
ANNÉE 2016

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Aswinkumar SRIDHARAN

préparée à l’unité de recherche INRIA

Institut National de Recherche en Informatique et Automatique –

Université de Rennes 1

Adaptive and
Intelligent Memory
Systems

Thèse soutenue à Rennes
le 15/12/2017devant le jury
composé de :

/ Président

Pierre BOULET
Professeur à l’Université de Lille 1 / Rapporteur

Stéphane MANCINI
Professeur à l’ENSIMAG, Institut Polytechnique de Greno-
ble / Rapporteur

Lionel LACASSAGNE
Professeur à University Pierre et Marie Curie /
Examinateur

Angeliki KRITIKAKOU
Maître de conférence, Universite de Rennes 1 /
Examinatrice

Biswabandan PANDA
PostDoc à l’INRIA Rennes – Bretagne Atlantique /
Membre

André SEZNEC
Directeur de recherche à l’INRIA Rennes – Bretagne
Atlantique / Directeur de thèse

Remerciements

First of all, I would like to thank my parents for their unconditional support and love
they have showered during all these years. I would also like to equally thank my sister
for her constant support. Then, I wish to thank my friends: several of them which list
may span the whole page. I also take this opportunity to thank my teachers during
school, college, and university who have taught me subjects and life lessons, which all
have kept me in persuit of higher education. I would also like to thank my PhD adviser,
Dr. Andre Seznec, for his guidance throughout the course of PhD study. I also thank
Prof. Waran, my undergraduate Professor who motivated me to pursue PhD. Finally,
I thank The Almighty for associating with me the right people.

-1

0 Table of Contents

Contents

Remerciements -1

Table of Contents 0

Résumé en Français 5
0.1 Interférence causée par le préchargement 7
0.2 Questions de recherche . 8
0.3 Contributions de cette thèse . 9

0.3.1 Priorisation adaptive et discrète des applications 9
0.3.2 Préchargement passe-bande : Un mécanisme de gestion du précharge-

ment basé sur la fraction de préchargement 9
0.3.3 Gestion des demandes de préchargement au cache de dernier niveau

partagé en tenant en compte de la réutilisation des lignes 10
0.4 Organisation de la thèse . 10

1 Introduction 11
1.1 Problem of Inter-application Interference 12

1.1.1 Managing last level cache in the context of large scale multi-core
systems . 13

1.1.2 Handling Prefetcher-caused Interference 13
1.2 Research Questions . 14
1.3 Thesis Contributions . 15

1.3.1 Adaptive and Discrete Application Prioritization for Managing
Last Level Caches on Large Multicores 15

1.3.2 Band-pass Prefetching : A Prefetch-fraction driven Mechanism
for Prefetch Management . 15

1.3.3 Reuse-aware Prefetch Request Management : Handling prefetch
requests at the shared last level cache 15

1.4 Thesis Organization . 16

2 Background 17
2.1 Cache Management Policies . 17

2.1.1 Cache Replacement Policies . 18
2.1.1.1 Insertion Priority Prediction 19

1

2 Contents

2.1.1.2 Reuse distance prediction 21
2.1.1.3 Eviction priority prediction 22

2.1.2 Cache Bypassing . 22
2.1.3 Cache partitioning techniques . 23

2.2 Cache Management in the presence of Prefetching 24
2.2.1 Managing prefetch requests at the shared cache 24
2.2.2 Prefetch-filter based Techniques 25
2.2.3 Adaptive Prefetching Techniques 26

2.3 Conclusion . 26

3 Discrete and De-prioritized Cache Insertion Policies 29
3.1 Introduction . 29
3.2 Motivation . 30

3.2.1 A case for discrete application prioritization: 32
3.3 Adaptive Discrete and de-prioritized Application PrioriTization 33

3.3.1 Collecting Footprint-number . 34
3.3.2 Footprint-number based Priority assignment 35
3.3.3 Hardware Overhead . 37
3.3.4 Monitoring in a realistic system: 37

3.4 Experimental Study . 38
3.4.1 Methodology . 38
3.4.2 Benchmarks . 38
3.4.3 Workload Design . 38

3.5 Results and Analysis . 39
3.5.1 Performance on 16-core workloads 39
3.5.2 Impact on Individual Application Performance 42
3.5.3 Impact of Bypassing on cache replacement policies 42
3.5.4 Scalability with respect to number of applications 44
3.5.5 Sensitivity to Cache Configurations 44

3.6 Conclusion . 45

4 Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Con-
trol Mechanism 47
4.1 Introduction . 47
4.2 Background . 48

4.2.1 Baseline Assumptions and Definitions 49
4.2.2 Problem with the state-of-the-art Mechanisms 49

4.3 Motivational Observations . 50
4.3.1 Correlation between Prefetch-accuracy and Prefetch-fraction . . . 50
4.3.2 Correlation between Prefetcher-caused delay and Prefetch-fraction 52

4.4 Band-pass prefetching . 53
4.4.1 High-pass Prefetch Filtering . 53

4.4.1.1 Measuring Prefetch-fraction 54
4.4.2 Low-pass Prefetch Filtering . 54

Contents 3

4.4.2.1 Estimation of Average Miss Service Time 55
4.4.3 Overall Band-Pass Prefetcher . 57

4.5 Experimental Setup . 58
4.5.1 Baseline System . 58
4.5.2 Benchmarks and Workloads . 58

4.6 Results and Analyses . 60
4.6.1 Performance of High-pass Prefetching 60
4.6.2 Performance of Band-pass Prefetching 60
4.6.3 Impact on Average Miss Service Times 62
4.6.4 Impact on Off-chip Bus Transactions 63
4.6.5 Understanding Individual Mechanisms 63
4.6.6 Sensitivity to Workload Types 65
4.6.7 Sensitivity to Design Parameters 66
4.6.8 Sensitivity to AMPM Prefetcher 68

4.6.8.1 Impact on Off-chip Bus Transactions: 69
4.6.8.2 Sensitivity to Workload Types: 69

4.6.9 Using prefetcher-accuracy to control aggressiveness 70
4.6.10 Hardware Overhead . 70

4.7 Conclusion . 70

5 Reuse-aware Prefetch Request Management 73
5.1 Introduction . 73
5.2 Background . 74
5.3 Experimental Setup . 75

5.3.1 Baseline System . 75
5.3.2 Benchmarks and Workloads . 76

5.4 Motivational Observations . 77
5.5 Reuse-aware Prefetch Management . 80

5.5.1 Understanding the Prefetch Request Management Mechanisms . 80
5.6 Enhancing the State-of-the-art Mechanisms 82
5.7 Inference . 84
5.8 Conclusion . 84

6 Conclusion and Future Work 85
6.1 Perspectives . 87

6.1.1 Managing last level caches . 87
6.1.2 Prefetcher Aggressiveness Control 88

Glossary 89

Bibliography 99

Table of figures 101
Table of Contents

4 Contents

Résumé en Français

L’écart de performance entre le processeur et la mémoire (DRAM) se creuse de plus
en plus, au point d’être appelé "mur mémoire" ". Ce terme se réfère à l’augmentation
du nombre de cycles processeur nécessaire pour effectuer un accès mémoire (c’est-à-dire
accéder à un circuit en dehors de la puce contenant le processeur) à mesure que de
nouvelles générations de processeurs sont conçues. Alors que les architectes étaient au
courant de cet écart croissant, Wulf et McKee ont été parmi les premiers chercheurs
à formuler ce phénomène dont l’impact allait grandissant. Cet écart de performance
croissant entre le processeur et le système mémoire est dû au technologies disparates
avec lesquelles les deux composants sont mises en œuvre. En effet, les fabricants de
puces (ex., processeurs) sont capables de réduire la taille des transistors, tandis qu’il
est difficile de réduire la taille des condensateurs (utilisés dans la mémoire), en raison
de problèmes de fiabilité.

Les premières solutionsà ce problème sont axées sur le maintien du processeur oc-
cupé quand il est en attente de données venant de la mémoire, en l’autorisantà exécuter
des instructions dans le désordre, ainsi que sur l’émission de multiples instructions par
cycle, mécanismes qui exploitent le parallélisme niveau instruction (ILP). Le précharge-
ment de données depuis la mémoire dans des mémoires caches directement sur la puce
ainsi que l’utilisation de caches multi-niveaux permettent aussi de limite l’impact du "
mur mémoire ". Les recherches ultérieures dans cette direction se sont concentrées sur
la conception de meilleures techniques micro-architecturales pour améliorer les perfor-
mances du processeur et cette tendance a continuée au cours d’une décennie entre les
années 90 et le début des années 2000. Cependant, des facteurs tels que l’augmentation
de la complexité de la conception de tels systèmes, les limites sur l’ILP extractible ainsi
que les questions de puissance et de température, ont contraints les fabricants de pro-
cesseurs de porter leur attention vers la réplication de plusieurs processeurs (cœurs) sur
une même puce pour de meilleures performances.

D’une part, la réduction de la taille des transistors décrite par la loi de Moore
permet d’intégrer plus de transistors sur une surface donnée. Par conséquent,à chaque
génération de processeurs, les fabricants de puces continuent d’intégrer plus de cœurs
afin d’utiliser les transistors disponibles. Déjà, il existe des systèmes possédant plusieurs
dizaines de cœurs. Cette tendanceà l’intégration de plus de cœurs sur les processeurs
est susceptible de se poursuivreà l’avenir, car elle augmente les capacités de calcul en
augmentant le nombre d’opérations qui peuvent être effectuées par unité de temps.
Dans le même temps, on augmente la quantité de données transférée sur la puce afin

5

6 Résumé en Français

d’être que lesdites données soient traitées. Par conséquent, le système mémoire doit
pouvoir fournir des donnéesà tous les cœurs pour une performance soutenue. Cependant,
la vitesse du système mémoire reste plus faible que la vitesse du processeur. Cela
différence est exacerbée dans les processeurs multi-cœurs car le système mémoire est
maintenant partagé par plusieurs cœurs. Typiquement, un accèsà la mémoire passe par
différentes structures (files d’attente), qui sont soumisesà divers délais en fonction de la
vitesseà laquelle les demandes de mémoire sont traitées ainsi que des différents retards
d’ordonnancement. Les délais dusà ces files d’attente impactent les performances des
processeurs multi-cœurs.

Ce problème est encore aggravé par la limitation des ressources qui connectent le
processeur et la mémoire. En particulier, le processeur est connectéà la mémoire des
broches et des canaux métalliques sur la carte mère. Ces broches et fils forment le bus
mémoire, qui est coûteux en terme de consommation d’énergie et en latence. L’ITRS
prévoit que le nombre de broches qui relient le processeur avec le bus de la mémoire
n’augmente que 10 % par an par rapport au nombre de cœurs par processeur, qui
double tous les dix-huit mois. Par conséquent, la quantité de données qui peuvent être
transféréesà partir du système mémoire vers chaque cœur du processeur est de plus en
plus limitée, ce qui ajoute au problème de latence des systèmes mémoires. Au total, le
" mur mémoire " peut être considéré comme étant composé du " mur de la latence " et
du " mur du débit ".

Problème d’interférences inter-applications Dans les paragraphes précédents, nous
avons discuté des limitations technologiques du système mémoire et par conséquent,
son manque de performance par rapport aux processeurs modernes. Alors que les con-
traintes technologiques servent comme un facteur limitant la performance de la mémoire
et par conséquent, la performance globale du système multi-cœurs, le caractère partagé
de la hiérarchie mémoire,à savoir le cache de dernier niveau et les canaux mémoires
liant le processeur au système mémoire, ajouteà ce problème. Les applications ont ten-
danceà interférer les unes avec les autres au niveau de ces ressources partagées. Par
exemple, une ligne de cache peut être expulsée par une ligne de cache d’une autre ap-
plication, un phénomène connu comme la " pollution de cache ". De même, le grand
nombre de requêtes mémoire générées par les applications agressives peuvent retarder le
traitement des requêtes générées par d’autres applications. Ces deux problèmes sont ex-
acerbés en présence de préchargement,à cause duquel les interférences dues au partage
des ressources mémoires (cache(s) et canaux) pourrait conduireà des ralentissements
encore plus prononcés. Par conséquent, les processeurs haute performance utilisent des
mécanismes pour gérer les interférences entre les applications au niveau des ressources
partagées. L’objectif de cette thèse est d’aborder ces deux problèmes dans le con-
texte des processeurs many-coeurs, c’est-à-dire les systèmes multi-cœurs avec seize ou
plusieurs cœurs sur une puce. Dans les paragraphes qui suivent, nous examinons les deux
problèmes dans le contexte des systèmes multi-cœursà grande échelle (many-cœurs).

Gestion du dernier niveau de cache dans le contexte des processeurs many-coeurs
L’augmentation du nombre d’applications en cours d’exécution sur un processeur

multi-cœurs augmente la diversité des différentes charges de travail auxquelles le sys-
tème mémoire doit répondre. En particulier, le cache de dernier niveau est partagé

Interférence causée par le préchargement 7

par des applications se comportant différemment dans leurs accès au système mémoire
(i.e., nombre d’accès, motifs d’adresses). Pour utiliser efficacement la capacité de la
mémoire cache, l’algorithme de gestion de cache doit prendre en compte les différentes
caractéristiques des applications, et donc prioriser l’accèsà la mémoire cache partagée.
La nécessité d’attribuer des priorités différentes aux multiples applications s’exécutant
de façon concurrente est aussi une conséquence des besoins en performance et en équité
des systèmes haute performance commerciaux (i .e., cloud, datacenters). De tels sys-
tèmes, où les ressources de la hiérarchie de mémoire sont partagées entre les applications,
nécessitent l’attribution de différentes priorités aux applications selon leur caractère cri-
tique (pour une certaine définition de critique). Pour répondreà une telle exigence, un
nouveau mécanisme pouvant capturer efficacement les différents comportements des ap-
plications lors de l’exécution et permettantà la politique de gestion du cache d’appliquer
des priorités différentes entre les applications est nécessaire.

Des mécanismes antérieurs ont proposé différentes façons de prédire le comporte-
ment des applications relatifsà la réutilisation de lignes de mémoire cache. DIP, TA-DIP
et TA-DRRIP peuvent prédire le comportement des applications en mettant en œuvre
des politiques complémentaires pour déterminer si une application tire des bénéfices
de la présence du cache, ou non. Le prédicteur Hit-Predictor, basé sur les signatures,
utilise une région de la mémoire ou de compteurs de programmes (PC) pour prédire le
comportement de réutilisation de ces régions de mémoire ou PCs. De même, Evicted
Adress Filter (EAF) prédit au niveau de la ligne de cache. Dans tous ces mécanismes,
le principe sous-jacent est d’observer les accès réussis ou manqués de groupe de lignes
ou de lignes de cache et de prédire le comportement de réutilisation. Ces mécanismes
ont été développés pour des systèmes simples, puis étendu aux systèmes multi-cœurs
(jusqu’à 4 cœurs). Cependant, une telle approche n’est pas fiable dans le contexte des
processeurs many-cœurs. Un défaut de cache ne reflète pas nécessairement le comporte-
ment réel d’une application. En effet, les défauts de cache ne sont pas seulement une
conséquence du comportement de l’application ; ils sont également une conséquence
du comportement des autres applications s’exécutant de façon concurrente. Par con-
séquent, un nouveau mécanisme qui capture efficacement la façon dont une application
peut utiliser le cache est nécessaire. La première partie de cette thèse se concentre sur
ce mécanisme.

0.1 Interférence causée par le préchargement

Le préchargement matériel est un mécanisme visantà cacher la latence du système mé-
moire utilisé dans les processeurs commerciaux. Il fonctionne par l’apprentissage d’un
motif dans les accèsà la mémoire cache (il considère les adresses de blocs) et l’envoi
de requêtes vers la mémoire afin de précharger des blocs de cache l’application peut
accéderà l’avenir. Un préchargement permettant d’obtenir un bloc en temps voulu per-
met de complètement masquer la latence de la mémoire. Cependant, une ligne de cache
préchargée qui n’est au final jamais accédée par le processeur gaspille de la bande pas-
sante et peut expulser un bloc de cache utile lors de son insertion. Le préchargement

8 Résumé en Français

peut également retarder les accès d’autres applications. Alors que les effets positifs et
négatifs du préchargement ont été étudiées dans le contexte des uniprocesseurs (un seul
cœurs), son impact est d’autant plus important dans le contexte des systèmes multi-
cœurs et many-coeurs. Par conséquent, le préchargement agit comme une épéeà double
tranchant et exige une gestion attentive. Cette gestion peut être approchée selon deux
dimensions. Tout d’abord, le contrôle du nombre de demandes de préchargement qui
sont émises dans le système et d’autre part, la gestion des priorités des demandes de
préchargement au niveau cache partagé. Les deuxième et troisième contributions de
cette thèse sont axées sur ces deux problèmes.

Des travaux antérieurs sur le contrôle de l’agressivité de l’unité de préchargement tels
que hiérarchique (ACVL) et CAFÉINE n’atténuent pas complètement les interférences
causées par l’unité de préchargement dans les systèmes multi-cœurs. ACVL utilise
plusieurs paramètres, qui selon leurs valeurs, permettent d’inférer qu’une application
donnée interfère. Cependant, les différents seuils d’inférence conduisentà des décisions
incorrectes sur les applications qui provoquent des interférences car la valeur de seuil
d’une métrique donnée ne reflète pas bien le comportement d’une application, en raison
du grand nombre d’applications s’exécutant de façon concurrente. De même, CAFÉINE
utilise une méthode approximative pour estimer la latence d’accès moyenneà la mémoire
pour mesurer les économies en cycles en raison de préchargement. Cependant, cette
approximation conduità des décisions biaisées en faveur de préchargement agressif, en ne
tenant pas comptes des interférences potentielles. Au total, ces mécanismes fournissent
encore de la place pour une meilleure gestion des ressources partagées en présence de
préchargement.

Pour traiter les demandes de préchargement dans les caches partagés, les travaux
antérieurs tels que Prefetch-Aware Cache Management (PACMAN) et (ICP) observent
le comportement de la réutilisation des lignes de cache préchargées dans le contexte
de caches de petites tailles. Plus précisément, les deux contributions supposent im-
plicitement que les blocs de cache préchargés sontà usage unique. Cependant, dans le
contexte de caches plus grands, cette hypothèse n’est pas toujours vraie ; les lignes de
cache préchargées ont un comportement de réutilisation différent. Par conséquent, il y
a possibilité de mieux gérer les demandes de préchargement dans les caches partagés.

0.2 Questions de recherche

Dans le sillage des discussions présentées ci-dessus, cette thèse se concentre sur les
réponses aux questions de recherche suivantes :

Question 1: Y at-il un mécanisme de gestion de la mémoire cache qui est capable
d’isoler efficacement le comportement applications dynamiquement, et qui permet une
meilleure gestion de la mémoire cache partagée lorsqu’un grand nombre d’applications
partagent le cache?
Question 2: Y at-il un mécanisme pratique qui traite efficacement les interférences
causées par l’unité de préchargement dans les systèmes multi-cœurs?
Question 3: Y at-il un mécanisme de gestion de cache qui prend également en compte

Contributions de cette thèse 9

les caractéristiques de l’utilisation des données préchargées pour une meilleure gestion?

0.3 Contributions de cette thèse

Dans cette thèse, nous proposons des solutions qui tentent de résoudre chacune des
questions de recherche mentionnés ci-dessus. Nos solutions aux problèmes sont les
contributions de cette thèse:

0.3.1 Priorisation adaptive et discrète des applications

Pour faire face aux interférences au niveau de la mémoire cache partagée, nous intro-
duisons le numéro d’empreinte afin d’approcher dynamiquement l’empreinte de cache
(le nombre de lignes du cache appartenantà l’application) des applicationsà l’exécution.
Pour un cache donné, le numéro d’empreinte est défini comme étant le nombre d’accès
uniques (adresses de blocs de mémoire cache) qu’une application génère vers ce cache
dans un intervalle de temps. Puisque le numéro d’empreinte se rapproche explicitement
et quantifie la taille du jeu de travail des applications, il prévoit la possibilité d’attribuer
des priorités différentesà chaque application. Puisque nous utilisons des circuits indépen-
dants en dehors la structure de cache principale pour estimer le numéro d’empreinte, il
n’est pas affecté par les succès/échecs qui se produisent au niveau du cache partagée.
Le comportement d’une application en isolation est donc correctement capturé. Sur
la base des valeurs estimées de numéros d’empreintes, l’algorithme de remplacement
détermine les priorités à attribuer aux applications. Au total, l’estimation du numéro
d’empreinte permet (i) de faire appliquer différentes priorités (discrètes) aux différentes
applications et (Ii) capturer efficacement l’utilitaire de cache des applications.

0.3.2 Préchargement passe-bande : Un mécanisme de gestion du précharge-

ment basé sur la fraction de préchargement

Notre solution repose sur deux observations fondamentales sur l’utilité du précharge-
ment et les interférences causées par l’unité de préchargement. En particulier, nous
observons (i) une forte corrélation positive existe entre la quantité de demandes de
préchargement qu’une application génère et la précision du préchargement. Autrement
dit, si la fraction de demandes de préchargement générée est faible, la précision de
l’unité de préchargement est également faible. La deuxième observation est que plus le
nombre total de demandes de préchargement dans le système est grand, plus la pénalité
dueà l’absence d’une ligne dans le cache de dernier niveau est grande. Sur la base de
ces deux observations, nous introduisons le concept de fraction de préchargement, afin
de déduireà la fois l’utilité du préchargement et les interférences causées par l’unité
de préchargement. Notre mécanisme contrôle le flux de demandes de préchargement
en fonction de la fraction de préchargement, de façon analogue au filtre passe-bande
venant du domaine du traitement du signal. Par conséquent, nous nous référonsà ce
mécanisme comme le préchargement passe-bande.

10 Résumé en Français

0.3.3 Gestion des demandes de préchargement au cache de dernier

niveau partagé en tenant en compte de la réutilisation des lignes

Notre solution permet l’observation que les blocs de cache préchargés ont différentes
caractéristiques d’utilisation. Dans une application, certains blocs de cache préchargés
sont accédésà plusieurs reprises tandis que d’autres ne sont pas utilisés du tout. Nous
observons également que l’utilisation du préchargement varie selon les applications.
Par conséquent, nous mesurons les caractéristiques d’utilisation des blocs de cache
préchargésà l’exécution pour déterminer leurs priorités lors de remplacements dans le
cache de dernier niveau.

0.4 Organisation de la thèse

Le reste de la thèse est organisé comme suit: dans le chapitre 2, nous présentons la
gestion de la mémoire cache partagée et la gestion des interférences lors des accèsà la
mémoire partagée. Ensuite, nous discutons des mécanismes état de l’art qui ont été pro-
posées pour traiter les deux problèmes que la thèse tente de résoudre. Parallèlement,
nous décrivons également leurs lacunes. Dans le chapitre 3, nous présentons notre pre-
mière solution: un mécanisme adaptatif de priorisation d’application qui gère le cache
partagé de dernier niveau. Nous décrivons notre mécanisme de suivi qui capture le
numéro d’empreinte des applications, et notre algorithme de remplacement, qui utilise
des numéros d’empreintes pour attribuer des priorités aux lignes de cache des différentes
applications. Ensuite, nous évaluons notre solution et comparons nos mécanismesà
l’état de l’art. Dans le chapitre 4, nous présentons le préchargement passe-bande, et
discutons en détail les deux observations qui conduisentà la solution proposée, notre ap-
proche pratique pour mesurer la durée moyenne d’une requête mémoire. Nous évaluons
ensuite notre contribution et le comparonsà l’état de l’art des mécanismes de contrôle de
l’agressivité de l’unité de préchargement. Le chapitre 5 présente notre troisième contri-
bution. Nous décrivons notre mécanisme pour estimer les caractéristiques d’utilisation
de l’unité de préchargement puis décrivons l’algorithme qui exploite les caractéristiques
d’utilisation pour attribuer des priorités aux demandes de préchargement. Par la suite,
nous présentons notre évaluation et la comparaison par rapport aux mécanismes perti-
nents de l’état de l’art. Enfin, nous présentons notre conclusion et les directions pour
la recherche future dans le dernier chapitre.

Chapter 1

Introduction

The growing performance gap between the processor and the DRAM based memory
systems is referred to as the Memory Wall. In particular, it refers to the growing increase
in number of processor cycles it takes for an off-chip memory access to be serviced by
the memory system, as we move from one generation to the next generation of processor
chips. While architects had been aware of this growing discrepancy, Wulf and Mckee
[WM95] were one of the first researchers to formulate this then impending phenomenon.
This growing performance gap between the processor and the memory system is due to
disparate technologies with which the two components are implemented, because chip
makers are able to scale down the size of transistors, while capacitors do not scale down
as gracefully as transistors due to reliability issues of capacitors.

Early solutions to this problem focused on keeping the processor busy while it is
waiting for the data from memory by executing instructions out-of-order, mechanisms
that exploit Instruction Level Parallelism (ILP) through issuing multiple instructions,
pre-fetching data from the memory and storing them on the on-chip caches, and employ-
ing multi-level caches. Subsequent research along this direction focussed on designing
better micro-architectural techniques to improve processor performance and this trend
continued over a decade between the 90s and early 2000s. However, factors such as
increasing design complexity of such systems, limits on the extractable ILP, power and
thermal issues, forced chip makers to shift their focus toward replicating or employing
multiple processor cores on the same chip, Chip Multi-Processing (CMP), or Multi-core
processors for higher performance.

On the one hand, transistor scaling driven by Moore’s law allows to pack more
transistors in a given area of a chip. Consequently, with every generation of processors,
chip makers keep packing more cores. Already, there are systems that host multiple
processor cores and that are capable of running tens of threads. This trend of packing
more processor cores on a chip is likely to continue in the future. Integrating more cores
on a processor chip increases the computational capabilities in terms of the number of
operations that can be performed per unit of time. At the same time, it increases the
amount of data that has to be brought on-chip to process. Therefore, the memory
system is expected to provide data to the processor at a higher rate for sustained

11

12 Introduction

performance. However, the speed of the memory system continues to lag behind the
processor speed. This becomes even more critical in multi-core processors, because the
memory system is now shared by multiple cores. Typically, an access to the memory
goes through different queuing structures, which are subject to various queuing delays
depending on the rate at which the memory requests are cleared and scheduling delays.
The delay on these queuing structures impact the performance of these processor cores.

This problem is further exacerbated by the limitation of resources that connect
processor and memory systems. A processor chip is connected to the memory chip
by pins and metal channels on the motherboard. These pins and wires form the
memory bus, which is expensive in terms of power consumption and implementation
[Onu, RKB+09, ITR]. ITRS [ITR] predicts that the number of pins, which connect the
processor with the memory bus grows only 10% per year as compared to the number
of processor cores, which doubles every eighteen months. Therefore, the amount of
data that could be transferred from the memory system to the processor is also limited,
which adds to the memory systems’ latency problem. While latency wall is prevalent
in single-core performance, its combination with limited bandwidth availability limits
the performance of a multi-core system. The phenomenon in which the bandwidth be-
comes a major bottleneck factor in achievable system performance is referred to as the
Bandwidth wall [RKB+09]. Altogether, the memory wall can be viewed as to comprise
of the latency wall and the bandwidth wall [Pat04].

