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Université Paris Diderot-Paris 7

Campus des Grands Moulins

Bâtiment Sophie Germain, case 7012

75205 Paris Cedex 13



Acknowledgement

I
would like to thank Mr Berger and Mr Markl for reviewing
this manuscript and give a favorable approval to this thesis. I

thank Mme Livernet, Mr Ara, Mr Fresse and Mr Merel for kindly
accepting to be part of the jury.
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Summary of the Thesis

In this thesis we recall the notion of L-algebra. L-algebras are intended as al-
gebraic models for homotopy types. L-algebras were introduced by Alain Prouté in
several talks since the eighties. The principal objective of this thesis is the descrip-
tion of an E8-coalgebra structure on the main element of an L-algebra. This can
be seen as a generalization of the E8-coalgebra structure on the chain complex as-
sociated to a simplicial set given by Smith in [Smi94]. We construct an E8-operad,
denoted K, used to construct the E8-coalgebra on the main element of a L-algebra.
This E8-coalgebra structure shows that the canonical L-algebra associated to a
simplicial set contains at least as much homotopy information as the E8-coalgebras
usually associated to simplicial sets.

Keywords
Differential graded modules, L-algebras, symmetric operads, E8-coalgebras.

Résumé de la Thèse

Dans cette thèse nous rappelons la notion de L-algèbre, qui a pour objet d’être
un modèle algébrique des types d’homotopie. L’objectif principal de cette thèse
est la description d’une structure de E8-coalgèbre sur l’élément principal d’une L-
algèbre. Ceci peut être vu comme une généralisation de la structure de E8-coalgèbre
sur le complexe des châınes d’un ensemble simplicial, telle que décrite par Smith dans
[Smi94]. Nous construisons une E8-opérade, notée K, utilisée pour construire la E8-
coalgèbre sur l’élément principal d’une L-algèbre. Cette structure de E8-coalgèbre
montre que la L-algèbre canoniquement associée à un ensemble simplicial contient
au moins autant d’information homotopique que la E8-coalgèbre couramment as-
sociée à un ensemble simplicial.

Mots-clefs
Modules différentiels gradués, L-algèbres, opérades symétriques, E8-coalgèbres.
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Introduction: In English

In this introductory chapter we explain the context where the L-algebras are placed.
We start with a review of some of the techniques used to study homotopy type of
spaces, beginning with minimal models in rational homotopy theory and continuing
with the use of A8-algebras in the case of fields with positive characteristic and the
description of the notion of operad. In the final part we discuss L-algebras and the
results proven in this thesis.

Sullivan Minimal Models A concept of minimal model in rational homotopy
theory was introduced by Dennis Sullivan at the end of 1960’s (see [Jam99], §27).
Simply connected spaces can be rationalized, which means that we can replace a
space X with a rational version of it, XQ, such that H˚pX;Qq “ H˚pXQq. A
simply connected space Y is said to be rational when its reduced homology (or
π˚pY q, or the reduced homology of its loop space ΩY ) is a Q-vector space. Given a
continuous map φ : X Ñ Z, we can state the existence of a (up to homotopy) unique
induced morphism between the rationalizations of X and Z. With this, the rational
homotopy type of a simply connected space is defined as the weak homotopy type
of its rationalization.

This simplification of a space implies some loss of information, for instance, the
homotopy groups of the sphere S2 are non-zero in infinitely many degrees, but the
rational homotopy groups vanish in all degrees above 3. Nevertheless, the advan-
tage of the approximation by a rational model, is the facility for computations while
ordinary homotopy theory is too complicated. This is due to the discovery of an ex-
plicit algebraic formulation for rational homotopy by Quillen and Sullivan ([Sul77],
[Qui69]). They established an equivalence of categories between the homotopy cat-
egory of rational spaces and their categories of minimal models. Sullivan found a
functor APL that associates a commutative cochain algebra APLpXq to X. The
algebras APlpXq and C˚pXq are linked by a zig-zag of quasi-isomorphisms, so that
in particular they have the same cohomology H˚pXq “ HpAPLpXqq.

The transition from topological spaces to commutative cochain algebras estab-
lished by the functor APL allows us to focus in the study of commutative cochain
algebras. In this category shows up a special kind of commutative cochain alge-
bras called Sullivan algebras. These algebras live in each isomorphism class, and
under special conditions on the space X, have a minimal representative uniquely
determined up to isomorphism, called Sullivan minimal model.

If simply connected topological spaces X and Y have the same rational homotopy
type, then the cochain algebras APLpXq and APLpY q are weakly equivalent, and by
the unicity of the minimal models, they have the same minimal model. So, if we
restrict ourselves to simply connected spaces with rational homology of finite type,
there is a bijection between the rational homotopy types and the isomorphism classes

3
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of minimal Sullivan algebras on Q.

Commutative Cochain Problem The cochain ring C˚pX; kq product, that
is, the cup product of cochains, usually is not commutative. In the graded con-
text, commutativity means that x Y y “ p´1q|x||y|y Y x, where |x| and |y| are the
degrees of x and y. Essentially, the commutative cochain problem is functorially
finding a commutative differential graded algebra A˚pXq on the ring k, in such a
way that there exits a zig-zag of quasi-isomorphisms between A˚pXq and C˚pX; kq
(see [GM81], §9). This problem was solved for the rational case by Sullivan.

Steenrod proposed a type of cohomology operations linked to the cup product
(see [Ste47]). The Steenrod squares Sqi are defined on the cohomology ring with
coefficient in Z{2Z. They take the class x of a cocycle of degree n in to a class Sqipxq
of degree n` i. When n “ i, Sqipxq is just the cup product xYx. The construction
of the Steenrod squares depends strongly on the non commutativity of the cochain
ring C˚pX;Z{2Zq and a consequence of their existence is that there is no solution
for the commutative cochain problem on the Z{2Z, and consequently on Z (see for
instance [Cen89]). The same problem arises for Z{pZ, for p an odd prime.

A8-algebras Introduced by Stasheff ([Smi86], [Sta63]), the A8-algebras are
graded chain complexes pA, dq together with operations µn : Abn Ñ A, n ě 2, of
degree n-2, satisfying some conditions. A8-algebras can be seen as a generalization
of differential graded algebras. In fact, for a DGA-algebra the operations satisfy
µn “ 0 for n ě 3 and the category DGA is a full subcategory of the category of
A8-algebras.

In [Kad80] Kadeishvili describes the construction of the A8-algebra structure
on the algebra of homology of chain complexes and, after some generalizations in
the A8-algebras category, he gives a description of a fiber space using A8-algebras.
In 1986, this approach was used by Prouté in [Pro11] with the idea of making an
explicit computation of the homology of a fiber space with fiber KpZ{pZ, nq. The
idea behind his technique, is to express the chain complex of the total space in the
fiber bundle, by something having a description by operations in the category of A8-
algebras, because in some especial cases there are already established methods to
compute minimal models in the A8-algebras category and, naturally A8-structures
arise when the fiber bundle has as fiber a space of the type Kpπ, nq. Associativity
is not the whole story, we also need to relax the commutativity, which led May in
[May72] to the notion of operad. We will be specially interested in E8-operads.

Symmetric operads An operad can be thought as a framework to model
algebraic structures. In this part we explore the intuition behind the concept of
operad. Operads can be defined in any symmetric monoidal category C, in particular
we are interested in the category DGA-k-Mod. Then, all the constructions will
be made having in mind this category. An operad P is composed of a collection
tP piquiě0 of objects of C, which is subject to several conditions that we will discuss
along this introduction. The elements of each object P pkq can be seen as abstract
operations with k inputs and one output, referred as elements of arity k. In the
following picture are represented two element of P , the first is an element of arity 3
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(P P p3q), and the other is an element of arity k (P P pkq).

à

k

à (1)

Each operad P will have a distinguished element in arity 1, which is supposed to
represent the identity application, called the unit of P . It is defined to as a morphism
η : 1 Ñ P p1q and is represented by a stick with one input and one output.

à

(2)

Each P pkq is equipped with an action by the symmetric group Σk. Graphically,
this action is represented by the shuffle of inputs. For instance, consider σ P Σ3

given by σ “
`

1 2 3
3 1 2

˘

. The action of σ on an element of P p3q, is represented as
follows.

“ (3)

That is, if the element of P p3q is an operation fpx1, x2, x3q then fσpx1, x2, x3q “

fpxσ´1p1q, xσ´1p2q, xσ´1p3qq “ fpx2, x3, x1q. In the last picture the bracket is used to
represent the act of applying the action by σ on an element of P p3q. In general, we
represent action of σ P Σk on and element of P pkq by the following picture.

σ

kx
xσ (4)

Another important component of an operad P are the compositions. Since what
we are modeling are operations, we need to code how the composition of operations
behaves. Let f P P pkq, then we could compose this operation with k (one for each
input) operations of P , resulting in an operation of arity equal to the sum of arities
of the operations in each input of f . The compositions are given by morphisms of
the form γ : P pkq b P pi1q b ¨ ¨ ¨ b P pikq Ñ P pnq, with n “ i1 ` ¨ ¨ ¨ ` ik. We also
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represent the act of applying the composition by a bracket.

k

i1 ik

¨ ¨ ¨

“

n

(5)

The data given by the action of symmetric groups, the unit and the compositions
have to satisfy some conditions.The first condition is about the associativity of the
composition, in the sens that our abstract compositions in P does not depend of the
order in which is made. The following picture represents this situation.

k

i1 ik

r1,1 r1,i1 rk,ikrk,1

¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨

k

i1 ik

r1,1 r1,i1 rk,ikrk,1

¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨

“

(6)
The left side says the compositions are made first in the two upper levels and

then, the resulting operations are compose with the base. The right side indicates
the compositions starts with the two lower levels of operations and the resulting
operation is compose with the i1 ` ¨ ¨ ¨ ` ik operations on top. For the unit in P p1q,
we demands that it does not affect the result of compositions. In other words, if we
have an operation with k inputs, the composition with k times the unit, gives as
result the same operation. And if we compose the unit in its only input with any
operation, the unit doesn’t change this operation.

n

“

n

n

¨ ¨ ¨

“ (7)

Finally we require right actions of symmetric groups to satisfy some equivariance
condition with respect to compositions. The first condition applies when in a com-
position we have over the inputs of the resulting operation, a permutation acting in
such a way that it respects the blocks of inputs of each part of the composition. For
instance, consider the permutation σ “

`

1 2 3
3 1 2

˘

, and an element of P p9q obtained by
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the composition of an element of P p3q with three elements of P p3q, and affected by
the associated action of σ in Σ9.

(8)

Now, if we try to arrange the mix in the upper part of the picture made by
the permutation, in such a way that we put face to face the blocks by moving the
corresponding operations in the inputs of the base operation. Then, the shuffle made
by the permutation will be now placed over the inputs of the base operation, that
is, the action on the resulting composite is now converted in to an action on the
operation at the base.

(9)

This process of moving the action to the bottom is wanted so as not to affect
the resulting operation, that is, both expression are the same in an operad. The
second equivariance condition apply when the action of the symmetric group on a
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composite affects individually the inputs of each operation in the composition.

k

i1 ik

¨ ¨ ¨
“

k

i1 ik

¨ ¨ ¨ (10)

In the left side first the actions are applied on each component and then the
composition is performed. In the right side, the composition is first made and then
on the resulting operation is applied a single permutation which is obtained by
putting together all the others permutations. Both processes are supposed to give
the same result in an operad.

L-algebras and E8-structures There are several attempts for generalizing
Sullivan’s ideas to arbitrary coefficients. In particular, A. Prouté proposes another
approach using higher homotopy techniques formalized as L-algebras. His ideas have
been part of several talks since the eighties, but never published. The L-algebras
can be seen as an adaptation of Segal’s ideas in a rather simple way.

Besides, for the analysis of infinite loop spaces in [Seg74], Segal introduce the
notion of Γ-space. His point of view is essentially based on the idea that the relatively
big family of higher homotopies needed for E8-techniques, can be coded in a different
way. This higher homotopy techniques introduce E8-spaces in order to state a
recognition principle for infinite loop spaces (see [BV68]). The higher homotopies of
an E8-space can be replaced by a small family of homotopy equivalences, much easier
to describe, from which the higher homotopies can be recovered just by choosing
homotopy inverses.

L-algebras are similar to Γ-spaces, but instead of applying to spaces they apply to
singular chain complexes. However, this is technically somewhat different, essentially
because in the theory of Γ-spaces, the cartesian product of topological spaces is a
product (in the categorical sens), unlike the tensor product of modules which we
must use in this dual situation, is not a sum. Fortunately, this gap is compensated
by the good properties of the Eilenberg-Mac Lane transformation, which satisfies
several commutation properties exactly, not only up to homotopy.

This thesis is dedicated in a first part to the description of several properties
of the category of L-algebras. In the second part of this work we focus on the
description of the E8-coalgebra on the main element of an L-algebra. Intuitively
this structure is reflected in the fact that all the coproducts on the main element
constructed from the morphisms of the L-algebra must be homotopic. This is the
case when we consider the canonical L-algebra of a simplicial set. In the monograph
[Smi94], Smith constructs a natural E8-coalgebra structure on the chain complexes.
From his construction, we give an alternative way to describe this E8-coalgebra (see
section 4.2), by finding a more direct way to construct an E8-operad that acts on
the chain complexes. Our E8-operad R used for this propose could be useful to
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describe explicitly the E8-algebras. For the E8-coalgebra structure on the main
element of an L-algebra, we design an E8-operad K using a special technique that
we call polynomial operads. Then, the main result of this thesis can be stated as
follows.

p Main Result

There exists a functor F : L-Alg Ñ K-CoAlg, which associates a (E8) K-
coalgebra FpAq to each L-algebra A, in such a way that the underlying DGA-
k-module of FpAq is Ar1s, and for all n ě 1, the operad morphism K Ñ

CoendpAr1sq given by F , sends every krΣns-generator x P Kpnq0 to a mor-
phism of DGA-k-modules x such that µ ˝ x is homotopic to s0, with µ given
by the structural quasi-isomorphism of A and s0 by the image of A of the only
morphism in L of the form prns, αq : rns Ñ r1s.

Organization of the thesis Oriented towards the description of the E8-
coalgebra acting on the main element of an L-algebra, this thesis is organized in the
following parts :

o Chapter 1: In this chapter we review the principal concepts used along this
work. They include for instance, the properties of augmented differential graded
modules and symmetric coequalizers. In the last part, we recall the properties
of the Eilenberg-Mac Lane transformation and a version of the acyclic models
theorem used in its characterization.

o Chapter 2: This chapter is devoted to the study of operads. Its role is to be
used to justify the construction that will be made in the next chapters. We where
principally interested in the construction of the free operad on a S-module and
the existence of small colimits in the category of operads. Even if we work with
symmetric operads, that is, with actions by the symmetric groups, we include
some results about non-symmetric operads in order to perform a construction of
an operad presented in chapter 5.

o Chapter 3: It is about L-algebras. We introduce this concept in details and
discuss its construction in the general setting of monoidal categories, to stay
after that in the category of differential graded modules. The rest of this chapter
is dedicated to the study of the principal properties of L-algebras.

o Chapter 4: In this chapter we study the E8-coalgebra structure given in [Smi94]
on the chain complexes associated to simplicial sets, also we construct a different
operad to the one presented in [Smi94] and proof that it gives an E8-structure to
chain complexes. In fact, our operad is in somehow a free version of the operad
in [Smi94].

o Chapter 5: We present a technique to construct operads that we call polynomial
operads. Next, this technique is used to construct a E8-operad K. Then we proof
the existence of an E8-coalgebra structure on the main element of an L-algebra
using K. Finally, we establish the functoriality of this construction.
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Introduction: En Français

Dans cette introduction nous expliquons le contexte dans lequel les L-algèbres se pla-
cent. Nous commençons par une revue de quelques techniques utilisés dans l’étude
du type d’homotopie des espaces comme les modèles minimaux en homotopie ra-
tionnelle et puis nous continuons avec l’utilisation des A8-algèbres dans le cas des
corps de caractéristique positive et une description du concept d’opérade. Dans la
partie finale on parle de L-algèbres et des résultats prouvés dans cette thèse.

Modèles Minimaux de Sullivan À la fin des années 60, un concept de modèle
minimal dans la théorie de l’homotopie rationnelle fut introduit par Dennis Sulli-
van (voir [Jam99], §27). Les espaces simplement connexes peuvent être rationalisés,
c’est-à-dire qu’on peut remplacer un espace X par une version rationnelle de cet
espace, XQ, telle que H˚pX;Qq “ H˚pXQq. Un espace simplement connexe Y est
dit rational quand son homologie réduit (ou π˚pY q, ou bien l’homologie réduit de
son espace de lacets ΩY ) est un Q-espace vectoriel. Pour une application continue
φ : X Ñ Z, nous pouvons établir l’existence (à homotopie près) d’un unique mor-
phisme induit entre les rationalisations de X et Z. Ensuite, le type d’homotopie
d’un espace simplement connexe est définit comme le type d’homotopie faible de sa
rationalisation.

Cette simplification d’un espace implique une perte d’information, par exemple,
les groupes d’homotopie de la sphère S2 ne sont pas nuls dans une infinité de degrés,
mais, les groupes d’homotopie rationnelle sont nuls dans tous les dégrées au dessus
de 3. Néanmoins, l’avantage de l’approximation par un modèle rationnel c’est la
facilité de calcul tandis que la théorie ordinaire de l’homotopie est plus complexe.
C’est dû à la découverte d’une formulation explicite pour l’homotopie rationnelle par
Quillen et Sullivan ([Sul77], [Qui69]). Ils ont établit une équivalence de catégories
entre la catégorie homotopique des espaces rationels et leur catégorie des modèles
minimaux. Sullivan a trouvé un functeur APL lequel associe une algèbre de cochâınes
commutatives APLpXq à X. Les algèbres APLpXq et C˚pXq sont liées par un zig-
zag de quasi-isomorphismes, et en particulier ont le même type de cohomologie
H˚pXq “ HpAPLpXqq.

Le passage d’espaces topologiques à des algèbres commutatives de cochâınes est
établi par un foncteur APL qui nous permet de nous concentrer sur l’étude des
algèbres de cochâınes commutatives. Dans cette catégorie on trouve un type spécial
d’algèbres commutatives de cochâınes qui sont appellés algèbres de Sullivan. Ces
algèbres appartiennent à chaque classe d’isomorphisme, et sous certaines conditions
sur l’espace X, elles sont un représentant unique déterminé à homotopie près, elles
s’appellent modèles minimaux de Sullivan.

Si des espaces topologiques simplement connexes X et Y ont le même type
d’homotopie rationnelle, alors leur algèbres de cochâınes APLpXq et APLpY q sont

11
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quasi-isomorphes, et par l’unicité des modèles minimaux, ils ont le même modèle
minimal. Alors, si on se concentre sur les espaces simplement connexes de type
d’homologie rationnelle finie, il existe une bijection entre le type de l’homotopie
rationnelle et les classes d’isomorphismes des algèbres minimales de Sullivan sur Q.

Le problèmes de Cochâınes Commutatives Le produit de l’anneau de
cochâınes C˚pX; kq, c’est-à-dire, le cup produit de cochâınes, normalement n’est pas
commutatif. Dans le cas gradué, la commutativité signifie que xYy “ p´1q|x||y|yYx,
où |x| et |y| sont les dégrés de x et y. Essentiellement, le problème des cochâınes
commutatives consiste à trouver d’une manière fonctorielle une algèbre commutative
différentielle A˚pXq sur l’anneau k, de tel manière qu’il existe un zig-zag de quasi-
isomorphismes entre A˚pXq et C˚pX : kq (voir [GM81], §9). Ce problème est résolu
par Sullivan dans le cas rational.

Steenrod propose un type d’opérations cohomologiques liées au cup produit (voir
[Ste47]). Les carrés de Steenrod Sqi sont définis sur l’anneau de cohomologie à
coefficients dans Z{2Z. Ils prennent la classe x d’un cocycle de degré n dans une
classe Sqipxq de degré n`i. Quand n “ i, Sqipxq est simplement le cup produit xYx.
La construction des carrés de Steenrod dépend fortement de la non conmutativité
de l’anneau de cochâınes C˚pX;Z{2Zq, et une conséquence de leur existence est la
non existence d’une solution au problème des cochâınes commutatives sur l’anneau
Z{2Z, et en conséquence sur Z (voir par exemple [Cen89]). Le même problème est
présent dans Z{pZ, quand p est un nombre premier impair.

A8-algèbres Introduites par Stasheff ([Smi86], [Sta63]), les A8-algèbres sont
des complexes de châınes pA, dq avec des opérations µn : Abn Ñ A, n ě 2, de dégrée
n-2, qui satisfont certains conditions. Les A8-algèbres peuvent être vues comme une
généralisation des algèbres différentielles graduées. En fait, pour une DGA-algèbre
les opérations vont satisfaire µn “ 0 pour n ě 3 et la catégorie des DGA-algèbres
est une sous-catégorie de la catégorie des A8-algèbres.

Dans [Kad80] Kadeishvili décrit la construction de la structure de A8-algèbre
sur l’algèbre d’homologie du complexe des châınes et, après quelques généralisations
sur la catégorie des A8-algèbres, il donne une description de l’espace fibré en util-
isant des A8-algèbres. En 1986, cet approche fut utilisé par Prouté dans [Pro11]
avec l’idée de faire des calculs explicites de l’homologie des espaces fibrés, où la fibre
était KpZ{pZ, nq. L’idée derrière cette technique, c’est d’exprimer le complexe de
châınes de l’espace total du fibré par quelque chose avec une description en util-
isant des opérations dans la catégorie des A8-algèbres, parce que dans quelques cas
spéciaux, il existait des méthodes établis pour faire la calcul des modèles minimaux
dans la catégorie des A8-algèbres, et les A8-structures se présentent d’une manière
naturelle quand le fibré a comme fibre un espace du type Kpπ, nq. L’associativité
n’est pas toute l’histoire, nous avons besoin aussi de relaxer homotopiquement la
commutativité, ce qui a conduit May dans [May72] à la notion d’opérade. Nous
somme particulièrement intéressés par les E8-opérades.

Opérades symétriques Une opérade peut être vue comme un cadre pour
modéliser des structures algébriques. Dans cette partie nous expliquons l’intuition
derrière le concept d’opérade. Les opérades peuvent être définies sur n’importe
quelle catégorie monöıdale symétrique C, nous sommes intéressés par la catégorie
DGA-k-Mod. Toutes les constructions seront faites en pensant à cette catégorie.
Une opérade P est composée d’une collection tP piquiě0 d’objets de C, laquelle est
soumise à plusieurs conditions que nous allons discuter au long de cette introduction.
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Les éléments de chaque objet P pkq peuvent être vus comme des opérations abstraites
avec k entrées et une seule sortie, ils sont dit d’aritée k. Dans l’image suivante sont
représentés deux éléments de P , le premier est un élément d’arité 3 (P P p3q), et
l’autre est un élément d’arité k (P P pkq).

à

k

à (11)

Chaque opérade P a un élément distingué en arité 1, lequel est censé représenter
l’opération identité, appelé l’unité de P . Il est défini comme un morphisme η : 1 Ñ
P p1q et il est représenté par un bâton avec une entrée et une sortie-

à
(12)

Chaque P pkq est équipé d’une action du groupe symétrique Σk. Graphiquement,
cette action est représentée par un mélange des entrées. Par exemple, on considère
σ P Σ3 donné par

σ “
`

1 2 3
3 1 2

˘

. L’action de σ sur un élément de P p3q est représentée de la manière
suivante.

“ (13)

C’est-à-dire, si l’élément de P p3q est une opération fpx1, x2, x3q, alors fσpx1, x2, x3q “

fpxσ´1p1q, xσ´1p2q, xσ´1p3qq “ fpx2, x3, x1q. Dans la dernière image les crochets sont
utilisés pour représenter l’acte d’appliquer l’action par σ sur un élément de P p3q.
En général, nous représentons une action de σ P Σk sur un élément de P pkq par
l’image suivante.

σ

kx
xσ (14)

Une autre partie importante de l’opérade P est la notion de composition. Comme
nous sommes en train de modéliser des opérations, nous devons coder comment les
composés des opérations vont se comporter. Soit f P P pkq, alors nous pouvons faire
le composé de cette opération avec k (une pour chaque entrée) opérations de P ,
alors on va obtenir une opération d’arité égale à la somme des arités des opérations
dans chaque entrée. Les composés sont donné par des morphismes de la forme
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γ : P pkq b P pi1q b ¨ ¨ ¨ b P pikq Ñ P pnq, with n “ i1 ` ¨ ¨ ¨ ` ik. Nous allons aussi
représenter l’acte d’appliquer les composées par un crochet.

k

i1 ik

¨ ¨ ¨

“

n

(15)

Les donnés produites par l’action des groupe symétriques, l’unité et les com-
posés doivent satisfaire quelques conditions. La première de ces conditions est
l’associativité de la composition, dans le sens que nos opérations abstraites dans
P ne vont pas dépendre de l’ordre dans lequel elles sont faites. L’image suivante
représente cette situation.

k

i1 ik

r1,1 r1,i1 rk,ikrk,1

¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨

k

i1 ik

r1,1 r1,i1 rk,ikrk,1

¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨

“

(16)
La partie de gauche dit que les composés sont fait d’abord dans les deux niveaux

supérieurs, et après, les opération qui en résultent, sont composées avec la base. La
partie de droite dit que la composition est faite d’abord dans la base, et l’opération
qui en résulte est ensuite composée avec les i1 ` ¨ ¨ ¨ ` ik opérations supérieures.

