UNIVERSITE

THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l'Université Bretagne Loire en Co-tutelle Internationale avec Durham University, Royaume-Uni

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention: Chimie
Ecole doctorale Sciences de la Matière
présentée par

Ludovic Eberlin

préparée au sein de l'UMR 6226 CNRS-Université de Rennes 1 Institut des Sciences Chimiques de Rennes
UFR Structure et Propriétés de la Matière et

> Centre for Sustainable Chemical Processes, Department of Chemistry, Durham University

Novel Applications of Polyfunctionalised

Organoboron and
Nitroso Compounds

Thèse soutenue à Durham
le 15 janvier 2016
devant le jury composé de:

Prof. Christopher Moody
The University of Nottingham
Prof. Ian R. Baxendale
Durham University
Prof. Christophe Darcel
Université de Rennes 1

Abstract

This thesis presents the reactivity of dienylboronated compounds towards arylnitroso and carbonylnitroso derivatives and its use in the synthesis of heterocyclic and polycyclics compounds (see graphical abstract).

The first study focused on the reactivity of dienylboronate compounds with arylnitroso derivatives resulting in pyrrole or furan products. The outcome and efficiency of the reaction is related to the boron on the dienyl moiety and the solvent used. Depending on the conditions, pyrroles, boronated MIDA ester oxazines or nitrones could be obtained. A one-pot strategy was then applied to synthesise oxazoline derivatives using nitrones as an intermediate.

Theoretical, as well as experimental, work has supported that the formation of the pyrrole was obtained by a regioselective nitroso Diels-Alder reaction/rearrangement/borate elimination cascade process. Details on the nitrone formation have not been clarified, but further investigations are on-going.

Secondly, attention was focused on the reactivity of dienylboronate compounds with carbonylnitroso derivatives. Contrary to the arylnitroso species, the nature of the carbonylnitroso had a dramatic impact on reactivity. On the one hand, similar reactivity towards the formation of pyrroles and boronated MIDA ester oxazines was observed, however, by employing a higher electron-deficient carbonylnitroso species, the product resulting from a nitroso-ene reaction was obtained.

Ene-product was used as the key intermediate for the synthesis of different polycyclic compounds. A multicomponent, one-pot, Diels-Alder/allylboration procedure was optimised to yield various structures depending on the nature of the dienophile and the aldehyde.

To diversify the chemistry of the ene-product another sequence was designed using the pyrrole synthesis. A multi-step pathway was optimised to afford novel fused bicylic oxazinepyrrole products.

Résumé français :

Ce travail de thèse présente l'étude de la réactivité de diènes incorporant un atome de bore en présence de composés de type nitroso, permettant le développement de nouvelles voies de synthèse d'hétérocycles polyfonctionnalisés pésentant une grande diversité structurale .

La première partie de ce travail est consacrée à la synthèse des différents diènes borylés utilisés dans le cadre de cette thèse. Différentes voies de synthèse ont été employés suivant le type de substitution du bore et de la composante diénique. La première méthode se base sur l'hydroboration de l'enyne correspondant, engendrant la formation de diènes borylés tricoordonnés (Bpin et $\mathrm{B}(\mathrm{OEt})_{2}$). Une modification de la substitution sur l'atome de bore peut ensuite être réalisée, fournissant les diènes borylés tetra-coordinés (BMIDA, $\mathrm{BF}_{3} \mathrm{~K}$ et BDEA). La seconde méthode, quant à elle, seulement utilisée pour la synthèse de diènes borylés tetracoordinés BMIDA, est basée sur des réactions de couplage catalysées au palladium.

En ce qui concerne la réactivité des diènes borylés en présence de nitrosoarènes, la nature du produit final ainsi que l'efficacité de la réaction sont étroitement dépendantes de la substitution sur l'atome de bore ainsi que du solvant utilisé pour la réaction. Lorsqu'un diène borylé possédant un atome de bore hybridé sp^{2} (Bpin), ou un atome de bore hybridé sp^{3} solvolysable (BDEA^{2} et $\mathrm{BF}_{3} \mathrm{~K}$) est utilisé, la formation du N -aryl pyrrole est observée dans des solvants polaires protiques (MeOH) ou aprotiques (DCM). Le rendement, ainsi que la cinétique des réactions sont majoritairement influencés par les positions et propriétés électroniques des substituants sur le diène. La formation des composés N-aryl pyrroles est favorisée lorsque des diènes peu encombrés et plus riches en électrons sont employés. Cependant lorsqu'un diène hybridé sp^{3} (BMIDA), stable dans les conditions de réaction, est employé, la formation de l'oxazine substitué par un atome de bore, résultant d'une réaction d'hétéro Diels-Alder est observée. La cycloaddition s'opère avec un total régiocontrôle dans la
majorité des cas en faveur de l'oxazine-6-borylée, la formation du second isomère n'étant observée que dans un seul exemple.

Des investigations théoriques (calculs théoriques ab initio des états de transition) ainsi que pratiques (étude du comportement des régioisomères oxazine-6-borylée et oxazine-5-borylée en milieu acide et basique) ont permis de proposer un mécanisme explicitant la formation des composés N-arylpyrroles. La formation des dérivés du pyrrole est présentée comme le résultat de la cascade, commençant par une cycloaddition régioselective asynchrone (Nitroso DielsAlder), continuant par deux étapes de réarrangement entraînant d'abord l'ouverture spontané de l'oxazine puis la recyclisation en pyrroline, et finissant par l'élimination du borate.

Le résultat de la réaction utilisant le diène Bpin peut être totalement modifié en changeant le solvant. Lorsque la réaction est opérée dans de l'acétate d'éthyle ou du toluène, le produit majoritaire identifiée est un composé N-aryl pyrrole substitué par un groupe arylnitrone. La synthèse "one-pot" d'oxazolines bicycliques par cycloaddition [3+2] a ensuite été réalisée utilisant la formation du composé incorporant la fonction nitrone comme intermédiaire. La diastéréosélectivité de la cycloaddition varie suivant les nitrosoarènes utilisés. Malgré le potentiel majeur la synthèse de ces oxazolines hautement fonctionalisées, les rendements moyens et la diversité limitée de cette cycloaddition (N-phenyl maleimide) restent à l'heure actuelle une limitation pour la valorisation de cette séquence.

Une seconde étude a été orientée sur la réactivité des diènes borylés en présence de dérivés carbonylnitroso. Au contraire des dérivés arylnitroso, les composés carbonylnitroso ne sont pas stables à température ambiante. Il est donc nécessaire de les générer "in-situ". Les conditions optimales de formation du composé carbonylnitroso, issu de l'hydroxylamine correspondante, utilisent une oxydation aérobie catalysée au cuivre. En présence des diènes borylés, les dérivés carbonylnitroso engendrent la formation de trois différents produits suivant l'hybridation du bore, ainsi que les propriétés électroniques du carbonylnitroso. Tout d'abord la même chimiodivergence est observée lorsque les diènes tetra-coordinés (BMIDA et $\mathrm{BF}_{3} \mathrm{~K}$) ont été employés. D'un côté, le diène borylé BMIDA entraîne la synthèse régiosélective des oxazines-6-borylées avec des rendements convenables, de l'autre, le diène $\mathrm{BF}_{3} \mathrm{~K}$ engendre la formation des composés N-aryl pyrrole avec des rendements moyens, la nature du carbonylnitroso n'ayant aucun impact dans le résultat de la réaction. Concernant le diène tri-coordiné Bpin, le produit majoritaire de la réaction est directement lié à la nature de l'hétéroatome situé en alpha du carbonyl du composé nitroso. Lorsque que la substitution est de nature -NHR, la formation du pyrrole avec un faible rendement est observée. En revanche si le carbonylnitroso est suffisamment désactivé par un groupement -OR, le produit majoritaire obtenu avec un rendement satisfaisant résulte d'une réaction de type nitroso-ène.

Ce produit, issu de la réaction nitroso-ène, a ensuite été utilisé comme intermédiaire clé pour la synthèse de différents hétérocycles polycycliques. La première séquence envisagée, a été la séquence Diels-Alder/allylboration. Cette séquence "one-pot", multicomposant a été optimisée donnant avec une haute diastéréosélectivité les composés polycycliques avec contrôle de quatre centres stéréogènes dont un quaternaire. Quatre différents squelettes ont été obtenus suivant le diénophile et l'aldéhyde employés. Lorsque l'anhydride maléique est utilisé, une acylation intramoléculaire a lieu pour former une lactone bicyclique pontée. Enfin, si l'arylaldéhyde est remplacé par le trans-cinnamaldéhyde, la formation du composé 5-hydroxy 6-benzoyl oxazine spiranique est observée, par une possible oxydation aérobie radicalaire.

La seconde synthèse, permettant d'obtenir des N-aryl pyrrolo-oxazines fusionnées, a pris avantage de la fonction N-hydroxy carbamate présente sur le diène. Il est possible de fonctionnaliser par acylation, propargylation ou allylation le groupement OH . En utilisant le
produit allylé, le nouveau diène dihydrooxazinique substitué en position 1 par Bpin a été synthétisé par métathèse cyclisante (ène-ène). En raison de la présence du diène borylé, la méthodologie de synthèse de N-aryl pyrrole a été employée pour fournir, avec d'excellents rendements, les produits N-aryl pyrrolo-oxazines fusionnées. Enfin, la méthodologie "onepot" Diels-Alder/allylboration a également été testée. Néanmoins, seulement le produit résultant de la cycloaddition [4+2] a été isolé avec un rendement modéré.

Contents

Abstract 1
Résumé français : 3
Contents 8
Publication list 12
Acknowledgements 13
Abbreviations 16
Literature Review 19
I. Introduction 20
II. Boron-substituted 1,3-(hetero)dienes in multicomponent processes 21
II. 1 1-Boron-substituted 1,3-dienes 21
II.2. 2-Boron-substituted 1,3-dienes 28
II.3. 1-Boron-substituted 1,3-heterodienes 34
II.3.a. 1-Oxo-4-borono-1,3-dienes 34
II.3.b. 1-Aza-4-borono-1,3-dienes 38
II.4. Boron-substituted heterodendralene 41
III. Nitroso derivatives as dienophile 44
III.1. Generation of the reactive nitroso species 44
III.2. Nitroso compounds in Diels-Alder reactions 46
III.2.a. Reactivity of nitroso compounds towards dienes 46
III.2.b. Regioselectivity of the nitroso Diels-Alder reactions 47
III.3. Some applications of nitroso Diels-Alder reactions 49
III.3.a. Arylnitroso derivatives as dienophiles 49
III.3.b. Carbonylnitroso derivative as dienophile 53
Results \& Discussions 61
I. Research Plan 62
II. Diene syntheses 63
II.1. Enyne hydroboration 63
II.2. Dehydrobromination 67
II.3. Alkyne bromoboration and Negishi coupling 68
II.4. Halosulfonylation of 1,3-dienylboronic ester 241c 68
II.5. Coupling reaction of vinylboronic acid MIDA ester derivatives 69
II.5.a. From (E)-2-bromovinylboronic acid MIDA ester 69
II.5.b. From 1-bromovinylboronic acid MIDA ester 70
II.6. Modification of the boron substituents 71
III. Boronated dienes and arylnitroso compounds 72
III.1. Reaction of 1-dienylboronate pinacolate esters with arylnitroso compounds 72
III.2. Reaction of tetracoordinated 1-borodienes with arylnitroso compounds 77
III.3. Impact of the boron substituent on the rate of the reaction 84
III.4. Mechanistic aspects of the reaction 1-borodienes with arylnitroso compounds 88
III.4.a. Computational study 88
III.4.b. Additional experimental study 91
III.4.c. The Nitroso Diels-Alder with boronated diene; a reversible process? 99
III.5. Transformations of borono-1,6-dihydro-1,2-oxazine derivatives 100
III.6. The one-pot nitrone formation/1,3-dipolar cycloaddition sequence 102
III.6.a. Nitrone synthesis from 1-dienylboronate pinacolate esters 103
III.6.b. The one-pot procedure nitrone formation/1,3-dipolar cycloaddition 106
III.6.c. Mechanistic aspects 112
III. 7 Summary 117
IV. Boronated dienes and carbonylnitroso compounds 119
IV.1. Reaction of 1-dienylboronate pinacolate esters with carbonylnitroso compounds. 119
IV.2. Reaction of tetracoordinated 1-borodienes with carboylnitroso compounds. 125
IV.3. Mechanistic aspects 127
IV.3.a. The aerobic copper oxidation step 127
IV.3.b. The Diels-Alder/ring contraction sequence 128
IV.3.c. The ene reaction: Impact of the boron substituents 129
V. The ene-adduct as key intermediate in cascade reactions 133
V.1. The Diels-Alder/allyboration sequence. 133
V.1.a. The Diels-Alder step 134
V.1.b. The Diels-Alder/allyboration one-pot process 139
V.1.c. Mechanistic aspects 152
V.2. Modification of the boron substituent 154
V.3. The metathesis/arylnitroso Diels-Alder/ring contraction sequence 155
V.3.a. Synthesis of the O-substituted hydroxycarbamates 156
V.3.b. The ring closing metathesis (RCM) of hydroxamates 358a-c 158
V.3.c. The arylnitroso Diels-Alder/ring contraction sequence 167
V.3.d. The Diels-Alder/allylboration sequence. 171
VI. Summary 172
Conclusions \& Perspectives 174
I. Conclusions 175
II. Perspectives 178
Experimental Section 180
General experimental 181
Diene syntheses 183
A. Enyne hydroboration 183
B. Halosulfonylation of 1,3-dienylboronic ester 241c 191
C. Coupling reaction of vinylboronic acid MIDA ester derivatives 192
Boronated dienes and arylnitroso compounds 198
A. Reaction of 1-dienylboronate pinacolate esters with arylnitroso compounds 198
B. Reaction of tetracoordinated 1-borodienes with arylnitroso compounds 205
C. Mechanistic aspects of the reaction 1-borodienes with arylnitroso compounds 221
D. Transformations of borono-1,6-dihydro-1,2-oxazine derivatives 224
E. The one-pot nitrone formation/1,3-dipolar cycloaddition sequence 226
Boronated dienes and carbonylnitroso compounds 260
A. Reaction of 1-dienylboronate pinacolate esters with carbonylnitroso compounds. 260
B. Reaction of tetracoordinated 1-borodienes with carboylnitroso compounds. 263
The ene-adduct as key intermediate in cascade reactions 268
A. The Diels-Alder/allyboration sequence 268
B. Modification of the boron substituent 285
C. The metathesis/arylnitroso Diels-Alder/ring contraction sequence 287
D. The Diels-Alder/allylboration sequence 304
References 305

Publication list

Peer-reviewed publications produced from this thesis:

1) Tripoteau, F.; Eberlin, L.; Fox, M. A.; Carboni, B.; Whiting, A. Chem. Commun., 2013, 49, 5414-5416.
2) Eberlin, L.; Tripoteau, F.; Carreaux, F.; Whiting, A.; Carboni, B. Beilstein J. Org. Chem. 2014, 10, 237-250.
3) Eberlin, L.; Carboni, B.; Whiting, A. J. Org. Chem., 2015, 80, 6574-6583.

Acknowledgements

Firstly, I would like to thank my supervisors Dr Bertrand Carboni and Prof. Andrew Whiting for giving me the opportunity to work on this project. Thanks to their advice, assistance and support through these years, my journey as a PhD student has been very enriching. I know that boron chemistry is one of their areas of preference, but I have to say that even though it was highly stimulating, boron chemistry can be very frustrating as well. I must confess that since I started this project, I now have nightmares every time I'm travelling and staying in a B\&B. For 99.99% of the people around the world, B\&B means Bed \& Breakfast; whereas to me it now means Boron \& Boron. Anyway, it's too late for me now; every hero has his curse, and this will be mine.

Like a brave character in an adventure fiction, I travelled miles and miles, through all of France, from my native cosy Alsace to rainy Brittany, in Rennes, where my life as "only" a PhD student started. I met and worked there, with different friendly and helpful people who made my adaptation in this new environment easier. I would like to thank the two lab-partners Dr. Rémy Hemealaere and Dr. Aurelie Macé who allowed me to work in a relaxed and pleasant atmosphere, and our lab neighbour, my favourite Peruvian, Johal Ruiz, with whom I had some really good moments. I'm also grateful to Dr. Francois Carreaux and Dr. Fabienne Berrée who were there for me when I needed them, and to Dr. Fabien Tripoteau, who did substantial preliminary work on the subject and was always available when I contacted him.

After finishing the first half of the journey, I arrived at a turning point, when prompted by my increased audacity, I started to see everything around me bigger; it was time for me to move from Brittany to GREAT Britain. Thus, I crossed the sea to reach a very beautiful city in the North East of England; Durham. Before going, I had only heard rumours and legends about
this place, like people there do not speak English, but Geordie English, for example. It's totally true. So, after some time of adaptation, I succeeded to fit in and really had a nice time with all my colleagues, Dr. Farhana Ferdousi, Dr. Alexander Gehre, Dr. Wade Leu, Dr. Adam Calow, Hesham Raffat Shawky Haffez, Enrico La Cascia, Katrina Madden, David Chisholm, Sergey Arkhipenko, Alba Pujol, John Purdie, and all the students who came to work with us. As I promise, a would like to give a special mention to Dave, ma biche, who helped me to crystallise some of my compounds, and to Enrico and Wade for their support, especially every time we went to The Swan and Three Cygnets and to Fabio's. By working on this interesting project, I also had the opportunity to work in collaboration with Dr. Mark Fox who provided the theoretical DFT calculations within this thesis, and I'm thankful for all these results.

For a journey as a PhD thesis in chemistry to be successful, you need to rely on some other partners. Thus, I would like to thank all the staff involved in the following services; the CRMPO (Centre Régional de Mesures Physiques de l'Ouest), and the NMR department from Rennes University, and also the NMR, the mass and the crystallographic department from Durham University for all their help and expertise.

I'm also grateful to la Région Bretagne and to the Department of Chemistry of Durham University for the funding which allowed me to work on this project.

Cependant je n'oublie pas les personnes qui sont toujours en France, et pour un expatrié, il est toujours bon de rentrer chez soi. Ce prochain paragraphe est dédié aux personnes que malheureusement je n'ai que peu vues durant ces années que ce soit à Orléans ou en Alsace. Petite dédicace à mes deux familles qui m'attendent à bras ouverts à chaque fois que je retrouve mes terres d'origine. Je voudrais premièrement remercier ma famille; mes parents, frère et sœur pour leur soutien durant ce périple. Je voudrais ensuite glisser un mot pour ma famille de substitution, au sein de laquelle je partage de nombreuses amitiés de longues dates.

Merci pour les mémorables moments que l'on passe ensemble à chacun de mes retours. Dans de nombreuses années certains murs s'en souviendront encore.

I would like to thank all the other friendly people I was involved with during these three years; my flatmates, basketball mates, and many others I met during social events.

Finally, because nice stories always finish with a happy ending, the last words are for a very special person to me. I'm so glad that we succeeded to cross the polystyrene boarder between our two benches. I came to know you through the months, and I discovered a wonderful and funny person. Mona, thank you for everything, sooooo much.

Now it's time, for the most brave of you, to see what I've done the past years. Good luck and see you for other adventures!!!!!

Abbreviations	
Å: Angstrom	dd: Doublet doublet
Ac: Acetyl	DDQ: 2,3-Dichloro-5,6-dicyano-1,4-
AM1: Austin model	benzoquinone
aq.: Aqueous	de: Diastereomeric excess
Ar: Aryl	DEA: Diethanolamine
ASAP: Atmospheric pressure solids	DFT: Density functional theory
analysis probe	DIBAL: Diisobutylaluminium
atm: Atmosphere	DMAP: 4-Dimethylaminopyridine
$\mathrm{B}_{2} \mathrm{pin}_{2}$: Bis (pinacolato)diboron	DMF: Dimethylformamide
BHT: Butylated hydroxytoluene	DMSO: Dimethylsulfoxide
Bn: Benzyl	dppe: 1,2-Bis(diphenylphosphino)ethane
Boc: tert-Butyloxycarbonyl	dpph: 1,2-Bis(diphenylphosphino)hexane
Bu, ${ }^{n} \mathrm{Bu}$: n-Butyl	dr: Diastereomeric ratio
${ }^{\text {t Bu: }}$ tert-Butyl	EDC: 1-Ethyl-3-(3-
Bz: Benzoyl	dimethylaminopropyl)carbodiimide
COD: 1,5-Cyclooctadiene	ee: Enantiomeric excess
Δ : heat	EI: Electron impact
d:Doublet	endo: Endocyclic
DA: Diels-Alder	eq.: Equivalent
dba: Dibenzylideneacetone	Eq.: Equation
DBU: 1,8-Diazabicycloundec-7-ene	ESI: Electronspray ionisation
DCM: Dichloromethane	ESR: Electron spin resonance

Et: Ethyl	MeCN: Acetonitrile
EWG: Electron withdrawing group	MIDA: methyliminodiacetic acid
exo: Exocyclic	MOM: Methoxymethyl ether
fod: 6,6,7,7,8,8,8-Heptafluoro-2,2-dimethyl-3,5-octanedione	M.p.: Melting point m. s.: Molecular sieves
Fur: Furyl	MW: Molecular weight
HDA: Hetero Diels-Alder	N : Normality
hex: Hexyl	NMO: N -oxide 4-methylmorpholine
HOMO: Highest occupied molecular orbital	NMR: Nuclear magnetic resonance
HPLC: High pressure liquid chromatography	NOE(SY): Nuclear Overhauser effect (spectroscopy)
Hz, MHz: hertz, megahertz	Norphos: 2,3- bis(diphenylphosphino)bicyclo[2.2.1]hept-
Ipc_{2} : Diisopinocamphenyl	5-ene
IR: Infrared	[O]: Oxidation
IRC: Internal reaction coordinate	OPT: Option
J : Coupling constant	Pd/C: Palladium on charcoal
K: Kelvin	PG: Protecting group
LCT: Liquid chromatography time of flight	Ph: Phenyl
LDA: Lithium diisopropylamide	pin: Pinacol
LUMO: Lowest unoccupied molecular orbital	PM3: Parameterised model PMB: 4-Methoxybenzylether
M: Molar	${ }^{n}$ Pn: n-Pentyl
Me: Methyl	ppm: Parts-per million

${ }^{i} \mathrm{Pr}$: iso-Propyl

psi: pound force per square inch
QTOF: Quadrupole time of flight

Ra-Ni: Nickel de Raney
R_{f} : Retention factor
r.t.: Room temperature
s: Singlet

SPhos: 2-Dicyclohexylphosphino-2',6'-
dimethoxybiphenyl
TBDMS: tert-Butyldimethylsilyl
TBDPS: tert-Butyldiphenylsilyle

TBS: Tributylsilyl
TEMPO: (2,2,6,6-Tetramethylpiperidin-1-
yl)oxyl
TES: Triethylsilyl

Tf: Triflate

THF: Tetrahydrofuran
TLC: Thin layer chromatography

TMS: Trimethylsilyl
TOS/Ts: Tosyl
TQD: Tandem quadrupole detector

TS: Transition state

Literature

Review

I. Introduction

Multicomponent reactions involving catalytic or non-catalytic step(s) have become essential tools in the field of synthetic organic chemistry. ${ }^{1,2,3,4,5,6,7,8,9}$ Several of these, which now bear the name of their inventors: Strecker; Hantzsch; Biginelli; Mannich; Passerini or Ugi; have been known and widely used for many years, and the development of new multicomponent processes still receives considerable attention. Indeed, these reactions offer a number of attractive advantages including simple experimental procedures, high convergence, and access to diverse structural and functional systems, often with high levels of atom economy. Boron compounds have long been ignored in this attractive area of research despite their wide range of reactivity. ${ }^{10,11}$ In 1993, however, Petasis and co-workers reported a new synthesis of allylamines via stepwise condensation of a secondary amine, para-formaldehyde and (E)styryl boronic acid. ${ }^{12}$ This was the first report of this type of transformation, which is now referred as the Petasis borono-Mannich reaction, and was later extended to a wide variety of other aldehydes, such as glyoxylic acid (for example), boronic acids, esters or trifluoroborates and other amine partners. ${ }^{13,14,15}$ Subsequently, other multicomponent reactions involving trialkylborane, ${ }^{16,17}$ alkenyl-, ${ }^{18,19}$ aryl-, ${ }^{20,21}$ allyl-, ${ }^{22}$ allenyl-, ${ }^{23}$ and alkynyl boronic acids or esters ${ }^{24,25,26}$ have been reported in the literature. Boron substituted 1,3-dienes and heterodienes have also been successfully used as key elements in such strategies. ${ }^{27,28}$

II. Boron-substituted 1,3-(hetero)dienes in multicomponent processes

II. 1 1-Boron-substituted 1,3-dienes

The first Diels-Alder reaction involving a 1 -boron-substituted 1,3-diene was described in 1972 by Mikhailov and co-workers, ${ }^{29}$ and it was only fifteen years later that the groups of Vaultier and Hoffmann highlighted the real potential of these compounds in tandem cycloaddition $[4+2] /$ allylboration processes. ${ }^{30}$ These dienes reacted with activated dienophiles, such as maleic anhydride 2b or N-phenyl maleimide 2a, at relatively high temperatures $\left(80^{\circ} \mathrm{C}\right.$ in toluene) to afford exclusively the endo-isomers 3a-b (Scheme 1). The resulting cycloadducts, which contain an allylboronate functionality, then reacted with aldehydes to afford the corresponding homoallylic alcohols 5a-b with high diastereoselectivity (de > 95\%).

Scheme 1. 1-Boron-substituted 1,3-diene in a tandem cycloaddition [4+2]/allylboration sequence.

In the case of methyl acrylate or acrylonitrile, a mixture of endo and exo diastereomers was obtained regioselectively at higher temperature, in a $1: 1.6$ to $1: 1.8$ ratio. By contrast, the [4+2] cycloaddition proved to be completely regioselective when performed on the catechol derivative 6 in the absence of solvent. ${ }^{31}$ The use of a stoichiometric amount of EtAlCl_{2} as

Lewis-acid catalyst provided a lowering of the reaction temperature, a shortening of the reaction time and good stereocontrol (Scheme 2). ${ }^{32}$

Scheme 2. Lewis-acid catalyst in the tandem cycloaddition [4+2]/allylboration sequence.

Alternatively, simple heating of a mixture of a 1-bora-1,3-diene 10, a dienophile $\mathbf{1 2}$ and an aldehyde $\mathbf{1 1}$ gave direct access to polysubstituted cyclohexenes $\mathbf{1 3}$ that were difficult to prepare using the previously reported two steps methodology. ${ }^{33} \mathrm{~A}$ concise and efficient synthesis of an advanced precursor of Clerodin 14, a powerful antifeedant natural product, has been reported using a strategy based on this three-component process (Scheme 3). ${ }^{34}$

Scheme 3. Synthesis of an advanced precursor of Clerodin 14.

Extension of this work to the intramolecular version is depicted in Scheme 4. The bicyclic lactone 19 was obtained stereoselectively from a diene-yne 15 in a one-pot process with control of the relative stereochemistry of the five stereogenic centers. ${ }^{35}$

Scheme 4. Intramolecular DA/allylboration sequence.

Concerning the access to enantioenriched compounds by using chiral boron substituents, no diastereoselectivity was observed with the (+)-pinanediol ester 20a and N-phenyl maleimide 2a. ${ }^{36}$ 1,3-Dienyldioazaborecane 20b, derived from a chiral aminodiol of C_{2} symmetry, underwent a faster cycloaddition, as already observed for similar tetra-coordinated boron species, ${ }^{37,38}$ but giving only a modest $2.2: 1$ ratio of diastereisomers. By contrast, the cycloadduct 24 was obtained as a single product with excellent stereoselectivity in 84% yield, however, this could probably be attributed to the special structure of the dienophile 23 used (Scheme 5). ${ }^{39}$

Scheme 5. Diastereoselective DA reaction with N-phenyl maleimide 2a and 4-phenyltriazoline-3,5-dione 23.

Finally, interesting results were reported with methyl acrylate $\mathbf{1 2}$ and dienes derived from tartrate esters 25 (9/1 de, 70\% ee for the major isomer) (Scheme 6). ${ }^{40}$

Scheme 6. Asymmetric synthesis of a α-hydroxyalkyl cyclohexane.

In 2003, Hall and co-workers reported the application of electron-rich alkoxy-functionalised dienyl boronates 29 in one-pot tandem Diels-Alder/allylboration reactions. ${ }^{41}$ In the case of the 4-methoxy-substituted diene 29, if the first step occurred at $80^{\circ} \mathrm{C}$ in toluene, it was impossible to obtain the allylation products 32, even by heating at higher temperature or by activation with EtAlCl_{2}. By contrast, with the 3-OTES derivative 33, bicyclic, threecomponent adducts 36 were isolated in good yields up to 92%. A single diastereomer was detected with maleimide 2a, the diastereoselectivity being lower with methyl acrylate and vinyl oxazolidinone (Scheme 7).

OTES $=\mathrm{OSiEt}_{3}$

Scheme 7. Tandem [4+2]-cycloaddition/allylboration of 3- and 4-alkoxy-dienyl boronates.

A one-pot, palladium-mediated cycloisomerisation of ene-ynes 37a-d was applied to the synthesis of the boronated diene 38a-d, which was not isolated, but directly used in a one-pot, Diels-Alder reaction/allylboration sequence. This efficiently generated, in high yields, tricyclic structures 40a-k with control of the four stereogenic centers created (Scheme 8). In the presence of Grubbs II catalyst, a skeletal isomer 41 was produced from $\mathbf{3 7 b}$. If the [4+2]cycloadduct 42 was obtained with N-phenyl maleimide 2a, it failed to give homoallylic alcohols, probably due to steric hindrance. ${ }^{42}$

$$
\begin{aligned}
& \mathrm{R}^{1}=\mathrm{Ph}, 4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{Et} \\
& \mathrm{R}^{2}=\mathrm{N}-\mathrm{Ph}, \mathrm{O}
\end{aligned}
$$

Scheme 8. Metal-mediated cycloisomerisation/Diels-Alder reaction/allylboration sequence.

An elegant, three-component process was developed by Hilt and co-workers using a cobaltcatalysed Diels-Alder reaction as the key step in a one-pot, cycloaddition/allylboration sequence. ${ }^{43,44}$ With (S, S)-Norphos as chiral ligand, the desired alcohol 45 was isolated in 87% yield and 71\% ee (Scheme 9).

Scheme 9. Cobalt-catalyzed Diels-Alder/allylboration sequence.

In a related process, the same group reported a two-steps cascade reaction interconnecting four components to afford dihydroaromatic compounds 48 with a high degree of diastereoselectivity and good yields. After cycloaddition and allylboration, the resulting product was oxidized to afford the corresponding tetrahydronaphthalenes 50 (Scheme 10). ${ }^{45}$

Scheme 10. A two step reaction sequence for the synthesis of tetrahydronaphthalenes $\mathbf{5 0}$.

Most of the tandem sequences, in which boron substituted 1,3-dienes were involved, were based on the first Diels-Alder cycloaddition, as shown above. However, a recent report of Norsikian, Beau and co-workers described a novel sequence of tandem transformations which combined the Petasis reaction, intramolecular [4+2]-cycloaddition, cross metathesis and

Michael reaction. This process gave access to new polycyclic heterocyclic scaffolds 58a-f with good yields and complete stereocontrol (Scheme 11). ${ }^{46}$ One year later, the same research team synthesised, based on the same chemistry, more than 30 examples of products with the scaffold as $\mathbf{5 5}$, and proposed a mechanism based on theroretical calculations which supported the involvement of a Diels-Alder reaction occuring through an endo approach, with formation of the product with a cis-ring junction. ${ }^{47}$

Scheme 11. Tandem sequence based on the Petasis, borono-Mannich reaction as first key step.

Recently, a new sequence using bis-borobutadiene 62 was developped to provide 1,4-diaromatic-diol as well as skeleton like 59, 60 and 61. The sequence started with an allylboration to provide the allenylboronate species $\mathbf{6 4}$ or $\mathbf{6 7}$ with high diastereoselectivity. The allenyl boronate intermediate formed during the first step exerted axial chirality with the substituted allenyl moiety and also a stereogenic carbon center. Depending on the nature of the partner used in the sequence, the outcome of the reaction differed. In the case of a monoaldehyde, a second equivalent of aldehyde did react with moderate to excellent enantioselectivity to afford skeleton 68, whereas the dialdehyde reacted in an intramolecular
manner to provide 1,4-diaromatic-diol structure 65 (Scheme 12). In every case, the formation of the major diastereoisomer was explained by steric or π-electron conjugation effects in the Zimmerman-Traxler transition state. ${ }^{48}$

luisols A
59

60

dihydroaltersolanol A
61

Scheme 12. Reaction of bis-borobutadiene 62 with different aldehydes and dialdehydes.

II.2. 2-Boron-substituted 1,3-dienes

In contrast to 1,3-dienes functionalised with a boron atom in position 1 , only a few studies have been reported on the related dienes substituted in position 2 . These compounds are often difficult to synthesise and have, at least for the less substituted derivatives, a strong tendency to undergo Diels-Alder dimerisation even at r.t. ${ }^{49,50}$ This process was carefully investigated by Carreaux, Cossio and co-workers with regard to theoretical and experimental aspects. ${ }^{51}$ When the dechlorination was carried out in the presence of an aldehyde, the dimer 71 was
immediately converted to the expected homoallylic alcohols 73a-e in moderate to good yields as mixtures of E / Z-isomers (Scheme 13).

Scheme 13. One-pot tandem dimerization/allylboration reaction of 1,3-diene-2-boronate 69.

In 2005, Welker and co-workers started a series of studies on the synthesis of 2-boronsubstituted 1,3-dienes and their reactivity in tandem reactions, concentrating mainly upon [4+2]-cycloadditions followed by cross-coupling reactions. Potassium and tetra- n butylammonium buta-1,3-dienyl-2-trifluoroborates 74a-b were synthesised in good yields from chloroprene and showed no propensity to dimerise. ${ }^{52,53}$ Exploration of the reactivity of these dienyl trifluoroborates began with Diels-Alder reactions with ethyl acrylate 75, methyl vinyl ketone 12 and N-phenyl maleimide 2a. The boron-containing cycloadducts, isolated with high yields, were subsequently cross-coupled using palladium catalysis. A one-pot sequence was also developed, first heating the boron diene with the dienophile, then adding an aryl halide 76, $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (3 eq.) and finally refluxing the mixture in EtOH or MeOH for 5 h (Scheme 14). Reactions with various aryl halides 76, substituted by electron-donating or -withdrawing groups and heteroaromatic halides occurred in moderate to
good yields (41% to 64% over two steps) with a preference for the para- over metaregioisomers (2.3:1 to 5.7:1 ratio).

Scheme 14. Tandem Diels-Alder/Cross-Coupling reactions of trifluoroborates 74a-b.

Using the same methodology, the preparation and reactivity in tandem Diels-Alder/palladium cross-coupling sequences of a 2-diethanolaminoboron-substituted 1,3-diene 78 were investigated. ${ }^{54}$ This diene has proved to be significantly more reactive and more regioselective in [4+2]-cycloadditions compared to the corresponding trifluoroborate. The cycloadducts were then efficiently cross-coupled to iodobenzene 81a, 4-trifluoromethyl-1-iodobenzene 81b and 4-iodoanisole 81c. The regioselectivity observed in the initial Diels-Alder reactions were maintained after cross-coupling (Scheme 15).

Scheme 15. Diels-Alder/cross-coupling reactions of 78.

More recently, new 2-boron substituted 1,3-dienes containing diol and triol ligands were prepared under basic conditions that prevent the dimerisation by-product formation. These four-coordinate boron complexes participated in the same tandem Diels-Alder/Suzuki crosscoupling sequence, which appeared to be palladium-catalysed. The final cycloadducts were obtained in good yields (63% to 83%). ${ }^{55}$

Finally, Welker and co-workers described metal catalysed tandem Diels-Alder/hydrolysis reactions of 2-boron substituted 1,3-dienes. ${ }^{56,57}$ Boron-dienes containing various ligands reacted with maleimides in the presence of rhodium and copper catalysts using BINAP as ligand (Scheme 16). NMR analysis of the crude product showed traces of the boron cycloadduct, highlighting that mechanism proceeded, first with a Lewis-acid catalysed [4+2]cycloaddition, and then by Lewis-acid assisted C-B bond protonation.

83

2a, 79, 84a-b

20-82\%
85a-d

$$
\mathrm{R}=\mathrm{H}, \mathrm{Ph} \quad \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{Me}
$$

Scheme 16. Metal catalysed tandem Diels-Alder/hydrolysis reactions.

In a different approach which exploited another aspect of the reactivity of boron-substituted diene, 2,3-bis[(pinacolato)boryl]-1,3-dienes 86, synthesised by treatment of 1,1[bis(pinacolato)boryl]alkenes with excess of 1-bromo-1-lithioethene, was engaged in a triple cascade aldehyde addition. ${ }^{58,59} 1,5$-Anti-diols 88a-k were produced via successive diboration, allylboration reactions and finally elimination of boryl and boroxy groups. Four C-B bonds were converted into two $\mathrm{C}-\mathrm{C}$ and one $\mathrm{C}=\mathrm{C}$ bonds with total stereocontrol in each step (Scheme 17). ${ }^{60}$

Scheme 17. Synthesis of anti-1,5-diols $\mathbf{8 8}$ by triple aldehyde addition.

Dienes 89a-d were synthesised through a hydroboration/vinylidene insertion sequence. The resulting dienes were then used to synthesise the boronic amide derivatives 91a-h, by addition of N-DIBAL aldimine 90a-d. Oxidative workup followed by hydolysis led to the formation of β-allenylamines 92a-h with high stereoselectivities in moderate to excellent yields. Products

92 were employed as precursors for the synthesis of enantiomerically pure N-heterocyclic products 94, 95 and 96 and β-amino acids $93 .{ }^{61}$

Scheme 18. Preparation of β-allenylamines 92 and their use in the synthesis of enantiopure products.

Another approach based on allenylborane chemistry, using copper(II) catalysed reaction and $\mathrm{B}_{2} \mathrm{pin}_{2} 99$ as boron donor, was developped recently to synthesise 2-boron-substituted 1,3dienes 100a-l. The resulting dienes 100a-l were then engaged: 1) in Diels-Alder cycloadditions to provide 102a-c; 2) in Pd catalysed cross-coupling to give 104a-b; 3) in an oxidation to yield α, β-unsaturated ketone 103; and 4) in a homologation/allylboration sequence to afford the diene 101 (Scheme 19). ${ }^{62}$

Scheme 19. Preparation of polysubstituted 2-boron-1,3-dienes and their use in different reactions.

II.3. 1-Boron-substituted 1,3-heterodienes

II.3.a. 1-Oxo-4-borono-1,3-dienes

In 2003, first examples of a novel diastereoselective routes to α-hydroxyalkyl dihydropyrans were reported; a sub-structure frequently encountered in the core of a wide-range of natural products. ${ }^{63,64,65}$ As in the carbocylic variant, the intermediate cyclic allylboronate $\mathbf{1 0 8}$, prepared from 3-boronoacrolein 105, was the key element of a sequential DielsAlder/allylation. In this case, the catalytic asymmetric version was carried out efficiently in the presence of the Jacobsen's tridentate chromium(III) complex 107 with high diastereo- and enantio-selectivity (Scheme 20).

Scheme 20. Catalytic enantioselective three-component hetero-[4+2] cycloaddition/allylboration sequence.

The first application of this strategy in the synthesis of natural products and analogues concerned (5S,6S)-6-acetoxy-5-hexadecanolide 110, the oviposition attractant pheromone of a mosquito capable of transmitting the West Nile Virus. ${ }^{63}$ Thereafter, several members of the natural styryllactone family 111-114, displaying cytotoxic and antitumor activities, have been also prepared according to this methodology. ${ }^{66,67,68}$ The combination of the catalytic hetero-Diels-Alder/allyboration sequence with a ruthenium-catalysed isomerisation gave access to the 6,8-dioxabicyclo[3.2.1] octane skeleton of (+)-iso-exo-brevicomin 115 (Scheme 21). ${ }^{69}$

Scheme 21. Synthesis of natural products using the catalytic enantioselective HDA/allylboration sequence.

When a Z:E-mixture of 2-substituted enol ethers 116 was used as dienophile, only cycloadducts resulting from a selective reaction of the Z-isomer were present in the final product, that prevented the tedious preparation of an isomerically pure starting material. While the second allylboration step required conditions more severe than those employed in the case of ethyl vinyl ether, this approach was successfully applied in the key steps of the total synthesis of a member of the thiomarinol class of marine antibiotics $\mathbf{1 1 9}$ (Scheme 22). ${ }^{70,71}$

Scheme 22. Total synthesis of a thiomarinol derivative 119

More recently, Hall and co-workers described the total synthesis of a complex 20-membered marine macrolide, palmerolide A 125, a potent and unusually selective antitumor agent. ${ }^{72}$ In this case, the cyclic allylboronate 108' prepared from the [4+2]-cycloaddition reacted with the starting 3-boronoacrolein $\mathbf{1 0 5}$ which then played the role of the aldehyde partner. The hydroxyl group of the resulting homoallylic alcohol was then engaged in a Claisen-Ireland rearrangement to afford an advanced intermediate $\mathbf{1 2 4}$ for the completion of the total synthesis (Scheme 23).

Scheme 23. Synthesis of an advanced intermediate $\mathbf{1 2 4}$ for the east fragment of palmerolide A $\mathbf{1 2 5}$.

II.3.b. 1-Aza-4-borono-1,3-dienes

A few years before the description of the tandem process concerning the 3-boronoacrolein 105, Hall and co-workers performed a multicomponent reaction involving 1-aza-4-borono-1,3-dienes $\mathbf{1 2 6}$ as key starting materials for the preparation of α-hydroxylalkyl piperidines 128a-h. These scaffolds are present in several natural products, particularly in the alkaloid family of palustrine. The tandem process started with the hetero-[4+2]-cycloaddition of an hydrazonodiene with maleimides, as electron-poor dienophiles, followed by an allylboration (Scheme 24). ${ }^{73}$ This sequence proceeded with high stereocontrol, as already observed with the carbon and oxygen analogues. In addition, the absolute stereochemistry of the four newly created stereogenic centers were controlled by using a chiral auxiliary ($>95 \%$ de in the case of an L-proline derived diene).

$$
\begin{aligned}
& R^{1}, R^{2}=\mathrm{Me}, \mathrm{Me} ; \mathrm{H}, \mathrm{Ph} ; \mathrm{Me}, \mathrm{Ph} ; \mathrm{H}, \mathrm{Ac} \\
& \mathrm{R}^{3}=\mathrm{Ph}, \mathrm{Me} \quad \mathrm{R}^{4}=\mathrm{Ph}, 4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4},{ }^{i} \mathrm{PrCH}_{2}
\end{aligned}
$$

Scheme 24. Bicyclic piperidines from tandem aza-[4+2]-cycloaddition/allylboration.

Diversification on the different units, diene, dienophile and aldehyde, has been described. Concerning the maleimide material, substituent R^{3} did not exert any significant effect on the process. Other dienophiles have also been tested (acrylates, maleic anhydride), giving no products or unsatisfactory results. A large range of aldehydes, as aliphatic, electron-rich or electron poor benzaldehyde, could be used. Only very hindered aldehydes did not afford any product and both mono- and di-substituted arylhydrazines have proven to give the best yields, probably due to the higher reactivity of the corresponding hydrazones. Furthermore, the double bond of $\mathbf{1 2 9 b}$ was selectively hydrogenated under palladium on charcoal, while hydrogenolysis of the hydrazine moiety occurred in the presence of Raney nickel (Scheme 25).

Scheme 25. Hydrogenolysis reactions of hydrazinopiperidines.

Following these results obtained in the liquid phase, Hall and co-workers also examined the suitability of a solid-phase strategy. Finally, due to problems of purity encountered with an N arylmaleidobenzoic acid functionalised resin, ${ }^{74}$ or availability of the supported aldehyde partner, a four-component variant of this chemistry was developed in solution phase. The preformation of the aza-butadiene component was not necessary and this gave access to a library of 944 polysubstituted piperidines with sufficient purity suitable for biological screening after purification by HPLC with mass-based fraction collection. ${ }^{75}$

The flexibility and usefulness of this chemistry was also demonstrated in target-oriented synthesis with the synthesis of (-)-methyl palustramate and other 2,6-disubstituted piperidines. ${ }^{76,77}$ A chiral sulfinimide $\mathbf{1 3 3}$ was used as dienophile and a sequential three component aza-[4+2]-cycloaddition/allylboration/retro-sulfinyl-ene sequence was performed to afford 1,2,5,6-tetrahydropyridine $\mathbf{1 3 4}$ with high regio- and diastereo-selectivity (Scheme 26).

132

Scheme 26. Tandem aza[4+2]-cycloaddition/allylboration/retrosulfinyl-ene sequence.

II.4. Boron-substituted heterodendralene

On the basis of these precedents, boronated 2 -vinyl- α, β-unsaturated aldehydes 137 were designed to fully exploit the synthetic potential of these classes of organoboranes. These compounds, that can be named boronated [3]-1-heterodendralenes by analogy with the corresponding carbotrienes, ${ }^{78}$ allow rapid access to polycyclic heterocycles with control of multiple stereocenters. ${ }^{79}$ Thus, sequential Diels-Alder/hetero Diels-Alder reactions (or vice versa) can be carried out chemoselectively depending upon the intrinsic reactivity of each 1,3dienyl system or the order of introduction of the reagents. Furthermore, the allylboronic ester moiety, created in the first cycloaddition step or in the combination of two Diels-Alder reactions, can be engaged in an allylation reaction, which constitutes an additional asset for creating structural diversity (Scheme 27).

Scheme 27. Boronated heterodendralenes 137 in [4+2]-cycloadditions.

As 3-boronoacrolein $\mathbf{1 0 5}$ esters which have been used in metal-catalysed inverse electron demand [4+2]-cycloadditions with enol ethers, $\mathbf{1 3 7}$ reacted with ethyl vinyl ether $\mathbf{1 0 6}$ in the presence of $\mathrm{Yb}(\mathrm{fod})_{3}$ to afford the corresponding 2-alkoxy-3,4-dihydro-5-vinyl-2H-pyran 138. In the presence of electron-poor alkenes, as N-phenyl maleimide 2a, maleic anhydride $\mathbf{2 b}$,
activated azo compounds or naphtoquinone, $\mathbf{1 3 8}$ underwent normal Diels-Alder reactions to afford the corresponding cycloadducts $\mathbf{1 3 9}$ as single diastereomers (Scheme 28). These reactions can also be advantageous when conducted in a one-pot process without formation of any product resulting from a first cycloaddition of the 1,3-butadienyl moiety. Various further transformations were then carried out taking advantage of the presence of an allylboronate moiety, for example, oxidation and, more interestingly (in terms of additional diversity), addition to aldehydes, which provided access to the corresponding homoallylic alcohols 142ac in $77-86 \%$ yields.

Scheme 28. Synthesis of tricyclic imides derivatives.

Alternatively, as the cycloadduct $\mathbf{1 3 8}$ bears a boronic ester group in an allylic position, the allylation and the normal-electron demand [4+2]-cycloaddition steps can be reversed, thus generating supplementary skeletal diversity from the same starting heterodendralene. As an illustration, $\mathbf{1 3 8}$ and 4-nitrobenzaldehyde $\mathbf{3 5}$ were allowed to react at r.t. to afford $\mathbf{1 4 3}$, which underwent a further cycloaddition with N-phenyl maleimide 2a to furnish the single tricyclic compound 144 (Scheme 29).

Scheme 29. Synthesis of $\mathbf{1 4 4}$ via a HDA/allylboration/DA sequence.

The initial boronic ester group of $\mathbf{1 4 5}$, the direct precursor of $\mathbf{1 3 7}$, can be also converted into a trifluoroborate substituent by treatment with KHF_{2} in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ to increase the reactivity of the dienyl moiety towards electron-poor dienophiles. It was directly engaged in a Diels-Alder cycloaddition with N-phenyl maleimide 2a at $50^{\circ} \mathrm{C}$ in acetone for 12 h in the presence of various aldehydes to afford diols 147 as major diastereisomers ($>95 \%$) and in good overall yields (Scheme 30).

Scheme 30. Diels-Alder/allylboration sequence.