1.1 Problem of Inter-application Interference

In the previous section, we discussed the technological limitations of the memory system
and hence, its performance lag with respect to the processor cores. While technologi-
cal constraints serve as one limiting factor to memory performance and hence, overall
multi-core system performance, the shared nature of the memory-hierarchy, namely the
last level cache and off-chip memory channels, adds to this problem. Applications tend
to interfere with each other at these shared resources. For example, a cache line of one
application could be evicted by a cache line of another application, which is referred to
as Cache Pollution. Similarly, memory requests of memory-intensive applications could
delay the service of other meek applications, or delay each other at the off-chip memory
access. These two problems are exacerbated in the presence of prefetching1, and inter-
ference at these shared resources could lead to severe slow-down [EMLP09, ELMP11,
WJM+11, SYX+15, PB15, JBB+15, Pan16, LMNP08, LS11, BIM08]. Therefore, high-
performance processors employ mechanisms to manage interference among applications
at these shared resources. The goal of this thesis is to address these two problems in the
context of large scale multi-core processors. That is, multi-core systems with sixteen or
more cores on a chip. In the following subsections, we discuss the two problems in the
context of large-scale multi-core systems.

1We define prefetching shortly.

Problem of Inter-application Interference 13

1.1.1 Managing last level cache in the context of large scale multi-core

systems

Increasing the number of applications that run on a multi-core processor increases the
diversity of characteristics and the memory demands the system must cater to. In par-
ticular, the last level cache is shared by applications with diverse memory behaviors.
For efficiently utilizing the cache capacity, the cache management algorithm must take
into account the diverse characteristics of applications, and accordingly prioritize them
at the shared cache. Further, the need for enabling different priorities across applica-
tions is fueled by the fairness and performance objectives of commercial grid systems.
Such commercial systems, where the memory-hierarchy resources are shared among ap-
plications, require enforcing different priorities across applications depending on their
criticality, cost-involved, and other factors. In order to meet such a requirement, a new
mechanism that effectively captures the diverse behaviors of applications at run-time
and allows the cache management policy to enforce different priorities across applica-
tions, is needed.

Prior mechanisms have proposed different ways to predict the reuse behavior of appli-
cations. Dynamic Insertion Policies [QJP+07], Thread Aware-Dynamic Insertion Poli-
cies [JHQ+08] and Thread Aware-Dynamic ReReference Interval Prediction [JTSE10]
predict the behavior by implementing complementary policies to determine if an appli-
cation is cache friendly or not. Signature based Hit-Predictor [WJH+11] uses memory
region or Program counter (PC) signatures to predict the reuse behavior on these mem-
ory or PC regions. Similarly, Evicted Address Filter (EAF) [SMKM12] makes prediction
on a per-cache line basis. In all these mechanisms, the underlying principle is to ob-
serve the hits or misses on individual cache lines or a group of cache lines and predict
the reuse behavior. These mechanisms have been developed for single core systems and
then extended to multi-cores (up to 4 cores). However, such an approach is not accurate
or reliable in the context of large scale multi-cores. A cache miss does not necessarily
reflect the actual reuse behavior of an application, because cache misses are not only
a consequence of the reuse behavior of the application; they are also a consequence of
the behavior of co-running applications. Therefore, a new mechanism that efficiently
captures how well an application could utilize the cache is needed. The first part of the
thesis focusses on addressing this problem.

1.1.2 Handling Prefetcher-caused Interference

Hardware prefetching is a memory latency hiding mechanism employed in present day
commercial processors. It works by learning a pattern in cache accesses (in block ad-
dresses) and issues prefetch requests on the possible cache block addresses that the
application may access in the future. A timely prefetch request completely hides the
off-chip latency of the memory access. However, a prefetched cache line that is never ac-
cessed wastes bandwidth and may evict a useful cache block. Prefetching may also delay
the demand requests of other applications apart from wasting bandwidth and polluting
useful cache lines. While both positive and negative effects of prefetching have been

14 Introduction

studied in single-core context [SMKP07, WJM+11, SYX+15], its impact is more so in
the context of multi-core system. Therefore, prefetching acts as a double-edged sword
and requires careful management at the shared memory-hierarchy. Handling prefetch
requests at the shared memory resources (last level cache and off-chip memory access)
can be viewed in two-dimensions. Firstly, controlling the number of prefetch requests
that are issued in the system and secondly, to manage the priorities of prefetch requests
at the shared cache. The second and third contributions of this thesis are focussed on
these two problems.

Prior works on prefetcher aggressiveness control such as Hierarchical Prefetcher Ag-
gressiveness Control (HPAC) [EMLP09] and CAFFEINE [PB15] do not completely
alleviate the problem of prefetcher-caused interference in multi-core systems. HPAC
uses multiple metrics, which are driven by their threshold values, to infer interference
by a given application. However, threshold based inference of interference lead to incor-
rect decisions on the applications that cause interference because threshold value of a
given metric does not reflect the run-time behavior of an application due to interference
caused when large number of applications run on the system. Similarly, CAFFEINE
uses an approximate method to estimate average memory access latency to measure
savings in cycles due to prefetching (that is, prefetch usefulness). However, approx-
imating average memory access latency estimation leads to biased decisions in favor
of aggressive prefetching, overlooking interference. Altogether, these mechanisms still
provide room for better managing shared resources in the presence of prefetching.

To handle prefetch requests at the shared caches, prior works such as Prefetch-
Aware Cache Management (PACMAN) [WJM+11] and Informed Cache Prefetching
(ICP) [SYX+15] observe the reuse behavior of prefetched cache lines from the context
of small caches. Specifically, the two works implicitly assume prefetched cache blocks
as single use (that is, used only once) cache blocks. However, in the context of larger
caches, this observation does not always hold true; prefetched cache lines have different
reuse behavior. Therefore, there is more opportunity to better manage the prefetch
requests at the shared last level caches.

1.2 Research Questions

In the wake of the discussions presented above, this thesis focusses on answering the
following research questions:

• Question 1: Is there a cache management mechanism that is able to efficiently
isolate applications’ run-time behavior, and that allows for better shared cache
management when large number of applications share the cache?

• Question 2: Is there a practical mechanism that efficiently addresses prefetcher-
caused interference in multi-core systems?

• Question 3: Is there a cache management mechanism that also takes into account
prefetched data’s reuse characteristics for better management?

Thesis Contributions 15

1.3 Thesis Contributions

In this thesis, we propose solutions that attempt to solve each of the aforementioned
mentioned research questions. Our solutions to the problems are the contributions of
this thesis:

1.3.1 Adaptive and Discrete Application Prioritization for Managing

Last Level Caches on Large Multicores

To address interference at the shared cache, we introduce the Footprint-number metric
to dynamically approximate the last level cache footprint of applications at run-time.
Footprint-number is defined as the number of unique accesses (cache block addresses)
that an application generates to a cache set in an interval of time. Since Footprint-
number explicitly approximates and quantifies the working-set size of applications, it
provides scope for implementing different priorities across applications. Since we use
independent circuits outside the main cache structure to estimate Footprint-number, it
is not affected by the hits/misses that happen at the shared cache. An application’s
isolated cache utility is reliably captured. Based on the estimated Footprint-number
values, the replacement algorithm decides the priorities across applications. Altogether,
Footprint-number estimation allows (i) to enforce different (discrete) priorities across
applications and (ii) efficiently capture the cache utility of applications.

1.3.2 Band-pass Prefetching : A Prefetch-fraction driven Mechanism

for Prefetch Management

Our solution is built upon two fundamental observations on prefetch usefulness and
prefetcher-caused interference. In particular, our work finds (i) a strong positive cor-
relation to exist between the amount of prefetch requests an application generates and
prefetch-accuracy. That is, if the fraction of prefetch requests generated is low, the
accuracy of the prefetcher is also low. The second observation is that, the more the
aggregate number of prefetch requests in the system, the higher the miss penalty on
the demand misses at the last level cache. Based on the two observations, we introduce
the concept of prefetch-fraction to infer both prefetch-usefulness and prefetcher-caused
interference. Prefetch-fraction of an application is defined as the fraction of L2 prefetch
requests the prefetcher of an application generates with respect to its total requests
(demand misses, L1 and L2 prefetch requests). Using prefetch-fraction, our mechanism
controls the flow of prefetch requests between a range of prefetch-to-demand ratios,
which is analogous to Band-pass filter from signal processing domain. Hence, we refer
to this mechanism as Band-pass prefetching.

1.3.3 Reuse-aware Prefetch Request Management : Handling prefetch

requests at the shared last level cache

Our solution makes observation that prefetched cache blocks have different use char-
acteristics. Within an application, some prefetched cache blocks are accessed multiple

16 Introduction

times while some others are not used at all. We also observe that prefetch use char-
acteristics vary across applications. Therefore, we measure the use characteristics of
prefetched cache blocks at run-time to determine their priorities during cache replace-
ments at the last level cache.

1.4 Thesis Organization

The remainder of the thesis is organized as follows: in Chapter 2, we present the back-
ground on shared cache management and managing interference at the shared off-chip
memory access. Then, we discuss state-of-the art mechanisms that have been proposed
to handle the two problems that the thesis attempts to solve. Alongside, we also de-
scribe their shortcomings. In Chapter 3, we present our first solution: An Adaptive and
Discrete Application Prioritization mechanism that manages shared last level caches.
We describe our monitoring mechanism that captures Footprint-numbers of applica-
tions, and our replacement algorithm, which uses Footprint-number values to assign
priorities to cache lines of applications. Then, we evaluate our solution and compare
against state-of-the-art mechanisms. In Chapter 4, we present Band-pass Prefetching,
discuss in detail the two observations that lead to our proposed solution, our practical
approach to measure average miss service times. We then evaluate our contribution and
compare against state-of-the-art prefetcher aggressiveness control mechanisms. Chapter
5 presents our third contribution. We describe our mechanism to estimate prefetch use
characteristics and then describe the algorithm that leverages the use characteristics
to assign priorities for prefetch requests. Subsequently, we present our evaluation and
comparison against the relevant state-of-the-art mechanisms. Finally, we present our
conclusion and direction for future research in the last chapter.

Chapter 2

Background

In this chapter, we provide background on shared cache management mechanisms and
discuss the state-of-the-art in shared cache management. Then, we provide background
on hardware prefetching followed by discussions on state-of-the-art managing prefetch-
ing in the context of multi-core processors.

2.1 Cache Management Policies

Shared cache management can be broadly classified into explicit or hard partitioning
and implicit or soft partitioning mechanisms. Before going into specific policies under
each category, we will first describe these mechanisms.
Hard Partitioning: Hard partitioning mechanisms allocate fixed budget of cache space
per application such that the sum of the partitions equals the total cache size. Figure 2.1
shows an example how a cache that is managed by hard partitioning looks. The left
part of the figure shows the unmanaged or unpartitioned cache. The right side shows
the partitioned cache. This example shows a scenario where an 8-way associative cache
is shared by four threads or applications. The cache partitioning algorithm allocates a
fixed number of ways per set for every application or thread based on a cache utility
model. The model estimates how well a thread makes use of the cache ways allocated
to it in terms of reduction in number of misses. When an application finds a miss, the
replacement policy selects a cache line within the application’s partition of cache ways.
If thread A in the figure finds a miss on Set 1, the replacement policy evicts the zeroth
way, which is occupied by thread A for replacement.

Soft Partitioning: Soft partitioning mechanism is simply called cache replacement,
because there is no explicit allocation of cache ways among applications, and the cache
replacement policy just decides to evict the cache line that has the least-priority in the
recency order enforced by the policy. If an application finds a miss, the replacement
policy can select any cache line (that meets least-priority criterion) irrespective of which
application it belongs to. Cache replacement (or, soft partitioning) based cache manage-
ment is the preferred way since cache partitioning method is constrained by scalability.
That is, caches need to be highly associative for cache partitioning to be applied when

17

18 Background

Set	1	

Set	2	

Set	n	

2	ways	

1	way	

4	ways	

Cache	Par))oning	

Algorithm	

(i)  Monitor	

thread’s	u)lity	

(ii)  Fix	the	number	

of	ways	per	

app	

Example	:	4	threads	sharing	8-way	associa)ve	cache	

1	way	

Unpar))oned	

cache	

Par))oned	

cache	Thread	A	

Thread	B	
Thread	C	
Thread	D	

Figure 2.1: An example showing how hard partitioned cache looks

the cache is shared by larger number of applications. We discuss this in detail in the
later part of this chapter.

Numerous studies have been proposed in the past under each category. First we
discuss implicit cache partitioning schemes and then, discuss cache partitioning schemes.

2.1.1 Cache Replacement Policies

Cache replacement policies base their replacement decisions using reuse distance infor-
mation. Reuse distance is defined as the number of interleaving cache accesses between
consecutive accesses to the same cache line. A cache line with a shorter reuse distance
implies that the given cache line will be reused immediately, while a larger reuse dis-
tance means that the given cache line will be reused after long period of time. While
some approaches explicitly measure the reuse distance of cache lines, most approaches
make qualitative prediction on reuse distance values. Because, measuring reuse distance
values for individual cache lines require huge bookkeeping with respect to cache block
addresses. On the other hand, making qualitative prediction on reuse distance is much
simpler in terms of hardware overhead: few bits (2 or 4-bit) information per cache line.

The typical example of reuse distance prediction based cache replacement is the
state-of-the-art Least Recently Used (LRU) policy. It works by ordering the cache lines
of a given set in a recency order. On a cache miss, the cache line with least priority in
the recency order is evicted. For the missing cache line, LRU policy implicitly assigns

Cache Management Policies 19

Most Recently Used, that is the highest priority in the recency chain. Dynamic Insertion
Policy (DIP) [QJP+07] is one of the foremost studies to break this implicit assumption
on cache insertions. They break cache replacement into two sub-problems of eviction
and insertion. Several works have been proposed in the past that enhance the eviction
and insertion decisions of the LRU policy. In the following sub-sections, we discuss
cache replacement policies that take different approaches to make insertion and eviction
decisions.

2.1.1.1 Insertion Priority Prediction

As mentioned above, cache replacement involves eviction a cache line and inserting the
missing cache line. Several mechanisms have fallen in-line with this principle, and in
particular with making prediction on cache insertions. Here, we discuss mechanisms
that use different approaches to base prediction on insertion priorities of cache lines.

Querishi et.al. observe that the LRU policy thrashes for applications with working
set size larger than the cache. Typically, the LRU policy evicts the least recently
used cache line and inserts the missing cache line with the most recently used priority.
In doing so, LRU policy allocates every missing cache line with highest priority and
therefore, allows each of them to stay in the cache for a long duration of time before
getting evicted. However, for such applications, DIP observes that thrashing can be
avoided by allowing only a part or fraction of the working-set to be allowed to stay
longer in the cache, while leaving the remaining or larger part of the working-set to stay
much shorter in the cache. To achieve this, DIP alters the insertion policy by inserting
the missing cache line with the highest MRU priority only probabilistically (1/32 times).
In all other cases, the priority of the cache lines remain at LRU. The idea is that those
LRU inserted cache lines are eventually filtered out on subsequent misses and avoiding
thrashing. This variant policy is referred to as Bi-modal insertion policy (BIP). However,
for recency-friendly applications, LRU is still the best policy. They propose set-dueling
to dynamically learn the best policy for a given application. TADIP [JHQ+08] proposes
a thread-aware methodology to dynamically learn the insertion priorities in a shared
cache environment.

DRRIP [JTSE10] proposes to predict the reuse behavior of cache lines as re-reference
interval buckets. That is, cache lines of a set are classified into different re-reference
intervals as opposed to a particular re-reference or reuse value. While LRU based
recency chain makes relative ordering between cache blocks within a set, RRIP allows
multiple cache blocks to exist under same re-reference interval. RRIP uses 2-bit per
cache line to encode re-reference interval information which allows a cache block to
exist in one among four states or re-reference buckets. The highest state represents
immediate re-reference, while the lowest state represents distant re-reference interval.
On a cache miss, the cache line with distant re-reference interval value (3) is chosen for
eviction. Unlike LRU or DIP, RRIP does not insert a cache line with highest priority,
immediate re-use. From studies performed on applications from gaming and multimedia
segments, RRIP discovers new access patterns namely, scan, a long sequence of cache
lines with no reuse and mixed pattern where recency-friendly pattern mixed with scan

20 Background

access pattern. To handle workloads with different access patterns, RRIP propose Static
Re-reference Interval Prediction, SRRIP and Bi-modal Re-reference Interval Prediction,
BRRIP. While SRRIP handles mixed and scan type of access patterns, BRRIP handles
thrashing patterns. SRRIP policy inserts the cache lines with RRIP value 2, which is
neither immediate or distant re-reference interval, and called intermediate re-reference
interval. Doing so, allows cache lines of recency-friendly pattern to stay long enough
until they are reused. At the same time, cache lines of scan type applications are evicted
soon as compared to inserting with highest, immediate priority. Insertion value of 2 is
experimentally determined.

As with DIP, RRIP uses set-dueling to dynamically learn the best of the two polices
for an application. t uses the same methodology [JHQ+08] to manage applications in
shared cache environment. A thread-aware RRIP (TA-DRRIP) is our baseline cache
replacement policy.

While DIP and RRIP policies make insertion priority prediction at the granularity
of applications, mechanisms like Signature-based Hit Prediction, SHiP [WJH+11] and
Evicted Address Filter, EAF [SMKM12] make predictions at finer granularities. SHiP
classifies cache accesses into groups that are identified by PCs, Instruction Sequences
or Memory regions. Grouping based on PC signatures yield the best results. To make
insertion decisions, SHiP uses a table of 2-bit saturing counters that stores the hit/miss
information per signature. It further uses an outcome bit per cache line that indicates
a hit or miss on it. When a cache line is evicted, based on the outcome bit the counter
associated with that signature is incremented or decremented. When a new cache line
is inserted, if value of the counter is maximum, it indicates the cache lines associated
with that signature are highly reused. The new cache line is inserted with intermediate
(like SRRIP) re-reference prediction. While a minimum value indicates no or poor reuse
and the new cache line is inserted with distant re-reference (like BRRIP) prediction.

Evicted Address Filter (EAF) proposed by Seshadri et.al. further enhances the
prediction granularity to individual cache lines. A filter is used to decide the insertion
priority of the missing cache line. The idea is to hold the evicted cache addresses in
the filter, which size is same as that of the cache. If a cache access misses at the cache
but hits in the filter is an indication that the cache block is prematurely evicted from
the cache. Therefore, the missing cache line is inserted with intermediate (like SRRIP)
priority. If the cache access misses both in the cache and filter, it is inserted with distant
(like BRRIP) priority.

All these approaches use only binary (SRRIP or BRRIP) insertion policies. Under
large scale multi-core context, where applications needs to be differently prioritized,
these mechanisms cannot be adapted to enable such discrete prioritization. Further,
SHiP and EAF predict priorities at the granularity of individual or regions of cache
lines and appear as finer classification mechanisms1. However, in commercial designs
[CMT][arc], which use a software-hardware co-designed approach to resource manage-
ment, the system software decides fairness or performance objectives only at an ap-

1Finer classification we mention here should not to be confused with discrete classification that we
propose. We refer to discrete as having (> 2) priorities across applications.

Cache Management Policies 21

plication granularity. Hence, it is desirable that the cache management also performs
application level performance optimizations.

2.1.1.2 Reuse distance prediction

The mechanisms discussed above make only qualitative estimate (predictions) on the
reuse behavior of cache lines and classify them as to have either intermediate or dis-
tant reuse. However, some studies [TH04, KPK07, KS08, PKK09, EBSH11, SKP10,
DZK+12] explicitly compute the reuse distance value of cache lines at run-time and per-
form replacements using the explicit value of reuse distance. Since the reuse distances
of cache lines can take wider range of values, measuring reuse distance at run-time is
typically complex, requires significant storage and modifying the cache tag arrays to
store reuse distance values for cache lines. Here, we describe some of the important
works in this domain.

[TH04] predicts the inter reference gap of cache lines and assigns them as weights.
Their work is based on the observation that the inter reference gap distribution of a
cache block takes only few discrete values and that cache blocks with same re-reference
counts have same inter reference gap distribution. Thus, cache blocks are grouped
(classified) based on the number of re-references. Essentially, classification of blocks
signify different inter reference gaps (or, priorities). During its lifetime, a cache block
moves from one class to another before being evicted. [KPK07, PKK09] capture the
reuse distance of cache blocks using the PCs that access them. They observe only few
PCs to contribute to the most of the cache accesses. However, these techniques apply
to single-thread context. Since reuse distance computation for all cache blocks incurs
significant overhead, some studies have proposed to sample cache accesses and compute
the reuse distance for select cache blocks [EBSH11, SKP10, DZK+12].

[SKP10] observe that in multi-threaded environments, the timing of interactions
between the threads does not affect stack distance computation. Hence, stack distance
can be computed in parallel for all threads. They use sampling to track the reuse
distance of individual threads. In their approach, the stack distance of cache lines
receiving invalidation (on coherence update) from another thread is approximated to
have very distant reuse (maximum reuse distance value). This is because such a cache
line would receive a coherence miss anyway. This assumption may not be optimal in
certain cases. For example, assume certain threads share a cache block and frequently
access/update the cache block. Threads which read the updated block gets an coherence
miss and subsequently, gets from the other thread. Forcing a distant reuse on such cache
blocks could make the replacement policy to inadvertently give low priority and cause
early evictions resulting in frequent off-chip accesses. Further, their approach may be
counter-productive when combined with any on-chip cache management technique as
in [KKD13].

[DZK+12] propose the protecting distance (PD) metric to protect cache lines until
certain number of accesses. Also, they propose a hit-rate model which dynamically
checks if inserting a cache line would improve the hit-rate. If not, the cache line is
bypassed. They extend the hit-rate model to decide per-thread PD that maximizes

22 Background

the hit-rate of the shared cache. Computing protecting distance is quite complex and
incurs significant hardware overhead in terms of logic and storage. For large number of
applications, computing optimal PDs may require searching across a large reuse distance
space. Conversely, ADAPT requires only tracking a limited number of accesses (sixteen)
per set and simple logic to compute Footprint-number.

[MRG11] propose a novel cache organization that builds on the idea of delinquent
PCs. They logically partition the cache as main-ways and deli-ways. While cache
lines accessed by all PCs can access main-ways, only cache lines accessed by certain
delinquent PCs (policy which is based on the observation that delinquent PCs have
different eviction to reuse distance. The idea is to store the lines evicted from the main-
ways into deli-ways and retain the cache lines for duration beyond their eviction. There
are two problems with their approach. Firstly, for their scheme to work well, the cache
needs to have larger associativity, which adds significant energy overhead. Secondly,
when there are large number of applications sharing the cache, their algorithm may
not be able to find the optimal set of delinquent PCs across all applications and assign
deli-ways among them.

2.1.1.3 Eviction priority prediction

Victim selection techniques try to predict cache lines that are either dead or very unlikely
to be re-used soon [LR02, LFHB08, LFF01a, WAM13]. A recent proposal, application-
aware cache replacement [WAM13] predicts cache lines with very long re-use distance
using hit-gap counters. Hit-gap is defined as the number of accesses to a set between two
hits to the same cache line. Precisely, the hit-gap gives the maximum duration for which
the cache line should stay in the cache. On replacements, a cache line residing closer
to/beyond this hit-gap value is evicted. In many-cores, under their approach, certain
recency-friendly applications could get hidden behind memory-intensive applications
and would suffer more misses. However, ADAPT would be able to classify such appli-
cations and retain their cache lines for longer time. Further, this mechanism requires
expensive look-up operations and significant modifications to the cache tag array.

2.1.2 Cache Bypassing

Bypassing cache lines was proposed in many studies [CT99, JCMH99, McF92, GAV95,
GW10, KKD13]. Run-time Cache Bypassing [JCMH99] proposes to bypass cache lines
with low-reuse behaviors while few others try to address conflict misses by bypassing
cache lines that could pollute the cache. All these techniques either completely bypass
or insert all requests. For thrashing applications, retaining a fraction of the working
set is beneficial to the application [QJP+07]. However, in many-core caches, such an
approach is not completely beneficial. Inserting cache lines of thrashing applications
with least-priority still pollutes the cache. Instead, bypassing most of their cache lines
is beneficial both to the thrashing application as well as the overall performance. As we
show in the evaluation section, bypassing least-priority cache lines is beneficial to other
replacement policies as well.

Cache Management Policies 23

Segmented-LRU [GW10] proposes probabilistic bypassing of cache lines. The tag
of the bypassed cache line and the tag of the victim cache line (which is actually not
evicted) are each held in separate registers. If an access to the virtual victim cache
line is found to occur ahead of the bypassed cache line, the bypass is evaluated to be
useful. This mechanism functions well in single-core context and small-scale multi-cores.
However, in many-cores, as demonstrated in the motivation section, observing the hits
and misses on the shared cache is not an efficient way to decide on policies as they
may lead to incorrect decisions. On the contrary, ADAPT decides to bypass cache lines
based on Footprint-number of applications which does suffer from the actual activity of
the shared cache since the application behavior is determined explicitly.

[KKD13] studies data locality aware management of Private L1 caches for latency
and energy benefits. An on-chip mechanism detects locality (spatial and temporal) of
individual cache lines. On an L1 miss, only lines with high locality are allocated at
L1 while the cache lines with low locality are not allocated at L1 (just accessed from
L2). Thus, caching low locality data only at the shared cache (L2) avoids polluting the
private L1 cache and saves energy by avoiding unnecessary data movement within on-
chip hierarchy. The principal difference from our approach is that they manage private
caches by forcing exclusivity on select data while we manage shared caches by forcing
exclusivity on select application cache lines.

2.1.3 Cache partitioning techniques

Cache partitioning techniques [CS07, NLS07, XL09, QP06, GST13] focus on allocat-
ing fixed-number of ways per set to competing applications. Typically, a shadow tag
structure [QP06] monitors the application’s cache utility by using counters to record
the number of hits each recency-position in the LRU stack receives. Essentially, the
counter value indicates the number of misses saved if that cache way were not allocated
to that application. The allocation policy assigns cache ways to applications based on
their relative margin of benefit. The shadow tag mechanism exploits the stack property
of LRU [MGST70].

While these studies are constrained by the number of cache ways in the last level
cache and hence, suffer from scalability with number of cores, some studies have pro-
posed novel approaches to fine-grained cache partitioning [SK11, MRG12, BS13] that
breaks the partitioning-associativity barrier. These mechanism achieve fine-grained (at
cache block level) through adjusting the eviction priorities. Jigsaw [SK11] shares the
same hardware mechanism as Vantage [BS13], but uses a novel software cache alloca-
tion policy. The policy is based on the insight that miss-curves are typically non-convex
and the convex-hull of the miss-curves provides scope for efficient and a faster alloca-
tion algorithm. Vantage, however, uses the same lookahead allocation policy (O(N2)
algorithm) as in UCP. PriSM [MRG12] proposes a pool of allocation policies which are
based on the miss-rates and cache occupancies of individual applications.