Pour l’unité P p1q, nous demandons qu’elle n’affecte pas le résultat des compo-
sitions. C’est-à-dire, si nous avons une opération avec k entrées, les composés avec
k fois l’unité vont donner la même opération. Et si on fait le composé de l’unité
dans sa seule entrée avec n’importe quelle autre opération, on obtient cette même
opération.

n

“

n

n

¨ ¨ ¨

“ (17)

Finalement, nous demandons que les actions à droite des groupes symétriques
satisfassent quelques conditions d’équivariance par rapport aux compositions. La
première condition s’applique quand dans un composé nous avons sur les entrées
de l’opération résultante, une permutation qui agit de telle manière qu’elle respecte
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les blocs des entrées de chaque partie du composé. Par exemple, on considère la
permutation σ “

`

1 2 3
3 1 2

˘

, et un élément de P p9q obtenue par la composition d’un
élément de P p3q avec trois éléments de P p3q, et tous affectés par l’action de Σ9

associé à σ.

(18)

Maintenant, si nous essayons de ranger le mélange fait par la permutation dans
la partie supérieure de l’image, de telle manière qu’on place face à face les blocs
en faisant bouger les opérations correspondantes dans les entrées de l’opération de
la base. Alors, le mélange fait par la permutation sera converti en une action sur
l’opération de la base.

(19)

On veut que ce processus de faire bouger l’action au-dessous n’affecte pas l’opération
résultante, c’est-à-dire, que les deux opérations sont les mêmes dans une opérade. La
deuxième condition d’équivariance s’applique quand l’action du groupe symétrique
sur le composé affecte d’une manière individuelle les entrées de chaque opération du
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composé.

k

i1 ik

¨ ¨ ¨
“

k

i1 ik

¨ ¨ ¨ (20)

Dans la partie de gauche d’abord les actions sont appliquées sur chaque com-
posante et puis la composition est faite. Dans la partie de droite, la composition
est faite d’aborde, puis sur les opérations qui en résultent est appliquée une seule
permutation obtenue par le rassemblement des toutes les autres permutations. Les
deux processus sont alors censés de donner le même résultat dans une opérade.

L-algèbres et E8-structures Par ailleurs, pour l’analyse des espaces de
lacets infinis dans [Seg74], Segal introduit la notion de Γ-espace. Son point de vue
est essentiellement basé sur l’idée qu’une famille relativement grande d’homotopies
d’ordre supérieur nécessaires pour la E8-technique, peut être codée d’une manière
différente. Ces techniques d’homotopie d’ordre supérieur introduisent les E8-espaces
pour établir un principe d’identification pour les espaces de lacets infinis(see [BV68]).
Les homotopies d’ordre supérieur d’un E8-espace peuvent être remplacées par une
petite famille d’équivalences d’homotopie, plus facile à décrire, depuis laquelle les ho-
motopies d’ordre supérieur peuvent être récupérées juste en choisissant des inverses
homotopiques.

Les L-algèbres sont similaire aux Γ-espaces, mais au lieu de s’appliquer à des es-
paces, elles s’appliquent à des complexes de châınes singulières. Cependant, c’est une
technique différente, essentiellement parce que dans la théorie des Γ-espaces, le pro-
duit cartésien des espaces topologiques est un vrai produit(dans le sens catégorique),
contrairement au produit tensoriel des modules, qu’on doit utiliser dans cette situ-
ation duale, et qui n’est pas une somme. Heureusement, ce problème est compensé
par les bonnes propriétés de la transformation d’Eilenberg-Mac Lane, laquelle sat-
isfait plusieurs propriétés de commutativité d’une manière exacte, et pas seulement
à homotopie près.

Cette thèse est dédié dans sa première partie à la description de plusieurs pro-
priétés de la catégorie des L-algèbres. Dans sa deuxième partie on se focalise dans
la description de la E8-coalgèbre sur l’élément principal d’une L-algèbre. D’une
manière intuitive, cette structure est reflété dans le fait que tous les coproduits sur
l’élément principal qui sont construit à partir des morphismes dans la structure
d’une L-algèbre, doivent être homotopes. C’est le cas quand nous considérons la
L-algèbre canonique d’un ensemble simplicial. Dans la monographie [Smi94], Smith
construit une structure naturelle de E8-coalgèbre sur les complexes de châınes. En
s’inspirant de cette construction, on donne une manière alternative de décrire cette
structure de E8-coalgèbre (voir section 4.2), en trouvant une manière plus directe de
construire une E8-opérade qui agit sur les complexes de châınes. Notre E8-opérade



CONTENTS 17

R utilisée pour ce propos peut être utile pour décrire d’une manière explicite les
E8-coalgèbres. Pour la structure de E8-coalgèbre sur l’élément principal d’une L-
algèbre, nous construisons une E8-opérade K en utilisant une technique spéciale que
nous appelons opérade polynomiale. Le résultat principal de cette thèse peut être
énoncé comme suit.

p Main Result

Il existe un foncteur F : L-Alg Ñ K-CoAlg, lequel associe une (E8) K-coalgèbre
FpAq à chaque L-algèbre A, de tel manière que le module sous-jacent à FpAq
soit Ar1s, et tel que pour tout n ě 1, le morphisme d’opérades KÑ CoendpAr1sq
donné par F , envoie chaque krΣns-générateur x P Kpnq0 vers un morphisme de
DGA-k-modules x tel que µ ˝ x soit homotopique à s1, où µ est donné par le
quasi-isomorphisme structurel de A, et s1 est donné par l’image par A du seul
morphisme dans L de la forme prns, αq : rns Ñ r1s.

Organisation de la thèse Orientée vers la description de la E8-coalgèbra
agissant sur l’élément principale d’une L-algèbre, cette thèse s’organise comme suit :

o Chapitre 1: Dans ce chapitre nous faisons une revue des principaux concepts
qui seront utilisés au long de ce travail. Ils comprennent, par exemple, les pro-
priétés des modules différentiels gradués ainsi comme les notions catégoriques de
monade et coégaliseur réflexif. Nous rappelons les propriétés de la transforma-
tion d’Eilenberg-Mac Lane et une version du théorème des modèles acycliques
qui permet de la caractériser.

o Chapitre 2: Ce chapitre est dédié à l’étude des opérades. Son rôle est de servir
à la justification des constructions que nous ferons dans les chapitres suivants.
Nous nous sommes intéressés à la construction de l’opérade libre sur un S-module
et à l’existence des colimites sur la catégorie des opérades. Nous incluons quelques
résultats sur les opérades non symétriques envisageant une construction présenté
dans le chapitre 5.

o Chapitre 3: Nous introduisons les L-algèbres. Nous allons discuter leur con-
struction dans le cadre général des catégories monöıdales, pour après rester dans
la catégorie des modules différentiels gradués.

o Chapitre 4: Dans ce chapitre nous avons étudié la structure de E8-coalgèbre
donné dans [Smi94] sur les complexes de châınes. Nous y construisons une opérade
différente de celle présentée dans [Smi94] et prouvons qu’elle une E8-structure
au complexe de châınes. En fait, notre opérade constitue en quelque sorte une
version libre de l’opérade dans [Smi94].

o Chapitre 5: Nous présentons une technique pour construire des opérades qu’on
appelle des opérades polynomiales. Ensuite, cette technique est utilisée pour con-
struire une E8-opérade K, avec laquelle on prouve l’existence d’une E8-coalgèbre
sur l’élément principal des L-algèbres. Enfin, on prouve la fonctorialité de cette
construction.
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Chapter 1

Preliminaries

The main purpose of this chapter is to fix notations and make a review of the
principal results used in this thesis. Some proofs will be omitted, since they can
be found in the existing literature. In such a case, we will include the required
references. Most of the proofs that we judge to include are those containing relevant
details that improve the reading of this thesis or those with proofs not presented in
the references.

The first three sections are dedicated to the rappels of the theory of differential
graded modules, algebras and coalgebras. Then, the following three sections deal
with the categorical notions required for the study of operads and L-algebras. The
final sections include generalities about chain complexes, a enhanced version of the
acyclic models theorem and the principal properties of the Eilenberg-Mac Lane
transformation.

1.1 Graded modules and Koszul Convention

Along this thesis k will denote a field, having in mind the finite field Z{pZ where
p is a prime number, or the field of rational numbers Q. The modules on k will
be simply called modules, but if we need to be more specific they will referred as
k-modules. Some propositions can be stated in more general setting than fields, in
such cases, we will used the symbol Λ for the ring. Tensor product bk is written b.
We identify the tensor products kbM and M b k with M by 1bm “ mb 1 “ m,
for every m PM and where 1 is the unit of k.

Definition 1.1.1. A k-module M is said to be a graded k-module if there is a family
tMiuiPZ of k-submodules of M , such that :

M “
à

iPZ
Mi (1.1)

An element x P Mi is called homogeneous of degree i, in symbols |x| “ i. A
graded k-module is said to be positively graded if Mi “ 0 for every i ă 0, negatively
graded if Mi “ 0 for every i ą 0, bounded below if there exists j integer such that
Mi “ 0 for every i ă j and bounded above if there exists j integer such that Mi “ 0
for every i ą j.

Definition 1.1.2. Let M and N be two graded k-modules. A morphism of graded k-
modules, f : M Ñ N is a collection of homogeneous linear maps tfi : Mi Ñ Ni`puiPZ.

19
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In such a case, the morphism f is said to be of degree p. The category of graded
k-modules is denoted k-Mod.

Definition 1.1.3. Let M and N be two graded k-modules. The tensor product
M bN is the graded k-module defined by :

pM bNqi “
à

p`q“i

Mi bNi (1.2)

ê Remark 1.1.4 (Koszul convention). Working in graded contexts leads to state sign
conventions. They apply when the positions of graded symbols in an expression are
permuted. For instance, when two symbols of degree p and q are permuted, the
resulting expression will be multiplied by p´1qpq. In fact, the Koszul sign is the
signature of the permutation of odd degree letters.

Definition 1.1.5. Let f : M Ñ R and g : N Ñ S be two morphisms of graded
k-modules. We define the morphism f b g : M bN Ñ R b S by the formula,

pf b gqpmb nq “ p´1q|g||m|fpmq b gpnq (1.3)

Proposition 1.1.6. Let f : M Ñ R, h : R Ñ T , g : N Ñ S and k : S Ñ U be
morphisms of graded k-modules, then :

ph ˝ fq b pk ˝ gq “ p´1q|f ||k|phb kq ˝ pf b gq (1.4)

Definition 1.1.7. Let M and N be two graded k-modules. HompM,Nq is defined
to be the graded k-module given by all the morphisms of graded k-modules of every
degree from M to N , that is, the elements of grade i in HompM,Nq are,

HompM,Nqi “
ź

nPZ

HompMn, Nn`iq (1.5)

Definition 1.1.8. The morphisms of graded k-modules f : M Ñ R, g : N Ñ S
induce the morphisms of graded k-modules f˚ and g˚ between HompM,Nq and
HompR, Sq, defined by :

f˚phq “ p´1q|h||f |h ˝ f (1.6)

g˚phq “ g ˝ h (1.7)

Proposition 1.1.9. We have the relations between morphism of graded k-modules,

pg ˝ fq˚ “ p´1q|f ||g|f˚ ˝ g˚ (1.8)

and
pg ˝ fq˚ “ g˚ ˝ f˚ (1.9)

ê Remark 1.1.10. We can identify k with a graded k-module by setting k0 “ k and
ki “ 0 for i ‰ 0. In this case we say that k is a graded module concentrated in
degree zero.
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1.2 Differential Graded Modules

Definition 1.2.1. Let M be a graded k-module. A differential is a homogeneous
morphism B : M Ñ M of degree ´1, such that B2 “ 0. If M has a differential it is
called a differential graded k-module or simply DG-k-module.

Definition 1.2.2. Let M , N be DG-k-modules. A morphism f from M to N is a
homogeneous homomorphism such that Bf “ p´1q|f |fB. The category of differential
graded modules is denoted DG-k-Mod.

Definition 1.2.3. Let M be a DG-k-module.

1. An augmentation ε of M is a degree 0 morphism of DG-k-modules ε : M Ñ k.

2. A coaugmentation η of M is a degree 0 morphism of DG-k-modules η : kÑM .

Definition 1.2.4. A DG-k-module M is said to be a DGA-k-module † if it is pro-
vided with an augmentation ε and a coaugmentation η such that,

ε ˝ η “ 1k (1.10)

A morphism of DGA-k-modules f : M Ñ N is a morphism of DG-k-modules such
that εf “ ε and fη “ η. The category of DGA-k-modules is denoted DGA-k-Mod.

Definition 1.2.5. Let M be a positively or negatively graded DGA-k-module.

1. M is said to be connected if ε : M0 Ñ k is an isomorphism.

2. M is said to be simply connected if also satisfies M1 “M´1 “ 0.

Proposition 1.2.6. Let M and N be DGA-k-modules.

1. The tensor product M b N is a DGA-k-module if we define the differential
by BMbN “ BM b 1 ` 1 b BN , the augmentation by εMbN “ εM b εN and the
coaugmentation by ηMbN “ ηM b ηN .

2. HompM,Nq is a DG-k-module if the differential is defined by BHompM,Nq “

pBNq˚ ´ pBMq
˚. We use no notion of augmentation and coaugmentation for

HompM,Nq.

ê Remark 1.2.7. The explicit formulas for the expressions in 1.2.6 are the following.

Bpxb yq “ Bxb y ` p´1q|x|xb By (1.11)

εpxb yq “ εpxqεpyq, ηp1q “ ηp1q b ηp1q (1.12)

Bpfq “ Bf ´ p´1q|f |fB (1.13)

†DGA for differential graded with augmentation.
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Proposition 1.2.8. The following canonical homomorphism are morphism of DG-k-
modules.

˝ : HompN,P q bHompM,Nq Ñ HompM,P q (1.14)

b : HompM,P q bHompN,Qq Ñ HompM bN,P bQq (1.15)

And we have the following relations between differentials.

Bpg ˝ fq “ pBgq ˝ f ` p´1q|f |g ˝ pBfq (1.16)

Bpf b gq “ pBfq b g ` p´1q|f |f b pBgq (1.17)

Definition 1.2.9. Let f : M Ñ N be a morphism of DG-k-modules of degree l.
The mapping cone of f is the DG-k-module Cpfq defined by,

Cpfqn “Mn´l´1 ‘Nn (1.18)

Bpx, yq “ p´p´1qlBx, fpxq ` Byq (1.19)

ê Remark 1.2.10. The differential of the mapping cone can be expressed using
matrices,

Bpx, yq “
´

´p´1qlB 0
f B

¯

p
x
y q “ p´p´1qlBx, fpxq ` Byq (1.20)

ê Remark 1.2.11. The canonical inclusion i : N Ñ Cpfq and the canonical projec-
tion j : Cpfq ÑM , fit together in the exact sequence,

0 // N
i // Cpfq

j //M // 0 (1.21)

Proposition 1.2.12. For every morphism f : M Ñ N of DGA-k-modules we have
the exact sequence,

H˚pCpfqq
j˚

&&
H˚pNq

i˚
88

H˚pMqf˚
oo

(1.22)

Definition 1.2.13. Let f : M Ñ N and g : M Ñ N morphism of DG-k-modules of
degree k. An homotopy from f to g is a homomorphism h P HompM,Nq of degree
k ` 1 such that Bphq “ g ´ h.

ê Remark 1.2.14. We have the following consequences of definition 1.2.13 and propo-
sition 1.2.6.

1. The homotopy h satisfies g ´ f “ Bh´ p´1q|h|B “ Bh` p´1qkhB.

2. If Bpfq “ 0 then f is a morphism of DG-k-modules.

3. Homotopy is an equivalence relation.
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Definition 1.2.15. Let M be a DGA-k-module.

1. M is said to be inessential if there is a h P HompM,Mq homotopy from 0 to
1M of degree 1. In other words, h satisfies,

Bh` hB “ 1 (1.23)

in this case, h is called a contracting chain homotopy of M .

2. M is said to be null homotopic if H˚pMq “ 0.

Definition 1.2.16. Let P , M and N in DGA-k-Mod. P is called projective if, for
every epimorphism g : M Ñ N , every morphism f : P Ñ N can be lifted to a
morphism l : P ÑM such that gl “ f .

P

f

��

l

~~
M g

// N

(1.24)

ê Remark 1.2.17. Every free module is projective and, on a field, every projective
module is free (see [Wei95], §2).

Proposition 1.2.18. Let M be a DGA-k-module.

1. If M has a contracting chain homotopy then M is null homotopic.

2. If M projective, null homotopic and bounded below, then it has a contracting
chain homotopy.

Proof. First affirmation follows from formula 1.23. The contracting chain homotopy
for the second affirmation is constructed by induction on the degree, starting in
degree j where Mi “ 0 for i ă j.

Definition 1.2.19. Let f : M Ñ N be a DGA-k-morphism. Then f is said to be
an homotopy equivalence is fg is homotopic to 1N and gf is homotopic to 1M . In
this case, g is called a homotopy inverse of f .

Proposition 1.2.20. Let f : M Ñ N be a DGA-k-morphism inducing an isomor-
phism in homology. If M and N are projective and bounded below then f is an
homotopy equivalence.

Proof. The hypothesis implies that Cpfq is projective, null homotopic and bounded
below, then by proposition 1.2.18 there exists a contracting chain homotopy H :
Cpfq Ñ Cpfq such that Bh` hB “ 1. Using matrices we have the following.

1 “ Bh` hB

p 1 0
0 1 q “

`

´B 0
f B

˘

h` h
`

´B 0
f B

˘

“
`

´B 0
f B

˘ `

λ1 g
µ λ2

˘

`
`

λ1 g
µ λ2

˘ `

´B 0
f B

˘

Then we get the equations,

1 “ ´Bλ1 ´ λ1B ` gf (1.25)

0 “ ´Bg ` gB (1.26)

1 “ fλ1 ` Bµ´ µB ` λ2f (1.27)

0 “ fg ` Bλ2 ` λ2B (1.28)
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The equation 1.26 says that g : N Ñ M is a morphism of DG-k-modules, the
equation 1.25 that gf and 1 are homotopic, and the equation 1.28 that fg and 1 are
homotopic. Then g is an homotopy inverse of f .

Definition 1.2.21. Let M be a DGA-k-module.

1. M is said to be acyclic if ε : M Ñ k induces an isomorphism in homology.

2. M is said to be contractible is ε : M Ñ k is a homotopy equivalence.

Proposition 1.2.22. Let M , N DGA-k-modules.

1. If M is acyclic, projective and bounded below, then M is contractible.

2. If M and N are contractible, then M bN is also contractible.

ê Remark 1.2.23. If h is a contraction for M and k a contraction for N , then
hb 1` ηεb k is a contraction for M bN .

Definition 1.2.24. LetM , N be DGA-k-modules. We denote by T the isomorphism
from M bN to N bM given by T pxb yq “ p´1q|x||y|y b x.

1.3 DGA-algebras and DGA-Coalgebras

Definition 1.3.1. Let A and C be DGA-k-modules.

1. A is said to be a DGA-k-algebra if it is equipped with a morphism of DGA-k-
modules µ : AbAÑ A, called the product, satisfying the following properties.

(a) µ is associative: µp1b µq “ µpµb 1q.

(b) The coaugmentation η : kÑ A is a bilateral unit for µ, that is µpηb 1q “
µp1b ηq.

If µ also satisfy µT “ µ, A is called commutative.

2. C is said to be a DGA-k-coalgebra if it is equipped with a morphism of DGA-k-
modules ∆ : C Ñ C bC, called coproduct, which satisfy the following proper-
ties.

(a) ∆ is associative: p∆b 1q∆ “ p1b∆q∆.

(b) The augmentation ε : C Ñ k is a bilateral unit for ∆, in other words,
p1b εq∆ “ pεb 1q∆.

C is said commutative if ∆ also satisfies T∆ “ ∆.

Definition 1.3.2. Let A, A1 be DGA-k-algebras and C, C 1 be DGA-k-coalgebras.

1. A morphism f : AÑ A1 of DGA-k-algebras is a morphism of DGA-k-modules
which commutes with the products, that is fµ “ µpf b fq. The category of
DGA-k-algebras is denoted DGA-k-Alg.
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2. A morphism g : C Ñ C 1 of DGA-k-coalgebras is a morphism of DGA-k-modules
which commutes with the coproducts, that is ∆f “ pf b fq∆. The category
of DGA-k-coalgebras is denoted DGA-k-Coalg.

Proposition 1.3.3. Let A, A1 be DGA-k-algebras and C, C 1 DGA-k-coalgebras.

1. The tensor product A b A1 is a DGA-k-algebra if we define the product by
µ “ pµA b µA1qp1b T b 1q.

pAb A1q b pAb A1q
1bTb1 // Ab Ab A1 b A1

µAbµA1 // Ab A1 (1.29)

2. The tensor product C bC 1 is a DGA-k-coalgebra if we define the coproduct by
∆ “ p1b T b 1qp∆b∆q.

C b C 1
∆Cb∆C1 // C b C b C 1 b C 1

1bTb1 // pC b C 1q b pC b Cq. (1.30)

Definition 1.3.4. Let A be a DGA-k-algebra and C be a DGA-k-coalgebra. Let
M and N be DGA-k-modules.

1. M is said to be a left DGA-A-module, if it is equipped with a DGA-k-morphism
µ : AbM ÑM which satisfies the following conditions.

(a) Associativity: µp1b µq “ µpµA b 1q.

(b) Unit: µpηA b 1q “ 1.

2. N is said to be a left DGA-C-comodule, is it is equipped with a DGA-k-
morphism ∆ : N Ñ C bN , which satisfy the following conditions.

(a) Associativity: p∆C b 1q∆ “ p1b∆q∆.

(b) Unit: pεC b 1q∆ “ 1.

Analogously, we define a right DGA-A-module and a right DGA-C-comodule.

1.4 Monads

In this sections we discuss some of the categorical concepts used in the chapter on
operads and in the chapter on L-algebras.

Definition 1.4.1. A category is said to be a monoidal category if it is equipped with
a functor b : CˆC Ñ C, an object 1 P C, a natural transformation α from bpIdˆbq
to bpbˆ Idq, and natural transformations λ : bp1ˆ´q Ñ Id and ρ : bp´ˆ1q Ñ Id,
satisfying the following properties.

1. For all objects X, Y, Z in C the morphisms

X b pY b Zq
αX,Y,Z // pX b Y q b Z (1.31)

are isomorphisms.



26 CHAPTER 1. PRELIMINARIES

2. For all objects X in C the morphisms,

1bX
λX // X X b 1

ρXoo (1.32)

are isomorphisms.

3. For all objects X, Y in C the following diagram is commutative.

X b p1b Y q
αX,1,Y //

IdbλY ,,

pX b 1q b Y

ρXbIdrrX b Y

(1.33)

4. For all objects W,X, Y, Z in C the following diagram is commutative.

pW bXq b pY b Zq

αWbX,Y,Z

##
W b pX b pY b Zqq

αW,X,YbY

;;

IdbαX,Y,Z

��

ppW bXq b Y q b Z

W b ppX b Y q b Zq //
αW,XbY,Z

pW b pX b Y qq b Z

αX,Y,ZbId

HH (1.34)

Definition 1.4.2. Let C be a monoidal category. We call C symmetric monoidal
category if it is equipped with a natural transformation s : b Ñ b˝t † which satisfies
the following properties.

1. For every objects X, Y in C the morphism

sX,Y : X b Y Ñ Y bX (1.35)

is an isomorphism.

2. The following diagram is commutative for every object X, Y in C.

X b Y

sX,Y %%

“ // X b Y

Y bX

sY,X

99

(1.36)

†Here t is the canonical twisting morphism pX,Y q Ñ pY,Xq.
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3. For all objects X, Y,X in C the following diagram is commutative.

X b pY b Zq
αX,Y,X //

IdbSY,Z
��

pX b Y q b Z
SXbY,Z // Z b pX b Y q

αZ,X,Y

��
X b pZ b Y q αX,Z,Y

// pX b Zq b Y
SX,ZbId

// pZ bXq b Y

(1.37)

Definition 1.4.3. Let C be a monoidal category. A monoid is an object M of C
together with morphisms µ : M bM Ñ M and η : 1 Ñ M making the following
diagrams commutative.

pM bMqM
µb1 //M bM

µ

��

M b pM bMq

αM,M,M
66

1bµ
��

M bM µ
//M

(1.38)

1bM

λM
&&

ηbId //M bM

µ

��

M b 1
Idbηoo

ρM

xx
M

(1.39)

Definition 1.4.4. A monoidal category C is said to be an strict monoidal category
if the natural transformations α, λ, ρ in definition 1.4.1 are identities. In other
words, is a category C equipped with a functor b : C ˆ C Ñ C, and an object 1 P C
such that :

1. For all objects x, y, z P C we have xb py b zq “ pxb yq b z.

2. For every object x P C, 1b x “ x “ xb 1.

ê Remark 1.4.5. Let EndpCq be the category of endofunctors of C, that is, the
objects are functors from C to C, and the morphism are the natural transformations
between them. This category with the composition of functors and the identity
functor of C, forms an strict monoidal category.

Definition 1.4.6. Let C be a strict monoidal category. A monoid is an object M
of C together with morphisms µ : M b M Ñ M and η : 1 Ñ M , which satisfy
µpµb 1q “ µp1b µq and µp1b ηq “ µpη b 1q “ 1.

Definition 1.4.7. Let C be a category. A monad in C is a triplet pT, µ, ηq where
T : C Ñ C is a functor, and µ : T ˝ T Ñ T , η : Id Ñ T are natural transformations
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which make commutative the following diagrams.

