for a ranking-based semantics, and then checking which se-
mantics is the more appropriate according to her choice. In that sense, a preliminary work
[BESNARD et al. 2017, DAVID 2017] adapts and selects some existing properties in order to
build a “custom-made” ranking-based semantics which respects the principles caught by the
selected properties. For example, if one considers that the properties Void Precedence (VP),
Non-attacked Equivalence (NaE) and Cardinality Precedence (CP) should be satisfied, then
the ranking computed from the argumentation framework depicted in Figure 4.8, in using the
ranking-based semantics associated, should be: c ≃ d ≻ b ≻ a.

a

b

d

c NaE : c ≃ d

VP : c ≻ b, c ≻ a, d ≻ b, d ≻ a

CP : c ≻ b ≻ a, d ≻ b ≻ a

c ≃ d ≻ b ≻ a

Figure 4.8 – How properties selected by the user constrain the resulting ranking

We could also imagine another process where the user does not need to know the properties.
To do this, it could be interesting to ask her to directly rank/order the arguments in a given
argumentation framework from the most to the least acceptable ones. From the results, the goal
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would be to infer which properties she wants to satisfy and thus propose her an appropriate
ranking-based semantics.

Concerning the ranking-based semantics, this comparative study also allows to know which
kind of semantics (and especially their behavior) exists or not. Our analysis is applied to exist-
ing semantics which provide a good basis for comparison, and thus, with the rising number of
ranking semantics, any new ranking-based semantics could be inspected through the same lens.

Finally, in Section 4.1, we explained that we developed a software which allows to compute
the ranking of existing ranking-based semantics (Cat, Dbs, Bbs, α-Bbs, FL, CS and the prop-
agation semantics). But, in order to avoid the accumulation of softwares, we plan to directly
include our software in an existing software (e.g. CoQuiAAS [LAGNIEZ et al. 2015]).
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Chapter 5

Ranking-based Semantics for Persuasion

In the previous chapter, many ranking-based semantics were compared on the basis of prop-
erties. However, the relevance of some properties may be very much dependent on the context
of application. What is often missing to compare these approaches is thus a clear indication of
the applications they target.

In this chapter, we question the ability of the existing ranking-based semantics for argumen-
tation to capture persuasion settings, emphasizing in particular the phenomena of protocatalep-
sis (the fact that it is often efficient to anticipate the counter-arguments of the audience), and
of fading (the fact that long lines of argumentation become ineffective). It turns out that some
widely accepted principles of ranking-based semantics are incompatible with a faithful treat-
ment of these phenomena. We thus propose a parametrized ranking-based semantics based on
the propagation of values, which allows to control the scope of arguments to be considered for
evaluation. We investigate its properties (identifying in particular threshold values guaranteeing
that some properties hold), and report experimental results showing that the family of rankings
that may be returned have a high coherence rate.

This chapter develops the results from [BONZON et al. 2017a, BONZON et al. 2017b]
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5.1 Persuasion principles

In the previous chapter, we explained that checking which properties are satisfied or not by
a given ranking-based semantics allows to better understand its behavior. But, this also makes
it possible to decide what semantics is more suited for a given application. Indeed, in a specific
context, it seems necessary to satisfy or not some subset of properties in order to obtain an
appropriate ranking. For example, for online debate platforms, satisfying the property Total
(Tot) may seem natural to ensure the comparison between all the arguments and thus guarantee
a result to the users. Conversely, for the same platforms where votes are assigned to each
argument and represent their social support, a possibility would be to reward a more aggressive
non-attacked argument. Thus, such property like Non-attacked Equivalence (NaE), considering
that all the non-attacked arguments should be equally acceptable, should not be satisfied.

In this chapter, we want to focus on a specific context in argumentation: persuasion. Per-
suasion is an activity that involves one party (the persuader) trying to induce another party (the
persuadee) to believe or do something.

We shall concentrate on two well documented phenomena in persuasion and draw a parallel
between each of them and existing properties for ranking-based semantics.

Procatalepsis

Procatalepsis, or prolepsis, is a figure of speech in which the speaker raises an objection to
their own argument and then immediately answers it. The goal is to strengthen this argument by
dealing with possible counter-arguments before their audience can raise them [WALTON 2007].
To illustrate this, we extend an example from [BESNARD & HUNTER 2008, p.85]: a (made-up)
sales pitch intended to persuade to buy a specific car. The representation of this example as
argumentation framework is depicted in Figure 5.1.

(a1) The car x is a high performance family car with a diesel engine and a price of 32000

(a2) In general, diesel engines have inferior performance compared with gazoline engines

(a3) But, with these new engines, the difference in performance [...] is negligible

(a4) In addition, even if the price of the car seems high

(a5) It will be amortized because the Diesel engines run longer before breaking than any other
kind of engines.

a1a2a3

a4a5

Figure 5.1 – Argumentation framework illustrating a (made-up) sales pitch using the procatalep-
sis principle
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In this kind of persuasion contexts, it is clearly more convincing to state the more plausi-
ble counter-argument to (a1) in order to provide some convincing defenses against them, than
simply stating (a1) alone. These anticipations allow to persuade the interlocutor that any attack
against (a1) is vain. In addition, it becomes difficult to the persuadee to find arguments against
(a1) if the persuader anticipate most of them. Thus, in term of ranking, (a1) with several defense
branches could be seen as strictly more acceptable than (a1) without any branch.
What is striking is that procatalepsis blatantly contradicts the property Void Precedence (VP),
considering that a non-attacked argument is strictly more acceptable than an attacked argument.
Recall that, as remarked in the discussion part of the previous chapter, this property is satisfied
by almost all the existing ranking-based semantics (or by all the ranking-based semantics if
we include its weak version WVP defined in Property 21 (page 205) which is satisfied by FL
and the grounded semantics). Thus, no ranking-based semantics has yet been proposed where
(Weak) Void Precedence is not satisfied. So there exists no ranking-based semantics which can
capture the procatalepsis principle.

Fading

The fading principle states that long lines of argumentation become ineffective in practice,
because the audience easily looses track of the relation between the arguments.

a1a2a3a4a5a6a7a8

Figure 5.2 – Argumentation framework with a long line of arguments

In focusing on the argumentation framework depicted in Figure 5.2, the fading principle
concerns the limit until which the length of path between an argument and another one is too
long to have an impact on the targeted argument. For example, if one considers that the argu-
ments situated at the beginning of the paths with a length greater or equal to 5 have no impact
on a given argument, then arguments a6, a7 and a8 have no impact on a1. This limit is however
not “radical” in the sense that before the limit, the arguments have the same impact and, after
the limit, the arguments have no impact. Indeed, we think that a closer attacker (respectively,
defender) of an argument has more effect than a further one on the argument. For example,
argument a2 should have more impact on a1 than any other argument because a2 is the direct
attacker of a1. So, the impact is gradually reduced when the length of the path between two
arguments increases.
In practice, this principle is supported by the work of [TAN et al. 2016] which shows (in the
context of their study, an extensive analysis of persuasive debates which took place on the sub-
reddit “ChangeMyView” 16), that arguments located at a distance greater than 10 from another
argument, have no impact in the debate.
While some ranking semantics incorporate features which can be used to discount the strength
of arguments relatively to their distance, this is not the case of all semantics.

16. https://www.reddit.com/r/changemyview/
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While our method is general, we shall also pay special attention to tree shaped argumen-
tation frameworks where an argument a, called targeted argument, has only defense branches
(i.e. B−(x) = ∅ and B+(x) 6= ∅). Such frameworks will be called persuasion pitches. The
argumentation framework depicted in Figure 5.1 is an example of persuasion pitch with a1 as
targeted argument.

5.2 Ranking-based semantics taking into account the persua-

sion principles

In this section, our goal is to build a ranking-based semantics which allows to catch the
procatalepsis principle and the fading effect. For the fading effect, a solution could be to use an
attenuation factor to gradually decrease the impact of arguments. It is the method used by the
counting semantics [PU et al. 2015c] with the damping factor α.
For the procatalepsis principle, we want that an attacked argument with many defense roots
(like a1 in Figure 5.1) can be more acceptable than a non-attacked argument. To achieve this, a
solution could be to only take into account the defense roots and the attack roots of an argument.
Indeed, if we consider that a defense (respectively, attack) root has a positive (respectively,
negative) effect on an argument, then, after a number of defense root (which can be catch by a
parameter), this argument could be more acceptable than a non-attacked argument.

5.2.1 Propagation with attenuation

We propose to adapt the propagation principle introduced in Chapter 3, Section 3.2 with
the elements previously put forward. Recall that the idea of propagation is to assign a positive
initial value to each argument in the argumentation framework (arguments may start with the
same initial value or start with distinct values where non-attacked arguments have greater value
than attacked ones). Then each argument propagates its value into the argumentation frame-
work, alternating the polarity according to the considered path (negatively if it is an attack path,
positively if it is a defense one).
But, in order to catch the persuasion principle, we formally redefine the propagation principle
by including a damping factor δ which allows to decrease the impact of attackers situated further
away along a path (the longer the path length i, the smaller the δi).

Definition 5.2.1 (Attenuated propagation).
Let 〈A,R〉 be an argumentation framework. The valuation P of x ∈ A, at step i, is given by:

P ǫ,δ
i (x) =







vǫ(x) if i = 0

P ǫ,δ
i−1(x) + (−1)iδi ∑

y∈RS
i (x)

vǫ(y) otherwise

with δ ∈ ]0, 1[ be an attenuation factor and vǫ : A → R
+ is a valuation function giving an

initial weight to each argument, with ǫ ∈ [0, 1] such that ∀y ∈ A,

vǫ(y) =

{
1 ifRS

1 (y) = ∅
ǫ otherwise
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One can remark that the parameter ⊕, allowing to make a distinction between the use of
the set (⊕ = S) or the multiset (⊕ = M ) to select the attackers or defenders of an argument,
is missing in the previous definition compared to the original definition of the propagation
principle (see Definition 3.2.2 page 78). Indeed, in this new definition, we choose to only use
the set (⊕ = S) to guarantee a result to the method. We will provide more details about this
point further in the section.

a b

cd

e

f

Figure 5.3 – The argumentation framework AF1

Example 5.2.1. Let us compute the valuation P of each argument in AF1, depicted in Figure
5.3, when ǫ = 0.5 and δ = 0.4. The results, at each step, are given in Table 5.1.
Let us focus on the argument f . One can see that f begins with an initial weight of 0.5 because
it is attacked,

P 0.5,0.4
0 (f) = 0.5

Then, during the step i = 1, it negatively receives the value attenuated by δ and sent by its direct
attacker d which is also attacked,

P 0.5,0.4
1 (f) = P 0.5,0.4

0 (f)− 0.4× v0.5(d) = 0.3

During the second step (i = 2), it positively receives the weights from a and c attenuated by δ2,

P 0.5,0.4
2 (f) = P 0.5,0.4

1 (f) + 0.42 × (v0.5(a) + v0.5(c)) = 0.46

When i = 3, it negatively receives the weight of 1 from b and the weight of 0.5 from e attenuated
by δ3,

P 0.5,0.4
3 (f) = P 0.5,0.4

2 (f)− 0.43 × (v0.5(b) + v0.5(e)) = 0.364

And so on and so forth.

The following proposition answers the question of convergence of the valuation P . The
convergence is guaranteed by the use of the damping factor, but also because the set of argu-
ments which attack or defend an argument for a given length of path is finite and limited by
the number of arguments in an argumentation framework. It is why the use of the multiset is
impossible here, because when a high number of cycles exists, the multiset of arguments can
increase very fast with respect to the length of the considered path and the damping factor (even
small) is not enough to guarantee the convergence of the formula.

Proposition 20. Let 〈A,R〉 be an argumentation framework, δ ∈ ]0, 1[ and ǫ ∈ ]0, 1]. For all
x ∈ A, the sequence {P ǫ,δ

i (x)}+∞i=0 converges.
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P 0.5,0.4
i a b c d e f

0 0.5 1 0.5 0.5 0.5 0.5
1 -0.1 1 0.1 0.1 0.3 0.3
2 -0.02 1 0.1 0.34 0.38 0.46
3 -0.052 1 0.1 0.308 0.316 0.364
...

...
...

...
...

...
...

14 -0.0402 1 0.1 0.3161 0.3506 0.3736

Table 5.1 – Computation of the valuation P of each argument from AF1 when ǫ = 0.5 and
δ = 0.4

Let us now compute the propagation number of an argument in using a fixed-point iteration
(the outcome is guaranteed with the previous proposition).

Definition 5.2.2 (Propagation number).
Let 〈A,R〉 be an argumentation framework, δ ∈ ]0, 1[ and ǫ ∈ ]0, 1]. The propagation number

of an argument x ∈ A is:
P ǫ,δ(x) = lim

i→+∞
P ǫ,δ
i (x)

Example 5.2.1 (cont.). The propagation number of each argument in AF1 is represented in
the shaded cell in Table 5.1. Thus, P 0.5,0.4(a) = −0.0402, P 0.5,0.4(b) = 1, P 0.5,0.4(c) = 0.1,
P 0.5,0.4(d) = 0.3161, P 0.5,0.4(e) = 0.3506 and P 0.5,0.4(f) = 0.3736.

5.2.2 Variable-depth propagation

Let us now define a ranking-based semantics using the propagation number and taking into
consideration the persuasion principles. As said in the introduction of this section, a solution
to catch the procatalepsis principle is to only take into account the roots of the arguments.
Formally, it is possible when ǫ = 0. Indeed, in this case, non-attacked arguments propagate their
weights (=1) in the argumentation graph, while attacked arguments have a weight of 0. Thus,
the propagation number of each argument is only based on the value received by their attack or
defense roots. Any pairwise strict comparison (based on propagation number) resulting from
this process is fixed.
A second phase can be necessary to break ties among arguments equally valued in the first
phase. For example, with the argumentation framework represented in Figure 5.4, a1 and b1
have the same propagation number when ǫ = 0: P 0,δ(a) = P 0,δ(b) = 2δ2. However, b1
is directly attacked only once while a1 is directly attacked twice, so one can consider that b1
should be more acceptable than a1. So, finally, we re-run the propagation phase, this time setting
an initial weight ǫ 6= 0 in order to take into account the attacked arguments.

Definition 5.2.3 (Variable-Depth Propagation).
Let ǫ ∈ ]0, 1] and δ ∈ ]0, 1[. The ranking-based semantics Variable-Depth Propagation vdpǫ,δ

associates to any argumentation framework AF = 〈A,R〉 a ranking�vdp
AF onA such that ∀x, y ∈

A,

x �vdp
AF y if and only if P 0,δ(x) > P 0,δ(y) or (P 0,δ(x) = P 0,δ(y) and P ǫ,δ(x) ≥ P ǫ,δ(y))
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a1a2a3

a4a5

b3

b4

b2 b1

Figure 5.4 – Two arguments a1 and b1 with the same propagation number when ǫ = 0

Example 5.2.1 (cont.). According to the previous definition, we need first to compute the prop-
agation number of each argument with ǫ = 0. Argument b is the only non-attacked argu-
ment, so the propagation number of each argument is only based on the value that it propa-
gates (the valuations of each argument at each step is given in Table 5.2). It is why, until step
i = 3, e has a valuation of 0, but during step i = 4, it receives a positive value from b, so
P 0,0.4
4 (e) = 0.44 × v0(b) = 0.0256.

We obtain the following propagation numbers: P 0,0.4(a) = −0.4105, P 0,0.4(b) = 1, P 0,0.4(c) =
−0.4, P 0,0.4(d) = 0.1642, P 0,0.4(e) = 0.0263 and P 0,0.4(f) = −0.0657.
Thus, in comparing them, we obtain the following ranking:

b ≻ d ≻ e ≻ f ≻ c ≻ a

Note that no arguments are equally acceptable here, so it is not necessary to perform the second
phase. Thus, ∀ǫ ∈ ]0, 1], vdpǫ,0.4 returns:

b ≻vdp d ≻vdp e ≻vdp f ≻vdp c ≻vdp a

P 0,0.4
i a b c d e f

0 0 1 0 0 0 0
1 -0.4 1 -0.4 0 0 0
2 -0.4 1 -0.4 0.16 0 0
3 -0.4 1 -0.4 0.308 0 -0.064
4 -0.4 1 -0.4 0.308 0.0256 -0.064
...

...
...

...
...

...
...

14 -0.4105 1 -0.4 0.1642 0.0263 -0.0657

Table 5.2 – Computation of the valuation P of each argument from AF1 when ǫ = 0 and δ = 0.4

Let us give another example where the second phase is needed to distinguish two arguments.

Example 5.2.2. Let us compute the ranking returned by vdp0.5,0.4 for the argumentation frame-
work depicted in Figure 5.4, in beginning by the case ǫ = 0 and then the case ǫ = 0.5 (see
Figure 5.5).

According to the definition of vdp, we first compare the propagation number of each argu-
ment when ǫ = 0, and we obtain the following ranking:

a3 ≃ a5 ≃ b3 ≃ b4 ≻ a1 ≃ b1 ≻ a2 ≃ a4 ≻ b2
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P 0,0.4
i a3, a5, b3, b4 a2, a4 b2 a1 b1
0 1 0 0 0 0
1 1 -0.4 -0.8 0 0
2 1 -0.4 -0.8 0.32 0.32

P 0.5,0.4
i a3, a5, b3, b4 a2, a4 b2 a1 b1

0 1 0.5 0.5 0.5 0.5
1 1 0.1 -0.3 0.1 0.3
2 1 0.1 -0.3 0.42 0.62

Figure 5.5 – Valuation P for each argument in the argumentation framework depicted in Figure
5.4 when ǫ = 0 (left) and when ǫ = 0.5 (right) with δ = 0.4

We can see that some arguments still equally acceptable, in particular a1 and b1. So, according
to the definition of vdp, we restart the process with a non-zero ǫ (here ǫ = 0.5):

a3 ≃vdp a5 ≃vdp b3 ≃vdp b4 ≻vdp b1 ≻vdp a1 ≻vdp a2 ≃vdp a4 ≻vdp b2

With this second process, a1 and b1 can be distinguished. Indeed, they have two defense
branches of length 2, so during the first step, they receive the same values from their defense
roots. But, one can remark that a1 is directly attacked twice while b1 is directly attacked once.
So, during the second process, which taking into account the attacked arguments, a1 receives
one more negative value than b1 (P 0.5,0.4

1 (a1) = 0.1 < 0.3 = P 0.5,0.4
1 (b1).

5.3 Influence of the parameters

The definition of the propagation number (see Definition 5.2.2 page 118) is based on two
parameters independent of the argumentation framework: ǫ and δ. Let us, in this section, charac-
terise their roles and their impacts on the ranking computed with the variable-depth propagation.

Recall that the parameter ǫ has a key role to distinguish the two phases aiming to compute
the ranking between arguments. However, a concern might be that the value of ǫ might change
the ranking obtained. We show that this is not the case:

Proposition 21. Let δ ∈ ]0, 1[ and ǫ, ǫ′ ∈ ]0, 1]. For any argumentation framework AF ,

vdpǫ,δ(AF ) = vdpǫ′,δ(AF )

Please note that even if different values of ǫ do not change the ranking, it is necessary to keep
it in the process in order to make a distinction between non-attacked and attacked arguments
(see Definition 5.2.1 about the valuation function vǫ). However, this is a purely internal artifact
without any effect on the outcome of the method. To make this clear, we note vdpδ instead of
vdpǫ,δ to describe our parametrized ranking semantics in general.

5.3.1 Controlling the scope of influence of the arguments

The parameter δ is defined as the damping factor allowing to decrease the impact of the
argument when the length of the path increase. Following this, there intuitively exists a length
such that the impact of arguments situating at the beginning of this path is negligible compared
to the nearest arguments. Thus, the role of this parameter is to choose the scope of influence
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of the arguments in the argumentation framework, in addition to allow the convergence of the
valuation P . For instance, with a value of δ close to 0, only the nearest arguments (so a little
part of the argumentation framework) are taken into consideration to compute the different
propagation numbers, whereas with a value of δ close to 1, (almost) all the argumentation
framework will be inspected. Consequently, two different values of δ can produce different
rankings for a same argumentation framework. Following the principle of the fading effect, it
is natural to assume that arguments located at a long distance from another argument become
ineffective. In terms of design, it seems very interesting to have the ability to control this
parameter so as to specify a maximal depth after which arguments see their influence on the
value of others vanish.

To better understand how to take the fading principle into account in using δ, let us detail
the algorithm used to compute the propagation numbers.

1) A positive number is assigned to each argument: ∀a ∈ A, P ǫ,δ
0 (a) = 1 if a is non-attacked

or P ǫ,δ
0 (a) = ǫ otherwise,

2) We increase the step i by 1 and we add (or subtract) the score computed during the pre-
vious step (P ǫ,δ

i−1(a)) and the attenuated weights (vǫ and δi) received from defenders (or
attackers) at the beginning of a path with a length of i (RS

i (a)):

P ǫ,δ
i (a) = P ǫ,δ

i−1(a) + (−1)iδi
∑

b∈RS
i (a)

vǫ(b)

3) If, between two steps, the difference, for all the valuations P , is smaller than a fixed
precision threshold µ (i.e. ∀a ∈ A, |P ǫ,δ

i (a)−P ǫ,δ
i−1(a)| < µ) then the process is stopped 17

and the last values correspond to the propagation number of each argument. If it is not
the case, we go back to 2).

Thus, given a precision threshold, one can choose δ according to the maximal expected depth.

Proposition 22. Let AF = 〈A,R〉 be an argumentation framework, i ∈ N\{0} be the maximal

depth and µ be the precision threshold. If δ < i

√
µ

max
a∈A

(|RS
i (a)|)

then, for all a ∈ A, the sequence

{P ǫ,δ
i (a)}+∞i=0 converges before step i+ 1.

Example 5.3.1 (cont.). Consider the argumentation framework AF1 depicted in Figure 5.3
(page 117). Suppose that one considers that the maximal depth should be 5. In using the pre-

vious formula with a precision µ = 0.0001, then δ should be smaller than 5

√
0.0001

2
≃ 0.1379.

Thus, a value close to this limit, for instance δ = 0.137, ensures that only the arguments until a
depth of 5 (included) are considered.

Using the formula in Proposition 22, we can determine, for each maximal depth, which
value of δ used. For example, Figure 5.6 represents the arguments which propagate their initial
value to f (from AF1 illustrated in Figure 5.3) before the convergence and the associated interval
of values of δ. One can remark that AF1 contains a cycle 〈a, d, f, e, a〉, it is why f can receive
(according to the value of δ) a value from itself.

17. In practice, we consider that a process is finished when, for each valuation, the difference between two steps
is smaller than a precision threshold.
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f d a

c

e

b

f d a

c

e

b

f . . .

δ < 0.007
δ ≥ 0.007

δ < 0.037

δ ≥ 0.037

δ < 0.084

δ ≥ 0.084

δ < 0.137

δ ≥ 0.137

δ < 0.192

δ ≥ 0.192

δ < 0.243

δ ≥ 0.243

δ < 0.289

Figure 5.6 – Arguments which propagates their value to f according to the value of δ.

If Proposition 22 allows to select an appropriate δ in order to capture a given maximal ex-
pected depth (representing the fading effect), a legitimate question could concern the interval
of values of δ to ensure the convergence at a specific depth i. However, it is not possible to
answer this question in the general case, because of the diversity of argumentation frameworks.
For example, suppose that one wants to consider a length up to 5 (no more no less). With an
argumentation frameworks without cycle and with a maximal path smaller than 5, the process
will be obviously stopped before. Thus the condition cannot be respected. It is why, we only
focus on the maximal depth.

Finally, we can also find a computational advantage to represent the fading effect. Indeed,
as the number of steps needed to find the propagation number of each argument is smaller as if
we need to browse all the argumentation framework, the ranking is computed faster.

5.3.2 On the diversity of rankings

As shown in Figure 5.7, for a same argumentation framework, different values of δ can
produce different rankings. Indeed, when δ ∈ {0.0001, 0.2, 0.4, 0.6}, vdpδ provides the same
ranking. However, when δ ≥ 0.8, c becomes more acceptable than f and d becomes more
acceptable than b.

a b

cd

e

f

δ vdpδ

0.0001

b ≻ d ≻ e ≻ f ≻ c ≻ a
0.2

0.4

0.6

0.8 d ≻ b ≻ e ≻ c ≻ f ≻ a

0.9 d ≻ e ≻ b ≻ c ≻ f ≻ a

Figure 5.7 – An argumentation framework and the rankings returned by vdpδ for different values
of δ
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In light of these differences, one may be worried that the diversity of rankings could be so
high that the semantics becomes too sensitive to small modifications of the parameter δ. To
check this, we applied the same method used in Chapter 4, Section 4.1 to compare the rankings
returned by existing ranking-based semantics. Thus, we applied our variable-depth propaga-
tion on the same 1000 randomly generated argumentation frameworks for different values of
δ ∈ {0.001, 0.2, 0.4, 0.6, 0.8, 0.9}. Then, we measure the dissimilarity degree between two
rankings from two different values of δ in using the Kendall’s tau coefficient (see Definition
4.1.1 page 95) which returns a value between 0 (both rankings are similar) and 1 (both rankings
are opposite).

The Table 5.3 contains, for each pair of δ, the average Kendall’s tau coefficient, from the
results previously computed, that we multiply by 100 to obtain a percentage of dissimilarity.

δ 0.001 0.2 0.4 0.6 0.8 0.9

0.001 0 0.06 0.55 4.09 10.62 13.74

0.2 0.06 0 0.52 4.13 10.63 13.64

0.4 0.55 0.52 0 3.71 10.13 13.3

0.6 4.09 4.13 3.71 0 6.82 9.86

0.8 10.62 10.63 10.13 6.82 0 3.16

0.9 13.74 13.64 13.3 9.86 3.16 0

Table 5.3 – Percentage of dissimilarity between the rankings from vdpδ with different values of
δ

The results show that the obtained rankings stay pretty close since the biggest dissimilarity
between the smallest and largest value of δ is 13.74%. This dissimilarity remains overall very
small, showing that the semantics remain quite stable as the parameter varies.
The goal is now to understand if these differences are only caused by the fading effect or if δ
has an impact on other domains too.

5.4 Properties satisfied by vdp

We now investigate the properties satisfied by our variable-depth propagation semantics
vdp. We start by inspecting the case of Void Precedence, before checking other properties
discussed in the literature.

5.4.1 Void Precedence

One of the very distinctive feature of vdp is that an attacked argument can have a better
score (and so a better rank) than a non-attacked argument. Indeed, when a given argument
has many defense branches, it receives many positive weights. However, as depicted with the
following example, this feature is not guaranteed for all the value of δ.
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Example 5.4.1. Let us compute the rankings of the argumentation framework, which repre-
sents the sales pitch aiming to persuade someone to buy a car used to explain the procatalepsis
principle (see Section 5.1), in using variable-depth propagation with several values of δ. The
result are given in Figure 5.8.

a1a2a3

a4a5

δ vdpδ

0.0001

a5 ≃ a3 ≻ a1 ≻ a2 ≃ a4
0.2

0.4

0.6

0.8
a1 ≻ a5 ≃ a3 ≻ a2 ≃ a4

0.9

Figure 5.8 – The different rankings computed with vdp for several values of δ applying to an
argumentation framework

Indeed, one can remark that the non-attacked argument a3 (respectively a5) is strictly more
acceptable than all the attacked arguments when δ ∈ {0.0001, 0.2, 0.4, 0.6} but a1 becomes
strictly more acceptable than a3 (respectively a5) for the value of δ ∈ {0.8, 0.9}. Thus, accord-
ing to the choice of δ, this argument, which is attacked, can obtain a greater score than the score
of non-attacked arguments.

Let us formally determine which are, for a given argumentation framework, the values of δ
which ensure that the non-attacked arguments are more acceptable than the attacked arguments:

Proposition 23. Let AF = 〈A,R〉 be an argumentation framework and x, y ∈ A such that
RS

1 (x) = ∅ andRS
1 (y) 6= ∅.