III. Nitroso derivatives as dienophile

The nitroso hetero-Diels-Alder (HDA) reaction was first described six decades ago by Wichterle ${ }^{80}$ and Arbuzov ${ }^{81}$ and since then, it has been demonstrated to be a useful chemical tool for the creation of unique structural and functional diversity. ${ }^{82}$

First investigations on this strategy were carried out on arylnitroso derivatives which show higher stability compared to the carbonylnitroso derivatives. In fact, most arylnitroso compounds are stable solids whereas carbonylnitroso does not exist in this form, and need to be prepared in situ because of their 1 ms lifetime at infinite dilution. ${ }^{83}$ Despite this drawback, carbonylnitroso compounds have been predominantly studied for the last few decades because of their higher versality as nitroso donor reagents. In the next sections, the preparation of the nitroso species will be discussed, and a brief overview of their reactivity and applications in synthesis.

III.1. Generation of the reactive nitroso species

Arylnitroso species do not require in situ preparation and can be directly purchase or easily prepared. ${ }^{84}$ Concerning the carbonylnitroso species, numerous approaches were developed in order to further expand the synthetic applications of nitrosocarbonyl Diels-Alder reactions. The most common way to obtain carbonylnitroso derivatives is by oxidation of the corresponding hydroxamic acid derivative. Different oxidation protocols were successfully used such as, periodate, ${ }^{85}$ Swern, ${ }^{86}$ Dess-Martin, ${ }^{87}$ and silver or lead oxide. ${ }^{88}$ Later, transition metal catalysed systems based on ruthenium, irridium, vanadium and iron catalysts ${ }^{89}$ in
association with peroxides as oxidant, have been used. Recently, milder useful conditions emerged, based on copper salt, and aerobic oxidation in the presence of amine co-catalysts, ${ }^{90}$ manganese oxide ${ }^{91}$ and photoredox catalysis using either rose bengal or ruthenium catalysts (Scheme 31). ${ }^{92}$

Strong oxidation systems:

 Periodate; Swern; Dess-Martin; lead or silver oxides.
Catalytic transition metal

systems:

Ruthenium; iridium; copper; vanadium; iron.

Mild oxidation systems:
aerobic oxidation: copper salt, amine, air. MnO_{2}.
photoredox catalysis: RB, light, air; ruthenium, amine, light, air.

150

Scheme 31. In situ generation of nitrosocarbonyl compounds.

Other pathways starting from diverse reagents can be also used to generate the carbonylnitroso species 149 , as oxidation of nitrile oxides 151 using NMO, ${ }^{93}$ nitrocarbene rearrangement of $\mathbf{1 5 3}$ using rhodium catalyst, ${ }^{94}$ retro-Diels-Alder reactions of 9,10 dimethylanthracene cycloadducts $\mathbf{1 5 4}$ under high temperature conditions ${ }^{95}$ and photochemical cleavage of 1,2,4-oxadiazole 4-oxides 155 (Scheme 32). ${ }^{96}$

Scheme 32. In situ generation of nitrosocarbonyl compounds using various regaents.

III.2. Nitroso compounds in Diels-Alder reactions

III.2.a. Reactivity of nitroso compounds towards dienes

Nitroso compounds are valuable partners in Diels-Alder reactions. However, when the diene 156 possesses an allylic hydrogen (in red on scheme 33), a possible competition could take place between the nitroso Diels-Alder and nitroso ene reactions (Scheme 33). This competition has been pointed out by both Whiting et al. ${ }^{90 \mathrm{a}}$ and Alaniz and et al. ${ }^{90 \mathrm{~b}}$ using carbonyl nitroso derivatives.

Scheme 33. Competition between [4+2]-cycloaddition and nitroso-ene reaction

Even if the nitroso Diels-Alder reaction has been generally accepted as the more rapid reaction compared to the nitroso-ene reaction, three paramaters play a major role in the ratio between the cycloadduct and the ene-product. Firstly, the solvent has a dramatic impact on the
ratio between cycloadduct/ene-product, which varies from a $25: 1$ to a $4: 1$ mixture. However the origin of this solvent effect remains unclear. ${ }^{90 \mathrm{a}}$ Secondly, the conformations of the diene need to be considered. For the Diels-Alder reaction to take place a s-cis conformation for diene is required. A competition study was performed using 1,3-cyclohexadiene and 2,3-dimethyl-1,3-butadiene in the presence of a substrate susceptible to undergo an intramolecular nitroso ene-reaction. The study showed that the Diels-Alder cycloadduct was exclusively formed with 1,3-cyclohexadiene (s-cis conformation), whereas if 2,3-dimethyl-1,3-butadiene (a mixture of s-cis and s-trans conformations in solution) was used, the intramolecular nitroso ene-product was predominantly formed (77\%). Thus, the conformation of the diene has an important impact as well, and nitroso ene-reaction can be favoured if the reactivity of the diene towards the Diels-Alder was decreased. ${ }^{90 \mathrm{~b}}$ Lastly the influence of a possible metalnitroso complex can be considered, esspecially when arylnitroso derivatives are used. Predominant formation of the nitroso ene-adduct, in the presence of a Diels-Alder trapping agent can take place. ${ }^{97}$

III.2.b. Regioselectivity of the nitroso Diels-Alder reactions

Kresze et al. ${ }^{98}$ performed several studies, which indicated that substituted arylnitroso compounds 160a-e react regioselectively with unymmetric dienes 161a-f. The regiochemistry of the reaction depends upon the electronic properties of the substituent on the aromatic ring (Scheme 34).

Scheme 34. Regioselective outcome of the reaction between 4-substituted arylnitroso compounds and unsymmetric dienes.

As for the arylnitroso derivatives, some studies ${ }^{99}$ have been performed to analyse the behaviour of unsymmetric dienes towards carbonylnitroso compounds in intermolecular nitroso Diels-Alder reactions. The results can be rationalised and features of the carbonylnitroso Diels-Alder reactions can be summarised; Firstly, 1-substituted 1,3-dienes 163 exert better regioselectivity than 2 -substituted 1,3-dienes 165; Secondly, electronic properties of the diene have a major impact; Thirdly for higher selectivity, stronger electronic properties (electron withdrawing or electron donating groups) were required; Lastly, in the case of intermolecular reactions, solvents do not have an important impact on the regioselectivity (Scheme 35).

Scheme 35. Regioselectivity of intermolecular carbonylnitroso Diels-Alder reaction.

III.3. Some applications of nitroso Diels-Alder reactions

III.3.a. Arylnitroso derivatives as dienophiles

A couple of examples using arylnitroso compounds for the synthesis of molecules with biological interests were published. Streith and co-workers ${ }^{100}$ prepared the mitomycin skeleton using a sequence starting with a nitroso Diels-Alder reaction between dienal compounds 167 a-b and nitrosobenzene 160a, to afford compound 168a-b. A cascade process beginning with an enolisation (b), followed by hetero-Cope rearrangement (c), prototropy and rearomatisation (d), to finish an intramolecular nucleophilic addition and dehydration (e, f) was described to provide 171a-b. Oxidation (g) using MnO_{2} led to the formation of the final compounds 172a-b (Scheme 36).

reaction conditions: a-f; ethanol (dry), $50^{\circ} \mathrm{C}, 2$ days $\mathrm{g} ; \mathrm{MnO}_{2}$

Scheme 36. Preparation of the skeleton of mytomycin A.

Danishefsky et al., ${ }^{101}$ presented an efficient approach towards the synthesis of the epoxybenzazocine core present in some natural products. For this purpose, a nitroso DielsAlder reaction using $\mathbf{1 7 4}$ and $\mathbf{1 7 5}$ was used to afford the key intermediate $\mathbf{1 7 6}$ in 70% yield.

Multiple steps including aziridination and Heck arylation, led to the formation of the structure 177 bearing the epoxybenzazocine skeleton 178 (Scheme 37).

Scheme 37. Synthesis of analogues of FR 900482 based on a $2 H-1,5$-epoxy-benzazocine core.

During the same year, the same group published the total synthesis of mitomycin $\mathrm{K} \mathbf{1 8 5} .{ }^{102}$ The nitrobenzyl derivative $\mathbf{1 7 9}$ was used as a precursor of the corresponding nitroso compound. First, the (1-methoxy-1,3-butadienyl)lithium $\mathbf{1 8 0}$ was used to prepare the carbinol intermediate 181. Then, using photochemical redox conditions, nitroso intermediate $\mathbf{1 8 2}$ was formed providing the fused core oxazine $\mathbf{1 8 3}$ by intramolecular nitroso Diels-Alder reaction, which, under these photoredox conditions, was transformed into compound $\mathbf{1 8 4}$ forming the tricyclic scaffold of mytomycin (Scheme 38). No additional explanation has been given to explain the oxidation of the alcohol $\mathbf{1 8 2}$ group into the ketone $\mathbf{1 8 3}$ during the photoredox reaction.

Scheme 38. Synthesis of the precursor 184 for the total synthesis of mitomycin K $\mathbf{1 8 5}$.

The discovery of aminophosphonic derivatives as biologically active molecules led Marchand and co-workers to study the reactivity of 1-phosphono-1,3-butadienes with nitroso derivatives, and especially o-nitrosotoluene $\mathbf{1 6 0 f}{ }^{103}$ Concise experimental and theorotical studies of the cycloaddition between diene 186a-c with o-nitrosotoluene 160 f , showed that the isomer $\mathbf{1 8 7}$ was predominantly formed. The resulting oxazine $\mathbf{1 8 7}$ possesses multiple sites for functionalisation, namely the $\mathrm{N}-\mathrm{O}$ bond, the $\mathrm{C}=\mathrm{C}$ double and the phosphonate moeity. Depending on the sequence used, multiple interesting scaffolds $\mathbf{1 8 8}, \mathbf{1 8 9}, 190$ and 191 were synthesised (Scheme 39).

$$
\begin{aligned}
& R^{1}=\mathrm{Et}, \mathrm{Bn} \\
& \mathrm{R}^{2}=\mathrm{H}, \mathrm{TBDMSO}
\end{aligned}
$$

186a-c
160f

1) dihydroxylation
187
2) dihydroxylation
3) protection
4) N-O cleavage

5) leaving group insertion
6) N-O cleavage
7) basic epoxide formation

190

Scheme 39. Synthesis of aminophosphonic derivatives.

Recently, a synthesis of protected (α-branched)-2-pyrrolylamines was described using 1,2dihydropyridine derivatives 192a-j and nitrosobenzene 160a. ${ }^{104}$ After formation of the DielsAlder adduct, addition of CuCl (0.2 eq.) in MeOH caused the formation of the pyrrole derivative 194a-j, by radical N-O cleavage, rearrangement process and final copper mediated oxidation (Scheme 40).

$$
\begin{aligned}
& \mathrm{PG}=\mathrm{Ac}, \mathrm{CBz}, \mathrm{PhCO}, \text { Tos } \\
& \mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{Ph}, \mathrm{PhCC}, \mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{CH}_{2} \mathrm{COOCH}_{3}
\end{aligned}
$$

Scheme 40. Protected (α-branched)-2-pyrrolylamines synthesis.

Kirby and co-workers ${ }^{105}$ studied the reaction of thebaine, a natural product, with arylnitroso derivatives. All arylnitroso compounds $\mathbf{1 6 0}$ used in these reactions underwent the cycloaddition in good to excellent yields (65-99\%). Further modifications of derivative 196ae emphasised the possibility to handle natural products containing dienes as well as their homologues for futher functionalisation (Scheme 41).

Scheme 41. Arylnitroso Diels-Alder reaction on thebaine 157.

III.3.b. Carbonylnitroso derivative as dienophile

Diels-Alder cycloaditions of carbonylnitroso derivatives have been widely studied and numerous synthetic applications have been presented over the years. A few examples from the literature are presented in the next section.

Alkaloid derivatives are interesting targets due to their wide-range of biological activities, and new methodologies are constantly being developed to enlarge the synthesis of these scaffolds. Among the numerous alkaloids known, tropane derivatives 201, as well as alkaloids from the Amaryllidecea family, like narciclasnine 207, can be prepared via intermolecular carbonylnitroso Diels-Alder reactions.

Thus, the total synthesis of (-)-epibatidine has been achieved by Kobayashi and co-workers ${ }^{106}$ using chiral carbonylnitroso compound 197 in the presence of the diene 198. A mixture of
three cycloadducts 199, 199' and 199" was obtained with moderate selectivity. Further modifications of cycloadduct 199' provided (-)-epibatidine 200 (Scheme 42).

199' +

Scheme 42. Total synthesis of (-)-epibatidine 173.

Hudlicky et al. presented a synthetic pathway for the total synthesis of narciclasnine 207. ${ }^{107}$ Oxidation of nitroso precursor $\mathbf{2 0 3}$ in the presence of the diene $\mathbf{2 0 2}$ afforded the cycloadduct $\mathbf{2 0 4}$ in 70\% yield. A Suzuki-Miyaura cross-coupling using the boronic acid $\mathbf{2 0 5}$ followed by cleavage of the $\mathrm{N}-\mathrm{O}$ bond provided molecule 206 as a potential intermediate towards the synthesis of narciclasnine 207 (Scheme 43).

Scheme 43. Synthesis of an intermediate for the total synthesis of narciclasnine 207.

The total synthesis of marine alkaloids (-)-lepadin A, B and C from the family decahydroquinoline has been performed starting from 208. ${ }^{108}$ Intramolecular nitroso DielsAlder reactions led to the formation of a mixture of two diastereoisomers, 209 and 209'. The ratio between the diastereoisomers was proved to be solvent dependent. By using an aqueous medium, the diastereoselectivity increased towards the formation of isomer 209'. Subsequent modifications led to the formation of the desired natural alkaloids 211a-c (Scheme 44).

Scheme 44. Total synthesis of (-)-lepadin A, B and C 211a-c.

Other classes of alkaloids, like molecules bearing a pyrrolidizine core 217 have been synthesised based on such an intramolecular strategy. Yokochi et al. were able to achieve the total synthesis of (+)-loline $\mathbf{2 1 6}$ using compound $\mathbf{2 1 3}$ as starting material. ${ }^{109} \mathrm{~A}$ carbonylnitroso Diels-Alder reaction provided bicyclooxazine 214 and 214' as a mixture of two diastereoisomers. Screening conditions showed that higher temperature gave better yields but lower selectivity. Changing the solvent system from an apolar solvent to an aqueous medium reversed the selectivity of the reaction. The synthesis of $(+)$-loline was completed after further functionalisations (Scheme 41).

Scheme 45. Total synthesis of (+)-loline 216.

In addition to alkaloid synthesis, different research groups have focused their attention on the synthesis of azasugar and nucleoside derivatives. Miller and co-workers ${ }^{110}$ have contributed to this field by developing the preparation of the key intermediate $\mathbf{2 2 1}$. The synthesis started with the carbonylnitroso Diels-Alder reaction between the chiral nitroso species 218 and cyclopentadiene 219, providing 220 as the major isomer. A five step pathway using $\mathbf{2 2 0}$ afforded key intermediate $\mathbf{2 2 1}$ in a $\mathbf{3 6 \%}$ overall yield. This carbocyclic nucleoside core $\mathbf{2 2 1}$ is present in neplanocin A 222, aristeromycin 223b or 5'-noraristeromycin 223a (Scheme 46).

Scheme 46. Synthesis of key intermediate 221, a precursor to neplanocin A 222, aristeromycin 223b and 5'noraristeromycin 223a.

Azasugar synthesis can be achieved using nitroso Diels-Alder methodology using asymmetric diene 224a-e providing oxazine cycloadducts 226a-d and 226'a-d in good yields (70-90\%) and diastereoisomeric excesses. Dihydroxylation of the major isomers 226a-d afforded intermediate 227a-d in moderate to excellent yields. Results of the N-O cleavage reaction are substrate-dependent, and only the compound bearing the following substituents; $\left(\mathrm{R}^{1}=\right.$ $\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{OBn} \mathbf{2 2 7 d}$), led to the formation of the desired pyrrolidine ring in a 85% yield as a mixture of two diastereoisomers 228d and 228d' (80/20) (Scheme 47). ${ }^{111}$

Scheme 47. Synthesis of pyrrolidine azasugar derivatives.

Among natural products containing a diene moiety in their skeleton, steroidal dienes, and more precisely ergosterol, have shown interesting behaviour towards Diels-Alder reactions. This molecule, and other related structures, have been used for years for the design of new biologically active compounds. Thus, Miller and co-workers in 2009 described the reactivity of carbonylnitroso derivative 229a-f in the presence of ergosterol acetate 230. ${ }^{112}$ By this method, the synthesis of novel C_{5} and C_{8} disubstituted sterol analogues was achieved. Oxazine 231a-f was obtained in low to good yields. In fact, the regioselectivity was impacted by the R^{1} substituent on the nitroso species 229a-f. If R^{1} was a phenyl or a p-Me-phenyl moiety 229a and 229b respectively, oxazines 232a-b were predominantly formed. These compound were never isolated due to a [3,3]-sigmatropic rearrangement which afforded 233a-b as the major products. In all other cases, regioisomers 231c-f were obtained as single compounds.

229a-f
 $\xrightarrow[\substack{\text { DCM/MeOH } \\ 0^{\circ} \mathrm{C}}]{{ }^{n} \mathrm{Bu}_{4} \mathrm{NIO}_{4}}$

[3,3] rearrangement

Scheme 49. Functionalisation of ergosterol acetate $\mathbf{2 3 0}$ by carbonylnitroso Diels-Alder reaction.

Results

\&

Discussions

I. Research Plan

The initial research plan was to combine 1-boron-substituted 1,3-dienes and nitroso compounds in pericyclic reactions and to explore the scope and limitations of this chemistry (Scheme 50). In particular, the study of the influence of different parameters towards the nitroso Diels-Alder reaction was envisaged i.e.:

- The nature of the boron substituent (hybridisation sp^{2} versus sp^{3})
- The electronic properties and the position of the substituents on the diene $\left(\mathrm{R}^{1}, \mathrm{R}^{2}\right.$ and R^{3})
- The nature of the nitroso partner (arylnitroso and carbonylnitroso derivatives).

The second part of the project was to functionalise [4+2]-oxazine cycloadducts. Indeed, oxazines 236 and 236' are interesting building blocks giving access to numerous functionalised compounds. Hence, it was envisaged to explore the reactivity of:

- The $\mathrm{C}=\mathrm{C}$ double bond
- The N-O bond
- The allylborane moiety

By taking advantage of this chemistry, novel synthetic sequences could be considered.

Scheme 50. General preliminary thesis research plan.

II. Diene syntheses

The syntheses of the dienes used for this study were performed according to different procedures. The choice of one method or the other was mainly driven by the nature of the boron substituent on the final diene and the availability of the starting materials.

II.1. Enyne hydroboration

Catalytic hydroboration using Schwartz reagent $\mathbf{2 4 0}$ was first used. ${ }^{113}$ Starting enynes 238b and 238c were commercially available, whereas enyne 238a had to be prepared starting from β-bromo styrene 237. Sonogashira cross-coupling using trimethylsilylacetylene 43, followed by a basic proto-desilylation, ${ }^{114}$ led to the desired enyne with a 66% yield as a mixture of two E / Z-isomers (91/9) (Scheme 51). The ratio E / Z of the starting 237 has not been checked prior to use, which can explained the formation of 238a as a mixture of two E / Z-isomers (91/9).

Scheme 51. Synthesis of enyne 238a.

Hydroboration using pinacolborane 239 of the enynes 238a-c afforded the desired $(E)-1,3-$ dienylboronic pinacol ester 241a-c in good to excellent yields (Table 1).

Table 1. Synthesis of 1,3-dienylboronic ester 241a-c by hydroboration.

Schwartz catalyst 240
Entry

The second method used for the hydroboration was based on the in situ preparation of the diisopinocamphenylborane reagent $\mathbf{2 4 4}$ by mixing α-pinene $\mathbf{2 4 2}$ with borane dimethyl sulfide complex 243 (Scheme 52). ${ }^{115}$

Scheme 52. Preparation of $\mathrm{Ipc}_{2} \mathrm{BH} 244$.

Enyne 238c was then directly added to $\operatorname{Ipc}_{2} \mathrm{BH} \mathbf{2 4 4}$, providing exclusively the E-vinylborane intermediate $245 .{ }^{116}$ The 1,3-dienylborane 245 was converted into the corresponding diethyl 1,3-dienylboronic ester 247 in the presence of a large excess of acetaldehyde 246. This intermediate was used for modification of the boron substituent. In the case of boronic acid MIDA ester derivative 249, a mixture of toluene/DMSO (15/1) was required to obtain a better solubility of the MIDA reagent 248 in reflux conditions. ${ }^{117}$ Diene 249 was isolated with an excellent yield of 91%. For the preparation of diene 251, milder conditions were used to observe the total conversion of the compound 247. ${ }^{118}$ Despite the fact that diene precipitates out from the reaction, several precipitations and finally a slow crystallisation in a mixture of $\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}$ were necessary to isolate diene $\mathbf{2 5 1}$ without observing any contamination by remaining diethanolamine. These purification steps explained the low 22% yield (Scheme 53).

Scheme 53. Synthesis of the 1,3-dienylboronic ester 249 and 251.

For the 1,3 -diene $\mathbf{2 5 2}$, the same methodology with $\mathrm{Ipc}_{2} \mathrm{BH}$ was used to afford $\mathbf{2 5 2}$ in an isolated 61\% overall yield (Scheme 54).*

Scheme 54. Preparation of diene 252.

The synthesis of the diene 257 bearing a methyl carboxylate function in position 4 was achieved from β-borylacrolein pinacol ester 105. Hydroboration of propiolaldehyde diethyl acetal $\mathbf{2 5 3}$ using the same procedure as described above for $\mathbf{2 4 7}$ was used, giving after hydrolysis, the boronic acid 254 in a moderate 47% yield. The corresponding β-borylacrolein pinacol ester $\mathbf{1 0 5}$ was obtained by esterification with pinacol in 49% yield. Diene 257 was then synthesised by a Wittig route from an ester-stabilised ylide in a mixture of three stereoisomers ($E, E: E, Z: Z, E=83: 10: 7$, determined by ${ }^{1} \mathrm{H}$ NMR) in a 81% yield (Scheme 50). ${ }^{119}$

[^0]

Scheme 55. Synthesis of diene 257.

II.2. Dehydrobromination*

The synthesis of the parent diene was achieved by dehydrobromination of 4-bromobut-1-en-1boronic acid pinacol ester 258, itself prepared by hydroboration of 4-bromo-1-butene and pinacolborane, with DBU in a 75% yield (Scheme 56).

Scheme 56. Synthesis of the unsubstituted boronated diene 259.

II.3. Alkyne bromoboration and Negishi coupling*

The preparation of diene 264 was based on a bromoboration/Negishi coupling sequence. ${ }^{120}$ Bromoboration of 1-octyne 260 occured in a syn fashion to afford Z-2-bromo-1hexenyldibromoborane, which, in the presence of pinacol 255 , was converted into the corresponding boronate $\mathbf{2 6 2}$ in 81% yield. Negishi cross-coupling with organozinc 263 provided the diene 264 in 46% yield (Scheme 57).

Scheme 57. Bromoboration and Negishi coupling for the preparation of diene 264.

II.4. Halosulfonylation of 1,3-dienylboronic ester 241c

A halosulfonylation/dehydrohalogenation sequence was used to prepare diene 266. Sulfonyl halide $\mathbf{2 6 5}$ was added via a free radical pathway onto the terminal alkene moiety of the diene 238c, thus providing the corresponding δ-iodobutenyl sulfone. This intermediate was treated in situ with triethylamine and the dehydroiodinated compound 266 was obtained as a mixture of two isomers $\left(E / E ; E / Z=68 ; 32\right.$, determined by ${ }^{1} \mathrm{H} N M R$) in a 43% yield (Scheme 58). ${ }^{121}$

Scheme 58. Halosulfonylation of diene 241c.

II.5. Coupling reaction of vinylboronic acid MIDA ester derivatives

II.5.a. From (E)-2-bromovinylboronic acid MIDA ester

The synthesis of 1,3-dienylboronic MIDA ester was achieved following the Burke et al. procedure, involving Suzuki-Miyaura or Stille cross-couplings. ${ }^{122}$ E-2-Bromovinylboronic acid MIDA ester 267 was subjected to Suzuki-Miyaura cross-coupling with (E)-styrylboronic acid 268a, 1-phenylvinylboronic acid 268b and E-hex-1-ene boronic acid 268c to yield the desired dienes 269a-c in 76\%, 68\% and 50\% yields respectively. The aryl substituted boronic acid reagents showed better reactivity compared to the alkyl derivatives. Indeed, a full conversion of starting material was observed using 268a and 268b, whereas, 268c only showed a 63% conversion even with extended reaction times. No optimisation or screening of other catalyst/ligand systems has been undertaken to increase conversion. Non-substituted 1,3-dienylboronic MIDA ester 271 was prepared by Stille coupling using vinyltributyltin 270, thus affording diene $\mathbf{2 7 1}$ with a satisfactory $\mathbf{7 2 \%}$ yield (Table 2).

Table 2. 1,3dienylboronic MIDA ester synthesis by coupling reaction.

Entry

II.5.b. From 1-bromovinylboronic acid MIDA ester

The preparation of the 1,3-dienyl-2-boronic MIDA ester 275 started by the preparation of 1bromovinylboronic acid MIDA ester 274 by bromination of vinylboronic MIDA ester 272 followed by a treatment with DBU (51% yield) ${ }^{123}$ Suzuki-Miyaura cross-coupling with 1phenylvinylboronic acid 268b showed a conversion of 79%, which is in accordance with the results presented by Burke and co-workers. ${ }^{123}$ Purification by silica gel chromatography did
not permit separation of the starting material 274 from the diene 275. The $30 / 70$ mixture was used in the next step (Scheme 59).

Scheme 59. Preparation of 1,3-dienyl-2-boronic MIDA ester 275

II.6. Modification of the boron substituents

The preparation of the trifluoroborylated salt $\mathbf{2 7 6}$ was carried out by treatment with potassium hydrogenfluoride 146, which yielded 276 in 79\% yield (Scheme 60). ${ }^{124}$

Scheme 60. Synthesis of the trifluoroboronated diene 276.

III. Boronated dienes and arylnitroso compounds

III.1. Reaction of 1-dienylboronate pinacolate esters with arylnitroso compounds

Initial investigations into the nitroso Diels-Alder reaction using the dienyl boronate 241c and nitrosobenzene 160a as model substrates resulted in the formation of the unexpected N phenylpyrrole 277a, instead of oxazine cycloadducts (Scheme 61). Although it is known that 3,6-dihydro-1,2-oxazines can be converted to pyrroles, the conditions employed here (room temperature, no additional reagent, one pot reaction) are clearly different than those already reported: requiring several steps, ${ }^{125}$ specific substituents, ${ }^{100,126}$ photolysis, ${ }^{127}$ high temperature, ${ }^{128}$ samarium diiodide, ${ }^{129}$ oxidants, ${ }^{130}$ basic or acid reagents. ${ }^{131}$ Furthermore, even when the reaction was followed by ${ }^{1} \mathrm{H}$ NMR, only 3-methyl-1-phenyl-pyrrole 277a, together with some azoxybenzene 278, was identified. There was a notable absence of any oxazine cycloadducts and the reaction was complete after 5 hours to afford $\mathbf{2 7 7}$ a in 82% isolated yield (Entry 3, Table 3).

Scheme 61. N-Phenylpyrrole 277a formation from the reaction of boronated diene 241c and nitrosobenzene 160a.

As shown in Table 3, different arylnitroso compounds $\mathbf{1 6 0}$ do undergo this conversion with boronated diene 241c to provide the corresponding N-arylpyrroles 277. Yields were moderate to good and the reaction could be conducted either in a protic solvent (MeOH) or an aprotic
solvent (DCM) (Entries 1 and 2, Table 3). A slightly higher yield resulted from an excess of the arylnitroso compound 160 (Entries 1 and 3, Table 3), hence, 2.5 equivalents of arylnitroso compounds $\mathbf{1 6 0}$ were used for most of the reactions. Surprisingly, no significant influence was observed on either the nature or location of the aromatic ring substituent and yields for pyrroles 277a-d, f-h varied from 57 to 82% (Entries 4-9, Table 3).

Table 3. Pyrrole formation from the reaction of arylnitroso compounds 160 with diene 241c.

Entry

The parent diene 259 when reacted with nitrosobenzene 160a gave the corresponding pyrrole 277j in 78\% yield (Entry 2, Table 4).* However, with a more sterically hindered diene 241b, there was a significant decrease in yield (16% for the pyrrole 277i), even after an extended reaction time (Entry 1, Table 4).* Changing the dienylboronate geometry from E to Z, as in compound 264, also had a detrimental effect upon the reaction, with adduct $\mathbf{2 7 7} \mathbf{k}$ only being isolated in 34\% yield, after 16 h (Entry 3, Table 4).*

Table 4. Reaction of dienes 241b, 259 and 264 with nitrosobenzene 160a.

[a] Reaction with 2.5 eq of ArNO at r.t. for 16 h . [b] Reaction with 2.5 eq of ArNO at r.t. for 5 h.

Next, the influence of substituents on the borodiene was examined. Diene 241a, bearing a phenyl group, 257 with a methyl carboxylate function, and 266 bearing a sulfonyl moiety in position 4, were tested.

In the presence of nitrosobenzene 160a, no reaction of diene 241a was observed at r.t. either in toluene or in MeOH (Entries 1 and 2, Table 5). Heating the mixture caused formation of
pyrrole, according to ${ }^{1} \mathrm{H}$ NMR (Entries 3 and 4, Table 5). The starting nitrosobenzene 160a was consumed after an extended 22 h reaction time, resulting in 72% conversion of diene 241a (Entry 5, Table 5). No further improvement was observed if the nitrosobenzene 160a was added in portions in an attempt to decrease azo-by-product formation 278 (1 eq. at the outset - 1 eq. after $4 \mathrm{~h}-0.5$ eq. after 4 h), or by slow addition of a MeOH solution by syringe pump (Entries 6 and 7, Table 5). Finally, the use of 3.5 eq. of 160a (Entry 8, Table 5) was required in order to achieve complete conversion of both stereoisomers of diene 241a, resulting in the formation of pyrrole 2771 in 36% isolated yield.

Table 5. Study of the reactivity of diene 241a with nitrosobenzene 160a.

Entry	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Conversion (Isolated yield) (\%)
$1{ }^{[a]}$	MeOH	rt	16	0
$2^{[a]}$	Toluene	rt	16	0
$3^{[a]}$	MeOH	reflux	5	50
$4{ }^{[a]}$	Toluene	70	16	50 (14)
$5^{[a]}$	MeOH	reflux	22	72 (19)
$6^{[b]}$	MeOH	reflux	22	77 (20)
$7^{[\mathrm{cc]}}$	MeOH	reflux	22	82 (24)
$8^{[d]}$	MeOH	reflux	22	100 (36)

The introduction of an electron withdrawing group (ester function) in position 4 of the borodiene was next examined. Diene 257 proved to be even less reactive than diene 241a, and
longer reaction times and higher temperatures were required to improve the conversion (Entries 1-5, Table 6). In order to form the pyrrole 277m, 5 eq. of nitrosobenzene 160a and a 128 h reaction time was required in toluene at reflux, and only the E, E-stereoisomer reacted. Indeed, even with longer reaction times, the other isomers were still observed in the reaction mixture on the crude ${ }^{1} \mathrm{H}$ NMR. Nevertheless, 26% of the corresponding pyrrole $\mathbf{2 7 7} \mathbf{m}$ was isolated after silica gel chromatography (Entry 5, Table 6).

Table 6. Study of the reactivity of diene 257 with nitrosobenzene 160a.

ratio : E/Z; E/E; Z/E 10837

Entry	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	E, \boldsymbol{E}-isomer conversion (Isolated yield) (\%)
$1{ }^{\text {[a] }}$	MeOH	rt	16	0
$2^{[a]}$	MeOH	reflux	16	0
$3^{[a]}$	Toluene	rt	16	0
$4^{[a]}$	Toluene	reflux	64	15
$5^{[b]}$	Toluene	reflux	128	100 (26)

[a] Reactions with 2.5 eq of nitrosobenzene. [b] Reaction with 5 eq of nitrosobenzene.

Diene 266 showed the same low reactivity as for the methyl carboxylate derivative $\mathbf{2 5 7}$. No reaction occured at r.t. in either MeOH or in toluene. Reflux conditions in toluene were necessary to observe the conversion of the E, E-isomer of 266. The reaction required 7 days to observe full consumption of this isomer of 266, whereas the E, Z-isomer did not show any reactivity. In this case, no pyrrole was isolated, or even observed in the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR analysis. Only, the corresponding maleimide 254 was obtained. If the reaction
was performed under argon, 9 days were required to obtain full conversion of the E, E-isomer, which highlighted the possible role of an aerobic oxidation step during the reaction (Scheme 62), but we have hitherto no mechanistic hypothesis to rationalise this result.

Scheme 62. Unexpected formation of maleimide 79.

III.2. Reaction of tetracoordinated 1-borodienes with arylnitroso compounds

Since the various 1-borodienes with pinacolate esters all resulted in reactions in which the oxazine was not observed, attention was turned to the study of the influence of boron substituents that might result in the oxazine cycloadducts being isolated.

First, attention was devoted to the trifluoroborylated salt 276. As previously, no oxazine was observed from the reaction of $\mathbf{2 7 6}$ with nitrosobenzene 160a and the reaction yielded pyrrole 277a in 79% (Eq. 1, Scheme 63). The replacement of the pinacol ester group 241c by a diethanolamine moiety was then examined. Reaction of diene 251 with nitrosobenzene $\mathbf{1 6 0 a}$ resulted in the identification of the [4+2]-cycloadduct $\mathbf{2 7 9}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude mixture. Its structure was confirmed later by comparison of its ${ }^{1} \mathrm{H}$ spectrum with that of the corresponding MIDA cycloadduct 280a (Entry 1, Table 7). After 2 h , all the diene $\mathbf{2 5 1}$ was consumed, the intermediate boro-1,2-oxazine 279 had disappeared, and only pyrrole 277a
formation was observed, together with small amounts of azoxybenzene 278 (Eq. 2, Scheme 63).

Scheme 63. Reactivity of dienes 251 and 276 with nitrosobenzene 160a.

This increased reactivity of the diethanolamine derivative was confirmed by the reaction of cyclic diene $\mathbf{2 5 2}$ which provided pyrrole $\mathbf{2 7 7 i}$ after only 2 h and in a 48% yield as shown in Eq. 2, Scheme 64.

Scheme 64. Comparison of the reactivity between 241b and 252.

Most interestingly was the observation of the transient [4+2]-hetero-Diels-Alder cycloadduct 279 (Eq. 2, Scheme 63) that confirms the key role of the oxazine cycloadduct in the subsequent formation of the pyrrole. Diethanolamine esters are known for their facile hydrolysis or methanolysis to regenerate the corresponding boronic acid or ester, ${ }^{132}$ however, simply the reversibility of B-N chelation could be responsible of the facile rearrangement to
the pyrrole (vide infra). We can also notice, the beneficial effect of the tetracoordinated boronate ester, which increased the electron density on the diene moiety, and hence, made it more reactive towards the electron deficient dienophile. It is consistent with a "normal" electron demand Diels-Alder [4+2]-cycloaddition.

Prompted by these results, the behaviour of the corresponding MIDA borodiene derivatives 249 was then examined. Because of their high stability towards air and moisture, these compounds have been used as flexible scaffolds for the synthesis of a wide-range of functionalised small molecules. ${ }^{133}$ It was our expectation that such dienes would make it possible to isolate and study the intermediate oxazine cycloadducts. The presence of an sp^{3} versus an sp^{2}-hybridized boron species would also be expected to be a useful tool to examine the regioselectivity of the cycloaddition reaction. Hence, the scope of the reaction of the MIDA diene 249 was examined with various arylnitroso compounds $\mathbf{1 6 0}$, as outlined in Table 7. Reactions were carried out in AcOEt to give improved solubility of the B-MIDA diene $\mathbf{2 4 9}$. However, even if the reaction was run in MeOH , the same cycloadduct was observed. The reaction of the MIDA-borodiene $\mathbf{2 4 9}$ provided the corresponding oxazine cycloadducts $\mathbf{2 8 0}$ in moderate to good yields with each of the different arylnitroso compounds $\mathbf{1 6 0}$, without any obvious electronic effects from the aryl substituent. Single regioisomeric products were obtained, as exemplified by the formation of the stable [4+2]-cycloadduct 280a, obtained from reaction of diene 249 with nitrosobenzene 160a and isolated in 64% yield (Entry 1, Table 7). Only the boron-oxygen 1,2-related regioisomer (in red in Table 7) was observed; its structure being assigned by NOESY correlation between the o-phenyl Hs and one of the NCHs on the oxazine ring. The introduction of different arylnitroso substituents, i.e. electron donating and withdrawing groups in positions 2 and 4, did not change the resulting regiochemical outcome (Entries 2-5, Table 7) and yields ranged between 47 to 77%. It is also noteworthy that little or no dimerisation of the arylnitroso compounds took place during these
reactions, reflecting the short reaction times and more reactive diene, reducing the potential for competitive by-product formation from the nitroso compound. Nevertheless, a second compound was isolated when nitroso $\mathbf{1 6 0 g}$ was used. This unknown compound was fully characterised by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$ NMR, IR and mass spectroscopy. The molecule possesses a BMIDA group ($\delta{ }^{11} \mathrm{~B}$ NMR $\left.=10.3 \mathrm{ppm}\right)$ and an aldehyde moiety $\left(\delta{ }^{1} \mathrm{H}\right.$ NMR $=9.76 \mathrm{ppm}$, s , $1 \mathrm{H} ; \delta{ }^{13} \mathrm{C}$ NMR $=185.4 \mathrm{ppm} ;$ IR $(\mathrm{C}=\mathrm{O})$ stretch $\left.=1743 \mathrm{~cm}^{-1}\right)$ and seems to have a pyrrole substructure characterised by small coupling constant $\left(\delta{ }^{1} \mathrm{H} \mathrm{NMR}=7.89, \mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $6.83, \mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$. Based on these observations, the structure $\mathbf{2 8 1} \mathrm{g}$ was proposed. This observation raises further hitherto unsolved mechanistic questions.

Table 7. Reactivity of MIDA-substituted diene $\mathbf{2 4 9}$ with arylnitroso compounds $\mathbf{1 6 0}$.

[^1]The impact of the substituents on the dienyl moiety, i.e. dienes 269a-c and 271, was then examined, nitrosobenzene 160a being used as a model dienophile. The resulting nitrosoaddition reactions are summarised in Table 8. Similar to the results observed with the MIDA derivative 249, the first three dienes (269b-c and 271) gave the same single regioisomeric boron-oxygen 1,2-related products at r.t. (in red in Table 8), with the boron occupying the α position relative to the ring oxygen of the oxazine (Entries 1-3, Table 8). The introduction of a phenyl group at C_{4} noticeably reduced the reactivity of the borodiene 269a, with reaction only occurring at reflux in AcOEt over 24 h . In addition, a mixture of regioisomers $\mathbf{2 8 5}$ and $\mathbf{2 8 5}$, (ratio $40: 60$) was isolated in an 89% combined yield (Entry 4, Table 8). Both steric and electronic effects of the phenyl ring can explain this observed preferred regiochemistry, as discussed by Houk et al. for 1-phenylbutadiene compared with penta-1,3-diene. ${ }^{134}$ The structure of the major boron-oxygen 1,3-related regioisomer 285' (in blue in Table 8) was secured by single crystal X-ray structure analysis (Figure 1), confirming the cisstereochemistry of the boron and phenyl ring substituents.

Table 8. Reactivity of MIDA-substituted dienes 269a-c and 271 with nitrosobenzene 160a.

Entry

[a] Reaction with 2.5 eq of nitrosobenzene in AcOEt at rt for 6 h. [b] Reaction with 5 eq of nitrosobenzene AcOEt at reflux for 24 h .

Figure 1. Single crystal X-ray molecular structure of 285’.

III.3. Impact of the boron substituent on the rate of the reaction

Experimental work has proved that the diethanolamine diene $\mathbf{2 5 1}$ is much more reactive than the pinacol ester 241c. However, no comparisons between dienes 249, 241c and 276 could be drawn based on the experimental outcome of the reaction. Thus, an equimolar mixture of $\mathbf{2 4 9}$ and 241c was stirred at r.t. in the presence of nitrosobenzene 160a (1 eq.) in MeOD (Scheme 65).

[^2]After 18 h , the crude mixture was analysed by ${ }^{1} \mathrm{H}$ NMR (Figure 2). Unfortunately, the sample was not fully soluble in MeOD, so it was impossible to measure accurately the ratio between all the material present in the crude. For a better understanding, the crude reaction mixture was evaporated and diluted with acetone- d^{6} showing a better, but not total, solubility towards the B-MIDA derivatives 249 and 280a. Firstly, it was possible to assume that the diene 241c, pyrrole 277a and by-products 278 were fully soluble, whereas the B-MIDA derivatives 249 and 280a were not. According to the analysis, it is possible to conclude that:

- There is no major difference in reactivity between dienes 249 and 241 c .
- The B-MIDA diene seemed to show a slightly higher reactivity based on this results (diene 249/diene 241c 1/2; pyrrole 277a/oxazine 280a 1/1.2).

Figure 2. ${ }^{1} \mathrm{H}$ NMR study of the diene 249 and 241c toward nitrosobenzene $\mathbf{1 6 0 a}$.

A similar ${ }^{1} \mathrm{H}$ NMR study was undertaken to evaluate the reactivity of the trifluoroboronated salt (Scheme 66). The reaction was performed using diene Bpin 241c in competition with the diene 276. Two ${ }^{1} \mathrm{H}$ NMR analyses were undertaken, one after 10 min and one after 5 h , when the reaction should be finished according to results shown in Table 3. During the NMR sample preparation, trifluoroboronated salt $\mathbf{2 7 6}$ did not show full solubilisation. After 5 min , the ${ }^{1} \mathrm{H}$ NMR showed that:

- The ratio between pyrrole diene 241c/diene 276/pyrrole 277a $=(63 / 14 / 23)$. Diene 276 and pyrrole 277a represented only 37% of the crude product. This observation is not consistent with a full mass recovery from the reaction, with a starting ratio of diene 241c/diene 276 (1/1). It can be explained by the partial solubility of the starting diene 276. Nevertheless, the reaction showed that diene 276 exerted a dramatic faster reactivity or even reacted exclusively with 160a compared to the Bpin variant $\mathbf{2 4 1 c}$.
- A small amount of by-products 278 was observed.

After 5 h , only traces of diene $\mathbf{2 7 6}$ were observed, in the presence of pyrrole 277a and diene 241 c.

Scheme 66. Reactivity of the trifluoroboronated diene 276 toward nitroso Diels-Alder reaction.

During the reaction presented in Scheme 63, a sample from both reaction (Eq. 1 and Eq. 2) was taken after a few minutes to observe the consumption of the starting diene. BDEA diene 251 showed a 50% conversion after 5 min whereas diene 276 gave a 92% conversion after 10
min. Thus, these two tetracoordinated boron species proved to be more reactive than the Bpin 241c and the BMIDA 249 variant.

As expected, the boron unit has a dramatic effect on the kinetics of the reaction. The more electron rich the diene is, the faster the reaction is, which is consistent with a "normal" electron, frontier-orbital-controlled [4+2]-cycloaddition reaction. The four boron substituents can be divided in two major groups. The first group involves the Bpin and the BMIDA whereas the second one incorporates the BDEA and the $\mathrm{BF}_{3} \mathrm{~K}$ boron unit. The patterns of these empirical observations are comparable to the results of the nucleophilicity parameters calculated by Mayr and co-workers. ${ }^{135}$ The reactivity towards nitroso Diels-Alder can be summarised as outlined in Figure 3.

Figure 3. Empirical effects of the boron unit toward the nitroso Diels-Alder reaction.

III.4. Mechanistic aspects of the reaction 1-borodienes with arylnitroso compounds.

III.4.a.Computational study ${ }^{\dagger}$

To probe the possible mechanism responsible of the formation of pyrrole 277 from 1boronated diene and arylnitroso compounds $\mathbf{1 6 0}$, a computational study was carried out using Gaussian 09. ${ }^{136}$ The geometries discussed in Schemes 67 and 68 were optimised at the B3LYP/6-31G* level with no symmetry constraints. ${ }^{137}$ The optimised geometries were found to be true minima based on no imaginary frequencies obtained from frequency calculations. The transition-state (TS) geometries were located using the OPT $=$ QST3 method. Frequency calculations on TS geometries revealed one imaginary frequency for each geometry. All intrinstic reaction pathways shown in Schemes 67 and 68 were determined from transitionstate geometries using the IRC command.

Regioselectivity of the initial cycloaddition

Among the four transition states in Scheme 67, TS[ABC] exerted the lower energy (8.8 kcal. mol^{-1}). Calculations showed that the nitrosobenzene 160a is added through an endo pathway with a single regioisomeric boron-oxygen 1,2-related product (in red, Scheme 67).

First the endo pathway can be explained by a combination of electrostatic repulsion between the lone pairs of RNO with the electron rich diene and also a repulsive interaction between the n-HOMO of the nitroso compound and the π-HOMO of the diene. Secondly, the nitroso

[^3]Diels-Alder reaction seems to occur through an asynchronous concerted pathway. This has also been postulated by Houk and co-workers, because of the asymmetry of the dienophile. ${ }^{138}$

exo, 1,2 boron-oxygen realated

Scheme 67. Four different pathways and their TS energies determined by computations in the Diels-Alder reaction of nitrosobenzene \mathbf{A} and the 1-boronodiene model molecule \mathbf{B}.

Mechanism

The proposed mechanism involves pyrrole formation proceeding through a Diels-Alder reaction (to give \mathbf{C}, Scheme 68), followed by a boryl rearrangement (to give \mathbf{E}, Scheme 68). Then, intramolecular aza-boryl adition to the aldehyde (to give F, Scheme 68) and finally borate elimination gives \mathbf{G} (Scheme 68). All steps were computed to be exothermic thus supporting the cascade process. Eight possible conformers of the oxazine were formed, where; The boryl group occupies either the axial or equatorial position; The phenyl group is either endo or exo; The oxazine ring is either in a boat or chair conformation. Among the possible conformers, species \mathbf{C} and \mathbf{D} are likely products from the favourable Diels-Alder
pathway via TS[ABC] with \mathbf{D} as the most stable conformer of all possible conformers of the oxazine. Theoretical results showed that the rate-limiting step in the reaction pathway is likely to be the hetero-Diels-Alder step or the ring cleavage step via boryl group rearrangement. ${ }^{139}$

Scheme 68. Possible reaction steps in the formation of 1-phenyl-1 H-pyrrole \mathbf{G} from a 1-boronodiene model \mathbf{B} and nitrosobenzene \mathbf{A}.

Further experimental investigations were then carried out to support this mechanistic hypothesis and the DFT calculations.

The replacement of the pinacol boronate ester on the diene moiety by diethanolamine (vide supra) resulted in the identification of the [4+2]-cycloadduct in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude mixture. Reacting diene $\mathbf{2 5 1}$ or 276 with nitrosobenzene $\mathbf{1 6 0 a}$ for 2 h , resulted in complete diene consumption and even the boro-1,2-oxazine intermediate 279 totally disappeared to afford only pyrrole 277 a with only small amounts of azoxybenzene 278 produced (Eq. 2, Scheme 63). The pyrrole formation under these conditions can be explained by a facile equilibrium between the dioxazaborocane $\mathbf{2 8 6}$ and the corresponding methyl ester $\mathbf{2 8 7}$ due to solvolysis. ${ }^{132}$ This equilibrium releases the vacant orbital on boron, and hence, a subsequent rearrangement can occur to access the pyrrole (Scheme 69).

Scheme 69. Proposed mechanism for the formation of pyrroles from the reaction of 1-borodienes with arylnitroso compounds.

The reaction of nitrosobenzene 160a with the MIDA boronate 269a results in the formation of the two regioisomers $\mathbf{2 8 5}$ and $\mathbf{2 8 5}$ ' which can be separated (vide supra). MIDA derivatives can be easily converted to the boronic esters. ${ }^{133}$ To confirm the role of the $\mathrm{B}(\mathrm{OR})_{2}$ in the pyrrole formation, we therefore envisaged to study such transformation with each of the regioisomers by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR, either under basic or acidic conditions.

Under basic conditions

The regioisomer 285 reacted cleanly with (NaOD, 3 eq.) to give the pyrrole 2771. The proposed reaction sequence for the formation of pyrrole is summarised in Scheme 70.

Scheme 70. Proposed reaction sequence for the formation of pyrrole $\mathbf{2 7 7 1}$ from MIDA boronate oxazine derivative 285.

In ${ }^{1} \mathrm{H}$ NMR spectrum, the starting oxazine 285 showed the features of a B-MIDA substituent characterised by the two sets of signals (dd) between 4.03 and 4.59 ppm . In the ${ }^{11} \mathrm{~B}$ NMR spectrum, there was aslo the characteristic peak of a tetracoordinated boron species, evidenced by a chemical shift around 10 ppm (10.30 ppm , Figure 4).