T ˝ T ˝ T
µT //

Tµ

��

T ˝ T

µ

��
T ˝ T µ

// T

T

Id

""

Tη // T ˝ T

µ

��

T
ηToo

Id

||
T

(1.40)

ê Remark 1.4.8. Recall that the natural transformation µT : T ˝ T ˝ T Ñ T ˝ T
associates to each object X P C the arrow that µ associates to T pXq. Tµ : T ˝T ˝T Ñ
T ˝ T , associates to each object X P C, the arrow image by T of the arrow that µ
associates to X. ηT : T Ñ T ˝ T , associates to each object X P C, the arrow that η
associates to T pXq, and that Tη : T Ñ T ˝ T , associates to each object X P C, the
image by T of the arrow that η associates to X.

ê Remark 1.4.9. In the category EndpCq a monad is a monoid in EndpCq.

Definition 1.4.10. Let C be a category. A morphism of monads in C, F : pT, µ, ηq Ñ
pT 1, µ1, η1q is a natural transformation F : T Ñ T 1 which makes the following diagram
commutative.

1
η //

Id1

��

T

T

��

T ˝ T
µoo

F 2

��
1

η1
// T 1 T 1 ˝ T 1

µ1
oo

(1.41)

The category of monads in C is denoted by MonadC.

ê Remark 1.4.11. Recall that the natural transformation F 2 : T ˝ T Ñ T 1 ˝ T 1,
associates to each object X P C the diagonal of the following commutative diagram.

T pT pXqq
FT pXq //

F 2
X

&&

T pFXq

��

T 1pT pXqq

T pFX1 q

��
T pT 1pXqq

FT 1pXq

// T 1pT 1pXqq

(1.42)

ê Remark 1.4.12. For every category C, the monad given by the triplet pId, IdId, IdIdq

is called the identity monad and is an initial object of MonadC.

Definition 1.4.13. Let pT, µ, ηq be a monad in a category C. An algebra on T ,
or T -algebra, is a pair pX, hq where X is an object of C and h is a morphism from
T pXq to X, which make the commutative the following diagrams.

pT ˝ T qpXq
µX //

T phq

��

T pXq

h

��
T pXq

h
// X

X

IdX
!!

ηX // T pXq

h

��
X

(1.43)
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Definition 1.4.14. Let pT, µ, ηq be a monad on a category C. A morphism of T -
algebras from pX, hq to pX 1, h1q is a morphism in C, f : X Ñ X 1 such that the
following diagram commute.

T pXq h //

T pfq

��

X

f

��
T pX 1q

h1
// X 1

(1.44)

The category of T -algebras is denoted by T -Alg.

Definition 1.4.15. Let pT, µ, ηq be a monad on the category C. For every object
X P C, the pair pT pXq, µXq is a T -algebra called the free T -algebra on X.

ê Remark 1.4.16. The free T -algebra on X satisfies the following universal property:
for every T -algebra on X, pX, hq there exists an unique morphism of T -algebras from
pX, hq to pT pXq, µXq. Indeed, the morphism is h.

1.5 Adjunctions

Definition 1.5.1. Let F : C Ñ D and G : D Ñ C be two functors. Then, F is said
to be left adjoint of G, denoted by F $ G, if there exists θ bijection,

DpF pXq, Y q θ // CpX,GpY qq (1.45)

natural in X and Y .

Definition 1.5.2. Let F $ G : C Ñ D be a pair of adjoint functors.

1. The natural transformation η : 1C Ñ GF given by ηX “ θp1F pXqq, is called the
unit of the adjunction.

2. The natural transformation ε : FG Ñ 1D given by εY “ θ´1p1GpY qq, is called
the counit of the adjunction.

Proposition 1.5.3. Let F $ G : C Ñ D be a pair of adjoint functors, with unit η
and counit ε. Then the following diagrams are commutative.

F

1F
""

Fη // FGF

εF

��
F

GFG

Gε

��

G
ηGoo

1G
||

G

(1.46)

The equations given by the commutativity of these diagrams,

εF ¨ Fη “ 1F (1.47)

Gε ¨ ηG “ 1G (1.48)

are called triangular equations.
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Proof. Let X be an object of C. For the commutativity of first diagram we have to
show that 1F pXq “ εF pXqF pηXq. By definition ηX “ θp1F pXqq, then by using the fact
that θ is a bijection, we only have to check that θpεF pXqF pηXqq “ ηX .

θpεF pXqF pηXqq “ θpεF pXqqθpF pηXqq

“ θpεF pXqqηX (by naturality of θ)

“ θpθ´1
p1GF pXqqqηX

“ ηX

The commutativity of the other diagram is similar.

Definition 1.5.4. Let G : D Ñ C be a covariant functor and X an object of C. An
universal arrow from X to G is an morphism of the form ψ : X Ñ GF pXq such
that, for every morphism f : X Ñ GpY q there is an unique morphism of D, denoted
θ´1pfq, from F pXq to Y , which satisfies Gpθ´1pfqqη “ f .

X

f ##

η // GF pXq

Gpθ´1pfqq
��

GpY q

(1.49)

Theorem 1.5.5. Let G : D Ñ C be a functor such that for every object X P C there
exists an universal arrow ηX : X Ñ GpF pXqq. Then the application F between the
objects of C and D extends uniquely to a functor F : C Ñ D such that F $ G.

ê Remark 1.5.6. For a proof of theorem 1.5.5 see [Mac98], §4 Theorem 2. Never-
theless, the extension of F on arrows is made in the following way: let f : X Ñ Y
morphism in C and consider the following diagram.

X

f

��

ηX // GpF pXqq

GpF pfqq

��
Y

ηY // GpF pY qq

(1.50)

The existence and unicity of F pfq making the diagram commutative, is guaran-
teed by the universal property of ηX .

Theorem 1.5.7. Every left adjoint preserves colimits and every right adjoint pre-
serves limits.

ê Remark 1.5.8. For a proof see §5 of [Mac98], or §9 of [Awo06].

1.6 Reflexive Coequalizers

In a category C coequalizer of two morphisms f, g : X Ñ Y is the colimit on the
diagram formed by them. We will denote this coequalizer Ceqpf, gq.

X
f //

g
// Y

q // Ceqpf, gq (1.51)
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Equivalently the coequalizer of f and g is an initial object in the category of
morphisms l left equalizing f and g, that is l ˝ f “ l ˝ g. We are interested in
a special kind of coequalizer, which are called reflexive coequalizers. In the next
chapter, we will see that reflexive coequalizer play an important role in the proof of
existence of small colimits in the category of operads.

Definition 1.6.1. Let D0 denote the category generated by the diagram,

x0

i //

j
// x1

s
ww

(1.52)

where the arrows satisfy is “ 1 “ js. For every category C, we call reflexive pair in
C, any diagram in C on the category D0. In other words, a reflexive pair is a pair of
parallel arrows having a common section.

Proposition 1.6.2. Let f, g : X Ñ Y be two morphisms in a category C. If there
is a morphism s : Y Ñ X in C such that f ˝ s “ g ˝ s “ 1Y then the coequalizer of f
and g (if exists) is isomorphic to the colimit on the diagram formed by f , g and s.

Proof. It is well know that q in diagram 1.51 is an epimorphism. Let pB,α : X Ñ

B, β : Y Ñ Bq be the colimit on the diagram formed by f , g and s. Then α and β
satisfy βf “ α “ βg and αs “ β. We also have that α is an epimorphism. Indeed, if
r, s : B Ñ Z are two arrows such that rα “ sα then pZ, rαf : X Ñ Z, rα : Y Ñ Zq
is a cocone on f , g and s (because fs “ 1), which implies by the universal property
of colimits that rα is uniquely factorized by r through α. The same applies for sα,
but rα “ sα then r “ s and α is an epimorphism. To show that B and Ceqpf, gq
are isomorphic, first note that α left equalize f and g. Indeed αf “ β “ αg. Then
it exists an unique arrow h : Ceqpf, gq Ñ B such that hq “ α. Now pCeqpf, gq, qf :
X Ñ Ceqpf, gq, q : Y Ñ Ceqpf, gqq is a cocone on f , g and s, because qfs “ q1 “ q.
Then it exists an unique arrow h : B Ñ Ceqpf, gq such that hα “ q and hβ “ fq.
But q and α are epimorphisms, so we have that hhα “ hq “ α implies hh “ 1 and
that hhq “ hα “ q implies hh “ 1. Then B and Ceqpf, gq are isomorphic.

ê Remark 1.6.3. Proposition 1.6.2 says that the morphism s does not change the
coequalizer.

Definition 1.6.4. Let f, g : X Ñ Y be two morphism in a category C. If there is a
morphism s : Y Ñ X in C such that f ˝ s “ g ˝ s “ 1Y then Ceqpf, gq is called the
reflexive coequalizer of f and g.

Definition 1.6.5. Let F : C Ñ D be a covariant functor. F is said to be final if
satisfies the following conditions for every object X P D.

1. There is a morphism from X to an object of the form F pY q.

2. For every pair of such morphisms from X, α : X Ñ F pY q and α1 : X Ñ F pY 1q,
there exists a finite sequence g1, . . . , gk of morphisms of C making the following
diagram commutative.

X
α

uu {{ $$

α1

**
F pY q

F pg1q
// F pY1q oo

F pg2q
¨ ¨ ¨ F pYk´1q//

F pgk´1q

oo
F pgkq

F pY 1q

(1.53)
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ê Remark 1.6.6. Another way to define a functor F : C Ñ D as final is saying
that for every X P D the comma category X{F is not empty and connected (See
[Mac98], §9).

Proposition 1.6.7. Consider the category D0 from definition 1.6.1. Then, for every
n ě 1, the diagonal functor from D0 to the product category Dn

0 , is final.

Proof. Let D : D0 Ñ Dn
0 be the diagonal functor. Let X be an object of Dn

0 , then
it has the form X “ pxi1 , . . . , xinq, with ij P 0, 1. There is a morphism f from X
to Dpx1q given by f “ pfi1 , . . . , finq, where fij “ 1x1 if ij “ 1 and fij “ f if ij “ 0.
Note that we can still have a morphisms from X to Dpx1q, by taking arbitrarily f
of g in the entries fij when ij “ 0. But the only morphism from X to Dpx0q is given
by s “ psi1 , . . . , sinq, where sij “ 1x0 if ij “ 0 and sij “ s if ij “ 1. Now we check
the second condition in definition 1.6.5. Let α, α1 two morphisms from X to Dpx1q.
Let β “ pbi1 , bikq be the morphism from X to Dpx0q defined by bij “ s if ij “ 1 and
bij “ 1x0 if ij “ 0. Then we have the following commutative diagram.

X
α

zz

α1

$$
β

��
Dpx1q

Dpsq
// Dpx0q Dpx1q

Dpsq
oo

(1.54)

This suffices to show that D is a final functor.

Final functors are useful for computing colimits, as the following proposition
shows. For a proof, we refer to [Mac98], §9.

Proposition 1.6.8. Let F : D Ñ C be a diagram on the category C and I : D1 Ñ D
be a final functor such that the colimit of F ˝ I exists. Then the colimit of F exists
and is canonically isomorphic to the colimit of F ˝ I.

1.7 Simplicial Sets

L-algebras are defined in the ambient category of differential graded modules or
chain complexes. They are intended to be models for homotopy types. In this thesis
we use simplicial sets instead of topological spaces. Simplicial sets can be seen as
a combinatorial version of topological spaces. We will restrict our attention to the
category of simplicial sets and employ the word space to refer to them.

Definition 1.7.1. Let ∆ be category where the objects are the totally ordered
sets rns “ t0, . . . , nu, with n non negative integer, and the morphisms are the
nondecreasing applications between them. ∆ is called the simplicial category.

Definition 1.7.2. In the category ∆ we identify two important families of mor-
phism.

1. For every n ě 1, 0 ď i ď n, δi : rn ´ 1s Ñ rns, is the application defined by
δipjq “ j if i ă j and δipjq “ j ` 1 is j ď i. They are called face applications.
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2. For every n ě 0, 0 ď i ď n, σi : rn ` 1s Ñ rns, is the application defined
by σipjq “ j if j ď i and σipjq “ j ´ 1 if j ą i. They are called degeneracy
applications.

ê Remark 1.7.3. The face and degeneracy applications can be used to describe
the morphisms in ∆, in the sens that every non identity morphism have an unique
factorization as composite of face and degeneracies (see [May93], §1).

Definition 1.7.4. Let C be any category. A simplicial object X in C is a contravari-
ant functor X : ∆ Ñ C, and the morphisms of simplicial objects are the natural
transformations of functors. The category of simplicial objects of C is written sC. In
particular, if C is the category of sets Set, the category of simplicial sets is denoted
sSet.

Definition 1.7.5. The ensemble simplicial ∆n is the simplicial set defined by the
contravariant functor given by the diagram,

rps
OO

g

� // ∆prps, rnsq “ ∆nppq

g˚

��
rqs � // ∆prqs, rnsq “ ∆npqq

(1.55)

The element en P ∆n given by the identity application of rns is called the universal
n-simplex.

ê Remark 1.7.6. ∆n is just the representable functor from ∆op to Set determined
by rns P ∆.

ê Remark 1.7.7. Every face application δi : rns Ñ rn ` 1s, 1 ď i ď n ` 1, induce
a simplicial morphism δi˚ : ∆n Ñ ∆n`1, given by f ÞÑ δif . They are called face
morphisms.

The following proposition is a particular case of the Yoneda lemma (see [Pro10],
S2.3.2)

Proposition 1.7.8 (Yoneda lemma). For every simplicial set X and n non negative
integer, the application f ÞÑ fpenq is a bijection from sSetp∆n, Xq to Xn, natural
in n.

ê Remark 1.7.9. This bijection implies that X is canonically isomorphic to the
simplicial set given by the functor defined on objects as rns ÞÑ sSetp∆n, Xq and on
morphisms by g ÞÑ ph ÞÑ hg˚q. Then the face applications of X, Bi : Xp`1 Ñ Xp

correspond to the face applications from sSetp∆p`1, Xq to sSetp∆p, Xq, which are
given by g ÞÑ g ˝ δi˚.

ê Remark 1.7.10. To each simplicial set X is associated the simplicial k-module
S˚pXq which n component is the free k-module on Xn, and the face and degeneracy
applications are the linear extensions of the corresponding application of X. With it,
is formed a chain complex or DGA-k-module by taking as differential the alternated
sum of faces B “

ř

kp´1qkBk. This chain complex is denoted C˚pXq.
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1.8 Acyclic Models Theorem

Prouté in [Pro83] introduced a unicity criterion complementing the classical acyclic
models theorem. This gives a simple characterization of the Eilenberg-Mac Lane
transformation, which is discussed in section 1.9. We include here the version of
the acyclic models theorem containing the mentioned unicity criterion, that was
presented by Prouté in 2012 in an algebraic topology course at the university Paris-
Diderot.

Definition 1.8.1. Let C be a category, let M a small subcategory of C and a
covariant functor F : C Ñ DGA-k-Mod. Let e “ teMuMPM be a family indexed by
the objects of M such that for every object M PM, eM is an homogeneous element
of F pMq. We say that F is free on pM, eq if the following conditions are satisfied.

1. For every object X P C the associated DGA-k-module F pXq admits as a base
the family,

tF pfqpeMqu MPM
fPCpM,Xq

(1.56)

2. For every object M PM, the submodule of F pMq generated by the family

tF pfqpeNqu NPM
fPMpN,Mq

(1.57)

is a DGA-k-submodule of F pMq.

ê Remark 1.8.2. An example of free functor on a subcategory is the normalized
chain complex functor C˚ : sSet Ñ DGA-k-Mod. The subcategory M of sSet
can be any category whose objects are the n-simplexes ∆n, n ě 0, and the set of
morphisms contains at least the face operations δi˚ : ∆n Ñ ∆n`1 (see remark 1.7.7).
The element e∆n is taken to be the universal n-simplex en of ∆n.

For every simplicial set X and n ě 0, CnpXq is by definition a free module
on non degenerated element of Xn, then by remark 1.7.9 it is generated by the
set tf˚penqufPsSetp∆n,Xq, with f˚penq non degenerated †. Moreover, for every non
degenerated element Cpp∆nq of the form f˚pepq, with f : ∆p Ñ ∆n in M, we have
Bpf˚pepqq “ f˚pBpepqq. But, as we saw in remark 1.7.9, the expression f˚B is a linear
combination of applications of the form pf ˝ δiq˚, where δi : ∆i´1 Ñ ∆i are the
face operations. Then, the composites f ˝ δi are in M and we can conclude that
the submodule generated by the non degenerated elements of the form fpepq, with
f PM, is stable by B. Finally, it is stable by the augmentation ε, because εpenq “ 1.

Theorem 1.8.3. [Acyclic Models Theorem] Let C be a category. Consider F and
G covariant functors from C to DGA-k-Mod. Let M be a small subcategory of C.
Suppose that,

1. F is free on pM, eq.

2. There is a functor A : M Ñ DGA-k-Mod, such that ApMq is an acyclic
DGA-k-submodule of GpMq, natural in M , that is, for every morphism f :
M Ñ N in M, Gpfq : GpMq Ñ GpNq sends ApMq to ApNq.

†We use f˚ to denote Cnpfq
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Under these hypothesis we have the following.

1. There exists a natural transformation ϕ : F Ñ G such that ϕpeMq P ApMq for
every object M PM.

2. Between two such natural transformations, there exists an natural homotopy h
such that hpeMq P ApMq for every object M PM.

3. If for every object M P M we have that A|eM |`1pMq “ 0, then the natural
transformation ϕ : F Ñ G given by the first point, is unique.

Proof. For every integer i let Mi be the set of objects M PM such that |eM | “ i.
Set F´1pXq “ G´1pXq “ A´1pXq “ k, and rename B the augmentation ε. Then
we take ϕX : F´1pXq Ñ G´1pXq as the identity of k. Now, suppose that we have
construct ϕ for all 0 ď j ă i, that is, for all j ă i we have the following.

1. ϕX : FjpXq Ñ GjpXq is defined, linear and natural on X.

2. ϕXB “ BϕX : FjpXq Ñ Gj´1pXq.

3. ϕNpeNq P AjpNq for every object N PMj.

Then for every objectM PMi, ϕMpBpeMqq P Ai´1pMq. Indeed, eM “ F p1MqpeMq,
which means it belong to the submodule of F pMq generated by tF pfqpeNiqu NiPM

MpNi,Mq
.

This submodule is stable by B, then BpeMq can be written as finite sum,

BpeMq “
ÿ

k

λkF pfkqpeNkq (1.58)

with Nk P Mi´1 and fk P MpNk,Mq, and not only fk P CpNk,Mq. Then we
have,

ϕMpBpeMqq “
ÿ

k

λkϕMpF pfkqpeNkqq “
ÿ

k

λkGpfkqpϕNkpeNkqq (1.59)

by using the naturality of ϕ with fk : Nk Ñ M . But ϕNkpeNkq P Ai´1pNkq

and because fk is a morphism of M together with the naturality condition for the
inclusions of the form ApMq Ă GpMq M PM, GpfkqpϕNkpeNkqq P Ai´1pMq.

By linearity we only need to define ϕXpF pfqpeMqq for every object M PMi and
f P CpM,Xq. The morphism ϕ must be natural, so we need to have the following
commutative diagram.

FipMq
ϕM //

F pfq

��

GipMq

Gpfq

��
FipXq ϕX

// GipXq

(1.60)

Then ϕXpF pfqpeMqq must be GpfqpϕMpeMqq and we only need to define ϕMpeMq.
By the fact that ϕMpBpeMqq P Ai´1pMq, BpϕMpBpeMqqq “ ϕMpBpBpeMqqq “ 0 and by
the exactness of ApMq, there exists in a P AipMq such that Bpaq “ ϕMpBpeMqq. And
we take ϕMpeMq “ a. This defines ϕ in degree i.
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The naturality of ϕ : Fi Ñ Gi follows from the next computation. Take g : X Ñ

Y any morphism in C.

GpgqpϕXpF pfqpeMqqq “ GpgqpGpfqpϕMpeMqqq (by definition of ϕX)

“ GpgfqpϕMpeMqq

“ ϕY pF pgfqpeMqq (by definition of ϕY )

“ ϕY pF pgqpF pfqpeMqqq

Now we have to check that ϕXB “ BϕX : FipXq Ñ Gi´1pXq. Let f : M Ñ X
any morphism.

BϕXpF pfqpeMqq “ BGpfqpϕMpeMqq (by naturality of ϕ)

“ GpfqBpϕMpeMqq (Gpfq DGA morphism)

“ GpfqϕMpBpeMqq (by construction of ϕMpeMq)

“ ϕXpF pfqpBpeMqqq (by naturality of ϕ)

“ ϕXpBpF pfqpeMqqq (F pfq morphism of DGA-k-modules)

We proceed with the second point the theorem. Let ϕ and ψ two natural trans-
formations from F to G such that ϕMpeMq and φMpeMq are in ApMq for every object
M PM. The natural homotopy h from ϕ to ψ is constructed degree by degree. In
dimension ´1 we take h “ 0. Suppose we have construct h for every j ă i. Then
we have the following hypothesis.

1. hX : FjpXq Ñ Gj`1pXq is defined, linear and natural in X.

2. BhX ` hXB “ ϕX ´ ψX : FjpXq Ñ GjpXq.

3. hNpeNq P Aj`1pNq for every object N PMj.

For every object M P Mi, let α P AipMq with α “ hMpBpeMqq ´ ϕMpeMq `
ψMpeMq. We only need to define hMpeMq. But, by hypothesis we have |BpeMq| ă i
and

BhMpBpeMqq ` hMpBBpeMqq “ ϕMpBpeMqq ´ ψMpBpeMqq (1.61)

that is, Bpαq “ 0. Then, there exists an element hMpeMq in Ai`1pMq such that
BphMpeMqq “ α. Like the first point, it can be checked without difficulties that h is
natural and Bh` hB “ ϕ´ ψ.

Finally, for the third point, let ϕ and ψ be natural transformations from F to G,
equal in degree ´1. Suppose that they are equal in degree j ă i and let M be an ob-
ject of M such that |eM | “ i. By hypothesis we have that ϕMpBpeMqq “ ψMpBpeMqq
because |BpeMq| ă i. But Ai`1pMq “ 0, the acyclicity of ApMq implies that
B : AipMq Ñ Ai´1pMq is injective. But BpϕMpeMqq “ ϕMpBpeMqq “ ψMpBpeMqq “
BpψMpeMqq and then, ϕMpeMq “ ψMpeMq for every object M PMi and then ϕ “ ψ
in degree i.
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1.9 The Eilenberg-Mac Lane Transformation

Introduced in [SE53],§5, in order to study the properties of spaces Kpπ, nq, the
Eilenberg-Mac Lane transformation is one of the fundamental elements of the theory
of L-algebras. In this section we describe its principal properties. The unicity
condition in theorem 1.8.3 is used to describe the Eilenberg-Mac Lane transformation
in the context of simplicial sets, as states the following proposition.

Denote Ordf the category where the objects are the finite ordered sets and the
arrows the increasing applications. An n-simplex is an increasing application rns Ñ
X. If this application is injective, we say that the n-simplex is non degenerated. The
set of non degenerated simplexes of X is a formal finite polyhedron with vertexes
in X. In this way, every finite ordered set can be seen as a simplicial set X in
the obvious way. Every n-simplex σ : rns Ñ X induce a morphism σ : rns Ñ X.
Observe that for every ordered sets X, Y , X ˆ Y – X ˆ Y , where the order of
X ˆ Y is given by px, yq ď px1, y1q when x ď x1 and y ď y1.

For any simplex x of X, Bipxq is non degenerated if x is non degenerated. Thus,
the submodule A˚pXq of C˚pXq generated by the non degenerated simplexes of X,
is a DGA-k-submodule of C˚pXq.

Lemma 1.9.1. If the ordered set X has a smallest element, A˚pXq is acyclic.

Proof. Denote by a the smallest element of X. A˚pXq contains the DG-k-submodule
Λras generated by the 0-simplex tau. which is isomorphic to Λ concentrated in degree
0. We have to show that B “ A˚pXq{Λras is null homotopic. We can decompose B
as the direct sum B “ B1 ‘ B2, where B1 has as base the simplexes with vertex a
(and necessarily another vertex), and B2 has as base the simplexes where a is not
a vertex. Clearly B2 is stable by B, and the component B1 Ñ B2 of B is bijective,
because it sends a simplex with vertex a and having at least another vertex to the
simplex obtained by removing a. So we have that A˚pXq{Λras is null homotopic
because it is the cone of an isomorphism.

Proposition 1.9.2. There exists a unique natural transformation from the functor
b ˝ pC˚ ˆ C˚q to the functor C˚ ˝ ˆ.

C˚pXq b C˚pY q
∇ // C˚pX ˆ Y q (1.62)

such that for every p, q in N, ∇pepbeqq P A˚prpsˆrqsq. It is called the Eilenberg-
Mac Lane transformation.

ê Remark 1.9.3. In other words, the Eilenberg-Mac Lane transformation is the
only natural transformation that sends the tensorial products of universal simplexes
ep b eq to linear combinations of non degenerated simplexes.

Proof. The existence and unicity of the Eilenberg-Mac Lane transformation follows
from the points 1 and 3 of the acyclic models theorem (34). Using the notation
of the theorem 1.8.3, the category C is sSet ˆ sSet, the subcategory M has as
objects the pairs prps, rqsq and as arrows the couples pf, gq, where f : rps Ñ rp1s and

g : rqs Ñ rq1s are induced by the injective applications rps Ñ rp1s and rqs Ñ rq1s.

The element e
prps,rqsq is ep b eq (it belongs to C˚prpsq bC˚prqsq). Clearly the functor
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pX, Y q Ñ C˚pXq b C˚pY q is free over pM, eq, after noting that if f : rps Ñ rns is
an injective increasing application (that is, an arrow of M), the faces of f˚pepq are
of the form g˚pep´1q for some arrow g : rp´ 1s Ñ rns of M. In fact, g has the form
f ˝ δi.