If δ < δM such that δM =
√

1
maxz∈A(|RS

2 (z)|)
then P 0,δ(x) > P 0,δ(y)

De facto, there exists a threshold for the parameter δ which VP is satisfied. Let us recall its
formal definition.
Void Precedence (VP) A non-attacked argument is ranked strictly higher than any attacked
argument: R1(a) = ∅ andR1(b) 6= ∅ ⇒ a ≻ b

Corollary 1. For any argumentation framework, if δ < δM then vdpδ satisfies VP.

Example 5.4.1 (cont.). The argument a1 has the highest number of direct defenders with
|RS

2 (a1)| = 2. The value of δ should be δ < δM =
√

1/2 ≃ 0.7071 if one wants to sat-
isfy VP.
So if δ = 0.7, we obtain P 0,0.7(a1) = 0.98, P 0,0.7(a2) = P 0,0.7(a4) = −0.7 and P 0,0.7(a3) =
P 0,0.7(a5) = 1 when ǫ = 0 and P 0.5,0.7(a1) = 0.78, P 0.5,0.7(a2) = P 0.5,0.7(a4) = −0.2 and
P 0.5,0.7(a3) = P 0.5,0.7(a5) = 1 when ǫ = 0.5. These results allow to obtain the following rank-
ing, which shows that the non-attacked arguments are strictly more acceptable than the attacked
arguments:

a3 ≃ a5 ≻ a1 ≻ a2 ≃ a4
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Thus, our method departs from other approaches in its treatment of the Void Precedence
property, but to a certain extent only. For instance, in a persuasion pitch, a single line of defense
is not enough to be more convincing than a non-attacked argument. On the other hand, when
this condition is met, a simple condition for the violation of VP in persuasion pitches can be
stated:

Proposition 24. Let PP = 〈A,R〉 be a persuasion pitch with x ∈ A as the targeted argument
and y ∈ A be a non-attacked argument. Then,

(i) if |B+(x)| < 2 then y ≻vdp
PP

x;

(ii) if |B+(x)| ≥ 2 and δ > m

√
1

|B+(x)|
with m the length of the longest defense branch of x

then x ≻vdp
PP

y.

Interestingly, it turns out that in the context of our method, the Void Precedence property is
related to the property: Defense Precedence. Let us recall its formal definition:
Defense Precedence (DP) For two arguments with the same number of direct attackers, a de-
fended argument is ranked higher than a non-defended argument:

|R1(a)| = |R1(b)|,R2(a) 6= ∅ andR2(b) = ∅ ⇒ a ≻ b

Proposition 25. If vdpδ satisfies VP then it satisfies DP.

Note that this is not the case in general (some ranking-based semantics satisfy VP but not
DP).

5.4.2 Other properties

Let us now check which properties, among those defined in this thesis 18, are satisfied by the
variable-depth propagation semantics vdp:

Proposition 26. Let δ ∈ ]0, 1[. vdpδ satisfies Abs, In, Tot, NaE, +AB, AE and AvsFD. The
other properties are not satisfied.

Some global properties like +DB, ↑DB and ↑AB are not satisfied because of the fading
effect. Indeed, when the branch, which is added or extended, is too long, the arguments at the
end of this branch have no impact on the targeted argument. It is why we propose to define
the corresponding properties (+DBi, ↑DBi and ↑ABi) which capture the same idea but with the
additional condition that the property holds when the maximal length of the branch is i.
Formally, we need to redefine how an attack or a defense branch is added:

Definition 5.4.1 (Attack and defense branch added to an argument with a limited length).
Let AF = 〈A,R〉 be an argumentation framework, x ∈ A be an argument and i ∈ N

∗ be a
length. The defense branch added to x is P+

i (x) = 〈A′,R′〉, with A′ = {x0, . . . , xn} such that
n ∈ 2N and n ≤ i, x0 = x, A ∩ A′ = {x}, and R′ = {(xi, xi−1) | i ≤ n}. The attack branch
added to x, denoted P−i (x) is defined similarly except that the sequence is of odd length (i.e.
n ∈ 2N+ 1).

18. The complete list of properties studied in this thesis is reproduced in Appendix D
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We are now able to define the “i-version” of +DB, ↑DB and ↑AB.

Property 22 (Addition of a Defense Branch with a maximal length i (+DBi)).
Let i ∈ N

∗. A ranking-based semantics σ satisfies i-addition of a defense branch if and only if
for any AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ),
if AF ⋆ = AF ∪ AF ′ ∪ P+

i (γ(x)) andR1(x) 6= ∅, then γ(x) ≻σ
AF⋆ x.

Property 23 (Increase of an Attack Branch with a maximal length i (↑ABi)).
Let i ∈ N

∗. A ranking-based semantics σ satisfies i-increase of an attack branch if and only if
for any AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ),
if ∃y ∈ B−(x), y /∈ B+(x) and AF ⋆ = AF ∪ AF ′ ∪ P+

i (γ(y)), then γ(x) ≻σ
AF⋆ x.

Property 24 (Increase of a Defense Branch with a maximal length i (↑DBi)).
Let i ∈ N

∗. A ranking-based semantics σ satisfies i-increase of a defense branch if and only if
for any AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ),
if ∃y ∈ B+(x), y /∈ B−(x) and AF ⋆ = AF ∪ AF ′ ∪ P+

i (γ(y)), then x ≻σ
AF⋆ γ(x).

Consequently, for a given maximal depth i, it is enough to choose a value of δ large enough
to guarantee that the sequence converges (see Proposition 22 page 121) after taking into account
the added or extended branch. As we want that vdp satisfies these properties for all argumenta-
tion frameworks, we need to take the largest value of δ. Thus, according to the proposition, if µ
and i are fixed, this happens when max

a∈A

(
|RS

i (a)|
)

is minimal so when δ < i
√
µ.

Proposition 27. Let µ be a precision threshold and i the expected maximal length.

If δ ∈ ]δm, 1[ such that δm = i
√
µ then vdpδ satisfies also +DBi, ↑DBi and ↑ABi

All these results are reported in Table 5.4 (page 127) which is the continuation of Table
4.3 (page 107), which sums up the properties satisfied by the others existing ranking-based se-
mantics. Recall that a cross ×means that the property is not satisfied, symbol Xmeans that the
property is satisfied, symbol ? means that we do not know if the property is satisfied or not,
symbol XM is specific to the propagation semantics and means that the property is only satis-
fied when ⊕ = M , and Xi means that the i-version of the property (cf Property 27 page 126) is
satisfied. Shaded cells are results proved in this chapter.

We first remark that for any value of δ, vdp satisfies the properties accepted by almost all
the existing ranking-based semantics (Abs, In, +AB, NaE, AE and Tot). The only exception
concerns VP, but it is intended by design and discussed earlier. We can also note that vdp

always satisfies property AvsFD, and for a specific δ (δm < δ) the property +DB. These three
conditions are necessary to catch the procatalepsis principle. Indeed, AvsFD and +DB states
that increasing the number of defense branches improve the acceptability of an argument, and
the failure to satisfy VP is necessary to allow the attacked arguments to become more acceptable
than non-attacked arguments.
It is clear that, like the Tuples-based semantics, the “local” properties like CT, SCT, CP, QP,
DDP or SC cannot be satisfied by our semantics which mainly focus on the branch and not only
on the direct attackers and direct defenders.
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Properties Cat Dbs Bbs α-Bbs FL CS Propaǫ Propa1+ǫ Propa1→ǫ Tuples M&T IGD vdpδ vdpδ′ vdpδ′′

Abs X X X X X X X X X X X X X X X

In X X X X X × X X X X X X X X X

VP X X X X × X X X X X X X × × X

DP X X X X × X X X X × × × × × X

CT X X X X X X XM XM × × × × × × ×
SCT X X X X × X XM XM × × × × × × ×
CP × X X × × × × × × × × × × × ×
QP × × × × X × × × × × × × × × ×

DDP × × X × × × × X X × × × × × ×
SC × × × × × × × × × × X × × × ×
⊕DB × × × × × × × × × × × × × × ×
+DB × × × × × × × × X X × × × Xi Xi

↑AB X X X X × X X X X X × × × Xi Xi

↑DB X X X X × X X X X X × × × Xi Xi

+AB X X X X × X X X X X × X X X X

Tot X X X X X X X X X × X × X X X

NaE X X X X X X X X X X X X X X X

AE X X X X ? X X X X X × ? X X X

OE X X X X X X XM XM XM X × ? × × ×
AvsFD × × × × X × × X X X X × X X X

Table 5.4 – Summary of the properties satisfied by vdp (∀δ, for max(δm, δM) < δ′ and for
δm < δ′′ < δM ) and all the existing ranking semantics studied in this thesis.

5.5 Conclusion

In this chapter, we have highlighted the fact that none of the existing ranking-based se-
mantics is really appropriate for the context of persuasion, emphasizing in particular two well-
documented phenomena occurring in practice: protocatalepsis and fading. Indeed, all ranking-
based semantics commit for instance to the Void Precedence property (or its weak version),
which is incompatible with the procatalepsis principle. However, while this property is con-
sidered as mandatory in [AMGOUD & BEN-NAIM 2013], Void Precedence is also called into
question in [BESNARD & HUNTER 2008, THIMM & KERN-ISBERNER 2014], arguing that ar-
guments which are not attacked can be seen as arguments which have not yet proven their
strength against counter-arguments. We think that this question relates to the status of the miss-
ing information in argumentation frameworks. If all the information are available, then “really
unattacked” arguments should be better that any attacked argument. But there are cases where
the argumentation frameworks encode the information currently available, and that is suscepti-
ble to be completed. This is this case that we consider here with the procatalepsis principle.

This motivated us to introduce a new parametrized ranking-based semantics based on the
notion of propagation. The role of this parameter is manifold because it allows:

1. the convergence of the method which guarantees the existence of a result,

2. the decrease of the impact of further arguments and then to capture the fading effect, by
selecting a maximal influence depth,

3. to give the possibility to choose if one wants to satisfy the Void Precedence property or
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not (and then represent protocatalepsis in persuasion pitches).

We believe that this method offers a useful tool for persuasion, for instance to evaluate the rel-
ative impact that may have different persuasion pitches.

This work opens several perspectives for further research. Indeed, to go further on the ex-
ample used in the introduction about the salesman, it could be interesting, if more information
are available, to use some model of trust. This would allow to evaluate the trust of the customer
after the salesman’s persuasion pitch and see the possible impact when the procatalepsis princi-
ple is used.

Then, our methodology clearly focus on persuasion. However, it may also prove inspiring
in other settings: by questioning the relevance of the existing semantics in other application
contexts like negotiation (trying to resolve a conflict of interest by reaching a deal), deliberation
(trying to reach a decision on a course of action), etc. We may find out that some specific
phenomena are not properly captured, and that other adjustments are required.
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Conclusion

The overall aim of this work was to propose and study ranking-based semantics in the con-
text of abstract argumentation. These semantics began to be actively studied recently and have
been introduced as an intuitive alternative way to the classical semantics (extension-based se-
mantics and labelling-based semantics) that are not appropriate for some applications.

In Chapter 2, we put forward the limits of Dung’s semantics for some applications (e.g.

decision-making or online debate platforms) and explained why the ranking-based semantics
are a better choice for those applications. Then, we provided the first overview of existing
ranking-based semantics which return a unique ranking between arguments from the most to
the least acceptable one. We also presented the different properties that have been introduced in
the literature, aiming to underline the difference of behavior between these semantics.

In Dung’s semantics, non-attacked arguments have a great impact on the acceptability of
the arguments of the argumentation framework while, in existing ranking-based semantics, they
have no special impact. This motivated us to introduce, in Chapter 3, three ranking-based
semantics which allow us to control the influence of non-attacked arguments on the accept-
ability of the other argument. In order to control the impact of non-attacked arguments while
preserving as much as possible those concerning the quality and the quantity of attackers or de-
fenders, we defined our ranking-based semantics on the basis of the propagation principle. We
showed that ours semantics satisfy interesting properties and that there are some relationships
between the ranking retuned by our semantics and the one returned by existing ranking-based
semantics in some specific cases (e.g. when all the arguments have the same impact). We also
checked if the propagation semantics giving the more impact to the non-attacked arguments,
refine the Dung’s semantics. We showed that it is not the case because, contrary to the ranking-
based semantics, extension-based semantics do not consider the number of attacker or defender
(one non-attacked argument is enough to rejected an argument), nor the length of an attack or
defense path.

In Chapter 4, we proposed a comparative study of ranking-based semantics. An experi-
mental comparison is first done by computing a dissimilarity degree between each pair of se-
mantics on the basis of the ranking returned by these semantics from benchmarks of randomly
generated argumentation frameworks. The results allowed to conclude that ranking-based se-
mantics globally share a solid common basis. In particular, we observed and proved that the
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categoriser-based ranking semantics and the 1-burden-based semantics always return the same
ranking. We also provided a general comparison of all these semantics with respect to the
proposed properties. This study allows to understand the similarities and differences obtained
during the experimental comparison.

Finally, in Chapter 5, we questioned the ability of existing ranking-based semantics to cap-
ture persuasion settings, emphasizing in particular the phenomena of protocatalepsis and of
fading. We explained that some widely accepted principles of ranking-based semantics (like
Void Precedence) are incompatible with a faithful treatment of these phenomena, which means
that no existing ranking-based semantics can caught these two principles together. This moti-
vated us to introduce a new parametrized ranking semantics based on the notion of propagation.
This parameter gives the possibility to choose if one wants to satisfy the property Void Prece-
dence or not (and then capture protocatalepsis). We also showed that this parameter allows to
control the scope of impact of the arguments (and then to capture fading principle). In general,
this work shows that, despite detailed studies of their properties, it is important to also evaluate
existing semantics with respect to each targeted application.

Future work

In addition to the future works which have been discussed at the end of each chapter, this
thesis opens the way for several important developments.

Debate systems

A problem often raised in abstract argumentation concerns the lack of “real data”. Indeed,
most of the time, we need to create homemade examples to check the good behavior of our
methods. A domain of argumentation, called argument mining (see [LIPPI & TORRONI 2016]
for a recent state of the art), aims at automatically recognizing argumentation structures in
unstructured textual documents. Despite the progress made in this domain in recent years, it
remains difficult to extract argumentation frameworks from these data. But, recently, more
structured data has emerged on the web with the debate systems. We can consider, for example,
the recent development of online debate platforms that allows people to participate in debates
using argumentation graphs (e.g. Debategraph 19 or Argüman 20), and its more and more usual
use on political public consultation: recently the project of a “digital republic bill” has been
publicly discussed through an online platform 21, where people could give arguments for or
against the different parts of the bill. As shown in Figure 9 (page 133) which represents a
debate from Argüman about computer science, we can clearly distinguish the arguments but
also the relations (attack or support) between them.

19. http://debategraph.org
20. http://arguman.org
21. https://www.republiquenumerique.fr/pages/in-english
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Figure 9 – Example of debate from the website argüman.com about computer science

However, for the moment, they are mainly interfaces where people can give arguments for
or against a given issue without any particular processing and evaluation of those arguments.
This is due to the fact that most of the existing platforms mainly focus on the debate’s repre-
sentation and use a naive method (just counting the number of argument pro and con) or let the
users find the conclusion(s) of the debate themselves. The problems, in this case, are that the
conclusion is not always objective or it could be difficult to find the conclusions when the debate
is complicated (when many conflicting arguments exist). Using ranking-based semantics and
scoring semantics could be a good solution to provide automatic reasoning to these platforms.

In this thesis, we studied and proposed ranking-based semantics for Dung’s argumentation
framework but, in such platforms, additional information (e.g. support, weights, votes, etc.) are
available and must be taken into consideration. It is why, recent works propose to adapt some
existing ranking-based semantics, initially introduced for Dung’s argumentation framework, to
framework with more information. Among them, one can find:

• Social argumentation framework (SAF) which contains an attack relation between argu-
ments and a couple of integers, representing the positive votes and the negative votes, is
assigned to each arguments/attacks. [LEITE & MARTINS 2011, EGILMEZ et al. 2013]

• “Weighted” argumentation framework which contains an attack relation between argu-
ments and a weight is assigned to each arguments. [AMGOUD et al. 2017a]

• Bipolar argumentation framework (BAF) which contains an attack relation between argu-
ments but also a support relation between them.
[CAYROL & LAGASQUIE-SCHIEX 2005a, BARONI et al. 2015, RAGO et al. 2016]
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• Bipolar weighted argumentation framework (BWAF) which is a bipolar argumentation
framework where a weight is assigned to each argument.
[EVRIPIDOU & TONI 2012, AMGOUD & BEN-NAIM 2017]

For example, the debate from Argüman depicted in Figure 9 (page 133) can be easily repre-
sented by the bipolar weighted argumentation framework depicted in Figure 10 (the votes can
be aggregated to obtain a value between 0 and 1). From this debate, the goal would be to know
if the conclusion of the debate is that “Computer Science is not actually a science” or the con-
verse. Thus, it could be interesting to check the result of existing semantics introduced for the
bipolar weighted argumentation frameworks in such debates.

T
0/0

c
4/0

b
7/0

a
7/0

d
3/0

e
2/1

f
0/0

g
1/0

h
0/0

Figure 10 – Representation of the debate from Figure 9 with a bipolar weighted argumentation
framework

In this thesis, we saw that our propagation semantics can be distinguished from existing
ranking-based semantics, by proposing alternative behaviors. So, we could adapt the propa-
gation principle introduced in this thesis for such framework. The following definition, which
extends Definition 5.2.1 (page 116), could be used in this purpose. The initial value of each
argument corresponds to the weight associated to each argument in the bipolar weighted argu-
mentation framework. Then, each argument positively (respectively negatively) propagates its
initial value to the arguments it defends and supports (respectively attacks) with less and less
impact when the length of the paths increases.

Definition 5.5.1 (Attenuated propagation for bipolar weighted argumentation framework).
Let 〈A,R,S, w〉 be a BWAF where A is a finite and non-empty set of arguments,R ⊆ A×A
is the attack relation, S ⊆ A × A is the support relation and w is a function from A to [0, 1].
The valuation P of x ∈ A, at step i, is given by:

• P δ
0 (x) = w(x) and

• P δ
i (x) = P δ

i-1(x) + δi(
∑

y∈P+
i (x)

w(y) −∑

z∈P−
i (x)

w(z))
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with δ ∈ ]0, 1[ be an attenuation factor and P+
i (x) (respectively P−i (x)) be the set of defenders

and supporters (respectively attackers) of x.

We could use a fixed-point iteration to compute the propagation value of each argument in
order to compare them.

Several studies can be considered to improve the behavior of semantics for debate platforms:

• Recall that the existing ranking-based semantics and the scoring semantics are currently
defined in the abstract case. So, they do not consider the content of the arguments. In
many cases, this can be problematic. For example, the current semantics cannot differen-
tiate an argument repeated several times. With the same idea, two “different” arguments,
but with the same meaning, are considered as two distinct arguments by the semantics
(for example, “No, I do not want to run because it is hot today” and “No, the tempera-
ture is too high to run” have the same meaning but have different syntaxes). In a work
conducted in the context of an internship I co-supervised, [SAIDI 2017] suggests to first
compute a degree of similarity between each arguments, by using methods introduced
in natural language processing, in order to know how similar are two arguments. Then,
these degrees of similarity are taken into account by the semantics to compute the score
of each argument.

• We could also study the possibility to do strategic choices in such debate. Indeed, during
a debate, the users could employed some strategies in order to increase the possibility
to achieve their goal. For example, such questions can be considered: Does it better
to add an attack, a support, a vote on an argument, a vote on an attack ... to improve
the acceptability of an argument? Is it the good time to introduce an argument into the
debate?

Abstract dialectical framework

Recall that the abstract dialectical frameworks [BREWKA & WOLTRAN 2010] is a general-
ization of Dung’s argumentation frameworks aiming to express a wide range of relations (e.g.

attack relation, support relation). The meaning of the links between arguments are expressed
by the acceptance condition assigned to each argument, which define when an argument can be
accepted or not. Thus, an argument is accepted if its acceptance condition is satisfied and is
rejected if it is not (Cx : 2par(x) → {⊤,⊥}). But in the case of scoring semantics, we assign
a continuous value to each argument. So, it could be interesting to see if it makes sense to
redefine the “acceptance condition” with a formula used by the scoring semantics which assign
a value to an argument depending on the value of its direct attacker. Thus, the “acceptance
condition” could be defined like that: Cx : 2par(x) → R (or any other ordered scale like [0, 1]).
This could allow us to keep the benefit of abstract dialectical frameworks (no need to define
new framework) in including several levels of acceptability thanks to the scoring semantics.

Aggregation of argumentation frameworks

Simultaneously to the work done in this thesis, we worked on the problem of aggregation of
Dung’s abstract argumentation frameworks. This problem is an important one for multi-agent
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systems: each agent can be associated with a different abstract argumentation framework (i.e.

each agent may have different views on what constitutes a valid attack) that represents his be-
liefs. The problem is then to define a suitable representation at the beliefs of the group. In a
first work [DELOBELLE et al. 2015], we studied existing aggregation methods from the litera-
ture [COSTE-MARQUIS et al. 2007, TOHMÉ et al. 2008] in the light of the proposed properties
[DUNNE et al. 2012]. We also proposed three additional methods based on weighted argumen-
tation frameworks where we endorsed one of the possible interpretations of the weights on the
attacks (i.e. the weight represents the number of agents in a group that agree with this attack)
and shown how to use them to define aggregation methods. The results clearly show that two
families of aggregation operators of argumentation frameworks exist: one focuses on the at-
tack relations, like it is the case with all the existing operators, and the other one focuses on
the extensions. However, there exists no extension-based approach to aggregate argumentation
frameworks. It is what we proposed in [DELOBELLE et al. 2016]. The idea is to aggregate
the extensions from each argumentation framework in input, in choosing the more appropriate
extension(s) according to a given distance operator (e.g. Hamming distance). Then, as result
of the aggregation, we used extension-based generation operators to generate argumentation
framework(s) corresponding to the selected extensions.
Recall that the ranking-based semantics can be seen as an alternative to extension-based seman-
tics. So it could be interesting to check if the same conclusions can be done when ranking-based
semantics are used: if all the agents agree with the fact that an argument a is strictly more ac-
ceptable than another argument b, is it always the case for the result of the aggregation? An
interesting application can be made with the online debate platforms. Indeed, the number of
platforms is constantly increasing so it could happen that the same topic is addressed in dif-
ferent locations (especially for famous topics like global warming or religion). So, thanks to
the aggregation, we could imagine aggregating all these debates and see if one can reach to the
same conclusion. For example, if each debate separately concludes that the global warming is
dangerous but for different reasons, should the conclusion of the aggregating framework be the
same? If yes, is it also the case if only a strict majority of debates concludes that the global
warming is dangerous? Such questions could be interesting to answer.
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Appendix A

Proofs of the Results from Chapter 3

Proposition 5. Let ⊕ ∈ {M,S}. For any argumentation framework AF , for any ǫ, ǫ′ ∈ ]0, 1],
it holds that

Propaǫ,⊕1→ǫ(AF ) = Propaǫ
′,⊕
1→ǫ(AF )

Proof. Let AF = 〈A,R〉 be an argumentation framework and ⊕ ∈ {S,M}.
Recall that Propa1→ǫ is divided in two steps. During the first one, a pre-order between argu-
ments is established from the scores obtained when ǫ = 0. If at least two arguments could not
be distinguished (i.e. x, y ∈ A, ∀i ∈ {0, 1, . . .}P 0,⊕

i (x) = P 0,⊕
i (y)) then, during the second

step, we restart with ǫ 6= 0.
The goal of this proof consists in showing that for all values of ǫ ∈ ]0, 1], the pre-order obtained
stays the same. In other words, we want to show that the value of ǫ (except the fact to be strictly
positive) has no influence on the result.
During the first step, it is obvious that the pre-order obtained is identical whatever the value of
ǫ because ǫ = 0. Let us show, that during the second step, where ǫ 6= 0, it is not necessary to
know the value of ǫ. Indeed, this step aims to distinguish arguments which cannot be distin-
guished by non-attacked arguments during the first step. Let x, y ∈ A both of these arguments
whereR⊕1 (x) 6= ∅,R⊕1 (y) 6= ∅ and ∀i ∈ {0, 1, . . .}P 0,⊕

i (x) = P 0,⊕
i (y).

We first rewrite on a different (but equivalent) way the formula that allows to calculate the score
of both arguments. ∀i ∈ {1, 2, . . .}:

P ǫ,⊕
i (x) =







ǫ if i = 0

P ǫ,⊕
i−1(x)− (k + nǫ) if i is odd

P ǫ,⊕
i−1(x) + (k + nǫ) if i is even

P ǫ,⊕
i (y) =







ǫ if i = 0

P ǫ,⊕
i−1(y)− (k +mǫ) if i is odd

P ǫ,⊕
i−1(y) + (k +mǫ) if i is even

where k = |B⊕i (x)| = |B⊕i (y)| and n = |R⊕i (x)|− |B⊕i (x)| (resp. m = |R⊕i (y)|− |B⊕i (y)|).

Let us show now that for any value of i, only the values of n and m allow to distinguish both
arguments:

i = 0: x and y have the same score because they are both attacked so P ǫ,⊕
0 (x) = P ǫ,⊕

0 (y) = ǫ.
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i is odd: Until here, both arguments could not be distinguished (otherwise this step is useless
because of the lexicographical order) so P ǫ,⊕

i−1(x) = P ǫ,⊕
i−1(y). Idem for the value of k (otherwise

there was a difference during the first step where ǫ = 0). So there exists three ways to compare
x and y :

• Both arguments keep the same score:

P ǫ,⊕
i (x) = P ǫ,⊕

i (y)
P ǫ,⊕
i−1(x)− (k + nǫ) = P ǫ,⊕

i−1(y)− (k +mǫ)
−(k + nǫ) = −(k +mǫ)

k + nǫ = k +mǫ
nǫ = mǫ
n = m

• x becomes better than y (x ≻P

AF y) : P ǫ,⊕
i (x) > P ǫ,⊕

i (y)⇒ n < m

• y becomes better than x (y ≻P

AF x) : P ǫ,⊕
i (x) < P ǫ,⊕

i (y)⇒ n > m

Consequently, the value of ǫ is not significant when i is odd.

i is even: This case is quite similar to the previous one :

• Both arguments keep the same score: P ǫ,⊕
i (x) = P ǫ,⊕

i (y)⇒ n = m

• x becomes better than y (x ≻P

AF y) : P ǫ,⊕
i (x) > P ǫ,⊕

i (y)⇒ n > m

• y becomes better than x (y ≻P

AF x) : P ǫ,⊕
i (x) < P ǫ,⊕

i (y)⇒ n < m

Once again, we can see that only the values of n and m play a key role in the order between x
and y.

So, whatever the value of i, the value of ǫ is not significative to establish an order between x
and y in agreement with the property.

Proposition 6. Let ⊕ ∈ {M,S}. For any argumentation framework AF , for any ǫ, ǫ′ ∈ ]0, 1],
it holds that

Propaǫ,⊕1+ǫ(AF ) = Propaǫ
′,⊕
1+ǫ(AF )

Proof. The proof is exactly the same as for Propa1→ǫ because, according to the formula al-
lowing to give a score to each argument, the only thing to check is that the value of k re-
mains the same during the steps where ǫ 6= 0. And this is exactly the case with Propa1+ǫ

because, before to look at the case where ǫ 6= 0, the score must be identical during the first step
where ǫ = 0 (thanks to the lexicographical order). Consequently, k keeps the same value so
k = |P 0,⊕

i (x) − P 0,⊕
i−1 (x)| = |P 0,⊕

i (y) − P 0,⊕
i−1 (y)| and this bring us to same conclusions as for

Propa1→ǫ.