Figure 4. ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR of oxazine $\mathbf{2 8 5}$.

After addition of NaOD (3 eq.), ${ }^{1} \mathrm{H}$ NMR showed the disappearance of the MIDA signal (no signal between 4 and 5 ppm), while, the oxazine scaffold seemed to remain intact. Interestingly, this intermediate was stable overnight under the reaction conditions. ${ }^{11} \mathrm{~B}$ NMR showed a change in boron substituent from a shift at $\delta=10.30$ to $\delta=0.64 \mathrm{ppm}$, which could be consistent with the formation of compound 292 (Figure 5).

Figure 5. ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR of likely intermediate 292 after the addition of NaOD (3 eq.) to oxazine $\mathbf{2 8 5}$.

Hydrolysis of this postulated borate, using DCl (1 eq.), led instantaneously to a major change in both spectra. In the ${ }^{1} \mathrm{H}$ NMR, the oxazine scaffold collapsed to provide pyrrole 2771, while, in the ${ }^{11} \mathrm{~B}$ spectrum, the appearance of a signal at 19.9 ppm is consistent with the formation of $(\mathrm{RO})_{3} \mathrm{~B}$ (Figure 6).

Figure 6. ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR of pyrrole $\mathbf{2 7 7 1}$ after the addition of NaOD (3 eq.) and $\mathrm{DCl}(1 \mathrm{eq}$.$) to oxazine \mathbf{2 8 5}$.

Under the same basic conditions (NaOD, 3 eq.), regioisomer 285' gave a mixture of unidentified products.

Under acidic conditions

In contrast, under acidic conditions ($\mathrm{DCl} 1 \mathrm{M}, 1 \mathrm{eq}$), 2-phenylfuran 294 was cleanly and quantitatively produced after 10 min at r.t. in acetone- d_{6}, from regioisomer $\mathbf{2 8 5}^{\prime}$, as shown in Scheme 71.

Scheme 71. Furan formation from acidic treatment of oxazine 285'.

As examined on previous systems, this transformation was also followed by NMR. The starting oxazine $\mathbf{2 8 5}$ ' showed similar characteristics in both the ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectra as for regioisomer 285 (Figure 7).

Figure 7. ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR of oxazine $\mathbf{2 8 5}^{\prime}$.

Addition of DCl (1.05 eq.) provided formation of the furan 294 in 10 min according to ${ }^{1} \mathrm{H}$ NMR. No intermediate, as under the basic conditions, was observed. ${ }^{11} \mathrm{~B}$ analysis provided important information concerning the role of the boron in this process. Indeed, none, or only traces of a salt (chemical shift around 0 ppm) was observed, as any by-product resulting from the hydrolysis (chemical shift around 20 ppm). This could mean that a BMIDA derivative was still present in the reaction mixture (Figure 8).

Figure 8. ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR of furan 294 after addition of DCl (1.05 eq .) on oxazine $\mathbf{2 8 5}^{\prime}$.

To confirm this hypothesis, extraction of the crude mixture with DCM was performed. Byproduct 299 was isolated in 25% yield (Scheme 72), whose structure was established by ${ }^{1} \mathrm{H}$ (MIDA signals; $4.25 \mathrm{ppm}, \mathrm{d}, 2 \mathrm{H} ; 4.09 \mathrm{ppm}, \mathrm{d}, 2 \mathrm{H} ; 3.01 \mathrm{ppm}, \mathrm{s}, 3 \mathrm{H}$), ${ }^{13} \mathrm{C}$ (MIDA signals; $167.6 \mathrm{ppm}, 2 \mathrm{C}=\mathrm{O} ; 62.1 \mathrm{ppm}, 2 \mathrm{CH}_{2} ; 45.8 \mathrm{ppm}, \mathrm{CH}_{3}$) ${ }^{11} \mathrm{~B}$ NMR (9.9 ppm), and mass spectroscopy $\left([\mathrm{M}+\mathrm{H}]^{+}=249.104\right)$. These experimental observations are in agreement with
that the proposed mechanism outlined in Scheme 69. A preliminary protonation of the nitrogen atom of the MIDA boronate $\mathbf{2 8 5}$ ' results in de-coordination of the nitrogen from boron, leading to the intermediate 295. Formation of this $\mathrm{R}-\mathrm{BX}_{2}$ moiety 295 then enables a facile boryl rearrangement (296-298) to take place, and in this case, to form the furan 294 (Scheme 72).

Scheme 72. Proposed mechanism for the formation of furan 294 from 285'.

It is therefore possible to selectively and cleanly deprotect each regioisomer depending on the reaction conditions. Pyrrole formation was produced from the regioisomer $\mathbf{2 8 5}$ under basic conditions, whereas furan formation occured from $\mathbf{2 8 5}^{\prime}$ under acidic conditions.

The formation of the furan 294 from the second regiosiomer $\mathbf{2 8 5}$ ' highlights another feature of the nitroso Diels-Alder reaction, its reversibility.

By comparison of Eq. 1 and 2 shown in Scheme 73, it is important to note that no furan 294 was formed during the reaction of diene 241a with nitrosobenzene 160a. Empirical kinetic studies between diene 249 and 241c (Scheme 65), as well as previous studies, ${ }^{135}$ showed that Bpin and BMIDA seemed to have quite similar electronic effects. Thus, it is plausible to expect that the regiochemical outcome of the cycloadditions should be comparable. However, no furan 294 was formed using diene 241a. There are two possible explanations for this observation. Either regioisomer $\mathbf{3 0 0}^{\prime}$ is highly unstable and decomposed under the reaction conditions, or the nitroso Diels-Alder reaction is reversible. For the first case, decomposition of the regioisomer $\mathbf{3 0 0}{ }^{\prime}$ could explain the low isolated yield (36%) of pyrrole 2771. In the case of a reversible process, it might be possible that the retro Diels-Alder reaction of regioisomer $\mathbf{3 0 0}$ ' occured faster than the rearrangement to provide furan 294, contrary to regiosisomer 300, which was converted instead into pyrrole 2771. Because of the possible reversibility of the Diels-Alder reaction, all reagents involved in the reaction were subjected to decomposition (oxazine intermediate 300 and $\mathbf{3 0 0}^{\prime}$), polymerisation (diene 241a) or byproducts formation (nitrosobenzene 160a). Unfortunately, no final conclusions could be drawn from this study. Further theoretical calculations relating to this specific case could give important information to support a reversible process.

Scheme 73. Comparison of the reaction between dienes 241a and 269a with nitrosobenzene 160a.

III.5. Transformations of borono-1,6-dihydro-1,2-oxazine derivatives

To explore the synthetic potential of BMIDA oxazine derivatives, a Suzuki-Miyaura coupling with the cycloadduct 286a, chosen as a model substrate, was carried out. Under classical experimental conditions for this class of reaction, ${ }^{133 b}{ }^{1} \mathrm{H}$ NMR of the crude reaction mixture
showed full conversion of the starting material to the pyrrole 277a, showing that 286a was not stable enough to survive the Suzuki-Miyaura coupling conditions (Scheme 74).

Scheme 74. Reactivity of oxazine 286a and iodobenzene 81a under Suzuki-Miyaura coupling conditions.

To confirm that this was indeed the location of the boronated group that was responsible for this failure, the cycloadduct $\mathbf{3 0 1}$ was prepared from diene $\mathbf{2 7 5}$ in a 73% isolated yield with only traces of the second regioisomer. It was engaged in a Suzuki-Miyaura cross-coupling with 1-bromotoluene $\mathbf{3 0 2}$ in the presence of palladium(II) acetate and SPhos (Scheme 75). The 2,4,5-trisubstituted dihydrooxazine $\mathbf{3 0 3}$ was isolated in a 71% yield. A NOESY NMR experiment (correlation between Hs of the methyl group of the toluene moiety and Hs on the oxazine ring at C_{6}) established the relationship of groups in this compound, and consequently the orientation of the first cycloaddition. No ring contraction product was observed in this case, but minor amount of the deborylation product were detected. This confirms that the 1boryl function is essential for the pyrrole or furan formations, through the boryl additionelimination sequences previously proposed.

Scheme 75. Synthesis of triarylated oxazine 303 from the nitrosobenzene Diels-Alder/Suzuki-Miyaura crosscoupling reaction sequence.

III.6. The one-pot nitrone formation/1,3-dipolar cycloaddition sequence

The reaction using the Bpin diene 241c in presence of arylnitroso 160 was previously performed either in MeOH or in DCM without observing any modifications in the outcome of the reaction. Pyrrole 277 was always observed and isolated in 61 to 82% yield (Entries 2 and 3, Table 3). In the case of the BMIDA diene $\mathbf{2 4 9}$, if initial experiments were carried out in $\mathrm{MeOH}, \mathrm{AcOEt}$ was finally preferred because of the improved solubility of the starting diene. In both case, the reaction started with a nitroso Diels-Alder reaction (Scheme 76).

Scheme 76. The nitroso Diels-Alder using diene Bpin 241c and BMIDA 249.

III.6.a.Nitrone synthesis from 1-dienylboronate pinacolate esters

In order to compare the reactivity of the Bpin and BMIDA dienes, we decided to carry out the cycloaddition of 241c with the arylnitroso compound $\mathbf{1 6 0 g}$ in AcOEt. After 24 h at r.t., analysis of the crude reaction mixture performed by ${ }^{1} \mathrm{H}$ NMR revealed the presence of an unknown compound $\mathbf{3 0 4 g}$ and formation of only a small amount of the expected pyrrole $\mathbf{2 7 7} \mathbf{g}$ $(\mathbf{2 4 1} \mathbf{c} / \mathbf{3 0 4 g} / \mathbf{2 7 7} \mathbf{g}=47 / 50 / 3)$. No change was observed after 24 h more.

Scheme 77. Reactivity of diene 241c in AcOEt.

The full consumption of 241c was achieved by increasing the amount of 4-nitrosobenzoate $\mathbf{1 6 0 g}$ (3.2 eq.), the formation of by-products being favoured at higher temperature. Compound 304g spontaneaously precipitated from the reaction mixture and, after addition of hexane, was then isolated in a 54% yield. Its nitrone structure was established by crystal X-ray analysis.

Figure 9. Nitrone crystal structure for $\mathbf{3 0 4 g}$.

Compound $\mathbf{3 0 4 g}$ shows the E-relationship between the large groups (aromatic ring and the pyrrole substituent). The characteristics of the nitrone functional group are: bond lengths $\mathrm{N}_{1^{-}}$ $\mathrm{C}_{12}=1.301 \AA$ and $\mathrm{N}_{1}-\mathrm{O}_{3}=1.2991 \AA$, and a bond angle $\mathrm{O}_{3}-\mathrm{N}_{1}-\mathrm{C}_{12}=121.81^{\circ}$ in agreement with other similar nitrones described in the literature. ${ }^{140}$ Furthermore, the ${ }^{1} \mathrm{H}$ NMR data are also in full agreement with this structure $\left(\delta \mathrm{H}_{12}=8.99 \mathrm{ppm}\right)$.

With different arylnitroso compounds 160 and $160 d$, formation of the corresponding nitrones was also observed (Table 9). Nitrosobenzene 160a, and ethyl 4-nitrosobenzoate $\mathbf{1 6 0 g}$ formed around the same amount of nitrone (around 50\%) after 24 h . The small differences in the conversion of the starting diene was due to the larger amount of pyrrole 277a obtained as by-products with nitrosobenzene 160 a ($17 \%>5 \%$, Entries 1 and 3, Table 9). Thus, to observe if the electronic properties of the subsitution were responsible for the formation of the pyrrole, a reaction with 4-methoxynitrosobenzene $\mathbf{1 6 0 d}$ was performed. A larger amount of pyrrole was observed, and a mixture $\mathbf{3 0 4 d} / \mathbf{2 7 7 d}$ (52/48) was obtained after 24 h (Entry 2, Table 9). Thus, the ratio of nitrone $304 /$ pyrrole 277 was modified by changing the electronic properties of the para-substituent. When a more electron rich-nitroso species was used, side-reactions giving pyrroles are more competitive, whereas using an electron-withdrawing group $\left(\mathrm{CO}_{2} \mathrm{Et}\right)$, 304g was almost exclusively synthesised (95%). However, with 2.5 eq. of arylnitroso
compounds, the conversion of 241c ranged only from 53 to 77% after 24 h , and even if the reaction was continued for 24 h , no significant improvement in conversion was observed. In addition to the formation of the pyrrole, standard azoxybenzene by-products $\mathbf{2 7 8}$ were also observed, explaining the moderate conversion. Silica gel chromatography was attempted to purify the nitrone species, however due to their high polarity, isolation of pure compounds was not achieved.

Table 9. Electronic arylnitroso effect towards the formation of nitrone compounds.

$$
\text { [a] Ratio measured by } \left.{ }^{l} H \text { NMR analysis on the crude reaction mixture after } 24 h \text { with } \% \text { (Diene }+ \text { nitrone }+ \text { pyrrole }\right)=
$$ 100.

Analysis of the crude reaction mixture was performed using ${ }^{1} \mathrm{H}$ NMR spectroscopy. Our attention was focused on the identification of suitable peaks for the measurement of the ratio between the diene, the pyrrole and the nitrone. For diene 241c (proton in green), pyrrole 277
(proton in red) and finally, nitrone $\mathbf{3 0 4}$ (two protons in blue) were used to identify and measure the ratio between the three compounds as shown in Figure 10.

Figure 10. ${ }^{1} \mathrm{H}$ NMR analysis of the reaction between diene $\mathbf{2 4 1 \mathrm { c }}$ and nitrosobenzene $\mathbf{1 6 0 a}$ after 24 h .
III.6.b. The one-pot procedure nitrone formation/1,3-dipolar cycloaddition

The 1,3-dipolar cycloaddition of nitrones to unsaturated (C-C double or triple bond) compounds is one of the most useful synthetic methods for preparing a variety of heterocycles. It can create as many as three new contiguous stereogenic centres in a single step. ${ }^{141}$ The interest of the nitrone formation from a boronated diene and a nitroso compound would be significantly increased if this reaction could be coupled with a [3+2]-cycloaddition. Except $\mathbf{3 0 4} \mathbf{g}$, other nitrones $\mathbf{3 0 4 a}$ and $\mathbf{3 0 4 d}$ were not isolable by precipitation. Therefore, a one-pot process using various dipolarophiles was envisaged.

The scope of the 1,3-dipolar cycloaddition with N-phenyl maleimide 2a was first studied. In order to enlarge the range of the reaction temperature, AcOEt was replaced by toluene, without affecting nitrone formation. The crude reaction mixture was checked by ${ }^{1} \mathrm{H}$ NMR after 1.5 h to ensure full consumption of diene $\mathbf{2 4 1} \mathbf{c}$. The N-phenyl maleimide 2a was then added and the mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 16 h . Nitrosobenzene 160a and 4nitrosobenzoate $\mathbf{1 6 0 g}$ afforded a mixture of the endo/exo-isomers $\mathbf{3 0 5} / \mathbf{3 0 5}$ ' with a ratio around 50/50 (Entries 1 and 2, Table 10). The diastereoisomers were readily separated by silica gel chromatography. When the arylnitroso was para-substituted by a halogen $(\mathrm{Cl}$ or Br$)$, the endo-isomer 305 was only observed (Entries 3 and 4, Table 10). Nevertheless, the same low yields between 20 and 30% were obtained. In contrast, para-methoxy nitrosobenzene $\mathbf{1 6 0 d}$ didn't show any formation of the oxazolidine, even if the corresponding nitrone was observed by ${ }^{1} \mathrm{H}$ NMR, before addition of the maleimide (Entry 5, Table 10). Lastly the orthonitrosotoluene $\mathbf{1 6 0 f}$, showed the formation of an endo/exo-ratio 305/305' of $67 / 33$. However, only the endo-isomer was isolated in a very low yield (12\%) (Entry 6, Table 10). According to these results, it seemed that the substitution on the aryl moiety of the nitroso had a major impact on the selectivity of the cycloaddition reaction. Further studies are required to rationalise these observations.

Table 10. Scope of the arylnitroso for the oxazolidine synthesis.
(3.2

Unlike N-phenyl maleimide 2a, diethyl azodicarboxylate 307 (DEAD) and dimethyl acetylenedicarboxylate $\mathbf{3 0 8}$ (DMAD) did not show any formation of the desired product resulting from the $[3+2]$-cycloaddition, either, at r.t. or under reflux conditions. Only hydrolysis of the nitrone intermediate was observed, affording the corresponding aldehyde 306g in low yield (27 to 43\%) (Entries 1-3, Table 11).

Table 11. Screening of the dipolarophile for the [3+2]-cycloaddition.

Identification of the endo- and exo-isomers

The endo- and the exo-isomers $\mathbf{3 0 5}$ and $\mathbf{3 0 5}$ ' respectively showed two different ${ }^{1} \mathrm{H}$ NMR patterns. The protons from the oxazolidine structures were easily identifiable thanks to their chemical shift, but mainly thanks to their different coupling constants. H^{A} is a doublet of doublets with two close coupling constants of $J=8.1$ and 8.6 Hz , which was consistent with
the coupling constant measured for the other signals for H^{B} and H^{C} of the oxazolidine. When all the protons are on the same face on the structure (exo, molecule in red in Figure 11), all coupling constants are in the same range, i.e. between 8 and 9 ppm . On the other hand, the second isomer (endo, molecule in blue in Figure 11), H^{C} was on the opposite face from H^{A} and H^{B}, leading to a major change in the coupling constants. Indeed, whereas H^{A} still had a coupling constant $J_{H}{ }^{A}-H$ B $=7.5 \mathrm{~Hz}$, the second coupling constant was small i.e. $J_{H}{ }^{A}-H=0.9$ Hz.

Figure 11. Comparison of the ${ }^{1} \mathrm{H}$ NMR of the endo- and the exo-isomer.

The identification of the isomers was confirmed by obtaining crystal structures of $\mathbf{3 0 5 b}$ and 305a' (Figure 12).

305b

Figure 12. Oxazolidine crystal structures of 305b and 305a'.

Preliminary optimisation of the nitrone formation/1,3-dipolar cycloaddition

Despite the fact that novel highly functionalised oxazolidine structures were synthesised, the low overall yield remained a handicap for future synthetic applications. Even if the diene 241c was always consumed entirely during the nitrone synthesis, the highest yield observed for the 1,3-dipolar cycloaddition was only 26% yield (Entry 3, Table 10). This can be due to the instability of the nitrone under high temperature conditions or to the quality of the diene used for the optimisation of the reaction. Therefore, another batch of freshly prepared diene was subjected to the same reaction conditions. No sample was taken after 1.5 h and the N-phenyl maleimide 2a was directly added. After 16 h at $90^{\circ} \mathrm{C}$, the oxazolidine product were obtained in 66% within a ratio of endo/exo (55/45), i.e. comparable to the ratio obtained in Entry 2, Table 10. However another compound was observed in the crude ${ }^{1} \mathrm{H}$ NMR analysis of the reaction mixture, i.e. a signal at $\delta=5.80 \mathrm{ppm}$ suggested that the unknown product was the result of the Diels-Alder reaction of 2a with the starting diene 241c (Scheme 78). This
observation led to reconsideration of the methodology developed for the nitrone formation, because this implied an incomplete conversion of the diene. After purification, both isomers were isolated and separated with a combined 40% overall yield.

Scheme 78. One-pot oxazolidine synthesis with new batch of diene 241c.

III.6.c. Mechanistic aspects

The nitrone formation

The formation of the nitrone derivatives using boronated dienes and arylnitroso compounds obviously raises numerous questions about the reaction mechanism, namely the order of the different steps and the type of mechanism involved in the sequence.

The most common way to synthesise nitrone derivatives is by condensation of hydroxylamine with an aldehyde. However, a few examples have been described decades ago, using arylnitroso derivatives as nitrone precursors. ${ }^{142}$ The nitrone synthesis has not been fully explained, but most of the studies agreed on a nitroso-ene reaction as the first step, followed by an oxidation. An alkenyl aryl nitroxide was detected by ESR spectroscopy, ${ }^{143}$ highlighted the possibility of the nitroso-product as an intermediate. More recently, another work presenting nitrone formation using arylnitroso derivatives as precursors has been published. ${ }^{144}$

Three pathways could be envisaged to describe the formation of the nitrone, based on three different reactions: a Diels-Alder/rearrangement process; an arylnitroso-ene reaction; and an oxidation (Scheme 79).

Scheme 79. Pathways envisaged for the nitrone formation.

Preliminary studies to ascertain a plausible mechanism started with the pathway shown in green in Scheme 79. If the hypothesis of a first Diels-Alder/rearrangement reaction was in process, reaction of the pyrrole $\mathbf{2 7 7} \mathrm{g}$ in the presence of nitroso compound $\mathbf{1 6 0 g}$ (2.2 eq .) should provide the nitrone in AcOEt at r.t. No reaction occured after 24 h and no azoxy byproducts 278 were observed either (Scheme 80). Thus, the first step of the cascade process is unlikely to be pyrrole formation, and moreover, the absence of by-products, emphasised the influence of the boron moiety on the formation of azoxybenzene and other by-products from the nitroso species, possibly due to Lewis acid activation.

Scheme 80. Reaction of pyrrole $\mathbf{2 7 7}$ g with nitroso 160 g .

Thus, the cascade process had to begin with the formation of the arylnitroso ene adduct $\mathbf{3 1 0}$. This observation proved that the boron substituent on the 1,3-diene was necessary for the sequence to take place. If the same type of reaction was performed using isoprene $\mathbf{1 8 6}$ in benzene, only the standard [4+2]-cycloaddition occured to yield the oxazine cycloadduct $\mathbf{3 1 3}$ in 42% (Eq. 1, Scheme 81). ${ }^{145}$ In contrast, when the diene 241c was used, it showed that nitrone 304 was predominantly synthesised (Eq. 2, Scheme 82).

Scheme 81. Comparison of the reaction of nitrosobenzene 160 a with isoprene 186 and diene 241 c .

Another set of reactions was then engaged to improve and determine the most probable oxidation pathway. A standard reaction using normal conditions was performed as a reference, in order to check the conversion after 1.5 h with the one batch of diene used for the later reactions. The conversion obtained after 1.5 h was 77% (Entry 1, Table 12). In order to improve the oxidation step, mild aerobic radical conditions were tried. Thus, a reaction using TEMPO in stoichiometric amounts led to full conversion of the starting diene after 1.5 h
(Entry 2, Table 12), whereas catalytic amounts (0.1 eq.) exerted only a slight improvement of the conversion $(85 \%$, Entry 3 , Table 12) compared to the reference reaction $(77 \%$, Entry 1 , Table 12). Hence, full oxidation could be obtained only under those conditions. Further investigations to find a suitable work-up procedure are still in progress. An anaerobic reaction was undertaken to determine whether oxygen was responsible for the partial oxidation, however the nitrone $\mathbf{3 0 4 g}$ was also formed in around the same amount (74%), making the aerobic oxidation unlikely.

Table 12. Study of the oxidation step.

		conditions	
	Entry	Reaction conditions	Conversion after 1.5 hours ${ }^{\text {[a] }}$
	$1^{\text {[b] }}$	AcOEt, r.t.	77\%
	$2^{[b]}$	AcOEt, r.t. TEMPO (1 eq.)	100\%
	$3^{[b]}$	AcOEt, r.t. TEMPO (0.1 eq.)	85\%
	$4^{[b]}$	AcOEt, r.t. inert atmosphere (Ar)	74\%

[a] Conversion measured by ${ }^{1} H$ NMR. [b] Reaction using the same batch of diene 241c.

The second possibility envisaged was that one of the arylnitroso by-products forming during the reaction was responsible for the oxidation step. To support this hypothesis the reaction between 315 and 160 g was undertaken under the nitrone formation conditions (synthesis of 315 will be discussed in the next Chapter). A sample was taken after 1.5 h and analysed by ${ }^{1} \mathrm{H}$ NMR showing numerous products had been produced, and no final conclusions concerning the formation of the nitrone could be made (Scheme 82). Nevertheless, two signals at $\delta=8.97$ and 8.95 ppm were observed, which could be consistent with alkenyl protons from the nitrone
moiety. Possible formation of the trans- and the cis-isomers could explain the two signals. As a comparison, the nitrone alkenyl protons for $\mathbf{3 0 4 g}$ showed a $\delta=8.99 \mathrm{ppm}$ chemical shift. Furthermore, a large amount of starting material was still remaining in the reaction mixture. If the reaction was continued for 22.5 h , no changes were observed.

Scheme 82. Oxidation study on the starting material 315.

The oxidation step seemed to be performed by arylnitroso by-products, formed during the reaction. AcOEt and toluene had a dramatic influence towards the formation of the nitrone product. However, no reasonnable explanation has been found to explain the change in reactivity related to the modification of the solvent. Further reactions need to be performed to ascertain the order of the cascade process.

The 1,3-dipolar-cycloaddition

The 1,3-dipolar cycloaddition has been generally accepted as a concerted asynchronous pericyclic cycloaddition. In the case of nitrone compounds as dipoles, both HOMO-LUMO interactions mode could occur because of the close energy gap in each case. The HOMO (dipole) can pair with the LUMO (dipolarophile), and vice versa. The diastereoselectivity of the cycloaddition towards the formation of either the endo- or the exo-isomer is mainly driven by two factors. The first one is the π-interaction between the aromatic ring of the nitrone
(dipole) and the carbonyl group of the N-phenyl maleimide $\mathbf{2 a}$ (dipolarophile), and the second one is the steric hindrance generated by the aromatic ring (Scheme 83). In this case, the diastereoselectivity is dependant on the substituent of the aromatic ring, and the π-interaction seems to be predominant. Indeed, the formation of the endo-isomer was always slightly, or exclusively favoured (Table 10). Nevertheless, the difference in diastereoselectivity between each case remained unclear.

Scheme 83. Mechanism and selectivity of the nitrone [3+2]-cycloaddition.

III. 7 Summary

This study revealed that hetero Diels-Alder cycloadditions of arylnitroso compounds and 1boronated dienes afford either pyrrole derivatives or oxazine cycloadducts. The most critical parameter to guide these reactions remains the ability of the boron to keep, or not, its sp^{3} hybridization state. The presence of a boronate function α to the oxygen or the nitrogen atom of the oxazine ring is responsible of the ring contraction. Different experimental observations, in addition to theoretical investigations, led to a mechanistic proposal to rationalise these
results. First, the nitroso Diels-Alder reaction took place in a regioselective asynchronous concerted manner. Then, formation of the pyrrole derivative can be explained by a boryl rearrangement, followed by an intramolecular aza-boryl to aldehyde addition and borate elimination. In the case of 2-MIDA boronodienes, the formation of the corresponding [4+2]cycloadduct is also highly regioselective. No decomposition of the oxazine ring was observed during a Suzuki-Miyaura coupling. A 2,4,5-triaryl-3,6-dihydro-1,2-oxazine was isolated in good yield, thus showing why this approach to prepare these class of heterocycles with complete control of the position of the different substituents could be valuable.

Following these observations, an unexpected and interesting nitrone formation was demonstrated, just by modifying the solvent of the reaction between 1,3-dienylboronate 241c and arylnitroso derivatives $\mathbf{1 6 0}$. Taking advantage of this reactivity, a one-pot procedure starting with nitrone formation followed by a "normal" electron demand Diels-Alder reaction was developed to afford functionalised oxazolidines in modest yields. Unfortunately, the scope of the Diels-Alder reaction remained limited to N -phenyl maleimide as dipolarophile. The exact mechanism of this process remained unclear and further investigations are necessary both to rationalise these experimental results and to improve the overall yields of this sequence.

IV. Boronated dienes and carbonylnitroso compounds

Following the previous study and as part of the research programme developed by our group on the chemistry of carbonylnitroso compounds, ${ }^{90 \mathrm{a}}$ we next turned our attention to the reactivity of two compounds (318a and 318b) toward dienylboron substrates (Scheme 84).

Scheme 84. Reactions of boronated dienes with carbonylnitroso compounds.

IV.1. Reaction of 1-dienylboronate pinacolate esters with carbonylnitroso compounds

Due to their high instability, the carbonylnitroso species need to be prepared in situ. The most common way to generate these carbonylnitroso sepcies is to oxidise the corresponding N hydroxycarbamate 318a or hydroxyurea $\mathbf{3 1 8 b}$, respectively. The study started by determining a suitable oxidation system which could be used in the presence of the different boronated dienes. Diene 241c was used as the model substrate because the Bpin variant is presumed to be the most sensitive boron moeity towards oxidation, compared to a BMIDA substituent for example.

The most common oxidation procedure involves periodate as the oxidant. ${ }^{82}$ As expected, these strong oxidation conditions led to the formation of numerous compounds, and more
importantly to the degradation of the boron part of the starting diene. Photoredox conditions, developed by Tan and co-workers, ${ }^{92 a}$ using Rose Bengal dye as catalyst, showed formation of a unique compound bearing a new diene unit. No pyrrole formation, from the previously described Diels-Alder-rearrangement process, was observed. However, only a 25% conversion of the starting nitroso precursor 318a was observed and no improvement was observed if the reaction time was extended or by using a larger amount of Rose Bengal. A major drawback of this method was that an excess of the diene 241c (3 eq.) was used.

Thus, attention was then focused on aerobic copper-catalysed oxidation. Two different, recently developed systems were tried. The first one used $\mathrm{CuCl}_{2}{ }^{90 \mathrm{a}}$ and the second one $\mathrm{CuCl},{ }^{90 \mathrm{~b}}$ both conditions being tested with pyridine as co-catalyst. Copper(I) exerted a faster reaction compared to the copper(II) derivative. Indeed, after 16 h at r.t., the reaction using CuCl as a catalyst showed a 71% conversion of the starting diene 215c, whereas by using CuCl_{2}, only a 11% conversion was observed. Three products were observed in the crude reaction mixture (Scheme 85).

Scheme 85. Study of the reaction between diene 241c and carbonylnitroso precursor 318a.

The compounds were identified as:

- The ene adduct $\mathbf{3 1 5}$ as the major product which was isolated and fully characterised;
- The pyrrole 319, resulting from the Diels-Alder/rearrangement process of the ene adduct $\mathbf{3 1 5}$ previously formed. Isolation of pyrrole $\mathbf{3 1 9}$ was not done and the proposed structure was based on the NMR analysis;
- The pyrrole $\mathbf{3 2 0}$ resulting from the the Diels-Alder/rearrangement process of the starting diene 241c. It was identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy and comparison with literature data. ${ }^{146}$

A screening of the reaction conditions was undertaken in order to optimise the formation of the ene-product. Non-polar or halogenated solvents (toluene, DCM) led to a decrease in reactivity. In both cases, conversion after 16 h was around 10% (Entries 3 and 4, Table 13). The ene-compound was the major compound (> 80\%) after 184 h . Polar solvents increased reactivity (THF, MeCN and acetone) with a conversion between 56 and 70% after 16 h (Entries 1, 2 and 5). If acetone was used, the selectivity towards the formation of $\mathbf{3 1 5}$ decreased drastically. If the reaction was not stopped before 30 h , either decomposition or formation of by-products was observed using TLC. A protic solvent (MeOH) favoured formation of numerous by-products, thus, the ratio between $\mathbf{3 1 5} / \mathbf{3 1 9} / \mathbf{3 2 0}$ was impossible to determine (Entry 6, Table 13). The use of pyridine as co-catalyst gave cleaner reactions and better yields, while using 2-ethyloxazoline was detrimental (Entry 7). If the reaction is faster with CuCl , better selectivity towards formation of the ene-compound $\mathbf{3 1 5}$ was observed with CuCl_{2}, compared to the CuCl version $(96 \%>82 \%$, Entries 1 and 8$)$. Modifying the catalyst loading allowed the optimisation of the selectivity towards the ene-adduct 315. By decreasing the catalyst loading from 20 to 10 or 5%, a slight improvement in the selectivity was measured (82 to 90 to 94%, Entries 10 and 11). When CuCl (0.05 eq.) was used, the reaction was slower (Entry 11). Conversion after 16 h was decreased by 14% compared to the reaction with 10 and 20%. It is also important to mention that the reaction needed to be carried out between 10 and $20{ }^{\circ} \mathrm{C}$. If the temperature exceeded $25^{\circ} \mathrm{C}$, the ene-compound was never
isolated as a white solid and in fact, degradation occurred, ${ }^{11} \mathrm{~B}$ NMR analysis showed numerous species.

Tableau 13. Optimisation of the nitroso-ene reaction.

Entry	Solvent	Catalyst	Co-catalyst	Conversion of diene 241c after $16 h^{[d]}$	Time (h)	$\begin{gathered} \text { Ratio } \\ 315 / 319 / 320 \end{gathered}$	Yield ene (\%)
$1^{[a]}$	THF	CuCl	Pyridine	71	28	82/12/6	62
$2^{[a]}$	MeCN	CuCl	Pyridine	70	28	89/3/8	46
$3^{[a]}$	DCM	CuCl	Pyridine	12	184	83/3/14	55
$4^{[a]}$	toluene	CuCl	Pyridine	6	184	88/3/9	53
$5^{[a]}$	acetone	CuCl	Pyridine	56	28	58/27/15	39
$6^{[2]}$	MeOH	CuCl	Pyridine	63	28	Not determined	31
$7^{[a]}$	THF	CuCl	2-ethyl oxazoline	41	28	Not determined	13
$8{ }^{[a]}$	THF	CuCl_{2}	Pyridine	11	184	96/0/4	52
$9^{[a]}$	THF	$\mathrm{CuCl} / \mathrm{CuCl}_{2}$	Pyridine	Not determined	40	84/10/6	43
$10^{[b]}$	THF	CuCl	Pyridine	69	28	90/5/5	59
$11^{[\mathrm{cc}]}$	THF	CuCl	Pyridine	56	34	94/2/4	60

[a] Reaction performed with 0.4 mmol of starting diene, $20 \mathrm{~mol} \%$ of catalyst and $5 \mathrm{~mol} \%$ of co-catalyst. [b] Reaction performed with 0.4 mmol of starting diene, 10 mol $\%$ of catalyst and 2.5 $\mathrm{mol} \%$ of co-catalyst. [c] Reaction performed with 0.4 mmol of starting diene, $5 \mathrm{~mol} \%$ of catalyst and $1.25 \mathrm{~mol} \%$ of co-catalyst. [d] Conversion measured by ${ }^{l} \mathrm{H}$ NMR.

Finally, using the best conditions [CuCl (0.1 eq.), pyridine (0.025 eq .) in THF at $15{ }^{\circ} \mathrm{C}$ in presence of air], the reaction was scaled up (Scheme 86). The average yield over three runs on a 2.6 mmol scale was 51% with a range of 3%; a small decrease being observed compared to Entry 10 in Table 13.

Scheme 86. Medium scale ene reaction.

To check whether the synthesis of the ene-compound was substrate dependent, the second nitroso precursor 318b was used under the aerobic reaction conditions. The reaction was performed with CuCl (0.2 eq.) and pyridine (0.05 eq.), because the first attempt using same optimised conditions as described in Entry 10, Table 13, did not show useful results. By modifying the heteroatom in the α-position of the carbonyl group (O replaced by NH), a total change in reactivity was observed. No ene-adduct was observed in the crude reaction mixture and only pyrrole $\mathbf{3 2 1}$ was identified. After purifiaction by silica gel chromatography, $\mathbf{3 2 1}$ was isolated in a low 16\% yield (Scheme 87).

Scheme 87. Synthesis of pyrrole 321 using nitroso precursor 318b.

IV.2. Reaction of tetracoordinated 1-borodienes with carboylnitroso compounds

A major impact of boron substituents was previously demonstrated in the case of nitroso Diels-Alder reactions of 1-boronodienes with arylnitroso compounds. Changing the boron hybridisation from sp^{2} to sp^{3} enabled the isolation of stable oxazines. A similar behaviour was observed with carbonylnitroso precursors 318a-b and the BMIDA diene 249. The nitroso Diels-Alder reaction occured selectively to provide only the 1,2 related boron-oxygen regioisomer (in red in Table 14), as for arylnitroso compounds, to provide the oxazines 322a and 322b in moderate to good yields 58 and 72%, respectively. The reactions being performed in THF, the BMIDA diene $\mathbf{2 4 9}$ was not fully soluble, that can explain the long reaction times (7 and 9 days). Stronger oxidation conditions (tetrabutylammonium periodate) decreased significantly the reaction time from 9 days to 2 hours when 318a was used, but also the final isolated yield 37% (Table 14).

Table 14. Regioselective formation of stable oxazines from carbonylnitroso Diels-Alder reactions.

(1 eq.)
249

(1.5 eq.)

318a-b

CuCl (0.2 eq.) $\xrightarrow[\text { THF, r.t. }]{\text { pyridine (} 0.05 \text { eq.) }}$

322a-b
Entry Nitroso precursor
[a] Reaction using the copper aerobic system $\mathrm{CuCl}(0.2$ eq.), pyridine (0.05 eq.) in THF at r.t. [b] Reaction using $\mathrm{Bu}_{4} \mathrm{NIO}_{4}$ (1.2 eq.) in DCM at $-5^{\circ} \mathrm{C}$.

As previously observed, in comparison with the Bpin derivative, the $\mathrm{BF}_{3} \mathrm{~K}$ diene $\mathbf{2 7 6}$ exerted faster nitroso Diels-Alder reactivity. Pyrroles $\mathbf{3 2 0}$ and $\mathbf{3 2 1}$ were isolated in moderate yields (48 and 53% respectively, Table 15). No competitive ene-adduct was formed.

Table 15. Reactivity of trifluoroborylated diene 276 and carbonylnitroso.
Entry

IV.3. Mechanistic aspects

IV.3.a. The aerobic copper oxidation step

The mechanism of aerobic oxidation of the nitroso precursor is proposed to be based on a $\mathrm{Cu}^{\mathrm{I}} / \mathrm{Cu}^{\text {II }} \mathrm{O}$ catalytic cycle (Scheme 88). ${ }^{147}$ Different oxidation pathways can be envisaged related to the $\mathrm{Cu} / \mathrm{O}_{2}$ stoichiometry leading to numerous catalytic species. ${ }^{148}$ In most of these reactions, aromatic nitrogens are often used as electron-donating ligands. The nature of the ligand (monodentate or polydendate), as well as the number of ligand attached to the copper center, have been shown to be responsible for the geometry adopted by the Cu -complex. ${ }^{148}$ In the system used for the nitroso-ene reaction, pyridine was used as a monodentate ligand. Most of the studies on the topic have proposed the cupric superoxo species $\left(\mathrm{Cu}^{\mathrm{II}}-\mathrm{O}-\mathrm{O}^{-}\right)$as the initiator of the oxydation by hydrogen abstraction. ${ }^{149}$ Copper(I) chloride has proved to give the best results, leading to a fast catalytic cycle, which is in accordance with kinetic results obtained by Deng et al. ${ }^{150}$

Scheme 88. Simplified aerobic oxidation mechanism of the nitroso precursor.

IV.3.b. The Diels-Alder/ring contraction sequence

In the presence of the BMIDA dienes 249 and $\mathrm{BF}_{3} \mathrm{~K} 276$, the reactivity of the carbonylnitroso compounds was similar to the arylnitroso derivatives. Firstly, a regioselective Diels-Alder reaction took place to form the 1,2-related boron-oxygen regioisomer oxazine cycloadduct (in red in Scheme 89). In the case of the diene boronated MIDA ester 249, the oxazine was stable and could be isolated after chromatography. For the trifluoroboronated salt 276, the rearrangement (already described in the Chapter 2) slowly provided the pyrroles $\mathbf{3 2 0}$ and $\mathbf{3 2 1}$. Only a slight difference in rate was measured, especially with diene 249, nitroso 323b reacting faster (7 days) than nitroso 323a (9 days).

Scheme 89. Proposed mechanism for the formation of the oxazine and pyrrole.

IV.3.c. The ene reaction: Impact of the boron substituents

The results obtained with diene 241c showed two different reactivities based on the nature of the heteroatom in the α-position of the nitrosocarbonyl group. When the carbonylnitroso was an urea-type (as in compound 323b), only formation of the pyrrole was observed, presumably via the same mechanism as presented in Scheme 89 with diene 276. On the other hand, the carbonylnitroso bearing an oxygen atom instead of nitrogen, provided predominantly the enecompound 315, with only traces of Diels-Alder adduct (Scheme 90). To our knowledge, only transition-metal-catalysed Alder-ene reactions involving boronic esters have hitherto been reported to date. ${ }^{151}$

Scheme 90. Pyrrole 321 versus ene 315 formation.

The ene reaction is a pericyclic reaction involving an alkene bearing an allylic hydrogen (the enepartner, e.g. 329) and a molecule containing an electron-deficient multiple bond (the enophile, e.g. partner 328). During the process, a new σ-bond between C_{3} and C_{4} (in red in Scheme 91), an ene π-bond migration from $\mathrm{C}_{3}-\mathrm{C}_{2}$ to $\mathrm{C}_{2}-\mathrm{C}_{1}$ (in blue in Scheme 91) and a hydrogen shift from C_{1} to C_{5} (in green in Scheme 91) can occur, affording acyclic compound 330.

Scheme 91. The ene reaction.

Whereas, the ene-reaction has been described as a concerted, but potentially asynchronous reaction, the exact mechanism of the nitroso-ene still remains unclear. Indeed, the reactivity is directly dependant upon the electronic properties of the reactive partners, and specifically the HOMO-LUMO gap, which is very small for nitroso compounds. The discovery of the nitrosoene reaction was first reported in 1910 by Alesandri, ${ }^{152}$ the first real study was accomplished later by Knight and co-workers. ${ }^{142}$ Six different mechanisms have been postulated to
rationalise the course of this reaction (Scheme 92). The first one involves a concerted synchronous or asynchronous pericyclic transition state 331. This transition state is allowed by the Woodward-Hoffmann selection rules as a $[\pi 2 s+\pi 2 s+\sigma 2 s]$ process (path A). ${ }^{153}$ Other possible pathways involve aziridine N-oxides (ANO) 332 (path B) ${ }^{154}$ and diradicals 333 (path C). ${ }^{155}$ Pathways involving zwitterion 334 (path D) and (pathway E and F) have also been postulated. The last two mechanisms involve a highly strained oxazetidine $\mathbf{3 3 5}$ or two radical species $\mathbf{3 3 6}$ and $\mathbf{3 3 7},{ }^{156}$ which appears the most unlikely.

The first computational work was carried out using PM3 by Davies and Schiesser on propene and nitrosyl hydride. ${ }^{154 a}$ They presented two major possible intermediates, and according to the results of the concerted pathway A, it appears that the carbon-nitrogen bond can be almost fully formed before the allylic hydrogen transfer. This observation is consistent with a highly asynchronous mechanism. Nevertheless, they also found that the ANO intermediate 332 described in pathway B provided a lower energy barrier of $8 \mathrm{kcal} \mathrm{mol}^{-1}$ compared to the concerted pathway. Later, another study using the B3LYP/6-31g* basis set for their DFT calculations on the nitroso ene mechanism, supported the assumption that the reaction can go through an aziridine N-oxide intermediate as the rate determining step. ${ }^{154 b, \mathrm{c}}$ Houk and coworkers presented another pathway based on a polarised diradical intermediate $\mathbf{3 3 3}$ (pathway C) using B3LYP/6-31g* DFT calculations. ${ }^{155}$ Formation of this polarised diradical intermediate was characterised by high energy rotation barriers of carbon-nitrogen and carbon-carbon bonds ($4-5 \mathrm{kcal}_{\mathrm{kc}} \mathrm{mol}^{-1}$) resulting from an attack of nitrosyl hydride on a propene molecule. The diradical formed during the rate determining step, can then abstract an allylic hydrogen to either form the ene-compound or equilibrate to the aziridine N-oxide $\mathbf{3 3 2}$.

Studies on the regioselectivity of the nitroso ene reaction have also been performed, but in the case of the monosubstituted substrate (olefin bearing the methyl group on 241c in this study), only the hydrogen from the methyl group can be transferred. ${ }^{157}$

Scheme 92. Possible mechanism for the nitroso ene reaction.

With the trifluoroborate 276 the nitroso Diels-Alder/rearrangement process occured in moderate yields to afford pyrroles regardless the nature of the carbonylnitroso species. By contrast, with a more electron-deficient diene (pinacol ester 241c), the course of the reaction was governed by the nature of the heteroatom in α-position of the nitrosocarbonyl group. By modifying the HOMO-LUMO gap, the rate of Diels-Alder reaction decreased drastically, and, as a result, with $\mathbf{3 1 8 b}$, only pyrrole $\mathbf{3 2 1}$ was isolated. If the substituent on the nitroso compound has higher electron-withdrawing character, only traces of Diels-Alder cycloadduct was detected, and ene adduct $\mathbf{3 1 5}$ was predominantly isolated.

V. The ene-adduct as key intermediate in cascade reactions

The ene-compound 315 is a polyfunctional molecule with multiple sites for further modifications and therefore can be envisaged as a valuable intermediate for the synthesis of different scaffolds, especially in the field of bioactive compounds. This work focused on:

- the diene (in blue on Figure 13)
- the OH of the hydroxycarbamate (in red on Figure 13)
- the boron unit (in green on Figure 13)

315

Figure 13. Ene-compound 315.

V.1. The Diels-Alder/allyboration sequence

The tandem Diels-Alder/allylboration process has been developed to afford numerous scaffolds. ${ }^{158}$ It gives access to molecules with a high degree of complexity in a minimum number of steps. Most of the time, the outcome (stereoselectivity and regioselectivity) of the Diels-Alder cycloaddition is directly related to the electronic properties and the steric influences of both the diene and dienophile. In the case of "normal" electron-demand DielsAlder reactions, electron-poor dienophiles usually react through an endo transition state. In the case of organoboron compounds, this reaction has been sucessfully coupled with an
allylboration, which is also widely used in organic synthesis because of the high stereocontrol. ${ }^{159}$

In the case of the diene $\mathbf{3 1 5}$, such a sequence could provide bicyclic compounds $\mathbf{3 4 0}$, with control of up to four stereocentres, one of them being quaternary (Scheme 93).

Scheme 93. The Diels-Alder/allylboration sequence on the compound 315.

V.1.a. The Diels-Alder step

Before envisaging a one-pot procedure, screening of different dienophiles was performed on the ene-adduct $\mathbf{3 1 5}$ to determine its reactivity. In the case of the N-phenyl maleimide 2a, reaction was complete after 24 h in DCM to afford the compound 339a in 84% isolated yield after silica gel chromatography (Entry 1, Table 16). When maleic anhydride 2b was used, the reactivity decreased, giving 77% conversion after 44 h in DCM at r.t. and 62 h were necessary to obtain full conversion of the starting compound 315. Unfortunately, compound 339b was never isolated due to stability issues. Standard silica gel, deactivated silica gel with $\mathrm{Et}_{3} \mathrm{~N}$ (2\%) and florisil chromatographies or precipitation using different solvent mixtures in different ratios were all unsuccessful (Entry 2, Table 16). Concerning methyl acrylate 12 and p benzoquinone 341, no reaction was observed at r.t. in DCM after 44 h . The solvent was then changed for a higher boiling point solvent, and reactions took place in toluene when heated at
$90^{\circ} \mathrm{C}$. In the case of p-benzoquinone 341 and methyl acrylate $\mathbf{1 2}$, no starting material $\mathbf{3 1 5}$ was recovered, but no characteristic peaks of cycloadduct were observed either (Entries 4 and 5, Table 16). Lastly, the dienophile 4-phenyl-1,2,4-triazole-3,5-dione $\mathbf{2 3}$ was tested. ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture showed full consumption of the starting ene 315 in 24 h , but ${ }^{11} \mathrm{~B}$ NMR showed formation of another boron species, instead of the Bpin moiety alone. A peak for boroxine ($\delta=22 \mathrm{ppm}$) was observed (Entry 3, Table 16).

Reactivity of $\mathbf{3 1 5}$ is therefore highly dienophile dependent. For the reaction to take place, a highly electron-deficient dienophile such as maleic anhydride or related structures is required. This preliminary study highlighted the question of stability of the diene 315, as well as cycloadduct 339, under high temperature conditions.

Table 16. Diels-Alder reaction of the compound 315.

Entry	Dienophile	Solvent	Temp (${ }^{\circ} \mathrm{C}$)/ Time	Consumption of diene/ Formation of DA adduct	Isolated yield
1		DCM	r.t./24 h	100/yes	339a 84\%
2		DCM	r.t./62 h	100/yes	339b/
3		DCM	r.t/24 h	100/yes	339c/
4		DCM	r.t./24 h	0	1
		toluene	90/24 h	100/no	/
5	 341	DCM	r.t./24 h	0	/
		toluene	90/24 h	100/no	1

It has already been reported that Lewis acids can catalyse Diels-Alder reactions. ${ }^{32,43,44,56,57}$ Except for N -phenyl maleimide 2a, all the other dienophiles tested in Table 16 exerted low or no reactivity at all. To counter this problem, various catalysts were tried with no significant improvement. The conversion after 48 h , measured by ${ }^{1} \mathrm{H}$ NMR, ranged from 68 to 85% (Table 17).