Now we take Aprps, rqsq as the DG-k-submodule A˚prps ˆ rqsq of C˚prps ˆ rqsq,

which is clearly natural in prps, rqsq (recall it is defined over M and not over sSetˆ

sSet). We have Aiprps, rqsq “ 0 for i ą p ` q because in rps ˆ rqs there is no non

degenerated simplex of strictly bigger dimension than p ` q. Finally, A˚prps, rqsq is
acyclic by the fact that r0s ˆ r0s is the smallest element of rps ˆ rqs.

Lemma 1.9.4. If X and Y are ordered sets, then when x and y are non degenerated
simplexes of X and Y respectively, ∇pxb yq belongs to A˚pX ˆ Y q.

Proof. By naturality of ∇, we have commutative diagram,

C˚prpsq b C˚prqsq

x˚by˚
��

∇ // C˚prps ˆ rqsq

pxˆyq˚
��

C˚pXq b C˚pY q ∇
// C˚pX ˆ Y q

(1.63)

It suffices to verify that px ˆ yq˚pzq P A˚pX ˆ Y q for every non degenerated

simplex z of rps ˆ rqs. But this is an immediate consequence of the fact that x and
y and induced by the injective increasing applications rps Ñ X and rqs Ñ Y .

Lemma 1.9.5. The Eilenberg-Mac Lane transformation satisfies :

∇ ˝ p∇b 1q “ ∇ ˝ p1b∇q (associativity) (1.64)

t˚ ˝∇ “ ∇ ˝ T (commutativity) (1.65)

p1˚ ˝∇ “ 1b ε (1.66)

p2˚ ˝∇ “ εb 1 (1.67)

Proof. The natural transformation ∇b1 sends epbeqber to a finite sum of tensors
with the form xby, where x and y are non degenerated simplices. The same happens
with ∇ ˝ p∇ b 1q by lemma 1.9.4. The same argument is applied to ∇ ˝ p1 b ∇q,
and by the fact that rps ˆ rqs ˆ rrs is acyclic (rps ˆ rqs ˆ rrs has as smaller element
r0, 0, 0s) and don’t has non degenerated simplices of dimension strictly bigger than
p` q` r, the point 3 of theorem acyclic models shows that ∇ ˝ p∇b 1q “ ∇p1b∇q.
As T , t˚, ε b 1, 1 b ε, p1˚ and p2˚ preserve the non degenerated simplices or they
send them to 0, the other properties are immediate by the same method.

Usually ∆ is described by its explicit formula (see for example [May93], [Hes07]).
But the unicity criterion simplifies the verification of its principal properties.

There exists an an homotopy inverse for ∇. In the case when simplicial sets have
an extra group structure, the Eilenberg-Mac Lane transformation helps to carry
this structure to the associated chain complex, such operation on chains is called
Pontrjagin product (see [Pon39]).
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Definition 1.9.6. Let H be a simplicial group H. The Pontrjagin product P :
C˚pHq b C˚pHq Ñ C˚pHq is defined to be the following composite.

C˚pHq b C˚pHq
∇ // C˚pH ˆHq

m˚ // C˚pHq (1.68)

Where m˚ is the induced morphism by the product m : H ˆH Ñ H.

Proposition 1.9.7. Let H, K simplicial groups. The Pontrjagin product P :
C˚pHq b C˚pHq Ñ C˚pHq satisfies the following properties.

1. P is associative.

2. If H is commutative, then P is commutative.

3. The chain complex C˚pHq is a DGA-k-algebra with P.

4. The Eilenberg-Mac Lane transformation ∇ : C˚pHq bC˚pKq Ñ C˚pH ˆKq is
a morphism of DGA-k-algebras.

ê Remark 1.9.8. Consider the commutative diagram,

C˚pHq b C˚pKq
∇ //

i˚bj˚
��

C˚pH ˆKq

piˆjq˚
��

Id

��

C˚pH ˆKq b C˚pH ˆKq

P 11

∇ // C˚pH ˆK ˆH ˆKq
pmHˆKq˚

))
C˚pH ˆKq

(1.69)

where i : H Ñ H ˆ K and j : K Ñ H ˆ K are defined by iphq “ ph, 1q and
jpkq “ p1, kq. And where H and K are simplicial groups. This diagrams says that
we can recover the Eilenberg-Mac Lane transformation from the Pontrjagin product,
because ∇ “ Ppi˚ b j˚q.

Back to the third point of acyclic models theorem, we can’t assure anymore the
unicity of a natural transformation,

Φ : C˚pX ˆ Y q Ñ C˚pXq b C˚pY q (1.70)

In this case the criterion of theorem 1.8.3 fails (see [Pro83], remark I). But in
fact, it is well know that this kind of transformations are not unique. Indeed, if such
a transformation Φ is unique in the case where k “ Z{2Z, the unicity will imply that
the cup product Y1 is zero, which is not true, because the existence of the Steenrod
squares (see [Cen89]).

Nevertheless, one important choice for an homotopical inverse of the Eilenberg-
Mac Lane transformation, is the Alexander-Whitney transformation,

Ψ : C˚pX ˆ Y q Ñ C˚pXq b C˚pY q (1.71)

Ψ has the particularity of being associative, but not commutative. With Ψ we
can equipe C˚pXq with a DGA-k-coalgebra structure.
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Definition 1.9.9. Let X be a simplicial set. The Alexander-Whitney diagonal ∆
is defined to be the composite of the Alexander-Whitney transformation with the
induced chain morphism by the diagonal δ : X Ñ X ˆX.

∆ : C˚pXq
δ˚ // C˚pX ˆXq

Ψ // C˚pXq b C˚pXq (1.72)

Proposition 1.9.10. Let X, Y be a simplicial sets. Then the Alexander-Whitey
diagonal satisfies the following properties.

1. ∆ is explicitly described by the formula on the canonical base elements of
C˚pXq.

∆pxq “

|x|
ÿ

i“0

B
i
pxq b B

|x|´i
0 pxq (1.73)

Where B is the last face operator given by Bpxq “ B|x|pxq.

2. ∆ is associative.

3. With ∆, the chain complex C˚pXq is a DGA-k-coalgebra.

4. The Eilenberg-Mac Lane transformation ∇ : C˚pXq b C˚pY q Ñ C˚pX ˆ Y q is
a morphism of DGA-k-coalgebras.

In [Pro84] Prouté explores a characterization of ∆ by a property of its image, in
the sense that the choice for Ψ is limited by a subcomplex of C˚pXq b C˚pXq. He
also uses this characterization to prove the fourth point of proposition 1.9.10 in a
very simple way.



Chapter 2

Operads

2.1 Operads

In this thesis we deal mostly with symmetric operads, which as we saw in the
introduction, are equipped with an action by the symmetric groups. In this section
we introduce the classical definition of operad together with the variation called
partial definition, and we discuss two fundamental examples, the endomorphism
operad an the coendomorphism operad. In the following diagrams the signs given
by the Koszul convention are omitted in order to simplify the writing.

Definition 2.1.1 (Operad). An operad P is a collection of DGA-k-modules tPpnquně0

together with,

1. A morphism η : kÑ Pp1q, called the unit of P .

2. For every n, a right action by the symmetric group Σn over Ppnq, that is, a
morphism of DGA-k-modules making of P pnq a right DGA-krΣns-module.

P pnq b krΣns ÝÑ P pnq (2.1)

3. For each tuple pk, i1, . . . , ikq, a morphisms of DG-k-modules,

γpk,i1,...,ikq : Ppkq b Ppi1q b ¨ ¨ ¨ b Ppikq Ñ Ppnq (2.2)

where n “ i1 ` ¨ ¨ ¨ ` ik and n, k, ij ě 0. Usually this morphism will be simply
written γ.

These applications are required to satisfy the following conditions.

1. The morphisms γ are associative, in the sense that the following diagram com-

41
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mutes.

P pkq b
”

Âk
p“1 P pipq

ı

b

”

Âk
p“1

Âip
q“1 P prp,qq

ı

γb1 //

shuffle

��

P pnq b
”

Âk
p“1

Âis
q“1 P prp,qq

ı

γ

��
P prq

P pkq b
Âk

p“1

”

P pipq b
Âip

q“1 P prp,qq
ı

1bγbk
// P pkq b

Âk
p“1 P prpq

γ

OO

(2.3)

Where n “
řk
p“1 ip, r “

řk
p“1

řip
q“1 rp,q “

řk
p“1 rp and the vertical left arrow

is just a permutation of factors.

2. The unit η : kÑ P p1q make the following diagrams commute.

Ppnq b kbn
– //

1bηbn

��

Ppnq

Ppnq b Pp1qbn
γ

88 kb Ppnq – //

ηb1

��

Ppnq

Pp1q b Ppnq
γ

88

(2.4)

3. The actions of the symmetric groups satisfy the following two condition about
equivariance.

Ppkq b Ppi1q b ¨ ¨ ¨ b Ppikq

σbσ´1

��

γ // P pnq

σpi1,...,inq

��
Ppkq b Ppiσp1qq b ¨ ¨ ¨ b Ppiσpkqq

γ // P pnq

(2.5)

Where n “ i1` ¨ ¨ ¨` ik and the arrow σbσ´1 consists of the right action by σ
over P pkq and the left action by σ´1 over the tensor product P pi1qb¨ ¨ ¨bP pikq.

Ppkq b Ppi1q b ¨ ¨ ¨ b Ppikq
1bτ1b¨¨¨bτn //

γ

��

Ppkq b Ppi1q b ¨ ¨ ¨ b Ppikq
γ

��
Ppnq τ1‘¨¨¨‘τn // Ppnq

(2.6)

where n “ i1 ` ¨ ¨ ¨ ` ik and the action 1b τ1 b ¨ ¨ ¨ b τn is the identity of P pkq
over the first factor and the right action by τj over the factor P pijq.

There is another approach to the definition of operads. The variation resides in
the way the description of the composition operation is made. For an operad P ,
instead of describe what happens when an operation of P pkq is composed in each
of its k entries with operations of arities i1, . . . , ik, the partial definition of operads
only describe the composition with another operation of arity m in one of its entries,
which will give as result an operation of P pk `m´ 1q.
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Definition 2.1.2 (Partial Definition of Operad). An operad P is a collection of
DGA-k-modules tP pnquně0 together with an unit η : kÑ P p1q, a right action of Σn

over P pnq for n ě 1 and a collection of DGA-k-morphisms,

˝i : P pkq b P pmq Ñ P pk `m´ 1q (2.7)

for 1 ď i ď k, which satisfy the following conditions.

1. α ˝i pβσq “ pα ˝i βqσ
1, where α P P pkq, β P P pmq, σ P Σm and σ1 P Σk`m´1

given by the direct sum of k terms 1‘¨ ¨ ¨‘σ‘¨ ¨ ¨‘1, with σ in the i position.

2. pασq ˝i β “ pα ˝σpiq βqσ
2, where α P P pkq, β P P pmq, σ P Σn and σ2 P Σk`m´1,

acting like σ over k blocks of lenght 1, . . . , 1,m, 1, . . . , 1, with m the block in
the position i.

3. pα ˝i βq ˝i´1`j γ “ α ˝i pβ ˝j γq, where α P P plq, β P P pmq, γ P P pnq and with
1 ď i ď l and 1 ď j ď m.

4. pα ˝i βq ˝k`m´1 γ “ p´1q|β||γ|pα ˝k γq ˝i β, where α P P plq, β P P pmq, γ P P pnq
and with 1 ď i ă k ď l.

Proposition 2.1.3. The definition of operads given in 2.1.2 and 2.1.1 are equiva-
lents.

Proof. The partial composition ˝i is obtained from the composition γ of definition
2.1.1 by the formula,

α ˝i β “ γpα b 1b . . .b β b . . .b 1q (2.8)

with β in the i position between the 1’s.
Conversely, the composition γ is obtained from the partial compositions by the

formula,

γpα b β1 b ¨ ¨ ¨ b βkq “ α ˝k βk ˝k´1 ¨ ¨ ¨ ˝1 β1 (2.9)

It is straightforward to show that these operations satisfy the conditions of the
respective operad definition.

Two fundamental examples of operads are the endomorphism operad and the co-
endomorphism operad. Their behavior was used to model the definition of operads.

Definition 2.1.4 (Endomorphism Operad). For everyM PDGA-k-Mod, the operad
EndpMq of endomorphisms of M is defined by:

1. For every n ě 0, EndpMqpnq “ HompMbn,Mq, that is the DGA-k-module of
homogeneous applications from Mbn to M .

2. The unit η : kÑ EndpMqp1q is defined by ηp1q “ 1M , the identity of M .

3. The right action of Σn over EndpMq is induced by the left action of Σn over
Mbn.
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4. The composition applications,

γ : EndpMqpkq b EndpMqpi1q b ¨ ¨ ¨ b EndpMqpikq Ñ EndpMqpnq (2.10)

where n “ i1 ` ¨ ¨ ¨ ` ik, are given by,

γpfk b fi1 b ¨ ¨ ¨ b fikq “ fk ˝ pfi1 b ¨ ¨ ¨ b fikq (2.11)

Definition 2.1.5 (Coendomorphism Operad). For every N P DGA-k-Mod, the
operad CoendpNq of coendomorphisms of N is defined by:

1. For every n ě 0, CoendpNqpnq “ HompN,Nbnq, that is the DGA-k-module
of homogeneous applications from N to Nbn.

2. The unit η : kÑ CoendpNqp1q is defined by ηp1q “ 1N , the identity morphism
of N .

3. The right action of Σn over CoendpNq is induced by the right action of Σn

over Nbn.

4. The composition applications,

γ : CoendpMqpkq b CoendpNqpi1q b ¨ ¨ ¨ b CoendpNqpikq Ñ CoendpNqpnq
(2.12)

where n “ i1 ` ¨ ¨ ¨ ` ik, are given by,

γpfk b fi1 b ¨ ¨ ¨ b fikq “ p´1q|fk|p|fi1 |`¨¨¨`|fik |qpfi1 b ¨ ¨ ¨ b fikq ˝ fk (2.13)

ê Remark 2.1.6. The reader can easily check that EndpMq and CoendpNq satisfy
the conditions in definition 2.1.1.

Definition 2.1.7. Let P and Q be two operads. A morphism φ from P to Q, is a
collection of morphism of DGA-k-modules,

φn : P pnq Ñ Qpnq (2.14)

which satisfy the following conditions.

1. The morphism f1 : P p1q Ñ Qp1q preserves the units of the operads, that is
fη “ η.

P p1q
f1 // Qp1q

k
η

aa

η

==
(2.15)

2. The morphisms fn : P pnq Ñ Qpnq are Σn-equivariants.
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3. f preserve the compositions of the operads, that is, the following diagram is
commutative.

P pkq b P pi1q b ¨ ¨ ¨ b P pikq
γP //

fkbfi1b¨¨¨bfik
��

P pnq

fn

��
Qpkq bQpi1q b ¨ ¨ ¨ bQpikq

γQ // Qpnq

(2.16)

The category of operads over DGA-k-Mod is denoted OP .

We finish this section with two more examples of operads.

Example 2.1.8. The operad N is given by N pnq “ k for every n non negative. Here
k is seen as a DGA-k-module concentrated in degree zero. The unit η is the identity
of k, the action is the trivial action of Σn over k and the composites, if we denote ai
the generator of degree zero of Npiq, are simply given by the rule,

γ : ak b ai1 b ¨ ¨ ¨ b aik Ñ an (2.17)

where n “ i1 ` ¨ ¨ ¨ ` ik.

Example 2.1.9. Making the action of the last example free will produce an operad
that we denote M. The components of M are Mpnq “ krΣns for every non negative
n. The Mpnq are graded differential modules concentrated in degree zero. The
action by the symmetric group group is clear, and the composite operations are
defined over the generators in degree zero as before, but respecting the symmetric
group action, in the sense that:

γpak b ai1σi1 b ¨ ¨ ¨ b aikσi1q “ anpσi1 ‘ ¨ ¨ ¨ ‘ σikq (2.18)

and

γpakσ b aiσ´1p1q
b ¨ ¨ ¨ b aiσ´1pkq

q “ anpTi1,...,ikσq (2.19)

where n “ i1 ` ¨ ¨ ¨ ` ik.

2.2 Algebras and Coalgebras over an Operad

The most important feature in the theory of operads are its representations. That
is, when the abstract operations of the operads are interpreted as concrete appli-
cation over an object in the ground category, which is DGA-k-Mod in our case.
This passage from the abstract to the concrete is made through morphisms of type
P pnq Ñ HompAbn, Aq. In this sens, an element of arity n of P is realized as an
n-ary operation over A. This association must be coherent with respect the compo-
sition operation in the operad, and with respect the symmetric groups actions. For
instance, if we have that c “ γpab b1b b2q in P , then the associated operations over
A, µa, µb1 , µb2 and µc must be related in the sense that µc “ µa ˝ pµb1 b µb2q.

Definition 2.2.1. Let P be an operad.

1. An algebra over the operad P , or P-algebra, is a DGA-k-Mod A, together with
a morphism of operads from P to EndpAq.
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2. An coalgebra over the operad P , or P-coalgebra, is a DGA-k-Mod C, together
with a morphism of operad from P to CoendpCq.

It is well know that in the symmetric monoidal category DGA-k-Mod, the functor
´bY is left adjunct of the functor HompY,´q for every Y DGA-k-module. Denote
θ the natural bijection given by this adjunction,

θ : HompX b Y, Zq Ñ HompX,HompY, Zqq (2.20)

Then for a morphism of operads f : P Ñ EndpAq, each component fn : P pnq Ñ
HompAbn, Aq determines a morphism of DGA-k-modules ϕn : P pnq b A Ñ Abn,
given by ϕn “ θ´1pfnq. It is not hard to verify that this has as consequence the
following equivalent definitions for algebras and coalgebras over an operad.

Proposition 2.2.2. 1. Equivalently, a P-algebra A is a collection tϕnuně1 of
morphisms of DGA-k-modules ϕn : P pnq bCbn Ñ C, which satisfy the follow-
ing conditions.

(a) Associativity. The following diagram is commutative,

P pkq b P pi1q b ¨ ¨ ¨ b P pikq b C
bn

shuffle
��

γb1 // P pnq b Cbn

ϕn

��

P pkq b P pi1q b C
bi1 b ¨ ¨ ¨ b P pikq b C

bik

1bϕi1b¨¨¨bϕik
��

P pkq b Cbk ϕk
// C

(2.21)

where n “ i1 ` ¨ ¨ ¨ ` ik.

(b) Unit and equivariance. The following diagrams are commutative for every
σ P Σn.

P p1q b C
ϕ1 // C

kb C

ηb1

OO

–

:: P pnq b Cbn
ϕn //

σbσ´1

��

C

“

��
P pnq b Cbn

ϕn // C

(2.22)

2. Equivalently, a P-coalgebra C is a collection tϕnuně1 of morphisms of DGA-
k-modules ϕn : P pnq b C Ñ Cbn, which satisfy the following conditions.

(a) Associativity. The following diagram is commutative, where n “ i1`¨ ¨ ¨`
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ik

P pkq b P pi1q b ¨ ¨ ¨ b P pikq b C

shuffle

��

γb1 // P pnq b C

ϕn

��

P pkq b C b P pi1q b ¨ ¨ ¨ b P pikq

ϕkb1
��

Cbk b P pi1q b ¨ ¨ ¨ b P pikq

shuffle

��
P pi1q b C b ¨ ¨ ¨ b P pikq b C

ϕi1b¨¨¨bϕik // Cbn

(2.23)

(b) Unit and equivariance. The following diagrams are commutative, where
σ P Σn.

P p1q b C
ϕ1 // C

kb C

ηb1

OO

–

:: P pnq b C
ϕn //

σb1
��

Cbn

σ

��
P pnq b C

ϕn // Cbn

(2.24)

Proposition 2.2.3. Let N and M, be the operads of examples 2.1.8 and 2.1.9,
respectively. Then we have the following isomorphism of categories.

1. The category of N -algebras (coalgebras) is isomorphic to the category of com-
mutative DGA-k-algebras (coalgebras).

2. The category of M-algebras (coalgebras) is isomorphic to the category of DGA-
k-algebras (coalgebras).

Proof. Let A be an N -algebra. Then we have a collection of DGA-k-morphism,

fn : kÑ HompAbn, Aq (2.25)

which determines the a DGA-k-morphisms fnp1q : Abn Ñ A. By the operad struc-
ture of N we have that f2p1q ˝ pf1p1q b f2p1qq “ f3p1q “ f2p1q ˝ pf2p1q b f1p1qq,
which says that f2p1q is an associative product for A. Using that the action of the
symmetric group is trivial in N , we have f2p1q “ f2p1τq “ f2p1qτ , which implies
that the product f2p1q is commutative. The rest of the proof is similar and left to
the reader.

2.3 Free Operads

When the composition in an operad P is forgotten we obtain a collection tP pnquně0

of DGA-k-modules with right actions by the symmetric groups. In this section we
explore the inverse process: from a collection of this kind, generate an operadic
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structure over it. The operads obtained in this way are called free operads and
satisfy an universal property, that every morphism between the depart collection
to any other collection with an operadic structure, can be uniquely extended to a
morphism of operads from the free operad. We will call the sequences of DGA-k-
modules with symmetric group actions, S-modules.

The construction of free operads is widely described in the principal references
about operads(see for instance [LV12], [MSS07], [BM06] and [Rez96]). There are
many different ways to define free operads, our presentation tries to keep operads
as close as we can from the classical definition (see 2.1.1).The reason relies in the
way we constructed the operad K which describes the E8-coalgebra associated to
an L-algebra.

In the following we will see that operads can be regarded as monoids over the
category of S-modules in order to construct free operads. This way of defining
operads is an instance of a more general point of view, where the operads are defined
as monads over the category of endofunctors of the category of DGA-k-modules and
where the S-modules are identified with Schur functors(see [LV12]). Here we keep
the S-modules in his natural state and the composite of functors will appear as a
special operation of S-modules.

At the end of this section we also include the case when the operadic structure
does not have the actions by symmetric groups, the idea is to facilitate the descrip-
tion of the construction in the next chapter of an E8-operad used to describe the
E8-coalgebra over the chain complexes.

Definition 2.3.1. Let S be the groupoid where the objects are the ordered sets
rns “ t1, . . . , nu, with n positive integer and r0s “ H. The morphisms of S are given
by pn,mq “ H, if n ‰ m, and Spn, nq “ Σn, the n-symmetric group.

Definition 2.3.2. An S-module M is a functor from the category S to the category
DGA-k-Mod. The morphisms Spn, nq are interpreted as a right action by Σn over
Mpnq. The category of S-modules and natural transformations is denoted S-Mod.

ê Remark 2.3.3. The category S-Mod has all colimits and limits because it is a
category of diagrams over DGA-k-Mod.

Definition 2.3.4. We denote U the forgetful functor from the category of operads
to the category of S-modules.

Before starting with the construction of free operads over a symmetric we are
going to sketch how this kind of object would looks like. Let M be an S-module,
the free operad F pMq associated to M , as S-module will contain Mpnq as a S-
submodule and all the possible tensors of type Mpkq bMpi1q b ¨ ¨ ¨ bMpikq, where
i1 ` ¨ ¨ ¨ ` ik “ n, because they represent the formal compositions.

In order to satisfy the equivariance axiom 2.5 we need for every σ P Σk the
relation,

Mpkqσ bMpi1q b ¨ ¨ ¨ bMpikq “Mpkq bMpiσp1qq b ¨ ¨ ¨ bMpiσpkqq (2.26)

which can is obtained by taking the tensor product over krΣks,

Mpkq bΣk Mpi1q b ¨ ¨ ¨ bMpikq (2.27)
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Now, consider the second equivariance axiom 2.6. In the left part of 2.27, we
could have actions in each factor by the respective symmetric group,

Mpi1qτ1 b ¨ ¨ ¨ bMpikqτk (2.28)

with τj P Σij and i1` ¨ ¨ ¨ ` ik “ n. The permutations τj all together can be seen
as the permutation of Σn given by τ1‘¨ ¨ ¨‘τk acting at right of Mpi1qb¨ ¨ ¨bMpikq.
This kind of permutations form the subgroup Σi1 ˆ ¨ ¨ ¨ ˆ Σik of Σn. Then we can
write,

Mpi1qτ1 b ¨ ¨ ¨ bMpikqτk “ pMpi1q b ¨ ¨ ¨ bMpikqq pτ1 ‘ ¨ ¨ ¨ ‘ τkq (2.29)

The process of put at right the permutations τj is then expressed by the following
tensor product.

pMpi1q b ¨ ¨ ¨ bMpikqq bΣi1ˆ¨¨¨ˆΣik
krΣns (2.30)

Here we put krΣns instead of krΣi1ˆ¨ ¨ ¨ˆΣiks, in order to considerate all the other
permutations of Σn that acts over the i1 ` ¨ ¨ ¨ ` ik inputs but cannot be expressed
by a sum of type τ1 ‘ ¨ ¨ ¨ ‘ τk. Then we can simplify the expression to obtain,

pMpi1q b ¨ ¨ ¨ bMpikqq b krpΣi1 ˆ ¨ ¨ ¨ ˆ ΣikqzΣns (2.31)

The quotient pΣi1 ˆ ¨ ¨ ¨ ˆ ΣikqzΣn can be represented by the set of pi1, . . . , ikq-
shuffles of Σn, which is written Shpi1, . . . , ikq. Recall that a pi1, . . . , ikq-shuffle, where
i1`¨ ¨ ¨`ik “ n, is an element of Σn sending p1, . . . , nq to pµ1

1, . . . , µ
1
i1
, . . . , µk1, . . . , µ

k
ik
q

such that µj1 ă . . . ă µjij for all 1 ď j ď k. Then 2.31 is written,

Mpi1q b ¨ ¨ ¨ bMpikq b krShpi1, . . . , ikqs (2.32)

Which together with the part Mpkq gives the following expression.