Proposition 7. Let ⊕ ∈ {M,S}. For any argumentation framework AF ,

Propa0,⊕ǫ (AF ) = Propa0,⊕1+ǫ(AF ) = Propa0,⊕1→ǫ(AF )
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Proof. Let AF = 〈A,R〉 be an argumentation framework with x, y ∈ A and ⊕ ∈ {S,M}.
In order to show that the three semantics return the same pre-order when ǫ = 0, we will proceed
in two steps. The first consists in applying the case ǫ = 0 to the definition of Propaǫ :

x �P

AF y ⇒ P 0,⊕(x) �lex P 0,⊕(y)

The second step aims to prove that when the case ǫ = 0 is applied to Propa1→ǫ and Propa1+ǫ,
their definitions are exactly the same as Propaǫ.
Let us begin with Propa1→ǫ where we replace ǫ by 0:

x �P

AF y ⇒ P 0,⊕(x) �lex P 0,⊕(y) or (P 0,⊕(x) ≃lex P 0,⊕(y) and P ǫ,⊕(x) �lex P ǫ,⊕(y))

⇒ P 0,⊕(x) �lex P 0,⊕(y) or (P 0,⊕(x) ≃lex P 0,⊕(y) and P 0,⊕(x) �lex P 0,⊕(y))

⇒ P 0,⊕(x) �lex P 0,⊕(y) or P 0,⊕(x) ≃lex P 0,⊕(y)

⇒ P 0,⊕(x) �lex P 0,⊕(y)

Finally, we apply the same reasoning to Propa1+ǫ:

x �P̂

AF y ⇒ (P 0,⊕(x) ∪s P
ǫ,⊕(x)) �lex (P 0,⊕(y) ∪s P

ǫ,⊕(y))

⇒ (P 0,⊕(x) ∪s P
0,⊕(x)) �lex (P 0,⊕(y) ∪s P

0,⊕(y))

⇒ P 0,⊕(x) �lex P 0,⊕(y)

Because it is obvious that if P 0,⊕(x) ∪s P
0,⊕(x) �lex P 0,⊕(y) ∪s P

0,⊕(y) then P 0,⊕(x) �lex

P 0,⊕(y) (even if P 0,⊕(x) ∪s P
0,⊕(x) 6= P 0,⊕(x)).

So whatever the propagation semantics chosen, when ǫ = 0, x � y if P 0,⊕(x) �lex P 0,⊕(y).

Proposition 8. Let ⊕ ∈ {M,S} and ǫ ∈ ]0, 1]. For any argumentation framework AF =
〈A,R〉 such that ∄x ∈ A,R⊕1 (x) = ∅, Propaǫ,⊕ǫ (AF ) = Propaǫ,⊕1+ǫ(AF ) = Propaǫ,⊕1→ǫ(AF ).

Proof. Let AF = 〈A,R〉 be an argumentation framework without non-attacked argument,
x, y ∈ A and ⊕ ∈ {S,M}.
The fact to have no non-attacked argument in AF makes useless the use of the case ǫ = 0 for
Propa1+ǫ and Propa1→ǫ. Indeed, in this case, all the arguments begin with a score of 0 so no
one can propagate its value when ǫ = 0: ∀x ∈ A, ∀i ∈ {0, 1, . . .}, P 0,⊕

i (x) = 0. So the only
case where a distinction between arguments can be done is when ǫ 6= 0. All the arguments
begin with a score of ǫ : ∀x ∈ A, vǫ(x) = ǫ. So whatever the propagation semantics, when
there is no non-attacked argument x � y if P ǫ,⊕(x) �lex P ǫ,⊕(y).

Proposition 9. Let ⊕ ∈ {M,S}. For any argumentation framework AF = 〈A,R〉,

If ǫ <
1

maxdeg(AF )
, then Propaǫ,⊕ǫ (AF ) = Propaǫ,⊕1+ǫ(AF )

Proof. Let us show that for any couple of arguments x, y ∈ A, if ǫ < 1
maxdeg(AF )

then the
ranking between x and y is the same for Propaǫ and Propa1+ǫ.
If x and y are not attacked then they are equally acceptable for both semantics whatever the value
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Appendix A. Proofs of the Results from Chapter 3

of ǫ because Propaǫ and Propa1+ǫ satisfy the property Non-attacked Equivalence (Chapter 4
Proposition 17 page 106).
If x is non-attacked and y is attacked then x is strictly more acceptable than y for both semantics
whatever the value of ǫ because Propaǫ and Propa1+ǫ satisfy the property Void Precedence
(Chapter 4 Proposition 17 page 106).
So the last case is when x and y are both attacked. Let us rewrite the formula which allows us
to compute the score of both arguments at step i ∈ {0, 1, 2, . . .},

P ǫ,⊕
i (x) =







ǫ if i = 0

P ǫ,⊕
i−1(x)− (k + nǫ) if i is odd

P ǫ,⊕
i−1(x) + (k + nǫ) if i is even

P ǫ,⊕
i (y) =







ǫ if i = 0

P ǫ,⊕
i−1(y)− (k′ +mǫ) if i is odd

P ǫ,⊕
i−1(y) + (k′ +mǫ) if i is even

where k = |B⊕i (x)| (resp. k′ = |B⊕i (y)|) and n = |R⊕i (x)|− |B⊕i (x)| (resp. m = |R⊕i (y)|−
|B⊕i (y)|).
We know that n (resp. m) is lower or equal to maxdeg(AF ) and ǫ is a positive value:

n ≤ maxdeg(AF )⇒ nǫ ≤ maxdeg(AF )ǫ (A.1)

And we know that:

ǫ <
1

maxdeg(AF )
⇒ maxdeg(AF )ǫ < 1 (A.2)

Combining the equations A.1 and A.2, we obtain:

nǫ < 1 (resp. mǫ < 1) (A.3)

Let us show now that for any value of i, the ranking between x and y is the same for Propaǫ
and Propa1+ǫ:

i = 0: x and y have the same score for both semantics (P ǫ,⊕
0 (x) = P ǫ,⊕

0 (y) = ǫ and P 0,⊕
0 (x) =

P 0,⊕
0 (y) = 0).

i is odd: Until here, both arguments could not be distinguished for both semantics (otherwise
this step is useless because of the lexicographical order) so P ǫ,⊕

i−1(x) = P ǫ,⊕
i−1(y) including for

ǫ = 0.

• if k = k′ then P 0,⊕
i (x) = P 0,⊕

i (y) so the difference is done with the value of n and m:

– if n = m then P ǫ,⊕
i (x) = P ǫ,⊕

i (y) so both semantics go to the next step because x
and y have the same score.

– if n > m then P ǫ,⊕
i (x) < P ǫ,⊕

i (y) so y ≻P

AF x and y ≻P̂

AF x.

– if n < m then P ǫ,⊕
i (x) > P ǫ,⊕

i (y) so x ≻P

AF y and x ≻P̂

AF y.
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• if k < k′ then P 0,⊕
i (x) > P 0,⊕

i (y) so x ≻P̂

AF y. Let us show that we obtain the same
ranking with Propaǫ. In using the result A.3, we have:

k − nǫ < k′ −mǫ

−(k − nǫ) > −(k′ −mǫ)

P ǫ,⊕
i−1(x)− (k − nǫ) > P ǫ,⊕

i−1(y)− (k′ −mǫ)

P ǫ,⊕
i (x) > P ǫ,⊕

i (y)

x ≻P

AF y

• if k > k′ then P 0,⊕
i (x) < P 0,⊕

i (y) so y ≻P̂

AF x and following the same idea that the
previous case y ≻P

AF x.

i is even: Following the same reasoning, we obtain the same result with the opposite ranking.

So Propaǫ and Propa1+ǫ return the same ranking between arguments.

Proposition 10. Let ǫ ∈ ]0, 1]. For any argumentation framework AF = 〈A,R〉 such that
∄x ∈ A,RM

1 (x) = ∅, Propaǫ,Mǫ (AF ) = Propaǫ,M1+ǫ(AF ) = Propaǫ,M1→ǫ(AF ) = Dbs(AF ).

Proof. The previous proposition shows that all semantics based on propagation return the same
ranking between arguments when there is no non-attacked arguments. And we want to show
that this ranking is also the same for the discussion-based semantics (Dbs). Thus, it is sufficient
to show that the ranking computed by one propagation semantics is always the same that the one
computed by the discussion-based semantics. It is why, in this proof, we will focus on Propaǫ.
Let AF = 〈A,R〉 be an argumentation framework and x, y ∈ A.
We first rewrite on different way (because there is no attacked argument) the formula that allows
to calculate the score of both arguments. ∀i ∈ {0, 1, 2, . . .}:

P ǫ,M
i (x) =

{
ǫ if i = 0

P ǫ,M
i−1 (x) + (-1)inǫ otherwise

P ǫ,M
i (y) =

{
ǫ if i = 0

P ǫ,M
i−1 (y) + (-1)imǫ otherwise

where n = |RM
i (x)| and m = |RM

i (y)|.
And with the discussion-based semantics, the score of each argument is computed with the
following formula. ∀i ∈ {1, 2, . . .}:

Disi(a) = (−1)i+1 × n Disi(b) = (−1)i+1 ×m

It is obvious that only the values of n and m allow to differentiate the arguments x and y for
Propaǫ and Dbs. So, let us show that for any value of i, the ranking between x and y stay the
same for both semantics.

i = 0: The function Dis is not defined for i = 0 and P ǫ,M
0 (a) = P ǫ,M

0 (b) = ǫ so the process
continue for both semantics.

i is odd: Until here, both arguments could not be distinguished because the lexicographical
order is used in both semantics so P ǫ,M

i−1 (x) = P ǫ,M
i−1 (y) and Disi−1(x) = Disi−1(y).
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• If n = m then P ǫ,M
i (x) = P ǫ,M

i (y) and Disi(x) = Disi(y) so x and y still equally
acceptable for both semantics.

• If n > m then P ǫ,M
i (x) < P ǫ,M

i (y) and Disi(x) > Disi(y) so y becomes strictly better
than x for both semantics: y ≻P

AF x and y ≻Dbs
AF x.

• If n < m then P ǫ,M
i (x) > P ǫ,M

i (y) and Disi(x) < Disi(y) so x becomes strictly better
than y for both semantics: x ≻P

AF y and x ≻Dbs
AF y.

i is even: This case is quite similar to the previous one but here only defense path are taken into
consideration.

• If n = m then P ǫ,M
i (x) = P ǫ,M

i (y) and Disi(x) = Disi(y) so x and y still equally
acceptable for both semantics.

• If n > m then P ǫ,M
i (x) > P ǫ,M

i (y) and Disi(x) < Disi(y) so x becomes strictly better
than y for both semantics: y ≻P

AF x and y ≻Dbs
AF x.

• If n < m then P ǫ,M
i (x) < P ǫ,M

i (y) and Disi(x) > Disi(y) so y becomes strictly better
than x for both semantics: y ≻P

AF x and y ≻Dbs
AF x.

For each step i, if x becomes more acceptable than y under the semantics Propaǫ then it is also
the case with Dbs (idem for the other possibilities). Consequently, Propaǫ (and consequently
Propa1+ǫ and Propa1→ǫ) and Dbs return the same ranking between arguments.

Proposition 11. For any argumentation framework AF = 〈A,R〉, Propa1,Mǫ (AF ) = Dbs(AF ).

Proof. The proof is similar to the previous one except that ǫ = 1 and take into account all the
argumentation frameworks.
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Proofs of the Results from Chapter 4

Proposition 12. Let AF be an argumentation framework, if α = 1 then Cat(AF ) = α-
Bbs(AF ).

Proof. Let x ∈ Arg(AF ) be an argument.
If x is not attacked then Cat(x) = sα(x) = 1/sα(x) = 1.
If x is attacked then:

Cat(x) = 1
1+

∑

y∈R1(x)

Cat(y)

sα(x) = 1 +
∑

y∈R1(x)

1
sα(y)

⇒ 1/sα(x) =
1

1+
∑

y∈R1(x)

1
sα(y)







Cat(x) = 1/sα(x)

So for all arguments x and y in AF ,

x �Cat
AF y ⇐⇒ Cat(x) ≥ Cat(y) ⇐⇒ 1/sα(x) ≥ 1/sα(y)

⇐⇒ sα(x) ≤ sα(y) ⇐⇒ x �α-Bbs
AF y

Proposition 13. For every ranking-based semantics, the following pairs of properties are not
compatible :

(1) Cardinality Precedence (CP) and Quality Precedence (QP) [AMGOUD & BEN-NAIM 2013]

(2) Self-Contradiction (SC) and Cardinality Precedence (CP) [BESNARD et al. 2017]

(3) Self-Contradiction (SC) and Counter-Transitivity (CT) [BESNARD et al. 2017]

(4) Self-Contradiction (SC) and Strict Counter-Transitivity (SCT) [BESNARD et al. 2017]

(5) Cardinality Precedence (CP) and Attack vs Full Defense (AvsFD)

(6) Cardinality Precedence (CP) and Addition of Defense Branch (+DB)

(7) Cardinality Precedence (CP) and Strict Addition of Defense Branch (⊕DB)

(8) Void Precedence (VP) and Strict Addition of Defense Branch (⊕DB)

(9) Strict Counter-Transitivity (SCT) and Strict Addition of Defense Branch (⊕DB)

(10) Argument Equivalence (AE) and Self-Contradiction (SC)

141



Appendix B. Proofs of the Results from Chapter 4

Proof. Let AF = 〈A,R〉 be an argumentation framework, a, b ∈ A and σ be a ranking seman-
tics.

(1) See [AMGOUD & BEN-NAIM 2013]

(2) See [BESNARD et al. 2017]

(3) See [BESNARD et al. 2017]

(4) See [BESNARD et al. 2017]

(5) Let us suppose that |R1(b)| = 1, |R2(b)| = 0 and |B−(a)| = 0. If σ satisfied AvsFD
then a ≻σ

AF b. However, there is no restriction about the number of defense branches of a,
so there exists cases where |R1(a)| > |R1(b)|. In these cases, the property CP says that
a ≺σ

AF b which contradicts AvsFD.

(6) Let AF ⋆ = AF ∪ AF γ ∪ P+(γ(a)) be an argumentation framework such that AF γ =
γ(AF ) and a is attacked (R1(a) 6= ∅). In AF ⋆, γ(a) has one more defense branch (and so
one more direct attacker) than a (R1(a) < R1(γ(a))). If σ satisfies CP then a ≻σ

AF⋆ γ(a)
whereas if +DB is satisfied then γ(a) ≻σ

AF⋆ a.

(7) Same proof that +DB except that a can be non-attacked too.

(8) Let AF ⋆ = AF ∪ AF γ ∪ P+(γ(a)) be an argumentation framework such that AF γ =
γ(AF ) and a is a non-attacked argument (R1(a) = ∅). If σ satisfies ⊕DB then γ(a) ≻σ

AF⋆

a whereas if σ satisfies VP then a ≻σ
AF⋆ γ(a) because γ(a) becomes attacked (R1(a) = ∅

andR1(γ(a)) 6= ∅).
(9) Same proof that +DB except that a can be non-attacked too.

(10) Let us show with the argumentation framework illustrated in Figure B.1 that the ranking
between two arguments suggests by the properties AE and SC are different. It is clear that

a b
AE : a ≃ b
SC : b ≻ a

Figure B.1 – Incompatibility between Argument Equivalence (AE) and Self-Contradiction (SC)

it exists an isomorphism between the ancestor’s graph of a and b (which is a infinite line
of arguments) so, according to the property AE, a and b are equally acceptable (a ≃ b).
In addition, the argument a attacks itself contrary to b so, according to the property SC,
b is strictly more acceptable than a (b ≻ a). Thus, according to the definition of the
incompatibility between two properties, AE and SC are incompatible.

Proposition 14. No ranking-based semantics can simultaneously satisfy Addition of a Defense
Branch (+DB), Strict Counter-Transitivity (SCT) and Argumentation Equivalence (AE).
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Proof. Let AF,AF γ be two argumentation framework such that there exists an isomorphism γ
between AF and AF γ (AF γ = γ(AF )) and σ be a ranking semantics.
According to the property AE, it is clear that each argument and its image are equally acceptable
(∀x ∈ Arg(AF ), x ≃σ

AF∪AFγ γ(x)).
Let AF ⋆ = AF ∪ AF γ ∪ P+(γ(a)) and a ∈ Arg(AF ) is attacked (R1(a) 6= ∅). If σ satisfies
+DB then γ(a) ≻σ

AF⋆ a whereas if σ satisfies SCT then a ≻σ
AF⋆γ(a) because it exists an injective

function f from R1(a) to R1(γ(a)) such that ∀c ∈ R1(a), f(c) �σ
AF⋆ c (thanks to the property

AE) and |R1(γ(a))| > |R1(a)|.
Proposition 15. The following properties are not independent:

(1) Strict Counter-Transitivity (SCT) implies Void Precedence (VP)
[AMGOUD & BEN-NAIM 2013]

(2) Counter-Transitivity (CT) and Strict Counter-Transitivity (SCT) imply Defense Prece-
dence (DP) [AMGOUD & BEN-NAIM 2013]

(3) Counter Transitivity (CT) implies Non-attacked Equivalence (NaE)

(4) Counter Transitivity (CT) implies Ordinal Equivalence (OE)

(5) Strict Counter-Transitivity (SCT) and Ordinal Equivalence (OE) imply Counter-Transitivity
(CT)

(6) Strict addition of Defense Branch (⊕DB) implies Addition of Defense Branch (+DB)

(7) Argument Equivalence (AE) implies Non-attacked Equivalence (NaE)

(8) Ordinal Equivalence (OE) implies Non-attacked Equivalence (NaE)

(9) Void Precedence (VP) and Quality Precedence (QP) imply Attack vs Full Defense (AvsFD)

(10) Cardinality Precedence (CP) implies Addition of Attack Branch (+AB)

Proof. Let AF = 〈A,R〉 be an argumentation framework, a, b ∈ A and σ be a ranking seman-
tics.

(1) See [AMGOUD & BEN-NAIM 2013]

(2) See [AMGOUD & BEN-NAIM 2013]

(3) Let us suppose that a and b are non-attacked (R1(a) = R1(b) = ∅). As the sets of
direct attackers are empty, it is clear that there exists an injective function from R1(a)
to R1(b) (resp. from R1(b) to R1(a)) such that ∀c ∈ R1(a), f(c) �σ

AF c (resp. ∀c ∈
R1(b), f(c) �σ

AF c). As σ satisfies CT, so a ≃σ
AF b (because a �σ

AF b and b �σ
AF a) in

agreement with the property NaE.

(4) Let us suppose that there exists a bijective function f from R1(a) to R1(b) such that
∀c ∈ R1(a), c ≃σ

AF f(c) (i.e. c �σ
AF f(c) and f(c) �σ

AF c). By definition, a bijective
function is also an injective function, so f is injective and R1(b) ≥S R1(a) (because
∀c ∈ R1(a), f(c) �σ

AF c). As σ satisfies CT, one can conclude that a �σ
AF b. But the

existence of the bijective function f implies that there also exists a bijective function g
(g = f−1) fromR1(b) toR1(a). So following the same reasoning, one can conclude that
b �σ

AF a. So, by definition, a �σ
AF b and b �σ

AF a implies that a ≃σ
AF b in agreement with

OE.
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(5) Let us suppose that there exists an injective function f from R1(a) to R1(b) such that
∀c ∈ R1(a), f(c) �σ

AF c and that σ satisfies SCT and OE. Let us show that for all a, b
which satisfy this condition then a �σ

AF b.

(a) If R1(b) > R1(a) or ∃c ∈ R1(a), f(a) ≻σ
AF a then according to SCT a ≻σ

AF b. By
definition, a ≻σ

AF b is equivalent to a �σ
AF b and b 6�σ

AF a so CT is satisfied.

(b) If R1(b) = R1(a) and ∄c ∈ R1(a), f(a) ≻σ
AF a then ∀c ∈ R1(a), f(a) ≃σ

AF

a. But, as R1(b) = R1(a) then f is also surjective so f is bijective and ∀c ∈
R1(a), f(a) ≃σ

AF a, so according to OE, we have a ≃σ
AF b. By definition, a ≃σ

AF b is
equivalent to a �σ

AF b and b �σ
AF a so CT is satisfied.

(6) Obvious because +DB is a particular case of ⊕DB (if it is true for all the arguments then
it is also true for the attacked arguments).

(7) Obvious because if a and b are non-attacked, then they have the same ancestors’ graph
which is empty. Thus according to AE, they are equally acceptable (a ≃σ b) in agreement
with NaE.

(8) Let us suppose that a and b are non-attacked (R1(a) = R1(b) = ∅). As the sets of direct
attackers are empty, it is clear that there exists an bijective function f from R1(a) to
R1(b) such that ∀c ∈ R1(a), c ≃σ

AF f(c). As σ satisfies OE, so a ≃σ
AF b in agreement with

NaE.

(9) Let us suppose that |B−(a)| = 0 which means that a is either not attacked or attacked
but defended. Let us also assume that |R1(b)| = 1 and |R2(b)| = 0. According to the
property AvsFD, in this case, a is strictly more acceptable than b (a ≻σ

AF b). We will show
that when the properties VP and QP are satisfied we obtain the same result.
LetR1(a) = {a1, . . . , an} andR1(b) = {b1}.
R1(a) = ∅: From VP, we have a ≻σ

AF b becauseR1(a) = ∅ andR1(b) 6= ∅.
R1(a) 6= ∅: By VP, ∀ai ∈ R1(a), b1 ≻σ

AF ai because R1(b1) = ∅. So, by QP, we have
a ≻σ

AF b.

(10) Let AF ⋆ = AF ∪ AF γ ∪ P−(γ(a)) be an argumentation framework such that AF γ =
γ(AF ). In AF ⋆, γ(a) has one more attack branch (and so one more direct attacker) than
a (R1(a) < R1(γ(a))). As σ satisfies CP, so a ≻σ

AF ⋆ γ(a) in agreement with +AB.

Proposition 16. The properties that are satisfied by each ranking-based semantics (the other
properties are not satisfied by the corresponding ranking-based semantics):

• The categoriser-based ranking semantics (Cat) satisfies Abs, In, VP, DP, CT, SCT, ↑AB,
↑DB, +AB, Tot, NaE, AE and OE.

• The discussion-based semantics (Dbs) satisfies Abs, In, VP, DP, CT, SCT, CP, ↑AB, ↑DB,
+AB, Tot, NaE, AE and OE.

• The burden-based semantics (Bbs) satisfies Abs, In, VP, DP, CT, SCT, CP, DDP, ↑AB,
↑DB, +AB, Tot, NaE, AE and OE.
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• Let α ∈ ]0,+∞[. The α-burden-based semantics (α-Bbs) satisfies Abs, In, VP, DP, CT,
SCT, ↑AB, ↑DB, +AB, Tot, NaE, AE and OE.

• The fuzzy labeling (FL) satisfies Abs, In, CT, QP, Tot, NaE, OE and AvsFD.

• Let α ∈ ]0, 1[. The counting semantics (CS) satisfies Abs, VP, DP, CT, SCT, ↑AB, ↑DB,
+AB, Tot, NaE, AE and OE.

• Tuples-based semantics (Tuples) satisfies Abs, In, VP, +DB, ↑AB, ↑DB, +AB, NaE, AE,
OE and AvsFD.

• The ranking-based semantics M&T satisfies Abs, In, VP, +AB, SC, Tot, NaE and AvsFD.

• The iterated graded defense semantics (IGD) satisfies Abs, In, VP, +AB, and NaE.

Proof.

Categoriser-based ranking semantics

The results concerning the properties Abstraction (Abs), Independence (In), Void Prece-
dence (VP), Defense Precedence (DP), (Strict) Counter-Transitivity ((S)CT), Cardinality Prece-
dence (CP), Quality Precedence (QP) and Distributed-Defense Precedence (DDP) can be found
in [PU et al. 2014].

Properties satisfied

(OE) OE is implied by CT which is satisfied.

(NaE) NaE is implied by OE which is satisfied.

(AE) According to the definition of the categoriser function, the categoriser value of an argu-
ment is computed from the categoriser values of its direct attackers which depend themselves of
the categoriser values of their direct attackers and so on. So the only arguments which directly or
indirectly impact a given argument x are the attacker and the defender of x (x∪R+(x)∪R−(x)),
i.e. the arguments in its ancestors’ graph.
Pu et al. [PU et al. 2014, Theorem 1] show that for every argumentation framework there al-
ways exists a unique categoriser valuation, which means that two AFs with the same topology
assign the same value to their arguments (and so have the same ranking). So if two arguments
x and y have the same ancestors’ graph (and it is the case because there exists an isomorphism
between Anc(x) and Anc(y)) then Cat(x) = Cat(y) and so x ≃Cat y, in agreement with the
property.

(Tot) The categoriser-based ranking semantics guarantees a comparison between all the argu-
ments because all arguments have a score between 0 and 1 which is a totally ordered set of
real number and the Theorem 1 [PU et al. 2014] ensure the existence of a result. So all pairs of
arguments can be compared.

(+AB,↑AB,↑DB) Let AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two argumentation frameworks
such that an isomorphism γ exists such that AF = γ(AF ′). Let a ∈ A and its image γ(a) ∈ A′
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be two arguments such thatR1(a) = {a1, . . . , an} andR1(γ(a)) = {γ(a1), . . . , γ(an)}. As the
semantics satisfies Argument Equivalence, each argument and its image are equally acceptable
and so have the same score: ∀x ∈ A, Cat(x) = Cat(γ(x)).

+AB Let us add an attack branch to γ(a) where the argument b is the direct attacker of
γ(a) belonging to the new attack branch. If a is not attacked, then γ(a) is now attacked by b so
according to the property VP which is satisfied, we have a ≻Cat γ(a). If a is attacked then the
result is the same. Indeed, the score of b is strictly positive (Cat(b) > 0) because the function
f(x) = 1

1+x
cannot be equal to 0, so we have:

Cat(a1) + · · ·+ Cat(an) + 0 < Cat(γ(a1)) + · · ·+ Cat(γ(an)) + Cat(b)

1

1 + Cat(a1) + · · ·+ Cat(an)
>

1

1 + Cat(γ(a1)) + · · ·+ Cat(γ(an)) + Cat(b)

Cat(a) > Cat(γ(a))

Consequently, we have a ≻Cat γ(a) in agreement with the property.
↑AB Let us suppose ∃b ∈ B−(a), b /∈ B+(a) and consider a branch from b to a with a

length of n ∈ 2N + 1: p = 〈b, bn−1, . . . , b2, a1, a〉. Let us now add a defense branch to the
non-attacked argument γ(b). As the property VP is satisfied, the score of γ(b) which is now
attacked becomes lower than the score of b (so b ≻Cat γ(b)). Combining with the fact that SCT
is satisfied, then γ(bn−1) ≻Cat bn−1 . With the same reasoning, we obtain bn−2 ≻Cat γ(bn−2) and
so on until that γ(a) ≻Cat a, in agreement with the property.
↑DB The reasoning is similar to the proof of ↑AB.

Counter-examples

(+DB) Incompatible with SCT which is satisfied.

(⊕DB) Incompatible with VP which is satisfied.

(SC) To show that the categoriser-based ranking semantics does not satisfy the property Self-
Contradiction (SC), consider the argumentation framework AF from Figure B.2.

a b2

b1

b

Cat(b1) = Cat(b2) = 1

Cat(b) ≈ 0.33

Cat(a) ≈ 0.62

b1 ≃Cat b2 ≻Cat a ≻Cat b

Figure B.2 – The categoriser-based ranking semantics falsifies the property SC

The property says that b should be ranked higher than a because a attacks itself while b does
not attack itself. But, using the categoriser-based ranking semantics, a is ranked higher than b,
contradicting the property.
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a4 a1

a5 a2

a6 a3

a b1 b

Cat(a4) = Cat(a5) = Cat(a6) = Cat(b1) = 1

Cat(a1) = Cat(a2) = Cat(a3) = Cat(b) = 0.5

Cat(a) = 0.4

a4 ≃Cat a5 ≃Cat a6 ≃Cat b1 ≻Cat a1 ≃Cat a2 ≃Cat a3 ≃Cat b ≻Cat a

Figure B.3 – The categoriser-based ranking semantics falsifies the property AvsFD

(AvsFD) To show that the categoriser-based ranking semantics does not satisfy the property
Attack vs Full Defense (AvsFD), consider the argumentation framework AF from Figure B.3.

