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Summary of the Thesis

In this thesis we recall the notion of L-algebra. L-algebras are intended as al-
gebraic models for homotopy types. L-algebras were introduced by Alain Prouté in
several talks since the eighties. The principal objective of this thesis is the descrip-
tion of an FE,-coalgebra structure on the main element of an L-algebra. This can
be seen as a generalization of the F-coalgebra structure on the chain complex as-
sociated to a simplicial set given by Smith in [Smi94]. We construct an E-operad,
denoted IC, used to construct the FE,-coalgebra on the main element of a L-algebra.
This Ey,-coalgebra structure shows that the canonical L-algebra associated to a
simplicial set contains at least as much homotopy information as the F.-coalgebras
usually associated to simplicial sets.

Keywords
Differential graded modules, L-algebras, symmetric operads, F.-coalgebras.

Résumé de la These

Dans cette these nous rappelons la notion de L-algebre, qui a pour objet d’étre
un modele algébrique des types d’homotopie. L’objectif principal de cette these
est la description d'une structure de E-coalgebre sur I’élément principal d'une £-
algebre. Ceci peut étre vu comme une généralisation de la structure de E,-coalgebre
sur le complexe des chaines d’un ensemble simplicial, telle que décrite par Smith dans
[Smi94]. Nous construisons une E-opérade, notée I, utilisée pour construire la E,-
coalgebre sur I’élément principal d'une L-algebre. Cette structure de F.-coalgebre
montre que la L-algébre canoniquement associée a un ensemble simplicial contient
au moins autant d’information homotopique que la E,-coalgebre couramment as-
sociée a un ensemble simplicial.

Mots-clefs
Modules différentiels gradués, L-algebres, opérades symétriques, F.,-coalgebres.
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Introduction: In English

In this introductory chapter we explain the context where the L-algebras are placed.
We start with a review of some of the techniques used to study homotopy type of
spaces, beginning with minimal models in rational homotopy theory and continuing
with the use of A, -algebras in the case of fields with positive characteristic and the
description of the notion of operad. In the final part we discuss L-algebras and the
results proven in this thesis.

Sullivan Minimal Models A concept of minimal model in rational homotopy
theory was introduced by Dennis Sullivan at the end of 1960’s (see [Jam99|, §27).
Simply connected spaces can be rationalized, which means that we can replace a
space X with a rational version of it, Xg, such that H.(X;Q) = H.(Xg). A
simply connected space Y is said to be rational when its reduced homology (or
7« (Y"), or the reduced homology of its loop space QY) is a Q-vector space. Given a
continuous map ¢ : X — Z, we can state the existence of a (up to homotopy) unique
induced morphism between the rationalizations of X and Z. With this, the rational
homotopy type of a simply connected space is defined as the weak homotopy type
of its rationalization.

This simplification of a space implies some loss of information, for instance, the
homotopy groups of the sphere S? are non-zero in infinitely many degrees, but the
rational homotopy groups vanish in all degrees above 3. Nevertheless, the advan-
tage of the approximation by a rational model, is the facility for computations while
ordinary homotopy theory is too complicated. This is due to the discovery of an ex-
plicit algebraic formulation for rational homotopy by Quillen and Sullivan ([Sul77],
[Qui69]). They established an equivalence of categories between the homotopy cat-
egory of rational spaces and their categories of minimal models. Sullivan found a
functor Apy, that associates a commutative cochain algebra Apr(X) to X. The
algebras Ap;(X) and C*(X) are linked by a zig-zag of quasi-isomorphisms, so that
in particular they have the same cohomology H*(X) = H(ApL(X)).

The transition from topological spaces to commutative cochain algebras estab-
lished by the functor Apy allows us to focus in the study of commutative cochain
algebras. In this category shows up a special kind of commutative cochain alge-
bras called Sullivan algebras. These algebras live in each isomorphism class, and
under special conditions on the space X, have a minimal representative uniquely
determined up to isomorphism, called Sullivan minimal model.

If simply connected topological spaces X and Y have the same rational homotopy
type, then the cochain algebras App(X) and App(Y) are weakly equivalent, and by
the unicity of the minimal models, they have the same minimal model. So, if we
restrict ourselves to simply connected spaces with rational homology of finite type,
there is a bijection between the rational homotopy types and the isomorphism classes

3
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of minimal Sullivan algebras on Q.

Commutative Cochain Problem The cochain ring C*(X;k) product, that
is, the cup product of cochains, usually is not commutative. In the graded con-
text, commutativity means that x Uy = (=1)IWly U 2, where |z| and |y| are the
degrees of x and y. Essentially, the commutative cochain problem is functorially
finding a commutative differential graded algebra A*(X) on the ring k, in such a
way that there exits a zig-zag of quasi-isomorphisms between A*(X) and C*(X; k)
(see |[GMS&I], §9). This problem was solved for the rational case by Sullivan.

Steenrod proposed a type of cohomology operations linked to the cup product
(see [StedT]). The Steenrod squares Sq¢' are defined on the cohomology ring with
coefficient in Z/27Z. They take the class x of a cocycle of degree n in to a class Sq*(x)
of degree n +1i. When n = i, Sq*(z) is just the cup product x U z. The construction
of the Steenrod squares depends strongly on the non commutativity of the cochain
ring C*(X;7Z/27Z) and a consequence of their existence is that there is no solution
for the commutative cochain problem on the Z/27Z, and consequently on Z (see for
instance [Cen89]). The same problem arises for Z/pZ, for p an odd prime.

Ap-algebras Introduced by Stasheff ([Smi86], [Sta63]), the Ay-algebras are
graded chain complexes (A, d) together with operations p, : A®™ — A, n > 2, of
degree n-2, satisfying some conditions. A -algebras can be seen as a generalization
of differential graded algebras. In fact, for a DGA-algebra the operations satisfy
i, = 0 for n > 3 and the category DG A is a full subcategory of the category of
A -algebras.

In [Kad80] Kadeishvili describes the construction of the Ay-algebra structure
on the algebra of homology of chain complexes and, after some generalizations in
the A -algebras category, he gives a description of a fiber space using A.-algebras.
In 1986, this approach was used by Prouté in [Proll] with the idea of making an
explicit computation of the homology of a fiber space with fiber K(Z/pZ,n). The
idea behind his technique, is to express the chain complex of the total space in the
fiber bundle, by something having a description by operations in the category of A-
algebras, because in some especial cases there are already established methods to
compute minimal models in the Ay -algebras category and, naturally A, -structures
arise when the fiber bundle has as fiber a space of the type K(m,n). Associativity
is not the whole story, we also need to relax the commutativity, which led May in
[May72] to the notion of operad. We will be specially interested in E..-operads.

Symmetric operads An operad can be thought as a framework to model
algebraic structures. In this part we explore the intuition behind the concept of
operad. Operads can be defined in any symmetric monoidal category C, in particular
we are interested in the category DGA-k-Mod. Then, all the constructions will
be made having in mind this category. An operad P is composed of a collection
{P(i)}i=0 of objects of C, which is subject to several conditions that we will discuss
along this introduction. The elements of each object P(k) can be seen as abstract
operations with k inputs and one output, referred as elements of arity k. In the
following picture are represented two element of P, the first is an element of arity 3
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(e P(3)), and the other is an element of arity k (e P(k)).

<

Each operad P will have a distinguished element in arity 1, which is supposed to
represent the identity application, called the unit of P. It is defined to as a morphism
n:1— P(1) and is represented by a stick with one input and one output.

<

(2)

Each P(k) is equipped with an action by the symmetric group Y. Graphically,
this action is represented by the shuffie of inputs. For instance, consider o € Y3
given by 0 = (4%3). The action of ¢ on an element of P(3), is represented as

follows.

That is, if the element of P(3) is an operation f(z1,z2, x3) then fo(zy,x2,x3) =
f(@o11), To-1(2), To-1(3)) = f(@2,23,21). In the last picture the bracket is used to
represent the act of applying the action by ¢ on an element of P(3). In general, we
represent action of o € ¥ on and element of P(k) by the following picture.

? } w0 g

Another important component of an operad P are the compositions. Since what
we are modeling are operations, we need to code how the composition of operations
behaves. Let f € P(k), then we could compose this operation with k (one for each
input) operations of P, resulting in an operation of arity equal to the sum of arities
of the operations in each input of f. The compositions are given by morphisms of

the form v : P(k) ® P(i1) ® --- ® P(ix) — P(n), with n = iy + -+ + 4. We also
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represent the act of applying the composition by a bracket.

Y : (5)

The data given by the action of symmetric groups, the unit and the compositions
have to satisfy some conditions.The first condition is about the associativity of the
composition, in the sens that our abstract compositions in P does not depend of the
order in which is made. The following picture represents this situation.

(6)
The left side says the compositions are made first in the two upper levels and
then, the resulting operations are compose with the base. The right side indicates
the compositions starts with the two lower levels of operations and the resulting
operation is compose with the iy + - - - + i), operations on top. For the unit in P(1),
we demands that it does not affect the result of compositions. In other words, if we
have an operation with k inputs, the composition with £ times the unit, gives as
result the same operation. And if we compose the unit in its only input with any
operation, the unit doesn’t change this operation.

- - ™

Finally we require right actions of symmetric groups to satisfy some equivariance
condition with respect to compositions. The first condition applies when in a com-
position we have over the inputs of the resulting operation, a permutation acting in
such a way that it respects the blocks of inputs of each part of the composition. For

instance, consider the permutation o = (123%), and an element of P(9) obtained by
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the composition of an element of P(3) with three elements of P(3), and affected by
the associated action of ¢ in Y.

1
1
1

1

Now, if we try to arrange the mix in the upper part of the picture made by
the permutation, in such a way that we put face to face the blocks by moving the
corresponding operations in the inputs of the base operation. Then, the shuffle made
by the permutation will be now placed over the inputs of the base operation, that
is, the action on the resulting composite is now converted in to an action on the
operation at the base.

LN S N J
LN S N J

e —9 0

1
1
1

i

This process of moving the action to the bottom is wanted so as not to affect
the resulting operation, that is, both expression are the same in an operad. The
second equivariance condition apply when the action of the symmetric group on a
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composite affects individually the inputs of each operation in the composition.

In the left side first the actions are applied on each component and then the
composition is performed. In the right side, the composition is first made and then
on the resulting operation is applied a single permutation which is obtained by
putting together all the others permutations. Both processes are supposed to give
the same result in an operad.

L-algebras and FE,-structures There are several attempts for generalizing
Sullivan’s ideas to arbitrary coefficients. In particular, A. Prouté proposes another
approach using higher homotopy techniques formalized as L-algebras. His ideas have
been part of several talks since the eighties, but never published. The L-algebras
can be seen as an adaptation of Segal’s ideas in a rather simple way.

Besides, for the analysis of infinite loop spaces in [Seg74], Segal introduce the
notion of I'-space. His point of view is essentially based on the idea that the relatively
big family of higher homotopies needed for F-techniques, can be coded in a different
way. This higher homotopy techniques introduce FE.-spaces in order to state a
recognition principle for infinite loop spaces (see [BV68]). The higher homotopies of
an F,-space can be replaced by a small family of homotopy equivalences, much easier
to describe, from which the higher homotopies can be recovered just by choosing
homotopy inverses.

L-algebras are similar to ['-spaces, but instead of applying to spaces they apply to
singular chain complexes. However, this is technically somewhat different, essentially
because in the theory of I'-spaces, the cartesian product of topological spaces is a
product (in the categorical sens), unlike the tensor product of modules which we
must use in this dual situation, is not a sum. Fortunately, this gap is compensated
by the good properties of the Eilenberg-Mac Lane transformation, which satisfies
several commutation properties exactly, not only up to homotopy.

This thesis is dedicated in a first part to the description of several properties
of the category of L-algebras. In the second part of this work we focus on the
description of the E,-coalgebra on the main element of an L-algebra. Intuitively
this structure is reflected in the fact that all the coproducts on the main element
constructed from the morphisms of the L-algebra must be homotopic. This is the
case when we consider the canonical L-algebra of a simplicial set. In the monograph
[Smi94], Smith constructs a natural E-coalgebra structure on the chain complexes.
From his construction, we give an alternative way to describe this Fy-coalgebra (see
section , by finding a more direct way to construct an E-operad that acts on
the chain complexes. Our Ey-operad R used for this propose could be useful to
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describe explicitly the F,-algebras. For the E -coalgebra structure on the main
element of an L-algebra, we design an E-operad K using a special technique that
we call polynomial operads. Then, the main result of this thesis can be stated as
follows.

O Main Result

There ezists a functor F : L-Alg — K-CoAlg, which associates a (Ey) K-
coalgebra F(A) to each L-algebra A, in such a way that the underlying DGA-
k-module of F(A) is A[l], and for all n > 1, the operad morphism K —
Coend(A[1]) given by F, sends every k[X,]-generator x € K(n)y to a mor-
phism of DGA-k-modules T such that o T is homotopic to sy, with p given
by the structural quasi-isomorphism of A and sy by the image of A of the only
morphism in L of the form ([n],a) : [n] — [1].

Organization of the thesis Oriented towards the description of the FE-
coalgebra acting on the main element of an L-algebra, this thesis is organized in the
following parts :

(1 Chapter 1: In this chapter we review the principal concepts used along this
work. They include for instance, the properties of augmented differential graded
modules and symmetric coequalizers. In the last part, we recall the properties
of the Eilenberg-Mac Lane transformation and a version of the acyclic models
theorem used in its characterization.

(1 Chapter 2: This chapter is devoted to the study of operads. Its role is to be
used to justify the construction that will be made in the next chapters. We where
principally interested in the construction of the free operad on a S-module and
the existence of small colimits in the category of operads. Even if we work with
symmetric operads, that is, with actions by the symmetric groups, we include
some results about non-symmetric operads in order to perform a construction of
an operad presented in chapter 5.

1 Chapter 3: It is about L-algebras. We introduce this concept in details and
discuss its construction in the general setting of monoidal categories, to stay
after that in the category of differential graded modules. The rest of this chapter
is dedicated to the study of the principal properties of L£-algebras.

[ Chapter 4: In this chapter we study the E-coalgebra structure given in [Smi94]
on the chain complexes associated to simplicial sets, also we construct a different
operad to the one presented in [Smi94] and proof that it gives an Ey-structure to
chain complexes. In fact, our operad is in somehow a free version of the operad
in [Smi94].

(1 Chapter 5: We present a technique to construct operads that we call polynomial
operads. Next, this technique is used to construct a E-operad K. Then we proof
the existence of an E,-coalgebra structure on the main element of an L-algebra
using K. Finally, we establish the functoriality of this construction.
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Introduction: En Francais

Dans cette introduction nous expliquons le contexte dans lequel les L-algebres se pla-
cent. Nous commencons par une revue de quelques techniques utilisés dans 1’étude
du type d’homotopie des espaces comme les modeles minimaux en homotopie ra-
tionnelle et puis nous continuons avec l'utilisation des Ay -algebres dans le cas des
corps de caractéristique positive et une description du concept d’opérade. Dans la
partie finale on parle de L-algebres et des résultats prouvés dans cette these.

Modéles Minimaux de Sullivan A la fin des années 60, un concept de modele
minimal dans la théorie de I’homotopie rationnelle fut introduit par Dennis Sulli-
van (voir [Jam99], §27). Les espaces simplement connexes peuvent étre rationalisés,
c’est-a~dire qu’on peut remplacer un espace X par une version rationnelle de cet
espace, Xq, telle que H,(X;Q) = H.(Xg). Un espace simplement connexe Y est
dit rational quand son homologie réduit (ou m.(Y), ou bien I'homologie réduit de
son espace de lacets 2Y") est un Q-espace vectoriel. Pour une application continue
¢ : X — Z, nous pouvons établir I'existence (& homotopie prés) d’'un unique mor-
phisme induit entre les rationalisations de X et Z. Ensuite, le type d’homotopie
d’un espace simplement connexe est définit comme le type d’homotopie faible de sa
rationalisation.

Cette simplification d'un espace implique une perte d’information, par exemple,
les groupes d’homotopie de la sphere S? ne sont pas nuls dans une infinité de degrés,
mais, les groupes d’homotopie rationnelle sont nuls dans tous les dégrées au dessus
de 3. Néanmoins, I'avantage de 'approximation par un modele rationnel c’est la
facilité de calcul tandis que la théorie ordinaire de I'homotopie est plus complexe.
C’est du a la découverte d’une formulation explicite pour ’homotopie rationnelle par
Quillen et Sullivan ([Sul77], [Qui69]). Ils ont établit une équivalence de catégories
entre la catégorie homotopique des espaces rationels et leur catégorie des modeles
minimaux. Sullivan a trouvé un functeur Ap;, lequel associe une algebre de cochaines
commutatives Apr(X) a X. Les algebres Apr(X) et C*(X) sont liées par un zig-
zag de quasi-isomorphismes, et en particulier ont le méme type de cohomologie
H(X) = H(Apy(X)).

Le passage d’espaces topologiques a des algebres commutatives de cochaines est
établi par un foncteur Ap; qui nous permet de nous concentrer sur ’étude des
algebres de cochaines commutatives. Dans cette catégorie on trouve un type spécial
d’algebres commutatives de cochaines qui sont appellés algebres de Sullivan. Ces
algebres appartiennent a chaque classe d’isomorphisme, et sous certaines conditions
sur 'espace X, elles sont un représentant unique déterminé a homotopie pres, elles
s’appellent modeles minimaux de Sullivan.

Si des espaces topologiques simplement connexes X et Y ont le méme type
d’homotopie rationnelle, alors leur algebres de cochaines App(X) et Apr(Y) sont

11
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quasi-isomorphes, et par I'unicité des modeles minimaux, ils ont le méme modele
minimal. Alors, si on se concentre sur les espaces simplement connexes de type
d’homologie rationnelle finie, il existe une bijection entre le type de I'homotopie
rationnelle et les classes d’isomorphismes des algebres minimales de Sullivan sur Q.

Le problemes de Cochaines Commutatives Le produit de 'anneau de
cochaines C*(X; k), ¢’est-a-dire, le cup produit de cochaines, normalement n’est pas
commutatif. Dans le cas gradué, la commutativité signifie que xuy = (—1)Wly U2,
ou |z| et |y| sont les dégrés de z et y. Essentiellement, le probleme des cochaines
commutatives consiste a trouver d’une maniere fonctorielle une algebre commutative
différentielle A*(X) sur anneau k, de tel maniére qu’il existe un zig-zag de quasi-
isomorphismes entre A*(X) et C*(X : k) (voir [GM8I1], §9). Ce probléme est résolu
par Sullivan dans le cas rational.

Steenrod propose un type d’opérations cohomologiques liées au cup produit (voir
[StedT]). Les carrés de Steenrod S¢' sont définis sur 'anneau de cohomologie &
coefficients dans Z/27. Tls prennent la classe x d’un cocycle de degré n dans une
classe Sq'(x) de degré n+i. Quand n = i, S¢*(x) est simplement le cup produit zuz.
La construction des carrés de Steenrod dépend fortement de la non conmutativité
de I'anneau de cochaines C*(X;7Z/27), et une conséquence de leur existence est la
non existence d’une solution au probleme des cochaines commutatives sur ’anneau
Z7,)27, et en conséquence sur Z (voir par exemple [Cen89]). Le méme probleme est
présent dans Z/pZ, quand p est un nombre premier impair.

A-algebres Introduites par Stasheff ([Smi86], [Sta63]), les A -algebres sont
des complexes de chaines (A, d) avec des opérations pu, : A" — A, n > 2, de dégrée
n-2, qui satisfont certains conditions. Les Ay -algebres peuvent étre vues comme une
généralisation des algebres différentielles graduées. En fait, pour une DGA-algebre
les opérations vont satisfaire p,, = 0 pour n > 3 et la catégorie des DGA-algebres
est une sous-catégorie de la catégorie des A -algebres.

Dans [Kad80] Kadeishvili décrit la construction de la structure de A.-algebre
sur I’algebre d’homologie du complexe des chaines et, apres quelques généralisations
sur la catégorie des A, -algebres, il donne une description de 'espace fibré en util-
isant des Ay -algebres. En 1986, cet approche fut utilisé par Prouté dans [Proli]
avec 'idée de faire des calculs explicites de ’homologie des espaces fibrés, ou la fibre
était K(Z/pZ,n). L’idée derriere cette technique, c’est d’exprimer le complexe de
chaines de 'espace total du fibré par quelque chose avec une description en util-
isant des opérations dans la catégorie des A-algebres, parce que dans quelques cas
spéciaux, il existait des méthodes établis pour faire la calcul des modeles minimaux
dans la catégorie des A, -algebres, et les A, -structures se présentent d’une maniere
naturelle quand le fibré a comme fibre un espace du type K(m,n). L’associativité
n’est pas toute l'histoire, nous avons besoin aussi de relaxer homotopiquement la
commutativité, ce qui a conduit May dans [May72] a la notion d’opérade. Nous
somme particulierement intéressés par les F.-opérades.

Opérades symétriques Une opérade peut étre vue comme un cadre pour
modéliser des structures algébriques. Dans cette partie nous expliquons l'intuition
derriere le concept d’opérade. Les opérades peuvent étre définies sur n’importe
quelle catégorie monoidale symétrique C, nous sommes intéressés par la catégorie
DGA-k-Mod. Toutes les constructions seront faites en pensant a cette catégorie.
Une opérade P est composée d'une collection {P(i)};>¢ d’objets de C, laquelle est
soumise a plusieurs conditions que nous allons discuter au long de cette introduction.
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Les éléments de chaque objet P(k) peuvent étre vus comme des opérations abstraites
avec k entrées et une seule sortie, ils sont dit d’aritée k. Dans I'image suivante sont
représentés deux éléments de P, le premier est un élément d’arité 3 (e P(3)), et
lautre est un élément d’arité k (e P(k)).

(11)

<

Chaque opérade P a un élément distingué en arité 1, lequel est censé représenter
I'opération identité, appelé 'unité de P. Il est défini comme un morphisme n: 1 —
P(1) et il est représenté par un baton avec une entrée et une sortie-

<

(12)

Chaque P(k) est équipé d’une action du groupe symétrique Y. Graphiquement,
cette action est représentée par un mélange des entrées. Par exemple, on considere
o € X3 donné par

o= (4%3). L'action de o sur un élément de P(3) est représentée de la maniere

suivante.

C’est-a-dire, si I’élément de P(3) est une opération f(z1, xq, x3), alors fo(xy, x9, x3) =
[(@o11), To1(2), To-1(3)) = f(:cg, xg,azl). Dans la derniere image les crochets sont
utilisés pour représenter I’acte d’appliquer I'action par o sur un élément de P(3).