Mpkq bΣk Mpi1q b ¨ ¨ ¨ bMpikq b krShpi1, . . . , ikqs (2.33)

Our free operad will need this for arbitrary n and all possible sums i1`¨ ¨ ¨`ik “ n,
that is, we need to consider the direct sum,

à

ně0

à

kě0

Mpkq bΣk

˜

à

i1`¨¨¨`ik“n

Mpi1q b ¨ ¨ ¨ bMpikq b krShpi1, . . . , ikqs

¸

(2.34)

This expression represents the first stage of all possible compositions between
the elements of M when they are interpreted as applications. The next stage of
compositions is to consider when each of Mpijq in 2.34 comes from another arbitrary
composite, and so on. In order to manage all the possible levels of composites we
need to introduce some operations over the S-modules.

Definition 2.3.5. Let M , N be S-modules. We define the tensor product of M and
N as the S-module M bN given by the formula,

pM bNqpnq “
à

i`j“n

Mpiq bMpjq b krShpi, jqs (2.35)
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Proposition 2.3.6. The tensor product of S-modules is associative and for every S-
module M satisfies M “Mbk “ kbM . Where k is seen as a S-module concentrated
in arity 0.

Proof. Let M , N and P be S-modules.

ppM bNq b P qpnq “
à

i`j“n

pM bNqpiq b P pjq b krShpi, jqs

“
à

i`j“n

à

r`s“i

Mprq bNpsq b krShpr, sqs b P pjq b krShpi, jqs

“
à

i`j“n

à

r`s“i

pMprq bNpsq bΣrˆΣs krΣisq bΣiˆΣj P pjq b krΣns

“
à

r`s`j“n

Mprq bNpsq b P pjq bΣrˆΣsˆΣj krΣns

“
à

r`i“n

à

s`j“i

Mprq b
`

Npsq b P pjq bΣsˆΣj krΣis
˘

bΣrˆΣi krΣns

“ pM b pN b P qqpnq

The rest of the proof is left to the reader.

ê Remark 2.3.7. Note that in formula 2.34 we have,
à

i1`¨¨¨`ik“n

Mpi1q b ¨ ¨ ¨ bMpikq b krShpi1, . . . , ikqs “Mbk
pnq (2.36)

where Mbn is n times the tensor product of S-modules.

Definition 2.3.8. Let M , N be S-modules. We define the composition of M with
N as the S-module,

M ˝N “
à

kě0

Mpkq bΣk N
bk

(2.37)

ê Remark 2.3.9. The formula 2.34 can be written,

à

kě0

Mpkq bΣk

˜

à

ně0

à

i1`¨¨¨`ik“n

Mpi1q b ¨ ¨ ¨ bMpikq b krShpi1, . . . , ikqs

¸

“
à

kě0

Mpkq bΣk pM
bk
q “M ˝M (2.38)

The composition of M ˝M represents the first stage of formal compositions and M˝k

can be used to represents k stages of formal compositions.

Proposition 2.3.10. Let f : M Ñ N and f 1 : M 1 Ñ N 1 be morphisms of S-modules,
then the morphism given by pf ˝ f 1qpxb y1 b ¨ ¨ ¨ b ykq “ fpxq b f 1py1q b ¨ ¨ ¨ b f

1pykq
is a morphism of S-modules from M ˝M 1 to N ˝N 1.

The S-modules can be identify with endofunctors of the category DGA-k-Mod
in such a way that composite of S-modules coincide with the composition of func-
tors (see [LV12], §5). This kind of functors are called Schur functors. The next
proposition is a consequence of this identification.
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Proposition 2.3.11. The category of S-modules with the composite ˝ and I “
p0, k, 0, . . .q is a monoidal category.

In fact, operads are instances of monoids over the category S-modules.

Proposition 2.3.12. Every operad determines a monoid in S-Mod and conversely.

Proof. Observe that an application of S-modules η : I Ñ M is not zero only in
arity 1, then it determine an application η : kÑMp1q and conversely. A morphism
µ : M ˝M Ñ M of S-modules in arity n is given by an equivariant morphism of
DGA-k-modules µn,

µn :
à

kě0

à

i1`¨¨¨`ik“n

Mpkq bΣk pMpi1q b ¨ ¨ ¨ bMpikq b krShpi1, . . . , ikqsq ÑMpnq

(2.39)

which determined by the collection of equivariant morphisms,

γ : Mpkq bΣk pMpi1q b ¨ ¨ ¨ bMpikq b krShpi1, . . . , ikqsq ÑMpnq (2.40)

and each morphism γ is characterized as a morphism,

γ : Mpkq bMpi1q b ¨ ¨ ¨ bMpikq ÑMpnq (2.41)

satisfying the equivariance conditions 2.5 and 2.6.

Before the construction of free operads one more operation with S-modules is
needed.

Definition 2.3.13. Let M , N be S-modules. We define the direct sum of M and
N by the formula,

pM ‘Nqpnq “Mpnq ‘Npnq (2.42)

Proposition 2.3.14. The forgetful functor U : OP Ñ S-Mod has a left adjoint
F : S-ModÑ OP. We call F the free operad functor.

Proof. Let M be a S-module, then by proposition 2.3.12 we only need exhibit the free
operad as a monoid pF pMq, µ, ηq in S-Mod, We are going to describe the construction
of F pMq, µ, η and the unit and counit of the adjunction, the verifications that they
satisfy the required properties are not hard, for details see §5.4 in [LV12].

First, we construct inductively for each n a S-module F pMqn as follows.

F pMq0 “ I (2.43)

F pMq1 “ I ‘M (2.44)

F pMq2 “ I ‘ pM ˝ pI ‘Mqq “ I ‘ pM ˝ F pMq1q (2.45)

F pMqn`1 “ I ‘ pM ˝ F pMqnq (2.46)
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Let i0 be the inclusion of I in F pMq1. Using the identity M “ M ˝ I and the
morphism 1M ˝ i0 : M ˝I ÑM ˝F pMq1 we obtain the morphism i1 “ 1I‘p1M ˝ i0q :
F pMq1 Ñ F pMq2. Repeating this process we got the morphisms,

in : F pMqn Ñ F pMqn`1 (2.47)

defined by induction with the formula in`1 “ 1I ‘ p1M ˝ inq. The S-modules
F pMqn code all the possible n stage compositions of elements of M . In order to
put together all this information in a single S-module, we take the colimit over the
diagram given by the morphisms ij.

F pMq “ colim
n

F pMqn (2.48)

The differential over F pMq is determined by the differential of M and extended
in the obvious way.

Now, we have to define µ and the unit η for F pMq. The unit is given by the
inclusion η : I Ñ F pMq. The morphism µ : F pMq ˝ F pMq Ñ F pMq is determined
by a collection of maps µn,m : F pMqn ˝ F pMqm Ñ F pMqn`m, defined by induction
over n by taking µ0,m “ 1F pMqm and for n ą 0, µn,m is given by the composition,

F pMqn ˝ F pMqm “ pI ‘M ˝ F pMqn´1q ˝ F pMqm
–
ÝÑ F pMqm ‘ pM ˝ F pMqn´1q ˝ F pMqm
–
ÝÑ F pMqm ‘M ˝ pF pMqn´1 ˝ F pMqmq

1‘ 1 ˝ µn´1,m
ÝÝÝÝÝÝÝÝÝÝÝÝÑF pMqm ‘M ˝ F pMqn`m´1

i` i1
ÝÝÝÝÝÑF pMqn`m

where i is the inclusion of F pMqm in F pMqn`m, and i1 the inclusion of F pMqn`m´1

as the second factor of F pMqn`m.
Let P be an operad, the counit ε : FU Ñ 1 of the adjunction is determined

by morphisms εn : FUpPqn Ñ P defined by induction as follows. ε0 : I Ñ P is
determined by the unit η of P , ε1 “ η ` 1 : I ‘ UP Ñ P and εn`1 “ η ` γp1 ˝
εnq : FUpP qn “ I ‘ pUP ˝ UF pP qnq Ñ P . Finally, for M P S-Mod, the unit of
the adjunction η : 1 Ñ UF , is determined by the inclusions in the second factor
M ˝ F pMqn´1 Ñ F pMqn.

ê Remark 2.3.15. Summarizing, the adjunction given by proposition 2.3.14, defines
for every operad Q and S-module M , the natural bijection,

θ : OPpF pMq,Qq Ñ S-ModpM,UpQqq (2.49)

The unit and counit of the adjunction are denoted η and ε respectively. For the
unit η we have the morphisms,

η : 1S-Mod Ñ UF (2.50)

ηM : M Ñ UF pMq (2.51)



2.3. FREE OPERADS 53

And for counit ε we have,

ε : FU Ñ 1OP (2.52)

εP : FUpPq Ñ P (2.53)

Definition 2.3.16. A non symmetric operad is defined as an operad but without
considering the actions of symmetric groups. The category of non symmetric operads
is denoted nOP

Definition 2.3.17. An N-module is a functor from the groupoid N with objects the
sets r0s “ H and rns “ t1, .., nu for n ą 0, and morphisms the identity applications,
to the category DGA-k-Mod. The category of N-modules is denoted N-Mod.

Definition 2.3.18. Let G be the forgetful functor from S-Mod to N-Mod.

Proposition 2.3.19. The forgetful functor G : S-Mod Ñ N-Mod has a left adjoint
H : N-Mod Ñ S-Mod, called the free S-module functor.

Proof. For M P N-Mod, HpMq is defined as the S-module with n component given
by Mpnqb krΣns, the verification that it satisfies the proposition is straightforward.

Definition 2.3.20. Let U be the forgetful functor from the category nOP to N-Mod.

Proposition 2.3.21. The forgetful functor nU : nOP Ñ N-Mod have a left adjunct
nF : N-Mod Ñ nOP, called the free non symmetric operad functor.

Proof. The non symmetric case is similar to the symmetric case, only without the
considerations about the Σn actions. For an N-module N , in order to construct
a free ns operad over N we need a direct sum, tensor product and composite of
N-modules. They are defined as follows,

pN ‘ Eqpnq “ Npnq ‘ Epnq (2.54)

pN b Eqpnq “
à

i`j“n

Npiq b Epjq (2.55)

pN ˝ Eq “
à

kě0

Npkq b Ebk (2.56)

Note that,

N ˝ E “
à

kě0

à

ně0

à

i1`¨¨¨`ik“n

Npkq b Epi1q b ¨ ¨ ¨ b Epikq (2.57)

As the symmetric case, the ns operads are monoids over the monoidal category
of N-modules, where the monoidal structure is given by the composite. The steps
for the construction of nF are the same as the symmetric case.

Definition 2.3.22. Let G be the forgetful functor from the category of operads OP
to the category of non symmetric operads nOP . G associate each to each operad
the non symmetric operads obtained by dropping the symmetric groups actions.
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Proposition 2.3.23. The forgetful functor G : OP Ñ nOP has a left adjoint
H : nOP Ñ OP.

Proof. For an non symmetric operad P its associated free symmetric operad is given
by P b krΣs. The verifications are straightforward and left to the reader.

Proposition 2.3.24. The relations between these forgetful functors and its associ-
ated free functors are reunite in the following commutative diagrams.

OP G //

U

��

nOP

nU

��
S-Mod

G
// N-Mod

OP oo H
OO

F

nOPOO

nF

S-Mod oo
H

N-Mod

(2.58)

Proof. Immediate, by using the fact that composition of adjoint functors is again
an adjunction, and by unicity of the adjunction their images are isormorphic.

ê Remark 2.3.25. The commutative diagram in proposition 2.3.24 suggests that we
can use the construction of free non symmetric operads to describe the free operads
over an symmetric sequence in which the actions of symmetric groups are free, in the
sense that for a S-module M , the free operad F pMq is canonically isomorphic to the
operad pH ˝ nF ˝GqpMq. Which is the case when the are working with S-modules
with components Σn-free bar resolutions. We will use this point of view to describe
the E8-coalgebra structure on the chain complex associated to a simplicial set.

2.4 Colimits of Operads

In this section we show that the category of operads have all small colimits. The
existence of this kind of structure will be used in chapter 5 to construct the E8-
operad K.

The tensor product of DGA-k-modules preserves small colimits in each compo-
nent, then it satisfies the following lemma ([Fre16]).

Lemma 2.4.1. Let F : Cn Ñ C be a covariant functor. If F preserves reflexive
coequalizers in each component, then F preserves reflexive coequalizers in Cn. That

is, if for every every 1 ď i ď n and every Xi

ð

Ñ Yi reflexive diagram in C, the
morphism given by the universal property of coequalizers from the coequalizer of the
diagram in C,

F pA1, . . . , Ai´1, Xi, Ai`1, . . . , Anq
ð

Ñ F pA1, . . . , Ai´1, Yi, Ai`1, . . . , Anq (2.59)

to F pA1, . . . , Ai´1, CeqpXi

ð

Ñ Yiq, Ai`1, . . . , Anq, is an isomorphism, then for

every collection of reflexive diagrams tXi

ð

Ñ Yiu1ďiďn the morphism from the co-
equalizer of the diagram in C,

F pX1, . . . , Xnq
ð

Ñ F pY1, . . . , Ynq (2.60)

to F pCeqpX1

ð

Ñ Y1q, . . . , CeqpXn

ð

Ñ Ynqq is an isomorphism.
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Proof. The collection of reflexive diagrams tXi

ð

Ñ Yiu1ďiďn defines a collection of

functors tTi : D0 Ñ Cu1ďiďn. We use the notation colim
αPD0

Tipαq for CeqpXi

ð

Ñ Yiq.

Then the hypothesis can be written as

colim
αPD0

F pA1, . . . , Ai´1, Tipαq, Ai`1, . . . , Anq –
ÝÑ

F pA1, . . . , Ai´1, colim
αPD0

Tipαq, Ai`1, . . . , Anq

(2.61)

By proposition 1.6.7 the diagonal D : D0 Ñ Dn
0 is a final functor. Consider the

functor T1 ˆ ¨ ¨ ¨ ˆ Tn : Dn
0 Ñ Cn. Then the proposition 1.6.8 says that there is an

isomorphism from the colimit of F pT1ˆ¨ ¨ ¨ˆTnqD to the colimit of F pT1ˆ¨ ¨ ¨ˆTnq,
and we have

CeqpF pX1, . . . , Xnq
ð

Ñ F pY1, . . . , Ynqq

“ colim
αPD0

F pT1 ˆ ¨ ¨ ¨ ˆ TnqDpαq (2.62)

–
ÝÑ

colim
pα1,...,αnqPDn0

F pT1pα1q, . . . , Tnpαnqq pby 1.6.8q (2.63)

– colim
α1PD0

. . . colim
αnPD0

F pT1pα1q, . . . , Tnpαnqq (2.64)

–
ÝÑ

F pcolim
α1PD0

T1pα1q, . . . , colim
αnPD0

Tnpαnqq pby hypothesisq (2.65)

“ F pCeqpX1

ð

Ñ Y1q, . . . , CeqpXn

ð

Ñ Ynqq

In the following proposition we construct an operad using the classic definition
of operads in 2.1.1.

Proposition 2.4.2. In the category OP the forgetful U : OP Ñ S-Mod functor
creates reflexive coequalizers.

Proof. Let P
ð

Ñ Q a reflexive pair in OP . We are going to construct the reflexive
coequalizer O of this diagram in OP . For that, first we define components of the

operad O by Opnq “ CoeqpP pnq
ð

Ñ Qpnqq. This coequalizer exists because S-Mod,
as well as DGA-k-Mod, has all small colimits. To define the composition γ of O
consider the following morphism of DGA-k-modules.

Coeq
”

P pkq b P pi1q b ¨ ¨ ¨P pikq
ð

Ñ Qpkq bQpi1q b ¨ ¨ ¨ bQpikq
ı

Coeq
”

P pkq
ð

Ñ Qpkq
ı

b Coeq
”

P pikq
ð

Ñ Qpikq
ı

b ¨ ¨ ¨ b Coeq
”

P pikq
ð

Ñ Qpikq
ı

ψ

(2.66)

By lemma 2.4.1, this morphism is an isomorphism, then we can take its inverse
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ψ´1 and define γ to be the following composition.

Opkq bOpi1q b ¨ ¨ ¨ bOpikq “

Coeq
”

P pkq
ð

Ñ Qpkq
ı

b Coeq
”

P pikq
ð

Ñ Qpikq
ı

b ¨ ¨ ¨ b Coeq
”

P pikq
ð

Ñ Qpikq
ı

Coeq
”

P pkq b P pi1q b ¨ ¨ ¨P pikq
ð

Ñ Qpkq bQpi1q b ¨ ¨ ¨ bQpikq
ı

Coeq
”

P pi1 ` ¨ ¨ ¨ ikq
ð

Ñ Qpi1 ` ¨ ¨ ¨ ikq
ı

“ Opi1 ` ¨ ¨ ¨ ` ikq

ψ´1

γ

(2.67)
Where γ is the induced morphism by the compositions of operads P and Q. For

define the unit of O, consider the following commutative diagram obtained from

P
ð

Ñ Q and the coequalizer properties.

P p1q

����

iP p1q

++
k

ηP 66

ηQ ((
Op1q

Qp1q

dd

iQp1q

33 (2.68)

Thus the unit for O is defined by the composite iP p1qηP : kÑ Op1q. Note that the
choice iQp1qηQ gives the same result, as a consequence of reflexive arrow existence.
It is not hard to check that O with this structure satisfies the axioms of operads
and the universal property for coequalizer.

Proposition 2.4.3. Let tPiuiPI and tQiuiPI two small collections of objects in a
category C such that the colimits colim

iPI
Pi and colim

iPI
Qi exist. Denote for i P I the

cocone edges pi : Pi Ñ colim
iPI

Pi and qi : Qi Ñ colim
iPI

Qi.

1. Every collection of morphisms fi : Pi Ñ colim
iPI

Qi, i P I, determines a morphism

f : colim
iPI

Pi Ñ colim
iPI

Qi, such that fi “ f ˝ pi for every i P I.

2. Every collection of morphism fi : Pi Ñ Qi, i P I, determines a morphism
f : colim

iPI
Pi Ñ colim

iPI
Qi, such that qi ˝ f “ fi ˝ pi for every i P I.

Proof. The collection fi : Pi Ñ colim
iPI

Qi, i P I exhibit colim
iPI

Qi as a cocone over

the diagram tPiuiPI , then by the universal property of coproducts, there exists an
unique morphism in C, f : colim

iPI
Pi Ñ colim

iPI
Qi such that fi “ f ˝ pi for every i P I.

For the second statement, compose every fi : Pi Ñ Qi with the respective cocone
edge qi : Qi Ñ colim

iPI
Qi, then we have a collection gi : Pi Ñ colim

iPI
Qi, with gi “ qi˝fi

for i P I. And applying the first part we get that this determines f “ g : colim
iPI

Pi Ñ

colim
iPI

Qi.



2.4. COLIMITS OF OPERADS 57

Proposition 2.4.4. The category of operads has all small colimits.

Proof. Let tPiuiPI be a small collection of operads. With it is possible construct a
reflexive pair in OP , and by proposition 2.4.2 its reflexive coequalizer exists in OP .
The last part of the proof consists in checking that this reflexive coequalizer is the
colimit of tPiuiPI .

From tPiuiPI we obtain in S-Mod the collection tUpPiquiPI , denote its colimit
colim
iPI

UpPiq, and αi : UpPiq Ñ colim
iPI

UpPiq the cocone edges.

The morphisms αi : UpPiq Ñ colim
iPI

UpPiq induce the morphisms UF pαiq :

UFUpPiq Ñ UF pcolim
iPI

UpPiqq, which determines the following morphism.

colim
iPI

UFUpPiq
d0 // UF pcolim

iPI
UpPiqq (2.69)

Consider the unit ε and counit η of the adjunction F $ U , and the following
composite in S-Mod.

UFUpPiq
UpεPi q // UpPiq

αi // colim
iPI

UpPiq
η // UF pcolim

iPI
UpPiqq (2.70)

These compositions determines the morphism in S-Mod,

colim
iPI

UFUpPiq
d1 // UF pcolim

iPI
UpPiqq (2.71)

By the universal property of free operads d0 and d1 will determine the morphisms
d0 and d1 in OP in the following commutative diagram.

UF
´

colim
iPI

UFUpPiq
¯

Upd1q

''

Upd0q

''

F
´

colim
iPI

UFUpPiq
¯

d1

&&

d0

&&
colim
iPI

UFUpPiq

η

OO

d1 //

d0
// UF pcolim

iPI
UpPiqq F pcolim

iPI
UpPiqq

(2.72)

Now we give the contraction s for d0 and d1. With the counit η consider the mor-
phisms ηUpPiq : UpPiq Ñ UFUpPiq. By the colimit properties 2.4.3 they determine a
morphism of S-modules β : colim

iPI
UpPiq Ñ colim

iPI
UFUpPiq, and we take s “ F pβq.

Thus we have the following diagram in OP .

F
´

colim
iPI

UFUpPiq
¯ d1 //

d0
// F pcolim

iPI
UpPiqq

s

vv
(2.73)

Before take the reflexive coproduct of this diagram we have to check that d1s “
d0s “ 1. To show this we only have to check that over their components defined
over UpPiq, d1s and d0s are both equal to the identity.
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The morphism s is determined by ηUpPiq : UpPiq Ñ UFUpPiq, d0 by UF pαiq :
UFUpPiq Ñ UF pcolim

iPI
UpPiqq. The naturality of η makes the following diagram

commutative.

UpPiq
ηUpPiq //

αi

��

UFUpPiq

UF pαiq

��
colim
iPI

UpPiq
η // UF pcolim

iPI
UpPiqq

(2.74)

Then we have that UF pαiqηUpPiq “ ηαi : UpPiq Ñ UF pcolim
iPI

UpPiqq, which in-

duces the identity over UF pcolim
iPI

UpPiqq. For d1s, d1 is determined by the composi-

tion 2.70, then we have d1s is determined by the composition ηαiUpεPiqηUpPiq, which
by the triangular equations of the unit and counit (proposition 1.5.3), is equal to
ηαi, which as before induce the identity over UF pcolim

iPI
UpPiqq. Then by proposition

2.4.2 there exist the coequalizer of the diagram 2.73,

F
´

colim
iPI

UFUpPiq
¯ d1 //

d0
// F pcolim

iPI
UpPiqq

s

vv
q // Q

(2.75)

The operad Q will be the colimit of the collection tPiuiPI . We only have to check
the existence of operad morphisms from each Pi to Q and the universal property for
colimits. In order to do that, first we are going to see the information that been an
coequalizer of d0 and d1 gives.

Let R be an operad and an operad morphism f : F pcolim
iPI

UpPiqq Ñ R such that

fd0 “ fd1. This morphism is determined by its components hi : UpPiq Ñ UpRq
given by the compositions,

UpPiq
αi //

hi

77
colim
iPI

UpPiq
θpfq // UpRq (2.76)

The morphisms fd0 and fd1 are determined by morphisms from UFUpPiq to
UpRq in S-Mod, so we will describe in terms of their components the relation fd1 “

fd0. In the case of fd0 recall that d0 is determined by the morphisms UF pαiq :
UFUpPiq Ñ UF pcolim

iPI
UpPiqq and consider the following commutative diagram.

UFUpPiq
UF pαiq

((
Upθ´1phiqq

��

UF pcolim
iPI

UpPiqq

Upfq

""

colim
iPI

UpPiq

η

OO

θpfq ))
UpPiq

ηUpPiq

OO

αi
66

hi
// UpRq

(2.77)
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The quadrilateral is commutative by the naturality of the counit. Then the
composite at the diagonal UpfqUF pαiq is determined by the bottom side, that is
hi, and the bijection of the adjunction F $ U says that UpfqUF pαiq is equal to
Upθ´1phiqq, which means that fd0 is determined by Upθ´1phiqq : UFUpPiq Ñ UpRq.

For fd1, recall that d1 is determined by the composition 2.70, then fd1 is deter-
mined by the composition,

UFUpPiq
UpεPi q // UpPiq

αi // colim
iPI

UpPiq
η // UF pcolim

iPI
UpPiqq

Upfq // UpRq (2.78)

By 2.77 we have that Upfqηαi “ θpfqαi “ hi, then fd1 is determined by the
composition UpεPiqhi : UFUpPiq Ñ UpRq. Together with the result for fd0, says
that fd1 “ fd0 if and only if the following diagram is commutative.

UFUpPiq

UpεPi q

��

Upθ´1phiqq

%%
UpPiq hi

// UpRq

(2.79)

This diagram is commutative if and only if hi is a morphism of operads, in other
words, if there is a morphism of operads fi : Pi Ñ R such that Upfiq “ hi.

Suppose that 2.79 is commutative. We need to proof that hi preserves the op-
eradic structure on Pi, that is we have to check the conditions of definition 2.1.7.
To avoid confusion we denote λ the unit of an operad in this part.

1. The unit.

hiUpλPiq “ hiUpεPiλFUpPiqq (2.80)

“ hiUpεPiqUpλFUpPiqq (2.81)

“ Upθ´1
phiqqUpλFUpPiqq (2.82)

“ Upθ´1
phiqλFUpPiqq “ UpλRq (2.83)

(2.84)

2. Equivariance follows by the fact that all are morphisms of S-modules.

3. The composition.
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hiUpγPiq “ hiUpγPi1Piq (2.85)

“ hiUpγPiq1UpPiq (2.86)

“ hiUpγPiqUpεPiqηUpPiq (2.87)

“ hiUpγPiεPiqηUpPiq (2.88)

“ hiUpεPiγFUpPiqqηUpPiq (2.89)

“ hiUpεPiqUpγFUpPiqqηUpPiq (2.90)

“ Upθ´1
phiqqUpγFUpPiqqηUpPiq (2.91)

“ Upθ´1
phiqγFUpPiqqηUpPiq (2.92)

“ UpγRθ
´1
phiqqηUpPiq (2.93)

“ UpγRqUpθ
´1
phiqqηUpPiq (2.94)

“ UpγRqhi (2.95)

Conversely, suppose there is a collection of morphisms of operads tfi : Pi Ñ
RuiPI , such that Upfiq “ hi for every i P I. Then the following triangle is commuta-
tive by the naturality of θ´1.