Table 17. Diels-Alder reaction using Lewis acid catalysts.

[a] Conversion measured by ${ }^{l} H$ NMR on the crude reaction mixture.

A possible explanation of the inactivity of catalysts, could be the presence of the free alcohol of the hydroxycarbamate on the compound 315, which might coordinate to the Lewis acid. Hence, a O-acetyl protected version 342, of the ene compound 315, was synthesised following the reaction conditions described in Table 23. No catalytic effect was observed and only around 50% conversion was only observed after 48 h at r.t. proving that $\mathbf{3 4 2}$ is even less reactive than 315 .

Table 18. Diels-Alder reaction using Lewis acid catalysts on O-acetyl compound 342.

[a] Conversion measured by ${ }^{l} H$ NMR on the crude reaction mixture.

Concerning the stereochemical outcome of this cycloaddition, different attempts at crystallisation were tried on compound 339a without success. Its structure was determined by analysis of the coupling constants in correlation with calculated values obtained by conformational searches using Spartan '10 (see Experimental section). ${ }^{\ddagger}$ Calculated values did not permit assurance of the structure of the cycloadduct. None of the isomers showed all of the coupling constant values within a reasonable margin of error. Nevertheless, comparisons of the coupling constants $J_{\mathbf{H 1 - H 2}}(\mathrm{Hz})$ and $J_{\mathbf{H 3}-\mathbf{H 4}}(\mathrm{Hz})$ led us to the endo-structure. In the case of the endo-isomer, calculated coupling constants were, $J_{\mathbf{H 1}-\mathrm{H} 2}=5.4 \mathrm{~Hz}$ and $J_{\mathbf{H 3}-\mathrm{H} 4}=5.1 \mathrm{~Hz}$ and for the exo-isomer $J_{\mathbf{H 1} \mathbf{H 2}}=2.2 \mathrm{~Hz}$ and $J_{\mathbf{H 3} \mathbf{- \mathbf { H }}}=1.7 \mathrm{~Hz}$. The comparison with the measured constants $\left(J_{\mathbf{H 1 - H 2}}=5.8 \mathrm{~Hz}\right.$ and $\left.J_{\mathbf{H 3}-\mathbf{H 4}}=4.1 \mathrm{~Hz}\right)$ is therefore in favor of an endoisomer. Furthermore, comparison with data published on a related cycloadduct, ${ }^{30}$ suggested also the formation of the endo-isomer.

[^4]Table 19. Determination of the stereochemistry of cycloadduct 339a by coupling constants analysis.

339a endo

339a' exo

Entry	Molecule	$\boldsymbol{J}_{\mathbf{H 1 - H 2}}(\mathbf{H z})$	$\boldsymbol{J}_{\mathbf{H 3}-\mathrm{H} 2}(\mathbf{H z})$	$\boldsymbol{J}_{\mathbf{H 3} \mathbf{- H 4}}(\mathbf{H z})$	$\boldsymbol{J}_{\mathbf{H 3} 3 \mathbf{H} 5}(\mathbf{H z})$
$\mathbf{1}$	$\mathbf{3 3 9 a}$	5.8	9.4	4.1	7.7
$\mathbf{2}$	339a endo	5.4	8.1	5.1	9.1
$\mathbf{3}$	339a' $\boldsymbol{e x o}$	2.2	7.2	1.7	7.4

V.1.b. The Diels-Alder/allyboration one-pot process

In order to evaluate the possible advantage of a one-pot sequence, a comparison with a process wherein the two reactions were carried out separately was undertaken. As observed in Table $16, N$-phenyl maleimide $2 \mathbf{2 a}$ showed the best reactivity, and thus was used as model dienophile with p-nitrobenzaldehyde 35 an electron-deficient aldehyde. For the one-pot procedure (Eq. 1, Scheme 94), the reaction was carried out in toluene at $60{ }^{\circ} \mathrm{C}$ for 66 h . The crude reaction mixture showed a mixture of unreacted N-phenyl maleimide $\mathbf{2 a}, p$ nitrobenzaldehyde 35, and pinacol 255, as well as the desired compound 340a. It is worthy to note that no compound $\mathbf{3 1 5}$ or cycloadduct intermediate $\mathbf{3 3 9}$ a were observed. The crude product was purified by silica gel chromatography to recover N-phenyl maleimide $\mathbf{2 a}$ in 15% yield and p-nitrobenzaldehyde 35 in 52\%. The desired product $\mathbf{3 4 0 a}$ was isolated in 40\% yield.

On the other hand, the same sequence was carried out with isolated compounds (Eq. 2, Scheme 94) which afforded only a 16% overall yield. The Diels-Alder step led to the formation of the $[4+2]$-cycloadduct in 84% yield (Entry 1, Table 16), whereas the allylboration, using the same reaction conditions (toluene, $60^{\circ} \mathrm{C}, 66 \mathrm{~h}$), provided compound 340a with a 19% isolated yield, proving that allylboration is the critical step in the sequence. The one-pot procedure is therefore preferred for the following study the most suitable pathway ($40 \%>16 \%$).

Scheme 94. One-pot procedure versus isolated method.

A screening of the reaction conditions was undertaken to define the influence of the solvent, stoichiometry of the reactants, the concentration and the temperature. At r.t., with a concentration of $0.17 \mathrm{~mol} . \mathrm{L}^{-1}$ of $\mathbf{3 1 5}$, the solvent did not show a major impact in either the Diels-Alder or the allylboration step. Toluene showed a slightly better reactivity, with a
higher 315 consumption and allylation compound 340a formation (Entry 2, Table 20). More importantly, formation of two allylation compounds, 340a and 340a', were observed after 72 h and 1 week. Even if acetone did give the lowest conversion towards the [4+2]-cycloadduct, it seemed that the allylboration step was slightly faster, compared to the reaction using CDCl_{3} and MeCN d^{3} (Entries 1, 3 and 4). In order to evaluate the impact of the temperature, toluene and acetone were chosen as solvents. By increasing the temperature to $50^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, the cycloaddition and the allylboration were faster. However, the ratio between the two allylation compounds $\mathbf{3 4 0 a}$ and 340a' were modified depending on the temperature. At r.t., the reaction in toluene afforded the compounds 340a and 340a' in a ratio of (66/34) after one week (Entry 2). At 50 and $80^{\circ} \mathrm{C}$, the ratios were respectively (49/51) and (54/46) (Entries 5 and 6). When acetone was used, and the reaction was heated at $50^{\circ} \mathrm{C}$, the same characteristics were observed. Higher temperature enhanced the reactivity, and modified the ratio of allylation compounds 340a and 340a' (100/0 at r.t., $81 / 19$ at $50^{\circ} \mathrm{C}$) (Entries 3 and 9). In addition to the temperature, concentration also had a dramatic impact upon reactivity. If the concentration was increased approximately five-fold from $[\mathbf{3 1 5}]=0.17 \mathrm{M}$ to $[\mathbf{3 1 5}]=1.00 \mathrm{M}$, the conversion towards the cycloadduct intermediate and also the allylation were increased (Entries 8 and 10). With acetone, good selectivity was observed after one week with a ratio of $(90 / 10)$.

Based on these observations, the outcome of the reaction (conversion and ratio) was shown to be highly concentration and temperature dependant. Furthermore, a polar solvent (acetone) gave a faster allyboration reaction. Data showed that the allylboration step was the ratedetermining step. Thus, the number of equivalents of the aldehyde partner in the reaction was increased. The impact was not as important as for the concentration and the temperature, but 2.1 eq. of aldehyde provided the best compromise between reactivity and selectivity with 92% conversion, and a 93/7 ratio after 45 h . Because of the lack of reactivity of some dienophiles
(Table 16), a reaction in DMSO at $140{ }^{\circ} \mathrm{C}$ was undertaken. Unfortunately, only decomposition of starting materials was observed.

Table 20. Optimisation of the one-pot Diels-Alder/allylboration sequence.

Entry	$\begin{gathered} 2 \mathrm{a} \\ \text { (eq.) } \end{gathered}$	$\begin{gathered} 35 \\ \text { (eq.) } \end{gathered}$	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Conc. } 292 \\ \left(\text { mol.L }^{-1}\right) \end{gathered}$	$\begin{gathered} \text { Ratio (22 h) }{ }^{[a]} \\ \text { 315/339a/340a/340a' } \end{gathered}$	$\begin{gathered} \text { Ratio (45 h) }{ }^{[a]} \\ \text { 315/339a/340a/340a' } \end{gathered}$	$\begin{gathered} \text { Ratio (72 h) }{ }^{[a]} \\ \text { 315/339a/340a/340a' } \end{gathered}$	$\begin{gathered} \text { Ratio (week) }{ }^{[a]} \\ \text { 315/339a/340a/340a' } \end{gathered}$
1	1.1	1.1	CDCl_{3}	r.t.	0.17	36/64/0/0	21/75/4/0	13/78/9/0	7/76/17/0
2	1.1	1.1	Toluene d^{8}	r.t.	0.17	22/70/8/0	10/75/15/0	5/66/21/8	0/61/27/14
3	1.1	1.1	Acetone d^{6}	r.t.	0.17	42/53/5/0	27/65/8/0	17/70/13/0	9/69/22/0
4	1.1	1.1	$\mathrm{MeCN} d^{3}$	r.t.	0.17	36/64/0/0	21/76/3/0	13/81/6/0	6/83/11/0
5	1.1	1.1	Toluene d^{8}	50	0.17	0/71/17/12	0/58/21/21	0/43/28/29	0/27/36/37
6	1.1	1.1	Toluene d^{8}	80	0.17	0/50/31/19	0/35/37/28	0/23/41/36	0/17/45/38
7	1.1	1.1	Toluene d^{8}	r.t.	0.10	30/67/3/0	17/70/13/0	8/76/16/0	0/69/31/0
8	1.1	1.1	Toluene d^{8}	r.t.	1.00	0/72/24/4	0/53/40/7	0/30/50/20	- ${ }^{[b]}$
9	1.1	1.1	Acetone d^{6}	50	0.17	10/83/17/0	$-^{[b]}$	0/53/37/10	0/37/51/12

10	1.1	1.1	Acetone d^{6}	r.t	1.00	12/75/13/0	$-^{[b]}$	0/55/45/0	0/33/60/7
11	1.1	1.1	Acetone d^{6}	50	1.00	0/23/77/0	0/10/78/12	0/0/66/34	_ [d]
12	1.1	2.1	Acetone d^{6}	50	1.00	0/28/61/11	0/8/86/6	${ }^{[b]}$	- ${ }^{[b]}$
13	1.1	3.1	Acetone d^{6}	50	1.00	0/19/72/9	0/3/77/20	- ${ }^{\text {b] }}$	- ${ }^{\text {b] }}$
14	1.1	1.1	$\mathrm{MeCN} d^{3}$	80	1.00	0/18/37/45	0/9/42/49	0/0/51/49	_ ${ }^{[b]}$
15	1.1	1.1	DMSO d^{6}	140	1.00	$-^{[b]}$	- ${ }^{[b]}$	_ [b]	- ${ }^{[b]}$

[a] Ratio measured by ${ }^{l} H$ NMR of the crude reaction mixture. $[b]^{l} H$ NMR not determined.

The results presented in Table 20 were all calculated using ${ }^{1} \mathrm{H}$ NMR on the crude reaction mixture. Below are presented two NMR analyses (Figure 14 and 15); one containing only one allylation compound 340a and a second with a mixture of both compounds 340a and 340a'. In acetone, when the NMR was clean enough, attention was focused between the 5.5 and 6.5 ppm region. The remaining $\mathbf{3 1 5}$ compound was characterised by a doublet ($\delta=5.68 \mathrm{ppm}, J=$ 18.6 Hz), the cycloadduct 339a by a multiplet ($\delta=6.02 \mathrm{ppm}$), and compound 340a by a doublet of doublet ($\delta=6.30 \mathrm{ppm}, J=10.2,2.8 \mathrm{~Hz}$).

Figure 14. ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture in acetone after 72 h .

In toluene, due to the formation of a second isomer, identification of the different compounds involved in the reaction was more tedious. In addition to the area between 6.5 and 5.5 ppm , it was necessary to study a second set of signals between 3.5 and 2.4 ppm . Remaining 315 compound was characterised by a doublet ($\delta=5.79 \mathrm{ppm}, J=18.6 \mathrm{~Hz}$, not visible on Figure
15), the cycloadduct 339a by a multiplet ($\delta=6.11 \mathrm{ppm}$), compound 340a by a multiplet ($\delta=$ 2.88 ppm) and compound 340a' by a doublet ($\delta=3.36 \mathrm{ppm}, J=15.0 \mathrm{~Hz}$).

Figure 15. ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture in toluene after 7 days.

Depending on the conditions, formation of a single allylboration compound 340a, or a mixture of $\mathbf{3 4 0} \mathbf{a}$ and $\mathbf{3 4 0} \mathbf{a}^{\prime}$, were observed. The structure of the major isomer was established according to spectroscopic data (NMR and mass), the determination of the X-ray structure of of the related compound $\mathbf{3 5 0}$ (page 131) and by comparaison with literature data. ${ }^{30}$ This stereochemistry can be explained by the formation of an endo cycloadduct during the DielsAlder step and an allylboration transition state where the aryl substituent of the aldehyde occupied the equatorial position of a chair-like conformation (Scheme 95).

Scheme 95. Stereochemical outcome of the cascade reaction.

A screening of the dienophile and aryl aldehyde was then carried out. N-phenyl maleimide 2a was first used as the dienophile in the presence of different arylaldehydes. Isolated yields after silica gel chromatography were low to moderate (16-48\%). This was directly related to the electronic properties of the aldehyde, i.e. if R^{1} was an electron withdrawing group, the allylboration step was accelerated, by increasing the relative positive charge on the carbonyl group. On the other hand, the opposite behaviour was observed with R^{1} as an electron donating group.

The same pattern was obtained using maleic anhydride $\mathbf{2 b}$ as dienophile. Better yields were obtained using maleic anhydride $\mathbf{2 b}$, because no silica gel chromatography was required for purification, since the precipitation of the major compound was observed in CHCl_{3} overnight at $+4^{\circ} \mathrm{C}$. Concerning the structures of these products, as it was already reported in the literature, ${ }^{30}$ intramolecular cyclisation can occur to afford lactone derivatives. To determine whether the cyclisation occured, a ${ }^{1} \mathrm{H}$ NMR comparison between $\mathbf{3 4 0}$ and $\mathbf{3 4 5 b}$ in DMSO- d^{6} was performed. For 340a, the hydroxycarbamate signal ($\delta=9.69 \mathrm{ppm}$, s) and alcohol signal ($\delta=5.92 \mathrm{ppm}$, d) were identified, by $\mathrm{D}_{2} \mathrm{O}$ exchange. In the case of $\mathbf{3 4 5 b}$, only one signal, corresponding to the hydroxycarbamate signal ($\delta=9.53 \mathrm{ppm}, \mathrm{s})$ was detected. Concerning IR analysis, attention was focused on the region between 1600 and $1800 \mathrm{~cm}^{-1}$. Compound 345b
showed the peak with the highest intensity at $1730 \mathrm{~cm}^{-1}$. δ-Valerolactone (a 6 -membered lactone) showed a peak with the maximum of intensity at $1722 \mathrm{~cm}^{-1}$. Furthermore, IR data resulting from the cycloaddition using maleic anhydride has been described, and the $\mathrm{C}=\mathrm{O}$ bond was measured at $1770 \mathrm{~cm}^{-1} .{ }^{160}$ Thus according to these data, it was most probable that the product resulting from the reaction using maleic anhydride $\mathbf{2 b}$, was the lactone $\mathbf{3 4 5}$ resulting from the intramolecular cyclisation. Also, two azo compounds were tested 4-phenyl-1,2,4-triazole-3,5-dione 23 and DEAD 307 leading to a decomposition of the starting 315.

Table 21. One-pot Diels-Alder/allylboration sequence using arylaldehydes.

Attention was then turned to α, β-unsaturated aldehyde as partner of this three component reaction. When acrolein 346 was used, the expected polycyclic products $\mathbf{3 4 0 d}$ and $\mathbf{3 4 5 d}$ were synthesised according to crude ${ }^{1} \mathrm{H}$ NMR (Entries 1 and 3, Table 22). Nevertheless, only 340d was isolated in 37\% yield (Entry 1). Interestingly, if trans-cinnameldehyde 347 was employed, the reaction afforded the spirocyclic oxazine compounds $\mathbf{3 4 9}$ and $\mathbf{3 4 9 b}$, using N phenyl maleimide derivatives (Entries 2 and 5). With maleic anhydride 2b, the spirocyclic oxazine scaffold evolved to form compound $\mathbf{3 5 0}$ as already postulated in Table 21. When a $\mathrm{D}_{2} \mathrm{O}$ exchange was performed on molecule 349a, the signal corresponding to the alcohol disappeared proving that no cyclisation had occured.

Table 22. One-pot Diels-Alder/allylboration sequence using α, β-unsaturated aldehydes.

The preparation of a suitable crystal in the case of compound $\mathbf{3 5 0}$ allowed determination of the exact structure of this polycyclic heterocycle by X-Ray analysis, which is confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. By analogy, we were able to deduce the structures of the related products $\mathbf{3 4 9} \mathbf{a - b}$.

Figure 16. Crystal structure of compound $\mathbf{3 5 0}$.

V.1.c. Mechanistic aspects

The proposed mechanism starts with a Diels-Alder/allylboration sequence described in Scheme 95. On the basis of Alexanian and co-workers study, ${ }^{161}$ a mechanism based on an aerobic ketooxygenation was proposed. As an initiation step for the radical reaction to take place, they hypothesised that a small amount of the amidoxyl radical $\mathbf{3 5 2}$ was formed by an autooxidation process. A second alternative could be a boron-catalysed initiation process. The oxygen radical then cyclised to give the oxazine ring 353 by a 6 -exo-cyclisation process with creation of a carbon-centered radical as a single diastereoisomer. Formation of a stabilised benzylic radical can explain the formation of the 6-membered ring. Radical oxidation with O_{2} afforded the radical intermediate 354 which initiate the propagation by a hydrogen abstraction
from the substrate $\mathbf{3 5 1}$ yielding radical $\mathbf{3 5 2}$ and producing intermediate $\mathbf{3 5 4}{ }^{161}$ Whereas the conditions described in the paper used $\mathrm{Ac}_{2} \mathrm{O}$ (1 eq.) and DMAP (0.1 eq.) for the elimination step, in our case no external reagent was necessary to observe the same reactivity. A homolysis of the peroxide intermediate $\mathbf{3 5 5}$ could occur and by abstraction of the benzylic hydrogen, could provide the compounds $\mathbf{3 4 9} \mathbf{a}, \mathbf{b}$, releasing water. When maleic anhydride was used as dienophile, an intramolecular lactonisation ended the sequence.

Scheme 98. Ketoxygenation mechanism for the formation of compound $\mathbf{3 4 9} \mathbf{a}, \mathbf{b}$ and $\mathbf{3 5 0}$.

V.2. Modification of the boron substituent

The boron substituent has an impact on the rate of the Diels-Alder reaction. No catalytic effect had been observed with compound 315 bearing a Bpin substituent, thus, it was envisaged that modification of the substituent on the boron would impact the reaction. The trifluoroboronated salt 356a was synthesised using the procedure with potassium hydrogenbifluoride 146. The desired compound 356a was obtained with 89% yield. An attempt to synthesise the MIDA derivative using the standard procedure used for the preparation of the diene $\mathbf{2 4 9}$ was unsuccessful. Compounds $\mathbf{3 1 5}$ and $\mathbf{2 4 8}$ were recovered from the reaction. Lastly, the diethanolamine derivative was synthesised. Mixing compound $\mathbf{3 1 5}$ with diethanolamine $\mathbf{2 5 0}$ in $\mathrm{Et}_{2} \mathrm{O}$ did not lead to precipitation of the desired compound $\mathbf{3 5 6 b}$. Therefore, the reaction was carried out at high temperature under neat conditions in a distillation apparatus. Pinacol 255 was directly distillated during the process at $80^{\circ} \mathrm{C}$. Then, excess of diethanolamine was removed by increasing the temperature from $80^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR and ${ }^{11} \mathrm{~B}$ analyses of the crude reaction mixture showed formation of the desired compound. Different methods, including precipitation or washing did not permit the isolation of $\mathbf{3 5 6 b}$ as a pure compound.

Scheme 99. Effects of modification of the boron substituent on 315.

No advanced research on the Diels-Alder reaction was performed, but thanks to a probable higher reactivity towards the Diels-Alder reaction, cycloaddition using 356a-b with other dienophile could provide a wider range of cycloadducts. Moreover, purification could be facilitated, because most of the products bearing a trifluoroborate moiety could be easily precipitated out from the crude reaction mixture.

V.3. The metathesis/arylnitroso Diels-Alder/ring contraction sequence

Attention to diversify the chemistry of $\mathbf{3 1 5}$ was then turned to the hydroxycarbamate part of the molecule. The presence of this easily derivatisable group should allow a supplementary functionalisation and, therefore, greatly increase the structural diversity accessible from this ene product.

V.3.a. Synthesis of the O-substituted hydroxycarbamates

Two different derivatisations were performed, both of them resulting in the introduction of an additional unsaturation to the dienyl moiety, as summarised in Table 23. In the case of allyl bromide, in the presence of DBU, the reaction yielded 362a in a 49% yield after silica gel chromatography (Entry 1, Table 23), whereas, after classical workup, only polymerised compound was recovered with acryloyl chloride (Entry 4). The same problem was encountered by scaling up the reaction from 0.15 mmol to 0.5 mmol using allylbromide since only 9% of the desired compound 362a was isolated (Entry 2). It is known that boronated dienes have strong tendency to polymerise. This drastic decrease in yield was suppressed by using 2,6-di- t-butyl- p-cresol (BHT) as a stabiliser to inhibit the auto-polymerisation of the polyene and rapid filtration over a pad of silica. With these experimental conditions, the isolated yield of 362a increased from 9 to 85\% (Entry 3), and, similarly, the acryloyl derivative 362c was isolated in 70\% yield (Entry 5). Propargyl derivative 362d was prepared via the same method in an isolated 60% yield (Entry 6). 361c-d could be stored in dark in the fridge $\left(4^{\circ} \mathrm{C}\right)$ under an inert atmosphere, without observing any polymerisation.

Table 23. Synthesis of protected hydroxy carbamate adducts.

Entry
[a] Reaction performed with 0.15 mmol of compound 315 without optimised purification conditions. [b] Reaction performed with 0.5 mmol of compound 315 without optimised purification conditions. [c] Reaction performed with 2.00 mmol of compound 315 with optimised purification conditions. [d] Reaction performed with 0.5 mmol of compound 315 with optimised purification conditions.

We also tested the same functionalisation with the trifluoroborate 356a, dichloromethane being replaced as solvent by acetone to increase the solubility. The ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR analysis of the crude product indicated that the reaction took place, however several attempts at precipitation using different solvent mixtures $\left(\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}\right.$, $\mathrm{DCM} /$ hexane, acetone $/ \mathrm{Et}_{2} \mathrm{O}$, acetone/hexane) in various ratios failed. Therefore, a second pathway was envisaged starting from the Bpin derivative 315. First, the allylation was performed, and after full conversion of
the starting material, the modification of the boron substituent was tested based on the same procedure used for the synthesis of $\mathbf{2 7 6}$ (Scheme 60). Analysis of the crude product showed the same results and same purification issues as the first method (Scheme 100).

Scheme 100. Synthesis of the trifluoroborylated allylated compound $\mathbf{3 5 9}$.

V.3.b. The ring closing metathesis (RCM) of hydroxamates 358a-c

Metathesis is a reaction which allows the formation of new carbon-carbon double bonds by the reaction of two alkenes. This reaction has been widely developed, and nowadays, numerous catalysts have been developed to enhance the reactivity and the scope of the reaction. ${ }^{162}$ Among them, the most well-known catalysts are summarised in Figure 18.

Grubbs ($1^{\text {st }}$ gen)
360

Grubbs (2 $\mathbf{2}^{\text {nd }}$ gen) 361

Hoveyda-Grubbs ($1^{\text {st }}$ gen)
362

Hoveyda-Grubbs ($2^{\text {nd }}$ gen) 363

Figure 18. Most used metathesis catalysts.

The ring closure metathesis (RCM), one of the olefin metathesis processes, is one of the most efficient strategies used for the synthesis of cycle, heterocycle and macrocycle compounds. ${ }^{162 \mathrm{j}}$

Scheme 101. General formation of cyclic compounds by RCM.

The ring closure metathesis (RCM) for oxazine ring formation: bibliographic data

Several examples have already been reported in the field of oxazine derivatives. Tae and coworkers ${ }^{163}$ showed that the RCM can be performed on both Boc and Bz-protected substrates $\mathbf{3 7 0}$ yielding the desired oxazines compound $\mathbf{3 7 1}$ in moderate to excellent yield (63-93\%). The Boc-protected acryloylamide derivative was subjected to the same reaction conditions,
and 6- and 7-oxazine ring 373a-b were obtained with high yields ($>80 \%$), whereas the formation of the 8 -membered $\mathbf{3 7 3 c}$ ring did not take place (Scheme 102).

Scheme 102. Synthesis of oxazine using catalysed Grubbs I 360 RCM.

An interesting outcome was pointed out experimentally by Le Flohic et al., with the allylic substrate 370a, i.e. the reaction using 361 afforded the oxazine with an excellent 96% yield, whereas the acryloyl derivative $\mathbf{3 7 4}$ did not exert any reactivity with either $\mathbf{3 6 0}$ or $\mathbf{3 6 1}$ in toluene or DCM at r.t. or $70^{\circ} \mathrm{C}$ (Scheme 103). Moreover, according to literature work, the nitrogen needed to be substituted by an electron withdrawing group to enable reactivity. ${ }^{164}$

Scheme 103. Differences in reactivity between 370a and 374 towards the RCM.

The formation of the bicyclic β-lactams $\mathbf{3 7 6}$ using Grubbs' second generation catalyst $\mathbf{3 6 1}$ for ring-closing metathesis was found to depend on ring size (Scheme 104). It is worthy to note that the metathesis reactions involving Grubbs' first generation catalyst $\mathbf{3 6 0}$ gave no product formation. ${ }^{165}$ A few other examples were presented in the literature for the synthesis of a library of cell-permeable molecules, or aminoalcohol derivatives. ${ }^{166}$

Scheme 104. RCM on derivatives 375.

An elegant sequence using this process was presented, starting with the enyne metathesis, followed by a [4+2]-cycloaddition with singlet oxygen to afford cyclic peroxides fused with an oxazine ring 379 (Scheme 105). ${ }^{167}$

Scheme 105. Sequence enyne metathesis/Diels-Alder cycloaddition.

The ring closure metathesis ($R C M$) of hydroxamates 358a-c

The last example has shown the potential of a sequence metathesis/Diels-Alder sequence for oxazine synthesis. The diene $\mathbf{3 5 1}$ could be an interesting substrate for a ring closure metathesis reaction (RCM) between one of the carbon-carbon double bond of the diene and the allyl moiety making possible a further Diels-Alder step. Two products could be obtained depending on the selectivity on this ring closure process: the 6 -membered oxazine ring $\mathbf{3 7 4}$, thus forming a 1,3-boronated diene or a 7-membered ring 375 with an exocyclic alkene (Scheme 106).

Scheme 106. Possible outcome of the RCM on compounds $\mathbf{3 5 8 a}$.

Grubbs catalyst ($2^{\text {nd }}$ generation, $\mathbf{3 6 1}$) was selected to study the reactivity of 358a. Previous works on the RCM has proved that reflux conditions in DCM and high dilution favoured the cyclisation over the polymerisation. Thus, concentrations used for the reactions were varying between [358a] $=0.05$ and $0.07 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$. A reaction did take place with non-stabilised 358a and $10 \mathrm{~mol} \%$ of the catalyst over 24 h , forming a single compound according to crude ${ }^{1} \mathrm{H}$ NMR analysis (Entry 1, Table 24). After silica gel chromatography, compound $\mathbf{3 8 0}$ including a 1,3-boronated diene moiety was isolated in 61% yield. However, the methodology developed for the synthesis of protected hydroxycarbamate involved BHT as inhibitor to circumvent stability issue. Therefore, the metathesis was tested using derivative 358a incorporating 14% of BHT. To our satisfaction, no impact was observed between the reaction with stabilised and non-stabilised 358a (Entries 1 and 2) and both reaction yielded the same compound in around 60% yield. The catalyst loading was then reduced and a slight improvement of the yield was observed with $5 \mathrm{~mol} \%$ of the catalyst providing $\mathbf{3 8 0}$ with 70% yield. If the loading was decreased to $3 \mathrm{~mol} \%$, isolated yield decreased by 4% to reach 66% (Entries 3 and 4). When the reaction was scaled-up with $3 \mathrm{~mol} \%$, a small, but measurable, decrease of the isolated yield was observed (Entry 5). It was also noteworthy that $\mathbf{3 8 0}$ is stable on silica gel chromatography. As a result, BHT and presence of by-products from the previous step can be removed at this stage.

Table 24. Metathesis reaction on compound 358a.

Entry	Catalyst loading	Isolated yield (\%)
$\mathbf{1}^{[\mathrm{al}}$	$10 \mathrm{~mol} \%$	61
$\mathbf{2}^{\mathbf{[b]}}$	$10 \mathrm{~mol} \%$	60
$\mathbf{3}^{[\mathbf{b}]}$	$5 \mathrm{~mol} \%$	70
$\mathbf{4}^{[\mathbf{b}]}$	$3 \mathrm{~mol} \%$	66
$\mathbf{5}^{[\mathrm{cl}}$	$3 \mathrm{~mol} \%$	59

[a] Reaction performed on pure starting material 358a. [b] Reaction performed with starting material containing BHT (10 to 20\%) with 0.5 mmol of $\mathbf{3 5 8 a}$. [c] Reaction performed with starting material containing BHT (10 to 20\%) with 1.7 mmol of 358 a .

The molecular structure of $\mathbf{3 8 0}$ was ascertained by single-crystal X-ray diffraction. Spectroscopic data (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, mass) were in full agreement with this structure.

Figure 19. Single crystal X-ray structure of $\mathbf{3 8 0}$.

The derivative 358c was subjected to the same reaction conditions as described in Entry 3, Table 24. After 24 h , the reaction was stopped and analysed by ${ }^{1} \mathrm{H}$ NMR. Starting material 358c represented more than 80% of the crude mixture (Entry 1, Table 25). Formation of at least two compounds was observed, but we were unable to determine the accurate ratio and to identify these products. Despite the low reactivity, an overview of the stability of the
compound 358 c was obtained. At a moderate temperature range $\left(45-50{ }^{\circ} \mathrm{C}\right)$ under an inert atmosphere in presence of BHT, 358c was stable and recovered. Thus, a reaction was performed in toluene at $100{ }^{\circ} \mathrm{C}$ for 66 h (Entry 2, Table 25). No starting material or identifiable products were found by crude analysis, i.e. NMR and TLC. ${ }^{11}$ B NMR analysis showed that the major product was the formation of a boroxine-type compound with a chemical shift of $\delta=22.4 \mathrm{ppm}$. This low reactivity is in agreement with previous observations. ${ }^{164}$

Table 25. Metathesis reaction on compound 358c.

Entry	Reaction conditions	358c Consumption
$\mathbf{1}^{[\mathbf{a]}}$	$\mathrm{DCM}, 45^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$<20 \%$
$\mathbf{2}^{[\mathbf{a]}}$	Toluene, $100^{\circ} \mathrm{C}, 66 \mathrm{~h}$	100%

[a] Reaction performed with a starting material containing 16% of BHT.

The enyne metathesis of $\mathbf{3 5 8 d}$ was also tried based on the same reaction conditions in Entry 3, Table 24 in order to prepare the polyene $\mathbf{3 8 2}$. No reaction occurred and the starting material was recovered after 24 h with 86% yield.

Scheme 107. Enyne metathesis on 358d.

A study still has to be conducted on substrates 358c and 358d, involving a screening of catalysts, and examination of the effect of concentration and temperature.

Mechanistic aspects

The ring closing metathesis on compound 358a led to the selective formation of the 1,3boronated diene 380, without traces of the 7 -membered ring 381. Mechanistically, an intermolecular [2+2]-cycloaddition between the ruthenium complex and the allylic double bound took place to form the rutheniumcyclobutane intermediate $\mathbf{3 8 3}$ that can be likely due to steric hindrance. Retro-cycloaddition provided the active alkylidene specie $\mathbf{3 8 4}$ for the intramolecular [2+2]-cycloaddition. At this stage the ring formation may go through two different pathways: 1) The cycloaddition on the alkene in green on Scheme 108, to afford the intermediate 385 creating the oxazine 6 -membered ring. Release of the alkylidene species would have allowed catalytic cycle to proceed and a new 1,3-boronated diene $\mathbf{3 8 0}$ to be formed; 2) The cycloaddition could have occured on the boron substituted alkene. In this pathway, the intermediate would afford the formation of a 7-membered ring skeleton with an exocylic double bond in green on 385'. The metathesis reaction is a catalytic cycle based on reversible steps. Therefore, some parameters have a major impact to drive the reaction towards the formation of the final product, in our case, the formation of volatile ethylene compared with a vinyl boronate. Secondly, the selectivity observed for this reaction can be explained by thermodynamically favoured formation of 6-membered rings compared to higher homologues. Lastly, skeleton $\mathbf{3 8 1}$ is a more constricted structure with a diene including an exocyclic alkene which may result from a higher energy barrier.

381

385'

385
($\begin{gathered}\text { Rutheniumcycloabutane } \\ \text { intermediate }\end{gathered}$

384

Rutheniumcycloabutane intermediate

Scheme 108. Mechanism of the RCM to synthesise $\mathbf{3 8 0}$.

V.3.c. The arylnitroso Diels-Alder/ring contraction sequence

1,3-Boronated dienes have proved to provide pyrroles through a mechanism described in Chapter 2. Despite the fact that compound $\mathbf{3 8 0}$ showed higher strain due to the oxazine ring, it seemed reasonable to expect the same reactivity, even in low yield. Optimisation of the reaction using diene 241c showed that MeOH was the best solvent for pyrrole formation. However, for better solubility, we chose a mixture of $\mathrm{DCM} / \mathrm{MeOH}(1 / 6)$ as solvent. To our delight, the reaction worked smoothly with nitrosobenzene 160a (2.5 eq .) to provide the desired compound with an excellent 96% yield in 24 h (Entry 1, Table 26). The formation of azoxybenzene 278 was also observed as by-product, but in small amounts. A small decrease in yield was, however, observed with 1.5 eq (89%) (Entry 2). Screening different arylnitroso compounds was performed, and fused, bicyclic oxazine-pyrroles were obtained in good to excellent yields (Entries 3, 6 and 7, Table 26). Electron-deficient arylnitroso derivatives 160b, $\mathbf{1 6 0 g}$ and 160 h showed higher reactivity than the electron-rich arylnitroso 160d. Whereas reactions with $\mathbf{1 6 0 b}, \mathbf{1 6 0 g}$ and $\mathbf{1 6 0 h}$ showed full conversion of the starting material after 24 h , a 47% conversion of $\mathbf{3 8 0}$ was observed by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. Furthermore, a larger amount of azoxybenzene 258d was obtained. By reducing the rate of Diels-Alder/rearrangement process, the competition with the azoxybenzene formation became more problematic. As a result, with electron-donating substituent in the para-position of the aromatic ring, 2.5 eq. of arylnitroso $\mathbf{1 2 6}$ and an extended reaction time was necessary to observe full conversion of $\mathbf{3 8 0}$ (Entry 4). Even if the reactivity was decreased, the yield was not affected and product $\mathbf{3 8 6 d}$ was isolated in 91%. If an ortho-substituted arylnitroso was used, a decrease of the reactivity was also observed. With 1.5 eq. of $\mathbf{1 6 0 f}, 26 \%$ conversion was observed after 72 h at r.t. If another 1.5 eq. was added the conversion reached 58% after 6 days. The reaction was then carried out with 3 eq. of $\mathbf{1 6 0 f}$ at reflux conditions and a full
conversion of $\mathbf{3 8 0}$ was observed after 66 h yielded product $\mathbf{3 8 6 f}$ in 67% yield (Entry 5). The ortho-substitution decreased significantly the rate of the reaction, which can be explained by a steric hindrance effects.

Table 26. Synthesis of fused oxazine-pyrrole bicycle synthesis.

Entry

5

(3 eq.)
reflux
60

6

(1.5 eq.)
r.t.

24

7

(1.5 eq.)

$386 f$

82%
386 g

The formation of fused oxazine-pyrrole bicycle synthesis proved to be very efficient (96%), even if one of the olefin was endocyclic (in red in Eq. 1 in Scheme 109), in comparison with the carbocyclic version (Eq. 2).

Scheme 109. Comparison on the reactivity between the heterocyclic diene $\mathbf{3 8 0}$ and carbocylic diene 241b.

A possible explanation could be found from the difference in the configuration of the cyclohexenyl ring. In some cases, heterocyclic compounds can adopt boat-like conformations which are formed intially through [4+2]-cycloadditions anyway, whereas the cyclohexene ring has a flatter structure. ${ }^{168}$

Mechanistic aspects

A mechanism explaining the formation of the fused oxazine-pyrrole derivative can be based on the mechanism described in Scheme 69. First, a regioselective arylnitroso Diels-Alder reaction with a 1,2-oxygen-boron related regioisomer (in red in Schme 110) reaction could take place to afford the bicyclic oxazine ring system 387. No theoretical calculations have been made for this particular case, but according to previous results and calculations for the reference rearrangement process using 1,3-dienyl boronate, an endo-pathway might be preferred. Then, the consecutive boryl rearrangement leading to $\mathbf{3 8 8}$, followed by the intramolecular aza-boryl to aldehyde addition to give 389. Finally, the elimination step would provide the fused oxazine-pyrrole product 386.

Scheme 110. Mechanism of the formation of the fused bicyclic oxazine-pyrrole product 386.

V.3.d. The Diels-Alder/allylboration sequence.

The Diels-Alder/allylboration sequence was also tried on compound 380, with the optimised reaction conditions described in Entry 12, Table 20, with N-phenyl maleimide 2a as dienophile and p-nitrobenzaldehyde 35. The reaction was stopped after 48 h and checked by ${ }^{1} \mathrm{H}$ NMR. A 64% conversion of $\mathbf{3 8 0}$ was measured for formation of the cycloadduct $\mathbf{3 9 0}$. However, no trace of any allylboration compound was observed. No allylation product was observed after 80 h of combined reaction time, and only the [4+2]-cycloadduct $\mathbf{3 9 0}$ was obtained, which was isolated in 38% yield with traces of a second adduct (around 8%) after silica gel chromatography (Scheme 111). Derivative $\mathbf{3 8 0}$ and cycloadduct $\mathbf{3 9 0}$ showed higher ring strain than 315 and 339a, that could explain the decrease of reactivity, and moreover, avoided the allylboration occuring, as already observed previously. ${ }^{42}$

Scheme 111. Diels-Alder/allylboration sequence on 380.

An analysis of the coupling constant is in favor of an endo adduct by analogy with compound 339a. Measured coupling constant for $\mathbf{3 9 0}, J_{\mathbf{H 1} \mathbf{- H 2}}=5.3 \mathrm{~Hz}$, was in the same range as $J_{\mathbf{H 1}-\mathbf{H} \mathbf{2}}$ $=5.8 \mathrm{~Hz}$ for $\mathbf{3 3 9} \mathbf{a}$. In the case of the exo isomer 339a' in Table $22, J_{\mathbf{H 1}-\mathbf{H} \mathbf{2}}=2.2 \mathrm{~Hz}$ was calculated.

Table 27. Comparison of coupling constant between 390 and 339a.

Entry	Molecule	$\boldsymbol{J}_{\mathrm{H} 1-\mathrm{H} 2}(\mathbf{H z})$	$\boldsymbol{J}_{\mathrm{H} 3-\mathrm{H} 2}(\mathbf{H z})$	$\boldsymbol{J}_{\mathrm{H} 3-\mathrm{H} 5}(\mathbf{H z})$	$\boldsymbol{J}_{\mathrm{H} 3-\mathrm{H} 4}(\mathbf{H z})$
$\mathbf{1}$	$\mathbf{3 3 9 a}$	5.8	9.4	4.1	7.7
$\mathbf{2}$	$\mathbf{3 9 0}$	5.3	8.9	-	8.9

VI. Summary

Compound $\mathbf{2 9 2}$ has proved to be a key intermediate for the synthesis of different structures, depending on the sequence employed. A one-pot Diels-Alder/allylboration cascade process has been developed to afford polycyclic products. The outcome of the reaction was directly related to the dienophile and the aldehyde used for the sequence. For the Diels-Alder reaction to proceed, a maleic structure was required, yielding stereoselectively the endo-isomer. Acetone, a more polar solvent, favoured the allylboration step, with the yield depending on the electronic properties of the arylaldehyde. Electron-poor substituted benzaldehydes exerted better reactivity. This process enabled the synthesis of highly functionalised products with control of four stereocenters. An interesting spirocyclic compound was obtained by using trans-cinnamaldehyde. Further tests, using other α, β-unsaturated aldehydes bearing electronwithdrawing groups need to be examined to see if the behaviour of the trans-cinnamaldehyde can be generalised. A class of novel oxazine-pyrrole fused bicylic compounds was also synthesised based on an allylation/RCM/arylnitroso Diels-Alder/rearrangement process. After
solving the problem of polymerisation of the allylation compound by adding a radical inhibitor, the synthesis of the oxazine-pyrrole was straightforward and products were isolated up to 48% overall yield. The same sequence using the acryloyl and the propargyl protected hydroxycarbamate did not show the desired reactivity. A more in depth study of the reaction conditions for the metathesis using these substrates is required. Finally, modification of the boron substituent on compound 292 showed reserved results. Whereas the synthesis trifluoroboronated variant worked perfectly, the synthesis and purification process of the BMIDA and the DEA derivatives still needs to be improved.

Conclusions

\&

Perspectives

I. Conclusions

The chemistry of 1,3-dienylboronate compounds with arylnitroso derivatives is driven by three major factors: the hybridisation of the boron unit; the substitution on the diene; and the solvent used for the reaction. The presence of an sp^{2}-hybridised (Bpin) or a solvolysable sp^{3} hybridised (BDEA or $\mathrm{BF}_{3} \mathrm{~K}$) borodiene led to the formation of the corresponding pyrrole. The yield of the reaction is dependent on the electronic properties and the position of the substituents on the diene. To favour the formation of the pyrrole, less electron-withdrawing boron and R^{2} substituents, as well as low steric hindered R^{1} and R^{2} substituents were required. To isolate the oxazine derivatives resulting from a [4+2]-cycloaddition, stable sp^{3}-hybridised boron moiety (BMIDA) is necessary. These cycloadducts were synthesised with a high regiocontrol toward the 1,2 -boron-oxygen related adduct. The second isomer 1,3 -boronoxygen related adduct was only observed if R^{2} was a phenyl moiety. NMR studies on the two different boronated MIDA ester oxazines highlighted the possibility of selective deprotection of each regioisomer depending on the structure and the media used. Furthermore, it supported the theoretical calculations for the mechanism we proposed, based on an arylnitroso DielsAlder/rearrangement/borate elimination cascade process.

The synthesis of nitrone derivatives bearing a pyrrole unit was also achieved from pinacol 1,3-dienylboronate variant in AcOEt or toluene with excess of arylnitroso species. First investigations to explain the outcome of the reaction have been performed. Taking advantage of the nitrone formation, a one-pot procedure nitrone/Diels-Alder sequence was used to provide highly functionalised oxazoline derivatives, albeit in modest yield.

These results are summarised in the Scheme below.

Secondly, we have examined the reactivity of 1,3-dienylboronate compounds towards carbonylnitroso derivatives. Three different scaffolds were formed according to the hybridation of the boron unit and the nature of the X substituent. The MIDA variant exerted the same regioselectivity as for arylnitroso species. Exclusive formation of the 1,2-boronoxygen related adduct was observed in moderate yield. When the trifluoroborate was employed, pyrrole was synthesised in moderate yield following the mechanism previously proposed. The outcome of the reaction with the Bpin variant was directly related to the substituent X. With -NHR as substituent, the pyrrole was obtained in very low yield, whereas the -OR substitution led to the formation of the ene-compound in moderate yield. The ene-
intermediate has been further used in different multi-component sequences. First, a one-pot Diels-Alder/allylboration cascade reaction has been optimised to provide polycyclic compounds depending on the nature of both the dienophile and the aldehyde. Novel oxazinepyrrole fused bicyclic compounds were obtained using metathesis/arylnitroso DielsAlder/ring contraction sequence. Finally the same Diels-Alder/allylboration was applied on the 1,3-boronated diene oxazine ring. Only Diels-Alder compound was obtained, no allylboration being observed.

or

or

II. Perspectives

This work has shown the synthetic potential of boronated dienes with nitroso derivatives. Concerning the use of arylnitroso derivatives, whereas the pyrrole formation has been rationalised by a mechanism supported by theoretical and experimental studies, the formation of the maleimide, and the nitrone derivatives are not, or have only partially, been explained. Further investigations need to be undertaken to determine the type of mechanism involved, and the influence of each parameter responsible for these differences in reactivity. Despite the synthesis of nitrone with high synthetic potential, only 1,3-dipolar cycloaddition using N phenyl maleimide worked. Yields have to be improved and a diversification of the different partners should be performed to expand the structural diversity.

Related to the chemistry of carbonylnitroso derivatives, a highly interesting feature of this chemistry is the possibility to selectively synthesise the ene-adduct by using a strong electronwithdrawing enophile. A screening of possible enophiles has to be carried out to enlarge the range of molecules which can be synthesised. A preliminary study has been done in that sense, and ethyl glyoxylate exerted promising results. An asymmetric version of the enereaction could be envisaged. Further functionalisation using methodology developed for the nitroso chemistry could be used to synthesise polycyclic compounds incorporating other heterocycles (piperidine and tetrahydropyran for example).

$$
\begin{aligned}
& X=C, N \\
& Y=O, N, S
\end{aligned}
$$

Among the polycyclic compound synthesised within this work, the fused bicyclic oxazinepyrrole skeleton exerted an interesting structure for potential biologically active compounds. These compounds have been selected by Eli Lilly and Co. for screening. A library of molecules could be obtain by modifying the substituents:

- R substituent; CBz deprotection, followed by chemistry on the free nitrogen (N alkylation for example)
- R^{1} substituent; carbonylnitroso Diels-Alder/rearrangement process to provide carbonyl moiety as R^{1}
- R^{2} and R^{3} substituents; electophilic substitution
- N-O cleavage

synthesised structure

structure with possible site of functionalisation

Experimental

Section

General experimental

Reagents and solvents were used as received from the supplier, unless specified otherwise. When specified, dried solvents were used; THF and toluene were distilled over sodium, benzophenone and DCM over $\mathrm{P}_{2} \mathrm{O}_{5}$, or solvents were dried over activated molecular sieves 4 \AA overnight. ${ }^{169}$ Reactions were monitored by TLC analysis using silica gel $60 \mathrm{~F}_{254}$ plates. Purifications on silica gel were carried out using silica gel $0.060-0.200 \mathrm{~mm}, 60 \AA$.

NMR spectra were recorded on spectrometer at $300,400,500$ or 700 MHz for ${ }^{1} \mathrm{H}, 75$ or 101 MHz for ${ }^{13} \mathrm{C}$, and 96 MHz for ${ }^{11} \mathrm{~B}$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts were referenced relative to $\mathrm{Me}_{4} \mathrm{Si}$ as internal reference and ${ }^{11} \mathrm{~B}$ NMR chemical shifts to external $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.0 \mathrm{ppm})$. Deuterated chloroform CDCl_{3}, DMSO- d^{6} or d^{6}-acetone were used for NMR spectra. NMR data are reported as chemical shift (ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{ddd}=$ doublet of doublet of doublet, $\mathrm{dt}=$ doublet of triplet, m $=$ multiplet, $\mathrm{b}=$ broad $)$, coupling constant $J(\mathrm{~Hz})$, and integration.