En général, nous représentons une action de o € ¥j sur un élément de P(k) par

I'image suivante.
?} w

Une autre partie importante de 'opérade P est la notion de composition. Comme
nous sommes en train de modéliser des opérations, nous devons coder comment les
composés des opérations vont se comporter. Soit f € P(k), alors nous pouvons faire
le composé de cette opération avec k (une pour chaque entrée) opérations de P,
alors on va obtenir une opération d’arité égale a la somme des arités des opérations
dans chaque entrée. Les composés sont donné par des morphismes de la forme
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v: Plk)®P(i1) ® - ® P(ix,) — P(n), with n = iy + --- + i,. Nous allons aussi
représenter ’acte d’appliquer les composées par un crochet.

Y : )

Les donnés produites par l'action des groupe symétriques, 1'unité et les com-
posés doivent satisfaire quelques conditions. La premiere de ces conditions est
I’associativité de la composition, dans le sens que nos opérations abstraites dans
P ne vont pas dépendre de l'ordre dans lequel elles sont faites. L’image suivante
représente cette situation.

_7 7 Yo

(16)
La partie de gauche dit que les composés sont fait d’abord dans les deux niveaux
supérieurs, et apres, les opération qui en résultent, sont composées avec la base. La
partie de droite dit que la composition est faite d’abord dans la base, et 'opération
qui en résulte est ensuite composée avec les iy + - - - + 7, opérations supérieures.
Pour l'unité P(1), nous demandons qu’elle n’affecte pas le résultat des compo-
sitions. C’est-a-dire, si nous avons une opération avec k entrées, les composés avec
k fois I'unité vont donner la méme opération. Et si on fait le composé de I'unité
dans sa seule entrée avec n’importe quelle autre opération, on obtient cette méme
opération.

Finalement, nous demandons que les actions a droite des groupes symétriques
satisfassent quelques conditions d’équivariance par rapport aux compositions. La
premiere condition s’applique quand dans un composé nous avons sur les entrées
de l'opération résultante, une permutation qui agit de telle maniere qu’elle respecte
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les blocs des entrées de chaque partie du composé. Par exemple, on considere la
permutation o = (1%3), et un élément de P(9) obtenue par la composition d'un
élément de P(3) avec trois éléments de P(3), et tous affectés par I'action de g

associé a o.

1
1
1

1

Maintenant, si nous essayons de ranger le mélange fait par la permutation dans
la partie supérieure de 'image, de telle maniere qu’on place face a face les blocs
en faisant bouger les opérations correspondantes dans les entrées de 1'opération de
la base. Alors, le mélange fait par la permutation sera converti en une action sur
I'opération de la base.

o —o 0
o —o 0
oo —o 0

1
1
1

(19)

i

On veut que ce processus de faire bouger I'action au-dessous n’affecte pas I'opération

résultante, ¢’est-a-dire, que les deux opérations sont les mémes dans une opérade. La
deuxieme condition d’équivariance s’applique quand I’action du groupe symétrique
sur le composé affecte d'une maniere individuelle les entrées de chaque opération du
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composé.

¥ 9.9 $1k.
5 !

Dans la partie de gauche d’abord les actions sont appliquées sur chaque com-
posante et puis la composition est faite. Dans la partie de droite, la composition
est faite d’aborde, puis sur les opérations qui en résultent est appliquée une seule
permutation obtenue par le rassemblement des toutes les autres permutations. Les
deux processus sont alors censés de donner le méme résultat dans une opérade.

L-algebres et FE,-structures Par ailleurs, pour l'analyse des espaces de
lacets infinis dans [Seg74], Segal introduit la notion de I'-espace. Son point de vue
est essentiellement basé sur I'idée qu’une famille relativement grande d’homotopies
d’ordre supérieur nécessaires pour la E-technique, peut étre codée d’une maniere
différente. Ces techniques d’homotopie d’ordre supérieur introduisent les E-espaces
pour établir un principe d’identification pour les espaces de lacets infinis(see [BV6S]).
Les homotopies d’ordre supérieur d’'un E,-espace peuvent étre remplacées par une
petite famille d’équivalences d’homotopie, plus facile a décrire, depuis laquelle les ho-
motopies d’ordre supérieur peuvent étre récupérées juste en choisissant des inverses
homotopiques.

Les L-algebres sont similaire aux ['-espaces, mais au lieu de s’appliquer a des es-
paces, elles s’appliquent a des complexes de chaines singulieres. Cependant, ¢’est une
technique différente, essentiellement parce que dans la théorie des I'-espaces, le pro-
duit cartésien des espaces topologiques est un vrai produit(dans le sens catégorique),
contrairement au produit tensoriel des modules, qu’on doit utiliser dans cette situ-
ation duale, et qui n’est pas une somme. Heureusement, ce probleme est compensé
par les bonnes propriétés de la transformation d’Eilenberg-Mac Lane, laquelle sat-
isfait plusieurs propriétés de commutativité d’une maniere exacte, et pas seulement
a homotopie pres.

Cette these est dédié dans sa premiere partie a la description de plusieurs pro-
priétés de la catégorie des L-algebres. Dans sa deuxieme partie on se focalise dans
la description de la E-coalgebre sur I’élément principal d'une L-algebre. D’une
maniere intuitive, cette structure est reflété dans le fait que tous les coproduits sur
I’élément principal qui sont construit a partir des morphismes dans la structure
d’une L-algebre, doivent étre homotopes. C’est le cas quand nous considérons la
L-algeébre canonique d’un ensemble simplicial. Dans la monographie [Smi94], Smith
construit une structure naturelle de F-coalgebre sur les complexes de chaines. En
s’inspirant de cette construction, on donne une maniere alternative de décrire cette
structure de E-coalgebre (voir section , en trouvant une maniere plus directe de
construire une E -opérade qui agit sur les complexes de chaines. Notre F-opérade
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R utilisée pour ce propos peut étre utile pour décrire d’'une maniere explicite les
E-coalgebres. Pour la structure de E-coalgebre sur ’élément principal d’une £-
algebre, nous construisons une E-opérade K en utilisant une technique spéciale que
nous appelons opérade polynomiale. Le résultat principal de cette these peut étre
énoncé comme suit.

1 Main Result

Il existe un foncteur F : L-Alg — K-CoAlg, lequel associe une (Ey,) K-coalgébre
F(A) a chaque L-algébre A, de tel maniére que le module sous-jacent a F(A)
soit A[1], et tel que pour tout n = 1, le morphisme d’opérades K — Coend(A[1])
donné par F, envoie chaque kK[X,]-générateur x € K(n)oy vers un morphisme de
DGA-k-modules T tel que o T soit homotopique a s1, ot p est donné par le
quasi-isomorphisme structurel de A, et s1 est donné par l'image par A du seul
morphisme dans L de la forme ([n],a) : [n] — [1].

Organisation de la thése Orientée vers la description de la FE.-coalgebra
agissant sur I’élément principale d’'une L-algebre, cette theése s’organise comme suit :

[d Chapitre 1: Dans ce chapitre nous faisons une revue des principaux concepts
qui seront utilisés au long de ce travail. Ils comprennent, par exemple, les pro-
priétés des modules différentiels gradués ainsi comme les notions catégoriques de
monade et coégaliseur réflexif. Nous rappelons les propriétés de la transforma-
tion d’Eilenberg-Mac Lane et une version du théoreme des modeles acycliques
qui permet de la caractériser.

(d Chapitre 2: Ce chapitre est dédié a I’étude des opérades. Son role est de servir
a la justification des constructions que nous ferons dans les chapitres suivants.
Nous nous sommes intéressés a la construction de I'opérade libre sur un S-module
et a I'existence des colimites sur la catégorie des opérades. Nous incluons quelques
résultats sur les opérades non symétriques envisageant une construction présenté
dans le chapitre 5.

(d Chapitre 3: Nous introduisons les L-algebres. Nous allons discuter leur con-
struction dans le cadre général des catégories monoidales, pour apres rester dans
la catégorie des modules différentiels gradués.

1 Chapitre 4: Dans ce chapitre nous avons étudié la structure de E-coalgebre
donné dans [Smi94] sur les complexes de chaines. Nous y construisons une opérade
différente de celle présentée dans [Smi94] et prouvons qu’elle une E-structure
au complexe de chaines. En fait, notre opérade constitue en quelque sorte une
version libre de 1'opérade dans [Smi94].

[d Chapitre 5: Nous présentons une technique pour construire des opérades qu’on
appelle des opérades polynomiales. Ensuite, cette technique est utilisée pour con-
struire une E-opérade K, avec laquelle on prouve I'existence d’une E-coalgebre
sur 1’élément principal des L-algebres. Enfin, on prouve la fonctorialité de cette
construction.
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Chapter 1

Preliminaries

The main purpose of this chapter is to fix notations and make a review of the
principal results used in this thesis. Some proofs will be omitted, since they can
be found in the existing literature. In such a case, we will include the required
references. Most of the proofs that we judge to include are those containing relevant
details that improve the reading of this thesis or those with proofs not presented in
the references.

The first three sections are dedicated to the rappels of the theory of differential
graded modules, algebras and coalgebras. Then, the following three sections deal
with the categorical notions required for the study of operads and L-algebras. The
final sections include generalities about chain complexes, a enhanced version of the
acyclic models theorem and the principal properties of the Eilenberg-Mac Lane
transformation.

1.1 Graded modules and Koszul Convention

Along this thesis k will denote a field, having in mind the finite field Z/pZ where
p is a prime number, or the field of rational numbers Q. The modules on k will
be simply called modules, but if we need to be more specific they will referred as
k-modules. Some propositions can be stated in more general setting than fields, in
such cases, we will used the symbol A for the ring. Tensor product ® is written ®.
We identify the tensor products k@ M and M ® k with M by 1@ m =m®1 =m,
for every m € M and where 1 is the unit of k.

Definition 1.1.1. A k-module M is said to be a graded k-module if there is a family
{M,}cz of k-submodules of M, such that :

M =D M; (1.1)
1EZL
An element z € M; is called homogeneous of degree ¢, in symbols |z| = i. A
graded k-module is said to be positively graded if M; = 0 for every ¢ < 0, negatively
graded if M; = 0 for every ¢ > 0, bounded below if there exists j integer such that
M; = 0 for every ¢ < j and bounded above if there exists j integer such that M; =0
for every 7 > j.

Definition 1.1.2. Let M and N be two graded k-modules. A morphism of graded k-
modules, f : M — N is a collection of homogeneous linear maps { f; : M; — N1, }iez.

19
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In such a case, the morphism f is said to be of degree p. The category of graded
k-modules is denoted k-Mod.

Definition 1.1.3. Let M and N be two graded k-modules. The tensor product
M ® N is the graded k-module defined by :

(M®N)i: +<—BMZ®NZ (1.2)
p+q=1

> Remark 1.1.4 (Koszul convention). Working in graded contexts leads to state sign
conventions. They apply when the positions of graded symbols in an expression are
permuted. For instance, when two symbols of degree p and ¢ are permuted, the
resulting expression will be multiplied by (—1)??. In fact, the Koszul sign is the
signature of the permutation of odd degree letters.

Definition 1.1.5. Let f : M — R and g : N — S be two morphisms of graded
k-modules. We define the morphism f®¢g: M ® N - R® S by the formula,

(f®g)(m@n) = (1) f(m)® g(n) (1.3)

Proposition 1.1.6. Let f : M — R, h: R—T,g: N —> Sandk:S — U be
morphisms of graded k-modules, then :

(ho @ (kog) = ()@ kK)o (f®9) (1.4)

O

Definition 1.1.7. Let M and N be two graded k-modules. Hom(M, N) is defined
to be the graded k-module given by all the morphisms of graded k-modules of every
degree from M to N, that is, the elements of grade i in Hom(M, N) are,

Hom(M,N); = | [ Hom(M,, N,...) (1.5)

neZ

Definition 1.1.8. The morphisms of graded k-modules f : M — R, g: N — §
induce the morphisms of graded k-modules f* and g, between Hom (M, N) and
Hom(R,S), defined by :

Fr(h) = (=)Mo f (1.6)

go(h) = goh (L.7)

Proposition 1.1.9. We have the relations between morphism of graded k-modules,

(go f)F = (=)Vlelf*o g (1.8)

and
(gof)*:g*of* (1-9)
O

> Remark 1.1.10. We can identify k with a graded k-module by setting ko = k and
ki = 0 for ¢« # 0. In this case we say that k is a graded module concentrated in
degree zero.
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1.2 Differential Graded Modules

Definition 1.2.1. Let M be a graded k-module. A differential is a homogeneous
morphism ¢ : M — M of degree —1, such that 0 = 0. If M has a differential it is
called a differential graded k-module or simply DG-k-module.

Definition 1.2.2. Let M, N be DG-k-modules. A morphism f from M to N is a
homogeneous homomorphism such that df = (—1)f/ f0. The category of differential
graded modules is denoted DG-k-Mod.

Definition 1.2.3. Let M be a DG-k-module.

1. An augmentation € of M is a degree 0 morphism of DG-k-modules € : M — k.
2. A coaugmentation n of M is a degree 0 morphism of DG-k-modules n : k — M.

Definition 1.2.4. A DG-k-module M is said to be a DGA-k-module [ if it is pro-
vided with an augmentation € and a coaugmentation 7 such that,

€on = ]—k (110)

A morphism of DGA-k-modules f : M — N is a morphism of DG-k-modules such
that ef = € and fn =n. The category of DGA-k-modules is denoted DGA-k-Mod.

Definition 1.2.5. Let M be a positively or negatively graded DGA-k-module.
1. M is said to be connected if € : My — k is an isomorphism.
2. M is said to be simply connected if also satisfies M} = M_; = 0.
Proposition 1.2.6. Let M and N be DGA-k-modules.

1. The tensor product M ® N is a DGA-k-module if we define the differential
by Open = O @1+ 1® dy, the augmentation by eygn = €y ® €y and the
coaugmentation by Nyen = Mu @ NN .

2. Hom(M,N) is a DG-k-module if the differential is defined by Opomm,n)y =
(On), — (Ou)*. We use no notion of augmentation and coaugmentation for
Hom(M,N).

[
> Remark 1.2.7. The explicit formulas for the expressions in[I.2.6] are the following.

(r®y) =0r®y+ (-1)lz®dy (1.11)
e(z®y) = e(x)e(y), n(1) = n(1) @n(1) (1.12)
of)=of = (~1ifo (1.13)

"DGA for differential graded with augmentation.
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Proposition 1.2.8. The following canonical homomorphism are morphism of DG-k-
modules.

o: Hom(N,P)® Hom(M,N) — Hom(M, P) (1.14)
® : Hom(M, P) ® Hom(N, Q) — Hom(M ® N, P ® Q) (1.15)

And we have the following relations between differentials.

d(go f)=(2g)o f+ (~1)Vlgo(af) (1.16)
A(f®g)=(0f)®g+ (—-)Vf®(09) (1.17)
0

Definition 1.2.9. Let f : M — N be a morphism of DG-k-modules of degree .
The mapping cone of f is the DG-k-module C(f) defined by,

C(f)n=Mp1-1 ®N, (1.18)
Aa,y) = (=(=1)'0z, f(x) + Oy) (1.19)

> Remark 1.2.10. The differential of the mapping cone can be expressed using
matrices,

oay) = (TP (5) = (~(-1)ew, f(@) + ) (1.20)

> Remark 1.2.11. The canonical inclusion i : N — C(f) and the canonical projec-
tion j : C(f) — M, fit together in the exact sequence,

0—=N—=C(f) 1= M —>0 (1.21)

Proposition 1.2.12. For every morphism f: M — N of DGA-k-modules we have
the exact sequence,

/ \ (1.22)

[

]

Definition 1.2.13. Let f : M — N and g : M — N morphism of DG-k-modules of
degree k. An homotopy from f to g is a homomorphism h € Hom(M, N) of degree
k + 1 such that d(h) = g — h.

> Remark 1.2.14. We have the following consequences of definition|1.2.13|and propo-
sition [L.2.6

1. The homotopy h satisfies g — f = 0h — (—=1)I"0 = 0h + (—1)*ho.
2. If d(f) = 0 then f is a morphism of DG-k-modules.

3. Homotopy is an equivalence relation.
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Definition 1.2.15. Let M be a DGA-k-module.

1. M is said to be inessential if there is a h € Hom (M, M) homotopy from 0 to
1y of degree 1. In other words, h satisfies,

Oh+ho=1 (1.23)
in this case, h is called a contracting chain homotopy of M.

2. M is said to be null homotopic if H,(M) = 0.

Definition 1.2.16. Let P, M and N in DGA-k-Mod. P is called projective if, for
every epimorphism g : M — N, every morphism f : P — N can be lifted to a
morphism [ : P — M such that gl = f.

L7 lf (1.24)
M — N
> Remark 1.2.17. Every free module is projective and, on a field, every projective
module is free (see [Wei95], §2).
Proposition 1.2.18. Let M be a DGA-k-module.
1. If M has a contracting chain homotopy then M is null homotopic.

2. If M projective, null homotopic and bounded below, then it has a contracting
chain homotopy.

Proof. First affirmation follows from formula|[1.23] The contracting chain homotopy
for the second affirmation is constructed by induction on the degree, starting in
degree j where M; = 0 for i < j. m

Definition 1.2.19. Let f : M — N be a DGA-k-morphism. Then f is said to be
an homotopy equivalence is fg is homotopic to 1y and gf is homotopic to 1,,. In
this case, g is called a homotopy inverse of f.

Proposition 1.2.20. Let f : M — N be a DGA-k-morphism inducing an isomor-
phism in homology. If M and N are projective and bounded below then f is an
homotopy equivalence.

Proof. The hypothesis implies that C'(f) is projective, null homotopic and bounded
below, then by proposition [1.2.18| there exists a contracting chain homotopy H :
C(f) — C(f) such that dh + hd = 1. Using matrices we have the following.

1=0h+ho
(69 = (F)h+h(F2) = (F2) G L)+ G i) (78)
Then we get the equations,
1=—-0\—MN0+gf (1.25)
0=—dg+go (1.26)
1= fA\+0p—pd+ Nf (1.27)
0= fg+ 0y + A0 (1.28)
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The equation [1.26] says that ¢ : N — M is a morphism of DG-k-modules, the
equation that ¢gf and 1 are homotopic, and the equation that fg and 1 are
homotopic. Then ¢ is an homotopy inverse of f. m

Definition 1.2.21. Let M be a DGA-k-module.
1. M is said to be acyclic if € : M — k induces an isomorphism in homology.
2. M is said to be contractible is € : M — k is a homotopy equivalence.
Proposition 1.2.22. Let M, N DGA-k-modules.
1. If M 1is acyclic, projective and bounded below, then M is contractible.
2. If M and N are contractible, then M ® N is also contractible.

]

> Remark 1.2.23. If h is a contraction for M and k a contraction for N, then
h®1+ne®k is a contraction for M ® N.

Definition 1.2.24. Let M, N be DGA-k-modules. We denote by T the isomorphism
from M ® N to N ® M given by T(z ®7y) = (—1)*IVy @ .

1.3 DGA-algebras and DGA-Coalgebras

Definition 1.3.1. Let A and C be DGA-k-modules.

1. A is said to be a DGA-k-algebra if it is equipped with a morphism of DGA-k-
modules ;1 : AQ A — A, called the product, satisfying the following properties.

(a) p is associative: p(1® p) = p(p®1).

(b) The coaugmentation 7 : k — A is a bilateral unit for p, that is p(n®1) =
p1®n).

If p also satisfy puT = p, A is called commutative.

2. (C'is said to be a DGA-k-coalgebra if it is equipped with a morphism of DGA-k-
modules A : C' - C®C, called coproduct, which satisfy the following proper-
ties.

(a) A is associative: (A®1)A = (1® A)A.

(b) The augmentation € : C' — k is a bilateral unit for A, in other words,

(I1®e)A =(e®1)A.
C is said commutative if A also satisfies TA = A.
Definition 1.3.2. Let A, A’ be DGA-k-algebras and C, C" be DGA-k-coalgebras.

1. A morphism f: A — A’ of DGA-k-algebras is a morphism of DGA-k-modules
which commutes with the products, that is fu = pu(f ® f). The category of
DGA-k-algebras is denoted DGA-k-Alg.
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2. A morphism g : C' — C" of DGA-k-coalgebras is a morphism of DGA-k-modules
which commutes with the coproducts, that is Af = (f ® f)A. The category
of DGA-k-coalgebras is denoted DGA-k-Coalg.

Proposition 1.3.3. Let A, A’ be DGA-k-algebras and C, C' DGA-k-coalgebras.

1. The tensor product A ® A" is a DGA-k-algebra if we define the product by
p=(pa®@pa)(1@T®1).

(ARA)®(ARA) —C. AgA@A @A 22 A9 (129)

2. The tensor product C ® C" is a DGA-k-coalgebra if we define the coproduct by
A=(1TR1(ARA).

A0®Ac/
—_—

CRC CeCecec 2% . cec)eCec). (1.30)

O

Definition 1.3.4. Let A be a DGA-k-algebra and C' be a DGA-k-coalgebra. Let
M and N be DGA-k-modules.

1. M is said to be a left DGA-A-module, if it is equipped with a DGA-k-morphism
p:A® M — M which satisfies the following conditions.

(a) Associativity: p(1®p) = p(pa ®1).
(b) Unit: p(na®1) = 1.

2. N is said to be a left DGA-C-comodule, is it is equipped with a DGA-k-
morphism A : N — C' ® N, which satisfy the following conditions.

(a) Associativity: (Ac® 1)A = (1® A)A.
(b) Unit: (ec ®1)A = 1.
Analogously, we define a right DGA-A-module and a right DGA-C-comodule.

1.4 Monads
In this sections we discuss some of the categorical concepts used in the chapter on
operads and in the chapter on L-algebras.

Definition 1.4.1. A category is said to be a monoidal category if it is equipped with
a functor ® : C xC — C, an object 1 € C, a natural transformation « from ®(Id x ®)
to ®(® x Id), and natural transformations A : ®(1x —) — Id and p: ®(— x 1) — 1d,
satisfying the following properties.

1. For all objects X,Y, Z in C the morphisms

aX\Y,Z

X®Y®2Z) (X®Y)®Z (1.31)

are isomorphisms.
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2. For all objects X in C the morphisms,
1®Xi>X<piX®1 (1.32)

are isomorphisms.

3. For all objects X,Y in C the following diagram is commutative.

ax.1,Yy

(1®Y) (X®1)
1d®\y X®Y Px®Id

4. For all objects W, X, Y, Z in C the following diagram is commutative.

WRX)®(Y®Z)

RXR(Y®Z)) (WeX)®Y)® (1.34)
ld®ax v,z ax,y,z®Id
WR(X®Y)R® Z) WRXRY))®~Z
AW, XQY,Z

Definition 1.4.2. Let C be a monoidal category. We call C symmetric monoidal
category if it is equipped with a natural transformation s : ® — ®ot mwhich satisfies
the following properties.