FUpPiq
θ´1pUpfiqq

##

εPi
��
Pi fi

// R

OPpFUpPiq, Rq S-ModpUpPiq, UpRqq
θ´1
oo

OPpFUpPiq, Piq

fi˚

OO

S-ModpUpPiq, UpPiqq

Upfiq˚

OO

θ´1
oo

(2.96)

Then the diagram 2.79 is commutative. Now we pass to verify that Q is the
colimit of the collection of operads tPiuiPI . We saw that this collection induces
morphisms hi : UpPiq Ñ UpQq of S-modules that satisfy 2.79, then they define
morphisms of operads fi : Pi Ñ Q, such that Upfiq “ hi. These morphisms are the
cocone edges.

Any collection of operad morphisms fi : Pi Ñ R, defines a morphisms of operads
f from F pcolim

iPI
UpPiqq to R such that fd0 “ fd1. Then there is an unique morphism

of operads g : QÑ R such that gq “ f . The morphism g commutes with the cocone
edges, and this exhibit Q as the colimit of tPiuiPI .



Chapter 3

L-Algebras

The central notion of this thesis is the algebraic structure called L-algebra. Intro-
duced by Alain Prouté in several talks since the eighties and never published (Max
Planck Institut-Bonn 1986, Louvain-la Neuve 1987, Freie Universität-Berlin 1988,
Seminar Keller-Maltsiniotis-Paris 2010), L-algebras have been thought to be highly
related to the homotopy type of spaces by using an internal structure that models
the diagonals which determines invariants like Steenrod operations. L-algebras are
similar to Segal’s Γ-structures (see [Seg74]), but in an algebraic context instead of a
topological context. It happens that the Eilenberg-Mac Lane transformation plays
a central role in L-algebras, where it is the prototype (motivation) of the product
of L-algebras. The present chapter introduces the concept of L-algebras and con-
tains establishes its principal properties. It is interesting to notice the existence of
a preprint of Tom Leinster (see [Lei00]), which present a similar definition.

3.1 The Category L

We saw in the chapter of preliminaries that simplicial sets are described as con-
travariant functors from the simplicial category ∆ to the category of sets. In this
way the simplicial relations are coded by the category ∆, which allows an easy ex-
tension of the concept of simplicial set to other categories and gives the definition
of simplicial object. With L-algebras our principal interest is to model the relations
describing the behavior of diagonals in chain complexes. This can be done by using
an approach similar to the technique used to define simplicial objects, that is, defin-
ing L-algebras as contravariant functors from a suitable category. This category will
be denoted L.

Definition 3.1.1. We define L to be the category where the objects are the totally
ordered sets rns “ t1, . . . , nu for n ą 0 and r0s “ H, the empty set†. The arrows
of L are all the partial maps between these sets. The composition is simply the
composition of partial maps of sets.

ê Remark 3.1.2. We can describe any arrow α : rns Ñ rms of L by a pair pD, fq,
where D is a subset of rns and f is an everywhere defined map from D to rms. The
set D is called the domain of f and is denoted by Dompfq. Then, the composition
in L of two arrows pDompfq, fq : rns Ñ rms and pDompgq, gq : rms Ñ rps, will be
the pair pDompg ˝ fq, g ˝ fq : rns Ñ rps, where Dompg ˝ fq “ f´1pDompgqq.

†We make the abuse of using the same notation for the objects in the category ∆

61
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ê Remark 3.1.3. Note that L contains as a subcategory a copy of the simplicial
category ∆, by taking the embedding t0, . . . , nu ÞÑ t1, . . . , n ` 1u, but clearly it’s
not a full subcategory. Also, the set of morphisms Lprns, rnsq include the set Σn of
permutations of n elements.

ê Remark 3.1.4. The objects of the category Γ (see [Seg74]) are the finite sets, and
a morphism from x to y is an application f : x Ñ Ppyq † such that z1 ‰ z2 implies
fpz1q X fpz2q “ H. Then we have the isomorphisms of categories Γop – L and
Lop – Γ.

Proposition 3.1.5. The category L equipped with the sum functor,

` : Lˆ LÑ L (3.1)

defined for objects by,

rns ` rms :“ rn`ms (3.2)

and for arrows α : rns Ñ rps and β : rms Ñ rqs, as the sum α ` β : rn `ms Ñ
rp` qs given by,

pα ` βqpnq “

"

αpxq if x ď n
p` βpx´ nq if x ą n

(3.3)

is a cocartesian category. The object r0s is the zero object of L, that is, an object
which is at the same time terminal and initial. In both cases the universal map has
empty domain.

Proof. Let i1 : rns Ñ rn`ms Ð rms : i2 the cocone in L where the application i1, i2
are the inclusion i1pxq “ x for x P rns and i2pyq “ py ` nq for y P rms. To show
that L is a cocartesian category it suffice to show that this cocone is initial. Let
α : rns Ñ rrs Ð rms : β any cocone from rns and rms. Let γ : rn`ms Ñ rrs defined
by γpzq “ αpzq if 1 ď z ď n and γpzq “ βpz ´ nq if n ă z ď n ` m. Then it is
clear that γ : rn `ms Ñ rrs is the only application in L such that γ ˝ ii “ α and
γ ˝ i2 “ β.

Definition 3.1.6. When a cocartesian category has a zero object is called pointed
cocartesian category. Furthermore, if the zero and the sum are explicitly given, the
category is called strict pointed cocartesian category.

ê Remark 3.1.7. L is a strict pointed cocartesian category.

Proposition 3.1.8. The sum defined in L is strictly associative, i.e.

prns ` rmsq ` rps “ rns ` prms ` rpsq (3.4)

for all objects in L, and pf ` gq ` h “ f ` pg ` hq for all morphisms.

Proof. The proof is immediate.

†Ppyq is the set of subsets of y.
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The sum and composition of L can be used to generate all the morphism in L
from a small set of morphism in L. The required morphisms of L are introduced in
the following definition.

Definition 3.1.9. In L we identify the following arrows.

1. The face operator di : rns Ñ rn` 1s is defined for 1 ď i ď n` 1 by:

dipxq “

"

x if x ă i
x` 1 if x ě i

(3.5)

When n “ 0, the only face operator d1 : r0s Ñ r1s is the universal morphism
from r0s.

2. The degeneracy operator si : rns Ñ rn´ 1s is defined for 1 ď i ď n by:

sipxq “

"

x if x ď i
x´ 1 if x ą i

(3.6)

In the case n “ 1, the only degeneracy operator s1 : r1s Ñ r0s is the universal
morphism to r0s.

3. In L, any injective map i : rns Ñ rms of the form prns, iq has a unique minimal
retraction, denoted by i : rms Ñ rns, in other words, i is the only morphism
with domain given by the image of i and which satisfies the relation i˝ i “ 1rns.
In particular, the minimal retraction associated to the face operator di will be
denoted ζi. For d1 : r0s Ñ r1s, its minimal retraction ζ1 : r1s Ñ r0s coincide
with s1 : r1s Ñ r0s.

ê Remark 3.1.10. The operator di : rns Ñ rn ` 1s is the only increasing injection
ignoring i P rn` 1s.

rns

di
��

“ t1,

��

2,

��

¨ ¨ ¨ i´ 1,

��

i,

��

¨ ¨ ¨ n´ 1,

��

nu

��
rn` 1s “ t1, 2, ¨ ¨ ¨ i´ 1, i, i` 1, ¨ ¨ ¨ n, n` 1u

(3.7)

The operator si is the only decreasing surjection crashing i and i`1 in the same
element of rn´ 1s.

rns

si
��

“ t1,

��

2,

��

¨ ¨ ¨ i,

��

i` 1,

��

i` 2,

��

¨ ¨ ¨ n´ 2,

��

nu

��
rn´ 1s “ t1, 2, ¨ ¨ ¨ i, i` 1, ¨ ¨ ¨ n´ 2, n´ 1u

(3.8)

The operator ζi is like di but with inversed arrows, that is, the only decreasing
injection without i in its domain.

rns “ t1, 2, ¨ ¨ ¨ , i´ 1, i, ¨ ¨ ¨ n´ 1, nu

rn` 1s

ζi

OO

“ t1,

OO

2,

OO

¨ ¨ ¨ , i´ 1,

OO

i, i` 1,

XX

¨ ¨ ¨ , n,

[[

n` 1u

[[

(3.9)
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Proposition 3.1.11. Let 1 be the identity of r1s, d1 the only face operator from r0s
to r1s and τ : r2s Ñ r2s the only non trivial permutation of r2s. Then we have the
following decompositions.

1. Every face operator di : rns Ñ rn` 1s can be expressed as the sum,

di “ 1`
pi´1q
¨ ¨ ¨ ` 1` d1 ` 1`

pn´i`1q
¨ ¨ ¨ ` 1 (3.10)

2. Any transposition σ : rns Ñ rns, that is, a permutation that exchanges two
consecutive elements i, i ` 1 and leaves the rest fixed, can be expressed by the
sum,

σ “ 1`
pi´1q
¨ ¨ ¨ ` 1` τ ` 1`

pn´i´1q
¨ ¨ ¨ ` 1 (3.11)

Proof. The face operator d1 : rns Ñ rn ` 1s is equal to the sum d1 ` 1rns, as the
following pictures shows.

rns

d1
��

“ t1,

��

2,

��

¨ ¨ ¨ , nu

��
rn` 1s “ t1, 2, 3, ¨ ¨ ¨ , n` 1u

“ H

��

` t1,

��

2,

��

¨ ¨ ¨ , nu

��

“

“ t1u ` t1, 2, ¨ ¨ ¨ , nu “

rns

d1`1rns
��

rn` 1s

(3.12)

Also we have that 1rns “ 1`
pnq
¨ ¨ ¨`1, then d1 : rns Ñ rn`1s is equal to d1`1`

pnq
¨ ¨ ¨`1.

So we can express the face operator di : rns Ñ rn ` 1s as the sum 1ri´1s ` d1, with
d1 : rn´ i` 1s Ñ rn` i` 2s, and obtain that,

di “ 1ri´1s ` d1 ` 1rn´i`1s “ 1`
pi´1q
¨ ¨ ¨ ` 1` d1 ` 1`

pn´i`1q
¨ ¨ ¨ ` 1 (3.13)

The transposition σ : rns Ñ rns can be written like 1ri´1s ` τ ` 1rn´i´1s as the
following picture shows.

rns

σ

��

“ t1,

��

2,

��

¨ ¨ ¨ i´ 1,

��

i,

��

i` 1,

��

i` 2,

��

¨ ¨ ¨ nu “

��
rn´ 1s “ t1, 2, ¨ ¨ ¨ i´ 1, i, i` 1, i` 2, ¨ ¨ ¨ , nu “

ri´ 1s

1ri´1s

��

` r2s

τ

��

` rn´ i´ 1s

1rn´i´1s

��
ri´ 1s ` r2s ` rn´ i´ 1s

(3.14)
Then we have the decomposition,

σ “ 1`
pi´1q
¨ ¨ ¨ ` 1` τ ` 1`

pn´i´1q
¨ ¨ ¨ ` 1 (3.15)
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Proposition 3.1.12. All the arrows of L can be generated using the sum ` : LˆLÑ
L and compositions of the following five arrows.

r0s

d1
''
r1s

1




ζ1

gg r2s

τ




s1
oo (3.16)

Proof. The result follows from the considerations below.

1. Any i : rps Ñ rns increasing injective defined everywhere application, can be
expressed as a composition of face operators, then by proposition 3.1.11, i is
expressed as compositions of sums of 1 and d1. Then its minimal retraction
will be expressed as compositions of sums of 1 and ζ1.

2. Any permutation of rns is a composition of transpositions, then by proposition
3.1.11, it is a composition of applications of the form 1`¨ ¨ ¨`1`τ`1`¨ ¨ ¨`1.

3. Any defined everywhere application from rns to r1s sending every number to
1, can be expressed as a composition of applications of the form s1 ` ¨ ¨ ¨ ` s1

or s1 ` ¨ ¨ ¨ ` s1 ` 1.

4. Any morphism α : rns Ñ rms of L can be expressed as a composite σ ˝ i ˝β ˝ j,
where the minimal retraction of j is increasing injective defined everywhere,
β is defined everywhere increasing, i is increasing injective defined everywhere
and σ is a permutation of rms.

Actually, we can characterize the category L as the free strictly associative
pointed cocartesian category on one object, as the following proposition shows.

Proposition 3.1.13. Let C be a strictly associative pointed cocartesian category,
and X an object of C. Then there an unique functor F : LÑ C preserving zero and
coproducts and such that F pr1sq “ X.

Proof. Indeed, F prnsq must be the n-fold sum X `
pnq
¨ ¨ ¨ `X and F pr0sq must be the

zero object of C. The five arrows above have mandatory images by F, this means
that F p1q “ 1X , d1 and ζ1 are send to the unique arrows 0 Ñ X and X Ñ 0, where 0
is the zero object of C, the image of s1 is the codiagonal of r1s, that is the morphisms
r1s ` r1s Ñ r1s obtained by the universal property of coproduct,

r1s ` r1s

s1

��

r1s

i1
;;

1
##

r1s

i2
cc

1
{{

r1s

(3.17)
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so its image by F must be X ` X Ñ X, the codiagonal of X, which is well
defined because C is cocartesian, that is, the sum is well defined. And σ which is
the canonical twisting arrow of the sum r1s ` r1s,

r1s ` r1s

s1

��

r1s

i1
;;

i2 ##

r1s

i2
cc

i1{{
r1s ` r1s

(3.18)

should be send to the canonical twisting arrow of X `X.

ê Remark 3.1.14. In the same sense of this definition, the opposite category Lop of
L is characterized as the free strictly associative pointed cartesian category on the
object r1s.

3.2 L-Algebras

In this section we present the definition of L-algebras. An L-algebra is a con-
travariant functor from L to a category with a notion of homology and a natural
transformation µ, which will be called the product of the L-algebra. The homotopy
coherence is concentrated in the fact that µ induces isomorphisms in homology.
Then we will deal with categories equipped with quasi-isomorphisms, that is, a dis-
tinguished class of arrows, called quasi-isomorphisms, which forms a subcategory of
the given category. The only categories of this kind that we will use are the already
mentioned DGA-k-Mod and DGA-k-Alg, where being an quasi-isomorphisms means
inducing an isomorphism in homology.

Definition 3.2.1 (L-algebra). Let pC,b, k, T q be a strict symmetric monoidal cate-
gory with quasi-isomorphisms. An L-algebra A with values in the category C consists
of a functor,

A : Lop
Ñ C (3.19)

together with a natural transformation µ : b ˝ pAˆAq Ñ A ˝ `.

Lˆ L C

b ˝ pAˆAq

A ˝ `

µ (3.20)

The morphism in C that µ associates to each pair prns, rmsq of LˆL, goes from
ArnsbArms to Arn`ms and is written µrns,rms. The image of any arrow α of L by the
functor A, Apαq, is simply written again as α, but this image goes in the opposite
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direction of the original arrow in L. Then, for every pair of arrows α : rps Ñ rns
and β : rqs Ñ rms in L we have the following commutative diagram.

Arns b Arms
µrms,rns // Arn`ms

Arps b Arqs
µrps,rqs //

��
αbβ

Arp` qs
��
α`β (3.21)

The functor A and the natural transformation µ are required to satisfy the
following conditions.

1. Associativity: µ ˝ pµb 1q “ µ ˝ p1b µq. Equivalently, for every rns, rms and
rps in L the following diagram commutes.

Arns b Arms b Arps

1bµrms,rps
��

µrns,rmsb1
// Arn`ms b Arps

µrn`ms,rps

��
Arns b Arm` ps

µrns,rm`ps // Arn`m` ps

(3.22)

2. Commutativity: Let rns, rms in L, and τ : rm`ns Ñ rn`ms be the twisting
morphism of rms ` rns, then the following diagram commutes.

Arns b Arms

T
��

µ // Arn`ms

τ

��
Arms b Arns

µ // Arm` ns

(3.23)

3. Unit: The image of r0s by A is k and µr0s,rns “ µrns,r0s “ 1. In terms of
commutative diagrams we have,

Ar0s b Arns
µr0s,rns // Arns

Arns

–

ff

1

;;
Arns b Ar0s

µrns,r0s // Arns

Arns

–

ff

1

;;

(3.24)

4. Coherence: For every pair rns, rms of objects of L, the morphism

µrns,rms : Arns b Arms Ñ Arn`ms (3.25)

is a quasi-isomorphism, that is, µrns,rms induces an isomorphism in homology.

ê Remark 3.2.2. The natural transformation of an L-algebra is called the prod-
uct of A or the structural quasi-isomorphism of A. Also, in order to simplify the
expressions we drop the indexes of µrns,rms and simply write µ when necessary.
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ê Remark 3.2.3. In an L-algebra A the morphisms induced by the structural quasi-
isomorphism and the images by A of morphism in L like faces, degeneracies and
permutations, maybe can be visualized with following diagram of morphism in C.

k “ Ar0s
s1“η //

Ar1s

ξ1,ξ2
))

s1

��

d1“ε
oo

1

II
Ar2s

ξ1,ξ2,ξ3

**

s1,s2

!!

d1,d2

ii

1,τ

II
Ar3s

(( ��

d1,d2,d3

jj

σ

II
¨ ¨ ¨ii

Ar1s Ar2s Ar3s

Ar1s b Ar1s

µ1,1

OO

Ar1s b Ar2s

µ1,2

OO

Ar2s b Ar1s

µ2,1

gg

(3.26)
Where τ is the non trivial permutation of Σ2 and σ is any permutation of Σ3.

ê Remark 3.2.4. There is an ”degenerated” case of L-algebra. It happens when µ
is taken to be the identity. This implies that Arns “ Ar1sbn for every n ď 1 and
that the application s0 : Ar1s Ñ Ar1s b Ar1s is a commutative coproduct . Indeed,
in L we have the following commutative diagram.

r1s r2s
s1oo

τ

��
r2s

s1

``

(3.27)

Which after applying A and put together with the commutativity of µ, gives,

Ar1s

s1 ""

s1
// Ar2s

τ

��

Ar1s b Ar1s
µ“1
oo

T
��

Ar2s Ar1s b Ar1s
µ“1
oo

(3.28)

making T “ τ and T ˝s1 “ s1 : Ar1s Ñ Ar1sbAr1s. The fact that the coproduct
is commutative implies that all the higher homotopies of the diagonals can be taken
as zero, so this kind of L-algebras are not very interesting for us. The L-algebras
are supposed to model the behavior of systems of diagonals like the one found in the
chain complex associated to a simplicial set. In that case the diagonals obtained from
homotopy inverses of the Eilenberg-Mac Lane transformation are not commutative,
because of the existence of Steenrod operations.

Now we pass to the notion of morphism of L-algebras in order to complete the
introduction of L-algebras as a category.

Definition 3.2.5. Let A and B be two L-algebras with products µA and µB respec-
tively. A morphism of L-algebras f : AÑ B is a natural transformation from A to
B which satisfies the following conditions.
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1. It preserves the product of L-algebras in the sens that fµA “ µBpf b fq, that
is, the following diagram is commutative.

Arns b Arms
µA //

frnsbfrms
��

Arn`ms

frn`ms
��

Brns bBrms
µB // Brn`ms

(3.29)

2. The morphism fr0s : Ar0s Ñ Br0s is the identity of k.

Ar0s “ k
fr0s // Br0s “ k (3.30)

Proposition 3.2.6 (The category of L-algebras). Let C be a category as 3.2.1. Then
the L-algebras with values in C together with the morphisms of L-algebras form a
category. This category will be denoted LpCq.
Proof. Let A, B, C be three L-algebras, f : AÑ B and g : B Ñ C, be two morphisms
of L-algebras. It suffice to check that the composition of natural transformation
g ˝ f is a morphism of L-algebras. The first condition of 3.2.5 is consequence of the
following commutative diagrams for f and g.

Arns b Arms
µA //

frnsbfrms
��

Arn`ms

frn`ms
��

Brns bBrms

grnsbgrms
��

µB // Brn`ms

grn`ms

��
Crns b Crms

µC // Crn`ms

(3.31)

Making the left and right compositions we obtain the commutative diagram we
want.

Arns b Arms
µA //

pg˝fqrnsbpg˝fqrms
��

Arn`ms

pg˝fqrn`ms
��

Crns b Crms
µC // Crn`ms

(3.32)

The second condition also is a direct verification, because we only have to check
that pg ˝ fqr0s is the identity of k.

Ar0s “ k

pg˝fqr0s

77

fr0s // Br0s “ k
gr0s // Cr0s “ k

(3.33)

Even if the definition of L is established in total generality on strict symmet-
ric monoidal categories with quasi-isomorphism, we will restrict our attention to
the category of differential graded modules or the category of differential graded
algebras.
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Definition 3.2.7. Let A an L-algebra with values in the category C.

1. If C is the category of DGA-k-modules, A is called L-algebra.

2. If C is the category of DGA-k-algebras, A is called multiplicative L-algebra.

ê Remark 3.2.8. L-algebras are designed to represent the 0-reduced simplicial sets
and multiplicative L-algebras will represent the 0-reduced simplicial groups.

3.3 Monoidal Structure of LpCq

In this section C represents the category DGA-k-Mod or DGA-k-Alg.

Proposition 3.3.1. Let T : Lop Ñ C be the functor defined by T rns “ k for every
n ě 0 and T pαq “ 1k for every morphism in L. Together with the natural transfor-
mation µ : b ˝ pT ˆ T q Ñ T ˝ ` defined by µrns,rms “ 1k for all rns, rms P L, the
functor T is an L-algebra.

Proof. The proof is evident.

Definition 3.3.2. The L-algebra in proposition 3.3.1, is called the trivial L-algebra
with values in C and it is denoted k.

Proposition 3.3.3. Let C be the category DGA-k-modules. Then the trivial L-
algebra k is a zero object in LpCq.

Proof. We have that k is a zero object of DGA-k-Mod, then, for any L-algebra A,
this defines unique DGA-k-morphisms irns : k Ñ Arns and prns : Arns Ñ k (n ě 0),
which coincide with the coaugmentation and augmentation of Arns, respectively.
The associated natural transformations i : k Ñ A and p : A Ñ k are morphisms of
L-algebras by the commutativity of the following diagram,

k
ηnbηm

yy

ηn`m

$$
Arns b Arms µ

// Arn`ms

k
εnbεm

ee

εn`m

::
(3.34)

because µ is a morphism of DGA-k-modules.

Proposition 3.3.4. Let A and B be two L-algebras. Let P be the functor P : Lop Ñ

C defined by,

1. P rns “ Arns bBrns for all rns P L.

2. P pαq “ Apαq bBpαq for all α morphism in L.
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Let µP : b˝pPˆPq Ñ P ˝` be the natural transformation given by the following
composition.

P rns b P rms “ //

µP

��

Arns bBrns b Arms bBrms

1bTb1
��

Arns b Arms bBrns bBrms

µAbµB
��

P rn`ms
“ // Arn`ms bBrn`ms

(3.35)

Then P is an L-algebra.

Proof. Clearly µP satisfy the unit axiom. The commutativity follows from the com-
mutative diagram,

Arns bBrns b Arms bBrms

1bTb1
��

Tσ // Arms bBrms b Arns bBrns

1bTb1
��

Arns b Arms bBrns bBrms
TbT //oo
TbT

µAbµB
��

Arms b Arns bBrms bBrns

µAbµB
��

Arn`ms bBrn`ms
τbτ // Arn`ms bBrn`ms

(3.36)

where σ “ p 1 2 3 4
3 4 1 2 q. The upper square is commutative by direct evaluation, and

bottom square by the commutativity of µA and µB. The associativity of µP can be
verified directly,

µPp1b µPq “ pµA b µBqp1b T b 1qppµA b µBqp1b T b 1q b 1b 1q

“ pµA b µBqp1b T b 1qpµA b µB b 1b 1qp1b T b 1b 1b 1q

“ pµA b µBqpµA b T pµB b 1q b 1qp1b T b 1b 1b 1q

“ pµA b µBqpµA b p1b µBqpT b 1qp1b T q b 1qp1b T b 1b 1b 1q

“ pµA b µBqpµA b 1b µB b 1qp1b 1b pT b 1qp1b T q b 1qp1b T b 1b 1b 1q

“ pµA b µBqp1b µA b 1b µBqp1b p1b T qpT b 1q b 1b 1qp1b 1b 1b T b 1q

“ pµA b µBqp1b µAp1b T qpT b 1q b µBqp1b 1b 1b T b 1q

“ pµA b µBqp1b T p1b µAq b µBqp1b 1b 1b T b 1q

“ pµA b µBqp1b T b 1qp1b 1b µA b µBqp1b 1b 1b T b 1q

“ pµA b µBqp1b T b 1qp1b 1b pµA b µBqp1b T b 1qq

“ µPp1b µPq

Finally, that µP satisfies the coherence condition of 3.2.1 follows from the fact
that the tensor product of two quasi-isomorphisms is again a quasi-isomorphism,
when k is a field.

Definition 3.3.5. The L-algebra P in 3.3.4 is called the tensor product of A and
B and will be denoted Ab B.
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Proposition 3.3.6. The functor tensor product of two L-algebras induces a functor
b : LpCq ˆ LpCq Ñ LpCq.

Proof. We need to check that for every pair of morphisms of L-algebras, f : AÑ B,
g : C Ñ D, there is a morphism of L-algebras f b g : Ab C Ñ B bD.