Low resolution mass spectra (LRMS) and high-resolution mass spectra (HMRS) were obtained using a Waters (UK) TQD mass spectrometer (low resolution ESI+), Waters (UK) Xevo QTOF mass spectrometer (low and high resolution ASAP+), Shimadzu QP2010-Ultra (low resolution EI) or a Waters (UK) LCT premier XE (high resolution ESI+) in Durham University, or using a Bruker MicrO-Tof-Q 2 or a Waters Q-Tof 2 at the CRMPO (Centre Régional de Mesures Physiques de l'Ouest, Rennes, France) using ESI or EI techniques. Melting points were measured using a Gallenkamp Variable Heater and reported in ${ }^{\circ} \mathrm{C}$ and are uncorrected.

Infrared spectra were measured on a Perkin Elmer© Spectrum Two IR Spectrometers and reported in cm^{-1}.

Products 252, 259, 264, 276, 277i, 277j and 277k were synthesised and characterised by a previous PhD student (Dr Fabien Tripoteau). These reactions were not repeated.

All boronated MIDA ester oxazines were purified by solid phase silica gel chromatography. The crude mixture was dissolved in acetone and silica added. Acetone was cautiously evaporated to obtain a dry crude mixture adsorbed on silica. The sample was then dropped on the column.

Diene syntheses

A. Enyne hydroboration

Enyne 238a.

To a solution of $237(1.6 \mathrm{~g}, 10.4 \mathrm{mmol})$ in dry $\mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{~mL})$ was added $\mathrm{CuI}(20.0 \mathrm{mg}, 0.10$ mmol) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(146.1 \mathrm{mg}, 0.21 \mathrm{mmol})$. The reaction mixture was flushed with argon for 5 min . Trimethylsilylacetylene $\mathbf{4 3}(2.20 \mathrm{~mL}, 15.6 \mathrm{mmol})$ was added and the reaction mixture was stirred overnight (18 h) at room temperature. Aqueous $\mathrm{HCl}(1 \mathrm{M}, 5 \mathrm{~mL})$ was added and the crude mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The organic layer was washed with water (2 x), the organic layer was dried over MgSO_{4}, filtered and evaporated. The crude product was diluted with $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.87 \mathrm{~g}, 20.8 \mathrm{mmol})$ was added and the reaction mixture was stirred for 2 h . The MeOH was evaporated and the crude mixture was diluted in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was washed with brine (2x) and with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x})$, dried over MgSO_{4}, filtered and evaporated. The crude product was purified by silica gel chromatography to afford compound 238a in E / Z ratio of (91/9) as yellow oil (947.0 mg, 66\%).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.23-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.11 (dd, $J=16.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 143.1, 135.9, 128.9, 128.7, 126.2, 107.1, 82.9, 79.2.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{170}$

A.1. General procedure for the catalytic hydroboration:

To a mixture of diene 238 (1 eq.) and Schwartz catalyst 240 (0.05 eq.) at $0^{\circ} \mathrm{C}$ under an inert atmosphere, was added HBpin 239 (1.1 eq.) dropwise. After addition, the reaction mixture was warmed and stirred at r.t. for 24 h . The reaction mixture was carefully diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$, and stirred for 20 min . The mixture was stirred for 20 min . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combiend organic layer were then washed with brine (2x), then with $\mathrm{H}_{2} \mathrm{O}$ (1x), and dried over MgSO_{4}, filtered and evaporated. The crude product was purified by either silica gel chromatography or bulb-to-bulb distillation.

Boronated pinacol ester diene 241a.

The general procedure for the catalytic hydroboration with a mixture of diene 238a (500 mg , $3.90 \mathrm{mmol})$, Schwartz catalyst $240(50.3 \mathrm{mg}, 0.19 \mathrm{mmol})$ and HBpin $239(622 \mu \mathrm{~L}, 4.29$ $\mathrm{mmol})$ afforded after silica gel chromatography, compound 241a as an yellow oil (852.0 mg , 85\%).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 7.47 - $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.19$ (dd, $J=17.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.80(\mathrm{dd}, J=15.6,10.2 \mathrm{~Hz} 1 \mathrm{H}), 6.70(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right)$ 149.8, 136.9, 136.2, 130.6, 128.7, 128.1, 126.8, 83.2, 24.8, C-B not visible.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{171}$

Boronated pinacol ester diene 241b.

Formula: $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{BO}_{2}$ MW : 234.15

The general procedure for the catalytic hydroboration with a mixture of diene $\mathbf{2 3 8 b}$ (500 mg , $4.71 \mathrm{mmol})$, Schwartz catalyst $240(60.7 \mathrm{mg}, 0.24 \mathrm{mmol})$ and HBpin $239(752 \mu \mathrm{~L}, 5.18$ mmol) afforded after silica gel chromatography, compound 241b as an yellow oil (849.0 mg , $77 \%)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.02(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.95(\mathrm{~m}, 1 \mathrm{H})$, $5.42(\mathrm{dd}, J=18.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 153.2, 137.1, 134.3, 134.2, 83.0, 26.2, 24.8, 23.7, 22.4, 22.3.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{172}$

Boronated pinacol ester diene 241c.

The general procedure for the catalytic hydroboration with a mixture of diene $\mathbf{2 3 8 c}(2 \mathrm{~mL}$, $21.04 \mathrm{mmol})$, Schwartz catalyst $240(271.0 \mathrm{mg}, 1.05 \mathrm{mmol})$ and HBpin $239(3.7 \mathrm{~mL}, 25.6$ mmol) afforded after silica gel chromatography compound 241c as a light yellow oil (3.59 g , 89\%).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.09(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dt}, J=18.2,0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14(\mathrm{tt}, J=1.1,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{t}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 152.3, 143.1, 120.2, 116.7, 83.3, 24.9, 17.8.
All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{173}$

A.2. General procedure for the hydroboration using Ipc $c_{2} B H$:

$1^{\text {st }}$ step: Preparation of $\mathrm{Ipc}_{2} \mathbf{B H} 244$:

A solution of pinene $\mathbf{2 4 2}$ (2 eq.) in dry THF was cooled at $0^{\circ} \mathrm{C}$ under an argon atmosphere. $\mathrm{BH}_{3} \mathrm{SMe}_{2} \mathbf{2 4 3}$ (1 eq.) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , then 2 h at r.t. Formation of $\mathrm{Ipc}_{2} \mathrm{BH} 244$ as a white precipitate was observed.

$2^{\text {nd }}$ step: Hydroboration:

The solution of $\mathrm{Ipc}_{2} \mathrm{BH} 244$ was cooled to $0^{\circ} \mathrm{C}$ again, and 2-methyl-but-1-en-3-yne 238c (1 eq.) was added. After stirring at $0{ }^{\circ} \mathrm{C}$ during 30 min , the solution was stirred 6 h at r.t. Freshly ditillated acetaldehyde 246 (excess), was added to the solution at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred the time presented in the experimental procedure at r.t.. THF and excess of acetaldehyde were first distillated under inert atmosphere, then 1,3-dienylboronic ester intermediate 247 was distillated by bulb-to-bulb distillation. The 1,3-dienylboronic ester
intermediate 247 (1 eq.) was diluted in the solvent and at the temperature indicated in the experimental procedure.

Boronated MIDA ester diene 249.

$\mathbf{1}^{\text {st }}$ step: Pinene $242(2.5 \mathrm{~mL}, 15.8 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2} 243$ ($655 \mu \mathrm{~L}, 7.0 \mathrm{mmol}$) in THF (2.5 $\mathrm{mL})$ provided $\mathrm{Ipc}_{2} \mathrm{BH} 244$.
$\mathbf{2}^{\text {nd }}$ step: Addition of 2-methyl-but-1-en-3-yne 238c ($655 \mu \mathrm{~L}, 7.0 \mathrm{mmol}$) followed by freshly ditillated acetaldehyde $\mathbf{2 4 6}$ (12 mL), afforded after bulb-to-bulb distillation intermediate 247 as a colourless oil ($2.20 \mathrm{~g}, 13.1 \mathrm{mmol}$). The 1,3-dienylboronic ester intermediate $\mathbf{2 4 7}$ was diluted with a mixture of toluene/DMSO (15/1, 16 mL$)$. MIDA $248(1.73 \mathrm{~g}, 11.8 \mathrm{mmol})$ and phenothiazine (25 mg) as polymerisation inhibitor were added and the reaction mixture heated under an inert atmosphere at reflux for 2 h . The solution was cooled to r.t. and the white precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to provide diene MIDA ester 249 as a white solid ($2.40 \mathrm{~g}, 63 \%) .\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2 \mathrm{R}_{\mathrm{f}}=0.45\right)$.
M.p. $=155^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 6.67\left(\mathrm{~d}, J=18.0,1 \mathrm{H}, \mathrm{H}_{7}\right), 5.70(\mathrm{~d}, J=18.0,1 \mathrm{H}$, $\left.\mathrm{H}_{6}\right), 5.07-5.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 4.22\left(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}\right.$ or $\left.\mathrm{H}_{2}\right), 4.04(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}$, H_{3} or H_{2}), $3.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 1.85\left(\mathrm{dd}, J=1.4,0.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{9}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}$) $169.1\left(\mathrm{C}_{4}\right.$ and $\left.\mathrm{C}_{5}\right), 145.6\left(\mathrm{C}_{7}\right), 144.1\left(\mathrm{C}_{8}\right), 117.6$ $\left(\mathrm{C}_{10}\right), 62.3\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right), 47.4\left(\mathrm{C}_{1}\right), 18.4\left(\mathrm{C}_{9}\right), \mathrm{C}-\mathrm{B}$ not visible.
${ }^{11}$ B NMR (400 MHz , Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 10.9.
IR (neat, v) 1751, 1602, 1338, 1291, 1236, 1117, 1027, 999, 987, 951, $878 \mathrm{~cm}^{-1}$.

LRMS (ESI+) 265.2 (26\%) [M+Na] ${ }^{+}, 224.0$ (100\%) [M+H] ${ }^{+}$.
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}{ }^{10} \mathrm{~B}\right)$: 223.1130 found: 223.1114.

Boronated diethanolamine ester diene 251.

$\mathbf{1}^{\text {st }}$ step: Pinene $242(2.2 \mathrm{~mL}, 13.9 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2} 243(650 \mu \mathrm{~L}, 6.9 \mathrm{mmol})$ in THF (2.2 $\mathrm{mL})$ provided $\mathrm{Ipc}_{2} \mathrm{BH} 244$.
$\mathbf{2}^{\text {nd }}$ step: Addition of 2-methyl-but-1-en-3-yne 238c ($650 \mu \mathrm{~L}, 6.9 \mathrm{mmol}$) followed by freshly ditillated acetaldehyde $\mathbf{2 4 6}$ (5 mL), afforded after bulb-to-bulb distillation, intermediate 247 as colorless oil ($900 \mathrm{mg}, 5.3 \mathrm{mmol}$). The 1,3-dienylboronic ester intermediate $\mathbf{2 4 7}$ was diluted in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$. Diethanolamine $\mathbf{2 5 0}(875 \mathrm{mg}, 8.3 \mathrm{mmol})$ was added and the reaction mixture was stirred until observing precipitation. The precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ and the solid was recrystallised from a mixture $\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}$ to provide diene DEA ester $\mathbf{2 5 1}$ as a white solid ($213.3 \mathrm{mg}, 22 \%$).
M.p. $=166^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $6.63\left(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 5.73(\mathrm{~d}, J=18.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 5.31(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 3.99-3.88\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{4}\right.$ and $\left.\mathrm{H}_{3}\right), 3.32-3.21$ (m, $2 \mathrm{H}, \mathrm{H}_{2}$ or H_{1}), $2.81-2.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{1}\right), 1.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{8}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $144.0\left(\mathrm{C}_{7}\right), 142.0\left(\mathrm{C}_{6}\right), 115.2\left(\mathrm{C}_{9}\right), 63.3\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{4}\right), 51.5\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{2}\right), 18.6\left(\mathrm{C}_{8}\right), \mathrm{C}-\mathrm{B}$ not visible.

${ }^{11}$ B NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d , ~} \boldsymbol{\delta} \mathbf{~ p p m}$) 10.7.

IR (neat, v) 3092, 1592, 1283, 1231, 1136, 1110, 1007, 995, 887, 870, $785 \mathrm{~cm}^{-1}$.
LRMS (TOF ASAP+) 182.1 (100%) $[\mathrm{M}+\mathrm{H}]^{+}, 114.1$ (40%).
HRMS (TOF ASAP+ $)$ calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{2}{ }^{10} \mathrm{~B}\right)$: 181.1389 found: 181.1385 .

Boronated pinacol ester acrolein 105.

$\mathbf{1}^{\text {st }}$ step: Pinene $242(11.3 \mathrm{~mL}, 70.5 \mathrm{mmol})$ and $\mathrm{BH}_{3} \mathrm{SMe}_{2} 243(3.3 \mathrm{~mL}, 35.5 \mathrm{mmol})$ in THF $(11.5 \mathrm{~mL})$ provided $\mathrm{Ipc}_{2} \mathrm{BH} 244$.
$\mathbf{2}^{\text {nd }}$ step: Addition of alkyne $\mathbf{2 5 3}$ ($5.1 \mathrm{~mL}, 35.5 \mathrm{mmol}$) was followed by freshly ditillated acetaldehyde $246(20 \mathrm{~mL})$. After removing THF and excess of acetaldehyde, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the mixture stirred for 1.5 h at room temperature. Excess pinene was then removed using high vaccum and the crude mixture extracted with a mixture $\mathrm{Et}_{2} \mathrm{O} / \mathrm{AcOEt}(1 / 1,3 \mathrm{x})$. The organic layer was dried over MgSO_{4}, filtered and evaporated until precipitation started to be observed. Pentane (10 mL) was added and the mixture was stirred for 1 h . The solid was filtered and washed with pentane (2x) to afford boronic acid $\mathbf{2 5 4}$ as pale yellow powder (1.66 $\mathrm{g}, 47 \%)$. A solution of pinacol $255(576.0 \mathrm{mg}, 4.9 \mathrm{mmol})$ in a mixture of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}(9 / 1,8$ mL) was added to boronic acid $\mathbf{2 5 4}$ ($500.0 \mathrm{mg}, 5.0 \mathrm{mmol}$). The reaction mixture was stirred overnight (16 h) and cyclohexane (20 mL) was added to the mixture. The organic layer was washed with brine (2x), then dried over MgSO_{4}, filtered and evaporated. The crude product was purified by bulb-to-bulb distillation to afford compound $\mathbf{1 0 5}$ as a colorless oil (437.0 mg , 49\%).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $9.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, $J=18.1,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d}, \boldsymbol{\delta} \mathbf{~ p p m}$) 195.0, 147.7, 147.0, 84.4, 24.8.
All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{174}$

Boronated pinacol ester diene 257.

A solution of compound $\mathbf{1 0 5}(164.5 \mathrm{mg}, 0.91 \mathrm{mmol})$ and ylide $\mathbf{2 5 6}(424.2 \mathrm{mg}, 1.27 \mathrm{mmol})$ in dry DCM (6 mL) was stirred under an inert atmosphere at $-10^{\circ} \mathrm{C}$ for 30 min , then at r.t. for 24 h. Solvent was evaporated and the crude was purified by bulb-to-bulb distillation to afford compound 257 as a mixture of 3 isomers $(E, E: E, Z: Z, E=83: 10: 7)(175.0 \mathrm{mg}, 81 \%)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C h l o r o f o r m}-\boldsymbol{d}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) (E, E major isomer) 7.26 (ddd, $J=15.1,10.9$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (ddd, $J=17.5,10.9,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02-5.91$ (m, 2H), 3.74 (s, 3H), 1.27 (s, 12 H).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C h l o r o f o r m}-\boldsymbol{d}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) (E, Z minor isomer) 8.11 (ddd, $J=17.7,11.1$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{td}, J=11.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.73(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) (Z, E minor isomer) 8.02 (ddd, $J=15.4,11.5$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=17.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=6.4,0.91 \mathrm{H})$ 3.75 (s, 3H), 1.27 (s, 12H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) (E, E major isomer) 167.6, 146.2, 143.5, 122.8, 83.2, 51.8, 24.7, C-B not visible.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{119}$

B. Halosulfonylation of 1,3-dienylboronic ester 241c

Boronated pinacol ester diene 266.

A solution of diene 241c ($175.0 \mathrm{mg}, 0.90 \mathrm{mmol}$) in dry DCM (12 mL) under an inert atmosphere was cooled to $0{ }^{\circ} \mathrm{C}$. Tosyl iodide $\mathbf{2 6 5}$ ($255.0 \mathrm{mg}, 0.90 \mathrm{mmol}$) was added and the reaction mixture stirred at r.t. overnight (18 h). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(252 \mu \mathrm{~L}, 1.81 \mathrm{mmol})$ added dropwise. The reaction mixture was stirred for 4 h at r.t., the crude was washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x})$. The organic layer was dried over MgSO_{4}, filtered and evaporated. The crude product was purified by silica gel chromatography to afford diene 266 as a mixture of of 2 isomers $(E, E: E, Z=68: 32)(125.2 \mathrm{mg}, 43 \%)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d}, \boldsymbol{\delta} \mathbf{~ p p m}$) (E, E major isomer) 7.73 - 7.68 (m, 2H), 7.29 $7.21(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=18.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.32(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=18.1,0.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d}, \boldsymbol{\delta} \mathbf{~ p p m}$) (E, Z minor isomer) 8.15 (dd, $J=18.2,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.20-6.19(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=18.2,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) (E, E and E, Z isomers) 149.5, 148.9, 147.8, 144.3, 144.1, 142.1, 139.2, 139.1, 132.3, 129.9, 129.8, 129.7, 127.6, 127.3, 83.9, 83.8, 24.9, 24.8, 24.6, 21.6, 20.3, 12.5, C-B not visible.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{121}$

C. Coupling reaction of vinylboronic acid MIDA ester derivatives

C.1. General procedure for the Suzuki-Miyaura cross-coupling:

$1^{\text {st }}$ step: Catalyst preparation:

SPhos (0.025 eq.) and $\operatorname{Pd}(\mathrm{OAc})_{2}(0.015$ eq.) were stirred for 45 min at r.t. under an inert atmosphere in dry toluene.
$2^{\text {nd }}$ step: Cross-coupling reaction:

Trans-2-bromovinylboronic acid MIDA ester 267 (1 eq.), boronic acid 268a-c (1.5 eq.) and KF (2 eq.) were suspended in dry toluene under an inert atmosphere. The catalsyt solution was added to the mixture and the reaction was stirred at r.t. overnight (18 h). The solvent was evaporated and the crude product was solubilised in acetone and filtered through a pad of celite/silica. The filtrate was evaporated to give the product.

Boronated MIDA ester diene 269a.

$\mathbf{1}^{\text {st }}$ step: SPhos (12.0 mg, 0.029 mmol$)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.0 \mathrm{mg}, 0.017 \mathrm{mmol})$ in dry toluene (2 mL) provided the catalyst solution.
$\mathbf{2}^{\text {nd }} \boldsymbol{s t e p : ~ T r a n s - 2 - B r o m o v i n y l b o r o n i c ~ a c i d ~ M I D A ~ e s t e r ~} 267$ ($300.0 \mathrm{mg}, 1.15 \mathrm{mmol}$), trans-2phenylvinylboronic acid 268a ($255.0 \mathrm{mg}, 1.72 \mathrm{mmol}$), $\mathrm{KF}(133.1 \mathrm{mg}, 2.30 \mathrm{mmol})$ and the catalyst solution provided a full conversion of the starting material. The product 269a was isolated as a yellow solid ($248.3 \mathrm{mg}, 76 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) $7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, \mathbf{2 H}), 7.27$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{ddd}, J=15.6,10.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=17.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) 169.1, 143.5, 138.2, 134.0, 131.9, 129.5, 128.5, 127.3, 62.3, 47.4, C-B not visible.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{122}$

Boronated MIDA ester diene 269b.

Formula : $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BNO}_{4}$ MW : 285.11
$\mathbf{1}^{\text {st }}$ step: SPhos $(9.2 \mathrm{mg}, 0.023 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(3.0 \mathrm{mg}, 0.014 \mathrm{mmol})$ in dry toluene $(2$ mL) provided the catalyst solution.
$\mathbf{2}^{\text {nd }}$ step: Trans-2-bromovinylboronic acid MIDA ester 267 ($236.0 \mathrm{mg}, 0.90 \mathrm{mmol}$), 1phenylvinylboronic acid 268b ($200.0 \mathrm{mg}, 1.35 \mathrm{mmol}$), KF ($105.1 \mathrm{mg}, 1.80 \mathrm{mmol}$) and the catalyst solution provided a full conversion of the starting material. The product 269b was isolated as yellow solid ($168.2 \mathrm{mg}, 68 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Acetone- $\left.\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.41-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Acetone- $\left.d_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) ~ 169.0,150.3,144.2,141.1,129.1,129.0,128.3$, 117.7, 62.5, 47.5, C-B not visible.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{122}$

Boronated MIDA ester diene 269c.

$\mathbf{1}^{\text {st }}$ step: SPhos $(9.2 \mathrm{mg}, 0.023 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(3.0 \mathrm{mg}, 0.014 \mathrm{mmol})$ in dry toluene (2 mL) provided the catalyst solution.
$\mathbf{2}^{\text {nd }}$ step: Trans-2-bromovinylboronic acid MIDA ester 267 ($250.0 \mathrm{mg}, 0.95 \mathrm{mmol}$), boronic acid 268 c ($183.0 \mathrm{mg}, 1.43 \mathrm{mmol}$), $\mathrm{KF}(111.4 \mathrm{mg}, 1.91 \mathrm{mmol})$ and the catalyst solution provided after 48 h a 63% conversion of the starting trans-2-bromovinylboronic acid MIDA ester 267. The crude was filtrated through celite and eluted with acetone (250 mL), evaporated and purified by silica gel chromatography using the solid sample method to afford two fractions. The first fraction was pure diene 269c obtained as a white solid (48 mg) and the second was as a mixture of diene 269c and starting material 367 (68/32, 115 mg). Total mass of desired diene 269c ($126.2 \mathrm{mg}, 50 \%$).
M.p. $=122^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetone- $\boldsymbol{d}_{\boldsymbol{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) $6.53\left(\mathrm{dd}, J=17.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$), $6.18-6.07$ (m, 1H, H8) , $5.81-5.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 5.54\left(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.19(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}$, H_{2} or H_{3}), $4.01\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 2.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 2.13-2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.45$ $-1.27\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{11}\right), 0.89\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{13}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Acetone- $\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}$) $169.1\left(\mathrm{C}_{5}\right.$ and $\left.\mathrm{C}_{4}\right), 143.7\left(\mathrm{C}_{7}\right), 136.4\left(\mathrm{C}_{9}\right), 133.6$ $\left(\mathrm{C}_{8}\right), 62.2\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{2}\right), 47.3\left(\mathrm{C}_{1}\right), 32.9\left(\mathrm{C}_{10}\right), 32.1\left(\mathrm{C}_{11}\right), 22.9\left(\mathrm{C}_{12}\right), 14.1\left(\mathrm{C}_{13}\right)$, C-B not visible.
${ }^{11} \mathbf{B}$ NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 10.8.
LRMS (ESI+) 265.1 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI+) calcd. for $\mathrm{C}_{13} \mathrm{H}_{21}{ }^{10} \mathrm{BNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 265.1485$ found: 265.1484.

C.2. Stille cross-coupling:

Boronated MIDA ester diene 271.

Trans-2-bromovinylboronic acid MIDA ester 267 ($262.0 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ (37.1 mg , $0.04 \mathrm{mmol})$, and $\mathrm{Fur}_{3} \mathrm{P}(21.0 \mathrm{mg}, 0.09 \mathrm{mmol})$ were dissolved under an inert atmosphere in dry DMF (8 mL). Tributylvinyltin $\mathbf{2 7 0}(346 \mathrm{~mL}, 1.15 \mathrm{mmol})$ was added and the reaction mixture stirred at $45^{\circ} \mathrm{C}$ overnight (18 h). The DMF was removed by bulb-to-bulb distillation to afford a sticky black solid. The crude product was dissolved in AcOEt, filtered through a pad of Celite and rinsed with AcOEt several times. The filtrate was evaporated providing a biphasic (oil/liquid) mixture. The solvent liquid layer was separated by decantating and the residual oil was rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and separated again, by decantating until a colorless $\mathrm{Et}_{2} \mathrm{O}$ washing solution was obtained. The remaining oil/solid was stirred overnight (16 h) in a mixture
$\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}(1 / 7,24 \mathrm{~mL})$. The resulting precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ (3x) to afford compound 271 as a light brown solid ($140.2 \mathrm{mg}, 67 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetonitrile- $\left.\boldsymbol{d}_{3}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 6.56(\mathrm{dd}, J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dtd}, J=$ $17.0,10.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=17.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{ddt}, J=17.0,2.0,0.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.14 (ddt, $J=10.0,2.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.76$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Acetonitrile- $\boldsymbol{d}_{\mathbf{3}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 169.5, 144.3, 119.0, 62.3, 47.6.
All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{122}$

Vinyl boronated MIDA ester 274.

To a solution of vinylboronic MIDA ester $272(2.0 \mathrm{~g}, 10.9 \mathrm{mmol})$ in dry DCM $(10 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added neat bromine $273(1 \mathrm{~mL}, 19.1 \mathrm{mmol})$ drpwise. The reaction mixture was stirred at r.t. for 1.5 h . The excess of bromine and DCM were carefully removed by evaporation under a fume hood. DCM (10 mL) was added and re-evaporated (azeotropes bromine). The crude product was dissolved in $\mathrm{MeCN}(8 \mathrm{~mL})$ and $\mathrm{DBU}(4.2 \mathrm{~g}, 27.3 \mathrm{mmol})$ was added in one portion at r.t. The reaction mixture was stirred for 1.5 h , aqueous $\mathrm{HCl}(1 \mathrm{M}, 8 \mathrm{~mL})$ was added and the mixture stirred for 15 min . The crude product was extracted with a mixture of $\mathrm{AcOEt} /$ acetone $(3 / 1,3 \mathrm{x})$, and the organic layer was washed with a mixture of sodium metabisulfite/brine ($3 / 2,2 \mathrm{x}$), then brine. The organic layer was dried over MgSO_{4}, filtered and evaporated until the formation of a precipitate was observed. $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$ was added and the mixture was stirred overnight. The precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ (2x) to afford compound 274 as white powder ($1.46 \mathrm{~g}, 51 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetone- $\left.\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 6.39(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{bs}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.16 (d, $J=17.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.16 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\boldsymbol{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 168.4, 129.6, 63.5, 47.3, C-B not visible.
All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{123}$

Boronated MIDA ester diene 275.

$\mathbf{1}^{\text {st }}$ step: dpph ($\left.139.0 \mathrm{mg}, 0.31 \mathrm{mmol}\right)$ and $\mathrm{Pd}_{2} \mathrm{dba}_{3}(70.1 \mathrm{mg}, 0.077 \mathrm{mmol})$ were stirred for 30 min at r.t. under an inert atmosphere in dry THF.
$\mathbf{2}^{\text {nd }}$ step: Compound 274 ($400.0 \mathrm{mg}, 1.53 \mathrm{mmol}$), 1-phenylvinylboronic acid 268b (340.2 mg , $2.29 \mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.69 \mathrm{~g}, 6.12 \mathrm{mmol})$ were suspended in dry THF $(8 \mathrm{~mL})$ under an inert atmosphere. The catalyst solution was added to the reaction and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . The crude product was purified filtered through a pad of Celite and washed with MeCN $(200 \mathrm{~mL})$. The filtrate was evaporated and purified by silica gel chromatography using the solid sample method to provide a mixture of diene 275 and starting material 274 ($70 / 30,343 \mathrm{mg}$). Mass total of desired diene 275 ($240.1 \mathrm{mg}, 55 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Acetone- $\left.\boldsymbol{d}_{\boldsymbol{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.42-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.74(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.64$ $-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.15(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, 2 H), 3.92 (d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.08 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Acetone- $\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}$) 168.7, 154.6, 142.4, 129.1, 128.8, 128.3, 128.2, 114.0, 62.8, 47.5, C-B not visible.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{123}$

Boronated dienes and arylnitroso compounds

A. Reaction of 1-dienylboronate pinacolate esters with arylnitroso compounds

General procedure:

To a solution of diene (1 eq) (pinacol boronate) in a solvent, was added arylnitroso $\mathbf{1 6 0}$ (2.5 to 5 eq). The reaction mixture was stirred as indicated in the experimental procedure. The solvent was evaporated and the crude product was purified by silica gel chromatography.

Pyrrole 277a.

Diene 241c ($21 \mathrm{mg}, 0.11 \mathrm{mmol}$) and nitrosobenzene 160a ($29 \mathrm{mg}, 0.27 \mathrm{mmol}$) were stirred in $\mathrm{MeOH}(1 \mathrm{~mL})$ at r.t. for 5 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, 9/1, $\mathrm{R}_{\mathrm{f}}=0.75$) to afford compound $277 \mathrm{a}(14.0 \mathrm{mg}, 96 \%)$.

[^5]${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right)$ 140.8, 129.5, 125.1, 121.1, 120.0, 118.9, 117.1, 112.0, 12.0.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{139 \text {, }}$ 175

Pyrrole 277b.

Diene 241c ($21 \mathrm{mg}, 0.11 \mathrm{mmol}$) and 4-chloronitrosobenzene $\mathbf{1 6 0 b}(39 \mathrm{mg}, 0.27 \mathrm{mmol})$ were stirred in $\mathrm{MeOH}(2 \mathrm{~mL})$ at r.t. for 5 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, 9/1, $\mathrm{R}_{\mathrm{f}}=0.9$) to afford compound 277b (15.1 mg , 68\%).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 139.3, 130.4, 129.5, 121.6, 121.0, 118.9, 117.0, 12.4, 11.9.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{139,}$ 176

Pyrrole 277c.

Formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}$
MW : 171.24
277c

Diene 241c ($30 \mathrm{mg}, 0.17 \mathrm{mmol}$) and 4-nitrosotoluene 160c ($52 \mathrm{mg}, 0.43 \mathrm{mmol}$) were stirred in $\mathrm{MeOH}(1 \mathrm{~mL})$ at r.t. for 5 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, 9/1, $\mathrm{R}_{\mathrm{f}}=0.80$) to afford compound $\mathbf{2 7 7 c}(23.0 \mathrm{mg}, 60 \%)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.19-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.78-6.76 (m, 1H), 6.08 (dd, $J=2.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (s, 3H), 2.09 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 138.5, 134.8, 130.0, 120.8, 120.0, 119.0, 117.3, 111.6, 20.8, 12.0.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{139 \text {, }}$ 177

Pyrrole 277d.

Formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}$
MW : 187.24

Diene 241c ($28 \mathrm{mg}, 0.16 \mathrm{mmol}$) and 4-methoxynitrosobenzene $\mathbf{1 6 0 d}(55 \mathrm{mg}, 0.4 \mathrm{mmol})$ were stirred in $\mathrm{MeOH}(1 \mathrm{~mL})$ at r.t. for 5 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, 9/1, $\mathrm{R}_{\mathrm{f}}=0.75$) to afford compound 277d as a white solid ($23.0 \mathrm{mg}, 77 \%$).
M.p. $=86^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}$, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.19\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 6.85(\mathrm{~d}, J=9.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 6.82\left(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 6.71-6.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 6.07\left(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{10}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $157.3\left(\mathrm{C}_{9}\right), 134.6\left(\mathrm{C}_{6}\right), 121.7\left(\mathrm{C}_{7}\right), 120.6\left(\mathrm{C}_{2}\right)$, $119.3\left(\mathrm{C}_{4}\right), 117.6\left(\mathrm{C}_{5}\right), 114.6\left(\mathrm{C}_{8}\right), 111.3\left(\mathrm{C}_{3}\right), 55.6\left(\mathrm{C}_{10}\right), 12.0\left(\mathrm{C}_{1}\right)$.
IR (neat, v) 1516, 1456, 1442, 1253, 1243, 1109, 1029, 822, 754, $606 \mathrm{~cm}^{-1}$.
GCMS (EI) 187.1 (100\%) $[\mathrm{M}]^{+}, 172.1$ (55\%) $\left[\mathrm{M}^{2}-\mathrm{CH}_{4}\right]^{+}$.
HRMS (ESI+) calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 188.1075$ found: 188.1074.

Pyrrole 277f.

Diene 241c ($30 \mathrm{mg}, 0.17 \mathrm{mmol}$) and 2-nitrosotoluene $\mathbf{1 6 0 f}(52 \mathrm{mg}, 0.43 \mathrm{mmol}$) were stirred in $\mathrm{MeOH}(1 \mathrm{~mL})$ at r.t. for 5 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, 9/1, $\mathrm{R}_{\mathrm{f}}=0.8$) to afford compound $\mathbf{2 7 7 f}$ as a yellow oil (20.2 mg , 69\%).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.25-7.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{8}, \mathrm{H}_{9}, \mathrm{H}_{10}\right.$ and $\left.\mathrm{H}_{11}\right)$, $6.60(\mathrm{t}$, $\left.J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 6.50-6.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 6.06\left(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{12}\right)$, $2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 140.8\left(\mathrm{C}_{6}\right), 133.6\left(\mathrm{C}_{7}\right), 131.1\left(\mathrm{C}_{8}\right), 127.1\left(\mathrm{C}_{11}\right)$, $126.5\left(\mathrm{C}_{9}\right.$ and $\left.\mathrm{C}_{10}\right), 121.9\left(\mathrm{C}_{4}\right), 120.0\left(\mathrm{C}_{5}\right), 119.3\left(\mathrm{C}_{2}\right), 110.2\left(\mathrm{C}_{3}\right), 18.0\left(\mathrm{C}_{12}\right), 11.9\left(\mathrm{C}_{1}\right)$.

IR (neat, v) 1503, 1461, 1384, 1116, 1069, 938, 760, 718, $620 \mathrm{~cm}^{-1}$.
GCMS (EI) 171.0 (100%) $[\mathrm{M}]^{+}, 156.1$ (45%) $\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$.
HRMS (ESI+) calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 172.1126$ found: 172.1126.

Pyrrole 277g.

Diene 241c ($31 \mathrm{mg}, 0.16 \mathrm{mmol}$) and ethyl 4-nitrosobenzoate $\mathbf{1 6 0 g}(72 \mathrm{mg}, 0.40 \mathrm{mmol})$ were stirred in $\mathrm{MeOH}(1 \mathrm{~mL})$ at r.t. for 5 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc $9 / 1, \mathrm{R}_{\mathrm{f}}=0.65$) to afford compound $\mathbf{2 7 7} \mathbf{g}$ as a white solid ($21.1 \mathrm{mg}, 57 \%$).
M.p. $=88^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 8.09\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 7.40(\mathrm{~d}, J=8.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 7.07\left(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 6.95-6.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 6.21(\mathrm{dd}, J=2.4,1.8, \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{3}\right), 4.36\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 1.39\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{12}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $166.0\left(\mathrm{C}_{10}\right)$, $143.9\left(\mathrm{C}_{6}\right), 131.2\left(\mathrm{C}_{8}\right), 126.7\left(\mathrm{C}_{9}\right)$, $122.3\left(\mathrm{C}_{2}\right), 118.6\left(\mathrm{C}_{7}\right), 116.7\left(\mathrm{C}_{5}\right), 113.1\left(\mathrm{C}_{3}\right), 61.0\left(\mathrm{C}_{11}\right), 14.3\left(\mathrm{C}_{12}\right), 12.0\left(\mathrm{C}_{1}\right)$.

IR (neat, v) 1708, 1610, 1526, 1350, 1277, 1268, 1220, 1186, 1111, 1062, 842, 767, 751, 601 cm^{-1}.

GCMS (EI) 229.1 (100\%) [M] $]^{+}$, $200.0(30 \%)\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{6}\right]$.
HRMS (ESI+) calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 252.1000$ found: 252.1001.

Pyrrole 277h.

Diene 241c ($20 \mathrm{mg}, 0.1 \mathrm{mmol}$) and 4-bromonitrosobenzene $160 \mathrm{~h}(48 \mathrm{mg}, 0.25 \mathrm{mmol})$ were stirred in $\mathrm{MeOH}(2 \mathrm{~mL})$ at r.t. for 5 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, 9/1, $\mathrm{R}_{\mathrm{f}}=0.9$) to afford compound 277h as a pale yellow solid ($16.2 \mathrm{mg}, 65 \%$).
M.p. $=89^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.43\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 7.14(\mathrm{~d}, J=8.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 6.87\left(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 6.76-6.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 6.11\left(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 139.8\left(\mathrm{C}_{6}\right), 132.5\left(\mathrm{C}_{8}\right), 121.7\left(\mathrm{C}_{2}\right), 121.4\left(\mathrm{C}_{7}\right)$, $118.8\left(\mathrm{C}_{4}\right), 118.1\left(\mathrm{C}_{9}\right), 117.0\left(\mathrm{C}_{5}\right), 112.5\left(\mathrm{C}_{3}\right), 11.9\left(\mathrm{C}_{1}\right)$.
IR (neat, v) 1596, 1501, 1466, 1346, 1221, 1081, 1005, 930, 816, 756, 615, $509 \mathrm{~cm}^{-1}$.
GCMS (EI) 237.0 (97\%) [M+2], 235.0 (100%) [M] $]^{+}, 155.1$ (22\%).
HRMS (ESI+) calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 236.0075$ found: 236.0074.

Pyrrole 2771.

Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}$
MW : 219.29

Diene 241a ($65 \mathrm{mg}, 0.25 \mathrm{mmol}$) and nitrosobenzene $\mathbf{1 6 0 a}(94.9 \mathrm{mg}, 0.76 \mathrm{mmol}$) were stirred in $\mathrm{MeOH}(1 \mathrm{~mL})$ under reflux for 22 h . The crude was purified by silica gel chromatography (eluent, cyclohexane/toluene, 98/2, $\mathrm{R}_{\mathrm{f}}=0.3$) to afford pyrrole 2771 ($19.7 \mathrm{mg}, \mathbf{3 6 \%}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.35-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.13$ (m, 6H), 6.97 -6.94 (dd, $J=1.9,2.8 \mathrm{~Hz} 1 \mathrm{H}), 6.45$ (dd, $J=3.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-6.37$ (dd, $J=3.4,2.8 \mathrm{~Hz}$ $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) ~ 140.7,134.0,133.1,129.1,128.4,128.2,126.7$, 126.4, 125.9, 124.5, 110.8, 109.4.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{178}$

Pyrrole 277m.

Formula: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$ MW: 201.22

Diene 257 ($65 \mathrm{mg}, 0.25 \mathrm{mmol}$) and nitrosobenzene 160a ($133.9 \mathrm{mg}, 1.25 \mathrm{mmol}$) were stirred in toluene (1 mL) under reflux for 128 h . The crude was purified by silica gel chromatography (eluent, cyclohexane/toluene, $98 / 2, \mathrm{R}_{\mathrm{f}}=0.3$) to afford pyrrole $\mathbf{2 7 7 m}(15 \mathrm{mg}, \mathbf{2 6 \%})$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d, $\boldsymbol{\delta} \mathbf{~ p p m}$) 7.47 - 7.37 (m, 3H), $7.35-7.29$ (m, 2H), 7.10 (dd, $J=3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=2.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=3.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) ~ 161.1,140.6,130.0,128.7,128.0,126.5,123.4$, 119.1, 109.3, 51.3.

All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{179}$

Maleimide 79.

Diene 266 ($66 \mathrm{mg}, 0.21 \mathrm{mmol}$) and nitrosobenzene 160a ($89.2 \mathrm{mg}, 1.25 \mathrm{mmol}$) were stirred in toluene (2 mL) under reflux for 7 days. The crude was purified by silica gel chromatography (eluent, cyclohexane/AcOEt, 95/5, $\mathrm{R}_{\mathrm{f}}=0.4$).to afford maleimide 79 ($28.8 \mathrm{mg}, 60 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, DMSO- $\left._{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.06-$ $7.04(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO-d $_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 166.4, 140.2, 139.1, 128.5, 122.8, 118.7, 9.3.
All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{180}$

B. Reaction of tetracoordinated 1-borodienes with arylnitroso compounds

General procedure for the oxazine synthesis:

To a solution of diene (1 eq) (MIDA ester 249, 269a-c and 271) in AcOEt was added the arylnitroso $\mathbf{1 6 0}(2.5 \mathrm{eq})$. The reaction mixture was stirred at room temperature or under reflux. The solvent was evaporated and the crude product purified by silica gel chromatography.

Oxazine 280a.

Formula : $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BN}_{2} \mathrm{O}_{5}$ MW : 330.15

To a suspension of diene $249(20 \mathrm{mg}, 0.09 \mathrm{mmol})$ in AcOEt $(1 \mathrm{~mL})$ was added nitrosobenzene $\mathbf{1 6 0 a}(15 \mathrm{mg}, 0.13 \mathrm{mmol})$. The reaction mixture was stirred at r.t. overnight. The solvent was evaporated and the residue was purified by silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} /$ acetonitrile $8 / 2, \mathrm{R}_{\mathrm{f}}=0.5$) to afford oxazine 280a as a white solid ($19 \mathrm{mg}, 64 \%$).
M.p. $=211^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.28-7.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 7.11-7.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right)$, $6.93\left(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{14}\right), 5.75-5.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.52\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.29(\mathrm{dd}, J=$ $16.9,0.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), $4.05\left(\mathrm{dd}, J=16.9,15.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or H_{3}), $3.96-3.87(\mathrm{~m}, 1 \mathrm{H}$, H_{10}), $3.64-3.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 1.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 169.8\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right)$, $167.6\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 152.9\left(\mathrm{C}_{11}\right)$, $130.6\left(\mathrm{C}_{13}\right), 130.4\left(\mathrm{C}_{8}\right), 123.5\left(\mathrm{C}_{14}\right), 123.3\left(\mathrm{C}_{7}\right), 117.5\left(\mathrm{C}_{12}\right), 64.2\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right), 57.1\left(\mathrm{C}_{10}\right), 47.9$ $\left(\mathrm{C}_{1}\right), 21.5\left(\mathrm{C}_{9}\right)$, B-C not visible.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $d_{6}, \boldsymbol{\delta} \mathbf{~ p p m}$) 10.1.
LRMS (ESI+) 353.1 (100\%) [M+Na] ${ }^{+}$.
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{11} \mathrm{BNa}\right)$: 353.1284 found: 353.1285 .

Oxazine 280b.

Formula: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BCIN}_{2} \mathrm{O}_{5}$ MW : 364.59

To a suspension of diene $249(50 \mathrm{mg}, 0.22 \mathrm{mmol})$ in AcOEt (2 mL), was added 4chloronitrosobenzene $\mathbf{1 6 0 b}(47.6 \mathrm{mg}, 0.34 \mathrm{mmol})$. The reaction mixture was stirred at r.t. overnight. The solvent was evaporated and the crude product purified by solid phase silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.5$) to afford oxazine 280b as a white solid (61.0 mg, 77\%).
M.p. $=224^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.31-7.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 7.16-7.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right)$, $5.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.51\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.29\left(\mathrm{dd}, J=16.8,0.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 4.05(\mathrm{dd}, J=$ $20.8,16.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), $3.94-3.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 3.62-3.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 3.29(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{1}\right), 1.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z}$, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 168.7\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 168.5\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 150.6\left(\mathrm{C}_{11}\right)$, $129.4\left(\mathrm{C}_{13}\right), 129.3\left(\mathrm{C}_{8}\right), 126.9\left(\mathrm{C}_{14}\right), 122.3\left(\mathrm{C}_{7}\right), 118.1\left(\mathrm{C}_{12}\right), 63.24\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 63.23\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 55.9\left(\mathrm{C}_{10}\right), 46.9\left(\mathrm{C}_{1}\right), 20.5\left(\mathrm{C}_{9}\right)$, B-C not visible.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 9.9.
LRMS (ESI+) 387.1 (100%) $[\mathrm{M}+\mathrm{Na}]^{+}$.
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{35} \mathrm{Cl}^{11} \mathrm{BNa}\right)$: 387.0889 found: 367.0888 .

Oxazine 280d.

To a suspension of diene $249(50.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ in AcOEt (2 mL), was added 4methoxynitrosobenzene $\mathbf{1 6 0 d}(61.5 \mathrm{mg}, 0.45 \mathrm{mmol})$. The reaction mixture was stirred at r.t. overnight. The solvent was evaporated and the crude product purified by solid phase silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.4$) to afford oxazine 280 d as a white solid ($37.2 \mathrm{mg}, 47 \%$).
M.p. $=164{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.09-7.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 6.87-6.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right)$, $5.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.47\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.26\left(\mathrm{dd}, J=16.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 4.01(\mathrm{dd}, J=$ $33.6,16.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{15}\right) 3.74-3.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}$, H_{10}), $3.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 168.8\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 168.5\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 156.4\left(\mathrm{C}_{14}\right)$, $145.6\left(\mathrm{C}_{11}\right), 129.6\left(\mathrm{C}_{8}\right), 122.3\left(\mathrm{C}_{7}\right), 119.1\left(\mathrm{C}_{12}\right), 114.8\left(\mathrm{C}_{13}\right), 63.19\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 63.17\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 57.1\left(\mathrm{C}_{15}\right), 55.7\left(\mathrm{C}_{10}\right), 55.0,46.8\left(\mathrm{C}_{1}\right), 20.6\left(\mathrm{C}_{9}\right)$, B-C not visible.
${ }^{11}$ B NMR (96 MHz , Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 9.9.
LRMS (ESI+) 383.1 (100%) $[\mathrm{M}+\mathrm{Na}]^{+}$.
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{11} \mathrm{BNa}\right)$: 383.1385 found: 383.1382 .

Oxazine 280f.

Formula: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BN}_{2} \mathrm{O}_{5}$ MW : 344.17

To a suspension of diene 249 ($60 \mathrm{mg}, 0.27 \mathrm{mmol}$) in AcOEt (2 mL), was added 2nitrosotoluene $\mathbf{1 8 0 f}$ ($48.9 \mathrm{mg}, 0.40 \mathrm{mmol}$). The reaction mixture was stirred at r.t. overnight. The solvent was evaporated and the crude product purified by solid phase silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.5$) to afford oxazine $\mathbf{2 8 0 f}$ as a white solid (52.0 mg, 56\%).
M.p. $=169^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.24-7.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 7.18-7.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right.$ and H_{14}), $7.05-7.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 5.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.51\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.21(\mathrm{dd}, J=16.8,11.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), 3.94 (dd, $J=19.5,16.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), 3.69-3.65 (m, $1 \mathrm{H}, \mathrm{H}_{10}$) 3.45$3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 3.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{17}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Acetone- $\left.d_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 168.7\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right)$, $168.6\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 149.7\left(\mathrm{C}_{11}\right)$, $133.6\left(\mathrm{C}_{12}\right), 131.4\left(\mathrm{C}_{14}\right.$ or $\left.\mathrm{C}_{13}\right), 130.2\left(\mathrm{C}_{8}\right), 127.1\left(\mathrm{C}_{14}\right.$ or $\left.\mathrm{C}_{13}\right), 125.7\left(\mathrm{C}_{15}\right), 122.2\left(\mathrm{C}_{7}\right), 119.0$ $\left(\mathrm{C}_{16}\right), 63.21\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 63.16\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 56.7\left(\mathrm{C}_{10}\right), 46.8\left(\mathrm{C}_{1}\right), 20.6\left(\mathrm{C}_{9}\right), 18.5\left(\mathrm{C}_{17}\right)$,), B-C not visible.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 9.9.
LRMS (ESI+) 367.1 (100\%) $[\mathrm{M}+\mathrm{Na}]^{+}, 246.1$ (9\%) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}+\mathrm{H}+\mathrm{Na}\right]^{+}$.
HRMS (ESI+) calcd. for [$\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{11} \mathrm{BNa}\right)$: 367.1436 found: 367.1439 .

Oxazine 280g.