1. For every objects X,Y in C the morphism

SX’yZX®Y—>Y®X (135)
is an isomorphism.

2. The following diagram is commutative for every object X, Y in C.

XQY = XQY
(1.36)

SX,Y Sy, x
Y®X

"Here ¢ is the canonical twisting morphism (X,Y) — (Y, X).




1.4. MONADS 27

3. For all objects X, Y, X in C the following diagram is commutative.

X@Y®Z) — X _(X@YV)®Z 27 . 70(X®Y)
Id®5y,zl laz,x,Y (1.37)
XQ(Z®Y) i (X®2) QY ————~ (20 X) QY

Definition 1.4.3. Let C be a monoidal category. A monoid is an object M of C
together with morphisms p: M ® M — M and n : 1 — M making the following
diagrams commutative.

p®1

(MMM Mo M
M® (M® M) p (1.38)
1®ui
M®M . M
1M —""  pMeoM~—%"_ sl
lu (1.39)
AM PM
M

Definition 1.4.4. A monoidal category C is said to be an strict monoidal category
if the natural transformations a, A, p in definition are identities. In other
words, is a category C equipped with a functor ® : C x C — C, and an object 1 € C
such that :

1. For all objects x,y,z€ C we have 2 ® (y® 2) = (z®y) ® z.
2. For every object r€C, 1®xrx =2 =2x®1.

> Remark 1.4.5. Let End(C) be the category of endofunctors of C, that is, the
objects are functors from C to C, and the morphism are the natural transformations
between them. This category with the composition of functors and the identity
functor of C, forms an strict monoidal category.

Definition 1.4.6. Let C be a strict monoidal category. A monoid is an object M
of C together with morphisms y : M @ M — M and n : 1 — M, which satisfy
p(p®1) = p(l®p) and p(l®n) = p(n®1) = 1.

Definition 1.4.7. Let C be a category. A monad in C is a triplet (T, u,n) where
T:C— Cisafunctor, and p: T oT'— T, n:1Id — T are natural transformations
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which make commutative the following diagrams.

ToToT—"" oToT T o<
- 5 \ku/ (1.40)
ToT T T

2 Remark 1.4.8. Recall that the natural transformation pur : ToT oT — T oT
associates to each object X € C the arrow that p associates to T'(X). T : ToToT —
T o T, associates to each object X € C', the arrow image by T of the arrow that p
associates to X. nT': T — T oT, associates to each object X € C, the arrow that n
associates to T'(X), and that Tn : T — T o T, associates to each object X € C, the
image by T of the arrow that n associates to X.

= Remark 1.4.9. In the category End(C) a monad is a monoid in End(C).

Definition 1.4.10. Let C be a category. A morphism of monadsinC, F': (T, u,n) —
(T', 1, n) is a natural transformation F' : T — T” which makes the following diagram
commutative.

1— T 7" ToT

Idl‘ T sz (141)
1 T T oT’

/ /

n H

The category of monads in C is denoted by Monad.

> Remark 1.4.11. Recall that the natural transformation F? : T oT — T’ o T",
associates to each object X € C the diagonal of the following commutative diagram.

Frx)

T(T(X) 2 T (T(X)
o \F\’%\ T(Fy) (1.42)
T(1'(X)) - T/(T'(X)

> Remark 1.4.12. For every category C, the monad given by the triplet (Id, Idq, Idq)
is called the identity monad and is an initial object of Monadc.

Definition 1.4.13. Let (T, u,7n) be a monad in a category C. An algebra on T,
or T-algebra, is a pair (X, h) where X is an object of C and h is a morphism from
T(X) to X, which make the commutative the following diagrams.

(ToT)(X) 2= T(X) X" 7(X)
T(h) lh Iy ‘h (1.43)
T(X) X X
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Definition 1.4.14. Let (T, ,n7) be a monad on a category C. A morphism of T-
algebras from (X, h) to (X’,h’) is a morphism in C, f : X — X’ such that the
following diagram commute.

T(X)—" =X
T(f)l ! (1.44)
T(X')——X'

The category of T-algebras is denoted by T-Alg.

Definition 1.4.15. Let (7, 1,n7) be a monad on the category C. For every object
X € C, the pair (T'(X), ux) is a T-algebra called the free T-algebra on X.

> Remark 1.4.16. The free T-algebra on X satisfies the following universal property:
for every T-algebra on X, (X, h) there exists an unique morphism of T-algebras from
(X, h) to (T'(X), ux). Indeed, the morphism is h.

1.5 Adjunctions

Definition 1.5.1. Let F': C — D and G : D — C be two functors. Then, F' is said

to be left adjoint of GG, denoted by F' I G, if there exists 6 bijection,
D(F(X),Y)—=C(X,G(Y)) (1.45)

natural in X and Y.

Definition 1.5.2. Let F'— G : C — D be a pair of adjoint functors.

1. The natural transformation 1 : 1¢ — GF given by nx = 0(1p(x)), is called the
unit of the adjunction.

2. The natural transformation € : FG — 1p given by ey = 07 (1g(y)), is called
the counit of the adjunction.

Proposition 1.5.3. Let F'— G : C — D be a pair of adjoint functors, with unit n
and counit €. Then the following diagrams are commutative.

Fn

F

FGF GFG<"_¢@g
\ . / (140
1p lg

F G

The equations given by the commutativity of these diagrams,

Ge - Ng = 1G (1.48)

are called triangular equations.
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Proof. Let X be an object of C. For the commutativity of first diagram we have to
show that 1p(x) = €px)F(nx). By definition nx = 6(1p(x)), then by using the fact
that 6 is a bijection, we only have to check that 0(epx)F (1x)) = nx.

Oero) F(nx)) = 0(erx))0(F(nx))
= 0(erx))nx (by naturality of 6)
= 007" (Lorcx) )y
=Tx
The commutativity of the other diagram is similar. O]
Definition 1.5.4. Let G : D — C be a covariant functor and X an object of C. An
universal arrow from X to G is an morphism of the form ¢ : X — GF(X) such

that, for every morphism f : X — G(Y) there is an unique morphism of D, denoted
6=1(f), from F(X) to Y, which satisfies G(671(f))n = f.

X 1~ GF(X)
; iG(Gl(f)) (1.49)
G(Y)

Theorem 1.5.5. Let G : D — C be a functor such that for every object X € C there
exists an universal arrow nx : X — G(F(X)). Then the application F between the
objects of C and D extends uniquely to a functor F : C — D such that F' + G.

]

> Remark 1.5.6. For a proof of theorem see [Mac98|, §4 Theorem 2. Never-
theless, the extension of F' on arrows is made in the following way: let f : X — Y
morphism in C and consider the following diagram.

X 5 G(F(X))

f | G(F(f)) (1.50)
v
Y = G(F(Y))
The existence and unicity of F'(f) making the diagram commutative, is guaran-
teed by the universal property of ny.

Theorem 1.5.7. Every left adjoint preserves colimits and every right adjoint pre-
serves limits.

[
> Remark 1.5.8. For a proof see §5 of [Mac9§|, or §9 of [Awo06].
1.6 Reflexive Coequalizers

In a category C coequalizer of two morphisms f,g : X — Y is the colimit on the
diagram formed by them. We will denote this coequalizer Ceq(f, g).

f
X Y —1=Ceqlf,9) (1.51)
g
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Equivalently the coequalizer of f and ¢ is an initial object in the category of
morphisms [ left equalizing f and g, that is o f = [ o g. We are interested in
a special kind of coequalizer, which are called reflexive coequalizers. In the next
chapter, we will see that reflexive coequalizer play an important role in the proof of
existence of small colimits in the category of operads.

Definition 1.6.1. Let Dy denote the category generated by the diagram,

iy (1.52)

Zo T

J
where the arrows satisfy is = 1 = js. For every category C, we call reflexive pair in

C, any diagram in C on the category Dy. In other words, a reflexive pair is a pair of
parallel arrows having a common section.

Proposition 1.6.2. Let f,g: X — Y be two morphisms in a category C. If there
is a morphism s 1Y — X in C such that fos = gos = 1y then the coequalizer of f
and g (if exists) is isomorphic to the colimit on the diagram formed by f, g and s.

Proof. Tt is well know that ¢ in diagram is an epimorphism. Let (B,a: X —
B, :Y — B) be the colimit on the diagram formed by f, g and s. Then « and 3
satisfy 0f = a = Bg and as = 5. We also have that « is an epimorphism. Indeed, if
r,s: B — Z are two arrows such that ra = sa then (Z,raf : X - Z,ra:Y — Z)
is a cocone on f, g and s (because fs = 1), which implies by the universal property
of colimits that r« is uniquely factorized by r through a. The same applies for sa,
but ra = sa then r = s and « is an epimorphism. To show that B and Ceq(f,g)
are isomorphic, first note that « left equalize f and ¢. Indeed af = 8 = ag. Then
it exists an unique arrow h : Ceq(f, g) — B such that hq = a. Now (Ceq(f,9),qf :
X — Ceq(f,9),q:Y — Ceq(f,qg)) is a cocone on f, g and s, because qfs = ql = q.

Then it exists an unique arrow h : B — Ceq(f, g) such that ha = ¢ and h3 = fq.

But ¢ and « are epimorphisms, so we have that hha = hq = a implies hh =1 and
that hhq = ha = ¢ implies hh = 1. Then B and Ceq(f, g) are isomorphic. O

o Remark 1.6.3. Proposition says that the morphism s does not change the
coequalizer.

Definition 1.6.4. Let f,g: X — Y be two morphism in a category C. If there is a
morphism s : Y — X in C such that fos = gos =1y then Ceq(f,g) is called the
reflexive coequalizer of f and g.

Definition 1.6.5. Let F' : C' — D be a covariant functor. F'is said to be final if
satisfies the following conditions for every object X € D.

1. There is a morphism from X to an object of the form F(Y).
2. For every pair of such morphisms from X, a : X — F(Y)and o/ : X — F(Y’),

there exists a finite sequence g, . .., gx of morphisms of C making the following
diagram commutative.

X
/ x (1.53)
(Y) Fo F(Y7) T Py (Ye-1) Too F(Y’)
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> Remark 1.6.6. Another way to define a functor F' : C — D as final is saying
that for every X € D the comma category X /F' is not empty and connected (See
[Mac98g], §9).

Proposition 1.6.7. Consider the category Dy from definition|1.6.1l. Then, for every
n =1, the diagonal functor from Dy to the product category Dy, is final.

Proof. Let D : Dy — Dy be the diagonal functor. Let X be an object of D, then
it has the form X = (x;,...,2;,), with ¢; € 0,1. There is a morphism f from X
to D(x1) given by f = (fi,,..., fi,), where fi, = 1, ifi; = 1 and f;, = f if i; = 0.
Note that we can still have a morphisms from X to D(z), by taking arbitrarily f
of g in the entries f;; when 4; = 0. But the only morphism from X to D(z) is given
by s = (8iy,..-,5;,), where s;;, = 1,, if i; = 0 and s;, = s if i; = 1. Now we check
the second condition in definition [1.6.5] Let o, o two morphisms from X to D(z1).
Let 3 = (bi,, b;,) be the morphism from X to D(x¢) defined by b;, = s if i; = 1 and

bi; = 1g, if 25 = 0. Then we have the following commutative diagram.
X
/ lﬁ\ (1.54)
D(xy) o D(xo) So D(xy)
This suffices to show that D is a final functor. O

Final functors are useful for computing colimits, as the following proposition
shows. For a proof, we refer to [Mac9§|, §9.

Proposition 1.6.8. Let F': D — C be a diagram on the category C and I : D' — D
be a final functor such that the colimit of F o I exists. Then the colimit of F exists
and is canonically isomorphic to the colimit of F o I.

]

1.7 Simplicial Sets

L-algebras are defined in the ambient category of differential graded modules or
chain complexes. They are intended to be models for homotopy types. In this thesis
we use simplicial sets instead of topological spaces. Simplicial sets can be seen as
a combinatorial version of topological spaces. We will restrict our attention to the
category of simplicial sets and employ the word space to refer to them.

Definition 1.7.1. Let A be category where the objects are the totally ordered
sets [n] = {0,...,n}, with n non negative integer, and the morphisms are the
nondecreasing applications between them. A is called the simplicial category.

Definition 1.7.2. In the category A we identify two important families of mor-
phism.

1. For every n = 1,0 < i < n, ¢; : [n — 1] — [n], is the application defined by
0i(j) =7 ifi <jand 6;(j) = j + 1is j < i. They are called face applications.
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2. For every n > 0, 0 < i < n, 0; : [n+ 1] — [n], is the application defined
by 0;(7) = jif j < i and 04(j) = j — 1if j > i. They are called degeneracy
applications.

> Remark 1.7.3. The face and degeneracy applications can be used to describe
the morphisms in A, in the sens that every non identity morphism have an unique
factorization as composite of face and degeneracies (see [May93], §1).

Definition 1.7.4. Let C be any category. A simplicial object X in C is a contravari-
ant functor X : A — C, and the morphisms of simplicial objects are the natural
transformations of functors. The category of simplicial objects of C is written sC. In
particular, if C is the category of sets Set, the category of simplicial sets is denoted
sSet.

Definition 1.7.5. The ensemble simplicial A, is the simplicial set defined by the
contravariant functor given by the diagram,

[p] ——=A([p], [n]) = An(p)
gT lg* (1.55)
[q] —— A([q], [n]) = An(q)

The element e,, € A,, given by the identity application of [n] is called the universal
n-simplex.

> Remark 1.7.6. A, is just the representable functor from A to Set determined
by [n] € A.

© Remark 1.7.7. Every face application §; : [n] — [n + 1], 1 <i < n + 1, induce
a simplicial morphism d;, : A, — A,41, given by f — §;f. They are called face
morphisms.

The following proposition is a particular case of the Yoneda lemma (see [Prol0],

52.3.2)

Proposition 1.7.8 (Yoneda lemma). For every simplicial set X and n non negative
integer, the application f — f(e,) is a bijection from sSet(A,, X) to X,, natural
mn.

O

o Remark 1.7.9. This bijection implies that X is canonically isomorphic to the
simplicial set given by the functor defined on objects as [n]| — sSet(A,,, X) and on
morphisms by g — (h — hg,). Then the face applications of X, 0; : X,11 — X,
correspond to the face applications from sSet(A,;1, X) to sSet(A,, X), which are
given by g — g 0 ;.

o Remark 1.7.10. To each simplicial set X is associated the simplicial k-module
Sx(X) which n component is the free k-module on X,,, and the face and degeneracy
applications are the linear extensions of the corresponding application of X. With it,
is formed a chain complex or DGA-k-module by taking as differential the alternated
sum of faces @ = Y, (—1)*@. This chain complex is denoted C,(X).
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1.8 Acyclic Models Theorem

Prouté in [Pro83] introduced a unicity criterion complementing the classical acyclic
models theorem. This gives a simple characterization of the Eilenberg-Mac Lane
transformation, which is discussed in section [I.9 We include here the version of
the acyclic models theorem containing the mentioned unicity criterion, that was
presented by Prouté in 2012 in an algebraic topology course at the university Paris-
Diderot.

Definition 1.8.1. Let C be a category, let M a small subcategory of C and a
covariant functor F' : C — DGA-k-Mod. Let e = {ep}nem be a family indexed by
the objects of M such that for every object M € M, e); is an homogeneous element
of F(M). We say that F is free on (M, e) if the following conditions are satisfied.

1. For every object X € C the associated DGA-k-module F'(X) admits as a base
the family,

{F(f)(enm)} wem (1.56)

fec(M,X)

2. For every object M € M, the submodule of F(M) generated by the family

{F(f)(en)} nem (1.57)

feM(N,M)

is a DGA-k-submodule of F(M).

> Remark 1.8.2. An example of free functor on a subcategory is the normalized
chain complex functor C, : sSet — DGA-k-Mod. The subcategory M of sSet
can be any category whose objects are the n-simplexes A,, n > 0, and the set of
morphisms contains at least the face operations d;, : A, = A, 11 (see remark[1.7.7).
The element en, is taken to be the universal n-simplex e, of A,,.

For every simplicial set X and n > 0, C,,(X) is by definition a free module
on non degenerated element of X,,, then by remark it is generated by the
set {fi(en)} fesset(an,x), With fi(e,) non degenerated . Moreover, for every non
degenerated element C,(A,,) of the form f.(e,), with f: A, — A, in M, we have
O(f+(ep)) = f+(d(ep)). But, as we saw in remark [1.7.9] the expression f,0 is a linear
combination of applications of the form (f o ¢;)., where 6; : A, — A,; are the
face operations. Then, the composites f o §; are in M and we can conclude that
the submodule generated by the non degenerated elements of the form f(e,), with
f € M, is stable by 0. Finally, it is stable by the augmentation €, because €(e,) = 1.

Theorem 1.8.3. [Acyclic Models Theorem/ Let C be a category. Consider F and
G covariant functors from C to DGA-k-Mod. Let M be a small subcategory of C.
Suppose that,

1. F is free on (M, e).

2. There is a functor A : M — DGA-k-Mod, such that A(M) is an acyclic
DGA-k-submodule of G(M), natural in M, that is, for every morphism f :
M — N in M, G(f): G(M) — G(N) sends A(M) to A(N).

"We use fx to denote Cy(f)
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Under these hypothesis we have the following.

1. There exists a natural transformation ¢ : F'— G such that p(epr) € A(M) for
every object M € M.

2. Between two such natural transformations, there exists an natural homotopy h
such that h(enr) € A(M) for every object M € M.

3. If for every object M € M we have that A, +1(M) = 0, then the natural
transformation @ : F' — G given by the first point, is unique.

Proof. For every integer i let M; be the set of objects M € M such that |eys| = 1.
Set F'.1(X) = G_1(X) = A_1(X) = k, and rename 0 the augmentation e. Then
we take px : F_1(X) — G_1(X) as the identity of k. Now, suppose that we have
construct ¢ for all 0 < j < 4, that is, for all j <7 we have the following.

1. ¢x : F;(X) — G;(X) is defined, linear and natural on X.
2. px0 = dpx 1 Fj(X) — G (X).
3. on(en) € Aj(N) for every object N € M;.

Then for every object M € M;, onr(d(en)) € Ai—1(M). Indeed, epy = F(1ar)(enr),

which means it belong to the submodule of F(M) generated by {F(f)(en,)} ~em .
M(N;,M)

This submodule is stable by 0, then d(ey) can be written as finite sum,

= Zk:)\kF(fk)(eNk) (1.58)

with Ny € M, and f; € M(Ny, M), and not only fr € C(Ny, M). Then we

have,

EAMDM (fr)(eny)) Z)\k (fx)(on, (en,)) (1.59)

by using the naturality of ¢ with fr : Ny — M. But ¢y, (en,) € Ai—1(Ng)
and because fj is a morphism of M together with the naturality condition for the
inclusions of the form A(M) ¢ G(M) M € M, G(fx)(¢n,(en,)) € Aim1(M).

By linearity we only need to define px (F(f)(ea)) for every object M € M; and
f € C(M,X). The morphism ¢ must be natural, so we need to have the following
commutative diagram.

F(f)l lG(f) (1.60)
Fy(X) —~ Gi(X)

Then px (F(f)(ea)) must be G(f)(par(enr)) and we only need to define ppr(enr).
By the fact that o (d(en)) € Ai1(M), d(pn(0(enr))) = on(0(d(en))) = 0 and by
the exactness of A(M), there exists in a € A;(M) such that d(a) = @p(d(enr)). And
we take @pr(ep) = a. This defines ¢ in degree 7.
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The naturality of ¢ : F; — G follows from the next computation. Take g : X —
Y any morphism in C.

G(9)(px (F(f)(enm)))

G(9)(G(f)(pm(enm))) (by definition of ¢x)
G(gf)(pum(en))

v (F(gf)(enm)) (by definition of ¢y)
y (F(9)(F(f)(em)))

¥
'

Now we have to check that ¢x0 = dpx : Fi(X) - G;_1(X). Let f: M — X
any morphism.

Opx (F(f)(en)) = 0G(f)(em(enr))  (by naturality of o)
= G(f)o(em(en)) (G(f) DGA morphism)
= G(f)pm(d(enm)) (by construction of pys(ear))
= ox(F(f)((en))) (by naturality of ¢)
= px(0(F(f)(en))) (F(f) morphism of DGA-k-modules)

We proceed with the second point the theorem. Let ¢ and ¢ two natural trans-
formations from F' to G such that ¢ys(enr) and ¢pr(eps) are in A(M) for every object
M € M. The natural homotopy h from ¢ to v is constructed degree by degree. In
dimension —1 we take h = 0. Suppose we have construct h for every j < i. Then
we have the following hypothesis.

1. hx : F;(X) — G;41(X) is defined, linear and natural in X.
2. Ohx + hxo = ox — wX : F}(X) — GJ(X)
3. hn(en) € Aj11(N) for every object N € M.

For every object M € M;, let a € A;(M) with a = hp(d(enr)) — par(en) +
Yar(enr). We only need to define hys(eps). But, by hypothesis we have |0(ep)| < i
and

Ohai(0en)) + har(00(en)) = war(dlenr)) — Par(dlen)) (1.61)

that is, d(«) = 0. Then, there exists an element hps(eps) in A;41 (M) such that
O(har(enr)) = . Like the first point, it can be checked without difficulties that h is
natural and 0h + hd = ¢ — 1.

Finally, for the third point, let ¢ and ¢ be natural transformations from F' to G,
equal in degree —1. Suppose that they are equal in degree 7 < i and let M be an ob-
ject of M such that |eys| = i. By hypothesis we have that @y (d(enr)) = ¥ar(d(enr))
because [d(ep)] < i. But A;41(M) = 0, the acyclicity of A(M) implies that
0+ Ai(M) — Ai1(M) is injective. But d(pn(en)) = pm(den)) = Yu(dlen)) =
O(Ya(enr)) and then, @pr(ens) = ar(enr) for every object M € M; and then ¢ = 1)
in degree 1. O
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1.9 The Eilenberg-Mac Lane Transformation

Introduced in [SE53],85, in order to study the properties of spaces K(m,n), the
Eilenberg-Mac Lane transformation is one of the fundamental elements of the theory
of L-algebras. In this section we describe its principal properties. The unicity
condition in theorem is used to describe the Eilenberg-Mac Lane transformation
in the context of simplicial sets, as states the following proposition.

Denote Ordf the category where the objects are the finite ordered sets and the
arrows the increasing applications. An n-simplex is an increasing application [n] —
X. If this application is injective, we say that the n-simplex is non degenerated. The
set of non degenerated simplexes of X is a formal finite polyhedron with vertexes
in X. In this way, every finite ordered set can be seen as a simplicial set X in
the obvious way. Every n-simplex ¢ : [n] — X induce a morphism o : [n] — X.
Observe that for every ordered sets X, Y, X x Y =~ X x Y, where the order of
X x Y is given by (z,y) < (2 d

< (,y) when z < 2’ and y < y/'.
For any simplex z of X, d;(x) is non degenerated if = is non degenerated. Thus,
the submodule A,(X) of C.(X) generated by the non degenerated simplexes of X,

is a DGA-k-submodule of C,(X).