Define fbg as pfbgqn “ fnbgn : ArnsbCrns Ñ BrnsbDrns. Let α : rms Ñ rns
morphism of L, and consider the following diagram.

Arns b Crns
pfbgqn //

αbα

��

Brns bDrns

βbβ

��
Arms b Crms

pfbgqn // Brms bDrms

(3.37)

This diagram is commutative because,

pf b gqm ˝ pα b αq “ pfm b gmq ˝ pα b αq
“ pfm ˝ αq b pgm b αq
“ pβ ˝ fnq b pβ ˝ gnq (f and g are morphism of L-algebras)
“ pβ b βq ˝ pfn b gnq
“ pβ b βq ˝ pf b gqn

(3.38)
Now we have to check that f b g preserves the quasi-isomorphism µ. For that,

consider the following diagram.

pAb Cqpnq b pAb Cqpmq pfbgqnbpfbgqm //

µAbC
��

pB bDqpnq b pB bDqpmq
µBbD
��

pAb Cqpn`mq pfbgqn`m // pB bDqpn`mq

(3.39)

The commutativity follows because,

pf b gqn`m ˝ µAbC “ pfn`m b gn`mqpµA b µCqp1b T b 1q
“ pfn`mµA b gn`mµCqp1b T b 1q
“ pµBpfn b fmq b µDpgn b gmqqp1b T b 1q
“ pµB b µDqpfn b fm b gn b gmqp1b T b 1q
“ pµB b µDqp1b T b 1qpfn b gn b fm b gmq
“ µBbD ˝ ppf b gqn b pf b gqmq

(3.40)

Proposition 3.3.7. Then category LpCq is a strict symmetric monoidal category
with unit. The product is given by the tensor product of L defined in 3.3.5 and the
unit is the trivial L-algebra k.

Proof. It is a straightforward succession of verifications.



3.4. HOMOLOGY OF L-ALGEBRAS 73

3.4 Homology of L-Algebras

Definition 3.4.1. Let A be an L-algebra. The module Ar1s is called the main
element of A. The associated forgetful functor from LpCq to C is denoted by U . In
fact we have a collection indexed by n ě 0 of forgetful functors Un : LpCq Ñ C, with
UnpAq “ Arns.

Definition 3.4.2. Let A be an L-algebra. The homology of A is defined to be the
homology of its main element.

ê Remark 3.4.3. The homology of L-algebras is equal to the composition of functors
H˚ ˝ U , where H˚ is the homology functor in C.

Definition 3.4.4. Let f : A Ñ B be a morphism of L-algebras with values in C.
The morphism f is called quasi-isomorphism if the induced morphism Upfq in C by
the forgetful functor, is a quasi-isomorphism.

Proposition 3.4.5. Let f : AÑ B be a morphism of L-algebras with values in C. If
Ukpfq is a quasi-isomorphism in C for some k, then Uknpfq is a quasi-isomorphism
for every n ě 0. In particular if f is a quasi-isomorphism then Unpfq is a quasi-
isomorphism for every n ě 1.

Proof. We proceed by induction. The hypothesis says that fk : Arks Ñ Brks is
a quasi-isomorphism. Now, the following diagram is commutative because f is a
morphism of L-algebras

Arks b Arkpn´ 1qs
fkbfkpn´1q //

µA
��

Brks bBrkpn´ 1qs

µB
��

Arkns
fkn // Brkns

(3.41)

The tensor product fk b fkpn´1q is a quasi-isomorphism since k is a field. Then
fkn is a quasi-isomorphism.

Definition 3.4.6. The equivalence relation on L-algebras spanned by quasi-isomorphisms
will be called again quasi-isomorphism.

3.5 Canonical L-Algebras

The concept of L is inspired by the fact that any natural diagonal of chain complexes
C˚pXq Ñ C˚pXqbC˚pXq, is determined by a zig-zag of natural morphisms C˚pXq Ñ
C˚pX ˆXq Ð C˚pXq b C˚pXq, where the first arrows is the morphism induced by
the simplicial diagonal X Ñ XˆX and the second arrow is the Eilenberg-Mac Lane
transformation. In this section we will proceed to describe the L-algebra structure on
the chain complexes that have as product the Eilenberg-Mac Lane transformation.
Moreover there is a completely canonical way to associate to each simplicial set (not
necessarily 0-reduced) an L-algebra whose main element is its chain complex.

Proposition 3.5.1. Let sSet˚ be the category of pointed simplicial set. Then for
every simplicial set X, there is an unique functor SX : Lop Ñ sSet˚ preserving
zeros, mapping sums to products, and r1s to X.
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Proof. sSet˚ is a strict pointed cartesian category, then by proposition 3.1.13 the
result follows.

Proposition 3.5.2. Let X be a pointed simplicial set. Then composition,

C˚ ˝ SX : Lop
Ñ C (3.42)

together with the Eilenberg-Mac Lane transformation is an L-algebra.

Proof. It follows easily from the definitions and properties of Eilenberg-Mac Lane
transformation.

Definition 3.5.3. The L-algebra associated to the pointed simplicial set X will be
called the canonical L-algebra of X, and denoted by AX .

ê Remark 3.5.4. Let’s see how AX looks like. For n ď 1 we have,

AXrns “ C˚pX
n
q (3.43)

The product for AX , µAX : b˝ pAX ˆAXq Ñ AX ˝` is the Eilenberg-Mac Lane
transformation,

∇n,m : C˚pX
n
q b C˚pX

m
q Ñ C˚pX

n`m
q (3.44)

Let ˚ be the base point ofX, then the images by AX for a morphism α : rms Ñ rns
in L is given by the following formula.

AXrns “ C˚pX
nq

AXpαq // AXrms “ C˚pX
mq

px1, . . . , xnq
� // pxαp1q, . . . , xαpmqq

(3.45)

Where xαpjq “ ˚ for each j not in Dompαq.

In the case of a simplicial group (who will be pointed by its unit), we have an
extra structure.

Proposition 3.5.5. Let H be a simplicial group, then AH is a multiplicative L-
algebra.

Proof. For every n ě 0, Hn and AHrns “ C˚pH
nq is a differential graded algebra

(with the Pontrjagin product). Since the Eilenberg-Mac Lane is a morphism of
algebras, the functor A maps simplicial groups to multiplicative L-algebras.

Proposition 3.5.6. Let X “ ˚ the simplicial point. Then A˚ is the trivial L-
algebra.

Proof. For every n, C˚p˚q “ k, and the application A˚pfq are always the identity of
k. The Eilenberg-Mac Lane transformation is then the identity of k.



Chapter 4

E8-structures on C˚pXq

In [Smi94] Smith describes an E8-coalgebra structure on the chain complex of a
simplicial set when the coefficients ring is Z. In order to do this, he uses an E8-
operad, denoted S, with components RΣn, the Σn-free bar resolution of Z. The
morphisms fn : RΣn b C˚pXq Ñ C˚pXq

bn determined by the operad S contains
the family of higher diagonals on C˚pXq starting at an homotopic version of the
iterated Alexander-Whitney diagonal (given by x ÞÑ fnpr snb xq). The construction
made by Smith can be seen as a version of the Barratt-Eccles operad (see [BE74]).
Moreover, Berger and Fresse (see [BF04]) construct a explicit coaction over the
normalized chain complex associated to a simplicial set by the Barrat-Eccles operad
that extend the structure given by the Alexander-Whitney diagonal.

In this chapter we review the construction of the E8-operad S given by Smith in
[Smi00]† and his proof that C˚pXq is an E8-coalgebra using this operad. Next, we
give an alternative proof of the E8-structure on the chain complex of an simplicial
set by using an operad R constructed by us that simplify the task. The method
used to construct R gives an simply way to produce E8-operads.

The operad R presents similarities with the bar-cobar resolution of Ginzburg-
Kapranov (see [GK94]). Berger and Moerdij (see [BM07]) show that this resolution
can identified with the W construction of Boardman and Vogt (see [BV73]), given
as a result that applied to the Barratt-Eccles operad, the W construction gives a
cofibrant resolution of it. Then, the construction of R can be seen as a middle point
between the Barratt-Eccles operad and its W construction.

The ground category in this chapter is DGA-Z-Mod. To simplify the notation it
will be written DGA-Mod. All the operads are operads on DGA-Mod.

4.1 The Operad S

In this section we make a review the technique presented by Smith in order to
exhibit the E8-coalgebra on chain complexes associated to simplicial sets, originally
published in his monograph rSmi94s. In fact, we present the improved version
of [Smi00]. His results are based on the construction of an particular E8-operad
denoted S.

Definition 4.1.1. An operad P is called E8-operad if for every k ą 0 the component
P pkq is a Σk-free resolution of Z.

†An updated version of [Smi94]

75



76 CHAPTER 4. E8-STRUCTURES ON C˚pXq

ê Remark 4.1.2. We already saw an example of E8-operad, the operad M in ex-
ample 2.1.9.

The following lemma included in [Smi00] is important for the construction of S.
It is based on the Cartan theory of constructions (see [Car55]).

Lemma 4.1.3. Let M1, M2 be DGA-modules which satisfy the following conditions.

1. M1 “ A1 bN1, with N1 Z-free and A1 DGA-algebra.

2. M2 is left DGA-A2-module such that,

(a) There is a sub DG-module N2 ĂM2 with BM2 |N2 injective.

(b) There is a contracting chain homotopy ϕ : M2 ÑM2 with ϕpM2q Ă N2.

Then, every DGA-morphism f0 : M1 Ñ M2 en dimension 0 such that f0pN1q Ă

N2 can be extended to an unique DGA-morphism f : M1 ÑM2 satisfying,

1. fpN1q Ă N2.

2. fpa b xq “ gpaqfpnq, where g : A1 Ñ A2 morphism of DG-modules such that
ab x ÞÑ gpaqfpnq DGA-morphism.

Definition 4.1.4. Let S be the E8-operad given by :

1. The n component RΣn of its underlying S-module is the Σn-free bar resolution
of Z.

2. The compositions (in the sens of definition 2.1.2) RΣn ˝i RΣm Ñ RΣn`m`1 are
the only DG-morphism satisfying the condition,

p1b ApΣn, 1qq bi p1b ApSm, 1qq Ď 1b ApΣn`m´1q (4.1)

where ApΣk, 1q in degree j is generated as ZrΣjs-module by the elements of
the form 1ra1| ¨ ¨ ¨ |ais

†.

ê Remark 4.1.5. The unicity of the composition ˝i and the fact that they satisfies the
operad conditions follows easily from the lemma 4.1.3. The contracting chain homo-
topy ϕ for RΣn is given by ϕp1ra1| ¨ ¨ ¨ |aisq “ 0 and ϕpara1| ¨ ¨ ¨ |aisq “ 1ra|a1| ¨ ¨ ¨ |ais.

ê Remark 4.1.6. The S-coalgebra on a chain complex associated to a pointed simply
connected 2-reduced simplicial set C˚pXq is made by defining morphisms fn : RΣnb

C˚pXq Ñ C˚pXq
bn by using acyclic models.

†Standard notation of bar resolution
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4.2 The Operad R

In this section we present an alternative to the operad S given by Smith [Smi94].
Roughly speaking, we take the S-module where the components are the Σn-free
bar resolutions of Z, then we take the free operad on this S-module and finally we
quotient this operad by an suitable operad ideal I, which makes that our operad will
have only one generator of degree 0 in each component. The resulting E8-operad is
denoted R and in the following section we proof that C˚pXq is an R-coalgebra.

To construct the operad R we will need the notion of ideal of an operad (see
[GK94] §2.1).

Definition 4.2.1. Let P be an operad on the category of DGA-Z-modules, with
composition γ. Let I be a sub S-module of UpPq which satisfies γpxby1b¨ ¨ ¨bykq P I
whenever some of the elements x, y1, . . . , yk belongs to I. I is called an operadic
ideal of P .

Definition 4.2.2. Let P be an operad and I an operadic ideal of P . We define the
quotient operad P{I as the operad with components given by pP{Iqpkq “ P pkq{Ipkq
for every k ě 0, and composition induced by the composition of P .

ê Remark 4.2.3. Clearly the operad structure P{I is well defined by the properties
of the ideal, which allows the pass to the quotient of the composition in P .

Definition 4.2.4. Let S be the be the S-module on the category of DGA-modules,
with components Spnq “ RΣ, the Σn-free bar resolution of Z.

Definition 4.2.5. Let S be the S-module defined in 4.2.4.

1. Let J be the operadic ideal of F pSq (see section 2.3) generating by the elements
of degree zero of F pSq of the form x´ y, where x and y are not null.

2. The operad R is defined to be the quotient operad F pSq{J .

Before continuing we make a description using trees of the operad F pSq, the
ideal J and the operad R. By proposition 2.3.24 the operad F pSq is canonically
isomorphic to an operad of the form ZrΣnsbPpnq where P is a free non symmetric
operad. Then the operad F can be described by labeled rooted planar trees where
the vertices with i inputs are labeled by Σi-generating elements of RΣi, that is el-
ement of the form rσ1{ ¨ ¨ ¨ {σksi, where the permutations σj belong to Σi. Also the
leaves of a tree in F pnq are labeled from left to right by 1, . . . , n. The degree of a
tree in F pnq is equal to the sum of the degrees of the elements that label its vertices.
This description is illustrate by the following pictures.

1. Trees in F pSqp4q of degree 3 and 0 respectively:

1

rτ{τ s2

2 43

rσ1s3
1

r s2

2 43

r s3 (4.2)
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2. Trees with only one vertex are called corollas. Here we have an example of
F pSqp5q with degree 2 and one of F pSqp3q of degree 0.

1 2 3 4 5

rσ1{σ2s5

3 1 2

r s3
(4.3)

For n ě 2, the action by σ P Σn on this kind of elements in F pSqpnq, changes
the labeling of leaves to σp1q´1, . . . , σ´1pnq. In the following pictures we make two
examples with the permutation τp1, 2q “ p 1 2 3

2 3 1 q

1. Corolla in F pSqp3q.

1 2 3

r s3

σ
ÞÝÑ

1 2 3

1 2 3

r s3

“

2 3 1

r s3 (4.4)

2. Element in F pSqp3q with two vertices.

1 2 3

r s2

r s2

σ
ÞÝÑ

1 2 3

1 2 3

r s2

r s2

“

3 1 2

r s2

r s2
(4.5)

In order to include all the elements of the resolutions RΣn as labels we make the
following identifications.

1. Every corolla in F pSqpnq with only vertex labeled by an element of the form
rσ1{ . . . {σks (with σj P Σn) under the action of σ P Σn is identify with the
corolla whose only vertex is labeled by σrσ1, . . . , σks and with leaves labeled
from left to right by 1, . . . , n.

1 2 3 4 5

rσ1{σ2s5

σ
ÞÝÑ

3 1 2 5 4

rσ1{σ2s5

“

1 2 3 4 5

σrσ1{σ2s5
(4.6)

In this case σ “ p 1 2 3 4 5
2 3 1 5 4 q.
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2. Let t be a tree of F pSqpnq whose base vertex (the first vertex from bottom
to top) have k ď n inputs and its labeled by rσ1{ . . . {σks(with σj P Σk). For
1 ď j ď k, let ij be the number of leaves of the subtree of t over the i input.
If t is under the action of σ P Σn of the form θpi1, . . . , ikq (with θ P Σk), then
we made the identification tσ “ t1, where t1 is exactly as t but its base vertex
is labeled by θpσ1, . . . , σkq.

1 2 3

r s2

r s2

σ
ÞÝÑ

3 1 2

r s2

r s2

“

1 2 3

τ r s2

r s2 (4.7)

Where σ “ τp1, 2q “ p 1 2 3
2 3 1 q.

3. Let t a tree of F pnq like the last case. Suppose for each 1 ď i ď k the subtree
of t over the input i have its base vertex labeled by an element of the form
rxis (where xi represents some sequence of permutations of the corresponding
type). If t is under the action of σ P Σn of the form τ1‘¨ ¨ ¨‘ τk (with τj P Σij)
then we made the identification tσ “ t1, where t1 is a tree exactly like t but for
each 1 ď i ď k the label in the base vertex of the subtree over the i input is
changed by trxis.

rτ s2

1 2 3

r s3

4 5

rτ{τ s2
σ
ÞÝÑ rτ s2

2 3 1

r s3

5 4

rτ{τ s2
“

rτ s2

1 2 3

τ1r s3

4 5

τ2rτ{τ s2

(4.8)

Where σ “ τ1 ‘ τ2 “ p
1 2 3
3 1 2 q ‘ p

1 2
2 1 q “ p

1 2 3 4 5
3 1 2 5 4 q.

This identification on the labeling is extended for the rest of the trees by induction
on the subtrees. With it the description of the form of trees in F pSq is complete.
The next step is the differential on F pSq. But this follows easily form the natural
inclusion S ãÑ F pSq, which sends every element of the form σrσ1{ . . . {σks P RΣn to
the corolla of F pSqn, which vertex is labeled by this element. Then the differential
on corollas behaves like the differential on S, and then we extend the differential to
all F(S) in the obvious way.

The composition for F pSq is given by the grafting of trees, in the sense that
t P F pSqpnq and t1 P F pSqpmq, then the tree t1 ˝i t, with 1 ď i ď n, is obtained by
glue together the i input of t and the root of t1. The labeling for the resulting tree,
if both are in T , is just from left to right, 1, . . . , n`m´1. If only t is affected by an
action σ P Σn, then do the composite with the non affected version of t, and multiply
the resulting tree by the action σp1, . . . ,m, . . . , 1q, that is only one block of length
m in the position i. In the case where both are affected by actions, t by σ P Σn and
t1 by σ1 P Σm. Then do the composition with the non affected versions and multiply
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the result by σp1, . . . ,m, . . . , 1q (as before) and then by 1 ‘ ¨ ¨ ¨ ‘ σ1 ‘ ¨ ¨ ¨ ‘ 1 (n
summands and σ1 in the position σ´1piq).

The operadic ideal J is used to identify all the subtrees of degree 0 in F pSqpnq
coming from F pnq to the n corolla of F pSqpnq. The following pictures shows some
examples.

1

r s2

2 43

r s3 =

1 2 3 4

r s4
(4.9)

1

r s2

2 3

r s2
“

3

r s1

1 2

r s2
“

1 2 3

r s3

(4.10)

Then the operad R only have in arity n one Σn-generating element of degree 0,
which is the n corolla labeled by r sn.

Proposition 4.2.6. The operad R is an E8-operad.

Proof. It suffices to exhibit in each arity an contracting chain homotopy. In arity
n, the contracting chain homotopy Φn : Rpnq Ñ Rpnq is obtained by extending on
Rpnq the contracting chain homotopy from the component of the operad S, RΣn in
the obvious way.

4.3 The Chain Complexe C˚pXq as E8-Coalgebra

Consider the diagram given by the universal property of the coaugmentation of the
adjunction F $ U .

S

i !!

ε // F pSq

p

��
S

(4.11)

Where the morphism i is the identity of S-modules. The morphism of operads
p : F pSq Ñ S is given by the universal property of ε. It is easy to see that p respect
the ideal J because p is essentially the contraction of vertices of trees. Then p pass
to the quotient and we obtain a morphism of operads p : R Ñ S, which implies
that every S-coalgebra is an R-coalgebra.

We can also use the lemma 4.1.3 to show that chain complexes are R-coalgebras.
We only have to observe that Rpnq can be expressed as the tensor product of ZrΣns

with the trees with vertices labeled by elements of the form 1rσ1| . . . |σjs, and that
the grafting of two trees of this type is again a tree of this form.

Recently, in [DV15] Vallette and Dehling describe an operad similar to R. More-
over, they show that this operad can be used to state explicitly (by the use relations)
the definition of E8-algebras. Which is the case for A8-algebras.



Chapter 5

E8-Structures Associated to
L-Algebras

Using a homotopy inverse of the structural quasi-isomorphism µ of an L-algebra A
we can define a coproduct on its main element Ar1s. Indeed, we only have to take the
composition of an homotopy inverse of µ : Ar1s b Ar1s Ñ Ar2s with the morphism
s1 : Ar1s Ñ Ar2s. Observe that this coproduct in general is not associative. But,
the structure of L-algebra makes this coproduct associative and commutative up to
homotopy. Moreover, the homotopies also satisfy to be associative and commutative
up to homotopy, and this property is maintained on the next levels of homotopies,
generating a system of higher homotopies. The classical case where this happens is
in the context of chain complexes associated to a simplicial set. We saw in the last
chapter that the information of higher homotopies can be organized into an E8-
coalgebra. Such a structure was exhibited in two different ways, using the operad
S (see [Smi94]) and alternatively using the operad R designed by us. This chapter
is dedicated to the generalization of these descriptions in the context of L-algebras
with values in the category DGA-k-Mod, in other words, we will prove that the main
element of an L-algebra A is equipped with an E8-coalgebra structure describing the
system of higher homotopies associated to the coproducts induced by the structural
quasi-isomorphism of A.

The main difference with the case of chain complexes associated to a simplicial
set, where the process begins with the Alexander-Whitney diagonal, which is an
associative coproduct, is that in general we don’t have the associativity. Then, in
order to model the higher homotopies we have to consider an E8-operad that will
have several generators in degree 0, and not only one like the operads S and R. In
the section 5.4, we will construct an E8-operad that we denote K. The construction
is made by infinitely many steps, in the sense that we construct a sequence of operads
tKnuně2, in such a way that Ki is a suboperad of Ki`1. The operads Ki are not
E8-operads, but they will be almost E8-operads, in the sense that until arity i they
will satisfy the E8-conditions. Finally, the E8-operad K is obtained by taking the
inductive limit of this sequence of operads.

One of the characteristics of this construction is the use of a technique that we
call polynomial operads. It will create a new operad from an S-module containing an
S-submodule with an operadic structure, in such a way that this operadic structure
is preserved in the resulting operad. This done by using amalgamated sums in the
category of operads. The section 5.3 is completely dedicated to the description of

81
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this technique.
In the final part of this chapter we exhibit the main element Ar1s of an L-

algebra as a E8-coalgebra. Again, this will be possible due to the sequence of
operads that define K, in the sense that it will be sufficient to exhibit Ar1s as a
Ki-coalgebra for each i, because the universal property of colimits will induce the K-
coalgebra structure on Ar1s. Moreover, our construction that Ar1s is a E8-coalgebra
is functorial. This proves that an L-algebra quasi-isomorphic to ApXq contains at
least as many homotopy information as a E8-coalgebra structure on C˚pXq, such
as the one described by J. Smith.

In [Man06], Mandell describes an E8-algebra structure on the normalized cochain
complex associated to a simplicial space, which under some finiteness hypothesis
gives an invariant for the weak homotopy type of the space. Our results suggest
that L-algebras are also pertinent in order to describe the weak homotopy type of
spaces.

5.1 E8-Operads

In the last chapter we defined E8-operads for the case of differential graded modules
with coefficients in Z. For coefficients in a field k, we take the obvious adaptation.

Definition 5.1.1 (E8-Operad). An operad P on the category DGA-k-Mod is called
E8-operad if each component P pnq is a krΣns-free resolution of k.

Definition 5.1.2 (E8-algebra and E8-coalgebra). We call E8-algebra any P-
algebra with P an E8-operad. And in the same way, an E8-coalgebra is an P-
coalgebra where the operad P is an E8-operad.

We introduce a notion of morphism between E8-coalgebras which is well suited
for our purpose.

Definition 5.1.3. Let P be an E8-operad on the category DGA-k-Mod, and let
A,B P-coalgebras. A morphism f : A Ñ B of P-coalgebras is a morphism of
DGA-k-Mod which preserves the P-coalgebra structure up to homotopy, that is, the
following diagram

Ppnq b A ϕAn //

1bf

��

Abn

fbn

��
Ppnq bB

ϕBn

// Bbn

(5.1)

is commutative up to homotopy for every n ą 0, where ϕAn and ϕBn are the
associated morphisms of the P-coalgebra structure of A and B, respectively. The
category of coalgebras on the operad P is denoted P-CoAlg.

5.2 The Lifting Theorem

In this section we include a basic tool that will be needed along this chapter. The
symbol Λ is used to represent any ring.
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Lemma 5.2.1. Let f : L Ñ N be a homogeneous morphism of DG-Λ-modules of
degree k P Z. Let L1 be a DG-Λ-submodule of L and P graded submodule of L such
that P is projective and bounded below, and in each degree we have the decomposition
Li “ L1i ‘ Pi. Write f 1 for the restriction of f to L1. Suppose that the homology
of N is zero and that f 1 is null-homotopic by a homotopy h : L1 Ñ N . Then there
exists a homotopy H on L extending h, which makes f null-homotopic.

Proof. Let p P Z the inferior bound of P , then for i ď p, Pi “ 0 and Li “ L1i. Then
we take Hi “ hi for i ď p. Now suppose we have defined Hi on Li for all i ă n, such
that Hi “ hi on L1i and satisfying fi “ BHi ` p´1qkHi´1B.

Nn`k`1

B

��
L1n

hn

55

B

��

� � // Ln “ L1n ‘ Pn

Hn

;;

fn //

B

��

Nn`k

B

��
L1n´1

hn´1

55

B

��

� � // Ln´1 “ L1n´1 ‘ Pn´1

Hn´1

;;

fn´1 //

B

��

Nn`k´1

L1n´2

hn´2

55

� � // Ln´2 “ L1n´2 ‘ Pn´2

Hn´2

<<

(5.2)

For every homogeneous element x P L1n we take Hnpxq “ hnpxq. Note that the
image fn ´ p´1qkHn´1B : Ln Ñ Nn`k belongs to the image B : Nn`k`1 Ñ Nn`k,
indeed

Bpfn ´ p´1qnHn´1Bq “ Bfn ´ p´1qnBHn´1B

“ Bfn ´ p´1qnpfn´1 ´ p´1qnHn´2BqB (by hypotesis)
“ Bfn ´ p´1qnfn´1B `Hn´2BB

“ Bfn ´ p´1qnfn´1B “ 0
(5.3)

Thus for x P Pn, we can choose the desired element Hnpxq P Nn`k`1 using the
fact that P is projective and H˚pNq “ 0.