Essentially, these mechanisms require quite larger associative shared cache. For
tracking per-application utility, 256-way associative, LRU managed shadow tags are
required [SK11][BS13]. Further, these techniques require significant modification to the

24 Background

existing cache replacement to adapt to their needs. On the contrary, ADAPT is simple
and does not require modification to the cache states. Only the insertion priorities are
altered.

2.2 Cache Management in the presence of Prefetching

Hardware prefetching helps to hide long latency memory operation by predicting the
future access of an application. When the prefetch request arrives before the demand
access (for which prefetch was sent) needs the data, it becomes timely and useful.
While a prefetch request that is in transit (yet to arrive) from the main memory may
still be useful depending on the criticality of the missing data. A prefetched data that is
never used or accessed by the demand stream wastes the memory bandwidth and could
potentially cause pollution of useful data at the shared cache. The opportunity cost of
wasted bandwidth and pollution becomes higher in the context of multi-core systems,
where memory bandwidth and last level cache is shared. Therefore, prefetch requests
have to be managed at both the cache as well as off-chip memory access.

2.2.1 Managing prefetch requests at the shared cache

Several studies have proposed prefetch request handling at the caches [DDS95, BC95,
Lin01, LRBP01, LFF01b, ZL03, CFKL95, PGG+95, AB05, STS08, SMKP07, WJM+11,
SYX+15]. In this following, we only discuss prefetch-aware cache management mecha-
nisms in the context of shared last level caches.

Wu et. al. [WJM+11] find that treating both prefetch and demand requests on
cache insertions and cache update operations is detrimental to performance. Because,
the use characteristics of demands and prefetch requests are different. At the last
level cache prefetch requests are either never accessed or mostly used only once. That
is, after the first access by demand, the prefetched data is never accessed again as
subsequent accesses is filtered by the level two cache. Therefore, in order to avoid such
prefetched cache block occupying cache space for longer duration of time and polluting,
they propose to modify the promotion and insertion policies for prefetch requests. On
prefetch-hits, the cache line is never promoted, while on cache insertion, prefetched
cache lines are always inserted with distant reuse priority. Altogether, they propose
Prefetch-Aware Cache MANagement (PACMAN) for handling prefetch requests at the
LLC.

Seshadri et. al. propose Informed Cache Prefetching, ICP to further enhances cache
management in the presence of prefetching by accounting prefetch-accuracy information.
When prefetched cache blocks are inserted with distant priority, chances are high that
a useful prefetched block could get evicted before a demand actually uses it. Inserting a
prefetched cache block with high priority avoids this problem. However, since prefetched
cache blocks are mostly used only once, inserting them at MRU position would result
in pollution. Therefore, they propose two mechanisms. The first mechanism, called
ICP-Demotion, demotes the cache line to LRU priority on prefetch-hits. The second
mechanism called ICP-AP uses a prefetch-accuracy predictor to determine the insertion

Cache Management in the presence of Prefetching 25

priority. If the predictor predicts the prefetcher to be accurate, the mechanism inserts
it with MRU priority, otherwise, the cache line is inserted with LRU priority.

2.2.2 Prefetch-filter based Techniques

Several studies have proposed efficient prefetch-filtering mechanisms for stream based
prefetchers. Zhuang and Lee [ZL03] propose a filtering mechanism that uses a history
table (2-bit counter indexed by Program Counter or cache block address) to decide the
effectiveness of prefetching. Prefetch requests are issued depending on the outcome of
the counter. Lin et. al. [LRBP01] propose to use filter to reduce the number of useless
prefetch requests issued by the prefetcher. The basic idea is to store a bit-vector for
each region of data that is tracked. An access to a block sets the bit. They introduce
several metrics like population count PC to count the number bits set, longest run
length, LRL to count the number of contiguous blocks accessed as measures of locality
captured by bit-vectors, and few correlation metrics that take into account the history
of the bit-vector in the previous epochs (epoch : time between access to the same cache
block within a tracked region). Among the local (of the same region), spatial (of two
adjacent regions), and global (of any two regions) correlations, local correlation gives
the best results. On a miss, the local correlation function fracPC(AB)log2(P), where
A and B represent the bit-vector value in the current and previous epochs, while ’P’
represents the number of bits in the density vector. Mechanisms proposed by Kumar et.
al. [KW98] and Somogyi [SWA+06] are similar in principle. However, their approach
to learn the prefetchable cache lines vary. Kumar et. al.[KW98] uses smaller memory
regions called Sectors, and uses two tables to record the footprint within each sector.
Spatial Footprint History Table (SHT) records the history while the Active Sector Table
(AST) records the footprint of the active sector. To index into the SHT, bits from the
cache line address of the first access to that sector and the instruction that generated
the first access are hashed. Similarly, Somogyi et. al. uses three tables namely, Filter
Table (FT), Accumulation Table (AT), which together form the Active Generation
Table (AGT), and Pattern History Table (PHT). Training on a memory region happens
between the first demand access and the first invalidation or eviction of a cache line
within the region. Filter table extracts the spatial signature, which is PC+offset, where
offset is the offset from the starting of the spatial region. The accumulation table
records the accesses in the corresponding bits within the spatial region. Using the
Pattern History Table (PHT), which is indexed by the spatial signature, SMS sends
prefetch requests.

Hur and Lin propose Adaptive Stream Detection mechanisms [HL06, HL09] for
effectively detecting short streams using dynamic histograms. The basic idea behind
the two mechanisms is to dynamically construct histogram distribution for different
stream lengths (in steps of 1). The distribution gives the probability that a given access
is part of a current or a longer stream. To issue a prefetch request, the prefetcher
tests if the probability of an access being part of a longer stream as compared to the
current stream. If the condition is satisfied, the prefetcher issues a prefetch request.
Otherwise, the request is not issued. They further extend this idea to issue multiple

26 Background

prefetch requests. All these mechanisms are developed for single-core processors. In
multi-core systems, these mechanisms cannot capture interference due to prefetching.
They must be augmented with techniques to capture interference. On the other hand,
our mechanism uses prefetch-fraction to determine both the accuracy (usefulness) of
prefetching as well as prefetcher-caused interference.

2.2.3 Adaptive Prefetching Techniques

Jimenez et. al. [JGC+12, JBB+15] and Sinharoy et. al. [SKS+11] propose a software
based approach to perform dynamic prefetcher aggressiveness control. Both studies
explore the benefit of prefetching at run-time and adapt the prefetcher depending on the
prefetch benefit or memory bandwidth saturation model. Our mechanism is hardware
based and performs prefetch aggressiveness control based on prefetch-fraction. Similarly,
Panda proposes SPAC [Pan16], a mechanism that attempts to minimize search space
when looking for prefetch configurations that together satisfy system-wide harmonic-
speedup goal. Basically, to gauge the usefulness of prefetching, Panda introduces a
proxy metric of Prefetcher-caused Fair-speedup (PFS). Prefetchers are classified into
two groups : meek and strong based on the fraction of prefetch requests generated per
miss (PPM). Prefetchers that fall below the average of PPM are classified as meek,
while prefetchers whose PPM fall above the average are classified as strong. SPAC
explores across the toned-down search space (5 configurations) of prefetching in short
successive intervals and uses the best for the larger interval. Instead our mechanism
simply computes prefetch-fraction and controls only the application that issues most of
the prefetch requests, while allowing other prefetcher to be aggressive. ABS [AGIn+12]
is a prefetcher aggressiveness control mechanism that is proposed for systems where
prefetching is employed at the banks of the shared last level cache. Our mechanism can
be applied on top of such systems: prefetcher of the individual banks can be treated as
a prefetcher-resource and then monitor the requests from each banks. When there is
interference, the prefetcher of the bank that issues the highest prefetch-fraction can be
throttled-down.

2.3 Conclusion

In this chapter, we presented the background on state-of-the-art cache management
mechanisms. From the description, we understand that prior mechanisms on insertion
priority prediction suffer from ineffectiveness in predicting the reuse behavior of appli-
cations due to their observance of hit/miss statistics at the shared caches. On the other
hand, mechanisms that explicitly predict the reuse distance of cache blocks of applica-
tion require exorbitant storage-cost to explicitly measure reuse distance values. Simi-
larly, cache partitioning mechanisms require larger associative caches which is energy
prohibitive. With state-of-the-art mechanisms suffer from shortcomings, we conclude a
new mechanism to manage shared caches in large-scale multi-cores is required.

In the context of managing interference in the presence of prefetching, prior mech-
anisms have proposed mechanisms to reduce interference by controlling the prefetcher

Conclusion 27

aggressiveness. However, these mechanisms are ineffective in estimating prefetcher-
caused interference in the context of large-scale multi-cores. Mechanisms that handle
prefetch requests at the shared cache treat prefetch and demands differently which is
inefficient in the context of large-scale multi-core caches. Similarly, mechanisms that
handle interference between prefetch and demand requests at the off-chip memory ac-
cess are ineffective in identifying interference. Altogether, handling interference at the
shared memory resources require new mechanisms.

28 Background

Chapter 3

Discrete and De-prioritized Cache

Insertion Policies

In this chapter, we present our first contribution. This contribution was presented
at IPDPS 2016, where it received the best paper award in the computer architecture
track. We first motivate our work on the need for a new cache management for large
scale multi-cores and then, present our proposed mechanism. In the subsequent section,
we show our evaluation and discuss the results.

3.1 Introduction

In multi-core processors, the Last Level Cache (LLC) is usually shared by all the cores
(threads)1. The effect of inter-thread interference due to sharing has been extensively
studied in small scale multi-core contexts [QJP+07, JHQ+08, GW10, QP06, NLS07,
XL09, JTSE10, WJH+11, Iye04, CGB+12, SMKM12]. However, with advancement in
process technology, processors are evolving towards packaging more cores on a chip. Fu-
ture multi-core processors are still expected to share the last level cache among threads.
Consequently, future multi-cores pose two new challenges. Firstly, the shared cache as-
sociativity is not expected to increase beyond around sixteen due to energy constraints,
though there is an increase in the number of cores sharing the cache in multi-core pro-
cessors. Hence, we are presented with the scenario of managing shared caches where
(#cores ≥ #llc_ways). Secondly, in large scale multi-core systems, the workload
mix typically consists of applications with very diverse memory demands. For effi-
cient cache management, the replacement policy must be aware of such diversity to
enforce different priorities across applications. Moreover, in commercial grid systems,
the computing resources (in particular, memory-hierarchy) are shared across multiple
applications which have different fairness and performance goals. Either the operating
system or the hypervisor takes responsibility in accomplishing these goals. Therefore,
the hardware must provide scope for the software to enforce different priorities for the
applications. Altogether, the cache replacement policy must satisfy two requirements

1Without loss of generality, we assume one thread/application per core.

29

30 Discrete and De-prioritized Cache Insertion Policies

(i) allow enforcing discrete priorities across applications and (ii) efficiently capture an
application’s run-time behavior.

Problem:Prior studies [QJP+07, JHQ+08, GW10, JTSE10, WJH+11, SMKM12]
have proposed novel approaches to predict the reuse behavior of applications and, hence
their ability to utilize the cache. The typical approach is to observe the hits/misses it
experiences as a consequence of sharing the cache and approximate its behavior. This
approach fairly reflects an application’s ability to utilize the cache when the number of
applications sharing the cache is small (2 or 4). However, we observe that this approach
may not necessarily reflect an application’s ability to utilize the cache when it is shared
by a large number of applications with diverse memory behaviors. Consequently, this
approach leads to incorrect decisions and cannot be used to enforce different priorities
across applications. We demonstrate this problem with an example.

Solution: Towards this goal, we introduce the metric Footprint-number.Footprint-
number is defined as the number of unique accesses (cache block addresses) that an
application generates to a cache set in an interval of time. Since Footprint-number
explicitly approximates the working set size, and quantifies the application behavior at
run-time, it naturally provides scope for discretely (distinct and more than two prior-
ities) prioritizing applications. We propose an insertion-priority-prediction algorithm
that uses application’s Footprint-number to assign priority to the cache lines of ap-
plications during cache replacement (insertion) operations. Since Footprint-number is
computed at run-time, dynamic changes in the application behavior are also captured.
We further find that probabilistically de-prioritizing certain applications during cache
insertions (that is, not inserting the cache lines) provides a scalable solution for efficient
cache management.

3.2 Motivation

In this section, we motivate the need for altogether a new mechanism to capture appli-
cation behavior at run-time and a replacement policy that differently prioritizes appli-
cations.
Cache Management in large-scale multi-cores:
A typical approach to approximate an application’s behavior is to observe the hits and
misses it encounters at the cache. Several prior mechanisms [JHQ+08, JTSE10, GW10,
WJH+11, SMKM12] have used this approach: the general goal being to assign cache
space (not explicitly but by reuse prediction) to applications that could utilize the cache
better. This approach works well when the number of applications sharing the cache is
small (2 or 4 cores). However, such an approach becomes suboptimal when the cache is
shared by a large number of applications. We explain with set-dueling[QJP+07] as an
example.
Set-dueling: a randomly chosen pool of sets (Pool A for convenience) exclusively imple-
ments one particular insertion policy for the cache lines that miss on these sets. While
another pool of sets (Pool B) exclusively implements a different insertion policy. A sat-
urating counter records the misses incurred by either of the policies: misses on Pool A

Motivation 31

increment, while the misses on Pool B decrement the saturating counter, which is 10-bit
in size. The switching threshold between the two policies is 512. They observe that
choosing as few as 32 sets per policy is sufficient. Thread-Aware Dynamic ReReference
Interval Predictions, TA-DRRIP[JTSE10] uses set-dueling to learn between SRRIP and
BRRIP insertion policies. SRRIP handles scan (long sequence of no reuse cache lines)
and mixed (recency-friendly pattern mixing with scan) type of access patterns, BRRIP
handles thrashing (larger working-set) patterns.

TA-DRRIP learns SRRIP policy for all classes of applications, including the ones
with working-set size larger than the cache. However, applications with working-set
size larger than the cache cause thrashing when they share the cache with other (cache-
friendly) applications. Based on this observation, by explicitly preventing thrashing
applications from competing with the non-thrashing (or, cache friendly) applications
for cache space, performance can be improvement. In other words, implementing BR-
RIP policy for these thrashing applications will be beneficial to the overall performance.
Figure 3.1a confirms this premise. The bar labeled TA-DRRIP(forced) is the implemen-
tation where we force BRRIP policy on all the thrashing applications. Performance is
normalized to TA-DRRIP. From the figure, we observe the latter achieves speed-up
close to 2.8 over the default implementation of TA-DRRIP, which records the number
of misses caused by the competing policies and making inefficient decisions on applica-
tion priorities. The experiments are performed on a 16MB, 16-way associative cache,
which is shared by all sixteen applications. Table 3.3 shows other simulation parame-
ters. Results in Figure 3.1 are averaged from all the 60 16-core workloads. Also, from
bars 1 and 2, we see that the observed behavior of TA-DRRIP is not dependent on the
number of sets dedicated for policy learning.

Figures 3.1b and 3.1c show the MPKIs of individual applications when thrashing
applications are forced to implement BRRIP insertion policy. For thrashing applica-
tions, there is little change in their MPKIs, except cactusADM. cactusADM suffers
close to 40% increase in its MPKI and 8% reduction in its IPC while other thrashing
applications show a very marginal change in their IPCs. However, non-thrashing appli-
cations show much improvement in their MPKIs and IPCs. For example, in Figure 3.1c,
art saves up to 72% of its misses (in MPKI) when thrashing applications are forced to
implement BRRIP insertion policy. Thus, thrashing applications implementing BRRIP
as their insertion policy is beneficial to the overall performance. However, in practice,
TA-DRRIP does not implement BRRIP for thrashing applications and loses out on the
opportunity for performance improvement. Similarly, SHiP[WJH+11] which learns from
the hits and misses of cache lines at the shared cache, suffers from the same problem.
Thus, we infer that observing the hit/miss results of cache lines to approximate appli-
cation behavior is not efficient in the context of large-scale multi-cores.

Complexity of other approaches :
While the techniques that predict the individual application’s behavior from its shared
behavior are not efficient, reuse distance based mechanisms [TH04, KPK07, KS08,
PKK09, EBSH11, SKP10, DZK+12] provide a fair approximation of the application’s
behavior. However, to accurately predict the reuse behavior of individual cache accesses

32 Discrete and De-prioritized Cache Insertion Policies

0

0.5

1

1.5

2

2.5

3

S
p
e
e
d
‐u
p
 o
v
e
r

T
A
‐D
R
R
IP

TA‐DRRIP(SD=64)

TA‐DRRIP(SD=128)

TA‐DRRIP(forced)

(a) Forced BRRIP priority

‐20

‐15

‐10

‐5

0

5

a
p
si

a
st
a
r

ca
ct

g
a
p

g
o
b

g
zi
p

lb
m

li
b
q

m
il
c

w
rf

w
u
p

%
 R
e
d
u
c<
o
n
 i
n
 M

P
K
I

(b) MPKI for thrashing applica-
tions

0

10

20

30

40

50

60

70

80

a
rt

b
zi

d
e
a

fs
i

g
cc

h
m

le
sl

m
cf

o
m

p
b
e

sc
lu

so
p

tw
o

v
o
r

v
p
r

%
 R
e
d
u
cA
o
n
 i
n
 M

P
K
I

(c) MPKI reduction for others

Figure 3.1: Impact of implementing BRRIP policy for thrashing applications

of the applications involves significant overhead due to storage and their related book-
keeping operations. Further, these techniques are either dependent on the replacement
policy [EBSH11, SKP10] or require modifying the cache tag arrays [KPK07, PKK09,
DZK+12]. Similarly, some cache partitioning techniques do not scale with the number of
cores while others scale but incur significant overhead due to larger (up to 128/256-way)
LRU managed shadow tag structures [SK11, MRG12, GST13, BS13].

From these discussions, we claim that a simple, efficient and scalable cache mon-
itoring mechanism is required. Further, recall that many-core processors require a
cache replacement policy to be application-aware and enforce discrete (> 2) priorities.
Therefore, an efficient cache management technique must augment a cache monitoring
mechanism that conforms to the above goals as well as allow the cache replacement
policy to enforce discrete priorities.

3.2.1 A case for discrete application prioritization:

Before presenting our proposed mechanism, we present an example to make a case where
discretely prioritizing application is beneficial in the context of large multi-cores where
the number of applications or threads sharing in the cache is tight with the number of
ways/ associativity of the shared cache.

Like TA-DRRIP, ADAPT also uses 2-bit RRPV counter per cache line to store
the predictions and on replacements, it evicts the cache line with RRPV 3. However,
the difference is only on insertions, where ADAPT makes discrete (four) predictions.
ADAPT implemented in this example does not exactly match the one that will be
described in the next section: the example is only to demonstrate the benefit of discrete
prioritization.

We assume four applications share a 4-way associative cache. Let A : {a1, a2, a3, a4}k1, B :
{b1, b2, b3}k2, C : {c1, c2}k3 and D : {d1, d2, d3, d4, d5, d6}k4 be the sequences of ac-
cesses to cache blocks by applications A, B, C and D, respectively, during a certain
interval of time. Let k1=3, k2=1, k3=3 and k4=4 denote the number of reuses to the
given access sequence. Assuming a fair scheduling policy, we have the following com-
bined accesses sequence : S1 :{a1,b1,c1,d1}, S2 :{a2,b2,c2,d2}, S3 :{a3,b3,c1,d3}, S4
:{a4,-,c2,d4} etc. Also, let us assume all accesses update their RRPV on hits.

Adaptive Discrete and de-prioritized Application PrioriTization 33

Miss

a
1

c
1 d1 b

1

2 2 2 3

a
1

c
1

a
2 b

1

2 2 2 2

b
2

c
1 a

2 b
1

3 2 3 3

b
2

c
1

a
2 c

2

2 2 3 3

b
2

d
2

a
2 c

2

2 2 3 3

b
2

a
3

a
2 c

2

2 2 2 3

b
2

a
3

b
3 c

2

2 2 2 2

c
1

a
3

b
3 c

2

3 2 3 3

a
2

b
2

c
2

d
2

a
3

b
3

c
1

d
1

Miss

Miss

Miss

Miss

Miss

Miss

Miss

a
1

c
1 d1 b

1

1 3 0 3

a
2

c
1

d
1 b

1

1 3 0 3

b
2

c
1 d

1 b
1

1 1 0 3

b
2

c
1

c
2 b

1

1 1 0 0

d
2

c
1

c
2 b

1

3 3 2 2

a
2

b
2

c
2

d
2

a
3

b
3

a
3

c
1

c
2 b

1

3 3 2 2

b
3

c
1

c
2 b

1

3 1 2 2

b
3

c
1

c
2 b

1

3 1 0 2

c
1

d
1

Miss

Miss

Miss

Miss

Miss

Hit!

Block to be

evicted

Block that

hits

App TA‐DRRIP ADAPT

A 2 3

B 2 1

C 2 0

D 3 3

InserAon prioriAes

Cache block

with RRPV ‘n’
n

(a) TA-DRRIP vs ADAPT (discrete prioritization)

0.1

0.2

0.3

0.4

0.5

0.6

R
a
ti

o
 o

f
C

a
ch

e
 l
in

e
s

a
cc

e
ss

e
d
 a

ft
e
r

e
v
ic

ti
o
n
 TA-DRRIP SHiP EAF

(b) Ratio of accesses that fall within the
first 256 misses in the set after their evic-
tion

Figure 3.2: a) Benefit of discrete prioritization b) Ratio of Early Evictions

Figure 3.2a shows our example. The boxes represent cache tag storing the cache
block address and the number below each box represents the block’s RRPV. TA-DRRIP
inserts cache lines of applications A, B and C with RRPV 2 and cache lines of application
D with RRPV 3. On the other hand, ADAPT inserts the cache lines with discrete
priorities. Cache lines of applications A and D are inserted with RRPV 3 and, cache
lines of application B and C are inserted with RRPV 1 and 0, respectively. Assignment
of priorities by ADAPT is the subject of next section. From the figure, we see cache line
c1, which is inserted with RRPV 0 is able to survive until its next use. But, TA-DRRIP
is not able to preserve cache line c1. c1 is evicted just few accesses before its reuse. From
experiments, we observe significant fraction of cache lines to suffer from such evictions.
In particular, Figure 3.2b, shows that close 52% of reuses (that miss) in the cache fall
within the first 256 misses in the set under TA-DRRIP and SHiP algorithms.

3.3 Adaptive Discrete and de-prioritized Application Pri-

oriTization

Adaptive Discrete and de-prioritized Application PrioriTization, ADAPT, consists of
two components: (i) the monitoring mechanism and (ii) the insertion-priority algorithm.
The first component monitors the cache accesses (block addresses) of each application
and computes its Footprint-number, while the second component infers the insertion
priority for the cache lines of an application using its Footprint-number. Firstly, we
describe the design, operation and cost of the monitoring mechanism. Then, we describe
in detail the insertion-priority algorithm.

34 Discrete and De-prioritized Cache Insertion Policies

3.3.1 Collecting Footprint-number

Definition: Footprint-number of an application is the number of unique accesses (block
addresses) that it generates to a cache set. However, during execution, an application
may exhibit change in its behavior and hence, we define its Sliding Footprint-number
2 as the number of unique accesses it generates to a set in an interval of time. We
define this interval in terms of the number of misses at the shared last level cache since
only misses trigger new cache blocks to be allocated. However, sizing of this interval
is critical since the combined misses of all the applications at the shared cache could
influence their individual (sliding) Footprint-number values. A sufficiently large interval
mitigates this effect on Footprint-number values. To fix the interval size, we perform
experiments with 0.25M, 0.5M, 1M, 2M and 4M interval sizes. Among, 0.25, 0.5 and
1M misses, 1M gives the best results. And, we do not observe any significant difference
in performance between 1M and 4M interval sizes. Further, 1 Million misses on average
correspond to 64K misses per application and are roughly four times the total number
of blocks in the cache, which is sufficiently large. Hence, we fix the interval size as 1M
last level cache misses. the term Footprint-number throughout the paper.

Another point to note is that Footprint-number can only be computed approximately
because (i) cache accesses of an application are not uniformly distributed across cache
sets. (ii) Tracking all cache sets is impractical. However, a prior study [QP06] has
shown that the cache behavior of an application can be approximated by sampling a
small number of cache sets (as few as 32 sets is enough). We use the same idea of
sampling cache sets to approximate Footprint-number. From experiments, we observe
that sampling 40 sets are sufficient.

Design and Operation: Figure 3.3a shows the block diagram of a cache implement-
ing ADAPT replacement algorithm. In the figure, the blocks shaded with gray are the
additional components required by ADAPT. The test logic checks if the access (block
address) belongs to a monitored set and if it is a demand access3, and then it passes
the access to the application sampler. The application sampler samples cache accesses
(block addresses) directed to each monitored set. There is a storage structure and a sat-
urating counter associated with each monitored set. The storage structure is essentially
an array which operates like a typical tag-array of a cache set.

First, the cache block address is searched. If the access does not hit, it means that the
cache block is a unique access. It is added into the array and the counter, which indicates
the number of unique cache blocks accessed in that set, is incremented. On a hit, only
the recency bits are set to 0. Any policy can be used to manage replacements. We use
SRRIP policy. All these operations lie outside the critical path and are independent of
the hit/miss activities on the main cache. Finally, it does not require any change to the
cache tag array except changing the insertion priority.

Example: Figure 3.3b shows an example of computing Footprint-number. For sim-
plicity, let us assume we sample 4 cache sets and a single application. In the diagram,
each array belongs to a separate monitored set. An entry in the array corresponds to the

2However, we just use the term Footprint-number throughout.
3Only demand accesses update the recency state

Adaptive Discrete and de-prioritized Application PrioriTization 35

Applica'on	

Sampler	
Applica'on	

Sampler	

	

Shared	

LLC	

	

Request	

from	

Private	L2	

Replacement	

algorithm	

Discrete	

Inser'ons	

Inser'on	

Priority	

Predic'on	

App			Pri	

1  HP	

		2				MP	

….				

	

		N			MP	

Priority		Map	

a)	If	access	

belongs	to	

monitoring	

set	

b)	Sample	

demand	

accesses	

c)	At	end	of	Interval,	

1	Footprint-number	

computa<on	

2)	Priority	assignment		

3 2 3 3

addrj	

addrk	

addri	

addrn	

addrm	

Footprint

-number	

11	

2.75	(Avg)	

Cache	line	

address	
Per-set	Array	

Per	array	

total	

4

#Monitoring	

Arrays	

1	

N

(a)	ADAPT	Block	Diagram	 (b)Example:	Footprint-number	computa'on	

Applica'on	

Sampler	

Test	

Logic	

addrq	

addrr	

addrp	

addry	

addrz	

addrx	

Figure 3.3: (a) ADAPT Block Diagram and b) example for Footprint-number compu-
tation

block address that accessed the set. We approximate Footprint-number by computing
the average from all the sampled sets. In this example, the sum of all the entries from
all the four arrays is 11. And, the average is 2.75. This is the Footprint-number for the
application. In a multi-core system, there are as many instances of this component as
the number of applications in the system.every 1 Million misses in the last level cache,
as mentioned earlier.