Lemma 1.9.1. If the ordered set X has a smallest element, A.(X) is acyclic.

Proof. Denote by a the smallest element of X. A,(X) contains the DG-k-submodule
Ala] generated by the O-simplex {a}. which is isomorphic to A concentrated in degree
0. We have to show that B = A,(X)/A[a] is null homotopic. We can decompose B
as the direct sum B = B’ @ B”, where B’ has as base the simplexes with vertex a
(and necessarily another vertex), and B” has as base the simplexes where a is not
a vertex. Clearly B” is stable by ¢, and the component B’ — B” of ¢ is bijective,
because it sends a simplex with vertex a and having at least another vertex to the
simplex obtained by removing a. So we have that A,(X)/A[a] is null homotopic
because it is the cone of an isomorphism.

O

Proposition 1.9.2. There exists a unique natural transformation from the functor

®o (Cy x Cy) to the functor Cy o X.

Co(X) Q@ CL(Y) —= Cu(X x Y) (1.62)

such that for every p,q in N, V(e,®e,) € A.([p] x [q]). It is called the Eilenberg-
Mac Lane transformation.

o Remark 1.9.3. In other words, the Eilenberg-Mac Lane transformation is the
only natural transformation that sends the tensorial products of universal simplexes
ep ® e, to linear combinations of non degenerated simplexes.

Proof. The existence and unicity of the Eilenberg-Mac Lane transformation follows
from the points 1 and 3 of the acyclic models theorem ([34). Using the notation
of the theorem [1.8.3] the category C is sSet x sSet, the subcategory M has as
objects the pairs ([p], [¢]) and as arrows the couples (f, g), where f : [p] — [p'] and
g : [q] — [¢'] are induced by the injective applications [p] — [p] and [q] — [¢].

The element € 7, is €, @ ¢4 (it belongs to Cy([p]) ® Cs([g])). Clearly the functor
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(X,Y) — Cu(X) ® Ci(Y) is free over (M, e), after noting that if f : [p] — [n] is
an injective increasing application (that is, an arrow of M), the faces of f.(e,) are
of the form g, (e,—1) for some arrow g : [p — 1] — [n] of M. In fact, g has the form
fod;.

Now we take A([p],[q]) as the DG-k-submodule A, ([p] x [q]) of C.([p] x [q]),
which is clearly natural in ([p], [¢]) (recall it is defined over M and not over sSet x
sSet). We have A;([p],[q]) = 0 for i > p + ¢ because in [p] x [¢] there is no non
degenerated simplex of strictly bigger dimension than p + ¢. Finally, A*(m, E) is
acyclic by the fact that [0] x [0] is the smallest element of [p] x [¢]. O

Lemma 1.9.4. If X and Y are ordered sets, then when x and y are non degenerated
simplezes of X and 'Y respectively, V(x ® y) belongs to A.(X x Y).

Proof. By naturality of V, we have commutative diagram,

C.([p]) ® Cu([g]) = Cu([p] x [a])
I*@l/*i l(IXy)* (163)
C.(X) ® (V) —=— (X x T)

It suffices to verify that (z x y).(z) € A.(X x Y) for every non degenerated

simplex z of [p] x [¢]. But this is an immediate consequence of the fact that x and
y and induced by the injective increasing applications [p] — X and [¢] — Y.

m

Lemma 1.9.5. The Eilenberg-Mac Lane transformation satisfies :
Vo(VR1) =Vo(l®V) (associativity) (1.64)
taoV=VoT (commutativity) (1.65)
pl*ov = 1®E (166)
P oV=€e®1 (1.67)

Proof. The natural transformation V®1 sends e, ®e,®e, to a finite sum of tensors
with the form 2®y, where x and y are non degenerated simplices. The same happens
with V o (V® 1) by lemma The same argument is applied to Vo (1® V),
and by the fact that [p] x [¢] x [r] is acyclic ([p] x [¢] x [r] has as smaller element
[0,0,0]) and don’t has non degenerated simplices of dimension strictly bigger than
p+ g+, the point 3 of theorem acyclic models shows that Vo (V®1) = V(1QV).
As T, ty, e®1, 1 ®c¢€, p1, and po, preserve the non degenerated simplices or they

send them to 0, the other properties are immediate by the same method. [

Usually A is described by its explicit formula (see for example [May93], [Hes07]).
But the unicity criterion simplifies the verification of its principal properties.

There exists an an homotopy inverse for V. In the case when simplicial sets have
an extra group structure, the Eilenberg-Mac Lane transformation helps to carry
this structure to the associated chain complex, such operation on chains is called
Pontrjagin product (see [Pon39]).
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Definition 1.9.6. Let H be a simplicial group H. The Pontrjagin product P :
Cy(H)® Cy(H) — C.(H) is defined to be the following composite.

Co(H)® Cy(H) —Y> C(H x H) "~ C,(H) (1.68)
Where m, is the induced morphism by the product m: H x H — H.

Proposition 1.9.7. Let H, K simplicial groups. The Pontrjagin product P :
Cy(H)® Cy(H) — Cy(H) satisfies the following properties.

1. P is associative.
2. If H is commutative, then P is commutative.
3. The chain complex C,(H) is a DGA-k-algebra with P.

4. The Filenberg-Mac Lane transformation V : Cy,(H) Q@ Cy(K) — Cy(H x K) is
a morphism of DGA-k-algebras.

O
> Remark 1.9.8. Consider the commutative diagram,
C(H) ® Cy(K) v Co(H x K)
i*@j*l l(ixj)* Id
Co(H x K)® Cy(H x K)—Y>Cy(H x K x H x K) (1.69)

> Cy(H x K)

where i : H - H x K and j : K — H x K are defined by i(h) = (h,1) and
j(k) = (1,k). And where H and K are simplicial groups. This diagrams says that
we can recover the Eilenberg-Mac Lane transformation from the Pontrjagin product,
because V = P (i ® ja).

Back to the third point of acyclic models theorem, we can’t assure anymore the
unicity of a natural transformation,

OO (X xY) = Cu(X) @ C,y(Y) (1.70)

In this case the criterion of theorem fails (see [Pro83], remark I). But in
fact, it is well know that this kind of transformations are not unique. Indeed, if such
a transformation @ is unique in the case where k = Z/27Z, the unicity will imply that
the cup product v is zero, which is not true, because the existence of the Steenrod
squares (see [Cen89]).

Nevertheless, one important choice for an homotopical inverse of the Eilenberg-
Mac Lane transformation, is the Alexander-Whitney transformation,

U Cu(X xY) > Co(X) @ Cu(Y) (1.71)

U has the particularity of being associative, but not commutative. With ¥ we
can equipe Cy(X) with a DGA-k-coalgebra structure.
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Definition 1.9.9. Let X be a simplicial set. The Alexander-Whitney diagonal A
is defined to be the composite of the Alexander-Whitney transformation with the
induced chain morphism by the diagonal 6 : X — X x X.

A Cu(X) —2 O4(X % X) —2m 04(X) @ Cu(X) (1.72)

Proposition 1.9.10. Let X, Y be a simplicial sets. Then the Alexander- Whitey
diagonal satisfies the following properties.

1. A is explicitly described by the formula on the canonical base elements of
Ci(X).

A@:Z?@@%Hm (1.73)

Where 0 is the last face operator given by 0(z) = jy().
2. A is associative.
3. With A, the chain complex Cy(X) is a DGA-k-coalgebra.

4. The FEilenberg-Mac Lane transformation V : Cy(X) @ Cu(Y) = Cu(X x Y) is
a morphism of DGA-k-coalgebras.

0]
In [Pro84] Prouté explores a characterization of A by a property of its image, in
the sense that the choice for U is limited by a subcomplex of Cy(X) ® C,(X). He

also uses this characterization to prove the fourth point of proposition [1.9.10] in a
very simple way.



Chapter 2

Operads

2.1 Operads

In this thesis we deal mostly with symmetric operads, which as we saw in the
introduction, are equipped with an action by the symmetric groups. In this section
we introduce the classical definition of operad together with the variation called
partial definition, and we discuss two fundamental examples, the endomorphism
operad an the coendomorphism operad. In the following diagrams the signs given
by the Koszul convention are omitted in order to simplify the writing.

Definition 2.1.1 (Operad). An operad P is a collection of DGA-k-modules {P(n)},0
together with,

1. A morphism 7 : k — P(1), called the unit of P.

2. For every n, a right action by the symmetric group 3, over P(n), that is, a
morphism of DGA-k-modules making of P(n) a right DGA-k[X,,]-module.

P(n)®@k[2,] — P(n) (2.1)

3. For each tuple (k, iy, ...,i;), a morphisms of DG-k-modules,

Viksir,in) - P(K) @P(i1) ® - @ P(ir) — P(n) (2.2)

where n =iy + -+ + 4 and n, k,7; = 0. Usually this morphism will be simply
written ~.

These applications are required to satisfy the following conditions.

1. The morphisms ~ are associative, in the sense that the following diagram com-

41
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mutes.

P(k)® [®§:1 P(ip)] ® [@2:1 ®ff:1 P(rnq)] 29 P(n)® [@2:1 ®f;=1 P(Tp,q)]

shuffle P (7’)

P(k) ® @y | Pliy) ® @iy Plry)| P(k) ® ®}_, P(r,)
(2.3)

Where n = Zi:l Qpy T = Z’;Zl Zf]”: 1\ Tpg = 212:1 r, and the vertical left arrow
is just a permutation of factors.

1@y®*

2. The unit n : k > P(1) make the following diagrams commute.

P(n) @k®" —=—=7P(n) k®P(n) ——="P(n)

l®n®"i / 77®1J/ / (2.4)

P(n)@P(1)&" P(1)®@P(n)
3. The actions of the symmetric groups satisfy the following two condition about
equivariance.
P(k)@P(ir) @ -+ @ P (i) : P(n)

a®g—1l la(il ,,,,, in) (2.5)
P(k) ®P(icq) @ - - @ Plick))

Where n = i; + - - - +1i; and the arrow o0 ® 0! consists of the right action by o
over P(k) and the left action by o~ over the tensor product P(i;)®- - -® P(iy).

P(k) @ P(ir) ® -+ @ Plif) — "= P(k) @ P(ir) @ - @ Pi)
vl lv (2.6)
P(n) e P(n)

where n =iy + -+ - + i and the action 1 ® 7 ® - - - ® 7, is the identity of P(k)
over the first factor and the right action by 7; over the factor P(i;).

There is another approach to the definition of operads. The variation resides in
the way the description of the composition operation is made. For an operad P,
instead of describe what happens when an operation of P(k) is composed in each
of its k entries with operations of arities i1, ..., 1, the partial definition of operads
only describe the composition with another operation of arity m in one of its entries,
which will give as result an operation of P(k +m — 1).
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Definition 2.1.2 (Partial Definition of Operad). An operad P is a collection of
DGA-k-modules {P(n)},>o together with an unit 1 : k — P(1), a right action of ¥,
over P(n) for n > 1 and a collection of DGA-k-morphisms,

o;: P(k)® P(m) » P(k+m—1) (2.7)
for 1 < i < k, which satisfy the following conditions.

1. ao; (fo) = (ao; B)o’, where a € P(k), B € P(m), 0 € ¥, and ¢’ € Xp i1
given by the direct sum of k terms 1®---Po@---@1, with ¢ in the ¢ position.

2. (ao)o; f = (a0, B)o”, where a € P(k), B € P(m), 0 € ¥, and 0" € ¥j i1,
acting like o over k blocks of lenght 1,...,1,m,1,...,1, with m the block in
the position i.

3. (@o; B)ojm14j7 = ao; (Boj7), where aw € P(l), 5 € P(m), v € P(n) and with
I<i<land1<j<m.

4. (a Q4 B) Ck+m—17 = (_1>|ﬁ”7|(a Ok ’7) O4 67 where a € PU)? 6 € P(m)7 vE P(TL)
and with 1 <7< k < L.

Proposition 2.1.3. The definition of operads given in|2.1.4 and|2.1.1| are equiva-
lents.

Proof. The partial composition o; is obtained from the composition ~ of definition

2.1.7] by the formula,
a0 f=70®1®..®...®1) (2.8)

with S in the ¢ position between the 1’s.
Conversely, the composition 7 is obtained from the partial compositions by the
formula,

Y@L ® - ®PBr) = oy By op—1 01 (2.9)
It is straightforward to show that these operations satisfy the conditions of the
respective operad definition. O

Two fundamental examples of operads are the endomorphism operad and the co-
endomorphism operad. Their behavior was used to model the definition of operads.

Definition 2.1.4 (Endomorphism Operad). For every M € DGA-k-Mod, the operad
End(M) of endomorphisms of M is defined by:

1. For every n = 0, End(M)(n) = Hom(M®", M), that is the DGA-k-module of
homogeneous applications from M®" to M.

2. The unit n : k > End(M)(1) is defined by n(1) = 1, the identity of M.

3. The right action of ¥,, over End(M) is induced by the left action of ¥, over
Me",
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4. The composition applications,

v: End(M)(k) ® End(M)(i1) ® - - - ® End(M)(ix) — End(M)(n) (2.10)

where n =iy + - -+ + i, are given by,

Ve ® [ ® - ® fi) = feo(fu ® - ® fi) (2.11)

Definition 2.1.5 (Coendomorphism Operad). For every N € DGA-k-Mod, the
operad Coend(N) of coendomorphisms of N is defined by:

1. For every n = 0, Coend(N)(n) = Hom(N, N®"), that is the DGA-k-module
of homogeneous applications from N to N®",

2. The unit n : k > Coend(N)(1) is defined by n(1) = 1y, the identity morphism
of N.

3. The right action of ¥, over Coend(N) is induced by the right action of 3,
over N®",

4. The composition applications,

v : Coend(M)(k) ® Coend(N)(i1) ® - - - ® Coend(N) (i) — Coend(N)((;zim

where n =4y + - -+ + iy, are given by,

Y ® fi, ® @ fi) = (=Dl Ual+Hu(f @ ... @ f; )o fi  (2.13)

> Remark 2.1.6. The reader can easily check that End(M) and Coend(N) satisfy
the conditions in definition 2.1.1]

Definition 2.1.7. Let P and () be two operads. A morphism ¢ from P to @, is a
collection of morphism of DGA-k-modules,

én 2 P(n) — Q(n) (2.14)
which satisfy the following conditions.

1. The morphism f; : P(1) — Q(1) preserves the units of the operads, that is
fn=n.

\ / (2.15)

2. The morphisms f, : P(n) — Q(n) are ¥,-equivariants.
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3. f preserve the compositions of the operads, that is, the following diagram is
commutative.

P(k)® P(i1) ® - - ® P(iz,) 1w P(n)
fk®fi; ®®fi, fn (2.16)
Qk) ® Qi) ® - - @ Qix) - Q(n)

The category of operads over DGA-k-Mod is denoted OP.

We finish this section with two more examples of operads.

FEzample 2.1.8. The operad N is given by N (n) = k for every n non negative. Here
k is seen as a DGA-k-module concentrated in degree zero. The unit 7 is the identity
of k, the action is the trivial action of ¥,, over k and the composites, if we denote a;
the generator of degree zero of N(i), are simply given by the rule,

Viap®ay Q- Qa;, — ay (2.17)

where n =iy + - -+ + 1.

Example 2.1.9. Making the action of the last example free will produce an operad
that we denote M. The components of M are M (n) = k[%,] for every non negative
n. The M(n) are graded differential modules concentrated in degree zero. The
action by the symmetric group group is clear, and the composite operations are
defined over the generators in degree zero as before, but respecting the symmetric
group action, in the sense that:

Y(ak ® a0, ® - - ® a;,04,) = ap(0;, B - D oy,) (2.18)

and

Yo ®ai ;@ ®ai_,, )= an(Ty,.0) (2.19)

“1a
where n =iy + - -+ + 1.

2.2 Algebras and Coalgebras over an Operad

The most important feature in the theory of operads are its representations. That
is, when the abstract operations of the operads are interpreted as concrete appli-
cation over an object in the ground category, which is DGA-k-Mod in our case.
This passage from the abstract to the concrete is made through morphisms of type
P(n) — Hom(A®" A). In this sens, an element of arity n of P is realized as an
n-ary operation over A. This association must be coherent with respect the compo-
sition operation in the operad, and with respect the symmetric groups actions. For
instance, if we have that ¢ = v(a®b; ®by) in P, then the associated operations over
A, fay Mo,y M, and p. must be related in the sense that p. = 11, © (fp, ® fp,)-

Definition 2.2.1. Let P be an operad.

1. An algebra over the operad P, or P-algebra, is a DGA-k-Mod A, together with
a morphism of operads from P to End(A).
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2. An coalgebra over the operad P, or P-coalgebra, is a DGA-k-Mod C, together
with a morphism of operad from P to Coend(C).

It is well know that in the symmetric monoidal category DGA-k-Mod, the functor
—®Y is left adjunct of the functor Hom(Y, —) for every Y DGA-k-module. Denote
f the natural bijection given by this adjunction,

0: Hom(X ®Y,Z) — Hom(X, Hom(Y, Z)) (2.20)

Then for a morphism of operads f : P — End(A), each component f, : P(n) —
Hom(A®", A) determines a morphism of DGA-k-modules ¢, : P(n) ® A — A®",
given by ¢, = 071(f,). Tt is not hard to verify that this has as consequence the
following equivalent definitions for algebras and coalgebras over an operad.

Proposition 2.2.2. 1. Equivalently, a P-algebra A is a collection {on}n=1 of
morphisms of DGA-k-modules ¢, : P(n) ® C®" — C, which satisfy the follow-
img conditions.

(a) Associativity. The following diagram is commutative,

P(k)® P(i) ®- - ® P(ix) © O = P(n) @ C®"
shuﬁ%l
Pk)®P(i1) @ C®" @ - - - @ P(i),) ® C® o
183, @iy, l
P(k)® C®* = C
(2.21)

wheren =11 + -+ + 1.

(b) Unit and equivariance. The following diagrams are commutative for every
oE X,

P(1)®C-—2-C P(n)®C®" > C
n®1T / o@g—li i— (2.22)
kaC P(n) ® C®" 25 C

2. Equivalently, a P-coalgebra C is a collection {¢n}n=1 of morphisms of DGA-
k-modules ¢, : P(n) ® C — C®", which satisfy the following conditions.

(a) Associativity. The following diagram is commutative, where n = iy +-- -+
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U

Pk)®P(i1)® - @ Pliy) ® C 1 P
shuffle
P(k)®C® Pli1) ® - - ® Pliy)
- on (2.23)
C% Q@ P(i)) ® - - ® Pliy)
shuffle
P(i)®CQ - @ Pli) ®C i, & @i, L

(b) Unit and equivariance. The following diagrams are commutative, where

o€,
P1)@C-—2-C P(n) @ C 2= c®n
n@lT / a@ll ia (2.24)
k@ C P(n)® C 2= c®n

O

Proposition 2.2.3. Let N and M, be the operads of examples [2.1.8 and [2.1.9,
respectively. Then we have the following isomorphism of categories.

1. The category of N -algebras (coalgebras) is isomorphic to the category of com-
mutative DGA-k-algebras (coalgebras).

2. The category of M-algebras (coalgebras) is isomorphic to the category of DGA-
k-algebras (coalgebras).

Proof. Let A be an N-algebra. Then we have a collection of DGA-k-morphism,

frn ik — Hom(A®" A) (2.25)

which determines the a DGA-k-morphisms f,(1) : A®" — A. By the operad struc-
ture of A’ we have that f>(1) o (fi(1) ® (1) = fs(1) = fo(1) o ((1) ® £i(1)),
which says that fo(1) is an associative product for A. Using that the action of the
symmetric group is trivial in N, we have fo(1) = fo(17) = fo(1)7, which implies
that the product f(1) is commutative. The rest of the proof is similar and left to
the reader. O]

2.3 Free Operads

When the composition in an operad P is forgotten we obtain a collection {P(n)},=o
of DGA-k-modules with right actions by the symmetric groups. In this section we
explore the inverse process: from a collection of this kind, generate an operadic
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structure over it. The operads obtained in this way are called free operads and
satisfy an universal property, that every morphism between the depart collection
to any other collection with an operadic structure, can be uniquely extended to a
morphism of operads from the free operad. We will call the sequences of DGA-k-
modules with symmetric group actions, S-modules.

The construction of free operads is widely described in the principal references
about operads(see for instance [LV12], [MSS07], [BM06] and [Rez96]). There are
many different ways to define free operads, our presentation tries to keep operads
as close as we can from the classical definition (see [2.1.1)).The reason relies in the
way we constructed the operad K which describes the E.-coalgebra associated to
an L-algebra.

In the following we will see that operads can be regarded as monoids over the
category of S-modules in order to construct free operads. This way of defining
operads is an instance of a more general point of view, where the operads are defined
as monads over the category of endofunctors of the category of DGA-k-modules and
where the S-modules are identified with Schur functors(see [LV12]). Here we keep
the S-modules in his natural state and the composite of functors will appear as a
special operation of S-modules.

At the end of this section we also include the case when the operadic structure
does not have the actions by symmetric groups, the idea is to facilitate the descrip-
tion of the construction in the next chapter of an E -operad used to describe the
E-coalgebra over the chain complexes.

Definition 2.3.1. Let S be the groupoid where the objects are the ordered sets
[n] = {1,...,n}, with n positive integer and [0] = ¢J. The morphisms of S are given
by (n,m) = &, if n # m, and S(n,n) = ¥,,, the n-symmetric group.

Definition 2.3.2. An S-module M is a functor from the category S to the category
DGA-k-Mod. The morphisms S(n,n) are interpreted as a right action by %, over
M (n). The category of S-modules and natural transformations is denoted S-Mod.

> Remark 2.3.3. The category S-Mod has all colimits and limits because it is a
category of diagrams over DGA-k-Mod.

Definition 2.3.4. We denote U the forgetful functor from the category of operads
to the category of S-modules.

Before starting with the construction of free operads over a symmetric we are
going to sketch how this kind of object would looks like. Let M be an S-module,
the free operad F(M) associated to M, as S-module will contain M(n) as a S-
submodule and all the possible tensors of type M (k) ® M (i) ® - - - ® M (iy), where
11 + - -+ + i = n, because they represent the formal compositions.