The property says that a should be strictly more acceptable than b because a has only de-
fense branches while b has exactly one direct attacker and no defense branch. But in using
the categoriser-based ranking semantics, b is strictly more acceptable than a, contradicting the
property.

Discussion-based semantics

The results concerning the properties Abstraction (Abs), Independence (In), Void Prece-
dence (VP), Defense Precedence (DP), (Strict) Counter-Transitivity ((S)CT), Cardinality Prece-
dence (CP), Quality Precedence (QP) and Distributed-Defense Precedence (DDP) can be found
in [AMGOUD & BEN-NAIM 2013].

Properties satisfied

(OE) OE is implied by CT which is satisfied.

(NaE) NaE is implied by OE which is satisfied.

(AE) It is clear that, following the definition, the discussion count of an argument only depends
on the attackers and the defenders of this argument, and so only on the arguments in its ances-
tors’ graph. So if two arguments x and y have the same ancestors’ graph (and it is the case
because there exists an isomorphism between Anc(x) and Anc(y)) then it is obvious to say that
∀i ∈ N\{0}, |Ri(x)| = |Ri(y)|. Consequently, Dis(x) = Dis(y) which implies that x ≃Dbs y,
in agreement with the property.

(Tot) The discussion-based ranking semantics guarantees a comparison between all the argu-
ments because �Dbs is total [AMGOUD & BEN-NAIM 2013, Definition 2].

(+AB) +AB is implied by CP which is satisfied.
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(↑AB,↑DB) Let AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two argumentation frameworks such
that an isomorphism γ exists such that AF = γ(AF ′). As the semantics satisfies Argument
Equivalence, each argument and its image are equally acceptable and so have the same score:
∀x ∈ A, Dis(x) = Dis(γ(x)) (i.e. ∀i > 0, Disi(x) = Disi(γ(x))).
↑AB Let us suppose ∃b ∈ B−(a), b /∈ B+(a) and consider a branch from b to a with a

length of n ∈ 2N+ 1. Let us now add a defense branch to the non-attacked argument γ(b). So,
∀i ≤ n, Disi(a) = Disi(γ(a)) but during the step n+1, γ(a) has now one additional defender
(|Rn+1(γ(a))| > |Rn+1(a)|) so Disn+1(γ(a)) = −|Rn+1(γ(a))| < −|Rn+1(a)| = Disn+1(a).
Consequently, Dis(a) ≻lex Disn+1(γ(a)) implies that γ(a) ≻Dbs a, in agreement with the prop-
erty.
↑DB The reasoning is similar to the proof of ↑AB except that the length of the branch from

b to a is n ∈ N. So Disn+1(γ(a)) = |Rn+1(γ(a))| > |Rn+1(a)| = Disn+1(a) which implies
that Dis(γ(a)) ≻lex Disn+1(a) and a ≻Dbs γ(a), in agreement with the property.

Counter-examples

(+DB) Incompatible with SCT which is satisfied.

(⊕DB) Incompatible with VP which is satisfied.

(SC) To show that the discussion-based semantics does not satisfy the property Self-Contradiction
(SC), consider the argumentation framework AF from Figure B.4.

a b2

b1

b

Dis(b1) = Dis(b2) = 〈0, 0, 0, 0, . . .〉
Dis(a) = 〈1,−1, 1,−1, . . .〉
Dis(b) = 〈2, 0, 0, 0, . . .〉

b1 ≃Dbs b2 ≻Dbs a ≻Dbs b

Figure B.4 – The discussion-based semantics falsifies the property SC

The property says that b should be strictly more acceptable than a because a attacks itself
while b does not attack itself. But, using the discussion-based semantics, a is strictly more ac-
ceptable than b, contradicting the property.

(AvsFD) To show that the discussion-based semantics does not satisfy the property Attack vs
Full Defense (AvsFD), consider the argumentation framework AF from Figure B.5.

The property says that a should be strictly more acceptable than b because a has only de-
fense branches while b has exactly one direct attacker and no defense branch. But in using the
discussion-based semantics, b is strictly more acceptable than a, contradicting the property.
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a3 a1

a4 a2 a b1 b

Dis(a3) = Dis(a4) = Dis(b1) = 〈0, 0, 0〉
Dis(a1) = Dis(a2) = Dis(b) = 〈1, 0, 0〉
Dis(a) = 〈2,−2, 0〉

a3 ≃Dbs a4 ≃Dbs b1 ≻Dbs a1 ≃Dbs a2 ≃Dbs b ≻Dbs a

Figure B.5 – The discussion-based semantics falsifies the property AvsFD

Burden-based semantics

The results concerning the properties Abstraction (Abs), Independence (In), Void Prece-
dence (VP), Defense Precedence (DP), (Strict) Counter-Transitivity ((S)CT), Cardinality Prece-
dence (CP), Quality Precedence (QP) and Distributed-Defense Precedence (DDP) can be found
in [AMGOUD & BEN-NAIM 2013].

Properties satisfied

(OE) OE is implied by CT which is satisfied.

(NaE) NaE is implied by OE which is satisfied.

(AE) According to its definition, the burden number of an argument is computed from the bur-
den number of its direct attackers which depend themselves of the burden number of their direct
attackers and so on. So the only arguments which directly or indirectly impact a given argument
x are the attacker and the defender of x (x∪R+(x)∪R−(x)), i.e. the arguments in its ancestors’
graph. So if two arguments x and y have the same ancestors’ graph (and it is the case because
there exists an isomorphism between Anc(x) and Anc(y)) then ∀i ∈ N, Buri(x) = Buri(y).
Indeed, it is obviously true when i = 0 (see the definition), when i = 1 because they have the
same number of direct attackers, when i = 2 because their direct attackers are attacked by the
same number of arguments and so on. Consequently, x ≃Bbs y, in agreement with the property.

(Tot) The burden-based ranking semantics guarantees a comparison between all the arguments
because �Bbs is total [AMGOUD & BEN-NAIM 2013, Definition 2].

(+AB) +AB is implied by CP which is satisfied.

(↑AB,↑DB) Let AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two argumentation frameworks such
that an isomorphism γ exists such that AF = γ(AF ′). As the semantics satisfies Argument
Equivalence, each argument and its image are equally acceptable and so have the same burden
vector: ∀x ∈ A, Bur(x) = Bur(γ(x)) (i.e. ∀i ≥ 0, Buri(x) = Buri(γ(x))).
↑AB Let us suppose ∃b ∈ B−(a), b /∈ B+(a) and consider a branch from b to a with a

length of n ∈ 2N+ 1: p = 〈b, bn−1, . . . , b2, a1, a〉. Let us now add a defense branch to the non-
attacked argument γ(b). As the property VP is satisfied, γ(b) which is now attacked becomes
less acceptable than b which is non-attacked (b ≻Bbs γ(b)). Combining with the fact that SCT is
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satisfied, then γ(bn−1) ≻Bbs bn−1 . With the same reasoning, bn−2 ≻Bbs γ(bn−2) and so on until
that γ(a) ≻Bbs a, in agreement with the property.
↑DB The same reasoning as the proof of ↑AB can be used.

Counter-examples

(+DB) Incompatible with SCT which is satisfied.

(⊕DB) Incompatible with VP which is satisfied.

(SC) To show that the burden-based semantics does not satisfy the property Self-Contradiction
(SC), consider the argumentation framework AF from Figure B.6.

a b2

b1

b

Bur(b1) = Bur(b2) = 〈1, 1, 1, 1, . . .〉
Bur(a) = 〈2, 1.5, 1.666, 1.6, . . .〉
Bur(b) = 〈3, 3, 3, 3, . . .〉

b1 ≃Bbs b2 ≻Bbs a ≻Bbs b

Figure B.6 – The burden-based semantics falsifies the property SC

The property says that b should be strictly more acceptable than a because a attacks itself
while b does not attack itself. But, using the burden-based semantics, a is strictly more accept-
able than b, contradicting the property.

(AvsFD) To show that the burden-based semantics does not satisfy the property Attack vs Full
Defense (AvsFD), consider the argumentation framework AF from Figure B.7.

a3 a1

a4 a2 a b1 b

Bur(a3) = Bur(a4) = Bur(b1) = 〈1, 1, 1〉
Bur(a1) = Bur(a2) = Bur(b) = 〈2, 2, 2〉
Bur(a) = 〈3, 2, 2〉

a3 ≃Bbs a4 ≃Bbs b1 ≻Bbs a1 ≃Bbs a2 ≃Bbs b ≻Bbs a

Figure B.7 – The burden-based semantics falsifies the property AvsFD

The property says that a should be strictly more acceptable than b because a has only de-
fense branches while b has exactly one direct attacker and no defense branch. But in using the
burden-based semantics, b is strictly more acceptable than a, contradicting the property.
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α-burden-based semantics

The results concerning the properties Abstraction (Abs), Independence (In), Void Prece-
dence (VP), Defense Precedence (DP), (Strict) Counter-Transitivity ((S)CT), Cardinality Prece-
dence (CP), Quality Precedence (QP) and Distributed-Defense Precedence (DDP) can be found
in [AMGOUD et al. 2016].

Properties satisfied

(OE) OE is implied by CT which is satisfied.

(NaE) NaE is implied by OE which is satisfied.

(AE) According to its definition, the burden number of an argument is computed from the bur-
den number of its direct attackers which depend themselves of the burden number of their direct
attackers and so on. So the only arguments which directly or indirectly impact a given argu-
ment x are the attacker and the defender of x (x ∪ R+(x) ∪ R−(x)), i.e. the arguments in its
ancestors’ graph. Let AF = 〈A,R〉 be an argumentation framework and a, b ∈ A such that
there exists an isomorphism γ between AncAF (a) and AncAF (b). In [AMGOUD et al. 2016,
Theorem 1], the authors ensure that the solution of a system of equations exists and is unique.
So it is clear that the systems of equations from AncAF (a) and from AncAF (b) are similar (be-
cause there exists an isomorphism) and have the same solution. Consequently, ∀a′ ∈ AncAF (a)
then sα(a

′) = sα(γ(a
′)). It is particularly true for a and b, so sα(a) = sα(b) which means that

a ≃α-Bbs
AF b.

(Tot) The α-burden-based ranking semantics guarantees a comparison between all the argu-
ments because �α-Bbs is total [AMGOUD et al. 2016, Definition 2].

(+AB,↑AB,↑DB) Let AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two argumentation frameworks
such that an isomorphism γ exists such that AF = γ(AF ′). Let a ∈ A and its image γ(a) ∈ A′
be two arguments such thatR1(a) = {a1, . . . , an} andR1(γ(a)) = {γ(a1), . . . , γ(an)}. As the
semantics satisfies Argument Equivalence, each argument and its image are equally acceptable
and so have the same score: ∀x ∈ A, sα(x) = sα(γ(x)).

+AB Let us add an attack branch to γ(a) where the argument b is the direct attacker of
γ(a) belonging to the new attack branch. If a is not attacked, then γ(a) is now attacked by b so
according to the property VP which is satisfied, we have a ≻α-Bbs γ(a). If a is attacked then the
result is the same. Indeed, the score of b is strictly positive (sα(b) > 0) because the domain of
sα is [1,∞[ , so we have ∀α ∈ ]0,∞[:

1

(sα(a1))α
+ · · ·+ 1

(sα(an))α
+ 0 <

1

(sα(γ(a1)))α
+ · · ·+ 1

(sα(γ(an)))α
+

1

(sα(b))α
(

1

(sα(a1))α
+ · · ·+ 1

(sα(an))α

)1/α

<

(
1

(sα(γ(a1)))α
+ · · ·+ 1

(sα(γ(an)))α
+

1

(sα(b))α

)1/α

1 +

(
1

(sα(a1))α
+ · · ·+ 1

(sα(an))α

)1/α

< 1 +

(
1

(sα(γ(a1)))α
+ · · ·+ 1

(sα(γ(an)))α
+

1

(sα(b))α

)1/α

sα(a) < sα(γ(a))
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Consequently, according to the definition of the semantics, we have a ≻α-Bbs γ(a) in agreement with the
property.
↑AB Let us suppose ∃b ∈ B−(a), b /∈ B+(a) and consider a branch from b to a with a length of

n ∈ 2N+1: p = 〈b, bn−1, . . . , b2, a1, a〉. Let us now add a defense branch to the non-attacked argument
γ(b). As the property VP is satisfied, the score of γ(b), which is now attacked, becomes greater than the
score of b (so b ≻α-Bbs γ(b)). Combining with the fact that SCT is satisfied, then γ(bn−1) ≻α-Bbs bn−1 .
With the same reasoning, we obtain bn−2 ≻α-Bbs γ(bn−2) and so on until that γ(a) ≻α-Bbs a, in agreement
with the property.
↑DB The reasoning is similar to the proof of ↑AB.

Counter-examples

(+DB) Incompatible with SCT which is satisfied.

(⊕DB) Incompatible with VP which is satisfied.

(SC) To show that the α-burden-based semantics does not satisfy the property Self-Contradiction (SC),
consider the argumentation framework AF from Figure B.8.

a b2

b1

b

sα(b1) = sα(b2) = 1

sα(a) ≃ 1.618

sα(b) = 3

b1 ≃α-Bbs b2 ≻α-Bbs a ≻α-Bbs b

Figure B.8 – The α-burden-based semantics falsifies the property SC

The property says that b should be strictly more acceptable than a because a attacks itself while b
does not attack itself. But, using the α-burden-based semantics, a is strictly more acceptable than b,
contradicting the property.

(AvsFD) To show that the α-burden-based semantics does not satisfy the property Attack vs Full Defense
(AvsFD), consider the argumentation framework AF from Figure B.9.

a3 a1

a4 a2 a b1 b

If α = 1:
sα(a3) = sα(a4) = sα(b1) = 1

sα(a1) = sα(a2) = sα(b) = 2

sα(a) = 2

a3 ≃α-Bbs a4 ≃α-Bbs b1 ≻α-Bbs a1 ≃α-Bbs a2 ≃α-Bbs b ≃α-Bbs a

Figure B.9 – The α-burden-based semantics falsifies the property AvsFD

The property says that a should be strictly more acceptable than b because a has only defense
branches while b has exactly one direct attacker and no defense branch. But in using the α-burden-
based semantics with α = 1, a and b are equally acceptable, contradicting the property.
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Fuzzy labeling

The results concerning the property (Tot) can be found in [DA COSTA PEREIRA et al. 2011][Definition
9].

Properties satisfied

(Abs) The nature of an argument is not used in the computation of its score. Only the attack relation is
needed (see definition 2.3.14).

(In) Obvious because, according to the definition 2.3.14, an argument only depends on the score of its
direct attacker, which depends on the score of its direct attackers and so on.

(QP) Let AF = 〈A,R〉 and ∀x, y ∈ A. Suppose that ∃y′ ∈ R1(y) such that ∀x′ ∈ R1(x), y′ ≻FL
AF x′

which implies that f(y′) > f(x′). So maxy′∈R1(y) f(y
′) > maxx′∈R1(x) f(x

′). According to the defi-
nition 2.3.14, we obtain f(y) < f(x) and thus x ≻FL

AF y.

(CT) Let AF = 〈A,R〉 and ∀x, y ∈ A. Suppose that it exists an injective function f from R1(y) to
R1(x) such that ∀z ∈ R1(y), f(z) �FL

z which implies that f(f(z)) ≥ f(z). So maxf(z)∈R1(x) f(f(z)) ≥
maxz∈R1(y) f(z). According to the definition 2.3.14, we obtain f(y) ≥ f(x) and thus y �FL

AF x.

(OE) Let AF = 〈A,R〉 and ∀x, y ∈ A. Suppose that there exists a bijective function f from R1(x) to
R1(y) such that ∀z ∈ R1(x), z ≃σ

AF f(z) which implies that f(z) = f(f(z)). So maxf(z)∈R1(y) f(f(z)) =
maxz∈R1(x) f(z). According to the definition 2.3.14, we obtain f(y) = f(x) and thus x ≃FL

AF y.

(NaE) NaE is implied by OE which is satisfied.

(AvsFD) Let AF = 〈A,R〉 be an argumentation framework where x ∈ A is attacked by only one non-
attacked argument and y ∈ A is only defended (i.e. without attack branch). The non-attacked arguments
have a score of 1 which implies that all the arguments directly attacked by them have a score of 0, espe-
cially x: f(x) = 0. If y is non-attacked then f(y) = 1. So, f(y) = 1 > 0 = f(x) which implies that
y ≻FL x. If y is attacked then it is clear that f(y) > 0 because it cannot have a direct attacker with a
score of 1 (otherwise one of its branch will be an attack branch but it is not the case because it has only
defense branches). So f(y) > f(x) which implies that y ≻FL x, in agreement with the property.

Counter-examples

(SC) To show that the fuzzy labeling does not satisfy the property Self-Contradiction (SC), consider the
argumentation framework AF from Figure B.10.

a b2

b1

b

f(b1) = f(b2) = 1

f(b) = 0

f(a) = 0.5

b1 ≃FL b2 ≻FL a ≻FL b

Figure B.10 – The fuzzy labeling falsifies the property SC

153



Appendix B. Proofs of the Results from Chapter 4

The property says that b should be strictly more acceptable than a because a attacks itself while b
does not attack itself. But, one can remark that a is strictly more acceptable than b, contradicting the
property.

(SCT) To show that the fuzzy labeling does not satisfy the property Strict Counter-Transitivity (SCT),
consider the argumentation framework AF from Figure B.11.

aa1a2

a3a4

b2 b1 b

f(a2) = f(a4) = f(b2) = f(a) = f(b) = 1

f(a1) = f(a3) = f(b1) = 0

a2 ≃FL a4 ≃FL b2 ≃FL a ≃FL b ≻FL a1 ≃FL a3 ≃FL b1

Figure B.11 – The fuzzy labeling falsifies the properties SCT, VP, +DB and ⊕DB.

The property says that b should be strictly more acceptable than a because it exists an injective func-
tion f from R1(b) to R1(a) such that ∀b′ ∈ R1(b), f(b′) � b′ (a1 �FL b1 because a1 ≃FL b1) so
R1(a) ≥FL

S R1(b) and R1(a) > R1(b). But the semantics considers that a and b are equally acceptable,
contradicting the property.

(VP) To show that the fuzzy labeling does not satisfy the property Void Precedence (VP), consider the
argumentation framework AF from Figure B.11.
Void Precedence says that a2 should be strictly more acceptable than a because a2 is a not attacked
(R1(a2) = ∅) while a is attacked (R1(a) 6= ∅). But the semantics considers that a2 and a are equally
acceptable, contradicting the property.

(+DB, ⊕DB) To show that FL does not satisfy the property Addition of Defense Branch (+DB) and
the property Strict addition of Defense Branch (⊕DB), consider the argumentation framework AF from
Figure B.11.
Both properties say that a should be strictly more acceptable than b because a has one defense branch
while b has no defense branch. But the semantics considers that a and b are equally acceptable, contra-
dicting both properties.

(DP) To show that the fuzzy labeling does not satisfy the property Defense Precedence (DP), consider
the argumentation framework AF from Figure B.12.

Defense Precedence says that a should be strictly more acceptable than b because |R1(a)| = |R1(b)|
= 2 and |R2(a)| = 1 > 0 = |R2(b)|. But the semantics considers that a and b are equally acceptable,
contradicting the property.

(CP) To show that the fuzzy labeling does not satisfy the property Cardinality Precedence (CP), consider
the argumentation framework AF from Figure B.13.

The property says that b should be strictly more acceptable than a because |R1(b)| = 1 < 2 = |R1(a)|.
But the semantics considers that a and b are equally acceptable, contradicting the property.
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aa1a2

a3

b2

b1

b

f(a2) = f(a3) = f(b1) = f(b2) = 1

f(a1) = f(a) = f(b) = 0

a2 ≃FL a3 ≃FL b1 ≃FL b2 ≻FL a1 ≃FL a ≃FL b

Figure B.12 – The fuzzy labeling falsifies the property DP

aa1

a2

b1 b

f(a1) = f(a2) = f(b1) = 1

f(a) = f(b) = 0

a1 ≃FL a2 ≃FL b1 ≻FL a ≃FL b

Figure B.13 – The fuzzy labeling falsifies the properties CP and +AB

(+AB) To show that FL does not satisfy the property Addition of Attack Branch (+AB), consider the
argumentation framework AF from Figure B.13.
The property says that b should be strictly more acceptable than a because a has two attack branches
while b has one attack branch. But the semantics considers that a and b are equally acceptable, contra-
dicting the property.

(DDP) To show that FL does not satisfy the property Distributed-Defense Precedence (DDP), consider
the argumentation framework AF from Figure B.14.

a3 a2 a1

a6 a5 a4

a b2 b1

b4 b3

b

f(a1) = f(a3) = f(a4) = f(a6) = f(b2) = f(b3) = f(b4) = 1
f(a2) = f(a5) = f(b1) = f(a) = f(b) = 0

a3 ≃FL a6 ≃FL b2 ≃FL b3 ≃FL b4 ≃FL a1 ≃FL a4 ≻FL a2 ≃FL a5 ≃FL b ≃FL a ≃FL b1

Figure B.14 – The fuzzy labeling falsifies the property DDP

The property says that a should be strictly more acceptable than b because |R1(a)| = |R1(b)| = 2,
|R2(a)| = |R2(b)| = 2 and the defense of a is simple and distributed while the defense of b is simple
but not distributed. But the semantics considers that a and b are equally acceptable, contradicting the
property.

(↑AB) To show that FL does not satisfy the property Increase of Attack branch (↑AB), consider the
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argumentation framework AF from Figure B.15.

a1 a b3 b2 b1 b
f(a1) = f(b3) = f(b1) = 1
f(b2) = f(a) = f(b) = 0

a1 ≃FL b3 ≃FL b1 ≻FL b2 ≃FL a ≃FL b

Figure B.15 – The fuzzy labeling falsifies the property ↑AB

The property says that b should be strictly more acceptable than a because the length of the attack
branch of b is greater than the length of the attack branch of a. But in using the semantics, we can see
that a and b are equally acceptable, contradicting the property.

(↑DB) To show that FL does not satisfy the property Increase of Defense branch (↑DB), consider the
argumentation framework AF from Figure B.16.

a2 a1 a b4 b3 b2 b1 b

f(a2) = f(b4) = f(b2) = f(a) = f(b) = 1
f(a1) = f(b3) = f(b1) = 0

a2 ≃FL b4 ≃FL b2 ≃FL a ≃FL b ≻FL a1 ≃FL b3 ≃FL b1

Figure B.16 – The fuzzy labeling falsifies the property ↑DB

The property says that a should be strictly more acceptable than b because the length of the defense
branch of b is greater than the length of the defense branch of a. But in using the semantics, we can see
that a and b are equally acceptable, contradicting the property.

Counting semantics

The results concerning the properties Abstraction (Abs), Independence (In), Void Precedence (VP),
Defense Precedence (DP), (Strict) Counter-Transitivity ((S)CT), Cardinality Precedence (CP), Quality
Precedence (QP) and Distributed-Defense Precedence (DDP) can be found in [PU et al. 2015b].

Properties satisfied

(OE) OE is implied by CT which is satisfied.

(NaE) NaE is implied by OE which is satisfied.

(AE) Use the matrix approach ensures that the score of an argument only depends on its attackers and
defenders. Thus, the score of an argument is the same in focusing on its ancestors’ graph as in the full
argumentation framework with the same normalization factor. If there exists an isomorphism between
the ancestors’ graph of x and y then the topology of the argumentation frameworks Anc(x) and Anc(y)
are identical, which implies that the adjacency matrix of Anc(x) and Anc(y) are identical too. Pu et
al. guarantee that the counting model always exists and is unique so the counting model is the same for
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Anc(x) and Anc(y). It is particularly true for x and y so w(x) = w(y) which implies that x ≃CS y.

(Tot) According [PU et al. 2015c, Theorem 1], the counting model ranges the strength value of each ar-
gument into the interval [0, 1] and converges to a unique solution. The interval [0, 1] is a totally ordered
set of real number so all its values can be compared using ≥. Consequently, all the arguments in an
argumentation framework can be compared too.

(+AB,↑AB,↑DB) Let AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two argumentation frameworks such that an
isomorphism γ exists such that AF = γ(AF ′). Let a ∈ A and its image γ(a) ∈ A′ be two arguments.
As the property AE is satisfied, we can say that ∀x ∈ A then x ≃CS

AF γ(x) because if there exists an
isomorphism between AF and AF ′, it is also true for the subgraphs of AF and more precisely for the
ancestors’ graph of each argument. Consequently, a ≃CS

AF∪AF′
γ(a) andR1(γ(a)) ≥CS

S R1(a).

+AB If we add an attack branch P−(γ(a)) to γ(a) then we still have R1(γ(a)) ≥CS
S R1(a) but

|R1(γ(a))| > |R1(a)| which implies that R1(γ(a)) >
CS
S R1(a). As the property SCT is satisfied then

a ≻CS
AF∗ γ(a), in agreement with the property.
↑AB Let us suppose ∃b ∈ B−(a), b /∈ B+(a) and consider a branch from b to a with a length of

n ∈ 2N+1: p = 〈b, bn−1, . . . , b2, a1, a〉. Let us now add a defense branch to the non-attacked argument
γ(b). As the property VP is satisfied, the score of γ(b) which is now attacked becomes lower than the
score of b (so b ≻CS

AF∗ γ(b)). Combining with the fact that SCT is satisfied, then γ(bn−1) ≻CS
AF∗ bn−1 .

With the same reasoning, we obtain bn−2 ≻CS
AF∗ γ(bn−2) and so on until that γ(a) ≻CS

AF∗ a, in agreement
with the property.
↑DB The reasoning is similar to the proof of ↑AB.

Counter-examples

(+DB) Incompatible with SCT which is satisfied.

(⊕DB) Incompatible with VP which is satisfied.

(SC) To show that the counting semantics does not satisfy the property Self-Contradiction (SC), consider
the argumentation framework AF from Figure B.17.

a b2

b1

b

If α = 0.5:
w(b1) = w(b2) = 1

w(b) = 0.5

w(a) ≈ 0.78

b1 ≃CS b2 ≻CS a ≻CS b

Figure B.17 – The counting semantics falsifies the property SC

The property says that b should be strictly more acceptable than a because a attacks itself while b
does not attack itself. But, the counting semantics considers that a is strictly more acceptable than b,
contradicting the property.

(AvsFD) To show that the counting semantics does not satisfy the property Attack vs Full Defense
(AvsFD), consider the argumentation framework AF from Figure B.18.
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a3 a1

a4 a2 a b1 b

If α = 0.5

w(a3) = w(a4) = w(b1) = 1

w(a1) = w(a2) = w(b) = 0.75

w(a) = 0.5625

a3 ≃CS a4 ≃CS b1 ≻CS a1 ≃CS a2 ≃CS b ≻CS a

Figure B.18 – The counting semantics falsifies the property AvsFD

The property says that a should be strictly more acceptable than b because a has only defense
branches while b has exactly one direct attacker and no defense branch. But the counting semantics
considers that b is strictly more acceptable than a, contradicting the property.

Tuples-based semantics

The results concerning the properties Void Precedence (VP), Addition of Defense Branch (+DB),
Addition of Attack Branch (+AB), Increase of Attack branch (↑AB), Increase of Defense branch (↑DB)
and Total (Tot) can be found in [CAYROL & LAGASQUIE-SCHIEX 2005b].