3.3.2 Footprint-number based Priority assignment

Like prior studies [JTSE10, WJH+11, SMKM12, Int16], we use 2 bits per cache line
to represent re-reference prediction value (RRPV). RRPV ’3’ indicates the line will be
reused in the distant future and hence, a cache line with RRPV of 3 is a candidate for
eviction. On hits, only the cache line that hits is promoted to RRPV 0, indicating that it
will be reused immediately. On insertions, unlike prior studies, we explore the option of
assigning different priorities (up to 4) for applications leveraging the Footprint-number
metric.

We propose an insertion-priority-prediction algorithm that statically assigns pri-
orities based on the Footprint-number values. The algorithm assumes that the LLC
associativity is 16. However, it still works for larger associative caches as we show later.
Table 3.1 summarizes the insertion priorities for each classification. Experiments are
performed by varying the high-priority range between [0,3] and [0,8] (6 different ranges),
keeping the low-priority range unaffected. Similarly, by keeping the high-priority range
[0,3] constant, we change the low-priority range between (7,16) to (12,16) (6 different
ranges). In total, from 36 different experiments we fix the priority-ranges. A dynamic
approach that uses run-time information to assign priorities is more desirable. We defer
this approach to future work. Priority assignments are as follows:

High Priority: All applications in the Footprint-number range [0,3] (both included)
are assigned high-priority. When the cache lines of these applications miss, they are
inserted with RRPV 0.
Intuition:Applications in this category have working sets that fits perfectly within the

36 Discrete and De-prioritized Cache Insertion Policies

Table 3.1: Insertion Priority Summary

Priority Level Insertion Value

High (HP) 0
Medium (MP) 1 but 1/16th insertion at LP
Low (LP) 2 but 1/16th at MP
Least (LstP) Bypass but insert 1/32nd at LP

cache. Typically, the cache lines of these applications have high number of reuses. Also,
when they share the cache, they do not pose problems to the co-running applications.
Hence, they are given high-priority. Inserting with priority 0 allows the cache lines of
these applications to stay in the cache for longer periods of time before being evicted.

Medium Priority: All applications in the Footprint-number range (3,12] (3 excluded
and 12 included) are assigned medium priority. Cache lines of the applications in this
category are inserted with value 1 and rarely inserted with value 2.
Intuition: Applications under this range of Footprint-number have working set larger
than the high-priority category however, fit within the cache. From analysis, we observe
that the cache lines of these applications generally have moderate reuse except few
applications. To balance mixed reuse behavior, one out of the sixteenth insertion goes
to low priority 2, while inserted with medium priority 1, otherwise.

Low Priority: Applications in the Footprint-number range (12,16) are assigned low
priority. Cache lines of these applications are generally inserted with RRPV 2 and rarely
with medium priority 1 (1 out of 16 cache lines).
Intuition: Applications in this category typically have mixed access patterns : ({a1, a2}k

{s1, s2, s3..sn}d) with k and d sufficiently small and k slightly greater than d, as ob-
served by TA-DRRIP[JTSE10]. Inserting the cache lines of these applications with low
priority 2 ensures (i) cache lines exhibiting low or no reuse at all get filtered out quickly
and (ii) cache lines of these applications have higher probability of getting evicted than
high and medium priority applications4.

Least Priority: Applications with Footprint-number range (>= 16) are assigned
least priority. Only one out of thirty-two accesses are installed at the last level cache
with least priority 3. Otherwise, they are bypassed to the private Level 2. Intuition:
Essentially, these are applications that either exactly fit in the cache (occupying all
sixteen ways) or with working sets larger than the cache. These applications are typ-
ically memory-intensive and when run along with others cause thrashing in the cache.
Hence, both these type of applications are candidates for least priority assignment. The
intuition behind bypassing is that when the cache lines inserted with least priority are
intended to be evicted very soon (potentially without reuse), bypassing these cache
lines will allow the incumbent cache lines to better utilize the cache. Our experiments
confirm this assumption. In fact, bypassing is not just beneficial to ADAPT. It can
be used as a performance booster for other algorithms, as we show in the evaluation

4It means that transition from 2 to 3 happens quicker than 0 to 3 or 1 to 3 thereby allowing HP
and MP applications to stay longer in the cache than LP applications.

Adaptive Discrete and de-prioritized Application PrioriTization 37

Table 3.2: Cost on 16MB,16-way LLC

Policy Storage cost N=24 cores

TA-DRRIP 16-bit/app 48 Bytes
EAF-RRIP 8-bit/address 256KB

SHiP SHCT table&PC 65.875KB
ADAPT 865 Bytes/app 24KB appx

section.

3.3.3 Hardware Overhead

The additional hardware required by our algorithm is the application sampler and in-
sertion priority prediction logic. The application sampler consists of an array and a
counter. The size of the array is same as the associativity. From Section 3.3.2, recall
that we assign the same priority(least) to applications that exactly fit in the cache as
well as the thrashing applications because, on a 16-way associative cache, both classes
of applications will occupy a minimum of 16 ways. Hence, tracking 16 (tag) addresses
per set is sufficient. The search and insertion operations on the array are very similar
to that of a cache set. The difference is that we store only the most significant 10 bits
per cache block. Explanation: the probability of two different cache lines having all the
10 bits same is very low: (1/2x)/(210/2x), where x is the number of tag bits. That is,
1/210. Even so, there are separate arrays for each monitoring set. Plus, applications
do not share the arrays. Hence, 10 bits are sufficient to store the tag address. 2 bits
per entry are used for bookkeeping. Additionally, 8 bits are required for head and tail
pointers (4 bits each) to manage search and insertions. Finally, a 4-bit counter is used
to represent Footprint-number.

Storage overhead per set is 204 bits and we sample 40 sets. Totally, 204 bits ×40 =
8160bits. To represent an application’s Footprint-number and priority, two more bytes
(1 byte each) are needed. To support probabilistic insertions, three more counters each
of size one byte are required. Therefore, storage requirement per application sampler is
[8160 bits + 40 bits] = 8200bits/application. In other words, 1KB (approximately) per
application.

Table 3.2 compares the hardware cost of ADAPT with others. Though ADAPT
requires more storage compared to TA-DRRIP [JTSE10], it provides higher performance
improvement and is better compared to EAF [SMKM12] and SHiP [WJH+11] in both
storage and performance.

3.3.4 Monitoring in a realistic system:

In the paper, we assume that one thread per core. Therefore, we can use the core
ID for the thread. On an SMT machine, the thread number/ID would have to be
transmitted with the request from the core for our scheme to work properly. ID of
the application. That is, all threads will be assigned the same priority. In commercial

38 Discrete and De-prioritized Cache Insertion Policies

systems, which uses hardware-software co-designed approach to resource management,
fairness and performance objectives are set only at application granularities.

If an application migrates (on a context-switch) to another core, the replacement
policy applied for that application during the next interval will be incorrect. However,
the interval is not long (1Million LLC misses). The correct Footprint-number and
insertion policy will be re-established in the following monitoring interval onward. In
data-centers or server systems, tasks or applications are not expected to migrate often.
A task migrates only in exceptional cases like shutdown or, any power/performance
related optimization. In other words, applications execute(spend) sufficient time on a
core for the heuristics to be implemented. Finally, like prior works[QJP+07, JHQ+08,
JTSE10, SMKM12, WJH+11, QP06], we target systems in which LLC is organized as
multiple banks with uniform access latency.

3.4 Experimental Study

3.4.1 Methodology

For our study, we use BADCO [VMS12] cycle-accurate x86 CMP simulator. Table 3.3
shows our baseline system configuration. We do not enforce inclusion in our cache-
hierarchy and all our caches are write-back caches. LLC is 16MB and organized into 4
banks. We model bank-conflicts, but with fixed latency for all banks like prior studies
[JTSE10, WJH+11, SMKM12].A VPC[NLS07] based arbiter schedules requests from L2
to LLC. We use DRAM model similar to [SMKM12].

3.4.2 Benchmarks

We use benchmarks from SPEC 2000 and 2006 and PARSEC benchmark suites, totaling
36 benchmarks (31 from SPEC and 4 from PARSEC and 1 Stream benchmark). Ta-
ble 5.2 shows the classification of all the benchmarks and Table 3.4 shows the empirical
method used to classify memory intensity of a benchmark based on its Footprint-number
and L2-MPKI when run alone on a 16MB, 16-way set-associative cache. In Table 5.2,
the column Fpn(A) represents Footprint-number value obtained by using all sets while
the column Fpn(S) denotes Footprint-number computed by sampling. Only vpr shows
> 1 difference in Footprint-number values. Only to report the upper-bound on the
Footprint-numbers, we use 32-entry storage. In our study, we use only 16-entry array.
We use a selective portion of 500M instructions from each benchmark. We warm-up
all hardware structures during the first 200M instructions and simulate the next 300M
instructions. If an application finishes execution, it is re-executed until all applications
finish.

3.4.3 Workload Design

Table 3.6 summarizes our workloads. For 4 and 8-core workloads, we study with 4MB
and 8MB shared caches while 16, 20 and 24-core workloads are studied with a 16MB

Results and Analysis 39

Table 3.3: Baseline System Configuration

Processor Model 4-way OoO, 128 entry ROB,
36 RS, 36-24 entries LD-ST
queue

Branch pred. TAGE, 16-entry RAS
IL1 & DL1 32KB; LRU; next-line

prefetch;I$:2-way;D$:8-way;
64 bytes line

L2 (unified) 256KB,16-way, 64 bytes line,
DRRIP, 14-cycles, 32-entry
MSHR and 32-entry retire-at-
24 WB buffer

LLC (unified) 16MB, 16-way, 64 bytes line,
TA-DRRIP, 24 cycles, 256-
entry MSHR and 128-entry
retire-at-96 WB buffer

Main-Memory (DDR2) Row-Hit:180 cycles, Row-
Conflict:340 cycles, 8
banks,4KB row, XOR-
mapped[ZZZ00]

cache since we target caches where #applications ≥ #llcassociativity.

3.5 Results and Analysis

3.5.1 Performance on 16-core workloads

Figure 3.4 shows performance on the weighted-speedup metric over the baseline TA-
DRRIP and three other state-of-the-art cache replacement algorithms. We evaluate two
versions of ADAPT: one which inserts all cache lines of least priority applications (re-
ferred as ADAPT_ins) and the version which mostly bypasses the cache lines of least
priority applications (referred as ADAPT_bp32). Our best performing version is the
one that bypasses the cache lines of thrashing applications. Throughout our discus-
sion, we refer to ADAPT as the policy that implements bypassing. From Figure 3.4,
we observe that ADAPT consistently outperforms other cache replacement policies. It
achieves up to 7% improvement with 4.7% on average. As mentioned in Section 3.2,
with set-dueling, applications with working-set larger than the cache, implement SR-
RIP policy, which causes higher contention and thrashing in the cache. Similarly, SHiP
learns the reuse behavior of region of cache lines (grouped by their PCs) depending on
the hit/miss behavior. A counter records the hits (indicating intermediate) and misses
(indicating distant) reuse behavior for the region of cache lines. Since SHiP implements
SRRIP, it observes similar hit/miss pattern as TA-DRRIP for thrashing applications.

40 Discrete and De-prioritized Cache Insertion Policies

Table 3.4: Empirical Classification of Applications

FP-num L2 MPKI Memory Intensity

< 1 VeryLow (VL)
< 16 [1, 5) Low (L)

> 5 Medium (M)
< 5 Medium (M)

>= 16 [5, 25) High (H)
> 25 VeryHigh (VH)

Table 3.5: Benchmark classification based on Footprint-number and L2-MPKI.

Name Fpn(A) Fpn(S) L2-MPKI Type
black 7 6.9 0.67 VL

calc 1.33 1.44 0.05 VL

craf 2.2 2.4 0.61 VL

deal 2.48 2.93 0.5 VL

eon 1.2 1.2 0.02 VL

fmine 6.18 6.12 0.34 VL

h26 2.35 2.53 0.13 VL

nam 2.02 2.11 0.09 VL

sphnx 5.2 5.4 0.35 VL

tont 1.6 1.5 0.75 VL

swapt 1 1 0.06 VL

gcc 3.4 3.2 1.34 L

mesa 8.61 8.41 1.2 L

pben 11.2 10.8 2.34 L

vort 8.4 8.6 1.45 L

vpr 13.7 14.7 1.53 L

fsim 10.2 9.6 1.5 L

sclust 8.7 8.4 1.75 L

art 3.39 2.31 26.67 M

Name Fpn(A) Fpn(S) L2-MPKI Type
bzip 4.15 4.03 25.25 M

gap 23.12 23.35 1.28 M

gob 16.8 16.2 1.28 M

hmm 7.15 6.82 2.75 M

lesl 6.7 6.3 20.92 M

mcf 11.9 12.4 24.9 M

omn 4.8 4 6.46 M

sopl 10.6 11 6.17 M

twolf 1.7 1.6 16.5 M

wup 24.2 24.5 1.34 M

apsi 32 32 10.58 H

astar 32 32 4.44 H

gzip 32 32 8.18 H

libq 29.7 29.6 15.11 H

milc 31.42 30.98 22.31 H

wrf 32 32 6.6 H

cact 32 32 42.11 VH

lbm 32 32 48.46 VH

STRM 32 32 26.18 VH

Consequently, like TA-DRRIP, it implements SRRIP for all applications. Only 3% of
the misses are predicted to have distant reuse behavior. The marginal drop in per-

Results and Analysis 41

Table 3.6: Workload Design

Study #Workloads Composition #Instructions

4-core 120 Min 1 thrashing 1.2B
8-core 80 Min 1 from each class 2.4B
16-core 60 Min 2 from each class 4.8B
20-core 40 Min 3 from each class 6B
24-core 40 Min 3 from each class 7.2B

0.98

1

1.02

1.04

1.06

1.08

1 11 21 31 41 51

 S
p
e
e
d
‐u
p
 o
v
e
r
T
A
‐D
R
R
IP

ADAPT_bp32 LRU SHiP EAF ADAPT_ins

Figure 3.4: Performance of 16-core workloads

formance (1.1%appx) is due to inaccurate distant predictions on certain cache-friendly
applications. Overall, ADAPT uses Footprint-number metric to efficiently distinguish
across applications.

LRU inserts the cache lines of all applications at MRU position. However, cache-
friendly applications only partially exploit such longer most-to-least transition time
because the MRU insertions of thrashing applications pollute the cache. On the other
hand, ADAPT efficiently distinguishes applications. It assigns least priority to thrashing
applications and effectively filter out their cache lines, while inserting recency-friendly
applications with higher priorities, thus achieving higher performance.

The EAF algorithm filters recently evicted cache addresses. On a cache miss, if the
missing cache line is present in the filter, the cache line is inserted with near-immediate
reuse (RRPV 2). Otherwise, it is inserted with distant reuse (RRPV 3). In EAF, the size
of the filter is such that it is able to track as many misses as the number of blocks in the
cache (that is, working-set twice the cache). Hence, any cache line that is inadvertently
evicted from the cache falls in this filter and gets intermediate reuse prediction. Thus,
EAF achieves higher performance compared to TA-DRRIP, LRU and SHiP. Interest-
ingly, EAF achieves performance comparable to ADAPT_ins. On certain workloads, it
achieves higher performance while on certain workloads it achieves lesser performance.
This is because, with ADAPT (in general), applications with smaller Footprint-number
are inserted with RRPV 0 or 1. But, when such applications have poor reuse, EAF

42 Discrete and De-prioritized Cache Insertion Policies

(which inserts with RRPV 2 for such applications) filters out those cache lines. On the
contrary, applications with smaller Footprint-number but moderate or more number of
reuses, gain from ADAPT’s discrete insertions. Nevertheless, ADAPT (with bypassing)
consistently outperforms EAF algorithm. We observe that the presence of thrashing
applications causes the filter to get full frequently. As a result EAF is only able to
partially track the application’s (cache lines). On the one hand, some cache lines of non
thrashing (recency-friendly) that spill out of the filter get assigned a distant (RRPV 3).
On the other hand, cache lines of the thrashing applications that occupy filter positions
get intermediate (RRPV 2) assignment.

3.5.2 Impact on Individual Application Performance

We discuss the impact of ADAPT on individual application’s performance. The re-
sults are averaged from all the sixty 16-core workloads. Only applications with change
(>= 3%) in MPKI or IPC are reported. From Figures 3.5 & 3.6, we observe that by-
passing does not cause slow-down (except cactusADM) on least priority applications and
provides substantial improvement on high and medium priority applications. Therefore,
our assumption that bypassing most of the cache lines of the least-priority applications
to be beneficial to the overall performance is confirmed. As we bypass the cache lines
(31/32 times) of the least-priority applications (instead of inserting), the cache state is
not disturbed most of the times: cache lines which could benefit from staying in the
cache remain longer in the cache without being removed by cache lines of the thrashing
applications. For most of the applications bypassing provides substantial improvement
in MPKI and IPC, as shown in Figure 3.6. Bypassing affects only cactusADM. This is
because some of their cache lines are reused immediately after insertion. For gzip and
lbm, though MPKI increases, they do not suffer slow-down in IPC. Because, an already
memory-intensive application with high memory-related stall time, which when further
delayed, does not experience much slow-down[MM08].

3.5.3 Impact of Bypassing on cache replacement policies

In this section, we show the impact of bypassing distant priority cache lines instead of
inserting them on all replacement policies. Since LRU policy inserts all cache lines with
MRU (high) priority, there is no opportunity to implement bypassing. From Figure 3.7,
we observe that bypassing achieves higher performance for replacement policies except
SHiP. As mentioned earlier, SHiP predicts distant reuse only for 3% of the cache lines.
Of them, 69% (on average) are miss-predictions. Hence, there is minor drop in perfor-
mance.
On the contrary, TA-DRRIP, which implements bi-modal(BRRIP) on certain cache sets,
bypasses the distant priority insertions directly to the private L2 cache, which is ben-
eficial. Consequently, it learns BRRIP for the thrashing applications. Similarly, EAF
with bypassing achieves higher performance. EAF, on average, inserts 93% of its cache
lines with distant reuse prediction providing more opportunities to bypass. However,

Results and Analysis 43

‐25

‐20

‐15

‐10

‐5

0

5

10

15

apsi
asta

cact
gap

gob
gzip

lbm

libq
m
il

w
rf

w
up

R
e
d
u
c;
o
n
 i
n
 M

P
K
I
(%

)

LRU SHIP EAF ADAPT_ins ADAPT_bp32

0.9

0.95

1

1.05

1.1

apsi

asta

cact

gap
gob

gzip

lbm

libq
m
il

w
rf

w
up

S
p
e
e
d
‐u
p
 o
v
e
r
T
A
‐D
R
R
IP
 LRU SHIP EAF ADAPT_ins ADAPT_bp32

Figure 3.5: MPKI(top) and IPC(below) of thrashing applications

‐20

‐10

0

10

20

30

40

50

60

70

80

art
bzip

deal

fsim

gcc
hm

m

les
m
cf

om
n

pben

sclus

sop
tw
o

vort

vpr

R
e
d
u
cB
o
n
 i
n
 M

P
K
I
(%

) LRU SHIP EAF ADAPT_ins ADAPT_bp32

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

art
bzip

deal

fsim

gcc
hm les

m
cf

om
n

pbe
sclus

sop
tw
o

vort

vpr

S
p
e
e
d
‐u
p
 o
v
e
r
T
A
‐D
R
R
IP
 LRU SHIP EAF ADAPT_ins ADAPT_bp32

Figure 3.6: MPKI(top) and IPC(below) of non-thrashing applications

44 Discrete and De-prioritized Cache Insertion Policies

0.97

0.99

1.01

1.03

1.05

TA‐DRRIP SHiP EAF ADAPT

W
t.
 S
p
e
e
d
‐u
p
 o
v
e
r

T
A
‐D
R
R
IP

Inser@on Bypass

Figure 3.7: Impact of Bypassing on replacement policies

we observe that 33% (appx) of distant reuse predictions are incorrect5. Overall, from
Figure 3.7, we can make two conclusions: first, our intuition of bypassing distant reuse
cache lines can be applied to other replacement policies. Second, Footprint-number is
a reliable metric to approximate an application’s behavior: using Footprint-number,
ADAPT distinguishes thrashing applications and bypasses their cache lines.

3.5.4 Scalability with respect to number of applications

In this section, we study how well ADAPT scales with respect to the number of cores
sharing the cache. Figures 3.8 and 3.9 show the s-curves of weighted speed-up for 4,8,20
and 24-core workloads. ADAPT outperforms prior cache replacement policies. For 4-
core workloads, ADAPT yields average performance improvement of 4.8%, and 3.5%
for 8-core workloads. 20 and 24-core workloads achieve 5.8% and 5.9% improvement,
on average, respectively. Here, 20 and 24-core workloads are studied on 16MB,16-way
associative cache. Recall our proposition : (#cores ≥ associativity).

3.5.5 Sensitivity to Cache Configurations

In this section, we study the impact of ADAPT replacement policy on systems with
larger last level caches. In particular, the goal is to study if Footprint-number based
priority assignment designed for 16-way associative caches applies to larger associative
(> 16) caches as well. For 24MB and 32MB caches, we increase only the associativity of
the cache set from 16 to 24 and 16 to 32, respectively. Certain applications still exhibit
thrashing behaviors even with larger cache sizes which ADAPT is able to manage and
achieve higher performance on the weighted Speed-up metric(Figure 3.10).

5Miss-predictions are accounted by tracking distant priority (RRPV 3) insertions which are not
reused while staying in the cache, but referenced (within a window of 256 misses per set) after eviction.
Here, we do not account distant priority insertions that are reused while staying in the cache because
such miss-predictions do not cause penalty.

Conclusion 45

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1 11 21 31 41 51 61 71 81 91 101 111

S
p
e
e
d
‐u
p
 o
v
e
r
T
A
‐D
R
R
IP

ADAPT_bp32 LRU SHiP EAF ADAPT_ins

(a) 4-core (120 workloads)

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1 8 15 22 29 36 43 50 57 64 71 78 S
p
e
e
d
‐u
p
 o
v
e
r
T
A
‐D
R
R
IP

ADAPT_bp32 LRU SHiP EAF ADAPT_ins

(b) 8-core (80 workloads)

Figure 3.8: Performance of ADAPT with respect to number of applications for 4 and
8-cores

0.98

1

1.02

1.04

1.06

1.08

1 6 11 16 21 26 31 36

S
p
e
e
d
‐u
p
 o
v
e
r
T
A
‐D
R
R
IP

ADAPT_bp32 LRU SHiP EAF ADAPT_ins

(a) 20-core (40 workloads)

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1 6 11 16 21 26 31 36 S
p
e
e
d
‐u
p
 o
v
e
r
T
A
‐D
R
R
IP

ADAPT_bp32 LRU SHiP EAF ADAPT_ins

(b) 24-core (40 workloads)

Figure 3.9: Performance of ADAPT with respect to number of applications for 20 and
24-cores

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

16‐core 20‐core 24‐core

W
t.
 S
p
e
e
d
 u
p
 o
v
e
r

 T
A
‐D
R
R
IP

24MB 32MB

Figure 3.10: Performance on Larger Caches

3.6 Conclusion

Future multi-core processors will continue to employ shared last level caches. However,
their associativity is expected to remain in the order of sixteen consequently posing two

46 Discrete and De-prioritized Cache Insertion Policies

new challenges: (i) the ability to manage more cores (applications) than associativity
and (ii) the replacement policy must be application aware and allow to discretely (> 2)
prioritize applications. Towards this end we make the following contributions:
•We identify that existing approach of observing hit/miss pattern to approximate ap-
plications’ behavior is not efficient.
•We introduce the Footprint-number metric to dynamically capture the working-set size
of applications. We propose Adaptive Discrete and de-prioritized Application Priori-
Tization (ADAPT), a new cache replacement algorithm, which consists of a monitor-
ing mechanism and an insertion-priority-prediction algorithm. The monitoring mech-
anism dynamically captures the Footprint-number of applications on an interval ba-
sis. The prediction algorithm computes insertion priorities for applications from the
Footprint-numbers under the assumption that smaller the Footprint-number, better
the cache utilization. From experiments we show ADAPT is efficient and scalable
((#cores ≥ #associativity)).

Chapter 4

Band-pass Prefetching : A

Prefetch-fraction driven Prefetch

Aggressiveness Control Mechanism

In this chapter, we present our second contribution, Band-pass Prefetching. We first mo-
tivate our work by discussing the problem associated with the state-of-the-art prefetcher
aggressiveness control mechanism namely, Hierarchical Prefetcher Aggressiveness Con-
trol (HPAC) [EMLP09] and CAFFEINE [PB15]. Then, we describe our proposed mech-
anism, followed by evaluation and comparison against state-of-the-art mechanisms.

4.1 Introduction

An aggressive hardware prefetcher may completely hide the latency of off-chip memory
accesses. However, it may cause severe interference at the shared resources (last level
cache and memory bandwidth) of a multicore system [EMLP09, ELMP11, WJM+11,
SYX+15, PB15, JBB+15, Pan16, LMNP08, LS11, BIM08]. To manage prefetching in
multicore systems, prior studies [SMKP07, EMLP09, ELMP11, PB15, Pan16] have been
proposed to dynamically control (also known as throttling) the prefetcher aggressiveness
by adjusting the prefetcher-configuration at runtime. These mechanisms make dynamic
throttling decisions by computing several parameters such as prefetch-accuracy, lateness,
prefetcher-caused interference at the last level cache and DRAM in the form of pollution,
row-buffer, bus and bank conflicts. Carefully tuned threshold values of these parameters
drive prefetcher aggressiveness control decisions.

Problem: Prior works such as Hierarchical Prefetcher Aggressiveness Control (HPAC)
[EMLP09] and CAFFEINE [PB15] do not completely alleviate the problem of prefetcher-
caused interference in multicore systems. With HPAC, we observe that the use of mul-
tiple metrics (driven by their threshold values) does not capture the actual interference
in the system, and in most cases leads to incorrect throttling decisions. With CAF-
FEINE, approximate estimation of the average last level cache miss penalty leads to
biased throttling decisions overlooking interference caused due to prefetchers. Alto-

47

48Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

gether, prior works still provide scope for performance improvement.
Solution: We propose a solution to manage interference caused by prefetchers in

multicore systems. Our solution builds on two observations. First, for a given applica-
tion, fewer the number of prefetch requests generated, less likely that they are useful.
That is, a strong positive correlation exists between the accuracy of a prefetcher and the
amount of prefetch requests it generates for an application relative to its total prefetch
and demand requests. Second, more the aggregate number of prefetch requests in the
system, higher the miss penalty on the demand misses at last level cache. That is,
service time of the demand misses at the last level cache increases with the increase in
the aggregate number of prefetch requests (misses)1 that also leave the last level cache.
In particular, we observe a strong positive correlation between the ratio of average miss
service times of demand to prefetch misses and the ratio of aggregate prefetch to demand
misses at shared the LLC-DRAM interface.

Based on the two observations, we use the concept of prefetch-fraction to infer the
(i) usefulness (in terms of prefetch-accuracy) of prefetching to an application and (ii)
interference caused by a prefetcher at the shared LLC-DRAM interface. We define
prefetch-fraction of an application as the fraction of L2 prefetch requests a prefetcher
generates for an application with respect to its total requests (demand misses, L1 and L2
prefetch requests). To infer the usefulness of prefetching to an application, we compute
prefetch-fraction for each application independently at the private L2 caches (that is,
at the interface between private L2s and shared LLC). To infer interference due to a
prefetcher, we compute prefetch-fraction for each application at the shared LLC-DRAM
interface.