In order to satisfy the equivariance axiom we need for every o € X the
relation,

M(k)o® M(ir) ® - © M(ix) = M(E) ® Mlinn) ® - ® Mliag)  (2.26)

which can is obtained by taking the tensor product over k[¥],

M(k) @5, M(i1) ®- -~ ® M(iy) (2.27)
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Now, consider the second equivariance axiom [2.6f In the left part of 2.27], we
could have actions in each factor by the respective symmetric group,

M) ® - ® M (i) 7k (2.28)

with 7; € ¥;; and 4; + -+ - + 4, = n. The permutations 7; all together can be seen

as the permutation of ¥, given by 71 @®- - - @7, acting at right of M (i;)®- - -® M (iy).

This kind of permutations form the subgroup ¥;, x --- x ¥; of ¥,,. Then we can
write,

M) ® - @ M(ig)me = (M(i1) ® - - Q M (ig)) (M ® -+ - D 7%) (2.29)

The process of put at right the permutations 7; is then expressed by the following
tensor product.

(M(i1) ® - ® M(i})) ®s;, xxs;, K[Z] (2.30)

Here we put k[X,, ] instead of k[X;, x - - -x¥; |, in order to considerate all the other
permutations of 3, that acts over the i; + - - - + ¢; inputs but cannot be expressed
by a sum of type 71 @ - - - @ 7. Then we can simplify the expression to obtain,

(M(i1) ® - @ M(ir)) @K[(3i, x -+ - x Xy )\Ey ] (2.31)

The quotient (X;, x --- x X;, )\X, can be represented by the set of (iy,...,1ix)-
shuffles of ¥,,, which is written Sh(iy, ..., 7). Recall that a (i1, .., i)-shuffle, where
i1+ +ip = n, is an element of X, sending (1,...,n) to (1, ..., pf, ..., pf, ..., pf)
such that ,u{ <...< ,u{j for all 1 < 7 < k. Then [2.31|is written,

M(i1) ® - ® M (i) @ k[Sh(iy, ..., )] (2.32)
Which together with the part M (k) gives the following expression.

M(k) ®s, M(i)) ® - ® M(iy) @ K[Sh(ir, . .. ,ir)] (2.33)

Our free operad will need this for arbitrary n and all possible sums i+ - -+, = n,
that is, we need to consider the direct sum,

n=0 k>0 i1+ +ig=n

@@M(k)(@zk( @ M(i1)®~--®M(ik>®k[5h(i1,...,z‘k>]> (2.34)

This expression represents the first stage of all possible compositions between
the elements of M when they are interpreted as applications. The next stage of
compositions is to consider when each of M (7;) in comes from another arbitrary
composite, and so on. In order to manage all the possible levels of composites we
need to introduce some operations over the S-modules.

Definition 2.3.5. Let M, N be S-modules. We define the tensor product of M and
N as the S-module M ® N given by the formula,

(M®N)(n) = @B M(i)®M(j) ®k[Sh(i, j)] (2.35)

i+j=n
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Proposition 2.3.6. The tensor product of S-modules is associative and for every S-
module M satisfies M = M@k = kQM. Where k is seen as a S-module concentrated
i arity 0.

Proof. Let M, N and P be S-modules.
(M®N)®P)(n) = D (MN)(i)® P(j) @k[Sh(i, j)]

1+j=n

@ D M(r s) @ k[Sh(r, 5)] ® P(j) ® k[Sh(i, j)]

1+j=nr+s=1i

D D (M(r)®N(s) ®x,xx, k[Xi]) ®s,xx, P(j) @ K[X]

i+j=nr+s=i

B M(r)®N(s)® P(j) s, xs.xx, k[X4]

r+s+j=n

D D Mr)® (N(s)® P(j) ®x,xx, k[Zi]) ®x, xx, k[Z]

r+i=ns+j=1

(M®(N® P))(n)
The rest of the proof is left to the reader. n

> Remark 2.3.7. Note that in formula [2.34] we have,
P M) @ - @ M(ix) K[Sh(iy, . .., ix)] = M®(n) (2.36)

i1+ +ip=n
where M®" is n times the tensor product of S-modules.

Definition 2.3.8. Let M, N be S-modules. We define the composition of M with
N as the S-module,

k=0

> Remark 2.3.9. The formula can be written,

@M ) ®sx,, <@ @ M(@)®-- ®M(zk)®k[8h(z1,...,k)]>

k=0 n=014i1+--+ig=n
=P M(k)®s, (M®*) =MoM (2.38)
k=0

The composition of M o M represents the first stage of formal compositions and M°*
can be used to represents k stages of formal compositions.

Proposition 2.3.10. Let f : M — N and f' : M’ — N’ be morphisms of S-modules,

then the morphism given by (fo f')(z®@y1 @+ ®yx) = ()@ f'(y1) ® - & f'(yr)
is a morphism of S-modules from M o M’ to N o N'.

O

The S-modules can be identify with endofunctors of the category DGA-k-Mod

in such a way that composite of S-modules coincide with the composition of func-

tors (see [LV12], §5). This kind of functors are called Schur functors. The next
proposition is a consequence of this identification.
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Proposition 2.3.11. The category of S-modules with the composite o and I =
(0,k,0,...) is a monoidal category.

]

In fact, operads are instances of monoids over the category S-modules.
Proposition 2.3.12. Fvery operad determines a monoid in S-Mod and conversely.

Proof. Observe that an application of S-modules n : I — M is not zero only in
arity 1, then it determine an application 7 : k — M (1) and conversely. A morphism
i Mo M — M of S modules in arity n is given by an equivariant morphism of
DGA-k-modules fy,,

@ @D M) ®s, (Mi)®- - ® M(iy) ®K[Sh(iy, ..., ix)]) — M(n)

k=01d1++ig=n

(2.39)
which determined by the collection of equivariant morphisms,
v M(K) ®s, (M(ir) ® -+ ® M(ix) @ K[Sh(in, -..,ig)]) — M(n)  (240)
and each morphism ~ is characterized as a morphism,
v M(E)® M(i1) ® - ® M(iy) — M(n) (2.41)
satisfying the equivariance conditions [2.5) and [2.6] O

Before the construction of free operads one more operation with S-modules is
needed.

Definition 2.3.13. Let M, N be S-modules. We define the direct sum of M and
N by the formula,
(M@ N)(n) =M(n)® N(n) (2.42)

Proposition 2.3.14. The forgetful functor U : OP — S-Mod has a left adjoint
F :S-Mod— OP. We call F' the free operad functor.

Proof. Let M be a S-module, then by proposition [2.3.12] we only need exhibit the free
operad as a monoid (F' (M), u,n) in S-Mod, We are going to describe the construction
of F(M), i, n and the unit and counit of the adjunction, the verifications that they
satisfy the required properties are not hard, for details see §5.4 in [LV12].

First, we construct inductively for each n a S-module F'(M),, as follows.

F(M)y =1 (2.43)
F(M), =T® (2.44)
F(M)y=I@® (Mo (I@®M))=1® (Mo F(M)) (2.45)
F(M)ps1 = I® (M o F(M),) (2.46)
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Let iy be the inclusion of I in F(M),. Using the identity M = M o I and the
morphism 1y;04g : Mol — Mo F(M); we obtain the morphism iy = 1;® (1p014) :
F(M); — F(M),. Repeating this process we got the morphisms,

i F(M), — F(M)nir (2.47)

defined by induction with the formula i,,1 = 1; ® (157 0 i,). The S-modules
F(M),, code all the possible n stage compositions of elements of M. In order to
put together all this information in a single S-module, we take the colimit over the

diagram given by the morphisms i;.
F(M) = colim F(M), (2.48)

n

The differential over F'(M) is determined by the differential of M and extended
in the obvious way.

Now, we have to define y and the unit n for F(M). The unit is given by the
inclusion n : I — F(M). The morphism p : F(M)o F(M) — F(M) is determined
by a collection of maps fiym : F (M), o F(M),, = F(M)y4m, defined by induction
over n by taking o, = 1rr),, and for n > 0, p, ., is given by the composition,

F(M), 0 F(M),, = (I®M o F(M),_,) o F(M),,
= F(M)y @ (M o F(M),_1) o F(M)pn,
= F(M)yy @ M o (F(M),_y 0 F(M),,)

1 @ 1o Hn—1m
F(M)m @ M o F(M)pm-1
i+
— > F(M)pim

where i is the inclusion of F/(M),, in F(M),+m, and ¢’ the inclusion of F'(M ), m_1
as the second factor of F/(M), .

Let P be an operad, the counit € : FU — 1 of the adjunction is determined
by morphisms €, : FU(P),, — P defined by induction as follows. € : I — P is
determined by the unit n of P, e =n+1: I@UP — P and ¢,01 = n+y(lo
€n) : FU(P), = I ® (UP o UF(P),) — P. Finally, for M € S-Mod, the unit of
the adjunction n : 1 — UF, is determined by the inclusions in the second factor
Mo F(M),—1 — F(M),. O

> Remark 2.3.15. Summarizing, the adjunction given by proposition [2.3.14] defines
for every operad Q and S-module M, the natural bijection,
0:OP(F(M),Q) — S-Mod(M,U(Q)) (2.49)

The unit and counit of the adjunction are denoted n and € respectively. For the
unit 7 we have the morphisms,

n: 1S—Mod - UF (250)
m : M — UF(M) (2.51)
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And for counit ¢ we have,

€: FU — lop (2.52)
ep: FU(P) - P (2.53)

Definition 2.3.16. A non symmetric operad is defined as an operad but without

considering the actions of symmetric groups. The category of non symmetric operads
is denoted nOP

Definition 2.3.17. An N-module is a functor from the groupoid 91 with objects the
sets [0] = & and [n] = {1,..,n} for n > 0, and morphisms the identity applications,
to the category DGA-k-Mod. The category of N-modules is denoted N-Mod.

Definition 2.3.18. Let G be the forgetful functor from S-Mod to N-Mod.

Proposition 2.3.19. The forgetful functor G : S-Mod — N-Mod has a left adjoint
H : N-Mod — S-Mod, called the free S-module functor.

Proof. For M € N-Mod, H(M) is defined as the S-module with n component given
by M(n)®k[%,], the verification that it satisfies the proposition is straightforward.
O]

Definition 2.3.20. Let 4 be the forgetful functor from the category nOP to N-Mod.

Proposition 2.3.21. The forgetful functor nU : nOP — N-Mod have a left adjunct
nF : N-Mod — nOP, called the free non symmetric operad functor.

Proof. The non symmetric case is similar to the symmetric case, only without the
considerations about the 3, actions. For an N-module N, in order to construct
a free ns operad over N we need a direct sum, tensor product and composite of
N-modules. They are defined as follows,

(N® E)(n) = N(n)® E(n) (2.54)
(N® E)(n) = @_ N(i) ® E(j) (2.55)
(NoE) =@ N(k) ® E® (2.56)

Note that,

NoE=PDP P NIOE>H)® - ®E(i) (2.57)

k=0n=041+-+ig=n

As the symmetric case, the ns operads are monoids over the monoidal category
of N-modules, where the monoidal structure is given by the composite. The steps
for the construction of nF' are the same as the symmetric case. O

Definition 2.3.22. Let G be the forgetful functor from the category of operads OP
to the category of non symmetric operads nOP. G associate each to each operad
the non symmetric operads obtained by dropping the symmetric groups actions.
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Proposition 2.3.23. The forgetful functor G : OP — nOP has a left adjoint
H:nOP — OP.

Proof. For an non symmetric operad P its associated free symmetric operad is given
by P ® k|X]. The verifications are straightforward and left to the reader. O

Proposition 2.3.24. The relations between these forgetful functors and its associ-
ated free functors are reunite in the following commutative diagrams.

OP nOP OP<~—" poOP
U nU F nF (2.58)
S-Mod g N-Mod S-Mod 7 N-Mod

Proof. Immediate, by using the fact that composition of adjoint functors is again
an adjunction, and by unicity of the adjunction their images are isormorphic. [

> Remark 2.3.25. The commutative diagram in proposition suggests that we
can use the construction of free non symmetric operads to describe the free operads
over an symmetric sequence in which the actions of symmetric groups are free, in the
sense that for a S-module M, the free operad F'(M) is canonically isomorphic to the
operad (H onF o G)(M). Which is the case when the are working with S-modules
with components Y,-free bar resolutions. We will use this point of view to describe
the F,-coalgebra structure on the chain complex associated to a simplicial set.

2.4 Colimits of Operads

In this section we show that the category of operads have all small colimits. The
existence of this kind of structure will be used in chapter |9 to construct the E-
operad K.

The tensor product of DGA-k-modules preserves small colimits in each compo-
nent, then it satisfies the following lemma ([Frel6]).

Lemma 2.4.1. Let F' : C" — C be a covariant functor. If F preserves reflexive
coequalizers in each component, then F preserves reflexive coequalizers in C™. That
is, if for every every 1 < i < n and every X; = Y; reflexive diagram in C, the
morphism given by the universal property of coequalizers from the coequalizer of the
diagram in C,

F(Ala cee 7Ai717Xi7Ai+17 cee 7An> 3 F(Ah s 7Ai717Y:i7Ai+17 s 7An) (259)

to F(Ay,...,Ai_1,Ceq(X; = Vi), Ait1, ..., An), is an isomorphism, then for
every collection of reflexive diagrams {X; = Y;}1<i<n the morphism from the co-
equalizer of the diagram in C,

F(X1,...,. X)) 3 F(Y1,...,Y,) (2.60)

to F(Ceq(X; = Y1),...,Ceq(X, = Y,)) is an isomorphism.
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Proof. The collection of reflexive diagrams {X; % Yi}i<i<n defines a collection of
functors {T; : Dy — C}i<i<n. We use the notation coliDm T;(a) for Ceq(X; 3 Y;).
0

(675

Then the hypothesis can be written as

COhDIIlF<A1,...,Ai_l,ﬂ(a),AZ’+1,...,An) = F(Al,...,Ai_l,COliDmﬂ<Oé),Ai+1,...,An)
aeDg — aclg
(2.61)

By proposition the diagonal D : Dy — Dy is a final functor. Consider the
functor Ty x --- x T, : Di — C". Then the proposition [1.6.§ says that there is an
isomorphism from the colimit of F/(T} x - - - x T},) D to the colimit of F(Ty x - -+ xTy,),
and we have

Ceq(F(Xy1,...,X,) = F(Y1,....Yy))

= ColiDm F(Ty x - xT,)D(«) (2.62)
ae)g

= ( colingl 5 F(Ti(aq), ..., Th(ay)) (by [L.6.8) (2.63)

— (a1,...,an €Dy

~ colim ... colim F(Ty(a1), ..., Th(am)) (2.64)
a1€D0 anEDQ

~ F(colimTi(ay),...,colim T, (ay,)) (by hypothesis) (2.65)

— a1€Dp an€Dp

= F(Ceq(X1 3 Y1),...,Ceq(X, 2 V,))

In the following proposition we construct an operad using the classic definition
of operads in [2.1.1]

Proposition 2.4.2. In the category OP the forgetful U : OP — S-Mod functor
creates reflexive coequalizers.

Proof. Let P = Q a reflexive pair in OP. We are going to construct the reflexive
coequalizer O of this diagram in OP. For that, first we define components of the

operad O by O(n) = Coeq(P(n) = @Q(n)). This coequalizer exists because S-Mod,
as well as DGA-k-Mod, has all small colimits. To define the composition v of O
consider the following morphism of DGA-k-modules.

Coeq | P(k)® Pir) @+ Plix) = Q(K) ® QUin) ® + ® Qi)

[

Coeq [P(k) = Q(k‘)] ® Coeq [P(lk) = Q(lk)] ®---® Coeq [P(Zlc>

—

3 Q(ik)]

(2.66)
By lemma [2.4.T] this morphism is an isomorphism, then we can take its inverse
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1~ and define v to be the following composition.

O(k)®O0(i1) @+ @ O(iy) =
Coeq [P(k;) = Q(k)] ® Coeq [P(zk) = Q(Zk)] ® - ® Coeq [P(zk)
p

Coeq | P(K)® P(in) @+ Plix) 3 Q(F) @ Qin) ® - ® Qi) |

e

= Qv |

~

—

Coeq [Plir+ i) 3 QUir + i) | = Olia + -+ + i)

(2.67)
Where 7 is the induced morphism by the compositions of operads P and Q. For
define the unit of O, consider the following commutative diagram obtained from

P33 Q and the coequalizer properties.

iP(1)

”}* 2.68
o >/7> 29

Thus the unit for O is defined by the composite ip1ynp : k — O(1). Note that the
choice ig(1yng gives the same result, as a consequence of reflexive arrow existence.
It is not hard to check that O with this structure satisfies the axioms of operads
and the universal property for coequalizer. O]

Proposition 2.4.3. Let {P;}ic; and {Q;}icr two small collections of objects in a
category C such that the colimits colsz and colzm Q; exist. Denote for i € I the

cocone edges p; : P, — colsz and qZ Q; — colzm Q.

1. Every collection of morphisms f; . P; — cqlz'Irn Qi, 1 € 1, determines a morphism
€

f: calz'lrn]% — cqli]m Q;, such that f; = f op; for everyie I.
€ 1€

2. Fvery collection of morphism f; : P, — @Q;, © € I, determines a morphism
f: cdiiji — cqlilm Q;, such that q; o f = f; o p; for everyie I.
(S €

Proof. The collection f; : P, — colim Q;, © € I exhibit colim (; as a cocone over

the diagram {P;},c;, then by the unlversal property of coproducts there exists an
unique morphism in C, f : cohIm P, — cohlm Q; such that f; = f op, for every i € I.

For the second statement, compose every f; : P; — (); with the respective cocone
edge ¢; : Q; — CQhIIn Q;, then we have a collection g; : P, — chiIm Qi, with g; = ¢;o f;
1€ €

for i € I. And applying the first part we get that this determines f =g : cqlilm P, —
(S
colim @);. [
i€l



2.4. COLIMITS OF OPERADS 57

Proposition 2.4.4. The category of operads has all small colimits.

Proof. Let {P;};c; be a small collection of operads. With it is possible construct a
reflexive pair in OP, and by proposition [2.4.2] its reflexive coequalizer exists in OP.
The last part of the proof consists in checking that this reflexive coequalizer is the
colimit of {P,};es.

From {P;};,c; we obtain in S-Mod the collection {U(P;)};c;, denote its colimit
coileilm U(P;), and «; : U(P;) — coileilm U(PF;) the cocone edges.

The morphisms «; @ U(P;) — chiIm U(P;) induce the morphisms UF(«;) :
1€
UFU(P) —>UF (cqlillrn U(P;)), which determines the following morphism.
1€

colim UFU(P,) —=~ U F (colim U (F) (2.69)
1€ 1€

Consider the unit € and counit 7 of the adjunction F' — U, and the following
composite in S-Mod.

Ulep, o
UFU(P) "2 (P~ colim U(P) —"=UF(colimU(P,)) (2.70)
€

el
These compositions determines the morphism in S-Mod,
di
coli;n UFU(P,) ;>UF(cqliIm U(P)) (2.71)
s 1€

By the universal property of free operads dy and d; will determine the morphisms
dy and d; in OP in the following commutative diagram.

UF (coilei}n UFU(R-)) F (coilei}n UFU(R-))
U(d1) di
. S > (2.72)
d
colim UFU(P,) ————= U F(colim U(P,)) F(colimU(P,))
iel do iel el

Now we give the contraction s for dy and d;. With the counit n consider the mor-
phisms 1y (p,) : U(P;) — UFU(P;). By the colimit properties they determine a
morphism of S-modules 3 : co_liIm UP) — CQliIIn UFU(P,), and we take s = F/(f3).

€

1€
Thus we have the following diagram in OP.

S

L T (2.73)

F (coileilm UFU(R;)) F(colimU(P))

do el

Before take the reflexive coproduct of this diagram we have to check that d;s =
dos = 1. To show this we only have to check that over their components defined
over U(F;), dis and dys are both equal to the identity.
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The morphism s is determined by nyp,) : U(P;) — UFU(P;), dy by UF (o) :
UFU(P,) - UF (coli]rn U(F;)). The naturality of n makes the following diagram
€

commutative.

Nu (p;)

U(F) UFU(F;)
Qi UF(a;) (2.74)
colim U (P,) —= UF(colim U (P,))
el el

Then we have that UF(a;)nup,) = nos : U(FP;) — UF(co.liIm U(P;)), which in-
€
duces the identity over UF (ColiIm U(P;)). For dys, dy is determined by the composi-
€

tion 12.70, then we have d;s is determined by the composition na;U (€p,)nu(p,), which

by the triangular equations of the unit and counit (proposition [1.5.3)), is equal to

na;, which as before induce the identity over U F' (colilm U(PF;)). Then by proposition
1€

there exist the coequalizer of the diagram [2.73]

s

. T~
F <Cozlellm UFU(R)) - F(colim U(P,)) a 0 (2.75)

do iel

The operad @ will be the colimit of the collection {P;},c;. We only have to check
the existence of operad morphisms from each P; to () and the universal property for
colimits. In order to do that, first we are going to see the information that been an
coequalizer of dy and d; gives.

Let R be an operad and an operad morphism f : F (coileilm U(P;)) — R such that

fdo = fd;. This morphism is determined by its components h; : U(P;) — U(R)
given by the compositions,

U(P) > colimU(P,) "> U(R) (2.76)

1el
W
The morphisms fdy and fd; are determined by morphisms from UFU(P;) to
U(R) in S-Mod, so we will describe in terms of their components the relation fd; =
fdo. In the case of fdy recall that dy is determined by the morphisms UF(ay;) :
UFU(P) —>UF (COZIGIIIII U(F;)) and consider the following commutative diagram.

UFPU(P) -~ - _
UF(ai) "~
S U0 (ha)
UF(cqliIm U(P)) "~
1€ N\
N\
nor,) nT N (2.77)
colim U (P;)
iel
\
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The quadrilateral is commutative by the naturality of the counit. Then the
composite at the diagonal U(f)UF(«;) is determined by the bottom side, that is
hi, and the bijection of the adjunction F' U says that U(f)UF(«;) is equal to
U0~ (h;)), which means that fd, is determined by U(6'(h;)) : UFU(P;) — U(R).

For fd, recall that d; is determined by the composition 2.70] then fd; is deter-
mined by the composition,

Ulep, -
UFU (P (P~ colim U (P) —~ U F(colim U (P,)) 2L

el iel

U(R) (2.78)

By we have that U(f)na; = 0(f)a; = hy, then fd; is determined by the
composition Ul(ep,)h; : UFU(P;) — U(R). Together with the result for fd,, says
that fd, = fdy if and only if the following diagram is commutative.

UFU(P,)
U@.)i O ) (2.79)

U(P) ——U(R)

This diagram is commutative if and only if h; is a morphism of operads, in other
words, if there is a morphism of operads f; : P, — R such that U(f;) = h;.

