Thèse soutenue

Développement et application de la technique analytique de courant induit par faisceau d’électrons pour la caractérisation des dispositifs à base de nanofils de nitrure de gallium et de silicium
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Vladimir Neplokh
Direction : Maria Tchernycheva
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 23/11/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche :  : Université Paris-Sud (1970-2019)
Laboratoire : Institut d'électronique fondamentale (Orsay, Essonne ; 19..-2016)
Jury : Président / Présidente : François Julien
Examinateurs / Examinatrices : Maria Tchernycheva, François Julien, Jean-Yves Duboz, Julien Pernot, Alain Fave
Rapporteurs / Rapporteuses : Jean-Yves Duboz, Julien Pernot

Résumé

FR  |  
EN

In this thesis I present a study of nanowires, and, in particular, I apply EBIC microscopy for investigation of their electro-optical properties. First, I describe details of the EBIC analytical technique together with a brief historical overview of the electron microscopy, the physical principles of the EBIC, its space resolution, parameters defining the signal amplitude, and the information we can acquire concerning defects, electric fields, etc. Then I focus on the characterization of LEDs based on GaN nanowires, which were analyzed in a cross-section and in a top view configurations. The EBIC measurements were correlated with micro-electroluminescence mapping. Further, I address the fabrication and measurement of nanowire-based InGaN/GaN LEDs detached from their original substrate. I present the EBIC measurements of individual nanowires either cut from their substrate and contacted in a planar geometry or kept standing on supphire substrate and cleaved to reveal the horizontal cross-section.The next part of this thesis is dedicated to an EBIC study of irregular Si nanowire array-based solar cells, and then of the regular nanowire array devices. The current generation was analyzed on a submicrometer scale. Finally, I discuss the fabrication and EBIC measurements of GaN nanowires grown on Si substrate. In particular, I show that the p-n junction was induced in the Si substrate by Al atom diffusion during the nanowire growth.