Based on the inference drawn from these parameters, we apply simple prefetcher
throttling at two levels. First, at the private L2 (application) level when the inferred
prefetch-accuracy is low. Second, at the shared LLC-DRAM interface (globally), when
prefetch requests are likely to delay demand misses. The two mechanisms independently
control the flow of prefetch requests between a range of prefetch-to-demand ratios. This
is analagous to Band-pass filtering in signal processing systems [OWN96]. A band-pass
filter consists of high-pass and low-pass components: high-pass allows signal frequencies
that are only higher than a threshold value, while low-pass allows only signal frequencies
that are lower than a threshold value. Together, the two filters allow only a band of
signal frequencies to pass through. Similarly, our two mechanisms allow only prefetch
requests that are between a range of prefetch-to-demand ratios to flow through from
LLC to DRAM. Hence, we refer to our solution as Band-pass prefetch filtering or simply,
Band-pass prefetching.

4.2 Background

This section provides a background on our baseline system and the definitions used
throughout the paper. We then briefly describe HPAC [EMLP09] and CAFFEINE

1By prefetch misses, we refer to the L2 prefetch requests generated by the prefetcher sitting beside
each private L2 cache that miss and leave LLC for DRAM access.

Background 49

[PB15], two state-of-the-art dynamic prefetcher aggressiveness control mechanisms.

4.2.1 Baseline Assumptions and Definitions

In this paper, our goal is to propose a mechanism that can manage prefetcher-caused
interference in multicore system, and not to propose a new prefetching mechanism it-
self. Throughout this chapter, we consider a system with a cache-hierarchy of three
levels with private L1 and L2 caches. The last level cache (LLC) is shared by all the
cores. L1 caches feature a next-line prefetcher while L2 features a stream prefetcher

which we intend to control. Our stream prefetcher model is closer to the implemen-
tations of Feedback Directed Prefetching (FDP) [SMKP07] and IBM Power series of
processors[SKS+11]. It sits beside L2 and trains on L2 misses and L2 prefetch-hits.
Only one stream entry (a unique prefetchable context) is allocated per 4KB page entry.
It tracks 32 outstanding streams and issues prefetch requests with prefetch-distance of
8 and prefetch-degree of 4.

Definitions. Throughout this chapter, we use the following terminologies: Prefetch-
distance: It is the number of cache lines ahead of X that the prefetcher tries to prefetch,
where X is the cache block address of the cache miss that allocated the current stream.
Prefetch-degree: It is the number of prefetch requests issued when there is an opportu-
nity to prefetch. Throttle-up/down: A prefetcher’s aggressiveness is defined in terms of
its configuration : prefetch-distance and degree. Throttling-up/down refers to increas-
ing/decreasing the values of prefetch-distance and degree.

4.2.2 Problem with the state-of-the-art Mechanisms

HPAC: HPAC consists of a per-core local and a shared global feedback components.
While HPAC’s local component (FDP[SMKP07]) attempts to maximize the benefit of
prefetching to an application, the global component attempts to minimize the interfer-
ence caused by a prefetcher. The local component computes prefetch-accuracy, lateness
and pollution metrics local to an application. The global component computes interfer-
ence related parameters such as bandwidth consumed (in cycles) by prefetch requests,
amount of time (bandwidth needed in cycles) demands of an application wait because of
prefetch requests for a memory resource (BWN) and prefetcher-caused cache pollution
(POL). For each application, HPAC also computes BWNO metric, which is the band-
width requirement of other cores. HPAC assumes that BWNO of a prefetcher becomes
high when its prefetch requests consume high bandwidth (BWC), and forces memory
requests of other applications to wait. Based on the threshold values of all these met-
rics, HPAC’s global component infers an application to be interfering-with-others or
not. If a prefetcher is found to be interfering, HPAC’s global control throttles it down.
Otherwise, it allows the decision of its local component (FDP).

Problem with HPAC:The issue with HPAC is its use of multiple metrics and infer-
ence drawn from them. A given value of a metric does not reflect the run-time behavior
of an application due to interference caused when large number of applications run on
the system. For example, a prefetcher’s accuracy drops down when its prefetch requests

50Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

are delayed at the shared resources by the co-running applications. Similarly, HPAC
uses bandwidth needed by others (BWNO) parameter to account the bandwidth require-
ment of all other applications in the system, except the one under consideration. When
large applications run on the system, BWNO of an application tends to be higher while
its prefetcher may not consume much bandwidth (BWC). Under the scenario in which
an application’s prefetch-accuracy is low and BWNO parameter is high, HPAC infers
the application to be interfering-with-others and decides to throttle-down its prefetcher.
In contrast, an application with high-accuracy is throttled-up although its prefetch re-
quests consume high bandwidth. We observe several instances of such scenarios where
HPAC does not capture interference and makes incorrect throttling decisions.
CAFFEINE: CAFFEINE takes a fine-grained account of interference caused by prefetch
requests at each of the shared resources, such as DRAM bus, banks, row-buffers and
shared last level cache. It accounts benefit of prefetching to an application by estimat-
ing the amount of cycles saved in terms of its off-chip memory accesses. It normalizes
both interference and prefetch usefulness to a common scale of processor cycles, which
it refers to as net-utility of a prefetcher. It uses both system-wide and per-core net-
utilities to make throttling decisions. In particular, CAFFEINE throttles-up prefetcher
when the system-wide net-utility is positive and throttles them down, otherwise.
Problem with CAFFEINE: CAFFEINE estimates the average last level cache miss-
penalty by accumulating the latency of individual memory requests (difference in arrival
and start times) and then, computes the arithmetic-mean on this accumulated sum of
latencies over all requests. The resulting mean value is approximated as the average
miss-penalty. In doing so, CAFFEINE treats each memory request as an isolated event
and does not take into account overlapping memory accesses inherent in applications.
Therefore, miss-penalty is overestimated, which when used in its utility model, overesti-
mates the off-chip memory access cycles saved due to prefetching. Hence, CAFFEINE’s
throttling decisions favor aggressive prefetching.

4.3 Motivational Observations

In the following paragraphs, we discuss how Prefetch-fraction statistically captures both
the usefulness(prefetch-accuracy) of prefetching and prefetch-caused interference (delay
induced on demands by prefetch requests) at the shared memory bandwidth.

4.3.1 Correlation between Prefetch-accuracy and Prefetch-fraction

The amount of prefetch requests generated by a stream prefetcher and hence, its use-
fulness depends on an application’s memory access behavior. In particular, usefulness
(in terms of prefetch-accuracy) of prefetching depends on the fraction of L2 prefetch
requests generated with respect to an application’s total requests. Figures 4.1 and
4.2 illustrate the correlation between L2 prefetch-fraction and L2 prefetch-accuracy for
the baseline aggressive prefetcher and for Feedback Directed Prefetching (FDP), respec-
tively. FDP is a state-of-the-art single-core prefetcher aggressiveness control engine.

From Figure 4.1, it can be observed that for the baseline aggressive stream

Motivational Observations 51

Figure 4.1: Scatter plot showing positive correlation between L2 Prefetch-fraction ver-
sus L2 Prefetch-accuracy for the baseline aggressive prefetching: Pearson correlation
coefficient: 0.76 and Spearman rank correlation: 0.68.

Figure 4.2: Scatter plot showing positive correlation between L2 Prefetch-fraction versus
L2 Prefetch-accuracy for Feedback directed prefetching: Pearson correlation coefficient:
0.80 and Spearman rank correlation: 0.75.

prefetcher, L2 prefetch-fraction varies across applications. For applications like astar,
bzip, milc and omnet, the prefetcher generates fewer prefetch requests than for appli-
cations with streaming behavior such as apsi, libq, leslie, lbm, wupwise and stream
benchmark. For astar, bzip, milc and omnet, L2 prefetch-fraction is less than 10%
and their L2 prefetch-accuracy is also low (around 5%). However, with increase in L2
prefetch-fraction values (along x-axis), L2 prefetch-accuracy also increases. A linear
plot across all the data points in the figure shows a positive correlation. In partic-
ular, the plot shows 0.76 on the Pearson correlation coefficient [Sha05] and 0.68 on
the Spearman rank-correlation coefficient metric [Sha05]. A similar observation can be
made from Figure 4.2 for FDP. We observe similar correlation relationship between L2
prefetch-fraction and L2 prefetch-accuracy for Access Map Pattern Matching, AMPM
prefetcher [IIH09]. AMPM creates an access map of all the cache lines of the pages it
tracks and issues prefetch requests by storing state information. The state information
decides to issue a prefetch or not. Essentially, AMPM prefetcher is orthogonal to stream
prefetching. Our observation holds good for AMPM prefetcher as well. Therefore, we
conclude that there is a strong positive correlation between L2 prefetch-fraction and
L2 prefetch-accuracy: lesser the fraction of prefetch requests generated, less-likely that
they are useful. Therefore, we approximate usefulness of prefetching (prefetch-accurcy)
using L2 prefetch-fraction metric.

52Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

Figure 4.3: Scatter plot showing positive correlation between L2 Prefetch-fraction versus
L2 Prefetch-accuracy for Access Map Pattern Matching prefetching: Pearson correlation
coefficient: 0.68 and Spearman rank correlation: 0.65.

Figure 4.4: Ratio of LLC miss service times of demand to prefetch requests increases
with increase in the ratio of total prefetch requests to that of demands in the system.
AMST : Average Miss Service Time.

4.3.2 Correlation between Prefetcher-caused delay and Prefetch-fraction

High performance memory controllers like First Ready-First Come First Serve (FR-
FCFS) [RDK+00] and Prefetch-Aware DRAM Controller (PADC) [LMNP08] re-order
requests to exploit row-buffer locality, and maximize throughput. When a memory con-
troller prioritizes row-hits over row-conflicts, prefetch requests tend to get prioritized
over demands. Because, an earlier request opens a row and the subsequent sequence
of prefetch requests to the same row exploit row-buffer locality. Therefore, the aver-
age service time (LLC miss-penalty or roundtrip latency between LLC and DRAM) of
prefetch requests is shorter than that of demands. This disparity in the service times
between prefetch and demand requests grows linearly with increase in the ratio of total
prefetches to that of total demand requests at the LLC-DRAM interface.

Figure 4.4 illustrates this observation for a 16-core workload that consists of appli-
cations such as vpr, stream-cluster, wup, mcf, blackscholes, hmmer, stream, lbm, apsi,

Band-pass prefetching 53

sphinx, leslie, mesa, vort, pben, astar and wrf which have mixed prefetch-friendliness
characteristics (Refer Table 5.2). The x-axis represents execution time in intervals of 1
Million LLC misses, and the y-axis represents (i) the ratio of total prefetches to that
demands as well as (ii) the ratio of average miss service times of demands to prefetch
requests. Under aggressive stream-prefetching that uses no prefetcher throttling, the to-
tal prefetches at the LLC-DRAM interface is always higher than that of total demands.

From Figure 4.4, we observe that the ratio of average miss service times of de-
mands to prefetch requests increases and decreases with the increase and decrease in
the ratio of total prefetch requests to total demands. In other words, as the ratio of
total prefetches to total demands increases, the degree of interference induced on de-
mands (observed in terms of average LLC miss service times of demands) by prefetch
requests also increases. Statistically, we observe a very strong positive correlation (0.97
on Pearson’s coefficient2) between ratios of the two quantities. We also observe (i) a
strong positive correlation (0.96 on Pearson’s coefficient) between the ratio of aggregate
prefetch to demand requests and the ratio of bandwidth consumed by prefetch to de-
mands and (ii) a strong correlation (0.95 on Pearson’s coefficient) between the ratio of
bandwidth consumed by prefetch to demands and the ratio of average service times of
demand to prefetch requests. However, estimation of latency gives a direct indication
on prefetcher-caused interference, we use it in our study. From these two observations,
we therefore conclude that the interference caused by prefetch requests on demands
can be approximated using the ratio of aggregate prefetch to demand requests at the
LLC-DRAM interface.

Altogether, prefetch-fraction as a metric captures both the usefulness of prefetching
(in terms of prefetch-accuracy) to an application when measured at the L2-LLC inter-
face as well as the prefetcher-caused interference (in terms of prefetcher-induced delay)
when measured at LLC-DRAM interface.

4.4 Band-pass prefetching

In this section, we present Band-pass prefetching, a dynamic prefetcher aggressiveness
control mechanism to manage prefetcher-caused interference in multicore systems, which
exploits the two correlations we discussed in Section 4.3.

4.4.1 High-pass Prefetch Filtering

In Section 4.3.1, we showed that L2 prefetch-accuracy strongly correlates with L2
prefetch-fraction. To leverage this correlation, we compute prefetch-fraction for an
application at run-time. If the measured value of prefetch-fraction is lesser than certain
threshold, the component probabilistically issues/allows prefetch requests to go to next
level. That is, once in every sixteenth prefetch request is issued to the next level; rest
of the prefetch requests are dropped3. Since this filter component issues all the gener-

2We obtain correlation from all the 16-core workloads.
3By dropping a prefetch request, we refer to not issuing it to the next level (from L2 to LLC). We

drop prefetch requests instead of adjusting the prefetcher-configuration in distance and degree. We

54Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

ated prefetch requests to the next level only when prefetch-fraction is higher than the
threshold, we call this component High-pass prefetch filter (analogous to high-pass filter
in signal processing).

4.4.1.1 Measuring Prefetch-fraction

For measuring prefetch-fraction, we use two counters: L2PrefCounter and TotalCounter.
L2PrefCounter records the L2 prefetch requests while TotalCounter holds the total
requests (demands and prefetches from L1 and L2 caches) at the L2-LLC interface. At
the end of an interval, the ratio of the two counters gives the L2 prefetch-fraction value,
which is stored in another register called Prefetch-fraction register. Only the counters
are reset; Prefetch-fraction register’s value is used to make prefetch issue decisions for
the next interval.

It is to be noted that L2PrefCounter is incremented whenever a prefetch request
is generated by the prefetcher; not when a prefetch request is issued to the next level.
Doing so has two implications:First we are interested in the number of prefetch requests
the prefetcher is able to generate for the application and hence, infer the usefulness of
prefetching. Secondly, incrementing the L2PrefCounter only when a prefetch request is
issued, causes positive-feedback on prefetch-filtering: when an application undergoes a
phase change in which the prefetcher generates only fewer number of prefetch requests,
L2PrefCounter records a smaller value of L2 prefetch requests. Consequently, the mea-
sured value of prefetch-fraction becomes low and the filter decides to partially(1 out
of 16) issue prefetch requests in the subsequent interval. When there is another phase
change in that application where prefetcher is able to generate more prefetch requests
than the earlier (ramped-down phase), the counter still keeps recording only few number
of prefetch requests being issued. Consequently, the High-pass filter issues only fewer
number of prefetch requests though the prefetcher generates a large fraction of them.
Either it takes multiple intervals to recover back to the steady state or the filter never
adapts to the phase changes of applications.

4.4.2 Low-pass Prefetch Filtering

In a multi-core system, memory requests of one application interfere with the others at
the shared last level cache and memory access. We have observed that the LLC miss
service time of demand requests (and therefore the likely stall-time of the missing pro-
cessor) increases with the number of prefetch requests. Ideally, we expect the average
service time of demand requests to be lesser than that of prefetch requests because de-
mands are likely to stall the processor as compared to prefetch requests. Therefore, we
propose a filter at the shared LLC-DRAM interface that controls prefetcher aggressive-
ness when the average miss service time of demands exceeds that of prefetch requests.
However, testing this condition alone is not sufficient because the ratio of prefetch to
demand requests and their relative bandwidth consumption are also strongly correlated

observe dropping prefetch requests performs better than the latter because, dropping reduces prefetch
issue-rate quicker and also issues fewer prefetch requests.

Band-pass prefetching 55

(recall from Section 4.3 a correlation of 0.96 on Pearson’s metric). Therefore, controlling
the prefetcher aggressiveness only by comparing the ratio of average miss service times of
demands and prefetches alone can lead to conservatively throttling prefetchers while the
prefetch requests do not consume much bandwidth (and not cause interference). There-
fore, our mechanism also checks if the total prefetches exceed the demands when the
average service time of demand requests exceed that of prefetch requests. Altogether,
the condition to apply prefetcher aggressiveness control is given by Equation 4.1, where
AMST(D or P) refers to Average Miss Service Time of demand or prefetch requests.
TP and TD refers to the total prefetches and demands at the LLC-DRAM interface,
respectively.

((

AMST(D)

AMST(P)
> 1

)

&

(

TP

TD
> 1

))

(4.1)

Here, in Equation 4.1, we make an approximation on TP/TD. Since TP/TD strongly
correlates with BWCP/BWCD, the relationship between them is

TP/TD = F (BWCP/BWCD)

We find this relationship as (TP/TD = α× (BWCP/BWCD)), where (α) is around 1.
While we explore across different values, it is hard to fix the exact value. Hence, we
approximate it to 1 and check only the ratio (TP/TD > 1) alone, which is very simple
to implement in HW: a 16-bit comparator.

In the following subsection, we explain our mechanism that estimates the average
miss service times of demands and prefetches followed by how we collect prefetch-fraction
metric for applications at the shared LLC-DRAM interface.

4.4.2.1 Estimation of Average Miss Service Time

We propose a mechanism that uses a set of counters and a comparator logic to estimate
the average service times of demand and prefetch requests. Table 4.1 lists the set of
counters and their purpose. Algorithm 1 describes our mechanism. Its explanation is
as follows:
Explanation: The algorithm is triggered either on a miss4 at the LLC or when a miss is
serviced back from the DRAM. The use of FirstAccess, LastAccess, OutstandingMisses
and TotalMisses counters ensure that overlapping of misses is taken into consideration
while estimating average miss service times. Precisely, the time gap (in cycles) between
LastAccess and FirstAccess counters when OutstandingMisses counter is zero indicates
the cycles that have elapsed while servicing TotalMisses number of misses.

At the end of an interval, average service time is estimated. Computing the total
cycles elapsed during that interval depends on the value of OutstandingMisses counter,

4In this subsection, by miss we either refer prefetch or demand miss alone. Since we are only
interested in their service times, we ignore writebacks. Note that we use separate circuits of the same
algorithm for prefetch and demand requests.

56Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

Counter name Purpose

FirstAccess Time of the first miss in that
interval

LastAccess Time of last completed miss
OutstandingMisses Current in-flight misses

TotalMisses Total completed misses
in that interval

ElapsedCycles Cycles spent on
(intermediate) servicing TotalMisses

TotalElapsedCycles Total cycles spent
(at end of interval) on servicing TotalMisses

AvgServiceTime Holds the avg service time

Table 4.1: Set of counters used in Estimation of Average Miss Service Time.

which tells the number of outstanding misses that started in that interval but, are
yet to finish. If the value is not zero, our algorithm makes an approximation. It sets
LastAccess counter value to the clock cycle at which the interval ends. Then, it adds
OutstandingMisses counter value to TotalMisses. The difference between LastAccess
and FirstAccess is added to TotalElapsedCycles counter. Finally, FirstAccess counter
is set to the beginning of the next interval so that the residual cycles of the outstanding
misses are accounted in the subsequent interval. On the other hand, if the value of
OutstandingMisses is zero, the elapsed cycles already computed (line numbers 8 to 11
in the algorithm) gives the total elapsed cycles while servicing TotalMisses number of
misses in that interval.

Selecting the Application to perform Prefetcher Aggressiveness Control

When Band-pass prefetching detects interference on demands by prefetches (using Equa-
tion 4.1), it decides to throttle-down the prefetcher of the application that issues the
highest global fraction of L2 prefetch requests. This decision is inline with our obser-
vation presented in Section 4.3.2: prefetcher-caused interference (delay on demands)
increases with the increase in the ratio of total prefetch to demand requests. Hence, the
application with the highest L2 prefetch-fraction causes the most interference. There-
fore, Low-pass component issues only 50% of the prefetch requests of this application.
That is, only once in every second prefetch request is issued to the next level. Prefetch-
ers of other applications are allowed to operate in aggressive mode. Similarly, when
Band-pass prefetching detects prefetcher-caused interference to be low, it allows all
prefetchers to operate in aggressive mode.

Measuring Global Prefetch-fraction of Applications

The method of measuring global prefetch-fraction at the shared LLC-DRAM interface
is similar to High-pass prefetching except the fact that the total requests measured by

Band-pass prefetching 57

Algorithm 1 Estimation of Average Miss Service Time

1: On a new Miss at LLC

2: OutstandingMisses++
3: FirstAccess=CurrentClock if its Reset
4: When a Miss is Serviced back from DRAM

5: −−OutstandingMisses

6: LastAccess=CurrentClock
7: TotalMisses++
8: if OutstandingMisses == 0 then

9: ElapsedCycles=(LastAccess-FirstAccess)
10: TotalElapsedCycles+=ElapsedCycles

11: FirstAccess=LastAccess=0 //Reset
12: end if

13: At the end of an Interval

14: if OutstandingMisses 6= 0 then

15: TotalMisses+=OutstandingMisses

16: LastAccess= CurrentClock
17: ElapsedCycles=(LastAccess-FirstAccess)
18: TotalElapsedCycles+=ElapsedCycles

19: FirstAccess=Beginning of Next Interval
20: else

21: FirstAccess=zero //Reset
22: end if

23: AverageServiceTime =
TotalElapsedCycles

TotalMisses
24: TotalMisses=ElapsedCycles=TotalElapsedCycles=0

Low-pass correspond to the requests from all applications at the LLC-DRAM interface.

4.4.3 Overall Band-Pass Prefetcher

Figure 4.5 shows the logical diagram of our proposed band-pass prefetching mechanism.
The high-pass and low-pass filters operate independently. Both the components are
triggered at the end of interval. From experiments, we fix 1 Million LLC misses as the
interval size. High-pass filter computes the local prefetch-fraction of each application
at the L2-LLC inerface while the low-pass filter computes the global prefetch-fraction
of each application at the LLC-DRAM interface. From the feedback collected about
the local and global prefetch-fraction, the two filters control the prefetch issue rate.
Band-pass prefetching components and estimation of average memory service times,
prefetch-fraction estimation do not require modification to cache tag arrays or MSHRs.
All measurements lie outside the critical path.

58Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

Mid-level	

cache	

Prefetcher	
Generated	

Prefetches	
If(pref-frac*on	<	HP	Thresh)	

					PIR	=	(1/16)	

			

High-pass	

Prefetch	Filter	

(Local)	

Low-pass	

Prefetch	Filter	

(Global)	
Issued	

Prefetches	to	

Level	three	

Feedback	from		

LLC-Memory	

	Interface	monitor		

At	L2-L3	Interface	

At	the	End	of	Every	Interval	

If	(Global	Prefs	>	Global	Demands)	

{	

a)  Compute	L2	prefetch-frac*on	for	each	

applica*on	

b)  Choose	the	applica*on	with	highest	

L2	prefetch-frac*on	to	throNle	

}	

Prefetch	

Requests	

from	all	

applicaHons	

Monitoring	at	LLC-

Memory	Interface	

Global	Request	

Counters	

Per	applicaHon	

Request	

Counters	

PDR=	(1/2)	

Figure 4.5: Schematic diagram of Band-pass Prefetching. PI(D)R: Prefetch Issue(Drop)
Rate, pref-fraction: prefetch-fraction and HP Thresh: High-pass Threshold

4.5 Experimental Setup

4.5.1 Baseline System

We use cycle-accurate BADCO [VMS12] x86 CMP simulator which models 4-way OoO
core with a cache hierarchy of three levels. Level 1 and Level 2 caches are private.
The last level cache and the memory bandwidth are shared by all the cores. Similar
to prior studies [WJM+11, SYX+15, EMLP09, PB15, Pan16], we model bank-conflicts
but with fixed access latency across all banks. Cache line size is 64 bytes throughout
the hierarchy and we do not enforce inclusion across cache levels. Our prefetcher model
is as described in Section 4.2.1. Other system parameters are available in Table 5.1.
A VPC [NLS07] based scheduler arbitrates requests from L2s to LLC. Other system
parameters are available in Table 5.1.

4.5.2 Benchmarks and Workloads

We use SPEC CPU 2000, 2006 [SPE], and PARSEC [Bie11] benchmark suites totalling
34 (31+3) plus one stream benchmark. Similar to prior studies [EMLP09, PB15, Pan16],
we classify benchmarks based on their IPC improvement over no prefetching when run
alone (Table 5.2). We construct four types of workloads, namely mixed-type, highly
prefetch-friendly, medium prefetch-friendly and prefetch-unfriendly. Table 4.4 lists each
workload type and its construction methodology using the benchmarks as classified in
Table 5.2.

In total, we study 66 16-core multi-programmed workloads. In our experiments,
we use the portion of benchmarks between 12 to 12.5 billion instructions. In that
phase, the first 200 million instructions of each benchmark warm-up all the hardware
structures. The next 300 million instructions are simulated. Simulations are run until

Experimental Setup 59

4-way OoO, 4.8GHz
Processor (ROB,RS,LD/ST)

128, 36, 36/24
Branch predictor TAGE, 16-entry RAS
IL1 and DL1 32KB, LRU, next-line prefetch

ICache:2-way, DCache:8-way
L2(unified) 256 KB, 16-way, DRRIP

14-cycle, MSHR:32-entry
LLC 16MB, 16-way,PACMAN

24-cycle, 256-entry MSHR,
(unified and shared) 128-entry WB
Memory controller FR-FCFS with prefetch
(channels-rank-bank) prioritization[LMNP08]
(4-1-8) for 16-cores (TxQ,ChQ) : (128,32)
DDR3 parameters (11-11-11), 1333 MHz

IO Bus frequency : 1600MHz

Table 4.2: Baseline System Configuration.

Category Benchmarks

Highly prefetch-friendly apsi, cact, lbm, leslie,
(class A) [IPC ≥ 10%] libq, sphn, STREAM
Medium prefetch blackscholes, facesim,
-friendly (class B) hmm, mcf, vpr, wup,
IPC [≥ 2%,<10%] streamcluster
Prefetch-unfriendly art, astar, bzip, deal, gap,
(class C) gob, gcc, gzip, milc, omn,
IPC [± 2%] pben, sop, twol, vort

Table 4.3: Classification of benchmarks.

Type #Benchmarks #Workloads

Mixed (5,5,6), (5,6,5) 12 each
(6,5,5)

(Type A) Highly (10,3,3) 20
prefetch-friendly
(Type B) Medium (3,10,3) 20
prefetch-friendly
(Type C) prefetch (3,3,10) 20
-unfriendly

Table 4.4: Workload Types and their Composition.

60Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

all benchmarks finish 300 million instructions. If a benchmark finishes execution, it is
rewind and re-executed. Statistics are collected only for the first 300 million instructions.

4.6 Results and Analyses

We first present the performance results of High-pass Prefetching, our local component
(at the private L2 to LLC interfaces) that throttles prefetch requests of an application
based on its prefetch-fraction. Then, we present the performance results of Band-pass
prefetching that consists of both High-pass and Low-pass components. Throughout our
study, we use harmonic speedup (HS) [LGF01] since it balances both system fairness
and throughput.