Properties satisfied

(Abs) If there exists an isomorphism γ between two argumentation frameworks AF and AF ′ then they
have the same structure. So for each argument, its image has exactly the same number of branch with
the same length (see the definition of isomorphism) which implies that an argument and it image have
the same tupled value: ∀x ∈ Arg(AF ), v(x) = v(γ(x)). Thus, for all arguments a, b ∈ Arg(AF ),
following Algorithm 1, as v(a) = v(γ(a)) and v(b) = v(γ(b)), it is clear that if a �T

AF b then we also
have γ(a) �T

AF′
γ(b).

(In) Let AF = 〈A,R〉 be an argumentation framework and AF ′ ∈ cc(AF ) with a, b ∈ Arg(AF ′) and
c /∈ Arg(AF ′). The tupled value of an argument is only computed from its attack and defense roots
which necessarily belongs to the same component as the arguments (because there exists a path between
both). So as there exists no path between a (respectively b) and c, then c cannot be a root of a (respec-
tively b). Consequently, it cannot influence the ranking between a and b.

(OE) Let AF = 〈A,R〉 be an argumentation framework and a, b ∈ A such that there exists a bijective
function f from R1(a) to R1(b) such that ∀z ∈ R1(a), z ≃σ

AF f(z). According to Algorithm 1, two ar-
guments are equally acceptable if they have the same tupled value so ∀z ∈ R1(a), v(z) = v(f(z)). The
original definition [CAYROL & LAGASQUIE-SCHIEX 2005b, Definition 10] compute the tupled value of
each argument on the basis of the tupled value of its direct attackers. So, as the tupled values of the direct
attackers of a and b are the same, then they obtain the same tupled value (v(a) = v(b)) which implies
that a ≃T b.

(NaE) NaE is implied by OE which is satisfied.

(AE) Obvious because if a and b have the same ancestors’ graph, then they have the same number of
branches with a length of 1, the same number of branches with a length of 2 and so on (see how the
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construction of the ancestors’ graph is done). So vp(a) = vp(b) and vi(a) = vi(b)⇒ v(a) = v(b)⇒
a ≃T

AF b.

(AvsFD) Let AF = 〈A,R〉 be an argumentation framework and a, b ∈ A such that |B−(b)| = 0,
|R1(a)| = 1 and |R2(a)| = 0. So |vi(a)| = 1 and |vp(a)| = 0 because v(a) = [(), (1)]. Concerning
b, its tupled-value respects the following criteria: |vi(b)| = 0 and |vp(b)| > 0. Consequently, we have
|vi(a)| > |vi(b)| and |vp(a)| < |vp(b)| and, according to Algorithm 1, b is strictly more acceptable than
a (b ≻T a).

Counter-examples

(⊕DB) Incompatible with VP which is satisfied.

(DP) To show that the tuples-based semantics does not satisfy the property Defense Precedence (DP),
consider the argumentation framework AF from Figure B.19.

bb3b4b5

b1b2b6

a1 a

a2

b7

v(a1) = v(a2) = v(b2) = v(b5) = v(b6) =

v(b7) = [0∞, ()]

v(b1) = [(), (1)]

v(a) = [(), (1, 1)]

v(b4) = [(), (1, 1, 1)]

v(b3) = [(2, 2, 2), ()]

v(b) = [(2), (3, 3, 3)]

a1 ≃T a2 ≃T b2 ≃T b5 ≃T b6 ≃T b7 ≻T b3 ≻T b1 ≻T a ≻T b4

a1 ≃T a2 ≃T b2 ≃T b5 ≃T b6 ≃T b7 ≻T b3 ≻T b ≻T b4

a �T b and b �T a

b1 �T b and b �T b1

Figure B.19 – The tuples-based semantics falsifies the properties DP and QP

The property says that b should be strictly more acceptable than a because |R1(a)| = |R1(b)| = 2 and
|R2(a)| = 0 < 2 = |R2(b)|. But we obtain two incomparable tuples : v(a) = [(), (1, 1)] and v(b) =
[(2), (3, 3, 3)] (see Algorithm 1 Case 7 [CAYROL & LAGASQUIE-SCHIEX 2005b] : |vi(a)| < |vi(b)| and
|vp(a)| < |vp(b)|), so a and b are incomparable, contradicting the property.

(QP) To show that the tuples-based semantics does not satisfy the property Quality Precedence (QP),
consider the argumentation framework AF from Figure B.19.
The property says that b should be more acceptable that a because a2 �T b1 and a2 �T b3 (a1 can also
be used). But, using the tuples-based semantics, a and b are incomparable, contradicting the property.
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(CT) To show that the tuples-based semantics does not satisfy the property Counter-Transitivity (CT),
consider the argumentation framework AF from Figure B.20.

aa3

a1a2

b1 b

v(a2) = v(a3) = v(b1) = [0∞, ()]

v(a1) = v(b) = [(), (1)]

v(a) = [(2), (1, 1)]

a2 ≃T a3 ≃T b1 ≻T a ≻T a1 ≃T b

Figure B.20 – The tuples-based semantics falsifies the properties CT, SCT and CP

The definition says that b should be at least as acceptable as a because it exists an injective func-
tion f from R1(b) to R1(a) such that ∀b′ ∈ R1(b), f(b′) �T b′. Indeed, we have R1(b) = {b1} and
R1(a) = {a1, a3} and a3 �T b1. But, using the tuples-based semantics, a is strictly more acceptable
than b, contradicting the property.

(SCT) To show that the tuples-based semantics does not satisfy the property Strict Counter-Transitivity
(SCT), consider the argumentation framework AF from Figure B.20.
The property says that b should be strictly more acceptable than a because it exists an injective function
f from R1(b) to R1(a) such that ∀b′ ∈ R1(b), f(b′) �T b′ and |R1(b)| < |R1(a)|. Indeed, we have
R1(b) = {b1} and R1(a) = {a1, a3} (so |R1(b)| = 1 < 2 = |R1(a)|) where a3 �T b1. But, using the
tuples-based semantics, a is strictly more acceptable than b, contradicting the property.

(CP) To show that the tuples-based semantics does not satisfy the property Cardinality Precedence (CP),
consider the argumentation framework AF from Figure B.20.
The property says that b should be strictly more acceptable than a because |R1(a)| = 2 > 1 = |R1(b)|.
But, using the tuples-based semantics, a is strictly more acceptable than b, contradicting the property.

(DDP) To show that the tuples-based semantics does not satisfy the property Distributed-Defense Prece-
dence (DDP), consider the argumentation framework AF from Figure B.21.

aa1a2a3

a4a5a6

b3

b4

b2

b1

b

v(a3) = v(a6) = v(b1) = v(b3) = v(b4) =

[0∞, ()]

v(a2) = v(a5) = [(), (1)]

v(a1) = v(a4) = [(2), ()]

v(b2) = [(), (1, 1)]

v(a) = [(), (3, 3)]

v(b) = [(2, 2), (1)]

b ≻T a

Figure B.21 – The tuples-based semantics falsifies the property DDP

The property says that a should be strictly more acceptable than b because |R1(a)| = |R1(b)| = 2,
|R2(a)| = |R2(b)| = 2 and the defense of a is simple and distributed while the defense of b is simple but
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not distributed. But, using the tuples-based semantics, b is strictly more acceptable than a, contradicting
the property.

(SC) To show that the tuples-based semantics does not satisfy the property Self-Contradiction (SC),
consider the argumentation framework AF from Figure B.22.

a b2

b1

b

v(b1) = v(b2) = [0∞, ()]

v(b) = [(), (1, 1)]

v(a) = [(2, 4, 6, . . . ), (1, 3, 5, . . . )]

b1 ≃Bbs b2 ≻Bbs b
b1 ≃Bbs b2 ≻Bbs a
a �T b and b �T a

Figure B.22 – The tuples-based semantics falsifies the property SC

The property says that b should be strictly more acceptable than a because a attacks itself while b
does not attack itself. But, with the tuples-based semantics, a and b are incomparable, which contradicts
the property.

Ranking-based semantics M&T

The results concerning the properties Independence (In), Void Precedence (VP) and Self-Contradiction
(SC) can be found in [MATT & TONI 2008].

Properties satisfied

(Abs) The nature of an argument is not used in the computation of its score. Only the attack relation is
needed.

(Tot) This semantics guarantees a comparison between all the arguments because the score of an argu-
ment a ∈ A is such that s(a) ∈ [0, 1] which is a totally ordered set. In [MATT & TONI 2008], they
ensure the existence of a value v thanks to the minimax theorem (von Neumann 1928).

(NaE) NaE is implies by AE which is satisfied.

(AvsFD) Let AF = 〈A,R〉 be an argumentation framework with a, b ∈ A be two arguments where b is
attacked by a non-attacked argument and a only have defense branches and no attack branch. The value
of the zero-sum game for b is v(b) = 0.25. For a, we can say that this argument belongs to the set of
stable (and so admissible) extension because it has only defense branches. Moreover, the Proposition 5
[MATT & TONI 2008] says that if an argument belong to a stable extension (which is unique here then
its strength is greater or equal to 1

2 so v(a) ≥ 1
2 . Consequently we have v(b) = 0.25 < 0.5 ≤ v(a) and

so a ≻ b.

Counter-examples
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(AE) Incompatible with SC which is satisfied.

(⊕DB) Incompatible with VP which is satisfied.

(DP) To show that the ranking-based semantics M&T does not satisfy the property Defense Precedence
(DP), consider the argumentation framework AF from Figure B.23.

aa1

a2

b1 b

b2 s(a1) = s(a2) = s(b2) = 1

s(b1) = 0.25

s(a) = s(b) ≃ 0.16

a1 ≃MT a2 ≃MT b2 ≻MT b1 ≻MT a ≃MT b

Figure B.23 – The ranking-based semantics M&T falsifies the property DP

The property says that b should be strictly more acceptable than a because |R1(a)| = |R1(b)| = 2
but |R2(a)| = 0 < 1 = |R2(b)|. But in using the semantics, we can see that a and b are equally accept-
able, contradicting the property.

(QP) To show that the ranking-based semantics M&T does not satisfy the property Quality Precedence
(QP), consider the argumentation framework AF from Figure B.24. The property says that a should be

bb1 a2 a1 a

a2 ≃MT b1 ≻MT a1 ≻MT a ≃MT b

s(a2) = s(b1) = 1

s(a1) = 0.25

s(a) = s(b) = 0

Figure B.24 – The ranking-based semantics M&T falsifies the property QP

strictly more acceptable than b because b1 ≻MT a1 and b1 ≻MT a. But the semantics considers that a and
b are equally acceptable, contradicting the property.

(CP) To show that the ranking-based semantics M&T does not satisfy the property Cardinality Prece-
dence (CP), consider the argumentation framework AF from Figure B.25.

a3 a1

a4 a2 a b2 b1 b

s(a3) = s(a4) = s(b1) = 1

s(a1) = s(a2) = 0.25

s(a) = s(b) = 0.5

a3 ≃MT a4 ≃MT b2 ≻MT a ≃MT b ≻MT a1 ≃MT a2 ≃MT b1

Figure B.25 – The ranking-based semantics M&T falsifies the properties CP and +DB
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The property says that b should be strictly more acceptable than a because |R1(a)| = 2 > 1 = |R1(b)|.
But in using the semantics, we can see that a and b are equally acceptable, contradicting the property.

(+DB) To show that the ranking-based semantics M&T does not satisfy the property Addition of Defense
Branch (+DB), consider the argumentation framework AF from Figure B.25.
The property says that a should be strictly more acceptable than b because a has one more defense branch
that b. But in using the semantics, we can see that a and b are equally acceptable, contradicting the prop-
erty.

(↑DB) To show that the ranking-based semantics M&T does not satisfy the property Increase of Defense
branch (↑DB), consider the argumentation framework AF from Figure B.26.

a4 a3 a2 a1 a b2 b1 b

s(a4) = s(b2) = 1, s(a1) ≃ 0.386, s(a3) = s(b1) = 0.25 and s(a) = s(b) = s(a2) = 0.5

a3 ≃MT b1 ≻MT a ≃MT b ≃MT a2 ≻MT a1 ≻MT a3 ≃MT b1

Figure B.26 – The ranking-based semantics M&T falsifies the property ↑DB

The property says that b should be strictly more acceptable than a because a has one defense branch
longer than the defense branch of b. But in using the semantics, we can see that a and b are equally
acceptable, contradicting the property.

(↑AB) To show that the ranking-based semantics M&T does not satisfy the property Increase of Attack
branch (↑AB), consider the argumentation framework AF from Figure B.27.

bb1 a3 a2 a1 a

b1 ≃MT a3 ≻MT a1 ≻MT a2 ≻MT a ≃MT b

s(b1) = s(a3) = 1

s(a2) = 0.25

s(a1) = 0.5

s(a) = s(b) = 0

Figure B.27 – The ranking-based semantics M&T falsifies the property ↑AB

The property says that a should be strictly more acceptable than b because a has one attack branch
longer than the attack branch of b. But in using the semantics, we can see that a and b are equally ac-
ceptable, contradicting the property.

(+AB) To show that the ranking-based semantics M&T does not satisfy the property Addition of Attack
Branch (+AB), consider the argumentation framework AF from Figure B.28.

The property says that b should be strictly more acceptable than a because a has one more attack
branch that b. But in using the semantics, we can see that a and b are equally acceptable, contradicting
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b a1 a
s(a1) = 1

s(a) = s(b) = 0

a1 ≻MT a ≃MT b

Figure B.28 – The ranking-based semantics M&T falsifies the property +AB

the property.

(DDP) To show that the ranking-based semantics M&T does not satisfy the property Distributed Defense
Precedence (DDP), consider the argumentation framework AF from Figure B.29.

a3 a2 a1

a6 a5 a4

a b2 b1

b4 b3

b

s(a3) = s(a6) = 1

s(b2) = s(b3) = s(b4) = 1

s(a2) = s(a5) = s(b) = 0.25

s(a1) = s(a4) = 0.5

s(b1) = s(a) = 0.1667

a3 ≃MT a6 ≃MT b2 ≃MT b3 ≃MT b4 ≻MT a1 ≃MT a4 ≻MT b ≃MT a2 ≃MT a5 ≻MT a ≃MT b1

Figure B.29 – The ranking-based semantics M&T falsifies the property Distributed-Defense
Precedence

The definition says that a should be strictly more acceptable than b because they have the same num-
ber of direct attackers (|RS

1 (a)| = |RS
1 (b)| = 2) and the same number of direct defenders (|RS

2 (a)| =
|RS

2 (b)| = 2) but the defense of a is simple and distributed whereas the defense of b is simple and not
distributed. But in using the semantics, b is strictly more acceptable than a, contradicting the property.

(OE) To show that the ranking-based semantics M&T does not satisfy the property Ordinal Equivalence
(OE), consider the argumentation framework AF from Figure B.30.

a5 a4 a3 a2 a1 a

a5 ≻MT a1 ≃MT a3 ≻MT a ≻MT a2 ≻MT a4

s(a5) = 1

s(a4) = 0.25

s(a3) = s(a1) = 0.5

s(a2) ≃ 0.3863

s(a) = 0.425

Figure B.30 – The ranking-based semantics M&T falsifies the property OE

The property says that a and a2 should be equally acceptable because there exists a bijective function
f from R1(a) to R1(a2) such that ∀b ∈ R1(a), f(b) ≃MT b (a3 ≃MT a1). But in using the semantics, a
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is strictly more acceptable than a2, contradicting the property.

(CT) To show that the ranking-based semantics M&T does not satisfy the property Counter-Transitivity
(CT), consider the argumentation framework AF from Figure B.30.
The property says that a2 should be at least as acceptable as a because there exists an injective function
f from R1(a2) to R1(a) such that ∀b ∈ R1(a2), f(b) � b (a1 ≃MT a3 which implies a1 �MT a3) so
R1(a) ≥MT

S R1(a2). But the semantics considers that a is strictly more acceptable than a2, contradicting
the property.

(SCT) To show that the ranking-based semantics M&T does not satisfy the property Strict Counter-
Transitivity (SCT), consider the argumentation framework AF from Figure B.30.
The property says that a3 should be strictly more acceptable than a1 because it exists an injective func-
tion f from R1(a3) to R1(a1) such that ∀b ∈ R1(a3), f(b) � b (a2 �MT a4) and especially a2 ≻MT a4
(soR1(a1) >

MT
S R1(a3)). But the semantics considers that a and b are equally acceptable, contradicting

the property.

Iterated Graded Defense semantics

The results concerning the property Total (Tot) can be found in [GROSSI & MODGIL 2015].

Properties satisfied

(Abs) The nature of an argument is not used in the computation of its score. Only the attack relation is
needed.

(In) According to the definition 2.3.16, the graded defense is computed from the direct attackers and the
direct defenders of arguments. So if there exists no path between two arguments then it cannot influence
the acceptability to the other.

(VP) Let AF = 〈A,R〉 be an argumentation framework and x, y ∈ A such that x is not attacked and y
is attacked. As x is not attacked, then ∀i ∈ N

∗ and ∀X ∈ A, x ∈ Ni(X ). So ∀m,n ∈ N
∗, x ∈ d∗m

n
(X ).

Let us now find two values of m and n such that y does appears in d∗m
n
(X ). If m′ = 1 and n′ = |A|+ 1

then for any X ∈ A, dm′

n′

(X ) selects the arguments such that none of their direct attackers are directly

attacked at most n − 1 times. It is clear that only the non-attacked arguments respect this condition so
x ∈ d∗m′

n′

(X ) and y /∈ d∗m′

n′

(X ) because it is attacked, so x ≻IGD y.

(NaE) NaE are obviously satisfied because for any non-attacked argument x, then ∀i ∈ N
∗ and ∀X ∈ A,

x ∈ Ni(X ). So ∀m,n ∈ N
∗, x ∈ d∗m

n
(X ). Consequently, the non-attacked arguments always belong

to the same graded defense which means that, according to the definition of the IGD semantics, they are
equally acceptable.

(+AB) Let AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two argumentation frameworks such that an isomor-
phism γ exists such that AF = γ(AF ′). Let a ∈ A and its image γ(a) ∈ A′ be two arguments. As
the semantics satisfies Argument Equivalence, a and γ(a) are equally acceptable, so ∀m,n ∈ N

∗ and
∀X ∈ A ∪A′, a ∈ d∗m

n
(X ) if and only if γ(a) ∈ d∗m

n
(X ).

Let m′ be the minimum value such that a ∈ d∗m′

2

(X ) and ∄m < m′, a ∈ d∗m
2
(X ) (idem for γ(a)). This
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result contains the arguments such that at most m′ − 1 arguments are not attacked or are attacked once.
Let us now add an attack branch to γ(a) which implies that it has now one additional direct attacker
which can be attacked (if the length of the branch is greater than 1) or not (if the length of the branch
is 1). In both cases, γ(a) /∈ d∗m′

2

(X ) because m′ is the minimum value while a ∈ d∗m′

2

(X ). Moreover,

the initial isomorphism between a and γ(a) guarantees that ∀X ∈ Arg(AF ∗), if γ(a) ∈ d∗m
n
(X ) then

a ∈ d∗m
n
(X ) too. So according the definition, a ≻IGD

AF∗ γ(a).

Counter-examples

(⊕DB) Incompatible with VP which is satisfied.

(SC) To show that the iterated graded defense semantics does not satisfy the property Self-Contradiction
(SC), consider the argumentation framework AF from Figure B.31.

a b2

b1

b

b1 ≃IGD b2 ≻IGD a ≻IGD b

Figure B.31 – The iterated graded defense semantics falsifies the property SC

The property says that b should be strictly more acceptable than a because a attacks itself while b
does not attack itself. But, one can remark that a is strictly more acceptable than b, contradicting the
property.

(↑DB) To show that the iterated graded defense semantics does not satisfy the property Increase of
Defense branch (↑DB), consider the argumentation framework AF from Figure B.32.

a2 a1 a b4 b3 b2 b1 b

a2 ≃IGD b4 ≻IGD b2 ≃IGD a ≃IGD b ≻IGD a1 ≃IGD b1 ≃IGD b3

Figure B.32 – The iterated graded defense semantics falsifies the property ↑DB

The property says that a should be strictly more acceptable than b because the length of the defense
branch of b is greater than the length of the defense branch of a. But in using the semantics, we can see
that a and b are equally acceptable, contradicting the property.

(↑AB) To show that the iterated graded defense semantics does not satisfy the property Increase of Attack
branch (↑AB), consider the argumentation framework AF from Figure B.33.

The property says that b should be strictly more acceptable than a because the length of the attack
branch of b is greater than the length of the attack branch of a. But in using the semantics, we can see
that a and b are equally acceptable, contradicting the property.

(DP) To show that the iterated graded defense semantics does not satisfy the property Defense Prece-
dence (DP), consider the argumentation framework AF from Figure B.33.
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a1 a b3 b2 b1 b
a1 ≃IGD b3 ≻IGD b1 ≻IGD b2 ≃IGD a ≃IGD b

Figure B.33 – The iterated graded defense semantics falsifies the properties ↑AB, DP and SCT

Defense Precedence says that b should be strictly more acceptable than a because |R1(a)| = |R1(b)| =
1 and |R2(a)| = 0 < 1 = |R2(b)|. But the semantics considers that a and b are equally acceptable,
contradicting the property.

(SCT) To show that the iterated graded defense semantics does not satisfy the property Strict Counter-
Transitivity (SCT), consider the argumentation framework AF from Figure B.33.
The property says that b should be strictly more acceptable than a because it exists an injective func-
tion f from R1(b) to R1(a) such that ∀b′ ∈ R1(b), f(b′) �IGD b′ (a1 �IGD b1 because a1 ≻IGD b1) so
R1(a) ≥IGD

S R1(b). But a1 ≻IGD b1 so R1(a) >
IGD
S R1(b). But the semantics considers that a and b are

equally acceptable, contradicting the property.

(DDP) To show that the iterated graded defense semantics does not satisfy the property Distributed-
Defense Precedence (DDP), consider the argumentation framework AF from Figure B.34.

aa1a2a3

a4a5a6

b3

b4

b2

b1

b

b1 ≃IGD b3 ≃IGD b4 ≃IGD a3 ≃IGD a6 ≻IGD a1 ≃IGD a4 ≻IGD a1 ≃IGD a5 ≻IGD a ≻IGD b ≻IGD b2

Figure B.34 – The iterated graded defense semantics falsifies the property DDP

The property says that b should be strictly more acceptable than a because |R1(a)| = |R1(b)| = 2,
|R2(a)| = |R2(b)| = 2 and the defense of b is simple and distributed while the defense of a is simple
but not distributed. But the semantics considers that a is strictly more acceptable than b.

(QP) To show that the iterated graded defense semantics does not satisfy the property Quality Precedence
(QP), consider the argumentation framework AF from Figure B.34.
The property says that b should be strictly more acceptable than a because a1 ≻IGD b1 and a1 ≻IGD b4.
But the semantics considers that a is strictly more acceptable than b which contradicts the property.

(+DB) To show that the iterated graded defense semantics does not satisfy the property Addition of
Defense Branch (+DB), consider the argumentation framework AF from Figure B.35.

The property says that a should be strictly more acceptable than b because a has two defense branches
while b has only one defense branch. But the semantics considers that b is strictly more acceptable than
b which contradicts the property.

(CP) To show that the iterated graded defense semantics does not satisfy the property Cardinality Prece-
dence (CP), consider the argumentation framework AF from Figure B.36.
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aa1a2

a3a4

b2 b1 b

a2 ≃IGD a4 ≃IGD b2 ≻IGD a ≻IGD b ≻IGD a1 ≃IGD a3 ≃IGD b1

Figure B.35 – The iterated graded defense semantics falsifies the property +DB.

aa1a2

a3a4

b1 b

Figure B.36 – The iterated graded defense semantics falsifies the properties CP and AvsFD

The property says that b should be strictly more acceptable than a because |R1(b)| = 1 < 2 = |R1(a)|.
But the semantics considers that a and b are incomparable because a ∈ d∗1

1
(∅) but a /∈ d∗2

2
(∅) while

b /∈ d∗1
1
(∅) but b ∈ d∗2

2
(∅), which contradicts the property.

(AvsFD) To show that the iterated graded defense semantics does not satisfy the property Attack vs Full
Defense (AvsFD), consider the argumentation framework AF from Figure B.36.
The property says that a should be strictly more acceptable than b because a has only defense branches
while b has exactly one direct attacker and no defense branch. But the semantics considers that a and b
are incomparable because a ∈ d∗1

1
(∅) but a /∈ d∗2

2
(∅) while b /∈ d∗1

1
(∅) but b ∈ d∗2

2
(∅), which contradicts the

property.

(CT) To show that the iterated graded defense semantics does not satisfy the property Counter-Transitivity
(CT), consider the argumentation framework AF from Figure B.36.
The property says that a should be at least as acceptable than b because it exists an injective func-
tion f from R1(a) to R1(b) such that ∀a′ ∈ R1(a), f(a′) � a′ (b1 ≻IGD a1 and so b1 �IGD a1) so
R1(b) ≥IGD

S R1(a). But the semantics considers that a and b are incomparable because a ∈ d∗1
1
(∅) but

a /∈ d∗2
2
(∅) while b /∈ d∗1

1
(∅) but b ∈ d∗2

2
(∅), which contradicts the property.

Proposition 17. Let ⊕ ∈ {M,S} and ǫ ∈ ]0, 1].

• The ranking-based semantics Propaǫ,⊕ǫ satisfies Abs, In, VP, DP, ↑AB, ↑DB, +AB, NaE,
Tot and AE.

• The ranking-based semantics Propaǫ,⊕1+ǫ satisfies Abs, In, VP, DP, DDP, ↑AB, ↑DB, +AB,
Tot, NaE, AE and AvsFD.

• The ranking-based semantics Propaǫ,⊕1→ǫ satisfies Abs, In, VP, DP, DDP, +DB, ↑AB, ↑DB,
+AB, Tot, NaE, AE and AvsFD.

Proof.
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Propaǫ

Properties satisfied

(Abs) The nature of an argument is not used in the computation of its score. Only the attack
relation is needed (see the definition of Propaǫ and the definition of the propagation principle).

(In) An argument a only receives the scores from its attackers and defenders. Thus, an argu-
ment b, such that there exists no path between a and b, cannot propagate its initial value to a
and then cannot influence the propagation number of a.

(VP) Let ⊕ ∈ {M,S} and AF = 〈A,R〉 be an argumentation framework with a, b ∈ A such
that a is not attacked (R⊕1 (a) = ∅) and b is attacked (R⊕1 (b) 6= ∅).
If ǫ < 1: During the first step (i = 0), the non-attacked arguments begin with a score of 1, in
particular P ǫ,⊕

0 (a) = 1, and all the others begin with a score of ǫ, in particular P ǫ,⊕
0 (b) = ǫ. At

the end of the first step, P ǫ,⊕
0 (a) > P ǫ,⊕

0 (b) so a ≻P

AF b, in agreement with the property.
If ǫ = 1: During the first step (i = 0), we have P ǫ,⊕

0 (a) = P ǫ,⊕
0 (b) = 1. So, a second step

is needed to distinguish them. Indeed, a keeps its score of 1 because it is not attacked while
the score of b decreases because it is directly attacked by at least one argument (we note n the
number of direct attackers of b with n > 0). Consequently, P ǫ,⊕

1 (b) = 1 − n < 1 = P ǫ,⊕
1 (a)

implies that a ≻P

AF b, in agreement with the property.

(DP) Let ⊕ ∈ {M,S} and AF = 〈A,R〉 be an argumentation framework with a, b ∈ A such
that a is not defended (R⊕2 (a) = ∅), b is defended (R⊕2 (b) 6= ∅) and |R⊕1 (a)| = |R⊕1 (b)| = n >
0.
During the step i = 0, both arguments have exactly the same score because they are attacked
by at least one argument, so P ǫ,⊕

0 (a) = P ǫ,⊕
0 (b) = ǫ.

