Thèse soutenue

Résonance magnétique avec des champs micro-ondes quantiques

FR  |  
EN
Auteur / Autrice : Audrey Bienfait
Direction : Patrice Bertet
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 14/10/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Service de physique de l'état condensé (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Jean-François Roch
Examinateurs / Examinatrices : Patrice Bertet, Jean-François Roch, Wolfgang Wernsdorfer, Gunnar Jeschke, Michel Pioro-Ladrière, Andreas Wallraff
Rapporteurs / Rapporteuses : Wolfgang Wernsdorfer, Gunnar Jeschke

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans une expérience classique de résonance paramagnétique électronique (RPE), le couplage entre les spins et leur environnement électromagnétique est faible, limitant considérablement la sensibilité de la mesure. Grâce à l’utilisation combinée d'un amplificateur paramétrique Josephson et de micro-résonateurs supraconductuers de hauts facteurs de qualité refroidis à quelques millikelvins, ce travail rapporte la conception et la mise en œuvre d’un spectromètre RPE dont la sensibilité de détection est limitée par les fluctuations quantiques du champ électromagnétique au lieu d’un bruit d’origine thermique ou technique. Des mesures de RPE pulsée sur un ensemble de doneurs Bismuth dans le silicium permettent de démontrer une sensibilité de 1700 spins détectés par écho de Hahn avec un signal-sur-bruit unitaire. La sensibilité est encore améliorée en générant un état de vide comprimé dans le guide d'onde de détection, ce qui réduit les fluctuations quantiques au-delà de la limite quantique. Les hauts facteurs de qualité et le petit volume de mode du résonateur supraconducteur développés pour une sensibilité accrue accroit également le couplage spin-résonateur jusqu'au point où les fluctuations quantiques ont un effet dramatique sur la dynamique des spins. En effet, l’émission spontanée de photons dans le résonateur micro-onde est considérablement renforcée par l'effet Purcell, ce qui en fait le mécanisme de relaxation de spin dominant. Le taux de relaxation est augmenté de trois ordres de grandeur lorsque les spins sont accordés à résonance, démontrant que la relaxation de spin peut-être contrôlée sur demande. Nos résultats fournissent une méthode nouvelle et universelle pour initialiser des systèmes de spin dans leur état fondamental, avec des applications en résonance magnétique et en information quantique.