Suppose that is commutative. We need to proof that h; preserves the op-
eradic structure on P;, that is we have to check the conditions of definition [2.1.7]
To avoid confusion we denote A the unit of an operad in this part.

1. The unit.

hiU(Ap,) = hiU(ep,Aru(p,)) (2.80)
= h;U(ep,)U(Aru(py) (2.81)

= U (07 (h:))U(Arucpy) (2.82)

= U0 (hi)Aru(py) = U(AR) (2.83)

(2.84)

2. Equivariance follows by the fact that all are morphisms of S-modules.

3. The composition.
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hiU(vp,) = h;U(vp,1p,) (2.85)
= hU(vp, )1U (P) (2.86)
= hU(vp)U(ep, )nu(p,) (2.87)
= hiU(vp.ep)nu (P) (2.88)
= h;U(ep,yru(p))Mucp,) (2.89)
= hU(ep,)U (WFU (P))TU(Py) (2.90)
= U0 (h:))U (veuey) o, (2.91)
= U0 (hs )YFU (P ) MU (P (2.92)
= U(vr0™ (hi))nu e, (2.93)
= U(yr)U (07" (ha))nu (e, (2.94)
= U(yr)hi (2.95)

Conversely, suppose there is a collection of morphisms of operads {f; : P, —
R}icr, such that U(f;) = h; for every i € I. Then the following triangle is commuta-
tive by the naturality of 6.

FU(P) OP(FU(P), R) <"—S$-Mod(U(F;), U(R))
Epil/ %U(fi)) fi*T TU(fi)* (296)
P——R OP(FU(P,), P;) <~ S-Mod(U(P,), U(P,))

Then the diagram is commutative. Now we pass to verify that () is the
colimit of the collection of operads {P;};c;. We saw that this collection induces
morphisms h; : U(P;) — U(Q) of S-modules that satisfy 2.79] then they define
morphisms of operads f; : P, — @, such that U(f;) = h;. These morphisms are the
cocone edges.

Any collection of operad morphisms f; : P; — R, defines a morphisms of operads
f from F (cohm U(P;)) to R such that fdy = fd,. Then there is an unique morphism

of operads g : Q — R such that g¢ = f. The morphism g commutes with the cocone
edges, and this exhibit @) as the colimit of {P,};c;. O



Chapter 3

L-Algebras

The central notion of this thesis is the algebraic structure called L-algebra. Intro-
duced by Alain Prouté in several talks since the eighties and never published (Max
Planck Institut-Bonn 1986, Louvain-la Neuve 1987, Freie Universitat-Berlin 1988,
Seminar Keller-Maltsiniotis-Paris 2010), £-algebras have been thought to be highly
related to the homotopy type of spaces by using an internal structure that models
the diagonals which determines invariants like Steenrod operations. L-algebras are
similar to Segal’s I'-structures (see [Seg74]), but in an algebraic context instead of a
topological context. It happens that the Eilenberg-Mac Lane transformation plays
a central role in L-algebras, where it is the prototype (motivation) of the product
of L-algebras. The present chapter introduces the concept of L-algebras and con-
tains establishes its principal properties. It is interesting to notice the existence of
a preprint of Tom Leinster (see [Lei00]), which present a similar definition.

3.1 The Category L

We saw in the chapter of preliminaries that simplicial sets are described as con-
travariant functors from the simplicial category A to the category of sets. In this
way the simplicial relations are coded by the category A, which allows an easy ex-
tension of the concept of simplicial set to other categories and gives the definition
of simplicial object. With L-algebras our principal interest is to model the relations
describing the behavior of diagonals in chain complexes. This can be done by using
an approach similar to the technique used to define simplicial objects, that is, defin-
ing L-algebras as contravariant functors from a suitable category. This category will
be denoted L.

Definition 3.1.1. We define £ to be the category where the objects are the totally
ordered sets [n] = {1,...,n} for n > 0 and [0] = &, the empty setf| The arrows
of L are all the partial maps between these sets. The composition is simply the
composition of partial maps of sets.

> Remark 3.1.2. We can describe any arrow « : [n] — [m] of £ by a pair (D, f),
where D is a subset of [n] and f is an everywhere defined map from D to [m]. The
set D is called the domain of f and is denoted by Dom(f). Then, the composition
in £ of two arrows (Dom(f), f) : [n] — [m] and (Dom(g), g) : [m] — [p], will be
the pair (Dom(go f),go f) : [n] — [p], where Dom(go f) = f~}(Dom(g)).

"We make the abuse of using the same notation for the objects in the category A

61



62 CHAPTER 3. L-ALGEBRAS

> Remark 3.1.3. Note that £ contains as a subcategory a copy of the simplicial
category A, by taking the embedding {0,...,n} — {1,...,n + 1}, but clearly it’s
not a full subcategory. Also, the set of morphisms £([n], [n]) include the set ¥,, of
permutations of n elements.

© Remark 3.1.4. The objects of the category I' (see [Seg74]) are the finite sets, and
a morphism from z to y is an application f : 2 — P(y) [ such that z; # z, implies
f(z1) n f(z2) = &. Then we have the isomorphisms of categories I'? ~ £ and
LP~T.

Proposition 3.1.5. The category L equipped with the sum functor,

VL L L (3.1)

defined for objects by,

[n] + [m] := [n + m] (3.2)
and for arrows « : [n] — [p] and 5 : [m] — [q], as the sum o+ 5 : [n + m] —
[p + q] given by,

(a+ B)(n) = { o) fz<n (33

p+ B(x —n) ifzr>n

is a cocartesian category. The object [0] is the zero object of L, that is, an object

which is at the same time terminal and initial. In both cases the universal map has
empty domain.

Proof. Let iy : [n] — [n+m] < [m] : iy the cocone in £ where the application iy, iz
are the inclusion i;(x) = x for x € [n] and is(y) = (y + n) for y € [m]. To show
that £ is a cocartesian category it suffice to show that this cocone is initial. Let
a:[n] — [r] < [m] : 5 any cocone from [n] and [m]. Let v : [n +m] — [r] defined
by v(z) = a(2) if 1 < z < nand y(z) = B(z —n) if n < z < n+m. Then it is
clear that 7 : [n + m] — [r] is the only application in £ such that v oi; = a and
v oiy = [3. [

Definition 3.1.6. When a cocartesian category has a zero object is called pointed
cocartesian category. Furthermore, if the zero and the sum are explicitly given, the
category is called strict pointed cocartesian category.

o Remark 3.1.7. L is a strict pointed cocartesian category.

Proposition 3.1.8. The sum defined in L is strictly associative, i.e.

([n] + [m]) + [p] = [n] + ([m] + [p]) (3.4)
for all objects in L, and (f +g) + h = f+ (g + h) for all morphisms.

Proof. The proof is immediate. m

TP(y) is the set of subsets of y.
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The sum and composition of £ can be used to generate all the morphism in £
from a small set of morphism in £. The required morphisms of £ are introduced in
the following definition.

Definition 3.1.9. In £ we identify the following arrows.

1. The face operator d; : [n] — [n + 1] is defined for 1 <i <n + 1 by:

T ifx<i
UCES PO 9

When n = 0, the only face operator d; : [0] — [1] is the universal morphism
from [0].

2. The degeneracy operator s; : [n] — [n — 1] is defined for 1 < i < n by:

(3.6)

si(x) =

T o<t
z—1 x>

In the case n = 1, the only degeneracy operator s; : [1] — [0] is the universal
morphism to [0].

3. In £, any injective map i : [n] — [m] of the form ([n],7) has a unique minimal
retraction, denoted by 4 : [m] — [n], in other words, i is the only morphism
with domain given by the image of ¢ and which satisfies the relation 707 = L)
In particular, the minimal retraction associated to the face operator d; will be
denoted ¢;. For d; : [0] — [1], its minimal retraction ¢; : [1] — [0] coincide
with s; : [1] — [0].

> Remark 3.1.10. The operator d; : [n] — [n + 1] is the only increasing injection
ignoring ¢ € [n + 1].

[n] ={1,2, ---i—-1,4 -+ n—1, n}
d; (3.7)
[n—li-l]{ll, QJ(,--‘ill, i,>+1, '-\n,>+1} Y

The operator s; is the only decreasing surjection crashing ¢ and ¢ + 1 in the same
element of [n — 1].

[n] =A{1,2, -4, i+1, i+2, -+ n-—2 n}
TN T e
[n—1] = {1, 2, -~ 4, i+1, -+ n—-2 n-—1}

The operator (; is like d; but with inversed arrows, that is, the only decreasing
injection without ¢ in its domain.

] =

{1,
o ]
(1

[n+1] =

=14, -+ n—1, n}

? U e

ci—1, 4, i+1, - . n, n+1}

?



64 CHAPTER 3. L-ALGEBRAS

Proposition 3.1.11. Let 1 be the identity of [1], dy the only face operator from [0]
to [1] and 7 : [2] — [2] the only non trivial permutation of [2]. Then we have the
following decompositions.

1. Every face operator d; : [n] — [n + 1] can be expressed as the sum,

i—1 n—i+1
di=1+(-~-)+1+d1+1+(-~T)+1 (3.10)

2. Any transposition o : [n] — [n], that is, a permutation that exchanges two
consecutive elements i, i + 1 and leaves the rest fixed, can be expressed by the
sum,

(i-1) (n—i—1)
_|_ ..

o=1 S+ l+T+14+ - T4 (3.11)

Proof. The face operator dy : [n] — [n + 1] is equal to the sum d; + 1p,, as the
following pictures shows.

[n] = {1, 2 - .n} = g + {1, 2 - ,n} = [n]
o NN N e
[n+1] = {1, 2, 3, - n+1} = {1} + {1, 2, -+ ,n} = [n+1]

(3.12)

Also we have that 1, = 14—-(7-1)-+17 then d; : [n] — [n+1] is equal to d1+1+‘@-+1.

So we can express the face operator d; : [n] — [n + 1] as the sum 11 + dy, with
dy : [n—i+ 1] - [n+ i+ 2], and obtain that,

i—1 n—i+1
di =1y + i+ T =1+ 4l di+ 1+ 1 (3.13)

The transposition o : [n] — [n] can be written like 1j;_1; + 7 + 1,—;_1] as the
following picture shows.

n] ={1,2 - i—1,4 i+1, i+2, -~ n}= [i—1] + [2] + [n—i—1]
TR G R

[n—1] = {1, 2, -~ i—1, 4, i+1, i+2, -+, n}= [i—1] + [2] + [n—i—1]
(3.14)

Then we have the decomposition,

(i-1

) (n—i—1)
c=1+-"+1+7+1+ ---

+1 (3.15)
0
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Proposition 3.1.12. All the arrows of L can be generated using the sum + : LxL —
L and compositions of the following five arrows.

[0] [1<=—— [2][> (3.16)

Proof. The result follows from the considerations below.

1. Any i : [p] — [n] increasing injective defined everywhere application, can be
expressed as a composition of face operators, then by proposition [3.1.11} 7 is
expressed as compositions of sums of 1 and d;. Then its minimal retraction
will be expressed as compositions of sums of 1 and (;.

2. Any permutation of [n] is a composition of transpositions, then by proposition
3.1.11} it is a composition of applications of the form 14---+1+74+14---+1.

3. Any defined everywhere application from [n] to [1] sending every number to
1, can be expressed as a composition of applications of the form s; + -+ + s,
or s+ ---+s + 1.

4. Any morphism « : [n] — [m] of £ can be expressed as a composite o oio o7,
where the minimal retraction of j is increasing injective defined everywhere,
[ is defined everywhere increasing, ¢ is increasing injective defined everywhere
and o is a permutation of [m].

]

Actually, we can characterize the category L as the free strictly associative
pointed cocartesian category on one object, as the following proposition shows.

Proposition 3.1.13. Let C be a strictly associative pointed cocartesian category,
and X an object of C. Then there an unique functor F : L — C preserving zero and
coproducts and such that F([1]) = X.

Proof. Indeed, F'([n]) must be the n-fold sum X + “ + X and F([0]) must be the
zero object of C. The five arrows above have mandatory images by F, this means
that F'(1) = 1x, d; and (; are send to the unique arrows 0 — X and X — 0, where 0
is the zero object of C, the image of s; is the codiagonal of [1], that is the morphisms
[1] + [1] — [1] obtained by the universal property of coproduct,

" 1] (3.17)
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so its image by F' must be X + X — X, the codiagonal of X, which is well
defined because C is cocartesian, that is, the sum is well defined. And ¢ which is
the canonical twisting arrow of the sum [1] + [1],

(1] . (1] (3.18)

io v i
[1]+ [1]
should be send to the canonical twisting arrow of X + X. O]

> Remark 3.1.14. In the same sense of this definition, the opposite category L of
L is characterized as the free strictly associative pointed cartesian category on the
object [1].

3.2 L-Algebras

In this section we present the definition of L-algebras. An L-algebra is a con-
travariant functor from £ to a category with a notion of homology and a natural
transformation p, which will be called the product of the L-algebra. The homotopy
coherence is concentrated in the fact that p induces isomorphisms in homology.
Then we will deal with categories equipped with quasi-isomorphisms, that is, a dis-
tinguished class of arrows, called quasi-isomorphisms, which forms a subcategory of
the given category. The only categories of this kind that we will use are the already
mentioned DGA-k-Mod and DGA-k-Alg, where being an quasi-isomorphisms means
inducing an isomorphism in homology.

Definition 3.2.1 (L-algebra). Let (C,®, k,T") be a strict symmetric monoidal cate-
gory with quasi-isomorphisms. An L-algebra A with values in the category C consists
of a functor,

A:LP - C (3.19)
together with a natural transformation p: ®o (A x A) - Ao +.
®o (A x A)
ed e o

N

Ao+

The morphism in C that p associates to each pair ([n], [m]) of £ x L, goes from
A[n]®A[m] to A[n+m] and is written ji, m). The image of any arrow « of £ by the
functor A, A(«), is simply written again as «, but this image goes in the opposite
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direction of the original arrow in £. Then, for every pair of arrows « : [p] — [n]
and (5 : [¢] — [m] in £ we have the following commutative diagram.

Hm],[n]

Aln] ® Alm] Aln +m]
@% lﬁﬁ (3.21)
Alp] ® Alq] sl Alp + 4]

The functor A and the natural transformation p are required to satisfy the
following conditions.

1. Associativity: po (u®1) = po (1® p). Equivalently, for every [n], [m] and
[p] in L the following diagram commutes.

[n],[m]®1
Aln] ® Alm] ® Alp] — M~ Aln + m] ® Alp]
1®%[m], [p] i \L“[Wrm],[p] (3'22)
Aln] ® A[m + p) Al L r) Aln +m + p

2. Commutativity: Let [n], [m]in £, and 7 : [m+n]| — [n+m] be the twisting
morphism of [m] + [n], then the following diagram commutes.

A[n] ® A[m] —£~ A[n + m]
Ti l (3.23)
Alm] ® A[n] —£= A[m + n]

3. Unit: The image of [0] by A is k and Kioln] = M) = 1. In terms of
commutative diagrams we have,

AO) @ Aln] ——F——An]  A[n] ® A[0] ——— A[n]
. A . A
Aln] Aln]
(3.24)
4. Coherence: For every pair [n], [m] of objects of L, the morphism
Ln],im] : Aln] @ Alm] — A[n + m)| (3.25)

is a quasi-isomorphism, that is, fi[, m] induces an isomorphism in homology.

o Remark 3.2.2. The natural transformation of an L-algebra is called the prod-
uct of A or the structural quasi-isomorphism of A. Also, in order to simplify the
expressions we drop the indexes of pi, ) and simply write ;1 when necessary.
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> Remark 3.2.3. In an L-algebra A the morphisms induced by the structural quasi-
isomorphism and the images by A of morphism in L like faces, degeneracies and
permutations, maybe can be visualized with following diagram of morphism in C.

s1= I als N
—Ap) A ap A[3]/A. |
di=e¢ U \\dl,dz/ ’%J kdhd%dd/ /&5) -
Al1] A%Q] AF]
p.1 p1,2
All]® A[1] A ® A[2] e

A2l ® A[1]
(3.26)
Where 7 is the non trivial permutation of ¥ and ¢ is any permutation of 3.

2> Remark 3.2.4. There is an ”degenerated” case of L-algebra. It happens when u
is taken to be the identity. This implies that A[n] = A[1]®" for every n < 1 and
that the application sq : A[1] — A[1] ® A[1] is a commutative coproduct . Indeed,
in £ we have the following commutative diagram.

k l (3.27)

Which after applying A and put together with the commutativity of u, gives,

Al - Al2] < Al @ A[1]

[
R lT J{T (3.28)

A2] < A1l ® A[1]

making 7' = 7 and T'os; = 51 : A[1] — A[1]® A[1]. The fact that the coproduct
is commutative implies that all the higher homotopies of the diagonals can be taken
as zero, so this kind of L-algebras are not very interesting for us. The L-algebras
are supposed to model the behavior of systems of diagonals like the one found in the
chain complex associated to a simplicial set. In that case the diagonals obtained from
homotopy inverses of the Eilenberg-Mac Lane transformation are not commutative,
because of the existence of Steenrod operations.

Now we pass to the notion of morphism of L-algebras in order to complete the
introduction of L-algebras as a category.

Definition 3.2.5. Let A and B be two L-algebras with products ua and pg respec-
tively. A morphism of L-algebras f : A — B is a natural transformation from A to
B which satisfies the following conditions.
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1. It preserves the product of L-algebras in the sens that fus = pup(f ® f), that
is, the following diagram is commutative.

Aln] ® A[m] Fa Aln + m]
f[n]®f[m]i lf[wm] (3.29)
B[n]® B[m] rE Bln +m]

2. The morphism fjg) : A[0] — B[0] is the identity of k.

o)

A[0] = k—% B[0] = k (3.30)

Proposition 3.2.6 (The category of L-algebras). Let C be a category as|3.2.1. Then
the L-algebras with values in C together with the morphisms of L-algebras form a
category. This category will be denoted L(C).

Proof. Let A, B, C be three L-algebras, f : A — B and g : B — C, be two morphisms
of L-algebras. It suffice to check that the composition of natural transformation
go fis a morphism of L-algebras. The first condition of is consequence of the
following commutative diagrams for f and g.

Aln] ® A[m] A Aln +m]
f[n]®f[m1l lf[wm]

B[n] ® B[m] re B[n + m] (3.31)
9[n)®Y[m) J{ lgmm]

Cln] ® C[m] He Cln +m]

Making the left and right compositions we obtain the commutative diagram we
want.

Aln] ® Alm] A Aln + m]
(gof)[n]®(gof)[m] l i(gof)[,prm] (332)
Cln] ® C|m]| e Cln +m|

The second condition also is a direct verification, because we only have to check
that (g o f)[g) is the identity of k.

A[0] = k% B[o] = k- 0] = k
~_ (3.33)

(go)10]
L]

Even if the definition of L is established in total generality on strict symmet-
ric monoidal categories with quasi-isomorphism, we will restrict our attention to
the category of differential graded modules or the category of differential graded
algebras.
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Definition 3.2.7. Let A an L-algebra with values in the category C.

1. If C is the category of DGA-k-modules, A is called L-algebra.

2. If C is the category of DGA-k-algebras, A is called multiplicative L-algebra.

> Remark 3.2.8. L-algebras are designed to represent the O-reduced simplicial sets
and multiplicative L-algebras will represent the O-reduced simplicial groups.

3.3 Monoidal Structure of £(C)
In this section C represents the category DGA-k-Mod or DGA-k-Alg.

Proposition 3.3.1. Let T : L7 — C be the functor defined by T'[n] = k for every
n =0 and T(«) = 1« for every morphism in L. Together with the natural transfor-
mation p1 2 @ o (T x T) — T o + defined by pipn),pm) = 1k for all [n],[m] € L, the
functor T is an L-algebra.

Proof. The proof is evident. m

Definition 3.3.2. The L-algebra in proposition [3.3.1} is called the trivial £-algebra
with values in C and it is denoted k.

Proposition 3.3.3. Let C be the category DGA-k-modules. Then the trivial L-
algebra k is a zero object in L(C).

Proof. We have that k is a zero object of DGA-k-Mod, then, for any L-algebra A,
this defines unique DGA-k-morphisms if,) : k — A[n] and pp,) : A[n] — k (n = 0),
which coincide with the coaugmentation and augmentation of A[n], respectively.
The associated natural transformations z : k — A and p : A — k are morphisms of
L-algebras by the commutativity of the following diagram,

k

Afn) @ Afm] ————— Afn +m] (3.34)
M A
k
because p is a morphism of DGA-k-modules. O

Proposition 3.3.4. Let A and B be two L-algebras. Let P be the functor P : LP —
C defined by,

1. P[n] = A[n] ® B[n] for all [n] € L.

2. P(a) = A(a) ® B(a) for all o morphism in L.
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Let up : ®o (P x P) — Po+ be the natural transformation given by the following
composition.

P[n] ® P[m]—— A[n] ® B[n] ® Alm]® B[m]
ll@T@l
wp Aln] ® Alm] ® B[n] ® B[m] (3.35)
lm@us
P[n + m] Aln 4+ m]® B[n + m]

Then P is an L-algebra.

Proof. Clearly up satisfy the unit axiom. The commutativity follows from the com-
mutative diagram,

A[n] ® B[n] ® A[m] ® Blm] ——= A[m] ® B[m]® A[n] ® B[n|

1®T®1l l1®T®1
Aln] ® A[m] ® B[n] ® B[m] =2 A[m] ® A[n] ® B[m]® B[n] (3.36)
HA®LB J{ e J{m@ug
A[n +m] ® Bln +m] — 2"~ A[n + m] ® B[n + m]

where o = (12
bottom square by
verified directly,

34). The upper square is commutative by direct evaluation, and
the commutativity of u4 and ug. The associativity of up can be

1@T@1)(1a®@us)(1@T®1)®1Q1)

1T (ua@us®101)(1TQ®1R1®1)

i ®T(s®1)@1)(1RTO1®1®1)

a1 us)(T@®HART)®)(1T®1IR1I®I)

i1 ue)(1ele(Te(1eNe)(1eTeLIe1®1)
1@ua®leu)le (1T (Te)ele)(leleleT®l)
1@pA1T)(TR®1)@us)(191®10T®1)
I1RT1I®ua)Qus)(1®1®1I®T®1)
1@TRN(1®1@uA®us)(191910T®1)
1TR1(1®1® (ta®us)(1®T®1))

A ® pp
HAQ pp
pa @ s
A pp

pp(1® pp) = ( )
( )
( )
( )
= (Ha ® )
( )
( )
( )
( )

HA® pp
A 1B
A ® pp
= (1A @ B
= (1A ® ps)
= pup(1® pp)

N N N /N N N N N /N o/

Finally, that up satisfies the coherence condition of follows from the fact
that the tensor product of two quasi-isomorphisms is again a quasi-isomorphism,
when k is a field. O

Definition 3.3.5. The L-algebra P in is called the tensor product of A and
B and will be denoted A ® B.
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Proposition 3.3.6. The functor tensor product of two L-algebras induces a functor

®: L(C) x L(C) — L(C).