If ǫ < 1: During the step i = 1, a is directly attacked by n non-attacked arguments because
it is not defended so P ǫ,⊕

1 (a) = ǫ − n while b is attacked by m non-attacked arguments and
n − m attacked arguments so P ǫ,⊕

1 (b) = ǫ − (m + (n − m)ǫ). Consequently, as ǫ < 1,
P ǫ,⊕
1 (a) = ǫ− n < ǫ− (m+ (n−m)ǫ) = P ǫ,⊕

1 (b) so b ≻P

AF a, in agreement with the property.
If ǫ = 1: During the step i = 1, P ǫ,⊕

1 (a) = P ǫ,⊕
1 (b) = ǫ − n. So, a third step is needed to

distinguish them. Indeed, when i = 2, b is defended by at least one argument so its score in-
creases while the score of a stays the same because it has no defender, so P ǫ,⊕

2 (b) > P ǫ,⊕
2 (a).

Consequently, we obtain b ≻P

AF a, in agreement with the property.

(AE) Obvious because two arguments with the same ancestors’ graph receive exactly the same
values from its attackers and defenders.

(NaE) NaE is implied by AE which is satisfied.

(Tot) It is clear that the computation of the propagation vectors is always guaranteed for each
argument. And the lexicographical order always returns a result between two vectors which
guarantees the comparison between two arguments.
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(+AB,↑AB and ↑DB) Let ⊕ ∈ {M,S}, AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two argumen-
tation frameworks such that it exists an isomorphism γ with AF = γ(AF ′). Let a ∈ A and its
image γ(a) ∈ A′ be two arguments. As Propaǫ satisfies the properties Argument Equivalence
(AE), we can say that a and γ(a), with the same ancestors’ graph, have the same propagation
vector: ∀ǫ ∈]0, 1], P ǫ,⊕(a) = P ǫ,⊕(γ(a)).

+AB Let us add an attack branch P−(γ(a)) to γ(a) with a length of n ∈ 2N+1. If a is not
attacked, then a becomes more acceptable than γ(a) which is now attacked (see the property
Void Precedence). Otherwise, when a is attacked by at least one argument, a and γ(a) keep the
same score during the first step : P ǫ,⊕

0 (a) = P ǫ,⊕
0 (γ(a)) = ǫ. But during the second step, γ(a)

has now one more direct attackers than a, so the score of γ(a) becomes lower than the score of
a (P ǫ,⊕

1 (γ(a)) = p1 − 1 if n = 1 or P ǫ,⊕
1 (γ(a)) = p1 − ǫ if n > 1). Consequently, we obtain

P ǫ,⊕
1 (a) > P ǫ,⊕

1 (γ(a))⇒ a ≻P

AF∗ γ(a), in agreement with the property.
↑AB Let us suppose ∃b ∈ B−(a), b /∈ B+(a) such that the length of the path from b to

a is n. Let us now add a defense branch to the non-attacked argument γ(b). Until the step
n − 1, there is no change in the values received by a and γ(a) so they keep the same score:
∀i ≤ n − 1, P ǫ,⊕

i (a) = P ǫ,⊕
i (γ(a)). But during the step n, γ(a) receives a negative value of ǫ

from γ(b) which is now attacked while a receives a negative value of 1 from b which is not at-
tacked. So if ǫ < 1 then P ǫ,⊕

n (a) < P ǫ,⊕
n (γ(a))⇒ γ(a) ≻P

AF∗ a, in agreement with the property.
However, if ǫ = 1 then a supplementary step is necessary to obtain a difference between a and
γ(a). Indeed, γ(a) receives an additional positive value coming from the new direct attacker of
γ(b) so P ǫ,⊕

n+1(a) < P ǫ,⊕
n+1(γ(a))⇒ γ(a) ≻P

AF∗ a, in agreement with the property.
↑DB The proof is similar to ↑AB except that b is a defense root. So during the step n, γ(a)

receives a positive value of ǫ from γ(b) which is now attacked while a receives a positive value
of 1 from b which is not attacked. So, when ǫ < 1, P ǫ,⊕

n (a) > P ǫ,⊕
n (γ(a)) ⇒ a ≻P

AF∗ γ(a) and
when ǫ = 1, P ǫ,⊕

n+1(a) > P ǫ,⊕
n+1(γ(a))⇒ a ≻P

AF∗ γ(a), in agreement with the property.

Counter-examples

(CP) To show that Propaǫ does not satisfy the property Cardinality Precedence (CP), consider
the argumentation framework AF from Figure B.37.

a3 a1

a4 a2 a b1 b

P 0.1,⊕
i a3, a4, b1 a1, a2 a b

0 1 0.1 0.1 0.1
1 1 -0.9 -0.1 -0.9
2 1 -0.9 1.9 -0.9

a3 ≃P a4 ≃P b1 ≻P a ≻P a1 ≃P a2 ≃P b

Figure B.37 – Propaǫ falsifies the property CP

The property says that b should be strictly more acceptable than a because |R⊕1 (a)| = 2 >
1 = |R⊕1 (b)|. But, with the semantics Propa⊕,0.1ǫ , we can see that a is strictly more acceptable
than b, contradicting the property.
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(QP) To show that Propaǫ does not satisfy the property Quality Precedence (QP), consider the
argumentation framework AF from Figure B.38.

a1 a2

a3 a4 a b3

b1

b4

b2

b

P 1,⊕
i a1, a3, b1, b2, b3 a2, a4 b4 a b

0 1 1 1 1 1
1 1 0 -1 -1 -1
2 1 0 -1 1 1

a1 ≃P a3 ≃P b1 ≃P b2 ≃P b3 ≻P a2 ≃P a4 ≻P a ≃P b ≻P b4

Figure B.38 – Propaǫ falsifies the properties QP and DDP

The property says that a should be strictly more acceptable than b because b2 ≻P a2 and
b2 ≻P a4. But, with the semantics Propa⊕,1ǫ , we can see that a and b are equally acceptable,
contradicting the property.

(DDP) To show that Propaǫ does not satisfy the property Distributed-Defense Precedence (QP),
consider the argumentation framework AF from Figure B.38.
The property says that a should be ranked strictly higher than b because the defense of a is sim-
ple and distributed while the defense of b is simple but not distributed. But, with the semantics
Propaǫ, we can see that a and b are equally acceptable, contradicting the property.

(SC) To show that Propaǫ does not satisfy the property Self-Contradiction (SC), consider the
argumentation framework AF from Figure B.39.

a b2

b1

b

P 0.1,⊕
i b1, b2 a b

0 1 0.1 0.1
1 1 0 -1.9
2 1 0.1 -1.9

b1 ≃P b2 ≻P a ≻P b

Figure B.39 – Propaǫ falsifies the property SC

The property says that b should be ranked strictly higher than a because a attacks itself while
b does not. But, with the semantics Propa⊕,0.1ǫ , we can see that a is ranked strictly higher than
b, contradicting the property.

(⊕DB and +DB) To show that Propaǫ does not satisfy the property Addition of Defense Branch
(+DB) and the property Strict addition of Defense Branch (⊕DB), consider the argumentation
framework AF from Figure B.40.

Both properties say that a should be ranked strictly higher than b because a has one defense
branch while b has no defense branch. But, with Propa⊕,0.1ǫ , we can see that b is ranked strictly
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a2 a1

a3

a b1 b

P 0.1,⊕
i a2, a3, b1 a a1, b

0 1 0.1 0.1
1 1 -1 -0.9
2 1 0 -0.9

a2 ≃P a3 ≃P b1 ≻P a1 ≃P b ≻P a

Figure B.40 – Propaǫ falsifies the properties ⊕DB and +DB

higher than a, contradicting ⊕DB and +DB.

(AvsFD) To show that Propaǫ does not satisfy the property Attack vs Full Defense (AvsFD),
consider the argumentation framework AF from Figure B.41.

a3 a1

a4 a2 a b1 b

P 0.7,⊕
i a3, a4, b1 a1, a2 a b

0 1 0.7 0.7 0.7
1 1 -0.3 -0.7 -0.3
2 1 -0.3 1.3 -0.3

a3 ≃P a4 ≃P b1 ≻P a1 ≃P a2 ≃P b ≻P a

Figure B.41 – Propaǫ falsifies the property AvsFD

The property says that a should be ranked strictly higher than b because a has only defense
branches while b has not. But, with Propa⊕,0.7ǫ , we can see that b is ranked strictly higher than
a, contradicting the property.

Propa1+ǫ

Properties satisfied

(Abs) The nature of an argument is not used in the computation of its score. Only the attack re-
lation is needed (see the definition of Propa1+ǫ and the definition of the propagation principle).

(In) An argument a only receives the scores from its attackers and defenders. Thus, an argu-
ment b, such that there exists no path between a and b, cannot propagate its initial value to a
and then cannot influence the propagation number of a.

(VP) Let ⊕ ∈ {M,S} and AF = 〈A,R〉 be an argumentation framework with a, b ∈ A such
that a is not attacked (R⊕1 (a) = ∅) and b is attacked (R⊕1 (b) 6= ∅). During the step i = 0, when
ǫ = 0, the non-attacked arguments begin with a score equal to 1, in particular P 0,⊕

0 (a) = 1, and
the attacked arguments begin with a score equal to 0, in particular so P 0,⊕

0 (b) = 0. So, we have
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P 0,⊕
0 (b) = 0 < 1 = P 0,⊕

0 (a) which implies that a ≻P̂

AF b, in agreement with the property.

(DP) Let ⊕ ∈ {M,S} and AF = 〈A,R〉 be an argumentation framework with a, b ∈ A such
that a is not defended (R⊕2 (a) = ∅), b is defended (R⊕2 (b) 6= ∅) and |R⊕1 (a)| = |R⊕1 (b)| = n >
0. During the first step where ǫ = 0, both arguments have exactly the same score because they
are attacked by at least one argument, so P 0,⊕

0 (a) = P 0,⊕
0 (b) = 0. During the first step where

ǫ 6= 0, for the same reason both arguments have exactly the same score : P ǫ,⊕
0 (a) = P ǫ,⊕

0 (b) = ǫ.
But during the second step where ǫ = 0, a is attacked by n non-attacked arguments so P 0,⊕

1 (a) =
−n while b is attacked by m non-attacked arguments (with m < n) so P 0,⊕

1 (b) = −m. Conse-
quently, P 0,⊕

1 (a) < P 0,⊕
1 (b) which implies that b ≻P̂

AF a, in agreement with the property.

(AE) Obvious because two arguments with the same ancestors’ graph receive exactly the same
values from its attackers and defenders whatever the value of ǫ.

(NaE) NaE is implied by AE which is satisfied.

(+AB,↑AB and ↑DB) Let ⊕ ∈ {M,S}, AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two argumen-
tation frameworks such that it exists an isomorphism γ with AF = γ(AF ′). Let a ∈ A and its
image γ(a) ∈ A′ be two arguments. As Propaǫ satisfies the properties Argument Equivalence
(AE), we can say that a and γ(a), with the same ancestors’ graph, have the same propagation
vector: ∀ǫ ∈]0, 1], P ǫ,⊕(a) = P ǫ,⊕(γ(a)).

+AB Let us add an attack branch P−(γ(a)) to γ(a) with a length of n ∈ 2N+1. If a is not
attacked, then a becomes more acceptable than γ(a) which is now attacked (see the property
Void Precedence). Otherwise, when a is attacked by at least one argument, a and γ(a) have
the same score during the first step when ǫ = 0 and ǫ 6= 0 : P 0,⊕

0 (a) = P 0,⊕
0 (γ(a)) = 0 and

P ǫ,⊕
0 (a) = P ǫ,⊕

0 (γ(a)) = ǫ.
For the second step, there is two possible ways to say that a becomes better than γ(a) according
to the length of the new attack branch:

• If n = 1 then γ(a) is attacked by one more non-attacked argument than a. In this case, the
score of γ(a) decreases and we obtain P 0,⊕

1 (a) > P 0,⊕
1 (γ(a)). Consequently, a is ranked

strictly higher γ(a), in agreement with the property.

• If n 6= 1 then a and γ(a) keep the same score during the second step where ǫ = 0 be-
cause they have the same number of direct attacker which are non-attacked, so P 0,M

1 (a) =
P 0,M
1 (γ(a)). However, during the second step where ǫ 6= 0, γ(a), with one more direct at-

tacker, receives one more negative value than a, so P ǫ,⊕
1 (a) > P ǫ,⊕

1 (γ(a)). Consequently,
a is ranked strictly higher γ(a), in agreement with the property.

↑AB Let us suppose ∃b ∈ B−(a), b /∈ B+(a) such that the length of the path from b to a is
n. Let us now add a defense branch to the non-attacked argument γ(b). Until the step n− 1, the
score of a and γ(a) stay similar : ∀i < n, P 0,⊕

i (a) = P 0,⊕
i (γ(a)) and P ǫ,⊕

i (a) = P ǫ,⊕
i (γ(a)).

But during the nth step where ǫ = 0, a receives one more value come from a non-attacked
argument than γ(a) because γ(b) is now attacked. So P 0,⊕

n (a) < P 0,⊕
n (γ(a)) which means that

γ(a) becomes strictly more acceptable than a, in agreement with the property.
↑DB We have almost the same proof that Increase of Attack Branch to the difference that
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this time b is situated at the beginning of a defense branch. So the score of γ(a) decreases
during the nth step because it loses one defense branch with a length equal of n. Indeed, we
obtain P 0,⊕

n (a) = P 0,⊕
n (γ(a)) + 1, so P 0,⊕

n (a) > P 0,⊕
n (γ(a))⇒ a ≻P̂⊕ γ(a), in agreement with

the property.

(Tot) It is clear that the computation of the propagation vectors is always guaranteed for each
argument. And the lexicographical order always returns a result between two vectors which
guarantees the comparison between two arguments.

(DDP) Let ⊕ ∈ {M,S} and AF = 〈A,R〉 be an argumentation framework with a, b ∈ A such
that |R⊕1 (a)| = |R⊕1 (b)| 6= 0 and |R⊕2 (a)| = |R⊕2 (b)| 6= 0 and the defense of a is simple and
distributed whereas the defense of b is simple but not distributed. During the step i = 0, when
ǫ = 0, we have P 0,⊕

0 (a) = P 0,⊕
0 (b) = 0 and when ǫ 6= 0, we have P ǫ,⊕

0 (a) = P ǫ,⊕
0 (b) = ǫ

because they are both attacked by at least one argument. The fact that the defense of a is dis-
tributed means that all the direct attackers of a are attacked by at most one argument, so there
exists no direct attacker of a which is non-attacked so P 0,⊕

1 (a) = 0. It is not the case of b
because its defense is not distributed but only simple. Consequently it exists at least one of its
direct attacker which is not attacked, so P 0,⊕

1 (b) ≤ −1. So P 0,⊕
1 (a) = 0 > −1 ≥ P 0,M

1 (b)
which means that a ≻P̂

AF b, in agreement with the property.

(AvsFD) Let ⊕ ∈ {M,S} and AF = 〈A,R〉 be an argumentation framework where a ∈ A is
attacked by only one non-attacked argument and b ∈ A is only defended (i.e. without attack
branch). It is obvious that if b is a non-attacked argument, it is better than a (see Void Precedence
which is satisfied). Otherwise, during the step i = 0, when ǫ = 0, we have P 0,⊕

0 (a) = P 0,⊕
0 (b) =

0 and when ǫ 6= 0, we have P ǫ,⊕
0 (a) = P ǫ,⊕

0 (b) = ǫ because they are both attacked. But during
the second step with ǫ = 0, a, which is directly attacked by a non-attacked argument, receives
a negative value from this argument so P 0,⊕

1 (a) = −1 whereas b do not receive any value so
P 0,⊕
1 (b) = 0. Consequently, we have P 0,⊕

1 (a) = −1 < 0 = P 0,⊕
1 (b) which implies that b ≻P̂

AF a,
in agreement with the property.

Counter-examples

(CP) To show that Propa1+ǫ does not satisfy the property Cardinality Precedence (CP), con-
sider the argumentation framework AF from Figure B.42. The property says that a2 (or a5)
should be strictly more acceptable than a because |R⊕1 (a)| = 2 > 1 = |R⊕1 (a2)|. But, with the
semantics Propa1+ǫ, we can see that a is strictly more acceptable than b, contradicting the prop-
erty.

(QP) To show that Propa1+ǫ does not satisfy the property Quality Precedence (QP), consider
the argumentation framework AF from Figure B.42. The property says that a should strictly
more acceptable than b because b1 is strictly more acceptable than all the direct attackers of a:
b1 ≻P̂ a4 and b1 ≻P̂ a1. But, with the semantics Propa1+ǫ, we can see that b is strictly more
acceptable than a, contradicting the property.

(SC) To show that Propa1+ǫ does not satisfy the property Self-Contradiction (SC), consider the
argumentation framework AF from Figure B.43.
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a3 a2 a1

a6 a5 a4

a b3 b2 b1 b

b4

P 0,⊕
i a3, a6, b3, b4 a2, a5 a1, a4 b2 b1 a b

0 1 0 0 0 0 0 0
1 1 -1 0 -2 0 0 0
2 1 -1 1 -2 2 0 0
3 1 -1 1 -2 2 -2 -2

P 0.1,⊕
i a3, a6, b3, b4 a2, a5 a1, a4 b2 b1 a b

0 1 0.1 0.1 0.1 0.1 0.1 0.1
1 1 -0.9 0 -1.9 0 -0.1 0
2 1 -0.9 1 -1.9 2 0.1 0.1
3 1 -0.9 1 -1.9 2 -1.9 -1.9

a3 ≃P̂ a6 ≃P̂ b3 ≃P̂ b5 ≻P̂ b1 ≻P̂ a1 ≃P̂ a4 ≻P̂ b ≻P̂ a ≻P̂ a2 ≃P̂ a5 ≻P̂ b2

Figure B.42 – Propa1+ǫ falsifies the properties CP and QP

a b2

b1

b

b1 ≃P̂ b2 ≻P̂ a ≻P̂ b

P 0,⊕
i b1, b2 a b

0 1 0 0
1 1 0 -2
2 1 0 -2

P 0.1,⊕
i b1, b2 a b

0 1 0.1 0.1
1 1 0 -1.9
2 1 0.1 -1.9

Figure B.43 – Propa1+ǫ falsifies the property SC

The definition says that b should be ranked higher than a because a attacks itself while b
does not. But, with the semantics Propa1+ǫ, we can see that a is ranked strictly higher than b,
contradicting the property.

(⊕DB and +DB) To show that Propa1+ǫ does not satisfy the property Addition of Defense
Branch (+DB) and the property Strict addition of Defense Branch (⊕DB), consider the argu-
mentation framework AF from Figure B.40.

Both properties say that a should be ranked strictly higher than b because a has one defense
branch while b has no defense branch. But, with Propa⊕,0.1ǫ , we can see that b is ranked strictly
higher than a, contradicting ⊕DB and +DB.

Propa1→ǫ

Properties satisfied

(Abs) The nature of an argument is not used in the computation of its score. Only the attack
relation is needed (see the definition of Propa1→ǫ and the definition of the propagation princi-
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a2 a1

a3

a b1 b

P 0,⊕
i a2, a3, b1 a a1, b

0 1 0 0
1 1 -1 -1
2 1 0 -1

P 0.1,⊕
i a2, a3, b1 a a1, b

0 1 0.1 0.1
1 1 -1 -0.9
2 1 0 -0.9

a2 ≃P̂ a3 ≃P̂ b1 ≻P̂ a1 ≃P̂ b ≻P̂ a

Figure B.44 – Propa1+ǫ falsifies the properties ⊕DB and +DB

ple).

(In) An argument a only receives the scores from its attackers and defenders. Thus, an argu-
ment b, such that there exists no path between a and b, cannot propagate its initial value to a
and then cannot influence the propagation number of a.

(VP) Let ⊕ ∈ {M,S} and AF = 〈A,R〉 be an argumentation framework with a, b ∈ A such
that a is not attacked (R⊕1 (a) = ∅) and b is attacked (R⊕1 (b) 6= ∅). During the step i = 0, when
ǫ = 0, the non-attacked arguments begin with a score equal to 1, in particular P 0,⊕

0 (a) = 1, and
the attacked arguments begin with a score equal to 0, in particular so P 0,⊕

0 (b) = 0. So, we have
P 0,⊕
0 (b) = 0 < 1 = P 0,⊕

0 (a) which implies that a ≻P

AF b, in agreement with the property.

(DP) Let ⊕ ∈ {M,S} and AF = 〈A,R〉 be an argumentation framework with a, b ∈ A such
that a is not defended (R⊕2 (a) = ∅), b is defended (R⊕2 (b) 6= ∅) and |R⊕1 (a)| = |R⊕1 (b)| =
n > 0. When ǫ = 0, during the first step, both arguments have exactly the same score because
they are attacked by at least one argument, so P 0,⊕

0 (a) = P 0,⊕
0 (b) = 0. But during the second

step, a is attacked by n non-attacked arguments so P 0,⊕
1 (a) = −n while b is attacked by m

non-attacked arguments (with m < n) so P 0,⊕
1 (b) = −m. Consequently, P 0,⊕

1 (a) < P 0,⊕
1 (b)

which implies that a ≻P

AF b, in agreement with the property.

(DDP) Let ⊕ ∈ {M,S} and AF = 〈A,R〉 be an argumentation framework with a, b ∈ A
such that |R⊕1 (a)| = |R⊕1 (b)| 6= 0 and |R⊕2 (a)| = |R⊕2 (b)| 6= 0 and the defense of a is
simple and distributed whereas the defense of b is simple but not distributed. According the
definition of Propa1→ǫ, let us first consider the case ǫ = 0. During the step i = 0, it is
clear that P 0,⊕

0 (a) = P 0,⊕
0 (b) = 0 because they are both attacked by at least one argument.

The fact that the defense of a is distributed means that all the direct attackers of a are at-
tacked by at most one argument, so there exists no direct attacker of a which is non-attacked
so P 0,⊕

1 (a) = 0. It is not the case of b because its defense is not distributed but only simple.
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Consequently it exists at least one of its direct attacker which is not attacked, so P 0,⊕
1 (b) ≤ −1.

So P 0,⊕
1 (a) = 0 > −1 ≥ P 0,M

1 (b) which means that a ≻P

AF b, in agreement with the property.

(AE) Obvious because two arguments with the same ancestors’ graph receive exactly the same
values from its attackers and defenders whatever the value of ǫ.

(NaE) NaE is implied by AE which is satisfied.

(+AB, +DB, ↑AB and ↑DB) Let ⊕ ∈ {M,S}, AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two
argumentation frameworks such that it exists an isomorphism γ with AF = γ(AF ′). Let a ∈ A
and its image γ(a) ∈ A′ be two arguments. As Propaǫ satisfies the properties Argument
Equivalence (AE), we can say that a and γ(a), with the same ancestors’ graph, have the same
propagation vector: ∀ǫ, P ǫ,⊕(a) = P ǫ,⊕(γ(a)).

+AB Let us add an attack branch P−(γ(a)) to γ(a) with a length of n ∈ 2N+1. Let us note
b the new attack root of γ(a). If a is not attacked, then a becomes more acceptable than γ(a)
which is now attacked (see the property Void Precedence). Otherwise, according the definition
of Propa1→ǫ, let us first consider the case ǫ = 0. So a is attacked by at least one argument which
means that a and γ(a) have the same score during the first step: P 0,⊕

0 (a) = P 0,⊕
0 (γ(a)) = 0.

For the second step, there is two possible ways to say that a becomes better than γ(a) according
to the length of the new attack branch:

• If n = 1 then γ(a) is attacked by one more non-attacked argument than a. In this case, the
score of γ(a) decreases and we obtain P 0,⊕

1 (a) > P 0,⊕
1 (γ(a)). Consequently, a is ranked

strictly higher γ(a), in agreement with the property.

• If n 6= 1 then a and γ(a) keep the same score during the n − 1 first step : ∀i <
n, P 0,⊕

i (a) = P 0,⊕
i (γ(a)). But during the nth step, γ(a) receives the negative score of b, so

its score decreases : P 0,⊕
i (a)− 1 = P 0,⊕

i (γ(a)), so P 0,⊕
i (a) > P 0,⊕

i (γ(a))⇒ a ≻P γ(a),
in agreement with the property.

+DB Let us add a defense branch P+(γ(a)) to γ(a) with a length of n ∈ 2N. Let us note
b the new defense root of γ(a). According the definition of Propa1→ǫ, let us first consider the
case ǫ = 0. So, ∀i < n, P 0,⊕

i (a) = P 0,⊕
i (γ(a)). But during the nth step, γ(a) receives the

positive score of b, so its score increases and become better than a: P 0,⊕
i (a) + 1 = P 0,⊕

i (γ(a)),
so P 0,⊕

i (a) < P 0,⊕
i (γ(a))⇒ γ(a) ≻P a, in agreement with the property.

↑AB Let us suppose ∃b ∈ B−(a), b /∈ B+(a) such that the length of the path from b to a is
n. Let us now add a defense branch to the non-attacked argument γ(b). According the definition
of Propa1→ǫ, let us first consider the case ǫ = 0. Until the step n − 1, the score of a and γ(a)
stay similar : ∀i < n, P 0,⊕

i (a) = P 0,⊕
i (γ(a)).

But during the nth step, a receives one more value come from a non-attacked argument than
γ(a) because γ(b) is now attacked. So P 0,⊕

n (a) < P 0,⊕
n (γ(a)) which means that γ(a) becomes

strictly more acceptable than a, in agreement with the property.
↑DB We have almost the same proof that ↑AB to the difference that this time b is situated at

the beginning of a defense branch. So the score of γ(a) decreases during the nth step because it
loses one defense branch with a length equal of n. Indeed, we obtain P 0,⊕

n (a) = P 0,⊕
n (γ(a))+1,
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so P 0,⊕
n (a) > P 0,⊕

n (γ(a))⇒ a ≻P γ(a), in agreement with the property.

(Tot) It is clear that the computation of the propagation vectors is always guaranteed for each
argument. And the lexicographical order always returns a result between two vectors which
guarantees the comparison between two arguments.

(AvsFD) Let ⊕ ∈ {M,S} and AF = 〈A,R〉 be an argumentation framework where a ∈ A is
attacked by only one non-attacked argument and b ∈ A is only defended (i.e. without attack
branch). It is obvious that if b is a non-attacked argument, it is better than a (see Void Precedence
which is satisfied). Otherwise, according the definition of Propa1→ǫ, let us first consider the
case ǫ = 0. During the step i = 0, we have P 0,⊕

0 (a) = P 0,⊕
0 (b) = 0 because they are both

attacked. But during the second step, a, which is directly attacked by a non-attacked argument,
receives a negative value from this argument so P 0,⊕

1 (a) = −1 whereas b do not receive any
value so P 0,⊕

1 (b) = 0. Consequently, we have P 0,⊕
1 (a) = −1 < 0 = P 0,⊕

1 (b) which implies that
b ≻P

AF a, in agreement with the property.

Counter-examples

(CT) To show that Propa1→ǫ does not satisfy the property Counter-Transitivity (CT), consider
the argumentation framework AF from Figure B.45.

a5 a4 a3

a2 a1

a b3 b2 b1 b

P 0,⊕
i a2, a5, b3 a1, a4, b2 a3, b1 a b

0 1 0 0 0 0
1 1 -1 0 0 0
2 1 -1 1 1 0
3 1 -1 1 0 -1

P 0.1,⊕
i a2, a5, b3 a1, a4, b2 a3, b1 a b

0 1 0.1 0.1 0.1 0.1
1 1 -0.9 0 -0.1 0
2 1 -0.9 1 1 0.1
3 1 -0.9 1 0 -0.9

a2 ≃P a5 ≃P b3 ≻P a3 ≃P b1 ≻P a ≻P b ≻P a1 ≃P a4 ≃P b2

Figure B.45 – Propa1→ǫ falsifies the properties CT and SCT

The property says that b should be at least as acceptable as a (b �P a) because it exists an
injective function f fromR⊕1 (b) toR⊕1 (a) such that ∀b′ ∈ R⊕1 (b), f(b′) �P b′. Indeed, we have
R⊕1 (b) = {b1} and R⊕1 (a) = {a1, a3} where a3 �P b1. But, with the semantics Propa1→ǫ, we
can see that a is strictly more acceptable than b, contradicting the property.