Theorem 5.2.2 (Relative Lifting Theorem). Let f : M Ñ N and ϕ : L Ñ N
morphisms of DG-Λ-modules of degree l and k, respectively. Suppose that f is a
quasi-isomorphism, and let L1 be a DG-Λ-submodule of L and P graded submodule
of L such that P is projective and bounded below, and in each degree we have the
decomposition Li “ L1i ‘ Pi. Write ϕ1 for the restriction of ϕ to L1. Suppose there
is a morphism α1 : L1 Ñ M of DG-Λ-modules of degree k ´ l that lifts ϕ1 up to
homotopy along f . Then there exists an extension α : LÑ M of α1, that lifts ϕ up
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to homotopy along f . Moreover, the homotopy can be choose to be an extension of
the homotopy associated to α1.

M
f // N

L

α
``

ϕ
>>

L1

α1

PP

?�

OO ϕ1

NN

(5.4)

Proof. Let Cpfq be the mapping cone of f . Let u : N Ñ Cpfq the inclusion

x ÞÑ

ˆ

0
x

˙

and h1 : L1 Ñ N the homotopy from ϕ1 to f ˝ α1. Then we can easily

check that

ˆ

α1

h

˙

: L1 Ñ Cpfq is a homotopy to 0 of u˝ϕ1 “

ˆ

0
ϕ1

˙

. The lemma 5.2.1

says there exists a homotopy to zero

ˆ

H1

H2

˙

: L Ñ Cpfq of u ˝ ϕ extending

ˆ

α1

h

˙

.

So we have,

ˆ

0
ϕ

˙

“ BCpfq

ˆ

H1

H2

˙

` p´1qk
ˆ

H1

H2

˙

BL

“

ˆ

´p´1qlBM 0
f BN

˙ˆ

H1

H2

˙

` p´1qk
ˆ

H1

H2

˙

BL

“

ˆ

´p´1qlBMH1 ` p´1qkH1BL

fH1 ` BNH2 ` p´1qkH2BL

˙

(5.5)

This gives the following equations.

BMH1 “ p´1ql`kH1BL

ϕ´ fH1 “ BNH2 ` p´1qkH2BL
(5.6)

The first says that H1 is a morphism of DG-Λ-modules and the second that H2

is a homotopy from fH1 to ϕ. Finally, we take α “ H1 as the lift of ϕ along f .

5.3 Polynomial Operads

The polynomial operads construction is a technique used to create an operad from
an S-module with an S-submodule having an operadic structure, in such a way that
this operadic structure is preserved. Recall that we denote by U the forgetful functor
from operads to S-modules.

Definition 5.3.1. C is the category such that,

1. The objects are pairs of the form pE ,Mq, where M is a S-module and E is
an operad such that UpEq is a S-submodule of M . The canonical inclusion is
denoted by iE : UpEq ÑM .
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2. A morphism from pE ,Mq to pF , Nq, is a pair pf, fq with f : E Ñ F morphism
of operads, and f : M Ñ N morphism of S-modules, such that the following
diagram commutes.

M
f // N

UpEq

iE

OO

Upfq
// UpFq

iF

OO

(5.7)

ê Remark 5.3.2. Essentially, a morphism from pE ,Mq to pF , Nq in C is morphism
of S-modules from M to N that sends UpEq to UpFq and respects the operadic
structure of E .

Definition 5.3.3. We define U : OP Ñ C to be the functor forgetful which sends
every operad E to the pair pE , UpEqq. That is, every operad is sent to the pair formed
by itself and its underlying S-module.

Theorem 5.3.4. The functor U : OP Ñ C has a left adjoint. We denote this
adjoint by J, and the image of pE ,Mq under J by ErM s, that we call the polynomial
operad on M with coefficients in E.

Proof. We can associate to every pE ,Mq P C the following diagram in OP ,

FUpEq εE //

F piEq
��

E

F pMq

(5.8)

where ε : FU Ñ 1OP is the counit of the adjunction F $ U : S Ñ OP . This
association is functorial. Indeed, for every morphism in C, pf, fq : pE ,Mq Ñ pD, Nq,
we have the following commutative diagram.

FUpEq
F piEq

��

FUpfq

%%

εE // E
f

""
F pMq

F pfq %%

FUpDq
F piDq
��

εD
// D

F pNq

(5.9)

The commutativity of this diagram follows from the naturality of the counit ε
and the diagram from the definition of pf, fq as a morphism in C. Thus we have a
functor Cm from C to the category of diagrams in OP of the form ‚ ‚ //oo ‚

Then, we define the functor J : C Ñ OP to be the composition of Cm with the
functor of colimits on OP (see proposition 2.4.4).

In order to prove that we have the adjunction J $ U : C Ñ OP , we use the
proposition 1.5.5. That is, we will construct for every object pE ,Mq P C an uni-
versal arrow Ψ from pE ,Mq to UJpE ,Mq “ pErM s, UpErM sqq. We proceed first by
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defining the arrow, then check that it is a morphism in C and finally that it satis-
fies the universal property. To improve clarity, despite proof’s length, before each
verification we will include the used relevant commutative diagrams.

Let pE ,Mq be an object in C and consider the following diagram given by the
colimit JpE ,Mq.

FUpEq εE //

F piEq
��

E

F pMq ErM s
��
α

//
β

(5.10)

Now consider the couple of arrows pα, θpβqq, where θ is the isomorphism,

OPpF pMq, P q θ // SpM,UpP qq (5.11)

given by the adjunction F $ U . This couple will be our universal arrow Ψ. But
before we have to check that Ψ is an arrow in C, that is, the following diagram
commute.

M
θpβq // UpErM sq

UpEq

iE

OO

Upαq
// UpErM sq

1

OO

(5.12)

We will need the following commutative diagrams.

1. θ naturality:

ErM s OPpF pMq, ErM sq
OO

β˚

θ // SpM,UpErM sqq
OO

Upβq˚

F pMq

β

OO

OPpF pMq, F pMqq θ // SpM,UF pMqq

β � // θpβq “ UpβqηM

1F pMq
_

OO

� // θp1F pMqq “ ηM
_

OO

(5.13)

2. η naturality:

M
ηM // UF pMq

UpEq

iE

OO

ηUpEq
// UFUpEq

UF piEq

OO

(5.14)

3. Triangular equation for η an ε:

U

1 ""

ηU // UFU

Uε ùñfor all PPOP
��
U

UpPq
ηUpPq //

1 %%

UFUpPq
UpεP q
��

UpPq

(5.15)
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Now, we check that the diagram 5.12 is commutative.

θpβqiE “ UpβqηM iE (by diagram 5.13)

“ UpβqUF piEqηUpEq (by diagram 5.14)

“ UpαqUpεEqηUpEq (by diagram 5.10)

“ Upαq (by diagram 5.15)

To verify that pα, θpβqq satisfies the universal property, we have to show that
given any Q operad and any morphism pg, gq : pE ,Mq Ñ pQ, UpQqq, there is an
unique morphism ph, hq in C making the following diagram commutative.

pE ,Mq pα,θpβqq //

pg,gq

��

pErM s, UpErM sqq

ph,hquu
pQ, UpQqq

(5.16)

For that consider following diagram associated to the pair pg, gq.

FUpEq εE //

F piEq
��

E

g

��

F pMq

θ´1pgq
11

ErM s
��
α

//
β

h

""
Q

(5.17)

Where h is the morphism we want to construct and the arrow θ´1pgq is given by
the bijection θ of the adjunction F $ U .

OPpF pMq,Qq θ // SpM,UpQqq
θ´1pgq g�oo

(5.18)

To construct h we use the universal property of the colimit ErMs, that is, if
gεE “ θ´1pgqF piEq in diagram 5.17, there exists an unique operad morphism h from
ErM s to Q, such that hα “ g and hβ “ θ´1pgq. Both arrows, gεE and θ´1pgqF piEq,
go from FUpEq to Q. Then we will use the universal property of the unit η of
F $ U to show they are the same arrow. Which says in particular that there exists
only one morphism of operad ρ : FUpEq Ñ Q such that the following diagram is
commutative.

UpEq

Upgq %%

ηUpEq // UFUpEq
Upρq

��
UpQq

(5.19)
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Then we only have to check that UpgεEqηUpEq and Upθ´1pgqF piEqqηUpEq are equal
to Upgq. But before that we make a list with some of the necessary commutative
diagrams.

1. Naturality of θ´1:

OPpF pMq,Qq SpM,UpQqqθ´1
oo

OPpFUpQq,Qq

F pgq˚

OO

SpUpQq, UpQqq

g˚

OO

θ´1
oo

εQF pgq “ θ´1pgq g�oo

εQ “ θ´1p1UpQqq
_

OO

1UpQq
_

OO

�oo

(5.20)

2. Definition of pg, gq as morphism in C:

M
g // UpQq

UpEq

iE

OO

Upgq
// UpQq

1 ùñ

OO
F pMq

F pgq // FUpQq

FUpEq

F piEq

OO

FUpgq

99

(5.21)

3. ε naturality:

FUpQq εQ // Q

FUpEq

FUpgq

OO

εE // E

g

OO

(5.22)

4. η naturality:

M
ηM //

g

��

UF pMq

UF pgq

��
UpQq ηUpQq // UFUpQq

(5.23)

Now the verifications.

UpgεEqηUpEq “ UpgqUpεEqηUpEq

“ Upgq (by diagram 5.15)

And now, the other one.

Upθ´1
pgqF piEqqηUpEq “ UpεQF pgqF piEqqηUpEq (by diagram 5.20)

“ UpεQFUpgqqηUpEq (by diagram 5.21)

“ UpgεEqηUpEq (by diagram 5.22)

“ UpgqUpεEqηUpEq

“ Upgq (by diagram 5.15)
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Then by the colimits universal property, there exist an unique operad morphism
h : ErM s Ñ Q such that hα “ g and hβ “ θ´1pgq. Defining h as Uphq, the pair
ph, hq is clearly a morphism in C. Now, even if we already have hα “ g, to be sure
ph, hq makes the diagram 5.16 commutative we need to check that hθpβq “ g.

hθpβq “ Uphqθpβq

“ UphqUpβqηM (by diagram 5.13)

“ Upθ´1
pgqqηM (by property of h)

“ UpεQF pgqqηM (by diagram 5.20)

“ UpεQqUF pgqηM

“ UpεQqηUpQqg (by diagram 5.23)

“ g (by diagram 5.15)

The unicity for ph, hq follows from the unicity of h and the fact that every mor-
phism pf, fq of C from pErM s, UpErM sqq to pQ,UpQqq satisfies f “ Upfq.

ê Remark 5.3.5. The universal arrow

Ψ : pE ,Mq Ñ UpIpE ,Mqq “ pErM s, UpErM sqq (5.24)

associated to every pair pE ,Mq P C in the proof of theorem 5.3.4, extends to the
unit of the adjunction J % U : C Ñ OP . We keep the notation Ψ for this unit.

Proposition 5.3.6. Let pE ,Mq P C and A P OP. For every morphism pf, fq :
pE ,Mq Ñ UpAq “ pA, UpAqq, there exists an unique morphism of operads ϕ :
ErM s Ñ A, such that UpϕqΨ “ f . So we have the following commutative diagram.

pE ,Mq Ψ //

pf,fq ))

pErM s, UpErM sqq
pϕ,Upϕqq

��
pA, UpAqq

(5.25)

Proof. This is just the universal property for the unit Ψ : 1C Ñ UJ.

5.4 The Operad K

In this section is constructed a collection of operads tKnuně2 in such a way its
inductive limit is an E8-operad. This operad will be denoted by K. In order to do
that, we begin with an S-module concentrated in arity 2, then K2 is taken to be the
free operad on it. K2 as S-module will have a krΣ2s-free resolution of k in its second
component, which is formed by the abstract binary operations coded by K2. But
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the rest of components of K2 are not necessarily free resolutions of k. Indeed, K2

fails to have the homotopy linking the following trees of degree 0 in K2p3q,

1

x

2 3

x
ÐÑ

3

x

1 2

x (5.26)

where x is any generating element of degree 0 in K2p2q. To overcome this diffi-
culty, K2 is extended to an operad K3 having the missing homotopies in the com-
ponent K2p3q. This processes requires the use of the polynomial operads technique
discussed in the previous section. Step by step the homotopies are completed to
finally give, as an inductive limit, an operad with all the homotopies we want, in
other words, the homotopies to have an E8-operad, the operad K.

Proposition 5.4.1 (Acyclic Extension). Let M be a krΣns-free finitely generated
DGA-k-module. Then there exists a krΣns-free finitely generated acyclic DGA-k-
module N such that

1. M0 “ N0.

2. M is a DGA-k-submodule of N .

Proof. For the modules on krΣns, we consider the adjunction L $ U : Set Ñ
ModkrΣns, where U is the forgetful functor. For every module N , the counit gives
the surjection εN : LUpNq Ñ N , which will be denoted p : PN Ñ N . Given a
DGA-k-module M we denote ZM its submodule of cycles. On ZM the differential
is 0, then we extend the meaning of P to graded modules, we keep the same notation
for the extended morphism p : PZM Ñ ZM . Consider the composition d “ i ˝ p :
PZM Ñ M , where i is the canonical inclusion of ZM in M . ZM can seen as a
submodule of PZM , then p : PZM Ñ ZM is a retraction for this inclusion and if
m P ZM , then dpmq “ m.

Observe that in the mapping cone of d : i˝p : PZM ÑM , Cpdq, all the cycles of
M are now boundaries and also on Cpdq will appear new cycles. Indeed, let m PM

cycle, recall that the differential of Cpdq is given by

ˆ

0 0
d BM

˙

. Then in Cpdq we

have B

ˆ

m
0

˙

“

ˆ

0
m

˙

, which means that m is a boundary. If it happens that m is

already a boundary in M , that is there exists n such that BMpnq “ m, then

ˆ

m
´n

˙

is a cycle in Cpdq. From this also notice that if all the cycles of M have degree at
least k, then all the cycles in Cpdq will have at least degree k ` 1.

Let M krΣns-free finitely generated DGA-k-module, and denote W the kernel of
the augmentation ε : M Ñ k and consider the krΣns-linear morphisms for n ě 1,

PZCpdnq
dn`1 // Cpdnq (5.27)

where d1 is d : PZW Ñ W , and dn`1 is d : PZCpdnq Ñ Cpdnq. Then we have
that W is included in Cpd1q and Cpdnq is included in Cpdn`1q. With this we can
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define a DGA-k-module N that satisfies the conditions of the theorem by taking the
colimit of the following diagram,

M Woo // Cpd1q // Cpd2q // ¨ ¨ ¨ (5.28)

where all the arrows are the respective canonical inclusions. Observe that we
can reduce the size of this acyclic extension by considering in the first step only the
cycles of degree 0 of W , and for the construction of dn`1, considering only the cycles
of degree n of the last mapping cone.

Definition 5.4.2. Let M be a krΣns-free finitely generated DGA-k-module. The
acyclic extension of M is the associated DGA-k-module given by proposition 5.4.1.
It will be denoted by XpMq.

Definition 5.4.3. Let M be a DGA-k-module krΣ2s-free resolution of k. For n ě 2,
Kn is the operad defined by induction as follows.

1. K2 “ F pMq, where F is the free operad functor and M is seen as a S-module
concentrated in arity 2.

2. Kn`1 “ JpKn,Mnq “ KnrMns, where J is the functor defined in proposition
5.3.4 and Mn is the S-module given by:

Mnpiq “

#

Knpiq i ‰ n` 1

XpKnpn` 1qq i “ n` 1
(5.29)

ê Remark 5.4.4. Between the operads of the collection tKnuně2, we have canonical
inclusions of operads Kn ãÑ Kn`1, given by the arrow αn of the following commuta-
tive diagram from the construction of Kn`1.

FUpKnq
εKn //

F piKn q
��

Kn

F pMnq KnrMns “ Kn`1

��
αn

//
βn

(5.30)

ê Remark 5.4.5. By construction K2 “ F pMq only contains operations with arity
2 or more, because M is concentrated in arity 2. Then, the operations of arity ě 3
are obtained by composition of operation of arity 2. K2 is not acyclic for arities
ě 3. The next step is make acyclic only K2p3q, for that we construct the inclusion
K2 ãÑM2, which is strict only in arity 3. The new operations are not decomposable
in terms of operations of arity 2 of K2, and K3 “ K2rM2s will be formed by the
compositions all operations in K2 and the new arity 3 operations. Then K2 coincide
with K3 in arity 2, and in arity 3 we have the inclusion K2p3q ãÑ K3p3q. A similar
reasoning apply for the general case, in other words the extension Kn Ñ Kn`1 is
the identity for arities ď n` 1.

Definition 5.4.6. The operad K is defined to be the inductive limit of the collection
of operads,

K2
� � α2 // K3

� � α3 // ¨ ¨ ¨
� � αn´1 // Kn

� � αn // ¨ ¨ ¨ (5.31)
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Proposition 5.4.7. The operad K is an E8-operad.

Proof. We have Kp2q “ K2p2q “M2, a krΣ2s-free resolution of k, and by construction
Kpn`1q “ Kn`1pn`1q “Mn “ XpKnpn`1qq, which is acyclic and krΣn`1s-free.

5.5 E8-Structures in L-Algebras

The following theorem is the principal objective of this thesis. This theorem exhibits
the main element of an L-algebra as an E8-coalgebra.

The outline of the theorem is, first we prove that the main element Ar1s of an
L-algebra A have a Kn-coalgebra structure for all n ą 1. Then, using the fact that
our operad K is the inductive limit of these operads, we prove that Ar1s will have a
structure of K-coalgebra, in other words, Ar1s is an E8-coalgebra.

Theorem 5.5.1 (Main Theorem). Let K be the E8-operad defined in 5.4.6. Then,
there exists a functor F

L-Alg F // K-CoAlg (5.32)

which associates a K-coalgebra FpAq to each L-algebra A and satisfies the fol-
lowing conditions.

1. The underlying DGA-k-module of FpAq is Ar1s.

2. For every n ě 1, the morphism ϕn : Kpnq b Ar1s Ñ Ar1sbn, given by the
K-coalgebra structure defined on Ar1s by F , makes the following diagram com-
mutative up to homotopy,

Ar1sbn
µ // Arns

Kpnq b Ar1s

s1pεb1q

88

ϕn

gg

(5.33)

where µ is given by the structural quasi-isomorphism of A and s1 is the image
by A of the only morphism in L of the form prns, αq : rns Ñ r1s.

ê Remark 5.5.2. Clearly, the composition of F with the canonical L-algebra functor
(see definition 3.5.3), associates an E8-coalgebra to each simplicial set.

Proof of theorem 5.5.1. We use the fact that the operad E8-operad K is the induc-
tive limit of the sequence of operads,

K2 Ă ¨ ¨ ¨ Ă Kn Ă ¨ ¨ ¨ Ă K (5.34)

in order to proceed by induction. We first show for all n ě 2 that Ar1s has
an structure of Kn-coalgebra which satisfies the second condition of the theorem.
That is, there exists an operad morphism F n : Kn Ñ CoendpAr1sq, such that the
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associated morphisms ϕi : Knpiq b Ar1s Ñ Ar1sbi, makes the following diagram
commutative up to homotopy,

Ar1sbi
µ // Aris

Knpiq b Ar1s

s1pεb1q

88

ϕi

ff

(5.35)

where µ is given by the structural quasi-isomorphism of A and s1 is the image by
A of the only morphism in L of the form pris, αq : ris Ñ r1s.

Case K2: Recall that K2 is the free operad on the S-module M2 concentrated in
arity 2. To show that Ar1s is a K2-coalgebra, we define an Σ2-equivariant morphism
from M2p2q to CoendpAr1sqp2q using the relative lifting theorem 5.2.2 in order to
satisfy the condition on K2 and then, the K2-coalgebra structure is obtained as a
consequence of the universal property of free operads.

Defining a Σ2 morphism from M2p2q to CoendpAr1sqp2q is equivalent to define a
morphism of DGA-krΣ2s-modules,

ϕ2 : K2p2q b Ar1s Ñ Ar1s b Ar1s (5.36)

Recall that M2p2q “ K2p2q, the action of Σ2 on Ar1s b Ar1s is the permutation
of factors and the action of Σ2 on K2p2qbAr1s maps xb a to xσb a. Now consider
the following diagram,

Ar1s b Ar1s
µ // Ar2s

K2p2q b Ar1s

s0˝pεb1q

OO

ϕ2

hh

(5.37)

where ε is the augmentation of K2p2q, s0 : Ar1s Ñ Ar2s is the image by A of
the only arrow in L of the form pr2s, αq : r2s Ñ r1s and µ is the structural quasi-
isomorphism of A.

The DGA-krΣ2s-morphism ϕ2 that makes the diagram commutative up to ho-
motopy is obtained with the theorem 5.2.2 by taking L1 “ 0. This complete the
existence of a Σ2-equivariant morphism from M2p2q to CoendpAr1sqp2q and there-
fore, we have a morphism F2 of S-modules from M2 to CoendpAr1sq, which behaves
on M2p2q as ϕ2 and as 0 on M2piq, i ‰ 2.

Now, consider the following diagram,

M2
� � //

F2 &&

K2 “ F pM2q

F 2

��
CoendpAr1sq

(5.38)

where the upper arrow is given by the inclusion of S-modules. The universal
property of the free operad K2 says there is an unique morphism of operads F 2

making the diagram commutative. This morphism F2 gives the K2-coalgebra struc-
ture on Ar1s that we wanted.

Case Kn: Suppose we have a sequence of operad morphisms F 2, . . . , F n´1, such
that, for i ă n, F i : Ki Ñ CoendpAr1sq and F i satisfies the second condition of the
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theorem. As we have seen in the construction of Ki’s, the operad Kn´1 as S-module,
can be embedded as a direct factor in a S-module Mn´1 with component Mn´1pnq
acyclic and krΣns-free. Then we have Mn´1 “ Kn´1‘P , where the component P pjq
is krΣjs-free for j ą 0 .

Observe that this defines an object pKn´1,Mn´1q and morphism in C,

Fn´1 : pKn´1,Mn´1q Ñ pCoendpAr1sq, UpCoendpAr1sqqq (5.39)

which behaves as F n´1 on Kn´1 and as 0 on P . In order to satisfy the second
condition of the theorem we focus our attention in the Σj-equivariant morphism
given by F n´1 on the component Kn´1pjq, j ą 0. We will extend this morphism
on the components Mn´1pjq or equivalently, define a DGA-krΣjs-morphism φj from

Mn´1pjq b Ar1s to Ar1sbj. In order to do that, consider the diagram,

Ar1sbj
µ // Arjs

Mn´1pjq b Ar1s

φj
gg

s0˝pεb1q
77

Kn´1pjq b Ar1s

φj

WW

?�

OO s0˝pεb1q

HH

(5.40)

where φj is the krΣns-morphism induced by F n´1. By hypothesis, the morphism
φj makes commutative up to homotopy the outer triangle of the diagram. Then

the existence of φj follows after applying the relative lifting theorem 5.2.2 with
L “Mn´1pjq b Ar1s and L1 “ Kn´1pjq b Ar1s.

Observe that the Σj-equivariant morphism from Mn´1pjq to CoendpAr1sqpjq in-

duced by φj behaves like F n´1 over Kn´1pjq. Denote by Fn´1 the morphism of

S-modules given by this data. Then pF n´1, Fn´1q : pKn´1,Mn´1q Ñ pCoendpAr1sq,
UpCoendpAr1sqqq is a morphism of C, and consider the following diagram.

pKn´1,Mn´1q

Fn´1 **

Ψ // pKn´1rMn´1s, UpKn´1rMn´1sqq

pFn,UpFnq
��

pCoendpAr1sq, UpCoendpAr1sqqq

(5.41)

The operad morphism F n making the diagram commutative follows by proposi-
tion 5.3.6. Then, F n gives the Kn-coalgebra structure on Ar1s needed to complete
the inductive step.

Ar1s is a K-coalgebra: We now proceed with the final part of the proof
and exhibit Ar1s as a K-coalgebra. Consider the following cocone of operads onthe
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diagram given by the operads tKiuiě2.

K F // CoendpAr1sq

K2

F 2

55OO

� � // ¨ ¨ ¨

¨¨¨

� � //

¨¨¨

Kn
� � //

Fn

99bb

¨ ¨ ¨

¨¨¨
(5.42)

The inductive part of the proof exhibited the operad CoendpAr1sq, together with
the morphisms F n’s, as a cocone onthe Ki’s. By definition K is also a cocone on
the Ki’s. Then the universal property of colimits says that there exists an unique
morphism of operads F from K to CoendpAr1sq commutative on these two cocones.
The morphism F : K Ñ CoendpAr1sq exhibit Ar1s as an K-coalgebra with the
conditions stated by the theorem.

Functoriality: Let f : A Ñ B be a morphism of L and consider the following
diagram.

Arnsbn

µA &&

fbn1 // Brnsbn

µBxx
Arns

fn // Brns

Krns b Ar1s
1bf1

//

spεb1q
88

ϕA
n

HH

Krns bBr1s

spεb1q
ff

ϕB
n

VV

(5.43)

The two triangles are commutative up to homotopy by the second condition of
the theorem and the inner diagrams are commutative because f is a morphism of
L-algebras. The commutative up to homotopy of the outer diagram follows from
this and the fact that µ is a quasi-isomorphism. This shows that our construction
is functorial and completes the proof.

* * *
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