Proof. We need to check that for every pair of morphisms of L-algebras, f: A — B,
g : C — D, there is a morphism of L-algebras f®g: A®C - B®D.
Define f®g as (f®g)n = fu®gn : A[n]®C[n] — B[n]®D[n]. Let a : [m] — [n]

morphism of £, and consider the following diagram.

(f®g)n

Aln] ® C[n] B[n]® D[n]
a®al lﬂ@ﬁ (3'37)
A[m] ® C[m] —Y22"  Blm] ® D[m]

This diagram is commutative because,

(f®Gmo(a®a) fm ® gm) o (a® a)
fmoa)®(gn® a)

(
(
(Bo fa)®(Bog,) (f and g are morphism of L-algebras)
(
(

B&P) o (fn®gn)
B®B)e(f®gn
(3.38)
Now we have to check that f ® g preserves the quasi-isomorphism p. For that,
consider the following diagram.

(A®C)(n) ® (A®C)(m) L2 (36 D)(n) ® (B D)(m)
lm@c ipm (3.39)
(A®C)(n +m) D (B®D)(n + m)

The commutativity follows because,

fn+m ®gn+m)(:uA X NC)(l & T ® 1)
fn-&-m,uA & gn-&-mNC’)(l ® T ® 1)

(f®9)n+mONA®c = E
Emfn ® fin) ® p(9n ® 9m)) (1O T ®1) (3.40)
(

UB®ND)(fn®fm®gn®gm>(1 XT® 1)
UB®ND)(1®T® 1>(fn®gn®fm®gm)
18D © ((f ® 9)n @ (f ® g)im)

]

Proposition 3.3.7. Then category L(C) is a strict symmetric monoidal category
with unit. The product is given by the tensor product of L defined in and the
unit is the trivial L-algebra k.

Proof. 1t is a straightforward succession of verifications. O
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3.4 Homology of L-Algebras

Definition 3.4.1. Let A be an L-algebra. The module A[1] is called the main
element of A. The associated forgetful functor from L£(C) to C is denoted by U. In
fact we have a collection indexed by n = 0 of forgetful functors U,, : L(C) — C, with
Un(A) = Aln].

Definition 3.4.2. Let A be an L-algebra. The homology of A is defined to be the
homology of its main element.

> Remark 3.4.3. The homology of L-algebras is equal to the composition of functors
H, o U, where H, is the homology functor in C.

Definition 3.4.4. Let f : A — B be a morphism of L-algebras with values in C.
The morphism f is called quasi-isomorphism if the induced morphism U(f) in C by
the forgetful functor, is a quasi-isomorphism.

Proposition 3.4.5. Let f : A — B be a morphism of L-algebras with values in C. If
Uk(f) is a quasi-isomorphism in C for some k, then Uy, (f) is a quasi-isomorphism
for every n = 0. In particular if f is a quasi-isomorphism then U,(f) is a quasi-
isomorphism for everyn = 1.

Proof. We proceed by induction. The hypothesis says that f, : A[k] — B[k] is
a quasi-isomorphism. Now, the following diagram is commutative because f is a
morphism of L-algebras

Je®fk(n—1)

A[K] ® A[k(n — 1)] B[k ® Blk(n — 1)]
Ml lug (3.41)
Alkn] Jin Blkn]

The tensor product fi ® fi(m—1) is a quasi-isomorphism since k is a field. Then
frn 18 @ quasi-isomorphism.

O

Definition 3.4.6. The equivalence relation on L-algebras spanned by quasi-isomorphisms
will be called again quasi-isomorphism.

3.5 Canonical £-Algebras

The concept of L is inspired by the fact that any natural diagonal of chain complexes
Cu(X) = Cu(X)®C4(X), is determined by a zig-zag of natural morphisms C,(X) —
Cu(X x X) «— Cu(X) ® Cu(X), where the first arrows is the morphism induced by
the simplicial diagonal X — X x X and the second arrow is the Eilenberg-Mac Lane
transformation. In this section we will proceed to describe the L-algebra structure on
the chain complexes that have as product the Eilenberg-Mac Lane transformation.
Moreover there is a completely canonical way to associate to each simplicial set (not
necessarily 0-reduced) an L-algebra whose main element is its chain complex.

Proposition 3.5.1. Let sSet, be the category of pointed simplicial set. Then for
every simplicial set X, there is an unique functor Sx : L°? — sSet, preserving
zeros, mapping sums to products, and [1] to X.
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Proof. sSet, is a strict pointed cartesian category, then by proposition [3.1.13| the
result follows. H
Proposition 3.5.2. Let X be a pointed simplicial set. Then composition,
CooSx:LP - C (3.42)
together with the Filenberg-Mac Lane transformation is an L-algebra.

Proof. Tt follows easily from the definitions and properties of Eilenberg-Mac Lane
transformation. O

Definition 3.5.3. The L-algebra associated to the pointed simplicial set X will be
called the canonical L-algebra of X, and denoted by Ayx.

> Remark 3.5.4. Let’s see how Ax looks like. For n < 1 we have,

Ax[n] = Cu(X™) (3.43)

The product for Ay, pa, : ®o(Ax x Ax) — Ax o+ is the Eilenberg-Mac Lane
transformation,

Vi : Co(X™) ® Co(X™) — Cu( XM (3.44)

Let * be the base point of X, then the images by Ax for a morphism « : [m] — [n]
in L is given by the following formula.

Ax[n] = Cu(X™) — 22 A = Cu(xX™)

($1,...,an>l (xa(l),...,xa(m))

(3.45)

Where z,(;) = * for each j not in Dom(a).

In the case of a simplicial group (who will be pointed by its unit), we have an
extra structure.

Proposition 3.5.5. Let H be a simplicial group, then Ag is a multiplicative L-
algebra.

Proof. For every n = 0, H" and Ag[n] = C.(H") is a differential graded algebra
(with the Pontrjagin product). Since the Eilenberg-Mac Lane is a morphism of
algebras, the functor A maps simplicial groups to multiplicative L-algebras. [

Proposition 3.5.6. Let X = = the simplicial point. Then A, is the trivial L-
algebra.

Proof. For every n, C,(x) = k, and the application A,(f) are always the identity of
k. The Eilenberg-Mac Lane transformation is then the identity of k. O



Chapter 4

Ey-structures on C.(X)

In [Smi94] Smith describes an Ey-coalgebra structure on the chain complex of a
simplicial set when the coefficients ring is Z. In order to do this, he uses an FE-
operad, denoted &, with components R, the X, -free bar resolution of Z. The
morphisms f, : RY, ® Cyx(X) — Ci(X)®" determined by the operad & contains
the family of higher diagonals on C,(X) starting at an homotopic version of the
iterated Alexander-Whitney diagonal (given by x +— f,([], ® x)). The construction
made by Smith can be seen as a version of the Barratt-Eccles operad (see [BET4]).
Moreover, Berger and Fresse (see [BE04]) construct a explicit coaction over the
normalized chain complex associated to a simplicial set by the Barrat-Eccles operad
that extend the structure given by the Alexander-Whitney diagonal.

In this chapter we review the construction of the F,-operad & given by Smith in
[Smi00] and his proof that C(X) is an E,-coalgebra using this operad. Next, we
give an alternative proof of the F-structure on the chain complex of an simplicial
set by using an operad R constructed by us that simplify the task. The method
used to construct R gives an simply way to produce E.-operads.

The operad R presents similarities with the bar-cobar resolution of Ginzburg-
Kapranov (see [GK94]). Berger and Moerdij (see [BM07]) show that this resolution
can identified with the W construction of Boardman and Vogt (see [BVT73]), given
as a result that applied to the Barratt-Eccles operad, the W construction gives a
cofibrant resolution of it. Then, the construction of R can be seen as a middle point
between the Barratt-Eccles operad and its W construction.

The ground category in this chapter is DGA-Z-Mod. To simplify the notation it
will be written DGA-Mod. All the operads are operads on DGA-Mod.

4.1 The Operad &

In this section we make a review the technique presented by Smith in order to
exhibit the F.-coalgebra on chain complexes associated to simplicial sets, originally
published in his monograph [Smi94]. In fact, we present the improved version
of [Smi00]. His results are based on the construction of an particular E.-operad
denoted 6.

Definition 4.1.1. An operad P is called F,-operad if for every & > 0 the component
P(k) is a Yi-free resolution of Z.

fAn updated version of [Smi%4)
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> Remark 4.1.2. We already saw an example of F.-operad, the operad M in ex-
ample [2.1.9,

The following lemma included in [Smi00] is important for the construction of &.
It is based on the Cartan theory of constructions (see [Car55]).

Lemma 4.1.3. Let My, My be DGA-modules which satisfy the following conditions.
1. My = Ay ® Ny, with N1 Z-free and A; DGA-algebra.

2. My is left DGA-As-module such that,

(a) There is a sub DG-module Ny < My with Oy, | N, injective.
(b) There is a contracting chain homotopy ¢ : My — My with ¢(Ms) < Nj.

Then, every DGA-morphism fo : My — My en dimension 0 such that fo(N7) <
Ny can be extended to an unique DGA-morphism f : My — My satisfying,

1. f(Nl) (@ NQ.

2. fla®x) = g(a)f(n), where g : Ay — As morphism of DG-modules such that
a®ax — g(a)f(n) DGA-morphism.

Definition 4.1.4. Let G be the E,-operad given by :

1. The n component R, of its underlying S-module is the 3,-free bar resolution

of Z.

2. The compositions (in the sens of definition [2.1.2) RY,, o; R¥,,, — RX, 1,41 are
the only DG-morphism satisfying the condition,

(1®AEn,1) @ (1@ A(S, 1) € 1® A(Zpsmt) (4.1)

where A(Xj, 1) in degree j is generated as Z[3;]-module by the elements of
the form 1[a] - - [a,]f]

> Remark 4.1.5. The unicity of the composition o; and the fact that they satisfies the
operad conditions follows easily from the lemma4.1.3] The contracting chain homo-
topy ¢ for RY,, is given by p(1[ai|---|a;]) = 0 and @(alay]| - - |a;]) = 1[alay| - - - |a;].

> Remark 4.1.6. The G-coalgebra on a chain complex associated to a pointed simply
connected 2-reduced simplicial set C(X) is made by defining morphisms f,, : R¥, ®
Ci(X) — C4(X)®" by using acyclic models.

tStandard notation of bar resolution



4.2. THE OPERAD R 7

4.2 The Operad R

In this section we present an alternative to the operad & given by Smith [Smi94].
Roughly speaking, we take the S-module where the components are the X, -free
bar resolutions of Z, then we take the free operad on this S-module and finally we
quotient this operad by an suitable operad ideal Z, which makes that our operad will
have only one generator of degree 0 in each component. The resulting F,-operad is
denoted R and in the following section we proof that C,(X) is an R-coalgebra.

To construct the operad R we will need the notion of ideal of an operad (see
[GK94] §2.1).

Definition 4.2.1. Let P be an operad on the category of DGA-Z-modules, with
composition . Let Z be a sub S-module of U(P) which satisfies v(2®y1®- - -®Qyx) € Z
whenever some of the elements x,y,...,yr belongs to Z. 7 is called an operadic

ideal of P.

Definition 4.2.2. Let P be an operad and Z an operadic ideal of P. We define the
quotient operad P/Z as the operad with components given by (P/Z)(k) = P(k)/I(k)
for every k > 0, and composition induced by the composition of P.

> Remark 4.2.3. Clearly the operad structure P/Z is well defined by the properties
of the ideal, which allows the pass to the quotient of the composition in P.

Definition 4.2.4. Let S be the be the S-module on the category of DGA-modules,
with components S(n) = R, the ¥,-free bar resolution of Z.

Definition 4.2.5. Let S be the S-module defined in [4.2.4]

1. Let J be the operadic ideal of F'(.S) (see section [2.3)) generating by the elements
of degree zero of F(S) of the form x — y, where x and y are not null.

2. The operad R is defined to be the quotient operad F(S)/J.

Before continuing we make a description using trees of the operad F(S5), the
ideal J and the operad R. By proposition the operad F(S) is canonically
isomorphic to an operad of the form Z[%, ] ® P (n) where B is a free non symmetric
operad. Then the operad F' can be described by labeled rooted planar trees where
the vertices with 7 inputs are labeled by >;-generating elements of RY;, that is el-
ement of the form [0/ - /oi];, where the permutations o; belong to ¥;. Also the
leaves of a tree in F'(n) are labeled from left to right by 1,...,n. The degree of a
tree in F'(n) is equal to the sum of the degrees of the elements that label its vertices.
This description is illustrate by the following pictures.

1. Trees in F'(S)(4) of degree 3 and 0 respectively:

2 3 4 2 3 4

—_

s (4.2)
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2. Trees with only one vertex are called corollas. Here we have an example of
F(S)(5) with degree 2 and one of F'(S)(3) of degree 0.
12345 3 1 2

[01/02]5 [13 (43)

For n > 2, the action by o € ¥, on this kind of elements in F'(S)(n), changes
the labeling of leaves to o(1)7!,... 07! (n). In the following pictures we make two
examples with the permutation 7(1,2) = (13%)

1. Corolla in F'(S)(3).

1 2 3
1 2 3 >%< 2 3 1
128 s (4.4)

12 3
12 3 >%< 31 2
[]2 b2 []2

(4.5)

In order to include all the elements of the resolutions R, as labels we make the
following identifications.

1. Every corolla in F'(S)(n) with only vertex labeled by an element of the form
[o1/ ... /ox] (with o; € ¥,) under the action of ¢ € ¥, is identify with the
corolla whose only vertex is labeled by o[oy,...,0%] and with leaves labeled
from left to right by 1,..., n.

12345 3125 4 12345
[o1/02]5 [01/02]5 olo1/o2]s (4.6)
In this case o0 = (32313).
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2. Let t be a tree of FI(S)(n) whose base vertex (the first vertex from bottom
to top) have k < n inputs and its labeled by [o1/... /oy](with o; € ¥;). For
1 < j <k, let i; be the number of leaves of the subtree of ¢ over the ¢ input.
If ¢ is under the action of o € 3, of the form (i1, ..., i) (with € € 3j), then

we made the identification to = t/, where t’ is exactly as t but its base vertex
is labeled by 6(o4, ..., 0%).

Where 0 = 7(1,2) = (33).

3. Let t a tree of F(n) like the last case. Suppose for each 1 < i < k the subtree
of t over the input ¢ have its base vertex labeled by an element of the form
[z;] (where x; represents some sequence of permutations of the corresponding
type). If ¢ is under the action of o € ¥, of the form 71 @--- @7 (with 7; € ¥;))
then we made the identification to = t/, where t' is a tree exactly like ¢ but for
each 1 < 7 < k the label in the base vertex of the subtree over the ¢ input is
changed by t[x;].

1 2 34 5

Where o =1 @71 = (513)®(53) = (31333).

This identification on the labeling is extended for the rest of the trees by induction
on the subtrees. With it the description of the form of trees in F'(S) is complete.
The next step is the differential on F'(S). But this follows easily form the natural
inclusion S — F(S), which sends every element of the form o[oy/... /o] € RY, to
the corolla of F(S),, which vertex is labeled by this element. Then the differential
on corollas behaves like the differential on S, and then we extend the differential to
all F(S) in the obvious way.

The composition for F(S) is given by the grafting of trees, in the sense that
t e F(S)(n) and t' € F(S)(m), then the tree t’ o; t, with 1 < i < n, is obtained by
glue together the i input of ¢t and the root of #'. The labeling for the resulting tree,
if both are in T', is just from left to right, 1,...,n+m —1. If only ¢ is affected by an
action o € %, then do the composite with the non affected version of ¢, and multiply
the resulting tree by the action o(1,...,m,..., 1), that is only one block of length
m in the position . In the case where both are affected by actions, t by ¢ € ¥, and
t' by ¢’ € ¥,,. Then do the composition with the non affected versions and multiply
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the result by o(1,...,m,...,1) (as before) and then by 1®--- @' @ --- D1 (n
summands and ¢’ in the position o7 (4)).

The operadic ideal J is used to identify all the subtrees of degree 0 in F'(S)(n)
coming from F'(n) to the n corolla of F(S)(n). The following pictures shows some
examples.

1234 1234
= V1, (4.9

[l [ (4.10)

Then the operad R only have in arity n one ¥,,-generating element of degree 0,
which is the n corolla labeled by [ ],..

Proposition 4.2.6. The operad R is an E-operad.

Proof. Tt suffices to exhibit in each arity an contracting chain homotopy. In arity
n, the contracting chain homotopy ®,, : R(n) — R(n) is obtained by extending on
R(n) the contracting chain homotopy from the component of the operad S, R¥,, in
the obvious way. [

4.3 The Chain Complexe C.(X) as F,-Coalgebra

Consider the diagram given by the universal property of the coaugmentation of the

adjunction F' +— U.
\ lp (4.11)

Where the morphism i is the identity of S-modules. The morphism of operads
p: F(S) — & is given by the universal property of e. It is easy to see that p respect
the ideal J because p is essentially the contraction of vertices of trees. Then p pass
to the quotient and we obtain a morphism of operads p : R — &, which implies
that every G-coalgebra is an R-coalgebra.

We can also use the lemma to show that chain complexes are R-coalgebras.
We only have to observe that R(n) can be expressed as the tensor product of Z[%,]
with the trees with vertices labeled by elements of the form 1[oy]...|o;], and that
the grafting of two trees of this type is again a tree of this form.

Recently, in [DV15] Vallette and Dehling describe an operad similar to R. More-
over, they show that this operad can be used to state explicitly (by the use relations)
the definition of E-algebras. Which is the case for A,-algebras.



Chapter 5

E+-Structures Associated to
L-Algebras

Using a homotopy inverse of the structural quasi-isomorphism u of an L-algebra A
we can define a coproduct on its main element A[1]. Indeed, we only have to take the
composition of an homotopy inverse of u : A[1] ® A[1] — A[2] with the morphism
s1 : A[1] — A[2]. Observe that this coproduct in general is not associative. But,
the structure of L-algebra makes this coproduct associative and commutative up to
homotopy. Moreover, the homotopies also satisfy to be associative and commutative
up to homotopy, and this property is maintained on the next levels of homotopies,
generating a system of higher homotopies. The classical case where this happens is
in the context of chain complexes associated to a simplicial set. We saw in the last
chapter that the information of higher homotopies can be organized into an E-
coalgebra. Such a structure was exhibited in two different ways, using the operad
S (see [Smi94]) and alternatively using the operad R designed by us. This chapter
is dedicated to the generalization of these descriptions in the context of L-algebras
with values in the category DGA-k-Mod, in other words, we will prove that the main
element of an L-algebra A is equipped with an E-coalgebra structure describing the
system of higher homotopies associated to the coproducts induced by the structural
quasi-isomorphism of A.

The main difference with the case of chain complexes associated to a simplicial
set, where the process begins with the Alexander-Whitney diagonal, which is an
associative coproduct, is that in general we don’t have the associativity. Then, in
order to model the higher homotopies we have to consider an E -operad that will
have several generators in degree 0, and not only one like the operads G and R. In
the section [5.4] we will construct an E,-operad that we denote K. The construction
is made by infinitely many steps, in the sense that we construct a sequence of operads
{K,}n>2, in such a way that K; is a suboperad of ;1. The operads K; are not
E-operads, but they will be almost E-operads, in the sense that until arity ¢ they
will satisfy the E-conditions. Finally, the E,-operad K is obtained by taking the
inductive limit of this sequence of operads.

One of the characteristics of this construction is the use of a technique that we
call polynomial operads. It will create a new operad from an S-module containing an
S-submodule with an operadic structure, in such a way that this operadic structure
is preserved in the resulting operad. This done by using amalgamated sums in the
category of operads. The section is completely dedicated to the description of

81
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this technique.

In the final part of this chapter we exhibit the main element A[1] of an L-
algebra as a E,-coalgebra. Again, this will be possible due to the sequence of
operads that define IC, in the sense that it will be sufficient to exhibit A[1] as a
K;-coalgebra for each i, because the universal property of colimits will induce the K-
coalgebra structure on A[1]. Moreover, our construction that A[1] is a E,-coalgebra
is functorial. This proves that an L-algebra quasi-isomorphic to A(X) contains at
least as many homotopy information as a E-coalgebra structure on C,(X), such
as the one described by J. Smith.

In [Man06], Mandell describes an E,-algebra structure on the normalized cochain
complex associated to a simplicial space, which under some finiteness hypothesis
gives an invariant for the weak homotopy type of the space. Our results suggest
that L-algebras are also pertinent in order to describe the weak homotopy type of
spaces.

5.1 FE,-Operads

In the last chapter we defined E.-operads for the case of differential graded modules
with coefficients in Z. For coefficients in a field k, we take the obvious adaptation.

Definition 5.1.1 (E,-Operad). An operad P on the category DGA-k-Mod is called
E,-operad if each component P(n) is a k[X,]-free resolution of k.

Definition 5.1.2 (E -algebra and E-coalgebra). We call E-algebra any P-
algebra with P an E,-operad. And in the same way, an E-coalgebra is an P-
coalgebra where the operad P is an E -operad.

We introduce a notion of morphism between E,-coalgebras which is well suited
for our purpose.

Definition 5.1.3. Let P be an E-operad on the category DGA-k-Mod, and let
A, B P-coalgebras. A morphism f : A — B of P-coalgebras is a morphism of
DGA-k-Mod which preserves the P-coalgebra structure up to homotopy, that is, the
following diagram

Pn)® A _en, A%
1®fl lf@)” (5.1)
P(n)® B 5 Be&"
is commutative up to homotopy for every n > 0, where ¢ and ©? are the

associated morphisms of the P-coalgebra structure of A and B, respectively. The
category of coalgebras on the operad P is denoted P-CoAlg.

5.2 The Lifting Theorem

In this section we include a basic tool that will be needed along this chapter. The
symbol A is used to represent any ring.
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Lemma 5.2.1. Let f : L — N be a homogeneous morphism of DG-A-modules of
degree k € Z. Let L' be a DG-A-submodule of L and P graded submodule of L such
that P is projective and bounded below, and in each degree we have the decomposition
L, = L. ® P,. Write f' for the restriction of f to L'. Suppose that the homology
of N is zero and that f" is null-homotopic by a homotopy h : L' — N. Then there
exists a homotopy H on L extending h, which makes f null-homotopic.

Proof. Let p € Z the inferior bound of P, then for i < p, P, = 0 and L; = L}. Then
we take H; = h; for « < p. Now suppose we have defined H; on L; for all i < n, such
that H; = h; on L} and satisfying f; = 0H; + (=1)*H;_,0.