4.6.1 Performance of High-pass Prefetching

High-pass Prefetching dynamically computes prefetch-fraction of an application at its
private L2-LLC interface to infer usefulness (accuracy) of prefetching. If the computed
prefetch-fraction value is below a threshold, it throttles-down prefetch requests. Here,
we study the sensitivity of prefetch-fraction threshold values on High-pass Prefetch-
ing. Table 4.5 shows the performance of High-pass Prefetching in terms of harmonic
speedup across 12 High-pass threshold values (between 9% and 42% in steps of 3%).
Performance is normalized to the baseline that implements aggressive prefetching with-
out prefetcher throttling. Results are averaged (geometric-mean) across 36 mixed-type
workloads. The goal of High-pass is to throttle-down useless prefetch requests and
avoid interference caused due to them. When the thresholds increase from 9% to 21%,
performance also increases. However, beyond threshold value of 21%, performance be-
gins to drop. Because, as the threshold increases beyond 21%, useful prefetch requests
are also throttled-down by High-pass (recall from Section 4.3.1 that prefetch-accuracy
increases with increase in prefetch-fraction). Therefore, we fix High-pass threshold at
21%. Table 4.5 also shows reduction in (i) number of prefetch requests issued and (ii)
bus transactions due to High-pass prefetching as compared to aggressive prefetching
that uses no prefetcher throttling.

4.6.2 Performance of Band-pass Prefetching

We present Band-pass prefetching that consists of both High-pass and Low-pass com-
ponents together since Low-pass component directly handles prefetcher-caused interfer-
ence at the shared LLC-DRAM interface, and hence, major performance contributor.
Figure 4.6 shows the performance of Band-pass across the 36 mixed-type workloads in
terms of harmonic speedup. It also shows the performance of aggressive prefetching
that does not use prefetcher throttling, state-of-the-art HPAC5, P-FST [ELMP11] and
CAFFEINE. The x-axis represents workload numbers, and the y-axis shows harmonic
speedup normalized to no prefetching. Over no prefetching baseline, Band-pass achieves

5We tune the thresholds of HPAC and P-FST to suit the system configuration that we study.

Results and Analyses 61

High-pass Perf over Redn. in Redn. in

Threshold Aggr Pref #Prefs #Bus Trans

9 1.17 1.6 0.34
12 1.28 3.2 1.06
15 1.36 3.39 1.2
18 1.35 3.56 1.22
21 1.37 3.93 1.36

24 1.36 4.42 1.5
27 1.31 4.61 1.54
30 1.21 5.5 1.79
33 1.00 7.58 2.07
36 0.99 14.2 3.37
39 0.98 17.28 3.94
42 0.95 32.08 5.71

Table 4.5: Performance improvement of High-pass Prefetching over Aggressive Prefetch-
ing across High-pass thresholds. All quantities are presented in percentage.

Figure 4.6: Performance of prefetcher aggressiveness control mechanisms. GM: Geo-
metric Mean.

11.1% on average, and up to 20.47% on workload 20, while HPAC, P-FST and CAF-
FEINE achieve 6.4%, 1.5% and 7.7% improvement, respectively. Aggressive prefetching
with no prefetcher throttling achieves 5.6%. In the following paragraphs, we give an
overview of each of these mechanisms, and in Section4.6.5 we discuss a case study to
understand the mechanisms in detail.

Analysis: When compared to aggressive prefetching, HPAC degrades performance
on workloads that benefit from aggressive prefetching (4, 5, 13, 20 and 34). On work-
loads that suffer highly from aggressive prefetching (3, 6 and 7), HPAC is not able to
completely mitigate prefetcher-caused interference. The use of multiple metrics (driven
by their thresholds) does not reflect the actual interference in the system and causes
HPAC to make incorrect throttling decisions, and makes it less effective. In contrast,
Band-pass prefetching is able to retain the benefits of aggressive prefetching as well
as effectively mitigate prefetcher-caused interference achieving 4.6% improvement over
HPAC.

62Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

P-FST’s model of determining the most-interfering application and its use of mul-
tiple metrics on top of HPAC together lead to incorrect throttling decisions, and forces
prefetchers of several applications to conservative mode. Therefore, P-FST achieves low
performance improvement (close to 1.5%) over no prefetching. For the same reason, on
workloads where aggressive prefetching is beneficial, P-FST decreases performance. In
contrast, Band-pass prefetching is able to achieve higher performance improvement
compared to P-FST. On workloads where aggressive prefetching is harmful, Band-pass
achieves either comparable (at most ±2% on workloads 6, 21, 27 and 32) or higher
performance improvement (workloads 3 and 7). Overall, Band-pass achieves 9.6% over
P-FST.

With CAFFEINE, on workloads in which aggressive prefetching is beneficial (work-
loads 4, 5, 13, 20 and 30), it achieves performance improvement comparable to Band-
pass and aggressive prefetching mechanisms. On certain prefetch-friendly workloads
(workloads 15, 24, 29, 31 and 35), Band-pass prefetching is still able to achieve higher
performance over CAFFEINE thanks to its effective mechanism of detecting interfer-
ence. However, on workloads that suffer highly due to prefetcher-caused interference
(workloads 3,26 and 34), Band-pass outperforms CAFFEINE as CAFFEINE is not able
to capture prefetcher-caused interference due to its approximate estimation of miss-
penalty. Overall, Band-pass prefetching achieves 3.2% improvement over CAFFEINE.

In summary: Band-pass prefetching is able to retain the benefit of aggressive prefetch-
ing as well as effectively manage prefetcher-caused interference. However, state-of-the-
art prefetcher aggressiveness control mechanisms are either conservative in cases where
aggressive prefetching is actually beneficial (HPAC and P-FST), or do not completely
mitigate prefetcher-caused interference (HPAC and CAFFEINE).

4.6.3 Impact on Average Miss Service Times

Band-pass prefetching uses the ratio of average miss service times of demands and
prefetches as one of its throttling conditions (Equation 4.1). It attempts to decrease
the total number of prefetch requests in the system as compared to demands. In doing
so, it reduces the interference caused on demands by prefetches in terms of their LLC
miss service times, which in turn translates to performance improvement.

Figures 4.7 and 4.8 show the ratio of prefetch to demand requests and the ra-
tio of average memory service times of demand to prefetches during the execution of
workload 3 under aggressive prefetching and Band-pass prefetching, respectively. The
x-axis represents execution time in intervals of 1 Million LLC misses, while the y-axis
represents the ratio of the two quantities. As can be seen from the two figures, the
ratio of AMST(D/P) is higher in Figure 4.7 as compared to Figure 4.8. The average
AMST(D/P) on this workload under aggressive prefetching is 1.51, which becomes 1.35
under Band-pass prefetching. That is, Band-pass prefetching reduces the average ser-
vice time on demands 10.59%. Band-pass prefetching effectively identifies interference
happening due to prefetches by checking (P/D) in Equation 4.1. Overall, as compared

Results and Analyses 63

Figure 4.7: Ratio of LLC miss service times demand to prefetch and number of prefetch
to demands in the system under Aggressive Prefetching

Figure 4.8: Ratio of LLC miss service times demand to prefetch and number of prefetch
to demands in the system under Band-pass Prefetching

to aggressive prefetching, Band-pass reduces the ratio of average service times of total
demands to prefetch requests on average by 18% (from 2.0 to 1.64), while increasing
the average service time of prefetch requests by 9.5%

4.6.4 Impact on Off-chip Bus Transactions

Figure 4.9 shows the percentage increase in bus transaction due to prefetching as com-
pared to No Prefetching. Aggressive prefetching increases bus transactions by 14.3%
while P-FST shows the least increase (only 1.3%) because of its conservative prefetcher
throttling as described in Section 4.6.2. As compared to aggressive prefetching, Band-
pass prefetching reduces the bus transactions by 5.55% while achieving better per-
formance of 5.17%. When compared to HPAC and CAFFEINE, Band-pass achieve
performance improvement of 4.6% and 3.19%, respectively, while incurring comparable
bus transactions.

4.6.5 Understanding Individual Mechanisms

In order to gain insights on the individual mechanisms, we discuss a case study of work-
load 3, which shows the scenario where state-of-the-art HPAC and CAFFEINE do not
completely mitigate prefetcher-caused interference. Figure 4.10 shows the IPC of indi-
vidual benchmarks normalized to No Prefetching.

64Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

Figure 4.9: Increase in Bus Transactions as compared to No Prefetching.

HPAC: Under HPAC, libq slows-down by 19% as compared to aggressive prefetching
from 1.38 to 1.19 (Figure 4.10). This is because, useful and timely prefetch requests of
libq gets delayed by memory requests of other applications. Its prefetch-accuracy drops
to around 35% (which is below HPAC’s prefetch-accuracy threshold). Hence, HPAC
throttles-down libq’s prefetcher6 for successive intervals to conservative mode. Under
such a scenario where prefetch-accuracy is low, FDP does not throttle-up the prefetcher
as it intends to save bandwidth by throttling-down prefetchers that have low prefetch-
accuracy. Therefore, its prefetcher gets stuck in conservative mode, and not able to
exploit the benefit of prefetching. Altogether, HPAC does not detect the interference
caused on libq and decreases its performance.
P-FST:P-FST’s interference models identify benchmarks such as cactusADM, libq, apsi,
deal and lbm to be interfering, and conservatively throttle-down their prefetchers on
most intervals. Benchmarks such as hmmer, facesim and vpr improve on their perfor-
mance while most others do not. Since it throttles-down most of its prefetchers, only
few benchmarks are able to exploit the benefit of prefetching. Hence, P-FST is able to
achieve only marginal increase in performance as compared to no prefetching.

CAFFEINE: CAFFEINE observes positive system-wide net-utility due to prefetch-
ing on this workload. Because, CAFFEINE’s approximate miss-latency model overes-
timates the cycles saved due to prefetching. Hence, applications with high prefetch-
accuracy such as apsi(96%) and lbm (83%) bias system-wide net-utility metric in favor
of prefetching. Therefore, though apsi consumes high bandwidth, CAFFEINE does not
detect interference due to apsi and does not throttle-down its prefetcher on most inter-
vals. From Figure 4.10, we observe benchmarks such as omnet, milc and cactusADM
suffer slow-down due to interference.

6HPAC also observes high value of BWNO for libq. Using the two metrics, HPAC’s global component
throttles-down its prefetcher (as mentioned in Section 4.2.2).

Results and Analyses 65

Figure 4.10: Normalized IPCs of each benchmarks of workload 3.

Band-pass prefetching: Band-pass prefetching computes prefetch-fraction of appli-
cations at the shared LLC-DRAM interface to identify the most interfering application.
Using prefetch-fraction, it effectively identifies apsi as most-interfering application, and
throttles-down its prefetcher. Though the normalized IPC of apsi decreases from 2.05 to
1.29, Band-pass improves the IPCs of benchmarks such as libq, omnet, sphinx and lbm.
Overall, Band-pass improves the performance of this workload by 13% as compared to
aggressive prefetching, while HPAC and CAFFEINE improve performance by 8% and
5%, respectively.

4.6.6 Sensitivity to Workload Types

Figure 4.11 shows the performance of prefetcher aggressiveness control mechanisms
across various workload types. Performance is normalized to aggressive prefetching
that uses no prefetcher throttling. Table 4.4 summarizes the workload types and their
composition. P-FST suffers heavy slow-down on type A and type B workloads. Hence,
we ignore its results here. On type A, HPAC degrades performance close to 4% as
compared to aggressive prefetching. CAFFEINE achieves marginal improvement over
the baseline. Though type A workloads are highly prefetch-friendly, Band-pass is still
able to effectively identify interference and improve performance close to 3.35%. When
compared to HPAC, it achieves 5.91% additional performance.

On type B, performance of HPAC is close to that of baseline. CAFFEINE achieves
close to 1.4 % while Band-pass achieves higher performance (close to 3%) than CAF-
FEINE. On type C workloads, all three mechanisms achieve comparable performance
(within range of 0.5%). Because, the overall prefetches in the system as compared to
demands is not high (applications in this workload category have smaller global prefetch-
fraction values). Therefore, the impact of prefetching on demand is not significant on
this workload category. Overall, Band-pass prefetching improves performance across
different workload types, and hence, we infer our mechanism is robust.

66Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

Figure 4.11: Sensitivity to Workload types.

Figure 4.12: Impact of including L1 Prefetch Requests on Throttling Decisions of Equa-
tion 4.1.

4.6.7 Sensitivity to Design Parameters

Impact of Prefetch Drop Rate: Figure 4.14 shows the sensitivity of Band-pass prefetch-
ing to prefetch drop rates (represented as PDR) on the mixed category workloads.
Recall that our mechanism throttles-down prefetch requests by not issuing (dropping)
them to the next level. Increase in prefetch drop rate increases the performance up
to 5.15% (PDR=1/2), beyond which it saturates. That is, dropping prefetch requests
of the most-interfering application beyond 50% does not improve performance further.
Therefore, we fix the prefetch drop rate at 1/2.

Impact of L1 Prefetch Requests on Prefetcher Throttling Decisions: The throttling
condition in Equation 4.1 considers only L2 prefetch requests. We study the impact of
including L1 Prefetch requests in the throttling decisions. Therefore, TP in TP/TD of

Results and Analyses 67

Figure 4.13: Impact of checking TP/TD ratio on Prefetcher Throttling Decisions.

Figure 4.14: Sensitivity of Band-pass Prefetching to Prefetch Drop Rate (PDR). GM:
Geometric Mean

Equation 4.1 now represents (P1+P2), where P1 and P2 reperesent total L1 and L2
prefetch requests, respectively. Figure 4.12 compares the performance of this design
against the former across workload types. Including L1 prefetch requests, marginally
increases the number of intervals in which TP/TD is greater than one, and hence, the
number of intervals in which prefetcher aggressiveness control is applied. On workloads
where aggressive prefetching is harmful, this design marginally increases the perfor-
mance. However, on workloads that benefit from aggressive prefetching, performance
degrades marginally. Overall, there is only tiny performance difference between the
two designs. Therefore, we conclude that L1 prefetch requests do not have significant
impact on our mechanism.

Impact of TP/TD on Prefetcher Throttling Decisions: Equation 4.1 presents the
conditions under which Band-pass performs prefetcher throttling. To understand the
impact of TP/TD on throttling decisions, we ignore TP/TD condition in Equation 4.1
and compare only the average miss service times of demands and prefetch requests in
making throttling decisions. Figure 4.13 shows the performance of this design across
workload types. We observe that comparing TP/TD marginally improves the perfor-
mance on certain workloads, while having no impact on others. Though comparing
TP/TD yields marginal benefit, we observe that without comparing TP/TD, prefetch-

68Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

ers, in some cases, are conservatively throttled although interference due to prefetchers
is not significant. Hence, we include TP/TD in making throttling decisions.

4.6.8 Sensitivity to AMPM Prefetcher

In this section, we evaluate Band-pass prefetching on systems that use AMPM [IIH09]
as the baseline prefetching mechanism. We briefly describe below.
AMPM: AMPM uses a bit-map to encode the list of cache lines accessed in a given
region of memory addresses (adapted to 4KB in our study). Each cache line can be in
one of the four states: init (initial state), access (when accessed by a demand request),
prefetch (when it is prefetched) or success (when the prefetched cache line receives a
hit). When there is a demand access to a cache line in a region, AMPM uses the bitmap
to extract the stride/offset values from the current demand access. From the prefetch-
able candidates, if the state of each candidate cache line is either access or success,
AMPM issues prefetch requests. In this way, AMPM is able to convert most of the
demand requests into prefetch requests.
Figure 4.15 shows the performance of Band-pass prefetching across the 36 mixed-type
workloads in terms of Harmonic Speedup (HS). Over no prefetching baseline, Band-pass
achieves the highest average performance of 12.9%, while HPAC, P-FST, and CAF-
FEINE achieve 7.8%, 10.8%, and 11.8%, respectively. Interestingly, P-FST achieves
higher performance as compared to HPAC. This is because of AMPM’s prefetching
methodology and P-FST’s interference model. P-FST accounts interference caused by
a prefetch or a demand request only on the other core’s demand requests, and not on the
prefetch requests. Therefore, in cases where the demand requests of most applications
get converted to prefetch requests (due to AMPM), P-FST does not account interference
caused on prefetch requests. Hence, on most intervals, unfairness estimate on individual
applications is lower than the unfairness threshold, and P-FST allows the prefetchers to
run aggressively. On the other hand, HPAC, as before, performs prefetcher throttling
based on threshold values of metrics, which is not effective.

Figure 4.15: Performance of prefetcher aggressiveness control mechanisms. GM: Geo-
metric Mean.

CAFFEINE and Band-pass outperform each other on most workloads because of
the throttling methodology of the respective mechanisms. On certain prefetch-friendly
workloads in which aggressive prefetching is beneficial (workloads 4, 5, 10, 12, 14,

Results and Analyses 69

Figure 4.16: Increase in Bus Transactions as compared to No Prefetching.

Figure 4.17: Sensitivity to Workload types.

16, 17, 19), CAFFEINE and Band-pass achieve comparable performance. On few
prefetch-friendly workloads like 8, 13, 20, and 24, CAFFEINE provides higher perfor-
mance than Band-pass, while on workloads 2, 15, 25, 30, and 35, Band-pass is able to
achieve higher performance. Overall, Band-pass achieves higher performance by 1.1%
over CAFFEINE.

4.6.8.1 Impact on Off-chip Bus Transactions:

Figure 4.16 shows the percentage increase in bus transactions due to prefetching as com-
pared to No Prefetching. Aggressive prefetching increases bus transactions by 15.4%,
while HPAC shows the least increase (6.27%) because of its conservative throttling.
When compared to aggressive prefetching, P-FST and CAFFEINE, Band-pass achieves
higher performance of 6.9%, 4.9% and 1.1%, respectively, while incurring 5.2% (fewer),
1.5% (fewer) and 0.6% (higher) bus transactions.

4.6.8.2 Sensitivity to Workload Types:

Figure 4.17 shows the performance of the prefetcher aggressiveness control mechanisms
across various workload types. On Type-A workloads, which are highly prefetch-friendly,
both HPAC and P-FST slow-down performance. However, CAFFEINE and Band-pass
achieve higher and comparable (<1%)performance. On type B workloads, performance
of HPAC is close to that of baseline, while the other three provide comparable perfor-

70Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

mance close to 4%. On type C workloads, CAFFEINE achieves only 4% improvement
over the baseline while the other three mechanisms provide comparable performance
improvement (8%). Overall, Band-pass provides consistent performance improvement
across different workload types, while P-FST and HPAC show slow-down on prefetch-
friendly and medium prefetch-friendly workloads. Similarly, CAFFEINE is not able to
mitigate interference completely on prefetch-unfriendly workloads. Therefore, we infer
that Band-pass prefetching is robust across different workload types.

4.6.9 Using prefetcher-accuracy to control aggressiveness

We performed experiments where we apply throttling on the application with least
prefetch-accuracy. However, there was no improvement over aggressive prefetching,
because low accuracy does not correlate/imply high interference. We further experi-
mented with a combination of prefetch-accuracy and prefetch-fraction to throttle the
prefetcher that issues the highest fraction of in-accurate prefetch requests. That is,
we measure inaccuracy (1-accuracy) multiplied by prefetch-fraction, which gives the
fraction of inaccurate prefetches/application. Again, there was only marginal improve-
ment over aggressive prefetching, because in most cases this metric does not capture
the most interfering application. For ex, on Workload 3 on Figure 7, apsi, which has
very high-accuracy but causes high interference, will have very low inaccurate fraction
as compared to others. Hence, we conclude using prefetch-accuracy for interference is
not effective.

4.6.10 Hardware Overhead

High-pass and Low-pass prefetching require 53 bits and 37 bits per application, respec-
tively. The first part of Table 4.6 shows the counters that are common to both the
components. High-pass prefetching requires TotalCounter per application. However,
Low-pass prefetching requires only one TotalCounter (32-bit in size) is required since
it measures global prefetch-fraction of applications, only one TotalCounter. Hence, we
save 16-bit per application for the Low-pass component. To measure interval size in
terms of LLC misses, we use a 20-bit counter. Estimation of average miss service times
of prefetch and demand requests requires seven counters each (Table4.1). Each counter
is 32-bit in size and the total cost amounts to 56 bytes of storage. For a 16-core sys-
tem, hardware overhead is only 239 bytes, while HPAC, P-FST and CAFFEINE require
about 208KB, 228.5KB and 204KB, respectively. Note that Band-pass prefetching does
not require any modification to cache tag arrays or MSHR structures.

4.7 Conclusion

In this chapter, we discussed our contribution, Band-pass prefetching, a simple and
effective mechanism to manage prefetching in multicore systems. Our solution builds
on the observations of strong correlation between (i) prefetch-fraction and prefetch-
accuracy and (ii) ratio of the average miss service times of demand to prefetch requests

Conclusion 71

Counter Purpose Size

L2PrefCounter Records L2 prefetches 16-bit
Pref-fraction Stores prefetch-fraction 16-bit
Drop bit To drop or Not to drop 1-bit
InsertCounter For probabilisitic 4-bit

Insertions

TotalCounter Records total requests 16-bit
(High-pass) of an appplication

TotalCounter Records total requests 32-bit
(Low-pass) at shared LLC-DRAM

Interface

Table 4.6: Hardware Overhead of Band-pass Prefetching.

and the ratio of prefetch to demand requests in the system. The first observation infers
the usefulness (in terms of prefetch-accuracy) of prefetching while the second observa-
tion infers the prefetcher-caused interference on demand requests.

Our mechanism consists of two prefetch filter components: High-pass, which is
present at the private L2-L3 and Low-pass component is present at the shared LLC-
DRAM interface. The two components independently compute prefetch-fraction of
applications at the private L2-LLC and shared LLC-DRAM interfaces. Together, the
two components control the flow of prefetch requests between a range of prefetch-to-
demand ratios. Experimental results show that Band-pass prefetching achieves 11.1%
improvement over the baseline that implements no prefetching. We further experiment
our mechanism on systems that uses AMPM prefetcher and observe Band-pass to show
similar performance trends : 12.9% improvement over the baseline that implements No
Prefetching. Experimental studies show Band-pass is effective in mitigating interference
caused by prefetchers, and is robust across workload types.

72Band-pass Prefetching : A Prefetch-fraction driven Prefetch Aggressiveness Control Mechanism

Chapter 5

Reuse-aware Prefetch Request

Management

In this chapter, we present the discussion on handling prefetch requests at the shared
last level cache.

5.1 Introduction

Prefetching is a latency hiding mechanism that attempts to reduce the time spent by
an application on off-chip memory access. A prefetched data is placed in the on-chip
cache as with the data fetched by the demand accesses. Sharing the same cache space as
the demand accesses introduces interference. Prefetched cache blocks may pollute the
cache by evicting a more useful demand fetched data. To address pollution, some studies
[LYL87, Jou90] include a separate prefetch buffer. However, storing the prefetched data
directly on the on-chip cache provides two advantages. First, it simplifies coherence
operations by avoiding the necessity to access the prefetch buffer and second, avoiding
to invest in the design of a prefetch buffer. Srinath et. al. [SMKP07] identify that for
single-core system with 1MB cache, a minimum prefetch buffer size of 32KB is needed
to mitigate pollution as well as harness the usefulness of prefetching. For a large scale
multi-core processor, it would not be an exaggeration to say that the size of such prefetch
buffer(s) would need to be 1MB or more, which is a large overhead in terms of storage
cost. Therefore, a desirable solution is to efficiently manage the on-chip cache in the
presence of prefetching.

Along this direction, prior studies such as FDP [SMKP07], PACMAN [WJM+11]
and ICP [SYX+15] have proposed to alter the insertion and promotion priorities of
prefetched caches lines. Their policy for predicting the insertion and promotion policies
of prefetched cache lines is based on the observation of reuse behavior of prefetched
cache blocks at the last level cache in a particular context: a single or small-scale multi-
cores consisting of small 1MB or 2MB last level cache sizes. However, in the context
of large-scale multi-cores (16-core and above) last level cache size is higher of the order
16MB. Under the context of larger last level caches, we observe that the reuse behavior

73

74 Reuse-aware Prefetch Request Management

of prefetched cache blocks becomes different, and this implicit assumption breaks. In
particular, we observe that treating the prefetch and demand requests alike during
cache insertion and promotion operations is more beneficial than treating prefetched
cache blocks with low priority.

5.2 Background

To handle prefetch requests at the last level cache, prior mechanisms like FDP, PAC-
MAN have proposed to alter the insertion priority of prefetched cache lines. FDP
proposes to insert the prefetched cache block at different locations of the LRU chain,
instead of MRU insertion, depending on the degree of prefetcher-caused pollution. The
idea is to allow a prefetched cache block to stay in the cache for a shorter duration of
time, if it is found to be polluting. While this mechanism efficiently manages the inser-
tion priority of prefetch requests, it works best on caches where the prefetcher resides at
the last level. In state-of-the-art high performance processors [Cor, arc], cache-hierarchy
consists of three levels, where the second level is private and the last level is shared, and
the prefetcher sits beside the L2 cache [Cor, arc]. However, managing prefetch requests
in the context of last level cache is different.

Wu et. al. [WJM+11] observe that the last level cache sees a filtered view of the
prefetched cache block accesses. That is, when prefetched cache blocks are inserted
at both private L2 and LLC 1, most of the accesses to the prefetched cache block are
serviced by the level two cache. Only few accesses are referred at the last level cache.
Therefore, the use characteristics of prefetched cache block at the last level cache is
different from what FDP observes. In particular, PACMAN observes that majority of
the prefetched cache blocks are never used or single used. Based on this observation,
PACMAN proposes to insert the prefetched cache blocks with least-priority. In the
context of RRIP chain, prefetched cache blocks are inserted with distant reuse priority
(RRIP 3). Similarly, when a prefetch request hits at the last level cache, the cache lines
are not promoted to higher priority as opposed to the traditional promotion policy used
by replacement policies. By inserting the prefetched cache block at the distant reuse
position and not promoting the cache lines that hit for prefetch requests, PACMAN
attempts to minimize the life duration of prefetched cache blocks at the LLC. By doing
so, PACMAN prioritizes the demands ahead of prefetch requests at the LLC.

Seshadri et. al. [SYX+15] observe a similar pattern on use characteristics of prefetch
requests at the last level cache managed by LRU. Since LRU inserts the cache lines with
MRU priority, prefetch requests, which are mostly single or no use cache blocks, may
stay at the cache for longer duration of time and pollute demand requests. Therefore,
inserting them with LRU priority avoids this problem. However, they observe that
in most cases, least priority insertions forces the prefetched cache blocks to be evicted
much before they are used by the demand accesses, which renders prefetching less useful.
To avoid such a situation, ICP allows the insertion of prefetched cache block at MRU
position as with demand fetched cache block. However, the difference is that the cache

1Prefetched cache blocks are inserted at both levels because the prefetcher sits at L2.

Experimental Setup 75

block is demoted as soon as a demand request accesses the cache block. By doing
so, ICP preserves the usefulness of prefetched cache blocks as well as minimizing its
duration.