To a suspension of diene 249 ($100 \mathrm{mg}, 0.45 \mathrm{mmol}$) in AcOEt (2 mL), was added 4nitrosobenzoate $\mathbf{1 8 0 g}$ ($201.2 \mathrm{mg}, 1.12 \mathrm{mmol}$). The reaction mixture was stirred at r.t. overnight. The solvent was evaporated and the crude product purified by solid phase silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f} 280 \mathrm{~g}}=0.45$ and $\mathrm{R}_{\mathrm{f} 281 \mathrm{~g}}=0.2$) to afford $\mathbf{2 8 0} \mathbf{g}$ as a white solid ($111.3 \mathrm{mg}, 61 \%$), and $\mathbf{2 8 1 g}$ as pale yellow solid ($31.9 \mathrm{mg}, 18 \%$).
M.p. $=210^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetone $-\boldsymbol{d}_{\mathbf{6}}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.93-7.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 7.17-7.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right)$, $5.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.56\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.32\left(\mathrm{dd}, J=16.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 4.29(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{16}$), 4.07 (ddd, $J=16.8,10.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), $4.12-4.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 3.70$ $-3.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 1.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right), 1.33\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{17}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 168.7\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 168.5\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 166.5\left(\mathrm{C}_{15}\right)$, $155.0\left(\mathrm{C}_{11}\right), 131.4\left(\mathrm{C}_{13}\right), 129.1\left(\mathrm{C}_{8}\right), 123.6\left(\mathrm{C}_{14}\right), 122.2\left(\mathrm{C}_{7}\right), 114.9\left(\mathrm{C}_{12}\right), 63.28\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right)$, $63.25\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 60.9\left(\mathrm{C}_{16}\right), 54.6\left(\mathrm{C}_{10}\right), 47.0\left(\mathrm{C}_{1}\right), 20.4\left(\mathrm{C}_{9}\right), 14.7\left(\mathrm{C}_{17}\right) \mathrm{B}-\mathrm{C}$ not visible.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 10.0.
LRMS (ESI+) 425.1 (100\%) [M+Na] ${ }^{+}$, 447.1 (6\%) [M-H+2Na] ${ }^{+}$.
HRMS (ESI+) calcd. for [M+Na] $]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{11} \mathrm{BNa}\right)$: 425.1490 found: 425.1491 .

Pyrrole 281g.

Formula: $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BN}_{2} \mathrm{O}_{7}$ MW : 398.18
M.p. $>250^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- $\left.\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 9.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 8.03-7.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 7.89(\mathrm{~d}, J$ $\left.=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 7.60-7.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 6.83\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}_{16}\right), 4.17\left(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 3.77\left(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 2.41(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{1}\right), 1.33\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{17}\right)$.
${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, DMSO- $\left.\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 185.4\left(\mathrm{C}_{9}\right), 168.4\left(\mathrm{C}_{4}\right.$ and $\left.\mathrm{C}_{5}\right), 165.0\left(\mathrm{C}_{15}\right), 144.2$ $\left(\mathrm{C}_{11}\right), 136.1\left(\mathrm{C}_{10}\right), 129.9\left(\mathrm{C}_{13}\right), 129.6\left(\mathrm{C}_{14}\right), 127.3\left(\mathrm{C}_{12}\right), 126.8\left(\mathrm{C}_{7}\right), 117.6\left(\mathrm{C}_{8}\right), 61.5\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right), 61.1\left(\mathrm{C}_{16}\right), 47.3\left(\mathrm{C}_{1}\right), 14.1\left(\mathrm{C}_{17}\right)$, $\mathrm{B}-\mathrm{C}$ not visible.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 10.3.
IR (neat, v) 1762, 1743, 1694, 1668, 1601, 1545, 1406, 1328, 1287, 1269, 1150, 1132, 1025, $964,833,786,762,604 \mathrm{~cm}^{-1}$.

LRMS (ESI+) 399.0 (100%) $[\mathrm{M}+\mathrm{H}]^{+}, 288.1$ (2\%) $\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}+3 \mathrm{H}\right]^{+}$.
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{10} \mathrm{~B}\right)$: 398.4000 found: 398.1395 .

Oxazine 282.

To a suspension of diene 271 ($40.0 \mathrm{mg}, 2.21 \mathrm{mmol}$) in AcOEt (2 mL), was added nitrosobenzene $160 \mathrm{a}(59.1 \mathrm{mg}, 5.52 \mathrm{mmol})$. The reaction mixture was stirred at r.t. for 6 h . The solvent was evaporated and the crude product purified by solid phase silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.4$) to afford $\mathbf{2 8 2}$ as a white solid (28.0 mg , 43\%).
M.p. $=161^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.29-7.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 7.12-7.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right)$, 6.96-6.92 (m, 1H, H13), 6.06 (dddd, $J=10.1,2.4,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}$ or H_{7}), 5.93 (dddd, $J=$ $10.1,5.2,2.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}$ or H_{7}), $4.61\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.29\left(\mathrm{dd}, J=16.8,0.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or H_{3}), 4.10-4.04 (m, 1H, H9), $4.06\left(\mathrm{dd}, J=22.6,16.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or H_{3}), $3.70-3.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{9}\right)$, 3.32 (s, 3H, H_{1}).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 168.7\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right)$, $168.5\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 152.0\left(\mathrm{C}_{10}\right)$, $129.6\left(\mathrm{C}_{12}\right), 127.9\left(\mathrm{C}_{7}\right), 122.6\left(\mathrm{C}_{8}\right.$ or $\left.\mathrm{C}_{13}\right), 122.2\left(\mathrm{C}_{8}\right.$ or $\left.\mathrm{C}_{13}\right), 116.5\left(\mathrm{C}_{11}\right), 63.2\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right)$, $52.6\left(\mathrm{C}_{9}\right), 46.9\left(\mathrm{C}_{1}\right)$, B-C not visible.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 9.9.
LRMS (ESI+) 339.1 (100\%) [M+Na] ${ }^{+}$, 232.1 (24\%) [M-C $\left.{ }_{6} \mathrm{H}_{5} \mathrm{NO}+\mathrm{Na}\right]^{+}$.
HRMS (ESI+) calcd. for [M+Na] ${ }^{+}\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{11} \mathrm{BNa}\right)$: 339.1128 found: 339.1125.

Oxazine 283.

Formula: $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BN}_{2} \mathrm{O}_{5}$
MW: 372.23

To a suspension of diene 269 c ($63.0 \mathrm{mg}, 0.24 \mathrm{mmol}$) in AcOEt (3 mL), was added nitrosobenzene 160a ($64.0 \mathrm{mg}, 0.60 \mathrm{mmol}$). The reaction mixture was stirred at r.t. for 6 h . The solvent was evaporated and the crude product purified by solid phase silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.7$) to afford 283 as a white solid (61.2 mg , 68\%).
M.p. $=188^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.28-7.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 7.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 6.86$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{13}$), $6.06\left(\mathrm{ddd}, J=10.3,5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right.$ or H_{7}), $5.91(\mathrm{dt}, J=10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, H_{8} or H_{7}), $4.37\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.31\left(\mathrm{dd}, J=19.2,16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 4.10(\mathrm{dd}, J=16.9$, $10.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), $4.10-4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 1.68-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right)$, $1.44-1.21\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{15}\right.$ and $\left.\mathrm{H}_{16}\right), 0.85\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{17}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z}$, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 169.0\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 168.1\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 149.9\left(\mathrm{C}_{10}\right)$, $129.6\left(\mathrm{C}_{12}\right), 127.6\left(\mathrm{C}_{7}\right.$ or $\left.\mathrm{C}_{8}\right), 126.3\left(\mathrm{C}_{7}\right.$ or $\left.\mathrm{C}_{8}\right), 121.4\left(\mathrm{C}_{13}\right), 116.8\left(\mathrm{C}_{11}\right), 69.6\left(\mathrm{C}_{6}\right), 63.2\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right)$, $58.1\left(\mathrm{C}_{9}\right), 46.8\left(\mathrm{C}_{1}\right), 31.9\left(\mathrm{C}_{14}\right), 28.4\left(\mathrm{C}_{15}\right), 23.4\left(\mathrm{C}_{16}\right), 14.3\left(\mathrm{C}_{17}\right)$.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 10.2.
LRMS (ESI+) 373.2 (16\%) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{11} \mathrm{~B}\right)$: 373.1935 found: 373.1933.

Oxazine 284.

Formula: $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BN}_{2} \mathrm{O}_{5}$
MW : 392.22

To a suspension of diene 269b ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$) in AcOEt (2 mL), was added nitrosobenzene $160 \mathrm{a}(23 \mathrm{mg}, 0.21 \mathrm{mmol})$. The reaction mixture was stirred at r.t. for 6 h . The solvent was evaporated and the crude product purified by silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.4$) to afford 284 as a white solid ($32.2 \mathrm{mg}, 78 \%$).
M.p. $=207^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.59-7.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 7.40-7.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right)$, 7.33-7.23 (m, 5H, $\mathrm{H}_{15}, \mathrm{H}_{16}$ and H_{17}), 7.00-6.96 (m, 1H, H_{13}), $6.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.74(\mathrm{bs}, 1 \mathrm{H}$, $\left.\mathrm{H}_{6}\right), 4.57\left(\mathrm{ddd}, J=15.8,2.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 4.33\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 4.10(\mathrm{dd}, J=$ $26.0,16.8 \mathrm{~Hz}, \mathrm{H}_{2}$ or H_{3}) 4.01 (ddd, $J=15.8,2.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}$), $3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Acetone- $\left.\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 168.8\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 168.6\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 151.7\left(\mathrm{C}_{10}\right)$, $139.4\left(\mathrm{C}_{8}\right), 132.5\left(\mathrm{C}_{14}\right), 129.6\left(\mathrm{C}_{12}\right), 129.4\left(\mathrm{C}_{16}\right), 128.2\left(\mathrm{C}_{17}\right), 125.6\left(\mathrm{C}_{15}\right), 125.2\left(\mathrm{C}_{7}\right), 122.8$ $\left(\mathrm{C}_{13}\right), 116.9\left(\mathrm{C}_{11}\right), 63.3\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right), 53.8\left(\mathrm{C}_{9}\right), 47.0\left(\mathrm{C}_{1}\right)$, $\mathrm{B}-\mathrm{C}$ not visible.

${ }^{11} \mathbf{B}$ NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 10.2.

LRMS (ESI+) 393.2 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}$, 308.1 (42%) $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}+\mathrm{Na}\right]^{+}$.
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{11} \mathrm{~B}\right)$: 393.1622 found: 393.1618 .

285

285'

Formula: $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BN}_{2} \mathrm{O}_{5}$ MW : 392.22

To a suspension of diene 269a ($50 \mathrm{mg}, 0.18 \mathrm{mmol}$) in AcOEt (2 mL), was added nitrosobenzene 160a ($38 \mathrm{mg}, 0.35 \mathrm{mmol}$). The reaction mixture was stirred at reflux for 24 h . The solvent was evaporated and the crude product purified by solid phase silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.4$) to afford $\mathbf{2 8 5}+\mathbf{2 8 5}$ ' as a mixture ($40 / 60$, $62.8 \mathrm{mg}, 89 \%$). The mixture of isomers was dissolved in the minimum amount of CHCl_{3}, and left overnight in a fridge at $+5^{\circ} \mathrm{C}$ to form a white precipiate. The precipitate was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$ and recrystallized in MeOH to afford pure isomer $\mathbf{2 8 5}^{\prime}$ as white crystals ($29.3 \mathrm{mg}, 42 \%$). The filtrate was evaporated and diluted in CHCl_{3} (1 mL). Aqueous HCl (1M) (0.5 mL) was added and heterogeneous mixture was vigorously stirred for 24 h to decompose the residual isomer 285'. The organic phase was separated, dried over MgSO_{4}, filtered and concentrated under vacuum. After purification by silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.4$), isomer 285 was obtained as a pale yellow solid ($21.3 \mathrm{mg}, 30 \%$).

285: М.p. $=174^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.44-7.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 7.17-7.09\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{15}, \mathrm{H}_{16}\right.$ and H_{17}), 7.00-6.95 (m, 2H, H_{11}), 6.81-6.75 (m, 1H, H_{13}), $6.17(\mathrm{ddd}, J=10.0,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, H_{8} or H_{7}), 6.04 (ddd, $J=10.0,5.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}$ or H_{7}) $5.24(\mathrm{ddd}, J=4.8,2.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, H_{9}), $4.59\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.36\left(\mathrm{dd}, J=29.6,16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or H_{3}), $4.10(\mathrm{dd}, J=39.7,16.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), $3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z}$, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 169.1\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 167.9\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right)$, $150.1\left(\mathrm{C}_{10}\right)$, $139.1\left(\mathrm{C}_{14}\right), 130.5\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right), 129.2\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right), 128.4\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right), 127.9$ $\left(\mathrm{C}_{17}\right), 127.8\left(\mathrm{C}_{8}\right), 125.9\left(\mathrm{C}_{7}\right), 121.9\left(\mathrm{C}_{13}\right), 117.3\left(\mathrm{C}_{11}\right), 72.8\left(\mathrm{C}_{6}\right), 64.3\left(\mathrm{C}_{9}\right), 63.21\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right)$, $63.16\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 46.7\left(\mathrm{C}_{1}\right)$.
${ }^{11} \mathbf{B}$ NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 10.3.
LRMS (ESI+) 393.2 (8\%) $[\mathrm{M}+\mathrm{H}]^{+}, 115.1$ (37\%), 102.1 (100\%).
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{11} \mathrm{~B}\right)$: 393.1622 found: 393.1624.

285': М.p. $=152^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.60-7.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 7.37-7.31\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{15}, \mathrm{H}_{16}\right.$ and H_{17}), 7.22-7.20 (m, 2H, H_{11}), 6.98-6.94 (m, $1 \mathrm{H}, \mathrm{H}_{13}$), $6.19(\mathrm{ddd}, J=10.5,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, H_{8} or $\left.\mathrm{H}_{7}\right), 5.68\left(\mathrm{ddd}, J=10.5,1.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right.$ or $\left.\mathrm{H}_{7}\right), 5.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.19(\mathrm{dd}, J=88.8$, $16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), $4.11\left(\mathrm{dd}, J=54.0,16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or H_{3}), 4.11-4.07 (m, $1 \mathrm{H}, \mathrm{H}_{9}$), 3.13 (s, 3H, H1).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 169.4\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right)$, $167.8\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right)$, $149.9\left(\mathrm{C}_{10}\right)$, $139.9\left(\mathrm{C}_{14}\right), 130.2\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right), 129.6\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right), 129.1\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right), 129.0$ $\left(\mathrm{C}_{8}\right), 127.0\left(\mathrm{C}_{17}\right), 125.1\left(\mathrm{C}_{7}\right), 122.1\left(\mathrm{C}_{13}\right), 117.1\left(\mathrm{C}_{11}\right), 72.8\left(\mathrm{C}_{9}\right), 63.08\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 63.03\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 47.3\left(\mathrm{C}_{6}\right), 45.4\left(\mathrm{C}_{1}\right)$.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 10.6.
LRMS (ESI+) 415.1 (100%) $[\mathrm{M}+\mathrm{Na}]^{+}, 145.0$ (30\%), 101.0 (41%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{11} \mathrm{~B}\right)$: 393.1622 found: 393.1632.

Crystal structure data for 285':

A suitable crystal was selected and measured on a APEXII, Bruker-AXS diffractometer. The crystal was kept at 120 K during data collection. The structure was solved by direct methods using the SIR97 program, ${ }^{181}$ and then refined with full-matrix least-square methods based on F^{2} (SHELXL-97) ${ }^{182}$ with the aid of the WINGX program. ${ }^{183}$ All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. A final refinement on F^{2} with 4726 unique intensities and 284 parameters converged at $\omega R\left(F^{2}\right)=0.0955(R(F)=0.0426)$ for 3438 observed reflections with $I>2 \sigma(I)$.

Table I. Crystal data and structure refinement.

Empirical formula	$\mathrm{C}_{21.67} \mathrm{H}_{23.67} \mathrm{~B} \mathrm{~N} \mathrm{~N}_{2} \mathrm{O}_{5.67}$
Extended formula	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~B}_{1} \mathrm{~N}_{2} \mathrm{O}_{4}, 0.66667\left(\mathrm{H}_{4} \mathrm{O}\right)$
Formula weight	413.59
Temperature	$150(2) K$
Wavelength	$0.71073 \AA$
Crystal system, space group	monoclinic, $P 2_{1} / a$
Unit cell dimensions	$\mathrm{a}=13.4777(7) \AA, \alpha=90^{\circ}$
	$\mathrm{b}=9.3088(7) \AA, \beta=106.022(3)^{\circ}$
Volume	$\mathrm{c}=17.2255(13) \AA, \gamma=90^{\circ}$
Z, Calculated density	$2077.2(2) \AA^{\circ}$
Absorption coefficient	$4,1.323(\mathrm{g.cm})$
$F(000)$	$0.095 \mathrm{~mm}^{-1}$
Crystal size	872
Crystal color	$0.31 \times 0.3 \times 0.08 \mathrm{~mm}$
Theta range for data collection	colourless
	3.04 to 27.44°

h_min, h_max	$-17,17$
k_min, k_max	$-12,12$
l_min, l_max	$-22,22$
Reflections collected / unique	$17579 / 4726\left[\mathrm{R}(\mathrm{int})^{\mathrm{a}}=0.0411\right]$
Reflections [I>2 σ]	3438
Completeness to theta_max	0.998
Absorption correction type	multi-scan
Max. and min. transmission	$0.992,0.869$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$4726 / 0 / 284$
${ }^{\mathrm{b}}$ Goodness-of-fit	1.031
Final R indices [I>2 $\sigma]$	$R 1^{c}=0.0426, w R 2^{d}=0.0955$
R indices (all data)	$R 1^{c}=0.0661, w R 2^{d}=0.1068$
Largest diff. peak and hole	0.482 and $-0.208 \mathrm{e}^{-} . \AA^{-3}$

Table II. Fractional Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.
$U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{I J}$ tensor.

Atom	\boldsymbol{x}	y	z	occ.	U(eq)
C1	0.09955(13)	0.41007(17)	0.37619(10)	1	0.0281(4)
H1A	0.0356	0.4456	0.3388	1	0.042
H1B	0.1531	0.4019	0.3478	1	0.042
H1C	0.1224	0.4772	0.4214	1	0.042
N2	0.08061(9)	0.26611(13)	$0.40745(7)$	1	0.0190(3)
C3	0.00434(11)	0.26881(18)	$0.44743(10)$	1	0.0257(4)
H3A	0.0546	0.3457	0.4243	1	0.031
H3B	0.0234	0.2852	0.5062	1	0.031
C4	$0.05471(11)$	0.12210 (18)	0.43088(9)	1	$0.0245(4)$
O5	0.11923(8)	$0.07740(14)$	0.46162(7)	1	0.0344(3)
O6	$0.01933(7)$	0.05017(11)	0.37782(6)	1	0.0227(2)
B7	0.04516(12)	$0.13949(19)$	$0.33938(10)$	1	0.0199(4)
O8	0.14283(7)	$0.06611(11)$	0.34287(6)	1	$0.0225(2)$
C9	$0.21508(11)$	0.09313(17)	0.41167(9)	1	0.0211(3)
O10	$0.29789(7)$	0.03273(12)	$0.43141(7)$	1	$0.0275(3)$
C11	$0.17955(11)$	0.20550(17)	$0.46113(9)$	1	0.0216(3)
H11A	0.1674	0.1619	0.5101	1	0.026
H11B	0.2321	0.282	0.4779	1	0.026
C12	$0.01466(10)$	0.18918(17)	0.24874(8)	1	0.0197(3)
H12	0.0322	0.254	0.2289	1	0.024
N13	0.10849(9)	0.27168(14)	$0.24912(7)$	1	0.0197(3)
O14	0.18821(7)	$0.17334(11)$	0.25856(6)	1	$0.0215(2)$
C15	$0.22300(11)$	0.07501(17)	0.19020(9)	1	0.0221(3)
H15	0.267	0.1286	0.1428	1	0.027
C16	$0.13314(11)$	0.00890(18)	0.16749 (9)	1	0.0241(3)
H16	0.1447	0.0729	0.1332	1	0.029
C17	0.03850(11)	0.06092(17)	0.19371(9)	1	$0.0225(3)$
H17	0.0158	0.0161	0.1774	1	0.027
C18	0.15201(11)	0.36720(17)	0.18231(9)	1	0.0203(3)
C19	$0.12517(12)$	0.36562(18)	0.10971(9)	1	0.0250(4)
H19	0.0779	0.296	0.1009	1	0.03
C20	0.16803(13)	0.4669 (2)	$0.04998(10)$	1	0.0320(4)
H20	0.1494	0.4659	0.0007	1	0.038
C21	$0.23714(13)$	0.56820(19)	0.06177(10)	1	0.0327(4)
H21	0.2659	0.6367	0.0209	1	0.039
C22	$0.26439(12)$	0.56915(19)	$0.13425(10)$	1	0.0304(4)

H22	0.3121	0.6384	0.1427	1	0.037
C23	$0.22216(12)$	$0.46949(17)$	$0.19410(10)$	1	$0.0257(4)$
H23	0.2411	0.4709	0.2433	1	0.031
C24	$0.28818(11)$	$0.03512(17)$	$0.21792(9)$	1	$0.0228(3)$
C25	$0.24372(12)$	$0.12723(17)$	$0.28181(10)$	1	$0.0264(4)$
H25	0.1717	0.122	0.3073	1	0.032
C26	$0.30342(13)$	$0.22613(18)$	$0.30844(10)$	1	$0.0299(4)$
H26	0.2723	0.2887	0.3519	1	0.036
C27	$0.40899(13)$	$0.23426(18)$	$0.27163(10)$	1	$0.0299(4)$
H27	0.4502	0.3012	0.2906	1	0.036
C28	$0.45400(12)$	$0.14473(18)$	$0.20733(10)$	1	$0.0288(4)$
H28	0.526	0.1509	0.1817	1	0.035
C29	$0.39347(11)$	$0.04539(17)$	$0.18029(9)$	1	$0.0254(4)$
H29	0.4243	0.0155	0.136	1	0.03
O51	$0.41267(15)$	$0.2772(2)$	$0.06600(12)$	0.67	$0.0483(5)$
H51	0.3723	0.3453	0.0848	0.67	0.072
C52	$0.4714(3)$	$0.3118(5)$	$0.00939(18)$	0.67	$0.0677(12)$
H52A	0.5157	0.3938	0.0061	0.67	0.102
H52B	0.5145	0.2294	0.033	0.67	0.102
H52C	0.4265	0.337	0.0433	0.67	0.102

Table III. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	U11	U22	U33	$\mathbf{U 2 3}$	$\mathbf{U 1 3}$	U12
C1	$0.0363(9)$	$0.0179(8)$	$0.0275(8)$	$0.0016(7)$	$0.0047(7)$	$-0.0047(7)$
N2	$0.0185(6)$	$0.0171(6)$	$0.0210(6)$	$0.0018(5)$	$0.0051(5)$	$0.0001(5)$
C3	$0.0227(8)$	$0.0294(9)$	$0.0276(8)$	$0.0007(7)$	$0.0112(6)$	$0.0041(7)$
C4	$0.0175(7)$	$0.0307(9)$	$0.0239(7)$	$0.0100(7)$	$0.0033(6)$	$0.0038(7)$
O5	$0.0242(6)$	$0.0439(8)$	$0.0375(6)$	$0.0152(6)$	$0.0125(5)$	$0.0006(5)$
O6	$0.0210(5)$	$0.0200(6)$	$0.0257(5)$	$0.0043(5)$	$0.0040(4)$	$-0.0021(4)$
B7	$0.0189(8)$	$0.0164(8)$	$0.0243(8)$	$0.0000(7)$	$0.0057(7)$	$0.0006(7)$
O8	$0.0197(5)$	$0.0226(6)$	$0.0237(5)$	$-0.0015(5)$	$0.0032(4)$	$0.0027(4)$
C9	$0.0184(7)$	$0.0202(8)$	$0.0249(7)$	$0.0044(6)$	$0.0062(6)$	$0.0031(6)$
O10	$0.0179(5)$	$0.0284(6)$	$0.0350(6)$	$0.0031(5)$	$0.0053(5)$	$0.0029(5)$
C11	$0.0191(7)$	$0.0228(8)$	$0.0206(7)$	$0.0015(6)$	$0.0019(6)$	$0.0009(6)$
C12	$0.0174(7)$	$0.0193(8)$	$0.0225(7)$	$0.0016(6)$	$0.0055(6)$	$0.0010(6)$
N13	$0.0177(6)$	$0.0180(7)$	$0.0233(6)$	$0.0012(5)$	$0.0053(5)$	$0.0009(5)$
O14	$0.0223(5)$	$0.0194(6)$	$0.0236(5)$	$-0.0009(4)$	$0.0077(4)$	$-0.0033(4)$
C15	$0.0217(7)$	$0.0206(8)$	$0.0224(7)$	$-0.0026(6)$	$0.0033(6)$	$-0.0005(6)$
C16	$0.0281(8)$	$0.0218(8)$	$0.0223(7)$	$-0.0045(7)$	$0.0066(6)$	$0.0004(7)$
C17	$0.0240(7)$	$0.0234(9)$	$0.0212(7)$	$0.0004(6)$	$0.0083(6)$	$0.0056(7)$
C18	$0.0184(7)$	$0.0174(8)$	$0.0227(7)$	$0.0010(6)$	$0.0015(6)$	$0.0017(6)$
C19	$0.0249(8)$	$0.0249(9)$	$0.0251(8)$	$0.0005(7)$	$0.0066(6)$	$0.0026(7)$
C20	$0.0341(9)$	$0.0374(10)$	$0.0237(8)$	$0.0062(7)$	$0.0069(7)$	$0.0038(8)$
C21	$0.0339(9)$	$0.0301(10)$	$0.0313(9)$	$0.0110(8)$	$0.0042(7)$	$0.0058(8)$
C22	$0.0273(8)$	$0.0265(9)$	$0.0360(9)$	$0.0034(8)$	$0.0062(7)$	$0.0079(7)$
C23	$0.0264(8)$	$0.0239(9)$	$0.0277(8)$	$0.0016(7)$	$0.0088(6)$	$0.0004(7)$
C24	$0.0244(8)$	$0.0180(8)$	$0.0265(8)$	$-0.0046(6)$	$0.0080(6)$	$-0.0006(6)$
C25	$0.0263(8)$	$0.0200(8)$	$0.0300(8)$	$-0.0020(7)$	$0.0031(6)$	$-0.0010(7)$
C26	$0.0384(9)$	$0.0198(8)$	$0.0294(8)$	$-0.0001(7)$	$0.0057(7)$	$-0.0025(7)$
C27	$0.0364(9)$	$0.0185(8)$	$0.0381(9)$	$-0.0054(7)$	$0.0154(7)$	$-0.0078(7)$
C28	$0.0229(8)$	$0.0239(9)$	$0.0393(9)$	$-0.0058(8)$	$0.0080(7)$	$-0.0026(7)$
C29	$0.0250(8)$	$0.0219(9)$	$0.0285(8)$	$-0.0030(7)$	$0.0059(6)$	$0.0010(7)$

O51	$0.0388(11)$	$0.0502(14)$	$0.0476(12)$	$0.0105(11)$	$-0.0020(9)$	$-0.0112(10)$
C52	$0.0500(19)$	$0.113(4)$	$0.0372(17)$	$0.019(2)$	$0.0074(15)$	$-0.015(2)$

Table IV. Bond Lengths.

Atom	Atom	Length/̊	Atom	Atom	Length/ \AA
C1	N2	$1.4922(19)$	C16	H16	0.95
C1	H1A	0.98	C17	H17	0.95
C1	H1B	0.98	C18	C19	$1.395(2)$
C1	H1C	0.98	C18	C23	$1.396(2)$
N2	C3	$1.4904(18)$	C19	C20	$1.397(2)$
N2	C11	$1.5070(18)$	C19	H19	0.95
N2	B7	$1.638(2)$	C20	C21	$1.380(2)$
C3	C4	$1.517(2)$	C20	H20	0.95
C3	H3A	0.99	C21	C22	$1.395(2)$
C3	H3B	0.99	C21	H21	0.95
C4	O5	$1.2099(18)$	C22	C23	$1.387(2)$
C4	O6	$1.3236(19)$	C22	H22	0.95
O6	B7	$1.484(2)$	C23	H23	0.95
B7	O8	$1.4694(19)$	C24	C29	$1.391(2)$
B7	C12	$1.614(2)$	C24	C25	$1.393(2)$
O8	C9	$1.3338(17)$	C25	C26	$1.382(2)$
C9	O10	$1.2116(17)$	C25	H25	0.95
C9	C11	$1.508(2)$	C26	C27	$1.391(2)$
C11	H11A	0.99	C26	H26	0.95
C11	H11B	0.99	C27	C28	$1.385(2)$
C12	N13	$1.4811(18)$	C27	H27	0.95
C12	C17	$1.503(2)$	C28	C29	$1.395(2)$
C12	H12	1	C28	H28	0.95
N13	C18	$1.4444(18)$	C29	H29	0.95
N13	O14	$1.4545(15)$	O51	C52	$1.360(3)$
O14	C15	$1.4627(17)$	O51	H51	0.84
C15	C16	$1.503(2)$	C52	H52A	0.98
C15	C24	$1.511(2)$	C52	H52B	0.98
C15	H15	1	C52	H52C	0.98
C16	C17	$1.322(2)$			

Table V. Bond Angles.

Atom	Atom	Atom	${\text { Angle }{ }^{\circ}}^{\circ}$	Atom	Atom	Atom	${\text { Angle } /{ }^{\circ}}^{\text {N2 }}$
C1	H1A	109.5	C16	C15	H15	109.3	
N2	C1	H1B	109.5	C24	C15	H15	109.3
H1A	C1	H1B	109.5	C17	C16	C15	$122.13(14)$
N2	C1	H1C	109.5	C17	C16	H16	118.9
H1A	C1	H1C	109.5	C15	C16	H16	118.9
H1B	C1	H1C	109.5	C16	C17	C12	$121.64(14)$
C3	N2	C1	$112.42(12)$	C16	C17	H17	119.2
C3	N2	C11	$112.66(11)$	C12	C17	H17	119.2
C1	N2	C11	$110.31(11)$	C19	C18	C23	$119.44(14)$
C3	N2	B7	$103.50(11)$	C19	C18	N13	$124.00(13)$
C1	N2	B7	$115.66(11)$	C23	C18	N13	$116.52(13)$
C11	N2	B7	$101.75(11)$	C18	C19	C20	$119.76(15)$

N2	C3	C4	105.01(13)	C18	C19	H19	120.1
N2	C3	H3A	110.7	C20	C19	H19	120.1
C4	C3	H3A	110.7	C21	C20	C19	120.77(15)
N2	C3	H3B	110.7	C21	C20	H20	119.6
C4	C3	H3B	110.7	C19	C20	H20	119.6
H3A	C3	H3B	108.8	C20	C21	C22	119.42(15)
O5	C4	O6	124.59(16)	C20	C21	H21	120.3
O5	C4	C3	124.46 (15)	C22	C21	H21	120.3
O6	C4	C3	110.95(13)	C23	C22	C21	120.36(16)
C4	O6	B7	113.06(12)	C23	C22	H22	119.8
O8	B7	O6	110.46(12)	C21	C22	H22	119.8
O8	B7	C12	112.05(12)	C22	C23	C18	120.25(15)
O6	B7	C12	113.22(12)	C22	C23	H23	119.9
O8	B7	N2	102.95(11)	C18	C24	H23	119.9
O6	B7	N2	100.06(11)	C29	C24	C25	119.13(15)
C12	B7	N2	117.08(13)	C29	C24	C15	120.45(14)
C9	O8	B7	112.01(12)	C25	C24	C15	120.42(13)
O10	C9	O8	123.50(14)	C26	C25	C24	120.62(15)
O10	C9	C11	125.09(14)	C26	C25	H25	119.7
O8	C9	C11	111.41(12)	C24	C25	H25	119.7
N2	C11	C9	106.15(11)	C25	C26	C27	120.08(15)
N2	C11	H11A	110.5	C25	C26	H26	120
C9	C11	H11A	110.5	C27	C26	H26	120
N2	C11	H11B	110.5	C28	C27	C26	119.94(15)
C9	C11	H11B	110.5	C28	C27	H27	120
H11A	C11	H11B	108.7	C26	C27	H27	120
N13	C12	C17	112.37(11)	C27	C28	C29	119.88(15)
N13	C12	B7	110.09(11)	C27	C28	H28	120.1
C17	C12	B7	110.19(12)	C29	C28	H28	120.1
N13	C12	H12	108	C24	C29	C28	120.34(15)
C17	C12	H12	108	C24	C29	H29	119.8
B7	C12	H12	108	C28	C29	H29	119.8
C18	N13	O14	109.05(10)	C52	O51	H51	109.5
C18	N13	C12	118.37(11)	O51	C52	H52A	109.5
O14	N13	C12	109.40(11)	O51	C52	H52B	109.5
N13	O14	C15	112.73(10)	H52A	C52	H52B	109.5
O14	C15	C16	111.31(11)	O51	C52	H52C	109.5
O14	C15	C24	104.79(11)	H52A	C52	H52C	109.5
C16	C15	C24	112.64(13)	H52B	C52	H52C	109.5
O14	C15	H15	109.3				

Table VI. Torsion angles.

Atom	Atom	Atom	Atom	Angle $/ ~^{\circ}$	Atom	Atom	Atom	Atom	Angle $^{\circ}{ }^{\circ}$
C1	N2	C3	C4	$147.64(12)$	B7	C12	N13	C18	$158.37(12)$
C11	N2	C3	C4	$-86.96(14)$	C17	C12	N13	O14	$47.29(14)$
B7	N2	C3	C4	$22.14(14)$	B7	C12	N13	O14	$-75.93(14)$
N2	C3	C4	O5	$170.96(14)$	C18	N13	O14	C15	$66.21(14)$
N2	C3	C4	O6	$-9.59(16)$	C12	N13	O14	C15	$-64.68(13)$
O5	C4	O6	B7	$169.88(14)$	N13	O14	C15	C16	$47.10(15)$
C3	C4	O6	B7	$-9.56(16)$	N13	O14	C15	C24	$169.13(10)$
C4	O6	B7	O8	$130.46(13)$	O14	C15	C16	C17	$-15.0(2)$
C4	O6	B7	C12	$-102.95(14)$	C24	C15	C16	C17	$-132.33(16)$
C4	O6	B7	N2	$22.45(14)$	C15	C16	C17	C12	$0.6(2)$

C3	N2	B7	O8	$-140.42(12)$	N13	C12	C17	C16	$-17.1(2)$
C1	N2	B7	O8	$96.18(14)$	B7	C12	C17	C16	$106.10(16)$
C11	N2	B7	O8	$-23.37(14)$	O14	N13	C18	C19	$-112.00(15)$
C3	N2	B7	O6	$-26.52(13)$	C12	N13	C18	C19	$13.9(2)$
C1	N2	B7	O6	$-149.91(12)$	O14	N13	C18	C23	$70.40(16)$
C11	N2	B7	O6	$90.53(12)$	C12	N13	C18	C23	$-163.73(13)$
C3	N2	B7	C12	$96.20(14)$	C23	C18	C19	C20	$0.5(2)$
C1	N2	B7	C12	$-27.20(17)$	N13	C18	C19	C20	$-177.02(14)$
C11	N2	B7	C12	$-146.76(12)$	C18	C19	C20	C21	$-0.3(3)$
O6	B7	O8	C9	$-86.83(14)$	C19	C20	C21	C22	$0.0(3)$
C12	B7	O8	C9	$145.93(13)$	C20	C21	C22	C23	$0.2(3)$
N2	B7	O8	C9	$19.26(15)$	C21	C22	C23	C18	$0.0(2)$
B7	O8	C9	O10	$172.10(14)$	C19	C18	C23	C22	$-0.3(2)$
B7	O8	C9	C11	$-7.07(17)$	N13	C18	C23	C22	$177.39(14)$
C3	N2	C11	C9	$130.00(13)$	O14	C15	C24	C29	$114.66(15)$
C1	N2	C11	C9	$-103.47(14)$	C16	C15	C24	C29	$-124.18(15)$
B7	N2	C11	C9	$19.80(14)$	O14	C15	C24	C25	$-64.99(17)$
O10	C9	C11	N2	$171.17(14)$	C16	C15	C24	C25	$56.17(19)$
O8	C9	C11	N2	$-9.68(16)$	C29	C24	C25	C26	$-1.0(2)$
O8	B7	C12	N13	$-175.89(12)$	C15	C24	C25	C26	$178.67(14)$
O6	B7	C12	N13	$58.36(17)$	C24	C25	C26	C27	$-0.2(2)$
N2	B7	C12	N13	$-57.29(16)$	C25	C26	C27	C28	$1.1(2)$
O8	B7	C12	C17	$59.63(16)$	C26	C27	C28	C29	$-0.8(2)$
O6	B7	C12	C17	$-66.12(16)$	C25	C24	C29	C28	$1.3(2$
N2	B7	C12	C17	$178.23(12)$	C15	C24	C29	C28	$-178.37(14)$
C17	C12	N13	C18	$-78.41(16)$	C27	C28	C29	C24	$-0.4(2)$

C. Mechanistic aspects of the reaction 1-borodienes with arylnitroso compounds

C.1. Conversion of $\mathbf{2 8 5}$ to pyrrole 2771 under basic conditions:

Oxazine 285 ($6.0 \mathrm{mg}, 0.015 \mathrm{mmol}$) was dissolved in acetone $-d_{6}(0.4 \mathrm{~mL})$. NaOD (1 M in water, $15 \mu \mathrm{~L}, 0.015 \mathrm{mmol}$) was then added and the reaction was directly followed by ${ }^{1} \mathrm{H}$ and
${ }^{11}$ B NMR. After one night, a 32% conversion was observed with no further evolution if the reaction was left longer at r.t. $\mathrm{NaOD}(1 \mathrm{M}, 30 \mu \mathrm{~L}, 0.030 \mathrm{mmol})$ was finally added to observe complete consumption of the starting oxazine 285 , followed by $\mathrm{DCl}\left(1 \mathrm{M}\right.$ in $\mathrm{D}_{2} \mathrm{O}, 15 \mu \mathrm{~L}$, 0.015 mmol). After 15 min , a full conversion into the corresponding pyrrole was observed. The reaction mixture was poured into $\mathrm{DCM}(2 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added. The aqueous layer was extracted with $\mathrm{DCM}(3 \mathrm{x})$ and the organic layer was dried over MgSO_{4}, filtered over a pad of silica gel and eluted with DCM to give pyrrole 2771 ($2.8 \mathrm{mg}, 85 \%$).

C.2. Conversion of 285' to 2-phenylfuran 294 under acidic conditions:

299

Oxazine 285' ${ }^{\prime}(6.8 \mathrm{mg}, 0.017 \mathrm{mmol})$ was dissolved in acetone $-d^{6}(0.4 \mathrm{~mL}) . \mathrm{DCl}$ in $\mathrm{D}_{2} \mathrm{O}(1 \mathrm{M}$, $18 \mu \mathrm{~L}, 0.018 \mathrm{mmol})$. After full conversion of the starting oxazine, reaction mixture was poured into $\mathrm{DCM}(1 \mathrm{~mL})$. $\mathrm{NaOH}(1 \mathrm{M}, 0.2 \mathrm{~mL})$ was added. The aqueous layer was extracted with DCM (3 x), dried over MgSO_{4}, filtered and purified over a pad of silica and eluted with DCM to give furan 294 (2.4 mg , quantitative).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42-7.36$ (m, 2H), $7.30-7.24$ (m, 1H), 6.66 (dd, $J=3.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48$ (dd, $J=$ $3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$.

[^6]All analytical and spectroscopic properties were identical to those reported in the literature. ${ }^{184}$

C.3. Isolation of by-product boronated MIDA ester aniline 299:

Oxazine 285' (25.2 mg, 0.064 mmol$)$ was dissolved in acetone $-d_{6}(0.7 \mathrm{~mL}) . \mathrm{DCl}\left(1 \mathrm{M} \mathrm{in}_{2} \mathrm{O}\right.$, $64 \mu \mathrm{~L}, 0.064 \mathrm{mmol}$) was then added and the reaction was followed by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR. After full conversion of the starting oxazine, the reaction mixture was extracted with DCM (3 x), dried over MgSO_{4}, filtered and concentrated. The crude yellow solid was suspended in CHCl_{3} $(0.5 \mathrm{~mL})$ and filtered. The resulting solid was washed with $\mathrm{CHCl}_{3}(3 \mathrm{x})$ to afford $\mathbf{2 9 9}$ as a white solid (4 mg, 25\%).

${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetone- $\left.\boldsymbol{d}_{\boldsymbol{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 6.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 6.62(\mathrm{~m}, 1 \mathrm{H}$, H_{9}), $4.74(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.25\left(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 4.09\left(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or H_{3}), $3.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1 ~ M H z , ~ A c e t o n e - ~} \boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 167.6\left(\mathrm{C}_{4}\right.$ and $\left.\mathrm{C}_{5}\right)$, $147.2\left(\mathrm{C}_{6}\right), 129.0\left(\mathrm{C}_{8}\right), 117.4$ $\left(\mathrm{C}_{9}\right), 116.2\left(\mathrm{C}_{7}\right), 62.1\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right), 45.8\left(\mathrm{C}_{1}\right)$.
${ }^{11} \mathbf{B}$ NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\boldsymbol{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 9.9.
LRMS (ESI+) 271.1 (36\%) [M+Na] ${ }^{+}, 249.1$ (100\%) [M+H] $]^{+}, 188.1$ (11\%), 156.0 (12\%).
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{11} \mathrm{~B}\right)$: 249.1047 found: 249.1042.

D. Transformations of borono-1,6-dihydro-1,2-oxazine derivatives

Oxazine 301.

To a suspension of diene 277 ($229 \mathrm{mg}, 0.80 \mathrm{mmol}$) in AcOEt (10 mL), was added nitrosobenzene 160a (221 mg, 2.06 mmol). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 22 h . The solvent was evaporated and the crude product purified by solid phase silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.4$) to afford 301 as a white solid (229 mg , $73 \%)$.
M.p. $=153{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\boldsymbol{d}_{\boldsymbol{6}}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.40-7.25\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{15}, \mathrm{H}_{16}, \mathrm{H}_{17}\right.$ and H_{12}), 7.17 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 6.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 4.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 3.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 3.94(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}$, H_{2} or H_{3}), $3.43\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ or H_{3}), $3.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Acetone- $\left.\mathbf{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 168.2\left(\mathrm{C}_{4}\right.$ and $\left.\mathrm{C}_{5}\right), 151.5\left(\mathrm{C}_{10}\right), 144.4\left(\mathrm{C}_{14}\right), 141.9$ $\left(\mathrm{C}_{8}\right), 129.7\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right)$, $129.5\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right)$, $129.4\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right)$, $128.2\left(\mathrm{C}_{17}\right)$, $122.5\left(\mathrm{C}_{13}\right), 116.2\left(\mathrm{C}_{11}\right), 72.2\left(\mathrm{C}_{6}\right), 63.0\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right)$, $58.3\left(\mathrm{C}_{9}\right), 47.3\left(\mathrm{C}_{1}\right)$, $\mathrm{B}-\mathrm{C}$ not visible.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 10.4.
LRMS (ESI+) 393.1 (100%) $[\mathrm{M}+\mathrm{H}]^{+}, 281.7$ (75\%), 264.2 (52\%), 220.1 (71\%).
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{11} \mathrm{~B}\right)$: 393.1618 found: 393.1622.

Oxazine 303.

In a flask under an inert atmosphere was added oxazine $301(41 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($1.2 \mathrm{mg}, 0.0053 \mathrm{mmol}$), SPhos ($4.3 \mathrm{mg}, 0.010 \mathrm{mmol}$) and 2-bromotoluene $302(14 \mu \mathrm{~L}, 0.11$ mmol) in dioxane (2 mL). An aqueous solution of $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 190 \mathrm{~mL}, 0.57 \mathrm{mmol})$ previously degassed with argon for 15 min was then added. The orange reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{NaOH}(1 \mathrm{M}, 5 \mathrm{~mL})$ were added in the reaction mixture, then aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$ and the organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude compound was purified by silica gel chromatography (eluent, hexane/AcOEt $95 / 5, \mathrm{R}_{\mathrm{f}}=0.4$). to afford 303 as a white solid ($27.1 \mathrm{mg}, 71 \%$).
M.p. $=161^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.40-6.83$ (m, 14H, HAr), 4.58 (s, 2H, H6), $4.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{24}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z , ~ C h l o r o f o r m - d , ~} \boldsymbol{\delta} \mathbf{~ p p m}$) 150.2 (C_{10}), 138.9 (C), 137.1 (C), 136.1 (C), $134.1\left(\mathrm{C}_{18}\right), 131.0\left(\mathrm{C}_{7}\right), 130.3(\mathrm{C}), 130.0(\mathrm{C}), 129.1\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right), 128.2\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right)$, $128.1\left(\mathrm{C}_{12}, \mathrm{C}_{15}\right.$ or $\left.\mathrm{C}_{16}\right), 127.6(\mathrm{C}), 127.2(\mathrm{C}), 125.8(\mathrm{C}), 122.8\left(\mathrm{C}_{13}\right), 116.2\left(\mathrm{C}_{11}\right), 72.0\left(\mathrm{C}_{6}\right)$, $55.4\left(\mathrm{C}_{9}\right), 19.7\left(\mathrm{C}_{24}\right)$.

LRMS (ESI+) 328.2 (36\%) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}\right)$: 328.1689 found: 328.1701.

E. The one-pot nitrone formation/1,3-dipolar cycloaddition

sequence

Nitrone 304g.

Diene 241c ($127.0 \mathrm{mg}, 0.65 \mathrm{mmol}$) and 4-nitrosobenzoate $\mathbf{1 6 0 g}(372.7 \mathrm{mg}, 2.08 \mathrm{mmol})$ were dissolved in AcOEt (3 mL). The reaction mixture was stirred at r.t. for 1.5 h , then hexane (10 mL) was added to the crude mixture. The resulting solid was filtered and washed with hexane (2 x) to afford compound $\mathbf{3 0 4 g}$ as an orange solid ($142.7 \mathrm{mg}, 54 \%$).
M.p. $=165^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 8.99\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 8.18-8.13$ (m, $4 \mathrm{H}, \mathrm{H}_{5}$ and $\left.\mathrm{H}_{15}\right), 8.08\left(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 7.93-7.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}$, H_{6}), $7.24\left(\mathrm{dd}, J=3.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 6.70\left(\mathrm{dd}, J=3.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}_{18}$ or $\left.\mathrm{H}_{2}\right), 4.40\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{18}\right.$ or $\left.\mathrm{H}_{2}\right), 1.42\left(\mathrm{t}, J=7.1,3 \mathrm{H}, \mathrm{H}_{1}\right.$ or $\left.\mathrm{H}_{19}\right), 1.41(\mathrm{t}, J=$ $7.1,3 \mathrm{H}, \mathrm{H}_{1}$ or H_{19}).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $165.8\left(\mathrm{C}_{17}\right.$ or $\left.\mathrm{C}_{3}\right), 165.6\left(\mathrm{C}_{17}\right.$ or $\left.\mathrm{C}_{3}\right), 150.7$ $\left(\mathrm{C}_{13}\right), 143.1\left(\mathrm{C}_{7}\right), 131.5\left(\mathrm{CH}_{\mathrm{Ph}}\right), 131.4\left(\mathrm{C}_{\mathrm{Ph}}\right), 130.8\left(\mathrm{CH}_{\mathrm{Ph}}\right), 130.4\left(\mathrm{C}_{11}\right), 128.6\left(\mathrm{C}_{\mathrm{Ph}}\right), 124.0$ $\left(\mathrm{C}_{12}\right)$, $121.2\left(\mathrm{CH}_{\mathrm{Ph}}\right), 120.6\left(\mathrm{C}_{8}\right), 120.0\left(\mathrm{CH}_{\mathrm{Ph}}\right), 117.9\left(\mathrm{C}_{10}\right), 112.9\left(\mathrm{C}_{9}\right), 61.5\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{18}\right), 61.3$ $\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{18}\right), 14.5\left(\mathrm{C}_{1}\right.$ or $\left.\mathrm{C}_{19}\right), 14.4\left(\mathrm{C}_{1}\right.$ or $\left.\mathrm{C}_{19}\right)$.

IR (neat, v) 2984, 1717, 1607, 1576, 1520, 1269, 1215, 1170, 1107, 1072, 1018, 840, 767, $691 \mathrm{~cm}^{-1}$.

LRMS (ESI+) 407.0 (27\%) [M+H] ${ }^{+}$, 391.3 (100\%) [M-O] ${ }^{+}$.
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$: 407.1607 found: 407.1602.

Single crystal X-ray structure data for $\mathbf{3 0 4 g}$:

A suitable crystal was selected and measured on a D8V_Mo diffractometer. The crystal was kept at 120 K during data collection. Using Olex $2,{ }^{185}$ the structure was solved with the ShelXS structure solution program ${ }^{182}$ using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. ${ }^{182}$

Table VII. Crystal data and structure refinement.

Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$
Formula weight	422.42
Temperature/K	120
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a / \AA	$9.8676(4)$
b/ \AA	22.1740 (9)
c/ \AA	9.4684(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	105.0612(14)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2000.56(14)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.403
μ / mm^{-1}	0.102
F(000)	888.0
Crystal size $/ \mathrm{mm}^{3}$	$0.188 \times 0.188 \times 0.069$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.652 to 49.994
Index ranges	$-11 \leq \mathrm{h} \leq 11,-26 \leq \mathrm{k} \leq 26,-11 \leq 1 \leq 11$
Reflections collected	65796
Independent reflections	$3523\left[\mathrm{R}_{\text {int }}=0.2185, \mathrm{R}_{\text {sigma }}=0.0726\right]$
Data/restraints/parameters	3523/0/275
Goodness-of-fit on F^{2}	0.962
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0490, \mathrm{wR}_{2}=0.0811$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0941, \mathrm{wR}_{2}=0.0873$
Largest diff. peak/hole / e \AA^{-3}	0.23/-0.21

Table VIII. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.
U_{eq} is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	z	U(eq)
O1	-913.7(12)	5626.9(5)	7148.9(11)	29.2(3)
O2	410.1(13)	4802.0(6)	7802.3(13)	41.2(4)
O3	4890.1(13)	5815.2(6)	3834.1(14)	46.7(4)
O4	11656.1(12)	7194.0(5)	-1447.8(13)	33.1(3)
O5	11982.0(11)	6304.8(5)	-270.4(11)	26.8(3)
N1	3860.7(15)	6175.3(7)	3875.4(15)	30.4(4)
N2	6468.3(14)	7106.0(6)	1490.5(14)	24.1(4)
C1	-1840.4(19)	5415.6(8)	8010.3(19)	34.6(5)
C2	-3048(2)	5846.0(9)	7730(2)	44.2(5)
C3	13245.2(17)	6208.7(8)	-747.9(17)	26.9(4)
C4	13806.4(18)	5607.8(8)	-154.5(18)	34.8(5)
C5	174.4(19)	5270.0(8)	7136.0(18)	27.7(5)
C6	1062.5(18)	5517.7(8)	6229.5(17)	23.7(4)
C7	827.2(18)	6083.2(8)	5566.1(17)	27.3(4)
C8	1721.7(18)	6303.9(8)	4789.8(17)	28.3(5)
C9	2861.9(17)	5961.1(8)	4666.5(16)	24.8(4)
C10	3103.2(19)	5399.8(8)	5312.5(18)	29.8(5)
C11	2201.9(18)	5184.4(8)	6086.8(17)	28.9(5)
C12	3740.4(19)	6703.1(8)	3264.9(18)	32.3(5)
C13	5889.0(18)	6687.1(8)	2234.6(16)	27.5(4)
C14	4717.1(18)	6943.6(8)	2531.1(17)	26.2(4)
C15	4592.3(19)	7537.9(8)	1965.9(18)	34.0(5)
C16	5669.9(19)	7626.0(8)	1340.9(19)	31.6(5)
C17	7678.8(17)	7028.2(8)	966.0(17)	23.1(4)
C18	7986.6(18)	7441.2(8)	4.0(18)	28.3(4)
C19	9162.9(18)	7366.6(8)	-505.7(18)	28.2(5)
C20	10056.9(17)	6880.3(7)	-79.0(16)	22.1(4)
C21	9745.5(19)	6467.9(8)	896.1(17)	25.9(4)
C22	8571.3(18)	6540.7(8)	1417.0(17)	25.8(4)
C23	11293.5(18)	6820.3(8)	-677.6(17)	25.0(4)

Table IX. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right.$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
O1	$31.9(7)$	$25.6(7)$	$34.7(7)$	$1.8(6)$	$16.9(6)$	$-2.4(6)$
O2	$51.7(9)$	$25.4(8)$	$52.5(8)$	$13.0(7)$	$24.6(7)$	$5.9(7)$
O3	$40.1(9)$	$46.5(9)$	$61.3(9)$	$16.5(7)$	$27.0(7)$	$18.6(7)$
O4	$35.9(8)$	$28.8(8)$	$38.7(7)$	$8.6(6)$	$17.1(6)$	$0.3(6)$
O5	$24.2(7)$	$25.3(8)$	$32.8(7)$	$3.2(6)$	$11.1(6)$	$2.8(6)$
N1	$27.6(9)$	$32.4(10)$	$31.7(8)$	$1.5(8)$	$8.5(7)$	$5.0(8)$
N2	$24.5(9)$	$25.1(9)$	$23.2(8)$	$-0.2(7)$	$7.1(7)$	$-0.9(7)$

C1	$42.5(13)$	$32.3(12)$	$35.9(10)$	$-2.8(9)$	$22.4(10)$	$-9.1(10)$
C2	$41.1(13)$	$47.5(14)$	$52.0(12)$	$-2.2(11)$	$26.6(10)$	$-3.6(12)$
C3	$25.1(10)$	$29.9(11)$	$27.2(9)$	$-1.6(9)$	$9.6(8)$	$-0.6(9)$
C4	$32.5(12)$	$35.5(12)$	$40.6(11)$	$5.4(10)$	$17.3(9)$	$5.7(10)$
C5	$31.2(12)$	$21.7(12)$	$29.5(10)$	$-3.5(9)$	$6.6(9)$	$-1.9(10)$
C6	$25.2(11)$	$20.5(11)$	$25.2(9)$	$-3.2(8)$	$6.3(8)$	$-2.6(9)$
C7	$24.6(10)$	$27.5(11)$	$29.8(10)$	$1.1(9)$	$6.9(8)$	$1.9(9)$
C8	$30.5(11)$	$25.2(11)$	$29.4(10)$	$6.2(9)$	$8.1(9)$	$-0.5(9)$
C9	$23.7(10)$	$30.2(11)$	$21.1(9)$	$-2.9(8)$	$6.9(8)$	$-4.8(9)$
C10	$32.9(12)$	$25.6(11)$	$31.9(10)$	$-3.3(9)$	$10.2(9)$	$0.7(9)$
C11	$35.2(12)$	$20.8(11)$	$31.4(10)$	$0.2(9)$	$9.9(9)$	$-1.2(9)$
C12	$33.8(12)$	$28.8(12)$	$34(1)$	$-4.6(10)$	$8.6(9)$	$2.7(10)$
C13	$32.4(11)$	$25.5(11)$	$23.9(9)$	$-0.1(9)$	$6.2(9)$	$-5.1(10)$
C14	$23.6(11)$	$33.6(12)$	$23.9(9)$	$-5.0(8)$	$10.6(8)$	$-6.0(9)$
C15	$36.1(12)$	$32.4(12)$	$35.8(11)$	$-1.4(9)$	$13.8(10)$	$5.5(10)$
C16	$35.5(12)$	$27.0(12)$	$34.3(11)$	$2.2(9)$	$12.6(9)$	$4.9(10)$
C17	$22.4(10)$	$24.3(11)$	$23.0(9)$	$-4.1(8)$	$6.7(8)$	$-3.5(9)$
C18	$25.1(11)$	$28.6(11)$	$31.4(10)$	$7.4(9)$	$7.8(9)$	$1.8(9)$
C19	$29.6(11)$	$28.6(12)$	$26.4(10)$	$9.7(8)$	$7.4(9)$	$0.9(9)$
C20	$23.6(10)$	$22.4(11)$	$19.9(9)$	$-0.8(8)$	$4.8(8)$	$-2.3(9)$
C21	$31.9(11)$	$18.9(10)$	$26.6(9)$	$1.4(8)$	$6.9(9)$	$3.3(9)$
C22	$34.9(11)$	$22.4(11)$	$23.1(9)$	$2.0(8)$	$12.8(9)$	$-3.0(9)$
C23	$27.1(11)$	$21.8(11)$	$24.1(9)$	$-1.6(9)$	$3.2(8)$	$-0.2(9)$

Table X. Bond Lengths.

Atom Atom	Length/ \AA	Atom Atom		Length/̊	
O 1	C 1	$1.4520(19)$	C 6	C 11	$1.381(2)$
O 1	C 5	$1.336(2)$	C 7	C 8	$1.377(2)$
O 2	C 5	$1.2053(19)$	C 8	C 9	$1.388(2)$
O 3	N 1	$1.3006(17)$	C 9	C 10	$1.380(2)$
O 4	C 23	$1.2175(19)$	C 10	C 11	$1.377(2)$
O 5	C 3	$1.4480(18)$	C 12	C 14	$1.430(2)$
O 5	C 23	$1.3344(19)$	C 13	C 14	$1.381(2)$
N 1	C 9	$1.463(2)$	C 14	C 15	$1.416(2)$
N 1	C 12	$1.297(2)$	C 15	C 16	$1.359(2)$
N 2	C 13	$1.377(2)$	C 17	C 18	$1.380(2)$
N 2	C 16	$1.383(2)$	C 17	C 22	$1.390(2)$
N 2	C 17	$1.418(2)$	C 18	C 19	$1.378(2)$
C 1	C 2	$1.495(2)$	C 19	C 20	$1.385(2)$
C 3	C 4	$1.495(2)$	C 20	C 21	$1.389(2)$
C 5	C 6	$1.482(2)$	C 20	C 23	$1.479(2)$
C 6	C 7	$1.395(2)$	C 21	C 22	$1.382(2)$

Table XI. Bond Angles.

Atom Atom Atom			Angle $/{ }^{\circ}$	Atom	Atom	Atom	Angle $/{ }^{\circ}$
C5	O1	C1	116.03(13)	C10	C11	C6	121.42(17)
C23	O5	C3	116.79(13)	N1	C12	C14	123.92(17)
O3	N1	C9	116.82(14)	N2	C13	C14	107.88(16)
C12	N1	O3	121.49(15)	C13	C14	C12	130.60(17)
C12	N1	C9	121.68(16)	C13	C14	C15	107.56(16)
C13	N2	C16	108.29(14)	C15	C14	C12	121.84(17)
C13	N2	C17	126.63(15)	C16	C15	C14	107.30(17)
C16	N2	C17	125.08(15)	C15	C16	N2	108.96(16)
O1	C1	C2	106.45(14)	C18	C17	N2	120.02(16)
O5	C3	C4	106.18(13)	C18	C17	C 22	119.24(16)
O1	C5	C6	112.54(16)	C22	C17	N2	120.74(15)
O2	C5	O1	123.45(17)	C19	C18	C17	120.10(16)
O2	C5	C6	124.01(17)	C18	C19	C20	121.45(16)
C7	C6	C5	122.65(16)	C19	C20	C21	118.17(16)
C11	C6	C5	118.50(16)	C19	C20	C 23	118.98(15)
C11	C6	C7	118.80(16)	C21	C20	C 23	122.85(16)
C8	C7	C6	120.34(16)	C22	C21	C20	120.74(16)
C7	C8	C9	119.77(16)	C21	C22	C17	120.29(16)
C8	C9	N1	122.27(16)	O4	C 23	O5	123.33(16)
C10	C9	N1	117.26(16)	O4	C23	C20	124.64(16)
C10	C9	C8	120.46(16)	O5	C23	C20	112.03(15)
C11	C10	C9	119.21(17)				

Table XII. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
H1A	-1343	5411	9063	42
H1B	-2175	5002	7711	42
H2A	-3514	5853	6681	$53(3)$
H2B	-2703	6251	8051	$53(3)$
H2C	-3717	5716	8273	$53(3)$
H3A	13940	6530	-365	32
H3B	13028	6210	-1829	32
H4A	13112	5295	-553	$41(3)$
H4B	14000	5612	914	$41(3)$
H4C	14675	5523	-436	$41(3)$
H7	46	6317	5650	33
H8	1559	6689	4340	34
H10	3882	5165	5224	36
H11	2367	4798	6533	35
H12	2956	6944	3308	39
H13	6234	6292	2498	33
H15	3886	7822	2015	41

H16	5846	7987	876	38
H18	7387	7777	-307	34
H19	9365	7655	-1164	34
H21	10347	6132	1208	31
H22	8373	6256	2086	31

E.1. General procedure for the ${ }^{1} H$ NMR monitoring:

Diene 241c (1 eq.) and arylnitroso $\mathbf{1 6 0}$ (2.5 eq.) were dissolved in AcOEt. The reaction mixture was stirred at r.t. and monitored by ${ }^{1} \mathrm{H}$ NMR analysis. A sample was taken by syringe after 24 h , and the reaction was stopped after 48 h .

E. 2 General procedure for the one-pot procedure nitrone formation/1,3-dipolar

 cycloaddition:

To arylnitroso compound $\mathbf{1 6 0}$ (3.2 eq) was added a solution of diene 241c in dry toluene. The reaction mixture was stirred at r.t. for 1.5 h . N-phenyl maleimide 2a (1.1 eq) was added and
the reaction mixture flushed with argon for 10 min . The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 16 h under an inert atmosphere. The crude mixture was cooled to r.t., then toluene was evaporated and the crude product purified by silica gel chromatography.

Oxazolines 305a and 305a'.

To nitrosobenzene 160a ($153.6 \mathrm{mg}, 1.43 \mathrm{mmol}$) was added a solution of diene $\mathbf{2 4 1 c}(87.4 \mathrm{mg}$, $0.45 \mathrm{mmol})$ in dry toluene $(1.5 \mathrm{~mL})$. The reaction mixture was stirred at r.t. for $1.5 \mathrm{~h} . \mathrm{N}$ phenyl maleimide 2a ($85.8 \mathrm{mg}, 0.49 \mathrm{mmol}$) was added and the reaction mixture was flushed with argon for 10 min . The reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 16 h under an inert atmosphere. The crude mixture was cooled to r.t., then toluene was evaporated and the crude product purified by silica gel chromatography (eluent, hexane $/ \mathrm{AcOEt}, 1 / 1, \mathrm{R}_{\mathrm{f} 305 \mathrm{a}}=0.75$, $\mathrm{R}_{\mathrm{f} 305 \mathrm{a}^{\prime}}=0.70$) to afford isomer 305a as a yellow-orange solid ($29.0 \mathrm{mg}, 15 \%$), and isomer 305a' as a yellow-orange solid ($19.1 \mathrm{mg}, 10 \%$).

305a: M.p. $=87^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.45-7.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.38-7.32(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ph}}\right), 7.29-7.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.19-7.14\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.06\left(\mathrm{dd}, J=2.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right)$, $7.00-6.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 6.73-6.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right.$ and $\left.\mathrm{H}_{\mathrm{Ph}}\right), 6.39(\mathrm{dd}, J=3.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, H_{11}), $5.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 5.19\left(\mathrm{dd}, J=7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 4.04\left(\mathrm{dd}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 174.5 (C_{6}), $173.1\left(\mathrm{C}_{5}\right), 148.7\left(\mathrm{C}_{21}\right), 140.4$ $\left(\mathrm{C}_{14}\right), 131.5\left(\mathrm{C}_{4}\right), 129.8\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.4\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.1\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.0\left(\mathrm{C}_{\mathrm{Ph}}\right), 126.3\left(\mathrm{C}_{\mathrm{Ph}}\right), 126.1\left(\mathrm{C}_{\mathrm{Ph}}\right)$,
$123.8\left(\mathrm{C}_{10}\right), 122.9\left(\mathrm{C}_{\mathrm{Ph}}\right), 120.6\left(\mathrm{C}_{\mathrm{Ph}}\right), 120.3\left(\mathrm{C}_{12}\right), 117.7\left(\mathrm{C}_{13}\right), 115.0\left(\mathrm{C}_{\mathrm{Ph}}\right), 109.3\left(\mathrm{C}_{11}\right), 77.2$ $\left(\mathrm{C}_{7}\right), 65.0\left(\mathrm{C}_{9}\right), 56.9\left(\mathrm{C}_{8}\right)$.
IR (neat, v) 1714, 1597, 1505, 1492, 1381, 1200, 1056, 860, 755, 689, 621, $609 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 436.2 (100%) $[\mathrm{M}+\mathrm{H}]^{+}, 152.0$ (19\%), 83.0 (66\%).
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$: 436.1661 found: 436.1664.

305a': M.p. $=98^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.42-7.27$ (m, 8H, H_{Ph}), $7.25-7.20(\mathrm{~m}, 3 \mathrm{H}$, H_{Ph}), $7.16\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 7.12-7.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{9}\right.$ and $\left.\mathrm{H}_{\mathrm{Ph}}\right), 6.39(\mathrm{dd}, J=2.9,1.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{11}\right), 5.34\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 5.14\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 3.99(\mathrm{dd}, J=8.5,8.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{8}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 173.4\left(\mathrm{C}_{6}\right), 171.9\left(\mathrm{C}_{5}\right), 162.5\left(\mathrm{C}_{\mathrm{Ph}}\right), 159.1$ $\left(\mathrm{C}_{\mathrm{Ph}}\right), 148.4\left(\mathrm{C}_{21}\right), 140.3\left(\mathrm{C}_{14}\right), 131.4\left(\mathrm{C}_{4}\right), 129.9\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.7\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.3\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.2\left(\mathrm{C}_{\mathrm{Ph}}\right)$, $129.0\left(\mathrm{C}_{\mathrm{Ph}}\right), 128.9\left(\mathrm{C}_{\mathrm{Ph}}\right), 126.2\left(\mathrm{C}_{\mathrm{Ph}}\right), 126.1\left(\mathrm{C}_{\mathrm{Ph}}\right), 125.4(\mathrm{C}), 120.5(\mathrm{C}), 120.2(\mathrm{C}), 120.1(\mathrm{C})$, 119.5 (C), 119.0 (C), 118.5 (C), 117.9 (C), 108.8 (C_{11}), 75.2 (C_{7}), 64.1 ($\left.\mathrm{C}_{9}\right), 55.9\left(\mathrm{C}_{8}\right), 18.4$ $\left(\mathrm{C}_{27}\right), 17.6\left(\mathrm{C}_{20}\right)$.
IR (neat, v) 1715, 1598, 1501, 1489, 1384, 1244, 1190, 1177, 1048, 861, 805, 753, 688, 590 cm^{-1}.

LRMS (ESI+) 436.2 (100\%) [M+H] ${ }^{+}$, 263.2 (21\%), 83.0 (53\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}\right): 436.1661$ found: 436.1653.

Single crystal X-ray structure data for 305a':

A suitable crystal was selected and measured on a D8V_Mo diffractometer. The crystal was kept at 120 K during data collection. Using Olex $2,{ }^{185}$ the structure was solved with the ShelXS structure solution program ${ }^{182}$ using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. ${ }^{182}$

Table XIII. Crystal data and structure refinement.

Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$
Formula weight	435.47
Temperature/K	170
Crystal system	orthorhombic
Space group	Pna ${ }_{1}$
a/ \AA	11.2882(6)
b/Å	35.3470 (19)
c/Å	5.3359(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
γ^{\prime}	90
Volume $/ \AA^{3}$	2129.0(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.359
μ / mm^{-1}	0.090
$\mathrm{F}(000)$	912.0
Crystal size $/ \mathrm{mm}^{3}$	$0.492 \times 0.071 \times 0.065$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ $/{ }^{\circ}$	4.282 to 54.996
Index ranges	$-14 \leq \mathrm{h} \leq 14,-45 \leq \mathrm{k} \leq 45,-6 \leq 1 \leq 6$
Reflections collected	32109
Independent reflections	$4869\left[\mathrm{R}_{\text {int }}=0.0570, \mathrm{R}_{\text {sigma }}=0.0429\right]$
Data/restraints/parameters	4869/67/314
Goodness-of-fit on F^{2}	1.077
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0433, \mathrm{wR}_{2}=0.0890$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0597, \mathrm{wR}_{2}=0.0952$
Largest diff. peak/hole / e \AA^{-3}	0.17/-0.17
Flack parameter	-0.7(5)

Table XIV. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. U_{eq} is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
$\mathrm{O}(1)$	$6089.5(14)$	$303.5(4)$	$3112(4)$	$27.3(4)$
$\mathrm{O}(2)$	$3672.1(16)$	$506.2(5)$	$1358(4)$	$39.1(5)$
$\mathrm{O}(3)$	$4614.2(15)$	$1296.8(5)$	$7803(4)$	$31.2(4)$
$\mathrm{N}(1)$	$6716.0(17)$	$659.9(5)$	$2601(4)$	$20.8(5)$
$\mathrm{N}(2)$	$3874.2(17)$	$945.4(6)$	$4536(4)$	$23.4(5)$

N(3)	7562.2(19)	1856.5(6)	5573(4)	27.3(5)
C(1)	6814(2)	848.8(6)	5083(5)	19.7(5)
C(2)	5640(2)	730.4(6)	6394(5)	22.2(5)
C(3)	5156(2)	424.3(7)	4669(5)	24.9(5)
C(4)	4153(2)	617.0(7)	3234(5)	26.3(5)
C(5)	4687(2)	1029.8(7)	6427(5)	22.8(5)
C(6)	7625(2)	1487.3(6)	6375(5)	21.8(5)
C(7)	6985(2)	1266.8(6)	4788(5)	21.0(5)
C(8)	6507(2)	1505.7(7)	2914(5)	29.0(6)
C(9)	6871(3)	1863.8(8)	3445(6)	35.5(7)
C(10)	7795(2)	557.2(7)	1382(5)	21.7(5)
C(11)	8804(2)	777.1(8)	1644(5)	29.3(6)
C(12)	9815(2)	690.6(8)	261(6)	36.4(7)
C(13)	9821(3)	387.8(8)	-1383(6)	38.7(7)
C(14)	8823(3)	167.9(8)	-1602(6)	36.2(7)
C(15)	7809(2)	247.4(7)	-240(5)	28.2(6)
C(16)	2819(2)	1166.3(7)	4140(5)	25.3(6)
C(17)	2746(3)	1418.8(9)	2195(6)	38.1(7)
C(18)	1728(3)	1634.0(9)	1929(6)	44.6(8)
C(19)	807(3)	1594.8(9)	3567(6)	44.2(8)
C(20)	890(3)	1339.1(11)	5482(7)	54.6(9)
C(21)	1896(2)	1123.3(9)	5790(6)	43.7(8)
C(22)	8171(2)	2169.9(7)	6617(5)	28.8(6)
C (23A)	7770 (5)	2538.2(12)	6129(10)	40.5(12)
C(24A)	8412(5)	2843.2(14)	7031(12)	46.6(14)
C(25A)	9420(20)	2785(6)	8450(30)	50.4(12)
C(26A)	9709(9)	2422(3)	9120(20)	68(4)
C(27A)	9101(6)	2115(2)	8188(16)	50(2)
C(23B)	8406(9)	2496(2)	5191(19)	40.5(12)
C(24B)	9030(10)	2793(3)	6250(20)	46.6(14)
C(25B)	9440(40)	2775(11)	8680(60)	50.4(12)
C(26B)	9321(17)	2445(6)	10030(50)	68(4)
C(27B)	8680(12)	2148(5)	8970(30)	50(2)

Table XV. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
$\mathrm{O}(1)$	$30.0(9)$	$14.1(8)$	$37.8(11)$	$-2.5(8)$	$7.3(9)$	$-3.3(7)$
$\mathrm{O}(2)$	$38.2(11)$	$37.7(11)$	$41.3(12)$	$-14.4(9)$	$-8.5(10)$	$-4.4(9)$
$\mathrm{O}(3)$	$28.8(10)$	$34.3(10)$	$30.6(11)$	$-10.7(9)$	$-0.8(8)$	$3.5(8)$
$\mathrm{N}(1)$	$23.2(11)$	$15.3(9)$	$24.0(11)$	$-0.1(8)$	$1.5(9)$	$-2.2(8)$
$\mathrm{N}(2)$	$21.2(10)$	$24.6(10)$	$24.5(11)$	$-1.7(9)$	$0.4(9)$	$-0.3(8)$
$\mathrm{N}(3)$	$33.6(11)$	$19.5(10)$	$28.9(12)$	$-0.4(9)$	$-7.4(10)$	$-0.4(9)$
$\mathrm{C}(1)$	$19.0(11)$	$19.9(11)$	$20.2(13)$	$1.3(9)$	$-1.7(10)$	$1.4(9)$
$\mathrm{C}(2)$	$24.3(12)$	$21.1(11)$	$21.3(13)$	$3.3(10)$	$1.4(11)$	$1.4(10)$
$\mathrm{C}(3)$	$24.3(12)$	$19.6(12)$	$30.8(13)$	$0.7(11)$	$6.4(11)$	$-3.4(10)$
$\mathrm{C}(4)$	$24.0(12)$	$25.4(12)$	$29.5(14)$	$-2.0(12)$	$3.7(12)$	$-7(1)$

$\mathrm{C}(5)$	$19.8(12)$	$26.1(12)$	$22.6(13)$	$1.8(11)$	$2.1(11)$	$-1.5(9)$
$\mathrm{C}(6)$	$21.4(11)$	$21.3(12)$	$22.9(13)$	$1.1(10)$	$-3.1(10)$	$2.1(9)$
$\mathrm{C}(7)$	$19.7(11)$	$21.4(12)$	$22.0(13)$	$0.8(10)$	$0.9(10)$	$2.1(9)$
$\mathrm{C}(8)$	$38.0(14)$	$22.6(12)$	$26.5(14)$	$0.3(11)$	$-8.1(12)$	$-0.1(11)$
$\mathrm{C}(9)$	$50.7(17)$	$22.1(13)$	$33.8(16)$	$5.3(12)$	$-16.2(14)$	$0.8(12)$
$\mathrm{C}(10)$	$23.4(12)$	$22.2(12)$	$19.6(12)$	$5.7(10)$	$0.5(11)$	$6.5(9)$
$\mathrm{C}(11)$	$27.5(13)$	$31.9(14)$	$28.6(14)$	$0.8(12)$	$4.4(12)$	$1.6(11)$
$\mathrm{C}(12)$	$27.7(14)$	$44.5(16)$	$37.1(17)$	$6.8(14)$	$8.6(13)$	$3.5(12)$
$\mathrm{C}(13)$	$38.0(16)$	$45.2(17)$	$33.1(16)$	$5.2(13)$	$13.3(13)$	$19.1(14)$
$\mathrm{C}(14)$	$46.4(17)$	$29.9(14)$	$32.2(16)$	$-0.4(13)$	$7.9(13)$	$15.7(13)$
$\mathrm{C}(15)$	$33.5(14)$	$21.7(12)$	$29.5(14)$	$1.2(11)$	$0.7(12)$	$7.1(11)$
$\mathrm{C}(16)$	$20.2(12)$	$29.3(13)$	$26.4(14)$	$-4.2(10)$	$-2.5(10)$	$-0.2(10)$
$\mathrm{C}(17)$	$33.8(15)$	$46.4(17)$	$34.0(17)$	$5.4(13)$	$7.4(12)$	$9.0(13)$
$\mathrm{C}(18)$	$42.5(17)$	$50.2(18)$	$41.0(19)$	$8.8(15)$	$0.3(14)$	$15.1(15)$
$\mathrm{C}(19)$	$26.2(14)$	$58(2)$	$48(2)$	$-2.5(17)$	$-8.7(14)$	$15.3(14)$
$\mathrm{C}(20)$	$22.6(15)$	$92(3)$	$49(2)$	$14(2)$	$8.6(14)$	$8.3(16)$
$\mathrm{C}(21)$	$24.1(14)$	$62(2)$	$45.5(19)$	$15.9(16)$	$2.1(13)$	$2.2(14)$
$\mathrm{C}(22)$	$34.7(14)$	$19.5(12)$	$32.2(15)$	$-4.2(11)$	$-1.3(13)$	$-1.5(11)$
$\mathrm{C}(23 \mathrm{~A})$	$51(3)$	$26.9(18)$	$44(3)$	$0(2)$	$-13(2)$	$-2(2)$
$\mathrm{C}(24 \mathrm{~A})$	$61(4)$	$18.8(19)$	$60(4)$	$-2(2)$	$-11(3)$	$0(3)$
$\mathrm{C}(25 \mathrm{~A})$	$56(2)$	$25.1(18)$	$70(4)$	$-10(2)$	$-15(3)$	$-10.0(16)$
$\mathrm{C}(26 \mathrm{~A})$	$67(7)$	$33(2)$	$105(10)$	$-11(4)$	$-54(6)$	$0(4)$
$\mathrm{C}(27 \mathrm{~A})$	$49(5)$	$20(2)$	$80(6)$	$-3(3)$	$-32(4)$	$1(3)$
$\mathrm{C}(23 \mathrm{~B})$	$51(3)$	$26.9(18)$	$44(3)$	$0(2)$	$-13(2)$	$-2(2)$
$\mathrm{C}(24 \mathrm{~B})$	$61(4)$	$18.8(19)$	$60(4)$	$-2(2)$	$-11(3)$	$0(3)$
$\mathrm{C}(25 \mathrm{~B})$	$56(2)$	$25.1(18)$	$70(4)$	$-10(2)$	$-15(3)$	$-10.0(16)$
$\mathrm{C}(26 \mathrm{~B})$	$67(7)$	$33(2)$	$105(10)$	$-11(4)$	$-54(6)$	$0(4)$
$\mathrm{C}(27 \mathrm{~B})$	$49(5)$	$20(2)$	$80(6)$	$-3(3)$	$-32(4)$	$1(3)$

Table XVI. Bond Lengths.

Atom Atom	Length/ \AA	Atom	Atom	Length $/ \AA$
$\mathrm{O}(1)$	$\mathrm{N}(1)$	$1.470(2)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$
$\mathrm{O}(1)$	$\mathrm{C}(3)$	$1.408(3)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$
$\mathrm{O}(2)$	$\mathrm{C}(4)$	$1.205(3)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$
$\mathrm{O}(3)$	$\mathrm{C}(5)$	$1.199(3)$	$\mathrm{C}(14)$	$\mathrm{C}(15)$
$\mathrm{N}(1)$	$\mathrm{C}(1)$	$1.487(3)$	$\mathrm{C}(16)$	$\mathrm{C}(17)$
$\mathrm{N}(1)$	$\mathrm{C}(10)$	$1.428(3)$	$\mathrm{C}(16)$	$\mathrm{C}(21)$
$\mathrm{N}(2)$	$\mathrm{C}(4)$	$1.389(3)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$
$\mathrm{N}(2)$	$\mathrm{C}(5)$	$1.396(3)$	$\mathrm{C}(18)$	$\mathrm{C}(19)$
$\mathrm{N}(2)$	$\mathrm{C}(16)$	$1.440(3)$	$\mathrm{C}(19)$	$\mathrm{C}(20)$
$\mathrm{N}(3)$	$\mathrm{C}(6)$	$1.375(3)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$
$\mathrm{N}(3)$	$\mathrm{C}(9)$	$1.378(3)$	$\mathrm{C}(22)$	$\mathrm{C}(23 \mathrm{~A})$
$\mathrm{N}(3) \mathrm{C}(22)$	$1.418(3)$	$\mathrm{C}(22)$	$\mathrm{C}(27 \mathrm{~A})$	$1.3768(5)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.556(3)$	$\mathrm{C}(22)$	$\mathrm{C}(23 \mathrm{~B})$
$\mathrm{C}(1)$	$\mathrm{C}(7)$	$1.498(3)$	$\mathrm{C}(22)$	$\mathrm{C}(27 \mathrm{~B})$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.522(4)$	$\mathrm{C}(23 \mathrm{~A}) \mathrm{C}(24 \mathrm{~A})$	$1.383(14)$

| $\mathrm{C}(2) \mathrm{C}(5)$ | $1.509(3)$ | $\mathrm{C}(24 \mathrm{~A}) \mathrm{C}(25 \mathrm{~A})$ | $1.383(17)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}(3) \mathrm{C}(4)$ | $1.527(4)$ | $\mathrm{C}(25 \mathrm{~A}) \mathrm{C}(26 \mathrm{~A})$ | $1.372(14)$ |
| $\mathrm{C}(6) \mathrm{C}(7)$ | $1.359(3)$ | $\mathrm{C}(26 \mathrm{~A}) \mathrm{C}(27 \mathrm{~A})$ | $1.377(9)$ |
| $\mathrm{C}(7) \mathrm{C}(8)$ | $1.416(3)$ | $\mathrm{C}(23 \mathrm{~B}) \mathrm{C}(24 \mathrm{~B})$ | $1.386(11)$ |
| $\mathrm{C}(8) \mathrm{C}(9)$ | $1.361(4)$ | $\mathrm{C}(24 \mathrm{~B}) \mathrm{C}(25 \mathrm{~B})$ | $1.380(19)$ |
| $\mathrm{C}(10) \mathrm{C}(11)$ | $1.386(3)$ | $\mathrm{C}(25 \mathrm{~B}) \mathrm{C}(26 \mathrm{~B})$ | $1.375(19)$ |
| $\mathrm{C}(10) \mathrm{C}(15)$ | $1.396(4)$ | $\mathrm{C}(26 \mathrm{~B}) \mathrm{C}(27 \mathrm{~B})$ | $1.396(16)$ |

Table XVII. Bond Angles.

Atom Atom Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
$\mathrm{C}(3) \mathrm{O}(1) \mathrm{N}(1)$	102.09(16)	C(11)	$\mathrm{C}(10)$	C(15)	119.6(2)
$\mathrm{O}(1) \mathrm{N}(1) \mathrm{C}(1)$	104.80(16)	C(15)	$C(10)$	N(1)	119.4(2)
$\mathrm{C}(10) \mathrm{N}(1) \mathrm{O}(1)$	106.08(16)	C(10)	$\mathrm{C}(11)$	$\mathrm{C}(12)$	119.8(3)
$\mathrm{C}(10) \mathrm{N}(1) \mathrm{C}(1)$	117.15(18)	C(13)	$C(12)$	C(11)	120.7(3)
$\mathrm{C}(4) \mathrm{N}(2) \mathrm{C}(5)$	113.0(2)	C(14)	C(13)	C(12)	119.2(3)
$\mathrm{C}(4) \mathrm{N}(2) \mathrm{C}(16)$	124.6(2)	C(13)	$C(14)$	$C(15)$	121.2(3)
$\mathrm{C}(5) \mathrm{N}(2) \mathrm{C}(16)$	122.3(2)	C(14)	$C(15)$	C(10)	119.6(2)
$\mathrm{C}(6) \mathrm{N}(3) \mathrm{C}(9)$	107.7(2)	C(17)	C(16)	$\mathrm{N}(2)$	120.9(2)
C (6) $\mathrm{N}(3) \mathrm{C}(22)$	126.4(2)	C(17)	$\mathrm{C}(16)$	$\mathrm{C}(21)$	120.8(3)
$\mathrm{C}(9) \mathrm{N}(3) \mathrm{C}(22)$	125.7(2)	C(21)	$C(16)$	$\mathrm{N}(2)$	118.3(2)
$\mathrm{N}(1) \mathrm{C}(1) \mathrm{C}(2)$	102.50(18)	C(16)	C(17)	C(18)	119.0(3)
$\mathrm{N}(1) \mathrm{C}(1) \mathrm{C}(7)$	111.0(2)	C(19)	$C(18)$	C(17)	120.7(3)
$\mathrm{C}(7) \mathrm{C}(1) \mathrm{C}(2)$	114.97(19)	C(18)	$C(19)$	$\mathrm{C}(20)$	119.6(3)
$\mathrm{C}(3) \mathrm{C}(2) \mathrm{C}(1)$	103.0(2)	C(19)	$\mathrm{C}(20)$	$\mathrm{C}(21)$	120.8(3)
$\mathrm{C}(5) \mathrm{C}(2) \mathrm{C}(1)$	115.05(19)	C(16)	$\mathrm{C}(21)$	$\mathrm{C}(20)$	119.2(3)
$\mathrm{C}(5) \mathrm{C}(2) \quad \mathrm{C}(3)$	104.5(2)	C(23A)	$\mathrm{C}(22)$	N(3)	119.7(3)
$\mathrm{O}(1) \mathrm{C}(3) \mathrm{C}(2)$	107.72(19)	C(27A)	$\mathrm{C}(22)$	N(3)	120.3(4)
$\mathrm{O}(1) \mathrm{C}(3) \mathrm{C}(4)$	113.2(2)	C(27A)	$\mathrm{C}(22)$	$\mathrm{C}(23 \mathrm{~A})$	119.8(4)
$\mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(4)$	104.59(19)	C(23B)	$\mathrm{C}(22)$	N(3)	121.3(4)
$\mathrm{O}(2) \mathrm{C}(4) \mathrm{N}(2)$	125.8(2)	C(27B)	$\mathrm{C}(22)$	$\mathrm{N}(3)$	120.9(7)
$\mathrm{O}(2) \mathrm{C}(4) \mathrm{C}(3)$	127.3(2)	C(27B)	$\mathrm{C}(22)$	$\mathrm{C}(23 \mathrm{~B})$	117.3(8)
$\mathrm{N}(2) \mathrm{C}(4) \mathrm{C}(3)$	106.9(2)	C(24A)	C(23A)	$\mathrm{C}(22)$	119.3(4)
$\mathrm{O}(3) \mathrm{C}(5) \mathrm{N}(2)$	124.4(2)	C(25A)	C(24A)	C(23A)	120.3(10)
$\mathrm{O}(3) \mathrm{C}(5) \mathrm{C}(2)$	127.5(2)	C(26A)	C(25A)	C(24A)	118.6(16)
$\mathrm{N}(2) \mathrm{C}(5) \mathrm{C}(2)$	108.1(2)	C(25A)	C(26A)	C(27A)	121.6(14)
$\mathrm{C}(7) \mathrm{C}(6) \mathrm{N}(3)$	108.8(2)	C(22)	$\mathrm{C}(27 \mathrm{~A})$	C(26A)	119.7(8)
$\mathrm{C}(6) \mathrm{C}(7) \mathrm{C}(1)$	124.7(2)	C(24B)	C(23B)	$\mathrm{C}(22)$	119.9(9)
$\mathrm{C}(6) \mathrm{C}(7) \mathrm{C}(8)$	107.5(2)	C(25B)	C(24B)	$\mathrm{C}(23 \mathrm{~B})$	121.2(19)
$\mathrm{C}(8) \mathrm{C}(7) \mathrm{C}(1)$	127.8(2)	C(26B)	C(25B)	$C(24 B)$	120(3)
C(9) C(8) C(7)	107.0(2)	C(25B)	C(26B)	C(27B)	119(3)
$\mathrm{C}(8) \mathrm{C}(9) \mathrm{N}(3)$	109.0(2)	$\mathrm{C}(22)$	C(27B)	C(26B)	122.7(18)
$\mathrm{C}(11) \mathrm{C}(10) \mathrm{N}(1)$	120.8(2)				

Table XVIII. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
H(1)	7501	740	6022	24
H(2)	5792	629	8115	27
H(3)	4843	207	5673	30
H(6)	8047	1401	7805	26
H(8)	6023	1430	1545	35
H(9)	6680	2083	2502	43
H(11)	8807	986	2763	35
H(12)	10507	841	447	44
H(13)	10507	333	-2348	46
H(14)	8829	-43	-2708	43
H(15)	7127	92	-408	34
H(17)	3384	1446	1048	46
H(18)	1669	1811	593	53
H(19)	114	1744	3378	53
H(20)	247	1310	6613	65
H(21)	1950	947	7128	52
H(23A)	7066	2578	5191	49
H(24A)	8157	3094	6676	56
H(25A)	9906	2991	8941	60
H(26A)	10343	2381	10261	82
H(27A)	9330	1865	8642	60
H(23B)	8138	2512	3507	49
H(24B)	9175	3014	5281	56
H(25B)	9812	2989	9419	60
H(26B)	9665	2421	11644	82
H(27B)	8589	1921	9905	60

Table XIX. Atomic Occupancy.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
$\mathrm{C}(23 \mathrm{~A})$	$0.643(5)$	$\mathrm{H}(23 \mathrm{~A})$	$0.643(5)$	$\mathrm{C}(24 \mathrm{~A})$	$0.643(5)$
$\mathrm{H}(24 \mathrm{~A})$	$0.643(5)$	$\mathrm{C}(25 \mathrm{~A})$	$0.643(5)$	$\mathrm{H}(25 \mathrm{~A})$	$0.643(5)$
$\mathrm{C}(26 \mathrm{~A})$	$0.643(5)$	$\mathrm{H}(26 \mathrm{~A})$	$0.643(5)$	$\mathrm{C}(27 \mathrm{~A})$	$0.643(5)$
$\mathrm{H}(27 \mathrm{~A})$	$0.643(5)$	$\mathrm{C}(23 \mathrm{~B})$	$0.357(5)$	$\mathrm{H}(23 \mathrm{~B})$	$0.357(5)$
$\mathrm{C}(24 \mathrm{~B})$	$0.357(5)$	$\mathrm{H}(24 \mathrm{~B})$	$0.357(5)$	$\mathrm{C}(25 \mathrm{~B})$	$0.357(5)$
$\mathrm{H}(25 \mathrm{~B})$	$0.357(5)$	$\mathrm{C}(26 \mathrm{~B})$	$0.357(5)$	$\mathrm{H}(26 \mathrm{~B})$	$0.357(5)$
$\mathrm{C}(27 \mathrm{~B})$	$0.357(5)$	$\mathrm{H}(27 \mathrm{~B})$	$0.357(5)$		

Oxazolines 305g and 305g'.

To ethyl 4-nitrosobenzoate $\mathbf{1 6 0 g}(262.4 \mathrm{mg}, 1.46 \mathrm{mmol})$ was added a solution of diene $\mathbf{2 4 1 \mathrm { c }}$ $(91.7 \mathrm{mg}, 0.472 \mathrm{mmol})$ in dry toluene $(1.6 \mathrm{~mL})$. The reaction mixture was stirred at r.t. for 1.5 h. N-phenyl maleimide $2 \mathbf{2 a}(90,0 \mathrm{mg}, 0.520 \mathrm{mmol})$ was added and the reaction mixture was flushed with argon for 10 min . The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 16 h under an inert atmosphere. The crude mixture was cooled to r.t., then toluene was evaporated and the crude product purified by silica gel chromatography (eluent, hexane/AcOEt, $1 / 1, \mathrm{R}_{\mathrm{f} 305 \mathrm{~g}}=$ $\left.0.65, \mathrm{R}_{\mathrm{f} 305 \mathrm{~g}^{\prime}}=0.60\right)$ to afford isomer $\mathbf{3 0 5 g}$ as an orange solid $(38.3 \mathrm{mg}, 14 \%)$ and isomer $\mathbf{3 0 5 g}$ ' as a pale orange solid ($70,0 \mathrm{mg}, 26 \%$).

305g: M.p. $=97^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (700 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $8.12-8.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{16}\right), 7.95-7.91(\mathrm{~m}, 2 \mathrm{H}$, H_{Ph}), $7.42-7.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.38-7.33\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.22\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 7.16-$ $7.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.10\left(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 6.84-6.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 6.39(\mathrm{dd}, J=3.0$, $\left.1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 5.72\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 5.22\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.39\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{23}\right.$ or $\left.\mathrm{H}_{26}\right), 4.32\left(\mathrm{qd}, J=7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{23}\right.$ or $\left.\mathrm{H}_{26}\right), 4.04\left(\mathrm{dd}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 1.41(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{24}$ or H_{27}), $1.35\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{24}\right.$ or H_{27}).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $174.0\left(\mathrm{C}_{6}\right), 172.7\left(\mathrm{C}_{5}\right)$, $166.2\left(\mathrm{C}_{22}\right.$ or $\left.\mathrm{C}_{25}\right)$, $165.9\left(\mathrm{C}_{22}\right.$ or $\left.\mathrm{C}_{25}\right), 151.8\left(\mathrm{C}_{21}\right)$, $143.4\left(\mathrm{C}_{14}\right)$, $131.4\left(\mathrm{C}_{\mathrm{Ph}}\right)$, $131.1\left(\mathrm{C}_{\mathrm{Ph}}\right), 131.0\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.3\left(\mathrm{C}_{\mathrm{Ph}}\right)$, $129.2\left(\mathrm{C}_{\mathrm{Ph}}\right), 128.0\left(\mathrm{C}_{\mathrm{Ph}}\right), 126.1\left(\mathrm{C}_{\mathrm{Ph}}\right), 124.7\left(\mathrm{C}_{10}\right), 123.8\left(\mathrm{C}_{\mathrm{Ph}}\right), 120.3\left(\mathrm{C}_{13}\right), 119.5\left(\mathrm{C}_{\mathrm{Ph}}\right), 117.5$
$\left(\mathrm{C}_{12}\right), 114.6\left(\mathrm{C}_{\mathrm{Ph}}\right), 110.2\left(\mathrm{C}_{11}\right), 76.9\left(\mathrm{C}_{7}\right), 64.7\left(\mathrm{C}_{9}\right), 61.3\left(\mathrm{C}_{23}\right.$ or $\left.\mathrm{C}_{26}\right), 60.9\left(\mathrm{C}_{23}\right.$ or $\left.\mathrm{C}_{26}\right), 56.7$ $\left(\mathrm{C}_{8}\right), 14.50\left(\mathrm{C}_{24}\right.$ or $\left.\mathrm{C}_{27}\right), 14.48\left(\mathrm{C}_{24}\right.$ or $\left.\mathrm{C}_{27}\right)$.

IR (neat, v) 1714, 1700, 1603, 1520, 1367, 1274, 1177, 1104, 1017, 851, 768, 691, 611, 511 cm^{-1}.

LRMS (ESI+) 580.0 (100%) [$\mathrm{M}+\mathrm{H}]^{+}, 83.0$ (58\%).
HRMS (ESI+) calcd. for [M+H] ${ }^{+}\left(\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7}\right)$: 580.2084 found: 580.2088.

305g': M.p. $=97^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 8.10-8.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.99-7.95(\mathrm{~m}, 2 \mathrm{H}$, H_{Ph}), 7.39 - $7.32\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.23-7.19\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.14\left(\mathrm{dd}, J=3.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right)$, $7.04-6.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right.$ and $\left.\mathrm{H}_{\mathrm{Ph}}\right), 6.43\left(\mathrm{dd}, J=3.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 5.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{7}\right), 5.18\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 4.39\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{23}\right.$ or $\left.\mathrm{H}_{26}\right), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, H_{23} or $\left.\mathrm{H}_{26}\right), 4.04\left(\mathrm{dd}, J=8.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 1.42\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{24}\right.$ or $\left.\mathrm{H}_{27}\right), 1.37(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{24}$ or H_{27}).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C h l o r o f o r m - ~} \boldsymbol{d}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) $172.8\left(\mathrm{C}_{6}\right), 171.3\left(\mathrm{C}_{5}\right), 166.2\left(\mathrm{C}_{22}\right.$ or $\left.\mathrm{C}_{25}\right)$, $165.9\left(\mathrm{C}_{22}\right.$ or $\left.\mathrm{C}_{25}\right), 152.0\left(\mathrm{C}_{21}\right), 143.4\left(\mathrm{C}_{14}\right), 131.4\left(\mathrm{C}_{\mathrm{Ph}}\right), 131.2\left(\mathrm{C}_{\mathrm{Ph}}\right), 130.8\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.3\left(\mathrm{C}_{\mathrm{Ph}}\right)$, $129.0\left(\mathrm{C}_{\mathrm{Ph}}\right), 128.1\left(\mathrm{C}_{\mathrm{Ph}}\right), 126.1\left(\mathrm{C}_{\mathrm{Ph}}\right), 126.0\left(\mathrm{C}_{13}\right), 120.33\left(\mathrm{C}_{10}\right), 120.3\left(\mathrm{C}_{12}\right), 119.5\left(\mathrm{C}_{\mathrm{Ph}}\right)$, $118.2\left(\mathrm{C}_{\mathrm{Ph}}\right), 116.6\left(\mathrm{C}_{\mathrm{Ph}}\right), 111.2\left(\mathrm{C}_{11}\right), 77.4\left(\mathrm{C}_{7}\right), 66.1\left(\mathrm{C}_{9}\right), 61.3\left(\mathrm{C}_{23}\right.$ or $\left.\mathrm{C}_{26}\right), 61.0\left(\mathrm{C}_{23}\right.$ or $\left.\mathrm{C}_{26}\right)$, $54.3\left(\mathrm{C}_{8}\right), 14.49\left(\mathrm{C}_{24}\right.$ or $\left.\mathrm{C}_{27}\right), 14.48\left(\mathrm{C}_{24}\right.$ or $\left.\mathrm{C}_{27}\right)$.
IR (neat, v) $1710,1704,1605,1521,1367,1274,1178,1103,1018,854,769,692,514 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 580.7 (100%) $[\mathrm{M}+\mathrm{H}]^{+}, 83.0$ (27\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7}\right)$: 580.2084 found: 580.2090.

Oxazoline 305b.