Nn+k+1

n—1
L;_1(—> Ly, = L;z_l ® P ——= Nn+k—1
hn72
0 0

L _QCH' Ln—2 = L/n—2 @ Pn—2

n

For every homogeneous element x € L/ we take H,(z) = h,(z). Note that the
image f, — (—=1)*H,,_10 : L, — N, belongs to the image 0 : Npipr1 — Noyr,
indeed

a(fn - (_1)11 n—lﬁ) = afn - (—1)”&]{”_18
= O0fn— (=1)"(fno1 — (=1)"H,_20)0 (by hypotesis)
= 0fy— (=1)"fn_10+ H, 200
= Ofp— (=1)"fra0 =
(5.3)
Thus for = € P,, we can choose the desired element H,(z) € N, k1 using the
fact that P is projective and H,(N) = 0. O

Theorem 5.2.2 (Relative Lifting Theorem). Let f : M — N and ¢ : L — N
morphisms of DG-A-modules of degree | and k, respectively. Suppose that f is a
quasi-isomorphism, and let L' be a DG-A-submodule of L and P graded submodule
of L such that P is projective and bounded below, and in each degree we have the
decomposition L; = L, ® P;. Write ¢ for the restriction of ¢ to L'. Suppose there
is a morphism o : L' — M of DG-A-modules of degree k — 1 that lifts ¢’ up to
homotopy along f. Then there exists an extension «: L — M of o, that lifts ¢ up
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to homotopy along f. Moreover, the homotopy can be choose to be an extension of
the homotopy associated to o'.

(5.4)

Proof. Let C(f) be the mapping cone of f. Let u : N — C(f) the inclusion

x — g and A’ : L' — N the homotopy from ¢’ to f oa’. Then we can easily

Oé,

check that ( L

) : L' — C(f) is a homotopy to 0 of uoy’ = (2,) The lemma [5.2.1

/
says there exists a homotopy to zero (Hl) : L — C(f) of uo ¢ extending (O;l)

H,
So we have,
0\ H, g (H1\ A
<80) = (30(]0) <H2) + (—1) (H2> ar,
(= (=D 0 H, w ((Hi
= f on ) \ i, +(—1) H, oL, (5.5)

—(—1)l6MH1 + (—1)kH1(9L
fH, + OnHy + (—1)FHy0p,

This gives the following equations.

6MH1 = (—1)l+kH16’L

o— fHy = onHy+ (—1)°H0r (5.6)

The first says that H; is a morphism of DG-A-modules and the second that Ho
is a homotopy from fH; to ¢. Finally, we take a = H; as the lift of ¢ along f. [

5.3 Polynomial Operads

The polynomial operads construction is a technique used to create an operad from
an S-module with an S-submodule having an operadic structure, in such a way that
this operadic structure is preserved. Recall that we denote by U the forgetful functor
from operads to S-modules.

Definition 5.3.1. € is the category such that,
1. The objects are pairs of the form (£, M), where M is a S-module and & is

an operad such that U(E) is a S-submodule of M. The canonical inclusion is

denoted by ig : U(E) — M.
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2. A morphism from (£, M) to (F, N), is a pair (f, f) with f : & — F morphism

of operads, and f : M — N morphism of S-modules, such that the following
diagram commutes.

M—t N
ig Tif (5.7)
U(E) ——=U(F)

© Remark 5.3.2. Essentially, a morphism from (£, M) to (F, N) in € is morphism
of S-modules from M to N that sends U(E) to U(F) and respects the operadic
structure of £.

Definition 5.3.3. We define 4 : OP — € to be the functor forgetful which sends
every operad £ to the pair (£,U(E)). That is, every operad is sent to the pair formed
by itself and its underlying S-module.

Theorem 5.3.4. The functor &4 : OP — € has a left adjoint. We denote this
adjoint by J, and the image of (€, M) under J by E[M], that we call the polynomial
operad on M with coefficients in &.

Proof. We can associate to every (€, M) € € the following diagram in OP,

FUE) =€
F(ig)l (5.8)
F(M)

where € : F'U — lop is the counit of the adjunction F' = U : S — OP. This
association is functorial. Indeed, for every morphism in €, (f, f) : (£, M) — (D, N),
we have the following commutative diagram.

FU(E)—=—=¢
Flie) l FU(f) !
F(M) FU(D) —=D (5.9)
h iF(iD)
F(f)
F(N)

The commutativity of this diagram follows from the naturality of the counit e
and the diagram from the definition of (f, f) as a morphism in €. Thus we have a
functor C'm from € to the category of diagrams in OP of the form e<~—e ——
Then, we define the functor § : € — OP to be the composition of C'm with the
functor of colimits on OP (see proposition .

In order to prove that we have the adjunction J — U4 : € — OP, we use the
proposition . That is, we will construct for every object (£, M) € € an uni-
versal arrow U from (&€, M) to UJ(E, M) = (E[M],U(E[M])). We proceed first by
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defining the arrow, then check that it is a morphism in € and finally that it satis-
fies the universal property. To improve clarity, despite proof’s length, before each
verification we will include the used relevant commutative diagrams.

Let (£, M) be an object in € and consider the following diagram given by the
colimit J(&, M).

FUE)—=-=¢
F(if)l ia (5.10)
F(M) —~E[M]

Now consider the couple of arrows («, §(f3)), where 6 is the isomorphism,

OP(F(M), P) —2~S(M,U(P)) (5.11)

given by the adjunction F' I~ U. This couple will be our universal arrow W. But
before we have to check that ¥ is an arrow in €, that is, the following diagram
commute.

M ——=U(E[M])
T ) (5.12)
U(E) g UEDM)

We will need the following commutative diagrams.

1. 6 naturality:

E[M] OP(F(M),E[M]) —2=S(M,U(E[M]))

K N oo | I

F(M) OP(F(M), F(M)) —"=S(M,UF(M)) 1 —=0(1ran) =

(5.13)
2. 7 naturality:
M2 UF(M)
ie TUF(is) (5.14)

3. Triangular equation for n an e:

Nu (P)

U-"~UFU U(P)—=UFU(P)

\iUc —sfor all PeOP \ lU(E,,) (5.15)

U U(P)
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Now, we check that the diagram [5.12|is commutative.

(by diagram [5.13))

F(ig)nue) (by diagram [5.14])
Ules)nue) (by diagram |5.10))
(

by diagram [5.15))

~— ~— — —

To verify that (a,6(5)) satisfies the universal property, we have to show that
given any Q operad and any morphism (g,9) : (£, M) — (Q,U(Q)), there is an
unique morphism (h, h) in € making the following diagram commutative.

(€, M) 22 (g[ M1, U(E[M]))

(g,g>l / (5.16)
(h.h)

(Q,U(Q))

For that consider following diagram associated to the pair (g,9).

FU(€) £
F(is)i l g
FOM) — - €M) (5.17)
h
615 Q

Where h is the morphism we want to construct and the arrow 6-'(g) is given by
the bijection # of the adjunction '+ U.

OP(F(M), Q) —2~S(M,U(Q)) (5.18)

0~ (9) g

To construct h we use the universal property of the colimit E[M], that is, if
gee = 071(g)F(ig) in diagram E 5.17), there exists an unique operad morphism h from
E[M] to Q, such that ha = g and h3 = 07(g). Both arrows, geg and 071 (g)F(ig),
go from FU(E) to Q. Then we will use the universal property of the unit n of
F U to show they are the same arrow. Which says in particular that there exists
only one morphism of operad p : FU(E) — Q such that the following diagram is
commutative.

nu (&)
)

UE) 2L UrU(E

I
5.19
m 1) (5.19)
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Then we only have to check that U(geg)nu(ey and U (671 (9)F (ig))nu(e) are equal
to U(g). But before that we make a list with some of the necessary commutative
diagrams.

1. Naturality of 671

OP(F(M), Q) <"——S(M,U(Q)) eoF(g) =07'(g) ~—

g
F(g)*T Tg* I ] (5.20)

OP(FU(Q), Q) =—S(U(Q),U(Q)) eo =0""(1y) ~— lug)
2. Definition of (g,g) as morphism in €:

F(g)

M—2-U(Q  FM)—%FU(Q)
ig Tl — F(ig)T o (5.21)
U(E)WU(Q) FU(E)
3. € naturality:
FU(Q) —Q
FU<9>T Tg (5.22)
FU(E) =€

4. n naturality:

M1 UF(M)
g lUF(g) (5.23)
U(Q) 7z UFU(Q)

Mo (Q)

Now the verifications.

Ulgee)nuee) = U(g)U(eg)nue)
=U(yg) (by diagram

U0~ () F (ig))nuie) = U(eaF () F (ig))nue) (by diagram
= U(eoFU(9))nu e (by diagram
= Ul(gee)nue) (by diagram
= U(g)U(eg)nue)
=Ul(g) (by diagram [5.15))
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Then by the colimits universal property, there exist an unique operad morphism
h : E[M] — Q such that ha = g and h3 = 607'(g). Defining h as U(h), the pair

(h,E) is clearly a morphism in €. Now, even if we already have ha = g, to be sure
(h, h) makes the diagram commutative we need to check that hf(5) = 7.
no(8) = U(h)o(B)

=Uh)U(B)nu (by diagram [5.13)

= U(07"(9))nm (by property of h)

=U(eoF(9))nm (by diagram [5.20))

= Ule)UF(g9)nu

= Uleg)nu(0)g (by diagram [5.23))

=7 (by diagram [5.15])

The unicity for (h, h) follows from the unicity of & and the fact that every mor-
phism (f, f) of € from (E[M],U(E[M])) to (Q,U(Q)) satisties f = U(f).
[

> Remark 5.3.5. The universal arrow
U:(E,M)—MI(E M) = (E[M],U(E[M])) (5.24)

associated to every pair (€, M) € C in the proof of theorem [5.3.4] extends to the
unit of the adjunction J 4 U : C — OP. We keep the notation ¥ for this unit.

Proposition 5.3.6. Let (£,M) € ¢ and A € OP. For every morphism (f, f) :

(&, M) — U(A) = (A, U(A)), there exists an unique morphism of operads ¢ :
E[M] — A, such that U(p)¥ = f. So we have the following commutative diagram.

(&, M) —— (E[M], U(E[M]))

~ U 5.25
m i(tp ©)) (5.25)

(A, U(A))

Proof. This is just the universal property for the unit ¥ : 1o — UJ. O]

5.4 The Operad K

In this section is constructed a collection of operads {K,},>2 in such a way its
inductive limit is an F,-operad. This operad will be denoted by K. In order to do
that, we begin with an S-module concentrated in arity 2, then Cy is taken to be the
free operad on it. Ky as S-module will have a k[¥s]-free resolution of k in its second
component, which is formed by the abstract binary operations coded by K. But
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the rest of components of Iy are not necessarily free resolutions of k. Indeed, Ko
fails to have the homotopy linking the following trees of degree 0 in KCo(3),

2 3 1 2
x x (5.26)

where x is any generating element of degree 0 in [C5(2). To overcome this diffi-
culty, Ky is extended to an operad K3 having the missing homotopies in the com-
ponent Ky(3). This processes requires the use of the polynomial operads technique
discussed in the previous section. Step by step the homotopies are completed to
finally give, as an inductive limit, an operad with all the homotopies we want, in
other words, the homotopies to have an E-operad, the operad .

Proposition 5.4.1 (Acyclic Extension). Let M be a k[%,]|-free finitely generated
DGA-k-module. Then there exists a k|, ]-free finitely generated acyclic DGA-k-
module N such that

1. My = Ny.
2. M is a DGA-k-submodule of N.

Proof. For the modules on k[¥,]|, we consider the adjunction L — U : Set —
Modys,}, where U is the forgetful functor. For every module N, the counit gives
the surjection ey : LU(N) — N, which will be denoted p : PN — N. Given a
DGA-k-module M we denote ZM its submodule of cycles. On ZM the differential
is 0, then we extend the meaning of P to graded modules, we keep the same notation
for the extended morphism p : PZM — ZM. Consider the composition d =0 p :
PZM — M, where ¢ is the canonical inclusion of ZM in M. ZM can seen as a
submodule of PZM, then p: PZM — ZM is a retraction for this inclusion and if
m e ZM, then d(m) = m.

Observe that in the mapping cone of d : iop : PZM — M, C(d), all the cycles of
M are now boundaries and also on C'(d) will appear new cycles. Indeed, let m € M
2 é’?\/[> Then in C(d) we
have 0 (770%) = (;), which means that m is a boundary. If it happens that m is

cycle, recall that the differential of C(d) is given by <

already a boundary in M, that is there exists n such that dy/(n) = m, then (3)

is a cycle in C(d). From this also notice that if all the cycles of M have degree at
least k, then all the cycles in C(d) will have at least degree k + 1.

Let M k[X,]-free finitely generated DGA-k-module, and denote W the kernel of
the augmentation € : M — k and consider the k[, ]-linear morphisms for n > 1,

PZC(d,) 2% O(dy) (5.27)

where dy is d : PZW — W, and d,, 11 is d : PZC(d,) — C(d,). Then we have
that W is included in C(d;) and C(d,) is included in C(d,+1). With this we can
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define a DGA-k-module N that satisfies the conditions of the theorem by taking the
colimit of the following diagram,

where all the arrows are the respective canonical inclusions. Observe that we
can reduce the size of this acyclic extension by considering in the first step only the
cycles of degree 0 of W, and for the construction of d,,;1, considering only the cycles
of degree n of the last mapping cone. O

Definition 5.4.2. Let M be a k[¥,]-free finitely generated DGA-k-module. The
acyclic extension of M is the associated DGA-k-module given by proposition [5.4.1]
It will be denoted by X (M).

Definition 5.4.3. Let M be a DGA-k-module k[X3]-free resolution of k. For n > 2,
IC,, is the operad defined by induction as follows.

1. Ky = F(M), where F is the free operad functor and M is seen as a S-module
concentrated in arity 2.

2. Kpi1 = J(Ky, M,) = K,[M,], where J is the functor defined in proposition
and M, is the S-module given by:

L) KL() i#Fn+1
Ma(d) = {X(Kn(n 1) i=n+1 (5:29)

© Remark 5.4.4. Between the operads of the collection {K,,},>2, we have canonical
inclusions of operads K,, <— K, 1, given by the arrow «,, of the following commuta-
tive diagram from the construction of C, 1.

FU(K,) —= K,

Fu,cul lan (5.30)

F(Mn> Tlcn[Mn] = ’Cn+1

> Remark 5.4.5. By construction Ky = F(M) only contains operations with arity
2 or more, because M is concentrated in arity 2. Then, the operations of arity > 3
are obtained by composition of operation of arity 2. K, is not acyclic for arities
> 3. The next step is make acyclic only K,(3), for that we construct the inclusion
Ky < M,, which is strict only in arity 3. The new operations are not decomposable
in terms of operations of arity 2 of Ky, and K3 = Ks[Ms] will be formed by the
compositions all operations in K5 and the new arity 3 operations. Then K5 coincide
with K33 in arity 2, and in arity 3 we have the inclusion K3(3) < K3(3). A similar
reasoning apply for the general case, in other words the extension K, — K, 1 is
the identity for arities < n + 1.

Definition 5.4.6. The operad K is defined to be the inductive limit of the collection
of operads,

| Ry N N i Ty o Sl N (5.31)
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Proposition 5.4.7. The operad K is an Ey-operad.

Proof. We have KC(2) = Kq(2) = Ma, a k[X5]-free resolution of k, and by construction
Kn+1l) =Kp(n+1) = M,, = X(K,(n+1)), which is acyclic and k[¥,,;]-free. O

5.5 FE,-Structures in £-Algebras

The following theorem is the principal objective of this thesis. This theorem exhibits
the main element of an L-algebra as an E,-coalgebra.

The outline of the theorem is, first we prove that the main element A[1] of an
L-algebra A have a IC,,-coalgebra structure for all n > 1. Then, using the fact that
our operad K is the inductive limit of these operads, we prove that A[1] will have a
structure of IC-coalgebra, in other words, A[1] is an E,-coalgebra.

Theorem 5.5.1 (Main Theorem). Let KC be the E-operad defined in . Then,
there exists a functor F

L-Alg—L~ K-CoAlg (5.32)

which associates a K-coalgebra F(A) to each L-algebra A and satisfies the fol-
lowing conditions.

1. The underlying DGA-k-module of F(A) is A[1].

2. For every n = 1, the morphism o, : K(n) ® A[1l] — A[1]®", given by the
K-coalgebra structure defined on A[1] by F, makes the following diagram com-
mutative up to homotopy,

AfLjen s Aln]

! (5.33)

K(n) ® A[l]

where p is given by the structural quasi-isomorphism of A and sy is the image
by A of the only morphism in L of the form ([n],«) : [n] — [1].

o Remark 5.5.2. Clearly, the composition of F with the canonical L-algebra functor
(see definition [3.5.3)), associates an E-coalgebra to each simplicial set.

Proof of theorem [5.5.1 We use the fact that the operad E-operad K is the induc-
tive limit of the sequence of operads,

Kec---cK,c---cK (5.34)

in order to proceed by induction. We first show for all n > 2 that A[1] has
an structure of K,-coalgebra which satisfies the second condition of the theorem.
That is, there exists an operad morphism F,, : I, — Coend(A[1]), such that the
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associated morphisms ¢; : K, (i) ® A[1] — A[1]®", makes the following diagram
commutative up to homotopy,

AL : Alil

\X 51(e®1) (5.35)

K, (i) ® A[1]

where p is given by the structural quasi-isomorphism of A and s; is the image by
A of the only morphism in £ of the form ([i],«) : [i] — [1].

Case Ky: Recall that Ky is the free operad on the S-module M5 concentrated in
arity 2. To show that A[1] is a Ky-coalgebra, we define an Yp-equivariant morphism
from M5(2) to Coend(A[1])(2) using the relative lifting theorem in order to
satisfy the condition on Ky and then, the Ks-coalgebra structure is obtained as a
consequence of the universal property of free operads.

Defining a 35 morphism from M;(2) to Coend(A[1])(2) is equivalent to define a
morphism of DGA-k[¥s]-modules,

Gy Ka(2) ® A[1] — A[1]® A[1] (5.36)

Recall that My(2) = K»(2), the action of ¥y on A[1] ® A[1] is the permutation
of factors and the action of 35 on K5(2) ® A[1] maps x®a to xo ® a. Now consider
the following diagram,

Al ® A[l] L A[2]
Ts()o(e@l) (5.37)
K>(2) ® A[1]

where € is the augmentation of K3(2), so : A[1] — A[2] is the image by A of
the only arrow in £ of the form ([2],a) : [2] — [1] and pu is the structural quasi-
isomorphism of A.

The DGA-k[Xs]-morphism ¢, that makes the diagram commutative up to ho-
motopy is obtained with the theorem by taking L' = 0. This complete the
existence of a Yg-equivariant morphism from Ms(2) to Coend(A[1])(2) and there-
fore, we have a morphism F» of S-modules from M, to Coend(A[1]), which behaves
on M(2) as @9 and as 0 on My(i), @ # 2.

Now, consider the following diagram,

3

MQCH ,CQ = F(Mg)
|

7 (5.38)
Coend(A[1])

I

where the upper arrow is given by the inclusion of S-modules. The universal
property of the free operad K, says there is an unique morphism of operads F
making the diagram commutative. This morphism F; gives the Ky-coalgebra struc-
ture on A[1] that we wanted.

Case K,: Suppose we have a sequence of operad morphisms F, ..., F,_1, such
that, for i < n, F; : K; — Coend(A[1]) and F; satisfies the second condition of the
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theorem. As we have seen in the construction of K;’s, the operad IC,,_; as S-module,
can be embedded as a direct factor in a S-module M,,_; with component M, _;(n)
acyclic and k[%, |-free. Then we have M,,_; = KC,,_1 @ P, where the component P(j)
is k[X;]-free for j > 0 .

Observe that this defines an object (K,,_1, M,,_1) and morphism in €,

Foq: (Kp_1,M,_1) — (Coend(A[1]),U(Coend(A[1]))) (5.39)

which behaves as F,,_; on K,_; and as 0 on P. In order to satisfy the second
condition of the theorem we focus our attention in the }j;-equivariant morphism
given by F,_; on the component K,_1(j), j > 0. We will extend this morphism
on the components M,_1(j) or equivalently, define a DGA-k[X;]-morphism g_bj from

M, _1(j) ® A[1] to A[1]®7. In order to do that, consider the diagram,

_ gj S(]O(y

M, 1 (j) ® A[1]

(5.40)
sp0(e®1)

where ¢, is the k|[X, ]-morphism induced by F,,_1. By hypothesis, the morphism
¢; makes commutative up to homotopy the outer triangle of the diagram. Then
the existence of aj follows after applying the relative lifting theorem with
L=>M,1(j)®A[l] and L' = K,,_1(j) ® A[1].

Observe that the ¥;-equivariant morphism from M,,_1(j) to Coend(A[1])(j) in-
duced by 5]- behaves like F,_; over K, 1(j). Denote by F,_; the morphism of
S-modules given by this data. Then (F,_1, F, 1) : (Kn_1, M,_1) — (Coend(A[1]),
U(Coend(A[1]))) is a morphism of €, and consider the following diagram.

(ICn—la Mn—l) L (ICn—l[Mn—l]7

U
|
U

(Coend(A[1]),

The operad morphism F,, making the diagram commutative follows by proposi-
tion |5.3.6, Then, F, gives the K,-coalgebra structure on A[1] needed to complete
the inductive step.

A[l] is a K-coalgebra: We now proceed with the final part of the proof
and exhibit A[1] as a K-coalgebra. Consider the following cocone of operads onthe
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diagram given by the operads {IC;};>2.

K- - oo - o > Coend(A[1])

(5.42)

’CQC NIING ]Cn(

The inductive part of the proof exhibited the operad Coend(A[1]), together with
the morphisms F,,’s, as a cocone onthe /C;’s. By definition K is also a cocone on
the IC;’s. Then the universal property of colimits says that there exists an unique
morphism of operads F from K to Coend(A[1]) commutative on these two cocones.
The morphism F : K — Coend(A[1]) exhibit A[1] as an K-coalgebra with the
conditions stated by the theorem.

Functoriality: Let f : A — B be a morphism of £ and consider the following
diagram.

"

Aln]®" B[n]®"
ot > A[n] 2~ B[n] < o8 (5.43)
s(e®1 s(e®1)
K[n] ® A[1] o K[n]® BJ[1]

The two triangles are commutative up to homotopy by the second condition of
the theorem and the inner diagrams are commutative because f is a morphism of
L-algebras. The commutative up to homotopy of the outer diagram follows from
this and the fact that p is a quasi-isomorphism. This shows that our construction
is functorial and completes the proof. O
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