On inserting a prefetch request, its insertion priority is determined by prediction.
PACMAN always (statically) predict that prefetched cache blocks are single or no-use
cache lines. Therefore, it inserts with least, that is, distant reuse priority. FDP, on the
other hand, makes dynamic prediction of insertion priority based on prefetch-accuracy
estimated at run-time. Seshadri et. al. observe that the dynamic prediction mechanism
used by FDP is not always efficient. In particular, FDP inserts the prefetched cache
blocks with LRU priority when prefetch-accuracy is low 2. As discussed in the previous
paragraph, inserting prefetch requests at the least priority evicts the prefetched block
before it could be used. Therefore, prefetched cache blocks inserted with least priority
will result in fewer hits on the prefetched data and only result in low-accuracy. This in
turn causes the prefetcher of FDP to issue fewer prefetches. As a result, an accurate
prefetcher could be falsely recognized as an inaccurate prefetcher.

In order to avoid this anomalous situation, ICP proposes a mechanism that augments
the cache with a filter that holds the evicted prefetched cache block. When there is a
demand miss and if it finds the missing cache block (address) in the filter, it is the
case where an accurate prefetch block is falsely predicted as low/inaccurate. Using
this feedback to correctly estimate prefetch-accuracy, ICP utilizes the performance of
prefetching.

In the following section, we discuss prefetch-use characteristics in the context of
large scale multi-core processors where the last level cache is much larger in size as
compared to small scale multi-cores. Before that, we describe our experimental set-up
upon which our observations are based.

5.3 Experimental Setup

5.3.1 Baseline System

We use cycle-accurate BADCO [VMS12] x86 CMP simulator which models 4-way OoO
core with a cache hierarchy of three levels. Level 1 and Level 2 caches are private. The
last level cache and the memory bandwidth are shared by all the cores. TA-DRRIP
[JTSE10] is the baseline cache replacement policy. Under this algorithm, both demand
and prefetched cache blocks are assigned the same priority on insertion and promotion
operations. Similar to prior studies [WJM+11, SYX+15, EMLP09, PB15, Pan16], we
model bank-conflicts but with fixed access latency across all banks. Cache line size is
64 bytes throughout the hierarchy and we do not enforce inclusion across cache levels.
Our prefetcher model is as described in Section 4.2.1. Other system parameters are
available in Table 5.1.

2Here, insertions performed by FDP are predictions because the prefetch-accuracy used in one
interval is used for insertions in the next interval.

76 Reuse-aware Prefetch Request Management

4-way OoO, 4.8GHz
Processor (ROB,RS,LD/ST)

128, 36, 36/24
Branch predictor TAGE, 16-entry RAS
IL1 and DL1 32KB, LRU, next-line prefetch

ICache:2-way, DCache:8-way
L2(unified) 256 KB, 16-way, DRRIP

14-cycle, MSHR:32-entry
LLC 16MB, 16-way,PACMAN

24-cycle, 256-entry MSHR,
(unified and shared) 128-entry WB
Memory controller FR-FCFS with prefetch
(channels-rank-bank) prioritization[LMNP08]
(4-1-8) for 16-cores (TxQ,ChQ) : (128,32)
DDR3 parameters (11-11-11), 1333 MHz

IO Bus frequency : 1600MHz

Table 5.1: Baseline System Configuration.

Category Benchmarks

Highly prefetch-friendly apsi, cact, lbm, leslie,
(class A) [IPC ≥ 10%] libq, sphn, STREAM
Medium prefetch blackscholes, facesim,
-friendly (class B) hmm, mcf, vpr, wup,
IPC [≥ 2%,<10%] streamcluster
Prefetch-unfriendly art, astar, bzip, deal, gap,
(class C) gob, gcc, gzip, milc, omn,
IPC [± 2%] pben, sop, twol, vort

Table 5.2: Classification of benchmarks.

5.3.2 Benchmarks and Workloads

We use SPEC CPU 2000, 2006 [SPE], and PARSEC [Bie11] benchmark suites totaling 34
(31+3) plus one stream benchmark. Similar to prior studies [EMLP09, PB15, Pan16],
we classify benchmarks based on their IPC improvement over no prefetching when
run alone (Table 5.2). We construct workloads such that each workload composes
applications from all the three categories. In total, we study thirty six workloads in
which the first twelve workloads consists of 5,5,6, second set of twelve workloads consists
of 5,6,5 and the third set of twelve workload consists of 6,5,5 benchmarks from the three
categories, respectively. Tables 5.3 and 5.4 list the benchmarks under each workload.

In our experiments, we forward the first 12 billion instructions, and experiment be-
tween 12 billion and 12.5 billion instructions. In that 500 million phase, first 200 million
instructions warm-up all the hardware structures. The next 300 million instructions are

Motivational Observations 77

simulated. In our experiments, simulation begins only when all the sixteen benchmarks
(of the 16-core workload) finish their warm-up phase. The simulation ends only when all
the benchmarks finish executing their 300 million instructions. If a benchmark finishes
execution, it is rewind and re-executed. Statistics are collected only for the first 300
million instructions.

5.4 Motivational Observations

Like PACMAN and ICP, we also observe similar use behavior for prefetched cache
lines at the last level cache of size 1MB. Figure 5.1 shows the use distribution of
prefetched cache blocks at the last level cache which is 1MB in size. As we observe,
many applications have prefetched cache blocks that are either single use or no-use cache
lines. Therefore, the mechanisms proposed by FDP, PACMAN and ICP to manage
prefetch requests in the context of 1MB caches hold good. However, these mechanisms
do not scale with larger caches. Because, with larger caches, the (re)use characteristics
of prefetched cache blocks change since the larger cache can hold larger amount of data
of an application.

Figure 5.1: Use distribution of prefetched cache block of a 1MB last level cache.

In order to understand this behavior, lets look in detail into these figures. As
we observe from Figure 5.1, 70% of the prefetched cache blocks are not used at all,
while approximately 10% of the prefetched cache blocks are used once. From Figure

Figure 5.2: Use distribution of prefetched cache block of a 16MB last level cache.

78 Reuse-aware Prefetch Request Management

Workloads Benchmarks

WL 1 vpr, streamcluster, wup, mcf, hmm, blackscholes, apsi,
libq, sphn, cact, leslie, gzip, gob, gap, art, milc

WL 2 vpr, streamcluster, wup, mcf, hmm, blackscholes, STREAM,
lbm, apsi, sphn, leslie, mesa, vort, pben, astar, wrf

WL 3 vpr, streamcluster, wup, facesim, hmm, blackscholes, libq,
apsi, lbm, cact, sphn, omnet, vort, art, deal, milc

WL 4 vpr, streamcluster, wup, mcf, hmm, blackscholes, libq,
lbm, cact, les, apsi, vort, gap, gcc, bzip, sop

WL 5 facesim, streamcluster, wup, mcf, hmm, blackscholes,
les, lbm, libq, sphn, cact, gap, bzip, astar, milc, pben

WL 6 facesim, streamcluster, wup, vpr, hmm, blackscholes,
les, sphn, apsi, lbm, STREAM, bzip, milc, gap, vort, omnet

WL 7 facesim, streamcluster, wup, vpr, hmm, blackscholes,
les, cact, STREAM, libq, apsi, gcc, pben, vort, omnet, art

WL 8 facesim, streamcluster, wup, mcf, hmm, blackscholes, les,
libq, STREAM, sphn, apsi, vort, gzip, sop, bzip, wrf

WL 9 facesim, streamcluster, mcf, hmm, vpr, wup, les,
apsi, lbm, cact, STREAM, pben, wrf, deal, bzip, mesa

WL 10 facesim, streamcluster, mcf, hmm, vpr, wup, lbm,
libq, cact, apsi, les, vort, gzip, mesa, milc, gob

WL 11 facesim, streamcluster, blackscholes, hmm, vpr, wup, lbm,
apsi, sphn, cact, STREAM, milc, pben, art, wrf, astar

WL 12 mcf, streamcluster, blackscholes, hmm, vpr, wup, lbm,
STREAM, apsi, sphn, cact, gob, gcc, art, wrf, bzip

WL 13 mcf, streamcluster, blackscholes, vpr, facesim, libq,
les, apsi, cact, STREAM, lbm, bzip, gcc, pben, sop, astar

WL 14 streamcluster, wup, mcf, facesim, vpr, apsi, les,
sphn, STREAM, lbm, cact, art, gcc, bzip, sop, pben

WL 15 facesim, blackscholes, wup, vpr, mcf, apsi, les,
sphn, lib, lbm, cact, astar, mesa, gob, gcc, pben

WL 16 facesim, blackscholes, wup, vpr, mcf, apsi, les, cact,
libq, STREAM, sphn, lbm, gob, astar, omn, bzip, sop

WL 17 hmm, wup, blackscholes, facesim, mcf, apsi, les,
lib, STREAM, lbm, cact, pben, gcc, omn, gap, astar

WL 18 hmm, wup, blackscholes, vpr, mcf, apsi, les,
lib, STREAM, sphn, cact, sop, pben, art, gzip, gcc

Table 5.3: Classification of benchmarks(part1).

5.2, we observe that the percentage of zero use prefetched reduces from 70% to 60%.
Applications like astar, bzip, cactusADM, deal, facesim, lbm, leslie, libquantum, gcc,

Motivational Observations 79

Workloads Benchmarks

WL 19 hmm, wup, blackscholes, vpr, mcf, apsi, les, lib,
STREAM, sphn, cact, gap, pben, astar, omnet, bzip

WL 20 hmm, streamcluster, vpr, facesim, mcf, apsi, les, lib,
STREAM, lbm, cact, gap, pben, deal, sop, art

WL 21 wup, streamcluster, hmm, facesim, mcf, sphn, les, lib,
STREAM, lbm, cact, gcc, bzip, milc, art, omnet

WL 22 hmm, wup, facesim, blackscholes, mcf, sphn, les,
apsi, STREAM, lbm, cact, art, sop, milc, gap, astar

WL 23 facesim, blackscholes, vpr, mcf, hmm, sphn, les,
STREAM, libq, lbm, cact, art, sop, vort, omnet, bzip

WL 24 streamcluster, hmm, blackscholes, facesim, mcf, sphn, les,
STREAM, libq, apsi, cact, gob, gcc, pben, gzip, bzip

WL 25 blackscholes, mcf, wup, facesim, streamcluster,libq,
cact,sphn, apsi, lbm, wrf, deal, milc, astar, mesa, sop

WL 26 wup, hmm, blackscholes, mcf, facesim, cact, STREAM,
lbm, apsi, sphn, vort, gcc, omnet, astar, gzip, milc

WL 27 streamcluster, hmm, facesim, vpr, mcf, apsi, STREAM,
les, sphn, lbm, omnet, bzip, vort, astar, sop, pben

WL 28 streamcluster, mcf, hmm, wup, vpr, sphn, apsi,
les, libq, cact, gob, mesa, gcc, milc, wrf, art

WL 29 blackscholes, hmm, vpr, facesim, mcf, sphn, libq,
lbm, cact, STREAM, deal, vort, bzip, gob, milc

WL 30 hmm, wup, facesim, mcf, vpr, STREAM, les, apsi,
cact, lbm, astar, gzip, mesa, gob, pben, deal

WL 31 streamcluster, facesim, vpr, wupwise, hmm, libq, apsi,
les, lbm, cact, oment, mesa, gob, astar, gcc, deal

WL 32 vpr, mcf, facesim, blackscholes, streamcluster, lbm,
sphn, apsi, les, STREAM, art, omnet, gcc, gob, astar, vort

WL 33 vpr, hmm, facesim, streamcluster, mcf, les, STREAM,
sphn, apsi, cact, gcc, art, omnet, sop, gob, wrf

WL 34 mcf, vpr, wup, facesim, streamcluster, cact, libq,
sphn, apsi, lbm, wrf, bzip, omnet, milc, gob, gzip

WL 35 mcf, streamcluster, facesim, vpr, wup, apsi, libq,
sphn, lbm, les, deal, wrf, gob, sop, milc, vort

WL 36 streamcluster, vpr, hmm, wup, facesim, apsi, cact,
STREAM, sphn, les, gzip, deal, astar, bzip, mesa, art

Table 5.4: Classification of benchmarks(part2).

and streamcluster show large percentage of reduction in zero use prefetched cache blocks.
However, applications like apsi, blackscholes, mcf, milc, and STREAM benchmarks do
not show change in their prefetch use characteristics. Remaining applications show

80 Reuse-aware Prefetch Request Management

marginal change in their prefetch use characteristics. A larger cache is able to hold
more cache blocks such that when there is a reuse for a cache block, the large cache is
able to retain it. However, cache blocks are evicted in the case of smaller cache. This
observation holds good for applications whose working-set does not fit within a smaller
1MB cache, however working-set that fits within a large 16MB cache. Therefore, for
some applications treating the prefetched cache block as zero or single use cache block
could be ineffective. Further, from the two figures, we also observe that the fraction of
more than twice used blocks increase from by 45% approximately, from 20% to 29%.
The increase in fraction of twice used blocks suggests that several prefetched cache
blocks are accessed more than once while resident in cache. In essence, discrepancy
in use behaviors of prefetched cache blocks at the last level cache calls for a reuse
aware mechanism to manage prefetch requests at the last level cache. Using a static
mechanism that implicitly assumes zero or single use characteristics of prefetched cache
blocks becomes ineffective.

5.5 Reuse-aware Prefetch Management

Prior works on prefetch request management at the last level cache such as PACMAN
and ICP control the lifetime of prefetch requests by altering the insertion and cache
promotion policies. Such a rigid approach accelerates the eviction of not only zero or
single use prefetched cache blocks, but also multi-use (more than single use) prefetched
cache blocks. This is evident from the performance of PACMAN and ICP mechanism
as compared to a cache management policy that treats both prefetch and demand re-
quests the same, which is represented as (EquallyManaged) EM in this figure. Recall
that under EquallyManaged algorithm, the baseline TA-DRRIP policy applies same pri-
orities on prefetched cache blocks as it does on demand fetched cache blocks. Figure 5.3
shows the performance of the state-of-the-art PACMAN and ICP mechanisms along
with EquallyManaged mechanism that treats the demand and prefetch requests alike
in cache insertion and promotion policies. Performance is normalized to no-prefetching.
As we observe from Figure 5.3, on most workloads, EquallyManaged mechanism (repre-
sented as EM) provides higher performance as compared to PACMAN and ICP. On the
geometric mean of average, PACMAN and ICP provide 2.7% and 4.5%, respectively,
while EquallyManaged policy achieves 7.3%.

5.5.1 Understanding the Prefetch Request Management Mechanisms

In order to understand the three individual mechanisms, we study workload 5. Workload
5 consists of applications wupwise, streamcluster, mcf, hmmer, facesim, blackscholes,
leslie, lbm, libquantum, sphinx, cactusADM, gap, bzip, astar, milc and perlbench, which
all have different use charactersistics of their prefetched cache blocks when residing at
the last level cache. As we observe from Figure 5.4, lbm, leslie and libquantum show
higher performance under EquallyManaged mechanism as compared to PACMAN and
ICP. The IPC numbers are normalized to no-prefetching. Under PACMAN and ICP,

Reuse-aware Prefetch Management 81

Figure 5.3: Performance comparison of state-of-the-art prefetch management mecha-
nisms against an EquallyManaged mechanism.

leslie achieves 49% and 57% IPC improvement over no-prefetching, respectively. How-
ever, EquallyManaged mechanism achieves 71% IPC improvement over no-prefetching,
which is 14.76% and 8.9% higher than what PACMAN and ICP achieve, respectively.
Similarly, EquallyManaged mechanism achieves 16% and 13.6% higher performance on
libquantum than what PACMAN and ICP achieve, respectively. This trend is similar
for lbm as well.

Recalling from Figures 5.1 and 5.2, these applications show different use behavior of
their prefetched cache blocks on a 16MB cache as compared to on a 1MB cache. Using
rigid insertion and promotion policies do not allow these applications to exploit the
reuse of their prefetched cache block and further enhance performance. EquallyMan-
aged policy which inserts and promotes the prefetched cache lines on par with demand
fetched cache blocks, retains the prefetched cache blocks of these applications for a
longer duration of time and achieves higher hits (reducing off-chip memory accesses)
and improve performance.

Since PACMAN inserts the prefetched cache blocks with distant (RRPV 3: least)
reuse priority, it gives lesser performance improvement over no-prefetching than ICP.
Most of those applications cache blocks are evicted before their use, rendering prefetch-
ing for those applications less effective. On the other hand, ICP inserts the prefetched
cache lines of all applications with intermediate (RRPV 2) priority which helps to retain
them longer and fetch hits. However, on applications which have either streaming or
predominantly zero use behaviors, both PACMAN and ICP provide comparable per-
formance improvement ((±2%) or no-change) over no-prefetching. Examples of such
applications include wupwise, gap, blackscholes, perlbench, and mcf. On other applica-
tions which exhibit quicker reuses on their prefetched cache blocks, PACMAN is able to
retain the prefetched cache lines. Therefore, all three mechanisms show comparable im-
provement. Applications like bzip, streamcluster, and facesim belong to this category.
Under EquallyManaged mechanism, milc achieves moderately better performance (7.7%
and 5%) over PACMAN and ICP because of the overall extra misses these mechanisms
incur on the other applications. milc is off-chip memory access sensitive which makes
it to gain better under EquallyManaged mechanism.

In order to understand the significance of promoting the prefetched cache lines on
hits, Figure 5.3 also shows the performance of modified EquallyManaged mechanism

82 Reuse-aware Prefetch Request Management

(represented EMNP) where the promotion policy for prefetched cache blocks is altered.
Prefetched cache blocks are not promoted on hits, while their insertion priorities are
treated on par with demand requests. As we observe from the figure, similar to Equal-
lyManaged, modified EquallyManaged policy also achieves higher performance on most
workloads. On geometric mean of average, modified EquallyManaged achieves higher
performance than PACMAN and ICP, but lesser performance than EquallyManaged.
Because modified EquallyManaged still inserts the prefetched cache blocks with the
same priority as demands of its applications, most applications see more hits on the
prefetched cache blocks. However, not promoting the prefetched cache lines on hits, in-
curs additional misses on subsequent accesses. However, not promoting the prefetched
cache lines under does not incur larger penalty on lbm and libquantum because the
subsequent miss on the evicted cache block is a demand access which forces the replace-
ment policy to promote on hits. Interestingly, with leslie, there is higher penalty of not
promoting the prefetched cache blocks. Because, in the case of leslie, the subsequent
miss(es) on the evicted cache blocks are still prefetch requests. Therefore, the modified
EquallyManaged (EMNP) mechanism keeps not promoting the prefetched cache line
on hits, which operation is similar to ICP. Hence, EMNP and ICP achieve comparable
performance on leslie. With these discussions, we observe promotion of prefetched cache
lines which have higher number of reuses (multiple uses) is beneficial.

Figure 5.4: Analyzing workload number 5.

5.6 Enhancing the State-of-the-art Mechanisms

In the previous section, we discussed the significance of treating the prefetched cache
lines of certain applications on par with demand requests. In this section, we use this
observation to enhance the performance of the two state-of- the-art PACMAN and ICP
mechanisms. In particular, we simply alter their promotion policy of prefetch requests:
we treat the promotion of prefetch requests on par with demand requests. We do not
alter their insertion policies. Figure 5.5 shows the Harmonic Speedup of performance
of our enhancements on these two mechanisms. As before, performance is normalized
to no-prefetching. The enhanced policies are suffixed with _prom.

From Figure 5.5, we observe that altering the promotion policies of the two mech-
anisms significantly enhances the performance on most workloads. Altering the pro-
motion helps ICP more than PACMAN. Because, with ICP the prefetched cache lines

Enhancing the State-of-the-art Mechanisms 83

Figure 5.5: Performance of the enhanced state-of-the-art prefetch management mecha-
nisms

are retained longer enough to observe first hit on their prefetched cache blocks which
are then promoted by the enhanced promotion policy, which in turn helps to get hits
on the subsequent accesses of the prefetched cache lines. However, PACMAN suffers
from distant reuse (least priority) insertions which do not provide sufficient time for
the prefetched cache block to stay longer before seeing a hit. Hence, promotion en-
hancement improves the performance of PACMAN by additional 1.1% (2.7% to 3.8%).
However, enhanced promotion improves ICP by additional 2.1% (from 5.2% to 7.3%). In
particular, ICP_prom marginally outperforms the modified EquallyManaged (EMNP)
mechanism.

Figure 5.6: Analyzing workload number 5 under enhanced policies.

Figure 5.6 shows the IPC of the individual benchmarks of workload 5 normalized to
no prefetching. As we observe the figure, enhancing the promotion policy marginally
improves the performance of libquantum and lbm. Interestingly, the performance im-
provement on leslie is significantly high and comparable to EquallyManaged. The reason
is similar to the previous discussion of modified EquallyManaged. In the case of mod-
ified EquallyManaged (EMNP), the subsequent access to the prefetched cache blocks
were only prefetch requests, and not demand accesses. Since in the enhanced version,
the immediate prefetch request access that follows the very first prefetch request that
installs the cache block is promoted. Therefore, under PACMAN, leslie shows significant
improvement in performance. With ICP, promotion enhancement marginally improves
the performance on libquantum, leslie and lbm. Since the performance enhancement on
leslie is very high, PACMAN with promotion enhancement achieves similar performance

84 Reuse-aware Prefetch Request Management

improvement on this workload and WL 1 and 2. On a similar note, PACMAN with
enhanced promotion achieves higher performance on workloads such as WL 8,9,32 and
33.

5.7 Inference

In the discussions so far, we demonstrate and establish the significance of promoting the
prefetched cache blocks on hits. We further showed that the state-of-the-art mechanisms
could be enhanced by altering their promotion policy to treat the prefetch and demand
requests alike. While altering the promotion policy enhances the performance of the two
state-of-the-art mechanisms, PACMAN and ICP, we observe that the EquallyManaged
policy still achieves better performance as compared to these two mechanisms. Apart
from providing room for performance improvement, these two mechanisms also incur
higher hardware cost. While PACMAN only requires adding one additional bit per every
cache block, ICP requires additional circuitry at the level two cache for its feedback-
driven prefetch-accuracy predictor. On the other hand, EquallyManaged mechanism
requires no change as compared to the baseline, except investing on few counters, which
is similar in overhead to PACMAN. Therefore, we can infer that the EquallyManaged
mechanism, that is, treating prefetch and demand requests alike on cache insertion and
promotion is better and beneficial in the context of large scale multi-core systems which
employ larger caches.

5.8 Conclusion

In this chapter, we discussed the how use characteristics of prefetched cache blocks
while resident at the last level cache change in the context of large scale multi-core
systems. In particular, we observed that prefetched cache blocks show varying reuse
behavior as compared to the zero or single reuse as observed on a single or small-scale
multi-cores (2-4). Treating prefetched cache blocks as single or no reuse cache lines
and not promoting their cache lines on cache hit operations becomes less effective as
these policies accelerate the eviction of prefetched cache blocks. On the other hand, we
observe treating the promotion of prefetched cache blocks on par with demands signif-
icantly enhances performance. We further demonstrate the significance of promotion
policy on PACMAN and ICP. Though the two mechanisms improve performance, the
enhancement on these two mechanisms still provide room for performance improvement.
In addition to providing more room for performance improvement, PACMAN and ICP
incur extra hardware cost for their implementation. The two reasons favor the baseline
algorithm that learns which simply treats both demand and prefetched cache blocks
alike.

Chapter 6

Conclusion and Future Work

This thesis is focused towards memory-hierarchy management in large scale multi-core
processors. Along this direction, we studied managing interference in the on-chip caches
and off-chip memory access. Our first work focussed on managing interference at the
last level cache in the context where the number of applications sharing the cache
could exceed the associativity of the shared cache. Such a scenario is possible since
larger associativity leads to increased energy consumption. The second and third work
focussed on managing interference at off-chip memory access and last level cache in the
presence of prefetching, respectively. In the following paragraphs, we summarize our
contributions as follows:
Discrete Cache Insertion Policies for large scale multi-cores
Increase in the number of applications that run on a multi-core processor increases the
diversity of characteristics and memory demands the system must cater to. From the
context of last level caches, applications with diverse memory behaviors share them.
For efficiently utilizing the cache capacity, the cache management algorithm must take
into account the diverse characteristics of applications, and accordingly prioritize them
at the shared cache. Further, the need for enabling different priorities across is fueled by
the fairness and performance objectives of commercial grid systems, where the memory-
hierarchy is shared by applications.

In Chapter 3, we showed the drawback with mechanisms that observe the num-
ber of hits or misses to predict the reuse behavior of cache lines. Prior mechanisms
approximate misses from the cache as an indicator of poor reuse behavior. However,
cache blocks could be prematurely evicted from the caches due to high degree of inter-
ference from many co-running applications. Therefore, approximating reuse behavior
using misses becomes ineffective. Further, we demonstrate with an example the need
for differently prioritizing applications at the shared last level cache.

In order to meet such a requirement, a new mechanism that effectively captures the
diverse behaviors of applications at run-time and allows the replacement policy to en-
force different priorities across applications, is needed. We propose one such mechanism,
Adaptive and Discrete Application PrioriTization, ADAPT replacement algorithm, for
managing the shared last level caches of large scale multi-cores. In particular, we mea-

85

86 chapter6

sure the working-set sizes of applications at run-time by leveraging a prior state-of-
the-art mechanism. Quantitative estimate of applications’ cache utility (working-set
sizes) explicitly allows to enforce different priorities across applications. In particular,
from experiments we statically assign priorities to applications based on their inferred
footprint-number values. By comparing with the prior state-of-the-art mechanisms, we
demonstrate the effectiveness of our proposed mechanism, ADAPT. We further demon-
strate ADAPT in the context where the number of applications sharing the cache is
greater than the associativity of the shared cache. That is, for 20-core and 24-core
systems sharing the last level cache where the associativity of the cache is sixteen.
Altogether, ADAPT is effective and scalable.

Band-pass Prefetching : A Prefetch-fraction driven Mechanism for Prefetcher Ag-
gressiveness Control
Hardware prefetching is a widely used memory latency hiding mechanism. While
prefetching attempts to save the cycles spent by the processor on waiting for the data,
prefetcher of a core may, however, interfere with the on-demand requests of other cores.
Therefore, allowing prefetchers to be aggressive may harm system fairness and perfor-
mance.

To manage interference caused by prefetchers at the off-chip memory access, prior
studies have proposed to control prefetcher aggressiveness at run-time. These mecha-
nisms make dynamic throttling decisions by computing parameters that infer usefulness
of prefetching and prefetcher-caused interference. Using multiple metrics (driven by
their thresholds) leads to incorrect decisions because a given value of a metric does not
reflect the run-time behavior of an application due to interference caused when large
number of applications run on the system. While CAFFEINE normalizes prefetch-
usefulness and prefetcher-caused interference into a single utility model, its method of
estimating prefetch-usefulness is flawed. Essentially, the two mechanisms provide room
for performance improvement.