(SCT) To show that Propa1→ǫ does not satisfy the property Strict Counter-Transitivity (SCT),
consider the argumentation framework AF from Figure B.45.
The property says that b should be strictly more acceptable than a (b ≻P a) because it exists
an injective function f from R⊕1 (b) to R⊕1 (a) such that ∀b′ ∈ R⊕1 (b), f(b′) �P b′. Indeed, we
have R⊕1 (b) = {b1} and R⊕1 (a) = {a1, a3} where a3 �P b1 and |R⊕1 (b)| = 1 < 2 = R⊕1 (a).
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But, with the semantics Propa1→ǫ, we can see that a is ranked higher than b, contradicting the
property.

(CP) To show that Propa1→ǫ does not satisfy the property Cardinality Precedence (CP), con-
sider the argumentation framework AF from Figure B.46.

a3 a2 a1

a6 a5 a4

a b3 b2 b1 b

b5 b4

P 0,⊕
i a3, a6, b3, b5 a2, a5, b2, b4 a1, a4 b1 a b

0 1 0 0 0 0 0
1 1 -1 0 0 0 0
2 1 -1 1 2 0 0
3 1 -1 1 2 -2 -2

P 0.1,⊕
i a3, a6, b3, b5 a2, a5, b2, b4 a1, a4 b1 a b

0 1 0.1 0.1 0.1 0.1 0.1
1 1 -0.9 0 -0.1 -0.1 0
2 1 -0.9 1 1.9 0.1 0.2
3 1 -0.9 1 1.9 -1.9 -1.8

a3 ≃P a6 ≃P b3 ≃P b5 ≻P b1 ≻P a1 ≃P a4 ≻P b ≻P a ≻P a2 ≃P a5 ≃P b2 ≃P b4

Figure B.46 – Propa1→ǫ falsifies the properties CP and QP

The property says that b should be strictly more acceptable than a because |R⊕1 (a)| = 2 > 1 =
|R⊕1 (b)|. But, with the semantics Propa1→ǫ, we can see that a is ranked strictly more acceptable
than b, contradicting the property.

(QP) To show that Propa1→ǫ does not satisfy the property Quality Precedence (QP), consider
the argumentation framework AF from Figure B.46.
The property says that a should be strictly more acceptable than b because b1 ≻P a4 and
b1 ≻P a1. But, with the semantics Propa1→ǫ, we can see that b is strictly more acceptable
than a, contradicting the property.

(SC) To show that Propa1→ǫ does not satisfy the property Self-Contradiction (SC), consider
the argumentation framework AF from Figure B.47.

a b2

b1

b

b1 ≃P b2 ≻P a ≻P b

P 0,⊕
i b1, b2 a b

0 1 0 0
1 1 0 -2
2 1 0 -2

P 0.1,⊕
i b1, b2 a b

0 1 0.1 0.1
1 1 0 -1.9
2 1 0.1 -1.9

Figure B.47 – Propa1→ǫ falsifies the property SC
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The definition says that b should be strictly more acceptable than a because a attacks itself
while b does not. But, with the semantics Propa1→ǫ, we can see that a is strictly more accept-
able than b, contradicting the property.

(⊕DB) To show that Propa1→ǫ does not satisfy the property Strict addition of Defense Branch
(⊕DB), consider the argumentation framework AF from Figure B.48.

a2 a1 a b a2 ≃P b ≻P a ≻P a1

P 0,⊕
i a2 a1 a b

0 1 0 0 1
1 1 -1 0 1
2 1 -1 2 1

P 0.1,⊕
i a2 a1 a b

0 1 0.1 0.1 1
1 1 -0.9 0 1
2 1 -0.9 1 1

Figure B.48 – Propa1→ǫ falsifies the property ⊕DB

The property says that a should be strictly more acceptable than b because a has one defense
branch while that b has not. But, with the semantics Propa1→ǫ, we can see that b is strictly more
acceptable than a, contradicting the property.

Proposition 18. Let ǫ ∈ ]0, 1].

• The ranking-based semantics Propaǫ,Mǫ satisfies CT, SCT and OE.

• The ranking-based semantics Propaǫ,M1+ǫ satisfies CT, SCT and OE.

• The ranking-based semantics Propaǫ,M1→ǫ satisfies OE.

It is not the case when ⊕ = S.

Proof. Let AF = 〈A,R〉 be an argumentation framework. It is possible to compute, only
when the multiset is used, the vector propagation of an argument on the basis of the vector
propagation of its direct attackers with the following formula:

P ǫ,M
n (x) =







vǫ(x) if n = 0

P ǫ,M
0 (x)− ∑

y∈R1(x)

P ǫ,M
0 (y) if n = 1

P ǫ,M
n−1(x) + (−1)n ∑

y∈R1(x)

|P ǫ,M
n−1(y)− P ǫ,M

n−2(y)| if n ≥ 2

(B.1)

Indeed, the values received by the direct attackers of an argument, will be received by this
argument to the next step.

180



PropaM
ǫ

(OE) Let x1, x2 ∈ A. If x1 and x2 are not attacked then x1 ≃P x2 because NaE is satisfied.
Otherwise, let us suppose that there exists a bijective function f from R1(x1) to R1(x2) such
that ∀y ∈ R1(x1), y ≃P

AF f(y). According to the definition of Propaǫ, y ≃P

AF f(y) if and only
if P ǫ,M(y) ≃lex P ǫ,M(f(y)), i.e. they have the same propagation vector (∀i ≥ 0, P ǫ,M

i (y) =
P ǫ,M
i (f(y))). Let us use the equation B.1 to show that, in this case, x1 and x2 are equally

acceptable too.

n=0: x1 and x2 are both directly attacked so P ǫ,M
0 (x1) = P ǫ,M

0 (x2) = ǫ;

n=1: Thanks to the bijective function between the direct attacker of x1 and x2, we have:

P ǫ,M
1 (x1) = P ǫ,M

0 (x1)−
∑

y∈R1(x1)

P ǫ,M
0 (y) = P ǫ,M

0 (x2)−
∑

f(y)∈R1(x2)

P ǫ,M
0 (f(y)) = P ǫ,M

1 (x2)

n≥2: For the same reason, we have:

P ǫ,M
n (x1) = P ǫ,M

n−1(x1) + (−1)n
∑

y∈R1(x1)

|P ǫ,M
n−1(y)− P ǫ,M

n−2(y)|

= P ǫ,M
n−1(x2) + (−1)n

∑

f(y)∈R1(x2)

|P ǫ,M
n−1(f(y))− P ǫ,M

n−2(f(y))|

= P ǫ,M
n (x2)

So ∀i ≥ 0, P ǫ,M
i (x1) = P ǫ,M

i (x2) so P ǫ,M(x1) ≃lex P ǫ,M(x2). Consequently, according to the
definition of Propaǫ, x1 ≃P

AF x2, in agreement with the property.

(SCT) Let x1, x2 ∈ A. Let us suppose that there exists an injective function f from R1(x1) to
R1(x2) such that ∀y ∈ R1(x1), f(y) �P

AF y.

• Let us suppose that R1(x2) > R1(x1). If R1(x1) = ∅ then x1 ≻P

AF x2 because VP is
satisfied. Otherwise, P ǫ,M

0 (x1) = P ǫ,M
0 (x2) = ǫ. But during the step i = 1, x2 has now

more direct attackers than x1 so, with the injective function, we have:

∑

y∈R1(x1)

P ǫ,M
0 (y) <

∑

f(y)∈R1(x2)

P ǫ,M
0 (f(y))

−
∑

y∈R1(x1)

P ǫ,M
0 (y) > −

∑

f(y)∈R1(x2)

P ǫ,M
0 (f(y))

P ǫ,M
0 (x1)−

∑

y∈R1(x1)

P ǫ,M
0 (y) > P ǫ,M

0 (x2)−
∑

f(y)∈R1(x2)

P ǫ,M
0 (f(y))

P ǫ,M
1 (x1) > P ǫ,M

1 (x2)

Consequently, we have x1 ≻P

AF x2, in agreement with the property.
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• Now, let us suppose that ∃y′ ∈ R1(x1), f(y
′) ≻P

AF y′ and that R1(x2) = R1(x1) (other-
wise see the previous case whereR1(x2) > R1(x1)).
During the initial step, we have P ǫ,M

0 (x1) = P ǫ,M
0 (x2) = ǫ.

If y′ is not attacked then P ǫ,M
0 (f(y′)) = 1 > ǫ = P ǫ,M

0 (y′). So, during the step i = 1,
thanks to the injective function, we have:

P ǫ,M
1 (x1) = P ǫ,M

0 (x1)−
∑

y∈R1(x1)

P ǫ,M
0 (y) > P ǫ,M

0 (x2)−
∑

f(y)∈R1(x2)

P ǫ,M
0 (f(y)) = P ǫ,M

1 (x2)

This result implies that x1 ≻P

AF x2, in agreement with the property.
But if y′ is attacked then ∃i > 1 such that P ǫ,M

i (f(y′)) > P ǫ,M
i (y′) because f(y′) ≻P

AF y
′.

So, during the step i + 1, with the same reasoning, we have P ǫ,M
i+1 (x1) > P ǫ,M

i+1 (x2).
Consequently, we have x1 ≻P

AF x2, in agreement with the property.

(CT) CT is implied by SCT and OE which are satisfied.

PropaM
1+ǫ

(OE) The proof is similar to the one done to prove that OE is satisfied by PropaMǫ . Indeed,
given two arguments x1, x2 ∈ A, we showed that when there exists a bijective function f from
R1(x1) to R1(x2) such that ∀y ∈ R1(x1), y ≃P

AF f(y) then P ǫ,M(x1) ≃lex P ǫ,M(x2). This is
also the case when ǫ = 0 so P 0,M(x1) ≃lex P 0,M(x2). So if we combine the two results with the
shuffle ∪s, we obviously obtain that P 0,M(x1) ∪s P

ǫ,M(x1) ≃lex P 0,M(x2) ∪s P
ǫ,M(x2) which

implies that x1 ≃P̂ x2.
(SCT) The proof is globally the same to the one done to prove that SCT is satisfied by PropaMǫ .
We just need to add an additional check when ǫ = 0 which gives the same result.

(CT) CT is implied by SCT and OE which are satisfied.

Propa1→ǫ

(OE) The proof is similar to the ones done to prove that OE is satisfied by PropaMǫ and PropaM1+ǫ.
Indeed, given two arguments x1, x2 ∈ A, we showed that when there exists a bijective function
f from R1(x1) to R1(x2) such that ∀y ∈ R1(x1), y ≃P

AF f(y) then P ǫ,M(x1) ≃lex P ǫ,M(x2).
This is also the case when ǫ = 0 so P 0,M(x1) ≃lex P 0,M (x2). According to the definition of
Propa1→ǫ, then x1 ≃P x2.

Proposition 19. The grounded semantics (Gr) satisfies Abs, In, Tot, NaE, AE and AvsFD. The
other properties are not satisfied.

Proof.

Properties satisfied
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(Abs) Obvious because we work with abstract arguments.

(In) Obvious (see definition of the grounded semantics).

(Tot) All the arguments are either accepted or not accepted so a comparison between two argu-
ments are always possible.

(NaE) All the non-attacked argument are accepted, so they are all equally acceptable.

(AE) This is directly connected with the property Directionality [BARONI et al. 2011] which
says that if an argument a attacks an argument b then a affects b and not vice versa. So the only
arguments which are a direct or indirect impact on an argument are the argument belonging to
its ancestors’ graph. So two arguments with the “same” ancestors’ graph are equally acceptable.

(AvsFD) Let AF = 〈A,R〉 be an acyclic argumentation framework with a, b ∈ A be two
arguments where b is attacked by a non-attacked argument and a only have defense branches
and no attack branch. It is clear that b is not accepted because it is directly attacked by a non-
attacked argument which is accepted. If a is not attacked then it is directly accepted. And
if it is attacked then it is accepted too by the grounded semantics because AF is acyclic (so
there exists at least one non-attacked argument) and as a has no attack branch so all its direct
attackers are not accepted (see the algorithm detailed in section 3.1). So a which is accepted is
more acceptable than b which is rejected (a ≻gr b) in agreement with the property.

Counter-examples

(VP) To show that the grounded semantics does not satisfy the property Void Precedence (VP),
consider the argumentation framework AF from Figure B.49.

a2 a1 a Egr(AF ) = {a2, a}
a2 ≃gr a ≻gr a1

Figure B.49 – The grounded semantics falsifies the property VP

Void Precedence says that a2 should be strictly more acceptable than a (a2 ≻gr a) because
a2 is a non-attacked argument while a is attacked by a1. But the grounded semantics considers
that a2 and a are equally acceptable (a2 and a are both accepted), contradicting the property.

(DP) To show that the grounded semantics does not satisfy the property Defense Precedence
(DP), consider the argumentation framework AF from Figure B.50.

Defense Precedence says that a should be strictly more acceptable than b (a ≻gr b) because
|R1(a)| = |R1(b)| = 2 and |R2(a)| = 1 > 0 = |R2(b)|. But the grounded semantics considers
that a and b are equally acceptable, contradicting the property.

(CT) To show that the grounded semantics does not satisfy the property Counter Transitivity
(CT), consider the argumentation framework AF from Figure B.51.
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a2 a1

a3

a b2

b1

b

Egr(AF ) = {a2, a3, b1, b2}

a2 ≃gr a3 ≃gr b1 ≃gr b2 ≻gr a1 ≃gr a ≃gr b

Figure B.50 – The grounded semantics falsifies the properties DP, SCT and CP

c b a d e Egr(AF ) = {a, c}

a ≃gr c ≻gr b ≃gr d ≃gr e

Figure B.51 – The grounded semantics falsifies the properties CT, QP and OE

The property says that e should be at least as acceptable than a (e �gr a) because it exists
an injective function f from R1(e) to R1(a) such that ∀e′ ∈ R1(e), f(e′) � e′ (b ≃gr d which
implies b �gr d) so R1(a) ≥gr

S R1(e). But the grounded semantics considers that a is strictly
more acceptable than e, contradicting the property.

(SCT) To show that the grounded semantics does not satisfy the property Strict-Counter Tran-
sitivity (SCT), consider the argumentation framework AF from Figure B.50.
The property says that a should be strictly more acceptable than b (a ≻gr b) because it exists
an injective function f from R1(a) to R1(b) such that ∀a′ ∈ R1(a), f(a′) � a′ (b1 �gr a3
and b2 �gr a1) and especially b2 ≻gr a1 (so R1(b) >gr

S R1(a)). But the grounded semantics
considers that a and b are equally acceptable, contradicting the property.

(CP) To show that the grounded semantics does not satisfy the property Cardinality Precedence
(CP), consider the argumentation framework AF from Figure B.50.
The property says that a1 should be strictly more acceptable than b because |R1(b)| = 2 > 1 =
|R1(a1)|. But the grounded semantics considers that a1 and b are equally acceptable, contra-
dicting the property.

(QP) To show that the grounded semantics does not satisfy the property Quality Precedence
(QP), consider the argumentation framework AF from Figure B.51.
The property says that e should be strictly more acceptable than b (e ≻gr b) because c ≻gr d. But
the grounded semantics considers that e and b are equally acceptable, contradicting the property.

(DDP) To show that the grounded semantics does not satisfy the property Distributed-Defense
Precedence (DDP), consider the argumentation framework AF from Figure B.52.

The property says that a should be strictly more acceptable than b (a ≻gr b) because
|R1(a)| = |R1(b)| = 2, |R2(a)| = |R2(b)| = 2 and the defense of a is simple and distributed
while the defense of b is simple but not distributed. But the grounded semantics considers that
a and b are equally acceptable, contradicting the property.
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a3 a2 a1

a6 a5 a4

a b2 b1

b4 b3

b

Egr(AF ) = {a3, a6, b2, b3, b4, a1, a4}

a3 ≃gr a6 ≃gr b2 ≃gr b3 ≃gr b4 ≃gr a1 ≃gr a4 ≻gr a2 ≃gr a5 ≃gr b ≃gr a ≃gr b1

Figure B.52 – The grounded semantics falsifies the property DDP

(SC) To show that the grounded semantics does not satisfy the property Self-Contradiction
(SC), consider the argumentation framework AF from Figure B.53.

a b2

b1

b

Egr(AF ) = {b1, b2}

b1 ≃gr b2 ≻gr a ≃gr b

Figure B.53 – The grounded semantics falsifies the property SC

The definition says that b should be strictly more acceptable than a (b ≻gr a) because a
attacks itself while b does not attack itself. But the grounded semantics considers that a and b
are equally acceptable, contradicting the property.

(+DB and ⊕DB) To show that the grounded semantics does not satisfy the property Addition
of Defense Branch (+DB) and the property Strict addition of Defense Branch (⊕DB), consider
the argumentation framework AF from Figure B.54.

a2 a1

a3

a b1 b

Egr(AF ) = {a2, a3, b1}

a2 ≃gr a3 ≃gr b1 ≻gr a1 ≃gr a ≃gr b

Figure B.54 – The grounded semantics falsifies the properties +DB and ⊕DB

Both properties say that a should be strictly more acceptable than b (a ≻Gr b) because a has
one defense branch while b has no defense branch. But in using the grounded semantics, a and
b are equally acceptable, contradicting both properties.

(↑AB) To show that the grounded semantics does not satisfy the property Increase of Attack
branch (↑AB), consider the argumentation framework AF from Figure B.55.
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a1 a b3 b2 b1 b
Egr(AF ) = {a1, b3, b1}

a1 ≃gr b3 ≃gr b1 ≻gr b2 ≃gr a ≃gr b

Figure B.55 – The grounded semantics falsifies the property ↑AB

The property says that b should be strictly more acceptable than a (b ≻gr a) because the
length of the attack branch of b is greater than the length of the attack branch of a. But in using
the grounded semantics, we can see that a and b are equally acceptable, contradicting the prop-
erty.

(↑DB) To show that the grounded semantics does not satisfy the property Increase of Defense
branch (↑DB), consider the argumentation framework AF from Figure B.56.

a2 a1 a b4 b3 b2 b1 b

Egr(AF ) = {a2, a, b4, b2, b} a2 ≃gr a ≃gr b4 ≃gr b2 ≃gr b ≻gr a1 ≃gr b3 ≃gr b1

Figure B.56 – The grounded semantics falsifies the property ↑DB

The property says that a should be strictly more acceptable than b (a ≻gr b) because the
length of the defense branch of b is greater than the length of the defense branch of a. But in
using the grounded semantics, we can see that a and b are equally acceptable, contradicting the
property.

(+AB) To show that the grounded semantics does not satisfy the property Addition of Attack
Branch (+AB), consider the argumentation framework AF from Figure B.57.

a2

a1 a b1 b

Egr(AF ) = {a1, a2, b1}

a1 ≃gr a2 ≃gr b1 ≻gr a ≃gr b

Figure B.57 – The grounded semantics falsifies the property +AB

The property says that b should be strictly more acceptable than a (b ≻Gr a) because a has
one attack branch while b has two attack branches. But in using the grounded semantics, a and
b are equally acceptable, contradicting the property.

(OE) To show that the grounded semantics does not satisfy the property Ordinal Equivalence
(OE), consider the argumentation framework AF from Figure B.51.
The property says that a and e should be equally acceptable (a ≃gr e) because there exists a
bijective function f fromR1(a) toR1(e) such that ∀a′ ∈ R1(a), f(a′) ≃gr a′ (b and d are both
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rejected). But in using the grounded semantics, a is accepted whereas e is rejected (a ≻gr e),
contradicting the property.
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Proofs of the Results from Chapter 5

Proposition 20. Let 〈A,R〉 be an argumentation framework, δ ∈ ]0, 1[ and ǫ ∈ ]0, 1]. For all
x ∈ A, the sequence {P ǫ,δ

i (x)}+∞i=0 converges.

Proof. Let AF = 〈A,R〉 be an argumentation framework with a ∈ A and δ ∈]0, 1[.
To simplify the proof (and the formula), we focus on the "worst" case where each argument
receives the maximal value of 1 from all others arguments at each step i (according to the parity
of i). In this way, if the method converges in this case, the method will be converge too when
there are less attacks or with a smaller ǫ. Please note that the set of arguments is finite, so to
each step the set of attackers/defenders is finite too. So we have ∀i > 0,

∑

b∈RS
i (a)

vǫ(b) = |A| = k.

Let PP (a) (resp. NP (a)) be the positive (resp. negative) propagation that only focus on the
score received by the attackers (resp. defenders) of a:

PP ǫ,δ
n (a) = vǫ(a) +

n∑

i=1

kδi with k ≥ 0 and δ ∈]0, 1[

NP ǫ,δ
n (a) =

n∑

i=1

kδi with k ≥ 0 and δ ∈]0, 1[

P ǫ,δ
n (a) = PP ǫ,δ

n (a) + (−NP ǫ,δ
n (a))

We can observe that NP and PP (if we remove the initial value vǫ(a)) correspond to a
geometric series with a common ratio δ ∈]0, 1[. As we know, when n goes to infinity, a ge-
ometric series always converges when the common ration (here δ) is strictly smaller than 1.
Thus, PP and NP (and more precisely -NP ) converge. In using these results combining with
the fact that the addition of two convergent function converge too, we can conclude that P ǫ,δ

n (a)
converge.

Proposition 21. Let δ ∈ ]0, 1[ and ǫ, ǫ′ ∈ ]0, 1]. For any argumentation framework AF ,

vdpǫ,δ(AF ) = vdpǫ′,δ(AF )

Proof. The goal of this proof consists in showing that for all values of ǫ ∈ ]0, 1], the ranking
obtained stays the same. In other words, the value of ǫ has no influence on the result.
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During the step where ǫ = 0, it is obvious that the obtained pre-order is identical because the
value of ǫ does not interfere in the computation of the propagation number.
Let us show, that during the step ǫ 6= 0, it is not necessary to know the value of ǫ. Indeed,
this step aims to distinguish arguments which have the same propagation number when ǫ = 0.
Thus, only attacked arguments can influence the ranking between two arguments. Let a, b ∈ A
be both of these arguments: RS

1 (a) 6= ∅,RS
1 (b) 6= ∅ and P 0,δ(a) = P 0,δ(b).

We can split the way to compute the propagation number when ǫ 6= 0 in three parts: the initial
value (ǫ) + the scores received by the non-attacked arguments (P 0,δ(a)) + the scores received
by the attacked arguments (AP ǫ,δ(a)):

P ǫ,δ(a) = ǫ+ P 0,δ(a) + AP ǫ,δ(a)

However, we know that ǫ + P 0,δ(a) = ǫ + P 0,δ(b) because a and b are attacked so they begin
with the same ǫ and that P 0,δ(a) = P 0,δ(b). So if a ≃ b (the reasoning is the same with ≻ and
≺) it is because AP ǫ,δ(a) = AP ǫ,δ(b).
We denote by ki(x) = RS

i (x)\BS
i (x) the number of attacked arguments at the end of a path

with a length of i to x. According the previous definition,

a ≃ b⇒ AP ǫ,δ(a) = AP ǫ,δ(b)

⇒ −(k1(a)ǫ)δ + (k2(a)ǫ)δ
2 − (k3(a)ǫ)δ

3 + · · · = −(k1(b)ǫ)δ + (k2(b)ǫ)δ
2 − (k3(b)ǫ)δ

3 + . . .

⇒ ǫ× (−k1(a)δ + k2(a)δ
2 − k3(a)δ

3 + . . . ) = ǫ× (−k1(b)δ + k2(b)δ
2 − k3(b)δ

3 + . . . )

⇒ −k1(a)δ + k2(a)δ
2 − k3(a)δ

3 + · · · = −k1(b)δ + k2(b)δ
2 − k3(b)δ

3 + . . .

The fact that ǫ vanished from the formula means that the value of ǫ has no impact on the ranking between
a and b.

Proposition 22. Let AF = 〈A,R〉 be an argumentation framework, i ∈ N\{0} be the maximal

depth and µ be the precision threshold. If δ < i

√
µ

max
a∈A

(|RS
i (a)|)

then, for all a ∈ A, the sequence

{P ǫ,δ
i (a)}+∞i=0 converges before step i+ 1.

Proof. The process is stopped when, between two steps, the difference with the previous step
for all the valuations P is smaller than a fixed precision threshold µ, i.e. ∀a ∈ A,

|P ǫ,δ
i (a)− P ǫ,δ

i-1 (a)| < µ

|P ǫ,δ
i-1 (a) + (−1)iδi

∑

b∈Ria

vǫ(b)− P ǫ,δ
i-1 (a)| < µ

δi
∑

b∈Ria

vǫ(b) < µ

It is clear that ∀a ∈ A,
∑

b∈RS
i (a)

vǫ(b) ≤ |RS
i (a)| ≤ max

a∈A

(
|RS

i (a)|
)
. Use the maximum allows

to be sure to that the difference between two steps is small enough w.r.t µ for all the arguments.
So, if the method converges with max

a∈A

(
|RS

i (a)|
)

then it also converges with the smallest values:
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δi max
a∈A

(
|RS

i (a)|
)
< µ⇒ δi < µ

max
a∈A

(
|RS

i (a)|
) ⇒ δ < i

√
µ

max
a∈A

(
|RS

i (a)|
)

Proposition 23. Let AF = 〈A,R〉 be an argumentation framework and x, y ∈ A such that
RS

1 (x) = ∅ andRS
1 (y) 6= ∅.

If δ < δM such that δM =
√

1
maxz∈A(|RS

2 (z)|)
then P 0,δ(x) > P 0,δ(y)

Proof. Let AF = 〈A,R〉 be an argumentation framework with y ∈ A the argument with the
biggest number of direct defenders (m = |RS

2 (y)| = maxa∈A(|RS
2 (a)|)) and x ∈ A a non-

attacked argument.
Let us determine the case where an attacked argument y can obtain a maximal score. According
to the formal definition of the propagation principle, in order to not receive any negative value,
y must not have any attack branch. Inversely, it must have many defense branches to receive a
maximum of positive values. In addition, because of the attenuation factor, it is better to receive
positive values from direct defenders. So the best score of y is when it receives m positive

values from its m direct attackers: P 0,δ(y) = mδ2. Recall that the condition is that δ <
√

1
m

,
so:

δ <

√

1

m
⇒ δ2 <

1

m
⇒ mδ2 < 1⇒ P 0,δ(y) < 1⇒ P 0,δ(y) < P 0,δ(x)

Proposition 24. Let PP = 〈A,R〉 be a persuasion pitch with x ∈ A as the targeted argument
and y ∈ A be a non-attacked argument. Then,

(i) if |B+(x)| < 2 then y ≻vdp
PP

x;

(ii) if |B+(x)| ≥ 2 and δ > m

√
1

|B+(x)|
with m the length of the longest defense branch of x

then x ≻vdp
PP

y.

Proof. (i) Let y be the only defense root of x (B+(x) = {y} and B−(x) = ∅). The length of
the path from y to x is n with n ∈ 2N. According the definition of the propagation principle,
when ǫ = 0, x only receives the score from y which is attenuated by δn. So, P 0,δ(x) = δn but
δ ∈ ]0, 1[ so ∀n, δn < 1 = P 0,δ(y) which implies that y ≻vdp x, in agreement with the property
Void Precedence.

(ii) Let y be a non-attacked argument (P 0,δ(y) = 1) and x an argument with only defense
branches with a length of m (P 0,δ(x) = |B+(x)|δm).

δ > m

√

1

|B+(x)|
⇒ δm >

1

|B+(x)|
⇒ |B+(x)|δm > 1⇒ P 0,δ(x) > P 0,δ(y)⇒ x ≻vdp y

The result will be similar with shorter defense branches.