Our mechanism is built on two fundamental observations of prefetch-usefulness and
prefetch-caused interference based on the fraction of prefetch requests generated by a
prefetcher. First, for a given application, fewer the prefetch requests generated, less
likely that they are useful. Second, more the aggregate number of prefetch requests in
the system, higher the miss-penalty on the demand misses at last level cache. Based
on the two observations, we introduce the concept of prefetch-fraction, which is defined
as the fraction of L2 prefetch requests the prefetcher generates for an application with
respect to its total requests (demand misses, L1 and L2 prefetch requests). To infer the
usefulness of prefetching to an application, we compute prefetch-fraction for each appli-
cation independently at the private L2 caches. To infer interference due to a prefetcher,
we compute prefetch-fraction for each application at the shared LLC-DRAM inter-
face. Based on the inference drawn on usefulness and interference, we apply prefetcher-
aggressiveness control at the private L2-LLC interface and shared LLC-DRAM interface.
Altogether, the two mechanisms control the flow of prefetch requests between a range of
prefetch-to-demand ratios. This is analogous to Band-pass filtering in signal processing.

Experimental results show that Band-pass prefetching is effective in addressing
prefetcher-caused interference. We demonstrate the robustness of this mechanism by

Perspectives 87

studying across various workload types. Finally, our mechanism is practical. Hardware
overhead is very less: only 269 bytes for a 16-core system. It does not require modifying
existing cache or MSHR structures.

Reuse-aware Prefetch Management
Prefetching not only interferes with on-demand requests of other applications at the
off-chip memory access, but also interferes at the shared last level cache by evicting
useful cache blocks of other applications. This problem is referred to as pollution. To
handle pollution, prior mechanisms treat prefetch requests as single-use or zero use cache
blocks. This is based on their study of prefetch reuse characteristics at the last level
cache of 1MB. That is, their study is based on a single-core system, and extend their
idea to multi-core systems. However, in the context of large-scale multi-cores where the
last level cache sizes are larger, the scenario becomes different.

In Chapter 5, we studied the reuse characteristics of prefetched cache blocks in the
context of large-scale multi-cores and showed that not all prefetched cache blocks are
pollutants; prefetched cache blocks of some applications have reuse behaviors that are
on-par with their demand requests. Therefore, treating the prefetched cache blocks of
such applications as zero or single-reuse cache blocks results in performance loss. In
particular, the two state-of-the-art mechanisms, PACMAN and ICP do not promote
and demote after the first use of the prefetched cache blocks, respectively. Doing so,
accelerates the eviction of prefetched cache blocks, these mechanisms provide scope
for performance improvement. Using this observation, we enhance the performance of
these two mechanisms. In particular, we alter their promotion policies such that the
prefetched cache blocks are allowed to stay in the caches for longer duration of time
until their subsequent reuses. Basically, when there is a hit on the prefetched cache
block, we promote the cache lines. Nevertheless, the two mechanisms still provide room
for performance improvement, which is due to their low-priority treatment of prefetched
cache blocks on insertion.

On the other hand, a mechanism that treats both prefetched and demand cache
blocks on par with each other on cache insertion and promotion is able to achieve higher
performance as compared to the two state-of-the-art mechanisms. We experimentally
demonstrate the performance potential of equally treating prefetch and demand cache
blocks and argue that this mechanism better handles prefetch requests at the shared
last level caches of a large-scale multi-core system.

6.1 Perspectives

6.1.1 Managing last level caches

While this thesis explored the approach of estimating the working-set sizes of applica-
tions at run-time to gauge how well an application could utilize the cache, alternative
approaches can be used to measure cache utility. One such mechanism is based on the
observation of eviction-to-use distance of cache blocks. An application that exhibits
high degree of reuse behavior, tends to access the cache more frequently than the oth-
ers. When cache blocks of such an application is prematurely evicted from the cache,

88 chapter6

time (in misses) between their eviction and subsequent use will be shorter. Using this
observation, applications could be classified into different buckets of reuse behaviors
which in turn allows to enforce different priorities across applications.

6.1.2 Prefetcher Aggressiveness Control

The flow of prefetch and demand requests between the last level cache MSHRs to the
off-chip memory is analogous to flow of packets in the computer networks, with the
MSHRs behaving like buffers. In particular, an outstanding miss at the last level cache
sits at the LLC MSHR until that request is serviced back. The delay or the service time
in processing a request and the rate at which MSHR entries are cleared depends on
(i) the number of in-flight requests (that are in-transit between LLC-DRAM-LLC), (ii)
the optimization techniques employed by the memory controller, and (iii) the workload
behavior. In essence, the processing of requests at the MSHR follows Poisson model
[Ros06].

Active queue management (AQM) is a network theory approach in which conges-
tion in networks is relaxed through intelligent dropping of packets when the buffers
are about to get full. In the context of prefetcher aggressiveness control, a prefetch
request is a packet, and MSHR(s) is a buffer. Prefetch requests could be dropped in
anticipation when the MSHR is about to cross a specific threshold (which could be dy-
namically determined). Similarly, Bufferbloat is a phenomenon in which high latency in
processing of network packets results due to excessive buffering. Depending on the delay
on demand requests, and its relationship with MSHR sizes, prefetch requests could be
conditionally dropped. Several network theory algorithms [BZ96, SV95, Zha95, NLS07]
which attempt to ensure fairness among multiple sources that transfer data packets
over packet-switched-networks. As mentioned, individual requests can be treated as
data packets and each application and/or its prefetcher as independent sources

Glossary

89

90 Glossary

Bibliography

[AB05] Susanne Albers and Markus Büttner. Integrated prefetching and caching
in single and parallel disk systems. Inf. Comput., 198(1):24–39, April
2005.

[AGIn+12] Jorge Albericio, Rubén Gran, Pablo Ibáñez, Víctor Viñals, and Jose María
Llabería. ABS: A low-cost adaptive controller for prefetching in a banked
shared last-level cache. ACM Trans. Archit. Code Optim., 8(4):19:1–
19:20, January 2012.

[arc] Intel architecture manual,
http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html.

[BC95] Jean-Loup Baer and Tien-Fu Chen. Effective hardware-based data
prefetching for high-performance processors. IEEE Trans. Comput.,
44(5):609–623, May 1995.

[Bie11] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[BIM08] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated man-
agement of multiple interacting resources in chip multiprocessors: A ma-
chine learning approach. In Proceedings of the 41st Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 41, pages 318–
329, Washington, DC, USA, 2008. IEEE Computer Society.

[BS13] Nathan Beckmann and Daniel Sanchez. Jigsaw: Scalable software-defined
caches. In Proceedings of the 22Nd International Conference on Parallel
Architectures and Compilation Techniques, PACT ’13, pages 213–224,
Piscataway, NJ, USA, 2013. IEEE Press.

[BZ96] Jon C. R. Bennett and Hui Zhang. Hierarchical packet fair queueing algo-
rithms. In Conference Proceedings on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, SIGCOMM ’96,
pages 143–156, New York, NY, USA, 1996. ACM.

91

92 Bibliography

[CFKL95] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A study of inte-
grated prefetching and caching strategies. SIGMETRICS Perform. Eval.
Rev., 23(1):188–197, May 1995.

[CGB+12] Mainak Chaudhuri, Jayesh Gaur, Nithiyanandan Bashyam, Sreenivas Sub-
ramoney, and Joseph Nuzman. Introducing hierarchy-awareness in re-
placement and bypass algorithms for last-level caches. In Proceedings of
the 21st International Conference on Parallel Architectures and Compi-
lation Techniques, PACT ’12, pages 293–304, New York, NY, USA, 2012.
ACM.

[CMT] Intel cache monitoring technology, https://software.intel.com/en-
us/blogs/2014/06/18/benefit-of-cache-monitoring.

[Cor] Corei7 processors, http://www.intel.com/content/www/us/en/processors/core/core-
i7-processor.html.

[CS07] Jichuan Chang and Gurindar S. Sohi. Cooperative cache partitioning for
chip multiprocessors. In Proceedings of the 21st Annual International
Conference on Supercomputing, ICS ’07, pages 242–252, New York, NY,
USA, 2007. ACM.

[CT99] Jamison D. Collins and Dean M. Tullsen. Hardware identification of cache
conflict misses. In Proceedings of the 32Nd Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, MICRO 32, pages 126–135,
Washington, DC, USA, 1999. IEEE Computer Society.

[DDS95] Fredrik Dahlgren, Michel Dubois, and Per Stenström. Sequential hard-
ware prefetching in shared-memory multiprocessors. IEEE Trans. Parallel
Distrib. Syst., 6(7):733–746, July 1995.

[DZK+12] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero,
and Alexander V. Veidenbaum. Improving cache management policies
using dynamic reuse distances. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-45,
pages 389–400, Washington, DC, USA, 2012. IEEE Computer Society.

[EBSH11] David Eklov, David Black-Schaffer, and Erik Hagersten. Fast modeling
of shared caches in multicore systems. In Proceedings of the 6th Inter-
national Conference on High Performance and Embedded Architectures
and Compilers, HiPEAC ’11, pages 147–157, New York, NY, USA, 2011.
ACM.

[ELMP11] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt.
Prefetch-aware shared resource management for multi-core systems. In
Proceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, pages 141–152, New York, NY, USA, 2011. ACM.

Bibliography 93

[EMLP09] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt. Coordinated con-
trol of multiple prefetchers in multi-core systems. In 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 316–326, Dec 2009.

[GAV95] Antonio González, Carlos Aliagas, and Mateo Valero. A data cache with
multiple caching strategies tuned to different types of locality. In Pro-
ceedings of the 9th International Conference on Supercomputing, ICS ’95,
pages 338–347, New York, NY, USA, 1995. ACM.

[GST13] A. Gupta, J. Sampson, and M. Bedford Taylor. Timecube: A manycore
embedded processor with interference-agnostic progress tracking. In
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XIII), 2013 International Conference on, pages 227–236, July
2013.

[GW10] Hongliang Gao and Chris Wilkerson. A Dueling Segmented LRU Replace-
ment Algorithm with Adaptive Bypassing. In Joel Emer, editor, JWAC
2010 - 1st JILP Worshop on Computer Architecture Competitions: cache
replacement Championship, Saint Malo, France, June 2010.

[HL06] I. Hur and C. Lin. Memory prefetching using adaptive stream detection.
In 2006 39th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO’06), pages 397–408, Dec 2006.

[HL09] I. Hur and C. Lin. Feedback mechanisms for improving probabilistic mem-
ory prefetching. In 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, pages 443–454, Feb 2009.

[IIH09] Yasuo Ishii, Mary Inaba, and Kei Hiraki. Access map pattern matching
for data cache prefetch. In Proceedings of the 23rd International Confer-
ence on Supercomputing, ICS ’09, pages 499–500, New York, NY, USA,
2009. ACM.

[Int16] Intel. Intel optimization manual, 2016.

[ITR] International technology roadmap for semiconductors,
http://www.itrs2.net/itrs-reports.html.

[Iye04] Ravi Iyer. Cqos: A framework for enabling qos in shared caches of cmp
platforms. In Proceedings of the 18th Annual International Conference
on Supercomputing, ICS ’04, pages 257–266, New York, NY, USA, 2004.
ACM.

[JBB+15] V. Jimenez, A. Buyuktosunoglu, P. Bose, F. P. O’Connell, F. Cazorla,
and M. Valero. Increasing multicore system efficiency through intelligent
bandwidth shifting. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 39–50, Feb 2015.

94 Bibliography

[JCMH99] Teresa L. Johnson, Daniel A. Connors, Matthew C. Merten, and Wen-
mei W. Hwu. Run-time cache bypassing. IEEE Trans. Comput.,
48(12):1338–1354, December 1999.

[JGC+12] Victor Jiménez, Roberto Gioiosa, Francisco J. Cazorla, Alper Buyukto-
sunoglu, Pradip Bose, and Francis P. O’Connell. Making data prefetch
smarter: Adaptive prefetching on power7. In Proceedings of the 21st In-
ternational Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’12, pages 137–146, New York, NY, USA, 2012. ACM.

[JHQ+08] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot,
Simon Steely, Jr., and Joel Emer. Adaptive insertion policies for manag-
ing shared caches. In Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’08, pages
208–219, New York, NY, USA, 2008. ACM.

[Jou90] Norman P. Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. In Pro-
ceedings of the 17th Annual International Symposium on Computer Ar-
chitecture, ISCA ’90, pages 364–373, New York, NY, USA, 1990. ACM.

[JTSE10] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer.
High performance cache replacement using re-reference interval predic-
tion (rrip). In Proceedings of the 37th Annual International Symposium
on Computer Architecture, ISCA ’10, pages 60–71, New York, NY, USA,
2010. ACM.

[KKD13] George Kurian, Omer Khan, and Srinivas Devadas. The locality-aware
adaptive cache coherence protocol. In Proceedings of the 40th Annual In-
ternational Symposium on Computer Architecture, ISCA ’13, pages 523–
534, New York, NY, USA, 2013. ACM.

[KPK07] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache replacement based
on reuse-distance prediction. In Computer Design, 2007. ICCD 2007. 25th
International Conference on, pages 245–250, Oct 2007.

[KS08] Mazen Kharbutli and Yan Solihin. Counter-based cache replacement and
bypassing algorithms. IEEE Trans. Comput., 57(4):433–447, April 2008.

[KW98] Sanjeev Kumar and Christopher Wilkerson. Exploiting spatial locality in
data caches using spatial footprints. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, ISCA ’98, pages
357–368, Washington, DC, USA, 1998. IEEE Computer Society.

[LFF01a] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction
& dead-block correlating prefetchers. In Proceedings of the 28th
Annual International Symposium on Computer Architecture, ISCA ’01,
pages 144–154, New York, NY, USA, 2001. ACM.

Bibliography 95

[LFF01b] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction
& dead-block correlating prefetchers. In Proceedings of the 28th
Annual International Symposium on Computer Architecture, ISCA ’01,
pages 144–154, New York, NY, USA, 2001. ACM.

[LFHB08] Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. Cache
bursts: A new approach for eliminating dead blocks and increasing cache
efficiency. In Proceedings of the 41st Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 41, pages 222–233, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[LGF01] Kun Luo, J. Gummaraju, and M. Franklin. Balancing thoughput and fair-
ness in smt processors. In Performance Analysis of Systems and Software,
2001. ISPASS. 2001 IEEE International Symposium on, pages 164–171,
2001.

[Lin01] Wi-fen Lin. Reducing dram latencies with an integrated memory hierar-
chy design. In Proceedings of the 7th International Symposium on High-
Performance Computer Architecture, HPCA ’01, pages 301–, Washington,
DC, USA, 2001. IEEE Computer Society.

[LMNP08] Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt.
Prefetch-aware dram controllers. In Proceedings of the 41st Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 41,
pages 200–209, Washington, DC, USA, 2008. IEEE Computer Society.

[LR02] Wei-Fen Lin and Steven K. Reinhardt. Predicting last-touch references
under optimal replacement. Technical report, 2002.

[LRBP01] Wei-Fen Lin, Steven K. Reinhardt, Doug Burger, and Thomas R. Puzak.
Filtering superfluous prefetches using density vectors. In 19th Interna-
tional Conference on Computer Design (ICCD 2001), VLSI in Computers
and Processors, 23-26 September 2001, Austin, TX, USA, Proceedings,
pages 124–132, 2001.

[LS11] Fang Liu and Yan Solihin. Studying the impact of hardware prefetching
and bandwidth partitioning in chip-multiprocessors. In Proceedings of
the ACM SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’11, pages 37–48, New
York, NY, USA, 2011. ACM.

[LYL87] R.L. Lee, Pen-Chung Yew, and D.H. Lawrie. Data prefetching in shared
memory multiprocessors. Jan 1987.

[McF92] Scott McFarling. Cache replacement with dynamic exclusion. In Proceed-
ings of the 19th Annual International Symposium on Computer Architec-
ture, ISCA ’92, pages 191–200, New York, NY, USA, 1992. ACM.

96 Bibliography

[MGST70] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation tech-
niques for storage hierarchies. IBM Syst. J., 9(2):78–117, June 1970.

[MM08] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch schedul-
ing: Enhancing both performance and fairness of shared dram systems.
SIGARCH Comput. Archit. News, 36(3):63–74, June 2008.

[MRG11] R. Manikantan, K. Rajan, and R. Govindarajan. Nucache: An efficient
multicore cache organization based on next-use distance. In 2011 IEEE
17th International Symposium on High Performance Computer Architec-
ture, pages 243–253, Feb 2011.

[MRG12] R Manikantan, Kaushik Rajan, and R Govindarajan. Probabilistic shared
cache management (prism). SIGARCH Comput. Archit. News, 40(3):428–
439, June 2012.

[NLS07] Kyle J. Nesbit, James Laudon, and James E. Smith. Virtual private
caches. In Proceedings of the 34th Annual International Symposium on
Computer Architecture, ISCA ’07, pages 57–68, New York, NY, USA,
2007. ACM.

[Onu] Memory systems, book chapter, http://repository.cmu.edu/ece/379/.

[OWN96] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals
&Amp; Systems (2Nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1996.

[Pan16] B. Panda. SPAC:A Synergistic Prefetcher Aggressiveness controller for
multi-core systems. IEEE Transactions on Computers, PP(99):1–1, 2016.

[Pat04] David A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71–
75, October 2004.

[PB15] Biswabandan Panda and Shankar Balachandran. CAFFEINE: A utility-
driven prefetcher aggressiveness engine for multicores. ACM Trans. Ar-
chit. Code Optim., 12(3):30:1–30:25, August 2015.

[PGG+95] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka.
Informed prefetching and caching. SIGOPS Oper. Syst. Rev., 29(5):79–95,
December 1995.

[PKK09] Pavlos Petoumenos, Georgios Keramidas, and Stefanos Kaxiras.
Instruction-based reuse-distance prediction for effective cache manage-
ment. In Proceedings of the 9th International Conference on Systems,
Architectures, Modeling and Simulation, SAMOS’09, pages 49–58, Piscat-
away, NJ, USA, 2009. IEEE Press.

Bibliography 97

[QJP+07] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and
Joel Emer. Adaptive insertion policies for high performance caching. In
Proceedings of the 34th Annual International Symposium on Computer
Architecture, ISCA ’07, pages 381–391, New York, NY, USA, 2007. ACM.

[QP06] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to partition shared
caches. In Proceedings of the 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 39, pages 423–432, Washington,
DC, USA, 2006. IEEE Computer Society.

[RDK+00] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and
John D. Owens. Memory access scheduling. SIGARCH Comput. Archit.
News, 28(2):128–138, May 2000.

[RKB+09] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang,
and Yan Solihin. Scaling the bandwidth wall: Challenges in and avenues
for cmp scaling. In Proceedings of the 36th Annual International Sym-
posium on Computer Architecture, ISCA ’09, pages 371–382, New York,
NY, USA, 2009. ACM.

[Ros06] Sheldon M. Ross. Introduction to Probability Models, Ninth Edition.
Academic Press, Inc., Orlando, FL, USA, 2006.

[Sha05] A.K. Sharma. Text Book Of Correlations And Regression. Discovery
Publishing House, 2005.

[SK11] Daniel Sanchez and Christos Kozyrakis. Vantage: Scalable and efficient
fine-grain cache partitioning. SIGARCH Comput. Archit. News, 39(3):57–
68, June 2011.

[SKP10] Derek L. Schuff, Milind Kulkarni, and Vijay S. Pai. Accelerating multicore
reuse distance analysis with sampling and parallelization. In Proceedings
of the 19th International Conference on Parallel Architectures and Com-
pilation Techniques, PACT ’10, pages 53–64, New York, NY, USA, 2010.
ACM.

[SKS+11] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A. Van
Norstrand, B. J. Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q.
Nguyen, B. Blaner, C. F. Marino, E. Retter, and P. Williams. Ibm power7
multicore server processor. IBM Journal of Research and Development,
55(3):1:1–1:29, May 2011.

[SMKM12] Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry.
The evicted-address filter: A unified mechanism to address both cache
pollution and thrashing. In Proceedings of the 21st International Con-
ference on Parallel Architectures and Compilation Techniques, PACT ’12,
pages 355–366, New York, NY, USA, 2012. ACM.

98 Bibliography

[SMKP07] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of hard-
ware prefetchers. In 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, pages 63–74, Feb 2007.

[SPE] SPEC CPU benchmarks, howpublished = https://www.spec.org/cpu/,
note = Accessed: 2016-07-17.

[STS08] Livio Soares, David Tam, and Michael Stumm. Reducing the harmful ef-
fects of last-level cache polluters with an os-level, software-only pollute
buffer. In Proceedings of the 41st Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 41, pages 258–269, Washington,
DC, USA, 2008. IEEE Computer Society.

[SV95] M. Shreedhar and George Varghese. Efficient fair queueing using deficit
round robin. SIGCOMM Comput. Commun. Rev., 25(4):231–242, Octo-
ber 1995.

[SWA+06] Stephen Somogyi, Thomas F. Wenisch, Anastassia Ailamaki, Babak Fal-
safi, and Andreas Moshovos. Spatial memory streaming. In Proceedings
of the 33rd Annual International Symposium on Computer Architecture,
ISCA ’06, pages 252–263, Washington, DC, USA, 2006. IEEE Computer
Society.

[SYX+15] Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip B.
Gibbons, Michael A. Kozuch, and Todd C. Mowry. Mitigating prefetcher-
caused pollution using informed caching policies for prefetched blocks.
ACM Trans. Archit. Code Optim., 11(4):51:1–51:22, January 2015.

[TH04] Masamichi Takagi and Kei Hiraki. Inter-reference gap distribution re-
placement: An improved replacement algorithm for set-associative caches.
In Proceedings of the 18th Annual International Conference on Supercom-
puting, ICS ’04, pages 20–30, New York, NY, USA, 2004. ACM.

[VMS12] Ricardo A. Velasquez, Pierre Michaud, and André Seznec. BADCO: Be-
havioral Application-Dependent Superscalar Core Model. In SAMOS XII:
International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation, Samos, Greece, July 2012.

[WAM13] Tripti S. Warrier, B. Anupama, and Madhu Mutyam. An application-
aware cache replacement policy for last-level caches. In Proceedings of
the 26th International Conference on Architecture of Computing Systems,
ARCS’13, pages 207–219, Berlin, Heidelberg, 2013. Springer-Verlag.

[WJH+11] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi,
Simon C. Steely, Jr., and Joel Emer. Ship: Signature-based hit predic-
tor for high performance caching. In Proceedings of the 44th Annual

Bibliography 99

IEEE/ACM International Symposium on Microarchitecture, MICRO-44,
pages 430–441, New York, NY, USA, 2011. ACM.

[WJM+11] Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C. Steely, Jr.,
and Joel Emer. PACMan: Prefetch-aware cache management for high
performance caching. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44, pages 442–
453, New York, NY, USA, 2011. ACM.

[WM95] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications
of the obvious. SIGARCH Comput. Archit. News, 23(1):20–24, March
1995.

[XL09] Yuejian Xie and Gabriel H. Loh. Pipp: Promotion/insertion pseudo-
partitioning of multi-core shared caches. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA ’09,
pages 174–183, New York, NY, USA, 2009. ACM.

[Zha95] Hui Zhang. Service disciplines for guaranteed performance service in
packet-switching networks. Proceedings of the IEEE, 83(10):1374–1396,
Oct 1995.

[ZL03] X. Zhuang and H. H. S. Lee. A hardware-based cache pollution filtering
mechanism for aggressive prefetches. In Parallel Processing, 2003. Pro-
ceedings. 2003 International Conference on, pages 286–293, Oct 2003.

[ZZZ00] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A permutation-based
page interleaving scheme to reduce row-buffer conflicts and exploit data
locality. In Proceedings of the 33rd Annual ACM/IEEE International
Symposium on Microarchitecture, MICRO 33, pages 32–41, New York,
NY, USA, 2000. ACM.

100 Bibliography

List of Figures

2.1 An example showing how hard partitioned cache looks 18

3.1 Impact of implementing BRRIP policy for thrashing applications 32
3.2 a) Benefit of discrete prioritization b) Ratio of Early Evictions 33
3.3 (a) ADAPT Block Diagram and b) example for Footprint-number compu-

tation . 35
3.4 Performance of 16-core workloads . 41
3.5 MPKI(top) and IPC(below) of thrashing applications 43
3.6 MPKI(top) and IPC(below) of non-thrashing applications 43
3.7 Impact of Bypassing on replacement policies 44
3.8 Performance of ADAPT with respect to number of applications for 4 and

8-cores . 45
3.9 Performance of ADAPT with respect to number of applications for 20 and

24-cores . 45
3.10 Performance on Larger Caches . 45

4.1 Scatter plot showing positive correlation between L2 Prefetch-fraction ver-
sus L2 Prefetch-accuracy for the baseline aggressive prefetching: Pearson
correlation coefficient: 0.76 and Spearman rank correlation: 0.68. 51

4.2 Scatter plot showing positive correlation between L2 Prefetch-fraction ver-
sus L2 Prefetch-accuracy for Feedback directed prefetching: Pearson cor-
relation coefficient: 0.80 and Spearman rank correlation: 0.75. 51

4.3 Scatter plot showing positive correlation between L2 Prefetch-fraction ver-
sus L2 Prefetch-accuracy for Access Map Pattern Matching prefetching: Pear-
son correlation coefficient: 0.68 and Spearman rank correlation: 0.65. . . 52

4.4 Ratio of LLC miss service times of demand to prefetch requests increases
with increase in the ratio of total prefetch requests to that of demands in
the system. AMST : Average Miss Service Time. 52

4.5 Schematic diagram of Band-pass Prefetching. PI(D)R: Prefetch Issue(Drop)
Rate, pref-fraction: prefetch-fraction and HP Thresh: High-pass Thresh-
old . 58

4.6 Performance of prefetcher aggressiveness control mechanisms. GM: Geo-
metric Mean. 61

101

102 List of Figures

4.7 Ratio of LLC miss service times demand to prefetch and number of prefetch
to demands in the system under Aggressive Prefetching 63

4.8 Ratio of LLC miss service times demand to prefetch and number of prefetch
to demands in the system under Band-pass Prefetching 63

4.9 Increase in Bus Transactions as compared to No Prefetching. 64
4.10 Normalized IPCs of each benchmarks of workload 3. 65
4.11 Sensitivity to Workload types. 66
4.12 Impact of including L1 Prefetch Requests on Throttling Decisions of Equa-

tion 4.1. 66
4.13 Impact of checking TP/TD ratio on Prefetcher Throttling Decisions. . . 67
4.14 Sensitivity of Band-pass Prefetching to Prefetch Drop Rate (PDR). GM:

Geometric Mean . 67
4.15 Performance of prefetcher aggressiveness control mechanisms. GM: Geo-

metric Mean. 68
4.16 Increase in Bus Transactions as compared to No Prefetching. 69
4.17 Sensitivity to Workload types. 69

5.1 Use distribution of prefetched cache block of a 1MB last level cache. . . 77
5.2 Use distribution of prefetched cache block of a 16MB last level cache. . . 77
5.3 Performance comparison of state-of-the-art prefetch management mecha-

nisms against an EquallyManaged mechanism. 81
5.4 Analyzing workload number 5. 82
5.5 Performance of the enhanced state-of-the-art prefetch management mech-

anisms . 83
5.6 Analyzing workload number 5 under enhanced policies. 83