Proposition 25. If vdpδ satisfies VP then it satisfies DP.
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Proof. Let a and b be two arguments with the same number of direct attackers (|RS
1 (a)| =

|RS
1 (b)| = n with n ∈ N

∗) but b is defended whereas a is not. DP states that b should be strictly
more acceptable than a.
As VP is satisfied, all the direct attackers of b which are attacked have a smaller propagation
number than any direct attacker of a which are non-attacked : ∃x ∈ RS

1 (b) such that ∀y ∈
RS

1 (a), y ≻vdp x. That means that P 0,δ(y) > P 0,δ(x) or P 0,δ(y) = P 0,δ(x) and P ǫ,δ(y) >
P ǫ,δ(x). Let us show that whatever the value of ǫ ∈ [0, 1], we obtain the same result:

y ≻vdp x⇒ P ǫ,δ(y) > P ǫ,δ(x)

⇒ 1 > P ǫ,δ(x) because y is not attacked

⇒ δ > P ǫ,δ(x)δ with δ ∈ ]0, 1[

⇒ −δ < −P ǫ,δ(x)δ

a is only attacked by non-attacked arguments so P ǫ,δ(a) = ǫ−nδ = ǫ−(n−1)δ−δ. Suppose that
b has only one direct attacker which is attacked (the same reasoning holds with more attacked
attackers) then P ǫ,δ(b) = ǫ − (n − 1)δ − P ǫ,δ(x)δ. Consequently, according to the previous
result (−δ < −P ǫ,δ(x)δ), we can say that

ǫ− (n− 1)δ − δ < ǫ− (n− 1)δ − P ǫ,δ(x)δ ⇒ P ǫ,δ(a) < P ǫ,δ(b)⇒ a ≺vdp b

Proposition 26. Let δ ∈ ]0, 1[. vdpδ satisfies Abs, In, Tot, NaE, +AB, AE and AvsFD. The
other properties are not satisfied.

Proof.

Properties satisfied

(Abs) The nature of an argument is not used in the computation of its score. Only the attack
relation is needed.

(In) An argument a only receives the scores from its attackers and defenders. Thus, an argu-
ment b, such that there exists no path between a and b, cannot propagate its initial value to a
and then cannot influence the propagation number of a.

(Tot) Each argument receives a real number as propagation number. As all the real numbers
can be compared, it is possible to compare all the arguments.

(AE) Obvious because two arguments with the same ancestor graph receive exactly the same
value from their attackers and defenders whatever the values of ǫ and δ. Thus, they have the
same propagation number which implies that they are equally acceptable.

(NaE) NaE is implied by AE which is satisfied.
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(+AB) Let AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two argumentation frameworks such that
it exists an isomorphism γ with AF = γ(AF ′). Let a ∈ A and its image γ(a) ∈ A′ be
two arguments, ǫ ∈ ]0, 1] and δ ∈ ]0, 1[. As the semantics satisfies Argument Equivalence
(AE), we can say that a and γ(a), which have the same ancestor’s graph, have always the same
propagation number (P ǫ,δ(a) = P ǫ,δ(γ(a))).
Let us now add an attack branch from b to γ(a) with a length n ∈ 2N+ 1.
There exists two possibilities with respect to δ:

• If the maximal depth m is greater than n, then during the first phase where ǫ = 0, γ(a)
receives the negative value from b attenuated by δn: P 0,δ(a) − δn = P 0,δ(γ(a)) ⇒
P 0,δ(a) > P 0,δ(γ(a))⇒ a ≻vdp γ(a).

• If the maximal depth m is smaller than n, then during the first step, no distinction is done
between a and γ(a) (P 0,δ(a) = P 0,δ(γ(a))) because the method converges before that
γ(a) receives the value from b. So, we restart with ǫ 6= 0, and γ(a) receives several
additional values from its new attackers and defenders in the added attack branch. Thus,

we have P ǫ,δ(a) +
m∑

i=1

(−1)iδiǫ = P ǫ,δ(γ(a)) but as
m∑

i=1

(−1)iδiǫ < 0, then P ǫ,δ(a) >

P ǫ,δ(γ(a))⇒ a ≻vdp γ(a).

Then, in both cases, when an attack branch is added to an argument, its acceptability decreases,
in agreement with the property.

(AvsFD) Let AF = 〈A,R〉 be an argumentation framework where a ∈ A is attacked by only
one non-attacked argument and b ∈ A is only defended (i.e. it has no attack branch). The
property says that b should be more acceptable than a.
If b is a not attacked, then it is better than a: P 0,δ(b) = 1 > −δ = P 0,δ(a)⇒ b ≻vdp a.
When b is attacked, we need to distinguish two cases with respect to δ :

• If the length of all the defense branches of b are greater than the maximal depth, then b
does not receive any value from its defense roots. But a always receives the score from
its non-attacked direct attacker so: P 0,δ(b) = 0 > −δ = P 0,δ(a)⇒ b ≻vdp a.

• Otherwise, b receives only positive values from its defense roots, so P 0,δ(b) > 0 > −δ =
P 0,δ(a)⇒ b ≻vdp a.

In summary, for all values of δ, b is more acceptable than a in agreement with the property.

Counter-examples

(CT) Considering the argumentation framework depicted in Figure C.1, let us show that CT is
not satisfied.

The property says that b should be at least as acceptable as a because it exists an injec-
tive function f from RS

1 (b) to RS
1 (a) such that ∀b′ ∈ RS

1 (b), f(b
′) � b′. Indeed, we have

RS
1 (b) = {b1} and RS

1 (a) = {a1, a3} where a3 � b1. However, vdp considers that, when
δ = 0.5, a is strictly more acceptable than b, contradicting the property.
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a5 a4 a3

a2 a1

a b3 b2 b1 b

δ = 0.5 a2 ≃ a5 ≃ b3 ≻ a3 ≃ b1 ≻ a ≻ b ≻ a1 ≃ a4 ≃ b2

Figure C.1 – vdp falsifies the properties (S)CT and CP

(SCT) Considering the argumentation framework depicted in Figure C.1, let us show that SCT
is not satisfied.
The property says that b should be at least as acceptable as a because it exists an injective func-
tion f fromRS

1 (b) toRS
1 (a) such that ∀b′ ∈ RS

1 (b), f(b
′) � b′ and |RS

1 (a)| > |RS
1 (b)|. Indeed,

we haveRS
1 (b) = {b1} andRS

1 (a) = {a1, a3} (so |RS
1 (a)| = 2 > 1 = |RS

1 (b)|) where a3 � b1.
However, vdp considers that, when δ = 0.5, a is strictly more acceptable than b, contradicting
the property.

(CP) Considering the argumentation framework depicted in Figure C.1, let us show that CP is
not satisfied.
The property considers that b should be strictly more acceptable than a because |RS

1 (a)| = 2 >
1 = |RS

1 (b)|. However, vdp considers that, when δ = 0.5, a is strictly more acceptable than b,
contradicting the property.

(QP) Considering the argumentation framework depicted in Figure C.2, let us show that QP is
not satisfied.

a3 a2 a1

a6 a5 a4

a b3 b2 b1 b

b5 b4

δ = 0.5 a3 ≃ a6 ≃ b3 ≃ b5 ≻ b1 ≻ a1 ≃ a4 ≻ b ≻ a ≻ a2 ≃ a5 ≃ b2 ≃ b4

Figure C.2 – vdp falsifies the property QP

The property says that a should be strictly more acceptable than b because b1 ≻ a4 and
b1 ≻ a1. However, vdp considers that, when δ = 0.5, b is strictly more acceptable than a,
contradicting the property.

(DDP) Considering the argumentation framework depicted in Figure C.3, let us show that DDP
is not satisfied.

The definition says that a should be strictly more acceptable than b because they have the
same number of direct attackers (|RS

1 (a)| = |RS
1 (b)| = 2) and the same number of direct de-

fenders (|RS
2 (a)| = |RS

2 (b)| = 2) but the defense of a is simple and distributed whereas the

194



a3 a2 a1

a6 a5 a4

a b2 b1

b4 b3

b

δ = 0.5 a3 ≃ a6 ≃ b2 ≃ b3 ≃ b4 ≻ a1 ≃ a4 ≻ b ≻ a ≻ a2 ≃ a5 ≻ b1

Figure C.3 – vdp falsifies the property DDP

defense of b is simple and not distributed. However, vdp considers that, when δ = 0.5, b is
strictly more acceptable than a, contradicting the property.

(SC) Considering the argumentation framework depicted in Figure C.4, let us show that SC is
not satisfied.

a b2

b1

b

δ = 0.5 b1 ≃ b2 ≻ a ≻ b

Figure C.4 – vdp falsifies the property SC

The definition says that b should be strictly more acceptable than a because a attacks itself
while b does not. However, vdp considers that, when δ = 0.5, a is strictly more acceptable than
b, contradicting the property.

(⊕DB) Considering the argumentation framework depicted in Figure C.5, let us show that⊕DB
is not satisfied.

a2 a1 a b

δ = 0.5 a2 ≃ b ≻ a ≻ a1

Figure C.5 – vdp falsifies the property ⊕DB

The property says that a should be strictly more acceptable than b because a has a defense
branch while that b has not. However, vdp considers that, when δ = 0.5, b is strictly more
acceptable than a, contradicting the property.

(OE) Considering the argumentation framework depicted in Figure C.6, let us show that OE is
not satisfied. The property considers that a and b should be equally acceptable because there
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Appendix C. Proofs of the Results from Chapter 5

aa2

a1

a3 b4

b3

b2

b1

b

δ = 0.2 a3 ≃ b3 ≃ b4 ≻ b ≻ a ≻ a1 ≃ a2 ≃ b1 ≃ b2

Figure C.6 – vdp falsifies the property OE

exists a bijective function f fromRS
1 (a) toRS

1 (b) such that ∀c ∈ RS
1 (a), c ≃ f(c). Indeed, one

can remark that a1 ≃ b1 and a2 ≃ b2. However, vdp considers that, when δ = 0.2, b is strictly
more acceptable than a, contradicting the property.

Proposition 27. Let µ be a precision threshold and i the expected maximal length.

If δ ∈ ]δm, 1[ such that δm = i
√
µ then vdpδ satisfies also +DBi, ↑DBi and ↑ABi

Proof. The proposition 22 assures that if δ > δm then the argument with an additional branch
(+DB) or a extended branch (↑DB and ↑AB) will receive all the values from the arguments
belonging to this branch.
Let AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 be two argumentation frameworks such that it exists an
isomorphism γ with AF = γ(AF ′). Let a ∈ A and its image γ(a) ∈ A′ be two arguments,
ǫ ∈ ]0, 1] and δ ∈ ]0, 1[. As the semantics satisfies the properties Argument Equivalence (AE),
we can say that a and γ(a), with the same ancestor’s graph, have always the same propagation
number (P ǫ,δ(a) = P ǫ,δ(γ(a))).

(+DB) Let us now add a defense branch from b to γ(a) (soRS
1 (b) = ∅) with a length of i ∈ 2N.

Recall that the first step of this semantics (when ǫ = 0) consists in checking only the impact of
non-attacked arguments. So now γ(a) receives one additional positive value from b (vǫ(b) = 1),
so P ǫ,δ(a) + δi = P ǫ,δ(γ(a)) ⇒ P ǫ,δ(a) < P ǫ,δ(γ(a)) ⇒ γ(a) ≻vdp a, in agreement with the
property.

(↑AB) We suppose ∃n ∈ 2N+1 such that b is an argument situated at the beginning of an attack
branch to a with a length of n. Thus a receives a score of−δn from b during the first phase where
ǫ = 0. Now, we add a new defense branch to the non-attacked argument γ(b). We denoted by b′

the argument at the beginning of this new branch which has a length of m. It is clear than γ(b) is
now attacked so, during the step where ǫ = 0, γ(b) does not send its negative value anymore to
γ(a) but it receives the negative score of b′ (-δn+m) : P 0,δ(γ(a)) = P 0,δ(a) + δn − δn+m. Con-
sequently, δn > δm+n (because m+ n > n) and P 0,δ(γ(a)) > P 0,δ(a) implies that γ(a) ≻vdp a,
in agreement with the property.

(↑DB) The proof is very similar to the one of ↑AB. The difference is that b is situated at the
beginning of a defense branch. So P 0,δ(γ(a)) = P 0,δ(a) − δn + δm+n with δn > δm+n, which
implies that P 0,δ(a) > P 0,δ(γ(a))⇒ a ≻vdp γ(a) in agreement with the property.
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Appendix D

List of properties for ranking-based

semantics

Abstraction (page 65)

The ranking on the set of arguments should be defined only on the basis of the attacks between
arguments.

Property 1 (Abstraction (Abs)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Abstraction if and only if for any AF,AF ′ ∈ AF, for
every isomorphism γ such that AF ′ = γ(AF ), we have x �σ

AF y if and only if γ(x) �σ
AF′ γ(y).

Independence (page 66)

The ranking between two arguments x and y should be independent of any argument that is
neither connected to x nor to y.

Property 2 (Independence (In)). [MATT & TONI 2008, AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Independence if and only if for any argumentation frame-
work AF such that ∀AF ′ ∈ cc(AF ), ∀x, y ∈ Arg(AF ′), x �σ

AF′ y if and only if x �σ
AF y.

Void Precedence (page 66)

A non-attacked argument should be strictly more acceptable than an attacked argument.

Property 3 (Void Precedence (VP)). [MATT & TONI 2008, AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Void Precedence if and only if for any AF = 〈A,R〉 and
∀x, y ∈ A, ifR1(x) = ∅ andR1(y) 6= ∅ then x ≻σ

AF y.

Self-Contradiction (page 66)

An argument that attacks itself should be strictly less acceptable than an argument that does not.

Property 4 (Self-Contradiction (SC)). [MATT & TONI 2008]
A ranking-based semantics σ satisfies Self-Contradiction if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A, if (x, x) /∈ R and (y, y) ∈ R then x ≻σ

AF y.
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Cardinality Precedence (page 67)

If x has strictly more direct attackers than y, then y should be strictly more acceptable than x.

Property 5 (Cardinality Precedence (CP)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Cardinality Precedence if and only if for any AF =
〈A,R〉 and ∀x, y ∈ A, if |R1(x)| < |R1(y)| then x ≻σ

AF y.

Quality Precedence (page 68)

If x has a direct attacker strictly more acceptable than any direct attacker of y, then x should be
strictly more acceptable than y.

Property 6 (Quality Precedence (QP)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Quality Precedence if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A, if ∃y′ ∈ R1(y) such that ∀x′ ∈ R1(x), y′ ≻σ

AF x
′ then x ≻σ

AF y.

Counter-Transitivity (page 68)

If the direct attackers of y are at least as numerous and acceptable as those of x, then x should
be at least as acceptable as y.

Property 7 (Counter-Transitivity (CT)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Counter-Transitivity if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A, ifR1(y) ≥σ

S R1(x) then x �σ
AF y.

Strict Counter-Transitivity (page 69)

If CT is satisfied and if the direct attackers of y are either strictly more numerous, or strictly
more acceptable than those of x, then x should be strictly more acceptable than y.

Property 8 (Strict Counter-Transitivity (SCT)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Strict Counter-Transitivity if and only if for any AF =
〈A,R〉 and ∀x, y ∈ A, ifR1(y) >

σ
S R1(x) then x ≻σ y.

Defense Precedence (page 69)

If arguments x and y have the same number of direct attackers, and if x is defended at least once
whereas y is not, x should be ranked higher than y.

Property 9 (Defense Precedence (DP)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Defense Precedence if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A such that |R1(x)| = |R1(y)|, ifR2(x) 6= ∅ andR2(y) = ∅ then x ≻σ

AF y.
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Distributed-Defense Precedence (page 69)

A defense where each defender attacks a distinct attacker is better than any other.

Property 10 (Distributed-Defense Precedence (DDP)). [AMGOUD & BEN-NAIM 2013]
A ranking-based semantics σ satisfies Distributed-Defense Precedence if and only if for any
AF = 〈A,R〉 and ∀x, y ∈ A such that |R1(x)| = |R1(y)| and |R2(x)| = |R2(y)|, if the
defense of x is simple and distributed and the defense of y is simple but not distributed, then
x ≻σ

AF y.

Addition of an Attack Branch (page 99)

Adding an attack branch to any argument decreases its level of acceptability.

Property 11 (Addition of an Attack Branch (+AB)). [BONZON et al. 2016a]
A ranking-based semantics σ satisfies Addition of an Attack Branch if and only if for any
AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ), if
AF ⋆ = AF ∪ AF ′ ∪ P−(γ(x)), then x ≻σ

AF⋆ γ(x).

Strict Addition of an Defense Branch (page 99)

Adding a defense branch to any argument increases its level of acceptability.

Property 12 (Strict Addition of a Defense Branch (⊕DB)). [BONZON et al. 2016a]
A ranking-based semantics σ satisfies Strict Addition of a Defense Branch if and only if for
any AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ), if
AF ⋆ = AF ∪ AF ′ ∪ P+(γ(x)), then γ(x) ≻σ

AF⋆ x.

Addition of an Defense Branch (page 100)

Adding a defense branch to any attacked argument increases its level of acceptability.

Property 13 (Addition of a Defense Branch (+DB)). [BONZON et al. 2016a]
A ranking-based semantics σ satisfies Addition of a Defense Branch if and only if for any
AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ), if
AF ⋆ = AF ∪ AF ′ ∪ P+(γ(x)) andR1(x) 6= ∅, then γ(x) ≻σ

AF⋆ x.

Increase of an Attack Branch (page 100)

Increasing the length of an attack branch of an argument increases its level of acceptability.

Property 14 (Increase of an Attack Branch (↑AB)). [BONZON et al. 2016a]
A ranking-based semantics σ satisfies Increase of an Attack Branch if and only if for any
AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ), if
∃y ∈ B−(x), y /∈ B+(x) and AF ⋆ = AF ∪ AF ′ ∪ P+(γ(y)), then γ(x) ≻σ

AF⋆ x.
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Increase of a Defense Branch (page 100)

Increasing the length of a defense branch of an argument decreases its level of acceptability.

Property 15 (Increase of a Defense Branch (↑DB)). [BONZON et al. 2016a]
A ranking-based semantics σ satisfies Increase of a Defense Branch if and only if for any
AF,AF ′ ∈ AF and x ∈ Arg(AF ), for every isomorphism γ such that AF ′ = γ(AF ), if
∃y ∈ B+(x), y /∈ B−(x) and AF ⋆ = AF ∪ AF ′ ∪ P+(γ(y)), then x ≻σ

AF⋆ γ(x).

Total (page 101)

All arguments can be compared.

Property 16 (Total (Tot)). [BONZON et al. 2016a]
A ranking-based semantics σ satisfies total if and only if for any AF = 〈A,R〉 and ∀x, y ∈ A,
x �σ

AF y or y �σ
AF x.

Argument Equivalence (page 101)

If there exists an isomorphism between the ancestors’ graph of two arguments, then they are
equally acceptable.

Property 17 (Argument Equivalence (AE)). [BONZON et al. 2016b]
A ranking-based semantics σ satisfies argument equivalence if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A, for every isomorphism γ such that AncAF(x) = γ(AncAF(y)) then x ≃σ

AF y.

Non-attacked Equivalence (page 102)

All non-attacked arguments should be equally acceptable.

Property 18 (Non-attacked Equivalence (NaE)). [BONZON et al. 2016a]
A ranking-based semantics σ satisfies non-attacked equivalence if and only if for any AF =
〈A,R〉 and ∀x, y ∈ A,R1(x) = ∅ andR1(y) = ∅ then x ≃σ

AF y.

Ordinal Equivalence (page 102)

Suppose that two arguments, x and y, have the same number of direct attackers. If, for each
direct attacker of x, there exists a direct attacker of y such that the two attackers are equally
acceptable, then x and y are equally acceptable too.

Property 19 (Ordinal Equivalence (OE)).
A ranking-based semantics σ satisfies ordinal equivalence if and only if for any AF = 〈A,R〉
and ∀x, y ∈ A, if there exists a bijective function f from R1(x) to R1(y) such that ∀z ∈
R1(x), z ≃σ

AF f(z) then x ≃σ
AF y.
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Attack vs Full Defense (page 102)

A fully defended argument (without any attack branch) should be strictly more acceptable than
an argument attacked once by a non-attacked argument.

Property 20 (Attack vs Full Defense (AvsFD)). [BONZON et al. 2016a]
A ranking-based semantics σ satisfies attack vs full defense if and only if for any acyclic AF =
〈A,R〉 and ∀x, y ∈ A, if |B−(x)| = 0, |R1(y)| = 1 and |R2(y)| = 0 then x ≻σ

AF y.

Weak Void Precedence (page 205)

A non-attacked argument should be at least as acceptable as an attacked argument.

Property 21 (Weak Void Precedence (WVP)). [THIMM & KERN-ISBERNER 2014]
A ranking-based semantics σ satisfies Weak Void Precedence if and only if for any AF =
〈A,R〉 and ∀x, y ∈ A, ifR1(x) = ∅ andR1(y) 6= ∅ then x �σ

AF y.
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Appendix E

Examples

a b c d e

f g h i

j

Semantics Ranking

M&T a ≃ e ≃ j ≻ c ≃ f ≃ g ≻ b ≃ d ≃ h ≃ i

FL a ≃ e ≃ j ≃ c ≃ f ≃ g ≻ b ≃ d ≃ h ≃ i

Cat
a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ f ≃ g ≃ h ≻ i

1-Bbs

Dbs

a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≃ g ≻ i

Bbs

0.5-Bbs

CS

Propa0.75,Mǫ

Propa0.75,Sǫ a ≃ e ≃ j ≻ c ≻ b ≃ d ≃ h ≻ f ≻ g ≻ i

5-Bbs

a ≃ e ≃ j ≻ c ≻ f ≃ g ≻ b ≃ d ≃ h ≻ i
IGD

Propa0.3,Mǫ

Propaǫ,M1+ǫ

Propa0.3,Sǫ a ≃ e ≃ j ≻ c ≻ f ≻ g ≻ b ≃ d ≃ h ≻ i
Propaǫ,S1+ǫ

Propaǫ,S1→ǫ a ≃ e ≃ j ≻ f ≻ c ≻ g ≻ b ≃ d ≃ h ≻ i

Tuples
a ≃ e ≃ j ≻ f ≃ g ≻ c ≻ b ≃ d ≃ h ≻ i

Propaǫ,M1→ǫ

203



Appendix E. Examples

a b

cd

e

f

Semantics Ranking

FL b ≻ d ≻ e ≻ f ≻ a ≃c
vdp0.3

b ≻ d ≻ e ≻ f ≻ c ≻a5-Bbs

Propaǫ,⊕1→ǫ

Dbs/Bbs

b ≻ f ≻ e ≻ c ≻ d ≻aCS

0.5-Bbs

Propa0.8,⊕ǫ

Cat
b ≻ f ≻ e ≻ d ≻ c ≻aPropa0.3,⊕ǫ

Propaǫ,⊕1+ǫ

vdp0.8 d ≻ b ≻ e ≻ c ≻ f ≻a

a b

cd

e

f

Semantics Ranking

FL b ≃ d ≃ e ≻ f ≃ a ≃c
Cat

b ≻ d ≻ e ≻ c ≻ f ≻a

Bbs/Dbs

0.3-Bbs

1-Bbs

CS

Propa0.8,⊕ǫ

10-Bbs
b ≻ d ≻ e ≻ f ≻ c ≻aPropa0.3,⊕ǫ

Propaǫ,⊕1+ǫ

Propaǫ,⊕1→ǫ

b ≻ d ≻ f ≻ e ≻ a ≻cvdp0.3

vdp0.8

d a b

e c

Semantics Ranking

FL b ≃ e ≻ a ≃ c ≃ d

Cat

b ≻ d ≻ e ≻ c ≻ a

1-Bbs

Propa0.3,⊕ǫ

Propaǫ,⊕1+ǫ

CS

Bbs

b ≻ d ≻ c ≻ e ≻ a
Dbs

0.3-Bbs

Propa0.8,⊕ǫ

10-Bbs
b ≻ e ≻ d ≻ c ≻ a

Propaǫ,⊕1→ǫ

vdp0.3

b ≻ e ≻ d ≻ c ≻ a
vdp0.8
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a b

cd

Semantics Ranking

FL b ≃ d ≻ a ≃ c

Cat

b ≻ d ≻ c ≻ a

1-Bbs

10-Bbs

CS

Propa0.3,⊕ǫ

Propaǫ,⊕1+ǫ

Propaǫ,⊕1→ǫ

vdp0.3

vdp0.8

Bbs

b ≻ c ≻ d ≻ a
Dbs

0.3-Bbs

Propa0.8,⊕ǫ

a

b

c

d

e

fg

Semantics Ranking

FL a ≻ c ≃ d ≃ e ≃ f ≃g ≻b
Cat

a ≻ f ≻ d ≻ g ≻ b ≻c ≻e

Bbs

Dbs

0.3-Bbs

1-Bbs

CS

Propa0.8,⊕ǫ

10-Bbs
a ≻ f ≻ d ≻ g ≻ c ≻e ≻bPropa0.8,⊕ǫ

Propaǫ,⊕1+ǫ

Propaǫ,⊕1→ǫ

a ≻ f ≻ d ≻ g ≻ c ≻e ≻bvdp0.3

vdp0.8
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Abstract

Dung’s theory of abstract argumentation is a formalism that represents conflicting infor-
mation using an argumentation framework. Extension-based semantics have been introduced to
determine, given an argumentation framework, the justifiable points of view on the acceptability
of the arguments. However, these semantics are not appropriate for some applications. So alter-
native semantics, called ranking-based semantics, have recently been evolved. Such semantics
produces, for a given argumentation framework, a ranking on its arguments from the most ac-
ceptable to the least one(s). The overall aim of this thesis is to propose and study ranking-based
semantics in the context of abstract argumentation.

We first define a new family of ranking-based semantics based on a propagation principle
which allow us to control the influence of non-attacked arguments on the acceptability of ar-
guments. We investigate the properties of these semantics, the relationships between them but
also with other existing semantics.

Then, we provide a thorough analysis of ranking-based semantics in two different ways. The
first one is an empirical comparison on randomly generated argumentation frameworks which
reveals insights into similarities and differences between ranking-based semantics. The second
one is an axiomatic comparison of all these semantics with respect to the proposed properties
aiming to better understand the behavior of each semantics.

At last, we question the ability of the existing ranking-based semantics to capture persuasion
settings and introduce a new parametrized ranking-based semantics which is more appropriate
in this context.

Keywords: Abstract argumentation, ranking-based semantics.
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Résumé

La théorie de l’argumentation abstraite de Dung est un formalisme permettant d’utiliser un
système d’argumentation afin de représenter des informations conflictuelles. Des sémantiques à
base d’extensions ont d’abord été introduites dans le but de déterminer quels arguments peuvent
être conjointement acceptés. Cependant, ces sémantiques ne sont pas appropriées pour certaines
applications, c’est pourquoi des sémantiques à base de classement, permettant de classer les
arguments du plus acceptable au moins acceptable, ont été introduites. Le but de cette thèse
est donc de proposer et d’étudier ces sémantiques à base de classement dans le contexte de
l’argumentation abstraite.

Nous définissons d’abord une nouvelle famille de sémantiques à base de classement basées
sur un principe de propagation permettant de contrôler l’influence des arguments non-attaqués
sur l’acceptabilité des arguments. Nous étudions les propriétés de ces sémantiques, les relations
entre elles ainsi qu’avec d’autres sémantiques existantes.

Nous proposons ensuite deux méthodes pour comparer les sémantiques à base de classe-
ment. La première est une comparaison empirique sur des systèmes d’argumentation générés
aléatoirement donnant un aperçu des similitudes et des différences entre ces sémantiques. La
seconde est une comparaison axiomatique de toutes ces sémantiques à la lumière des propriétés
proposées visant à mieux comprendre le comportement de chaque sémantique.

Enfin, nous remettons en question la capacité des sémantiques existantes à capturer certains
principes de persuasion et introduisons une nouvelle sémantique paramétrée à base de classe-
ment plus appropriée pour ce contexte précis.

Mots-clés: Argumentation abstraite, Sémantique à base de classement.
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