To ethyl 4-chloronitrosobenzene $\mathbf{1 6 0 b}(195.1 \mathrm{mg}, 1.38 \mathrm{mmol})$ was added a solution of diene 241c $(83.6 \mathrm{mg}, 0.43 \mathrm{mmol})$ in dry toluene $(1.5 \mathrm{~mL})$. The reaction mixture was stirred r.t. for 1.5 h . N-phenyl maleimide $\mathbf{2 a}(82,0 \mathrm{mg}, 0.47 \mathrm{mmol})$ was added and the reaction mixture was flushed with argon for 10 min . The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 16 h under an inert atmosphere. The crude mixture was cooled to r.t., then toluene was evaporated and the crude product purified by silica gel chromatography (eluent, hexane $/ \mathrm{AcOEt}, 1 / 1, \mathrm{R}_{\mathrm{f}}=0.75$) to afford isomer 305b as an orange solid ($57.2 \mathrm{mg}, 26 \%$).
M.p. $=98^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.42-7.36$ (m, 5H, H_{Ph}), $7.30-7.24$ (m, 2H, H_{Ph}), 7.21 - 7.16 (m, 2H, H_{Ph}), 7.09 - $7.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 7.07$ - $7.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 6.99(\mathrm{dd}, J$ $\left.=3.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 6.83-6.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 6.35\left(\mathrm{dd}, J=3.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right)$, $5.61(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}_{9}$), 5.18 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}$), 4.01 (dd, $J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 174.3\left(\mathrm{C}_{6}\right), 172.9\left(\mathrm{C}_{5}\right), 146.9\left(\mathrm{C}_{21}\right), 138.9$ $\left(\mathrm{C}_{14}\right), 131.7\left(\mathrm{C}_{\mathrm{Ph}}\right), 131.1\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.9\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.3\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.2\left(\mathrm{C}_{\mathrm{Ph}}\right), 128.2\left(\mathrm{C}_{\mathrm{Ph}}\right), 126.2\left(\mathrm{C}_{\mathrm{Ph}}\right)$, $123.4\left(\mathrm{C}_{10}\right), 121.7\left(\mathrm{C}_{\mathrm{Ph}}\right), 120.5\left(\mathrm{C}_{13}\right), 117.7\left(\mathrm{C}_{12}\right), 116.8\left(\mathrm{C}_{\mathrm{Ph}}\right), 109.7\left(\mathrm{C}_{11}\right), 77.0\left(\mathrm{C}_{7}\right), 65.1$ $\left(\mathrm{C}_{9}\right), 56.8\left(\mathrm{C}_{8}\right)$.

IR (neat, v) 1717, 1700, 1596, 1505, 1487, 1380, 1318, 1197, 1095, 826, 760, 690, 612, 518 cm^{-1}.

LRMS (ESI+) 391.2 (100%), 152.0 (52%).
HRMS (ESI+) calcd. for [M+H] ${ }^{+}\left(\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$: 504.0882 found: 504.0883.

Single crystal X-ray structure data for 305b:

A suitable crystal was selected and measured on a D8V_Mo diffractometer. The crystal was kept at 120 K during data collection. Using Olex $2,{ }^{185}$ the structure was solved with the ShelXS structure solution program ${ }^{182}$ using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. ${ }^{182}$

Table XX. Crystal data and structure refinement.

Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$
Formula weight	548.40
Temperature/K	120
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a / \AA	$14.6746(8)$
b / \AA	$6.4961(4)$
c / \AA	$26.7054(14)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$91.634(3)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$2544.7(2)$
Z	4
$\rho_{\text {call }} \mathrm{g} / \mathrm{cm}^{3}$	1.431
μ / mm^{-1}	2.647
$\mathrm{~F}(000)$	1136.0
Crystal size/mm	$0.3 \times 0.04 \times 0.03$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	6.026 to 136.312
Index ranges	$-17 \leq \mathrm{h} \leq 16,-7 \leq \mathrm{k} \leq 7,-30 \leq 1 \leq 32$
Reflections collected	17303
Independent reflections	$4446\left[\mathrm{R}_{\text {int }}=0.0443, \mathrm{R}_{\text {sigma }}=0.0483\right]$
Data/restraints/parameters	$4446 / 0 / 317$
Goodness-of-fit on F^{2}	1.058

> | > Final R indexes [l>=2 $\sigma(\mathrm{I})]$ | $\mathrm{R}_{1}=0.0655, \mathrm{wR}_{2}=0.1344$ |
| :---: | :---: |
| > Final R indexes [all data] | $\mathrm{R}_{1}=0.0818, \mathrm{wR}_{2}=0.1412$ |
| > Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$ | $0.80 /-0.66$ |
| > | |

Table XXI. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.
$U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{I J}$ tensor.

Atom	\boldsymbol{x}	y	z	U(eq)
$\mathrm{Cl}(1)$	9382.5(7)	-3943(2)	917.3(5)	56.5(4)
$\mathrm{Cl}(2)$	678.5(6)	11194.5(16)	528.9(4)	28.8(2)
O (0AA)	5091.9(16)	-1006(4)	1230.3(9)	20.5(6)
$\mathrm{O}(1 \mathrm{AA})$	6896.5(18)	3318(4)	1991.1(9)	26.6(6)
$\mathrm{O}(3)$	5293.5(18)	-2556(5)	2306.9(9)	28.8(7)
$\mathrm{N}(1)$	5745.8(19)	60(5)	933.9(10)	17.9(7)
N(2)	6258.8(19)	239(5)	2237.4(10)	17.6(7)
N(3)	3638(2)	5011(5)	497.4(11)	20.1(7)
C(0AA)	5624(2)	2248(6)	1059.1(12)	16.4(7)
C(1AA)	5439(2)	2202(6)	1623.7(13)	18.8(8)
$\mathrm{C}(2 \mathrm{AA})$	6286(2)	2068(6)	1959.0(13)	19.8(8)
C(3AA)	5495(2)	-926(6)	2117.5(13)	20.4(8)
C(4AA)	4971(2)	145(6)	1690.9(13)	21.1(8)
C(5AA)	4236(2)	4615(6)	893.6(13)	19.0(8)
C(7)	4840(2)	3144(6)	752.5(13)	17.2(8)
C(8)	4602(3)	2593(6)	246.9(13)	22.5(8)
C(9)	3867(3)	3756(6)	104.5(13)	23.5(8)
C(10)	6638(2)	-822(6)	982.1(12)	19.3(8)
C(11)	6791(2)	-2698(6)	1218.0(13)	21.0(8)
C(12)	7639(3)	-3635(7)	1204.0(14)	26.8(9)
C(13)	8328(3)	-2698(7)	954.9(15)	31.1(10)
C(14)	8196(3)	-806(7)	726.4(15)	31.7(10)
C(15)	7352(2)	116(6)	735.6(14)	24.4(9)
C(16)	2932(2)	6504(6)	493.0(12)	18.3(8)
C(17)	3105(2)	8446(6)	685.0(13)	20.6(8)
C(18)	2408(2)	9883(6)	698.5(14)	24.1(9)
C(19)	1551(2)	9381(6)	512.7(13)	20.0(8)
C(20)	1379(3)	7458(6)	305.7(13)	23.0(8)
C(21)	2074(2)	6000(6)	298.0(13)	22.6(8)
C(22)	6935(2)	-304(6)	2611.0(13)	20.8(8)
C(23)	7293(3)	-2271(7)	2613.6(15)	29.6(9)
C(24)	7966(3)	-2795(7)	2970.9(16)	36.6(11)
C(25)	8279(3)	-1338(8)	3309.3(15)	36.4(11)
C(26)	7911(3)	627(8)	3305.8(14)	34.4(11)
C(27)	7229(3)	1149(7)	2957.3(13)	26.2(9)

Table XXII. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	\mathbf{U}_{33}	\mathbf{U}_{23}	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
$\mathrm{Cl}(1)$	$29.5(6)$	$73.5(10)$	$67.6(8)$	$29.9(7)$	$18.6(6)$	$19.5(6)$
$\mathrm{Cl}(2)$	$20.4(4)$	$32.2(6)$	$33.3(5)$	$-2.2(4)$	$-6.8(4)$	$5.5(4)$
$\mathrm{O}(0 \mathrm{AA})$	$19.8(12)$	$22.1(14)$	$19.8(13)$	$-2.5(11)$	$2.7(10)$	$-3.1(11)$
$\mathrm{O}(1 \mathrm{AA})$	$31.2(15)$	$24.4(15)$	$23.9(14)$	$5.4(12)$	$-4.8(12)$	$-6.9(12)$
$\mathrm{O}(3)$	$28.8(14)$	$34.4(17)$	$23.4(14)$	$8.3(13)$	$3.8(12)$	$-8.4(13)$
$\mathrm{N}(1)$	$19.4(15)$	$18.6(17)$	$15.9(14)$	$2.5(13)$	$2.0(12)$	$0.9(13)$
$\mathrm{N}(2)$	$19.6(15)$	$19.2(17)$	$14.0(14)$	$2.7(13)$	$0.5(12)$	$0.1(13)$
$\mathrm{N}(3)$	$20.9(15)$	$22.5(18)$	$16.7(15)$	$-0.2(13)$	$-2.1(12)$	$1.9(13)$
$\mathrm{C}(0 \mathrm{AA})$	$20.0(18)$	$14.9(19)$	$14.4(17)$	$-2.7(14)$	$-0.2(14)$	$-0.2(15)$
$\mathrm{C}(1 \mathrm{AA})$	$17.6(17)$	$21(2)$	$17.7(18)$	$-0.3(15)$	$-0.3(15)$	$1.9(15)$
$\mathrm{C}(2 \mathrm{AA})$	$24.1(19)$	$21(2)$	$13.8(17)$	$-1.6(15)$	$0.3(15)$	$1.2(16)$
$\mathrm{C}(3 \mathrm{AA})$	$18.3(17)$	$28(2)$	$15.1(17)$	$-1.2(16)$	$7.0(15)$	$-1.8(16)$
$\mathrm{C}(4 \mathrm{AA})$	$16.0(17)$	$31(2)$	$15.9(18)$	$0.1(16)$	$2.0(14)$	$0.5(16)$
$\mathrm{C}(5 \mathrm{AA})$	$21.6(18)$	$24(2)$	$11.3(16)$	$-0.1(15)$	$-4.2(14)$	$-2.5(16)$
$\mathrm{C}(7)$	$20.6(18)$	$16.1(19)$	$14.9(17)$	$-0.6(14)$	$1.5(14)$	$-3.4(15)$
$\mathrm{C}(8)$	$29(2)$	$22(2)$	$16.4(18)$	$-1.6(16)$	$1.0(16)$	$3.0(17)$
$\mathrm{C}(9)$	$34(2)$	$23(2)$	$13.4(17)$	$-0.5(16)$	$-5.0(16)$	$1.7(17)$
$\mathrm{C}(10)$	$20.4(18)$	$28(2)$	$9.8(16)$	$-3.1(15)$	$0.0(14)$	$0.7(16)$
$\mathrm{C}(11)$	$24.4(19)$	$19(2)$	$19.3(18)$	$1.8(16)$	$3.8(15)$	$-1.5(16)$
$\mathrm{C}(12)$	$26(2)$	$30(2)$	$25(2)$	$3.0(18)$	$3.9(16)$	$1.7(18)$
$\mathrm{C}(13)$	$25(2)$	$41(3)$	$28(2)$	$11(2)$	$5.9(17)$	$8.9(19)$
$\mathrm{C}(14)$	$26(2)$	$42(3)$	$28(2)$	$12.6(19)$	$8.1(17)$	$-0.1(19)$
$\mathrm{C}(15)$	$25.3(19)$	$26(2)$	$21.6(19)$	$8.0(17)$	$2.9(16)$	$4.3(17)$
$\mathrm{C}(16)$	$21.1(18)$	$20(2)$	$13.2(17)$	$3.7(15)$	$-1.4(14)$	$1.2(15)$
$\mathrm{C}(17)$	$16.7(17)$	$25(2)$	$20.0(18)$	$2.4(16)$	$-7.9(15)$	$1.3(15)$
$\mathrm{C}(18)$	$25(2)$	$25(2)$	$22.4(19)$	$-0.6(17)$	$-3.2(16)$	$-1.1(17)$
$\mathrm{C}(19)$	$20.5(18)$	$23(2)$	$16.7(17)$	$3.0(15)$	$-0.7(15)$	$0.2(16)$
$\mathrm{C}(20)$	$21.8(19)$	$26(2)$	$20.9(19)$	$3.7(17)$	$-5.7(15)$	$-4.3(16)$
$\mathrm{C}(21)$	$26.0(19)$	$25(2)$	$16.6(18)$	$2.9(16)$	$-2.7(15)$	$-1.4(17)$
$\mathrm{C}(22)$	$20.6(18)$	$27(2)$	$15.3(17)$	$4.3(16)$	$1.6(15)$	$2.6(16)$
$\mathrm{C}(23)$	$31(2)$	$32(2)$	$26(2)$	$5.8(18)$	$-2.3(17)$	$-2.4(18)$
$\mathrm{C}(24)$	$39(2)$	$33(3)$	$38(2)$	$13(2)$	$-6(2)$	$7(2)$
$\mathrm{C}(25)$	$31(2)$	$51(3)$	$26(2)$	$14(2)$	$-9.6(18)$	$4(2)$
$\mathrm{C}(26)$	$29(2)$	$55(3)$	$18(2)$	$0(2)$	$-2.6(17)$	$-8(2)$
$\mathrm{C}(27)$	$28(2)$	$34(2)$	$16.0(18)$	$-1.2(17)$	$2.5(16)$	$-1.3(18)$

Table XXIII. Bond Lengths.

Atom	Atom	Length $/ \AA$	Atom Atom	Length $/ \AA$
$\mathrm{Cl}(1)$	$\mathrm{C}(13)$	$1.751(4)$	$\mathrm{C}(7) \mathrm{C}(8)$	$1.431(5)$
$\mathrm{Cl}(2)$	$\mathrm{C}(19)$	$1.742(4)$	$\mathrm{C}(8) \mathrm{C}(9)$	$1.362(5)$
$\mathrm{O}(0 \mathrm{AA})$	$\mathrm{N}(1)$	$1.439(4)$	$\mathrm{C}(10) \mathrm{C}(11)$	$1.387(5)$
$\mathrm{O}(0 \mathrm{AA}) \mathrm{C}(4 \mathrm{AA})$	$1.455(4)$	$\mathrm{C}(10) \mathrm{C}(15)$	$1.394(5)$	
$\mathrm{O}(1 \mathrm{AA}) \mathrm{C}(2 \mathrm{AA})$	$1.210(4)$	$\mathrm{C}(11) \mathrm{C}(12)$	$1.387(5)$	

$\mathrm{O}(3)$	$\mathrm{C}(3 \mathrm{AA})$	$1.214(5)$	$\mathrm{C}(12) \mathrm{C}(13)$	$1.369(6)$
$\mathrm{N}(1)$	$\mathrm{C}(0 \mathrm{AA})$	$1.472(5)$	$\mathrm{C}(13) \mathrm{C}(14)$	$1.383(6)$
$\mathrm{N}(1)$	$\mathrm{C}(10)$	$1.431(4)$	$\mathrm{C}(14) \mathrm{C}(15)$	$1.376(5)$
$\mathrm{N}(2)$	$\mathrm{C}(2 \mathrm{AA})$	$1.403(5)$	$\mathrm{C}(16) \mathrm{C}(17)$	$1.382(5)$
$\mathrm{N}(2)$	$\mathrm{C}(3 \mathrm{AA})$	$1.382(5)$	$\mathrm{C}(16) \mathrm{C}(21)$	$1.387(5)$
$\mathrm{N}(2)$	$\mathrm{C}(22)$	$1.431(4)$	$\mathrm{C}(17) \mathrm{C}(18)$	$1.386(5)$
$\mathrm{N}(3)$	$\mathrm{C}(5 \mathrm{AA})$	$1.380(4)$	$\mathrm{C}(18) \mathrm{C}(19)$	$1.378(5)$
$\mathrm{N}(3)$	$\mathrm{C}(9)$	$1.378(5)$	$\mathrm{C}(19) \mathrm{C}(20)$	$1.386(5)$
$\mathrm{N}(3)$	$\mathrm{C}(16)$	$1.419(5)$	$\mathrm{C}(20) \mathrm{C}(21)$	$1.393(5)$
$\mathrm{C}(0 \mathrm{AA}) \mathrm{C}(1 \mathrm{AA})$	$1.540(5)$	$\mathrm{C}(22) \mathrm{C}(23)$	$1.382(6)$	
$\mathrm{C}(0 \mathrm{AA})$	$\mathrm{C}(7)$	$1.510(5)$	$\mathrm{C}(22) \mathrm{C}(27)$	$1.382(5)$
$\mathrm{C}(1 \mathrm{AA}) \mathrm{C}(2 \mathrm{AA})$	$1.513(5)$	$\mathrm{C}(23) \mathrm{C}(24)$	$1.396(6)$	
$\mathrm{C}(1 \mathrm{AA}) \mathrm{C}(4 \mathrm{AA})$	$1.516(5)$	$\mathrm{C}(24) \mathrm{C}(25)$	$1.378(6)$	
$\mathrm{C}(3 \mathrm{AA}) \mathrm{C}(4 \mathrm{AA})$	$1.525(5)$	$\mathrm{C}(25) \mathrm{C}(26)$	$1.385(7)$	
$\mathrm{C}(5 \mathrm{AA})$	$\mathrm{C}(7)$	$1.363(5)$	$\mathrm{C}(26) \mathrm{C}(27)$	$1.389(5)$

Table XXIV. Bond Angles.

Atom	Atom	Atom	Angle $^{\circ}$	Atom Atom Atom	Angle/ ${ }^{\circ}$
$\mathrm{N}(1)$	$\mathrm{O}(0 \mathrm{AA}) \mathrm{C}(4 \mathrm{AA})$	$108.5(2)$	$\mathrm{C}(8) \mathrm{C}(9) \mathrm{N}(3)$	$108.9(3)$	
$\mathrm{O}(0 \mathrm{AA})$	$\mathrm{N}(1)$	$\mathrm{C}(0 \mathrm{AA})$	$104.6(2)$	$\mathrm{C}(11) \mathrm{C}(10) \mathrm{N}(1)$	$121.9(3)$
$\mathrm{C}(10)$	$\mathrm{N}(1)$	$\mathrm{O}(0 \mathrm{AA})$	$112.4(3)$	$\mathrm{C}(11) \mathrm{C}(10) \mathrm{C}(15)$	$118.9(3)$
$\mathrm{C}(10)$	$\mathrm{N}(1)$	$\mathrm{C}(0 \mathrm{AA})$	$118.8(3)$	$\mathrm{C}(15) \mathrm{C}(10) \mathrm{N}(1)$	$118.8(3)$
$\mathrm{C}(2 \mathrm{AA})$	$\mathrm{N}(2)$	$\mathrm{C}(22)$	$123.3(3)$	$\mathrm{C}(12) \mathrm{C}(11) \mathrm{C}(10)$	$120.5(3)$
$\mathrm{C}(3 \mathrm{AA})$	$\mathrm{N}(2)$	$\mathrm{C}(2 \mathrm{AA})$	$112.1(3)$	$\mathrm{C}(13) \mathrm{C}(12) \mathrm{C}(11)$	$119.6(4)$
$\mathrm{C}(3 \mathrm{AA})$	$\mathrm{N}(2)$	$\mathrm{C}(22)$	$124.6(3)$	$\mathrm{C}(12) \mathrm{C}(13) \mathrm{Cl}(1)$	$119.2(3)$
$\mathrm{C}(5 \mathrm{AA})$	$\mathrm{N}(3)$	$\mathrm{C}(16)$	$125.7(3)$	$\mathrm{C}(12) \mathrm{C}(13) \mathrm{C}(14)$	$120.8(4)$
$\mathrm{C}(9)$	$\mathrm{N}(3)$	$\mathrm{C}(5 \mathrm{AA})$	$108.0(3)$	$\mathrm{C}(14) \mathrm{C}(13) \mathrm{Cl}(1)$	$119.9(3)$
$\mathrm{C}(9)$	$\mathrm{N}(3)$	$\mathrm{C}(16)$	$126.3(3)$	$\mathrm{C}(15) \mathrm{C}(14) \mathrm{C}(13)$	$119.6(4)$
$\mathrm{N}(1)$	$\mathrm{C}(0 \mathrm{AA}) \mathrm{C}(1 \mathrm{AA})$	$103.3(3)$	$\mathrm{C}(14) \mathrm{C}(15) \mathrm{C}(10)$	$120.5(4)$	
$\mathrm{N}(1)$	$\mathrm{C}(0 \mathrm{AA})$	$\mathrm{C}(7)$	$110.2(3)$	$\mathrm{C}(17) \mathrm{C}(16) \mathrm{N}(3)$	$119.6(3)$
$\mathrm{C}(7)$	$\mathrm{C}(0 \mathrm{AA}) \mathrm{C}(1 \mathrm{AA})$	$112.7(3)$	$\mathrm{C}(17) \mathrm{C}(16) \mathrm{C}(21)$	$120.7(3)$	
$\mathrm{C}(2 \mathrm{AA}) \mathrm{C}(1 \mathrm{AA}) \mathrm{C}(0 \mathrm{AA})$	$114.6(3)$	$\mathrm{C}(21) \mathrm{C}(16) \mathrm{N}(3)$	$119.7(3)$		
$\mathrm{C}(2 \mathrm{AA}) \mathrm{C}(1 \mathrm{AA}) \mathrm{C}(4 \mathrm{AA})$	$104.3(3)$	$\mathrm{C}(16) \mathrm{C}(17) \mathrm{C}(18)$	$119.8(3)$		
$\mathrm{C}(4 \mathrm{AA}) \mathrm{C}(1 \mathrm{AA}) \mathrm{C}(0 \mathrm{AA})$	$103.1(3)$	$\mathrm{C}(19) \mathrm{C}(18) \mathrm{C}(17)$	$119.8(4)$		
$\mathrm{O}(1 \mathrm{AA}) \mathrm{C}(2 \mathrm{AA})$	$\mathrm{N}(2)$	$124.2(3)$	$\mathrm{C}(18) \mathrm{C}(19) \mathrm{Cl}(2)$	$119.7(3)$	
$\mathrm{O}(1 \mathrm{AA}) \mathrm{C}(2 \mathrm{AA}) \mathrm{C}(1 \mathrm{AA})$	$126.7(3)$	$\mathrm{C}(18) \mathrm{C}(19) \mathrm{C}(20)$	$120.8(4)$		
$\mathrm{N}(2)$	$\mathrm{C}(2 \mathrm{AA}) \mathrm{C}(1 \mathrm{AA})$	$109.1(3)$	$\mathrm{C}(20) \mathrm{C}(19) \mathrm{Cl}(2)$	$119.5(3)$	
$\mathrm{O}(3)$	$\mathrm{C}(3 \mathrm{AA})$	$\mathrm{N}(2)$	$125.9(3)$	$\mathrm{C}(19) \mathrm{C}(20) \mathrm{C}(21)$	$119.6(3)$
$\mathrm{O}(3)$	$\mathrm{C}(3 \mathrm{AA}) \mathrm{C}(4 \mathrm{AA})$	$125.8(3)$	$\mathrm{C}(16) \mathrm{C}(21) \mathrm{C}(20)$	$119.4(4)$	
$\mathrm{N}(2)$	$\mathrm{C}(3 \mathrm{AA}) \mathrm{C}(4 \mathrm{AA})$	$108.2(3)$	$\mathrm{C}(23) \mathrm{C}(22) \mathrm{N}(2)$	$119.2(3)$	
$\mathrm{O}(0 \mathrm{AA}) \mathrm{C}(4 \mathrm{AA}) \mathrm{C}(1 \mathrm{AA})$	$106.6(3)$	$\mathrm{C}(27) \mathrm{C}(22) \mathrm{N}(2)$	$119.7(3)$		
$\mathrm{O}(0 \mathrm{AA}) \mathrm{C}(4 \mathrm{AA}) \mathrm{C}(3 \mathrm{AA})$	$109.0(3)$	$\mathrm{C}(27) \mathrm{C}(22) \mathrm{C}(23)$	$121.1(4)$		
$\mathrm{C}(1 \mathrm{AA})$	$\mathrm{C}(4 \mathrm{AA}) \mathrm{C}(3 \mathrm{AA})$	$105.6(3)$	$\mathrm{C}(22) \mathrm{C}(23) \mathrm{C}(24)$	$119.4(4)$	
$\mathrm{C}(7)$	$\mathrm{C}(5 \mathrm{AA})$	$\mathrm{N}(3)$	$108.9(3)$	$\mathrm{C}(25) \mathrm{C}(24) \mathrm{C}(23)$	$119.8(4)$

$\mathrm{C}(5 \mathrm{AA})$	$\mathrm{C}(7)$	$\mathrm{C}(0 \mathrm{AA})$	$127.7(3)$	$\mathrm{C}(24) \mathrm{C}(25) \mathrm{C}(26)$	$120.4(4)$
$\mathrm{C}(5 \mathrm{AA})$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$107.0(3)$	$\mathrm{C}(25) \mathrm{C}(26) \mathrm{C}(27)$	$120.1(4)$
$\mathrm{C}(8)$	$\mathrm{C}(7)$	$\mathrm{C}(0 \mathrm{AA})$	$125.3(3)$	$\mathrm{C}(22) \mathrm{C}(27) \mathrm{C}(26)$	$119.2(4)$
$\mathrm{C}(9)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$107.1(3)$		

Table XXV. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
$\mathrm{H}(0 \mathrm{AA})$	6197	3030	997	20
$\mathrm{H}(1 \mathrm{AA})$	5039	3370	1723	23
$\mathrm{H}(4 \mathrm{AA})$	4311	316	1767	25
$\mathrm{H}(5 \mathrm{AA})$	4229	5261	1213	23
$\mathrm{H}(8)$	4900	1601	48	27
$\mathrm{H}(9)$	3562	3710	-214	28
$\mathrm{H}(11)$	6312	-3345	1390	25
$\mathrm{H}(12)$	7741	-4919	1366	32
$\mathrm{H}(14)$	8684	-148	564	38
$\mathrm{H}(15)$	7256	1401	573	29
$\mathrm{H}(17)$	3699	8793	807	25
$\mathrm{H}(18)$	2522	11212	835	29
$\mathrm{H}(20)$	791	7138	170	28
$\mathrm{H}(21)$	1962	4672	161	27
$\mathrm{H}(23)$	7083	-3258	2375	35
$\mathrm{H}(24)$	8209	-4151	2981	44
$\mathrm{H}(25)$	8748	-1683	3547	44
$\mathrm{H}(26)$	8127	1620	3542	41
$\mathrm{H}(27)$	6968	2487	2957	31

Table XXVI. Solvent masks information.

Number	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Volume	Electron count Content	
1	0.000	-0.822	0.250	193.8	52.3	$?$
2	0.000	-0.607	0.750	193.8	52.3	$?$

Oxazoline 305h.

To ethyl 4-bromonitrosobenzene $\mathbf{1 6 0 h}(255.1 \mathrm{mg}, 1.37 \mathrm{mmol})$ was added a solution of diene 241c $(83.2 \mathrm{mg}, 0.43 \mathrm{mmol})$ in dry toluene $(1.5 \mathrm{~mL})$. The reaction mixture was stirred at r.t. for 1.5 h . N-phenyl maleimide $\mathbf{2 a}(81,7 \mathrm{mg}, 0.47 \mathrm{mmol})$ was added and the reaction mixture was flushed with argon for 10 min . The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 16 h under an inert atmosphere. The crude mixture was cooled to r.t., then toluene was evaporated and the crude product purified by silica gel chromatography (eluent, hexane/AcOEt, $1 / 1, \mathrm{R}_{\mathrm{f}}=$ 0.75) to afford isomer $\mathbf{3 0 5 h}$ as an orange solid ($59.1 \mathrm{mg}, 23 \%$).
M.p. $=109^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.56-7.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.44-7.36(\mathrm{~m}, 3 \mathrm{H}$, H_{Ph}), 7.36 - 7.31 (m, 2H, H_{Ph}), $7.25-7.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.09$ (ddd, $J=2.4,1.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{12}\right), 7.04-6.98\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{13}\right.$ and $\left.\mathrm{H}_{\mathrm{Ph}}\right), 6.82-6.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 6.36(\mathrm{dd}, J=3.0,1.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{11}\right), 5.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 5.18\left(\mathrm{dd}, J=7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.02(\mathrm{dd}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, H_{8}).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $174.2\left(\mathrm{C}_{6}\right), 172.9\left(\mathrm{C}_{5}\right), 147.5\left(\mathrm{C}_{21}\right), 139.3$ $\left(\mathrm{C}_{14}\right), 132.8\left(\mathrm{C}_{\mathrm{Ph}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ph}}\right), 131.0\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.3\left(\mathrm{C}_{\mathrm{Ph}}\right), 129.2\left(\mathrm{C}_{\mathrm{Ph}}\right), 126.2\left(\mathrm{C}_{\mathrm{Ph}}\right), 123.5\left(\mathrm{C}_{10}\right)$, $122.1\left(\mathrm{C}_{\mathrm{Ph}}\right), 120.4\left(\mathrm{C}_{13}\right), 119.4\left(\mathrm{C}_{\mathrm{Ph}}\right), 117.7\left(\mathrm{C}_{12}\right), 117.1\left(\mathrm{C}_{\mathrm{Ph}}\right), 115.7\left(\mathrm{C}_{\mathrm{Ph}}\right), 109.7\left(\mathrm{C}_{11}\right), 77.0$ $\left(\mathrm{C}_{7}\right), 65.0\left(\mathrm{C}_{9}\right), 56.8\left(\mathrm{C}_{8}\right)$.

IR (neat, v) 1715, 1591, 1501, 1483, 1382, 1197, 1075, 1008, 821, 758, 690, $614 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 391.2 (69\%), 152.1 (100\%).
HRMS (ESI+) calcd. for [M+H] ${ }^{+}\left(\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$: 591.9871 found: 591.9861.

Oxazolines $305 f$ and 305f'.

To 2-nitrosotoluene $\mathbf{1 6 0 f}$ ($156.6 \mathrm{mg}, 1.25 \mathrm{mmol}$) was added a solution of diene $\mathbf{2 4 1 \mathrm { c }}$ (78.4 $\mathrm{mg}, 0.40 \mathrm{mmol})$ in dry toluene $(1.5 \mathrm{~mL})$. The reaction mixture was stirred at r.t. for $1.5 \mathrm{~h} . \mathrm{N}$ phenyl maleimide 2a ($76.9 \mathrm{mg}, 0.44 \mathrm{mmol}$) was added and the reaction mixture was flushed with argon for 10 min . The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 16 h under an inert atmosphere. The crude mixture was cooled to r.t., then toluene was evaporated and the crude product purified by silica gel chromatography (eluent, hexane/ $\mathrm{AcOEt}, 1 / 1, \mathrm{R}_{\mathrm{f} 305 \mathrm{f}}=0.75, \mathrm{R}_{\mathrm{f} 305 \mathrm{f}^{\prime}}$ $=0.70$) to afford isomer $\mathbf{3 0 5 f}$ as a white solid ($23.1 \mathrm{mg}, 12 \%$). The isomer $\mathbf{3 0 5 f}$ ' was not isolated.

305f: M.p. $=179{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (700 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.52-7.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}$, H_{Ph}), $7.35-7.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.26-7.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.09-7.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 6.98-6.92$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 6.61\left(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 6.36\left(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 6.10(\mathrm{dd}, J=2.8,1.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 5.25\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 5.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 4.11\left(\mathrm{dd}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right)$, 2.26 (s, 3H, H27), 1.92 (s, $3 \mathrm{H}, \mathrm{H}_{20}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 175.4 (C_{6}), $173.9\left(\mathrm{C}_{5}\right)$, $144.1\left(\mathrm{C}_{21}\right), 140.1$ (C_{14}), 134.2 (C), 131.7 (C), 131.1 (C), 130.2 (C), 129.4 (C), 129.1 (C), 128.8 (C), 128.0 (C), 126.63 (C), 126.60 (C), 126.5 (C), 125.9 (C), 124.9 (C), 122.5 (C_{12}), 121.3 (C_{13}), 119.9 (C), $118.8\left(\mathrm{C}_{10}\right), 108.8\left(\mathrm{C}_{11}\right), 75.2\left(\mathrm{C}_{7}\right), 64.1\left(\mathrm{C}_{9}\right), 55.9\left(\mathrm{C}_{8}\right), 18.4\left(\mathrm{C}_{27}\right), 17.6\left(\mathrm{C}_{20}\right)$.

IR (neat, v) 1710, 1700, 1597, 1505, 1391, 1328, 1195, 1185, 1065, 851, 749, 688, 625, 612 cm^{-1}.

LRMS (ESI+) 464.2 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}, 83.0$ (30\%).
HRMS (ESI+) calcd. for [M+H] ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$: 464.1974 found: 464.1971.

Single crystal X-ray structure data for $\mathbf{3 0 5 f}$:

A suitable crystal was selected and measured on a D8V_Mo diffractometer. The crystal was kept at 120 K during data collection. Using Olex $2,{ }^{185}$ the structure was solved with the ShelXS structure solution program ${ }^{182}$ using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. ${ }^{182}$

Table XXVII. Crystal data and structure refinement.

Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$
Formula weight	463.52
Temperature/K	120
Crystal system	orthorhombic
Space group	Pbca
a / \AA	$5.9334(2)$
b / \AA	$20.7173(6)$
c / \AA	$38.0315(12)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$4675.0(3)$
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.317
μ / mm^{-1}	0.694
$\mathrm{~F}(000)$	1952.0
Crystal size $/ \mathrm{mm}^{3}$	$0.568 \times 0.079 \times 0.075$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	4.646 to 151.09
Index ranges	$-7 \leq \mathrm{h} \leq 6,-26 \leq \mathrm{k} \leq 25,-46 \leq 1 \leq 36$
Reflections collected	25628

$$
\begin{array}{cc}
\text { Independent reflections } & 4622\left[\mathrm{R}_{\text {int }}=0.0545, \mathrm{R}_{\text {sigma }}=0.0365\right] \\
\text { Data/restraints/parameters } & 4622 / 0 / 321 \\
\text { Goodness-of-fit on } \mathrm{F}^{2} & 1.039 \\
\text { Final R indexes }[\mathrm{I}>=2 \sigma(\mathrm{I})] & \mathrm{R}_{1}=0.0365, \mathrm{wR}_{2}=0.0804 \\
\text { Final R indexes [all data] } & \mathrm{R}_{1}=0.0519, \mathrm{wR}_{2}=0.0899 \\
\text { Largest diff. peak/hole } / \mathrm{e} \AA^{-3} & 0.29 /-0.21 \\
\hline
\end{array}
$$

Table XXVIII. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right) . U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{\text {IJ }}$ tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	z	U(eq)
$\mathrm{O}(1)$	12076.8(16)	2969.3(5)	999.3(3)	18.2(2)
$\mathrm{O}(2)$	7159.1(17)	2867.9(5)	78.3(3)	22.1(2)
$\mathrm{O}(3)$	13764.1(17)	3815.7(5)	422.4(3)	22.6(2)
N(1)	9772.3(19)	3221.0(5)	1047.0(3)	17.0(3)
N(2)	10384(2)	3460.3(5)	186.0(3)	17.3(3)
N(3)	6877(2)	1345.2(6)	1486.7(4)	20.0(3)
C(1)	8383(2)	2679.3(6)	894.1(4)	16.8(3)
C(2)	9686(2)	2557.7(6)	551.4(4)	16.2(3)
C(3)	8861(2)	2958.7(6)	245.4(4)	17.5(3)
C(4)	12252(2)	3429.6(7)	408.6(4)	17.6(3)
C(5)	12039(2)	2820.5(7)	634.0(4)	17.0(3)
C(6)	6387(2)	1908.1(7)	1311.1(4)	19.2(3)
C(7)	8223(2)	2085.6(7)	1117.1(4)	17.4(3)
C(8)	9915(2)	1606.9(7)	1174.8(4)	20.9(3)
C(9)	9043(2)	1161.8(7)	1402.0(4)	21.5(3)
C(10)	9408(2)	3344.2(6)	1415.1(4)	18.4(3)
C(11)	7614(3)	3757.7(7)	1500.3(4)	20.7(3)
C(12)	7203(3)	3871.6(8)	1856.7(5)	27.6(4)
C(13)	8531(3)	3601.5(8)	2118.0(5)	31.1(4)
C(14)	10305(3)	3204.0(8)	2028.0(5)	30.4(4)
C(15)	10742(3)	3073.9(7)	1676.6(4)	25.4(3)
C(16)	10061(2)	3933.2(6)	-86.2(4)	18.3(3)
C(17)	8020(3)	4258.8(7)	-104.9(4)	21.8(3)
C(18)	7692(3)	4706.6(7)	-370.9(5)	26.4(4)
C(19)	9385(3)	4828.7(8)	-615.0(5)	27.9(4)
C(20)	11409(3)	4500.0(8)	-592.8(4)	27.7(4)
C(21)	11765(3)	4051.6(7)	-325.9(4)	22.7(3)
C(22)	5382(2)	991.0(7)	1709.3(4)	19.8(3)
C(23)	4520(3)	1276.3(7)	2014.3(4)	21.7(3)
C(24)	3094(3)	903.2(8)	2222.1(4)	27.0(4)
C(25)	2564(3)	268.7(8)	2135.6(5)	28.7(4)
C(26)	3473(3)	-6.7(7)	1835.6(5)	26.2(4)
C(27)	4875(3)	355.8(7)	1622.1(4)	23.0(3)
C(28)	6198(3)	4076.8(7)	1222.6(5)	25.0(3)
$\mathrm{C}(29)$	5162(3)	1953.4(7)	2123.6(5)	28.6(4)

Table XXIX. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	\mathbf{U}_{22}	\mathbf{U}_{33}	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
$\mathrm{O}(1)$	$14.1(5)$	$24.2(5)$	$16.4(5)$	$-1.1(4)$	$-0.1(4)$	$-0.3(4)$
$\mathrm{O}(2)$	$20.2(5)$	$24.6(5)$	$21.6(6)$	$-1.3(4)$	$-5.4(5)$	$-3.3(4)$
$\mathrm{O}(3)$	$17.5(5)$	$26.2(5)$	$24.2(6)$	$1.8(5)$	$0.7(5)$	$-5.7(4)$
$\mathrm{N}(1)$	$13.7(5)$	$19.5(5)$	$17.7(7)$	$-2.0(5)$	$-0.3(5)$	$-0.5(4)$
$\mathrm{N}(2)$	$16.2(5)$	$18.8(5)$	$16.8(6)$	$-0.4(5)$	$-0.5(5)$	$-1.0(5)$
$\mathrm{N}(3)$	$18.0(6)$	$21.0(6)$	$21.0(7)$	$2.8(5)$	$2.4(6)$	$0.8(5)$
$\mathrm{C}(1)$	$14.4(6)$	$18.5(6)$	$17.5(7)$	$-1.0(6)$	$-1.6(6)$	$-1.3(5)$
$\mathrm{C}(2)$	$16.1(6)$	$17.3(6)$	$15.2(7)$	$-1.0(6)$	$0.7(6)$	$-1.2(5)$
$\mathrm{C}(3)$	$18.3(7)$	$17.8(6)$	$16.4(8)$	$-4.0(6)$	$2.5(6)$	$-0.3(5)$
$\mathrm{C}(4)$	$15.2(6)$	$20.3(6)$	$17.2(7)$	$-3.3(6)$	$2.9(6)$	$1.1(5)$
$\mathrm{C}(5)$	$14.6(6)$	$19.7(6)$	$16.7(7)$	$-2.1(6)$	$1.1(6)$	$-0.1(5)$
$\mathrm{C}(6)$	$17.7(6)$	$19.4(7)$	$20.5(8)$	$1.2(6)$	$-0.5(6)$	$1.0(5)$
$\mathrm{C}(7)$	$15.8(6)$	$19.8(6)$	$16.6(7)$	$-1.6(6)$	$-0.2(6)$	$-1.5(5)$
$\mathrm{C}(8)$	$15.0(6)$	$23.0(7)$	$24.9(9)$	$-0.8(6)$	$0.3(7)$	$-0.1(5)$
$\mathrm{C}(9)$	$18.5(7)$	$20.1(7)$	$25.8(9)$	$0.8(6)$	$0.0(7)$	$2.5(5)$
$\mathrm{C}(10)$	$21.3(7)$	$18.0(6)$	$16.0(8)$	$-1.4(6)$	$0.4(7)$	$-4.3(5)$
$\mathrm{C}(11)$	$20.6(7)$	$20.2(7)$	$21.4(8)$	$-3.0(6)$	$0.8(7)$	$-5.0(6)$
$\mathrm{C}(12)$	$27.7(8)$	$28.6(8)$	$26.4(9)$	$-6.8(7)$	$7.3(8)$	$-3.8(6)$
$\mathrm{C}(13)$	$43.2(10)$	$32.3(8)$	$17.6(8)$	$-3.9(7)$	$6.0(8)$	$-8.6(7)$
$\mathrm{C}(14)$	$45.1(10)$	$28.4(8)$	$17.7(8)$	$0.0(7)$	$-4.0(8)$	$-0.5(7)$
$\mathrm{C}(15)$	$31.7(8)$	$23.3(7)$	$21.1(8)$	$-1.5(6)$	$-3.4(7)$	$3.4(6)$
$\mathrm{C}(16)$	$21.9(7)$	$16.8(6)$	$16.3(7)$	$-0.6(6)$	$-0.6(7)$	$-1.3(5)$
$\mathrm{C}(17)$	$19.7(7)$	$22.6(7)$	$23.0(8)$	$0.3(6)$	$0.5(7)$	$-1.7(6)$
$\mathrm{C}(18)$	$24.7(8)$	$23.9(7)$	$30.7(9)$	$1.6(7)$	$-4.8(7)$	$1.7(6)$
$\mathrm{C}(19)$	$36.4(9)$	$25.5(7)$	$21.9(8)$	$4.7(7)$	$-1.9(8)$	$0.9(7)$
$\mathrm{C}(20)$	$34.4(9)$	$28.4(8)$	$20.3(8)$	$2.8(7)$	$7.9(8)$	$1.8(7)$
$\mathrm{C}(21)$	$24.4(7)$	$22.4(7)$	$21.3(8)$	$-1.8(6)$	$4.9(7)$	$3.1(6)$
$\mathrm{C}(22)$	$16.7(6)$	$22.6(7)$	$20.1(8)$	$5.2(6)$	$0.2(7)$	$0.6(6)$
$\mathrm{C}(23)$	$21.7(7)$	$23.9(7)$	$19.4(8)$	$1.6(6)$	$-2.1(7)$	$2.0(6)$
$\mathrm{C}(24)$	$25.9(8)$	$34.8(8)$	$20.5(8)$	$1.5(7)$	$4.1(7)$	$2.2(7)$
$\mathrm{C}(25)$	$24.4(7)$	$32.8(8)$	$28.8(9)$	$9.8(7)$	$3.6(8)$	$-4.5(6)$
$\mathrm{C}(26)$	$24.5(7)$	$22.9(7)$	$31.1(9)$	$4.4(7)$	$-1.0(7)$	$-2.2(6)$
$\mathrm{C}(27)$	$22.1(7)$	$23.3(7)$	$23.7(8)$	$0.7(6)$	$1.1(7)$	$0.6(6)$
$\mathrm{C}(28)$	$20.9(7)$	$25.8(7)$	$28.4(9)$	$-5.4(7)$	$-1.6(7)$	$2.7(6)$
$\mathrm{C}(29)$	$38.5(9)$	$24.7(7)$	$22.7(9)$	$-1.7(7)$	$-0.8(8)$	$1.6(7)$

Table XXX. Bond Lengths.

Atom Atom	Length/ \AA	Atom Atom	Length $/ \AA$	
$\mathrm{O}(1)$	$\mathrm{N}(1)$	$1.4746(14)$	$\mathrm{C}(10) \mathrm{C}(11)$	$1.404(2)$
$\mathrm{O}(1)$	$\mathrm{C}(5)$	$1.4232(17)$	$\mathrm{C}(10) \mathrm{C}(15)$	$1.389(2)$
$\mathrm{O}(2)$	$\mathrm{C}(3)$	$1.2078(18)$	$\mathrm{C}(11) \mathrm{C}(12)$	$1.397(2)$
$\mathrm{O}(3)$	$\mathrm{C}(4)$	$1.2033(17)$	$\mathrm{C}(11) \mathrm{C}(28)$	$1.503(2)$
$\mathrm{N}(1)$	$\mathrm{C}(1)$	$1.5090(17)$	$\mathrm{C}(12) \mathrm{C}(13)$	$1.386(3)$

$\mathrm{N}(1)$	$\mathrm{C}(10)$	$1.4393(19)$	$\mathrm{C}(13) \mathrm{C}(14)$	$1.380(3)$
$\mathrm{N}(2)$	$\mathrm{C}(3)$	$1.3955(18)$	$\mathrm{C}(14) \mathrm{C}(15)$	$1.388(2)$
$\mathrm{N}(2)$	$\mathrm{C}(4)$	$1.3958(19)$	$\mathrm{C}(16) \mathrm{C}(17)$	$1.388(2)$
$\mathrm{N}(2)$	$\mathrm{C}(16)$	$1.4382(18)$	$\mathrm{C}(16) \mathrm{C}(21)$	$1.383(2)$
$\mathrm{N}(3)$	$\mathrm{C}(6)$	$1.3751(18)$	$\mathrm{C}(17) \mathrm{C}(18)$	$1.386(2)$
$\mathrm{N}(3)$	$\mathrm{C}(9)$	$1.3783(19)$	$\mathrm{C}(18) \mathrm{C}(19)$	$1.391(2)$
$\mathrm{N}(3)$	$\mathrm{C}(22)$	$1.4290(19)$	$\mathrm{C}(19) \mathrm{C}(20)$	$1.383(2)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.536(2)$	$\mathrm{C}(20) \mathrm{C}(21)$	$1.392(2)$
$\mathrm{C}(1)$	$\mathrm{C}(7)$	$1.4972(19)$	$\mathrm{C}(22) \mathrm{C}(23)$	$1.399(2)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.511(2)$	$\mathrm{C}(22) \mathrm{C}(27)$	$1.390(2)$
$\mathrm{C}(2)$	$\mathrm{C}(5)$	$1.5316(18)$	$\mathrm{C}(23) \mathrm{C}(24)$	$1.392(2)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.531(2)$	$\mathrm{C}(23) \mathrm{C}(29)$	$1.512(2)$
$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.366(2)$	$\mathrm{C}(24) \mathrm{C}(25)$	$1.391(2)$
$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.4280(19)$	$\mathrm{C}(25) \mathrm{C}(26)$	$1.385(2)$
$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.365(2)$	$\mathrm{C}(26) \mathrm{C}(27)$	$1.384(2)$

Table XXXI. Bond Angles.

Atom	Atom	Atom	Angle $/{ }^{\circ}$	Atom Atom	Atom	Angle/ ${ }^{\circ}$
$\mathrm{C}(5)$	$\mathrm{O}(1)$	$\mathrm{N}(1)$	100.50(10)	C(8) C(9)	$\mathrm{N}(3)$	108.36(13)
$\mathrm{O}(1)$	$\mathrm{N}(1)$	C(1)	101.32(9)	$\mathrm{C}(11) \mathrm{C}(10)$	$\mathrm{N}(1)$	116.54(13)
C(10)	$\mathrm{N}(1)$	$\mathrm{O}(1)$	108.77(11)	$\mathrm{C}(15) \mathrm{C}(10)$	$\mathrm{N}(1)$	122.64(13)
C(10)	$\mathrm{N}(1)$	$\mathrm{C}(1)$	115.12(11)	$\mathrm{C}(15) \mathrm{C}(10)$	$\mathrm{C}(11)$	120.82(14)
C(3)	$\mathrm{N}(2)$	$\mathrm{C}(4)$	112.46(12)	$\mathrm{C}(10) \mathrm{C}(11)$	$\mathrm{C}(28)$	121.99(14)
C(3)	$\mathrm{N}(2)$	$C(16)$	122.51(12)	$\mathrm{C}(12) \mathrm{C}(11)$	$\mathrm{C}(10)$	$117.36(15)$
$\mathrm{C}(4)$	$\mathrm{N}(2)$	$C(16)$	124.98(12)	$\mathrm{C}(12) \mathrm{C}(11)$	$\mathrm{C}(28)$	120.64(14)
C(6)	$\mathrm{N}(3)$	C(9)	108.51(12)	$\mathrm{C}(13) \mathrm{C}(12)$	$\mathrm{C}(11)$	121.87(16)
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(22)$	126.29(12)	$\mathrm{C}(14) \mathrm{C}(13)$	$\mathrm{C}(12)$	119.77(16)
C(9)	$\mathrm{N}(3)$	$\mathrm{C}(22)$	125.16(12)	$\mathrm{C}(13) \mathrm{C}(14)$	$C(15)$	119.82(17)
N(1)	$\mathrm{C}(1)$	$\mathrm{C}(2)$	100.01(11)	$\mathrm{C}(14) \mathrm{C}(15)$	$C(10)$	120.33(15)
C(7)	$\mathrm{C}(1)$	$\mathrm{N}(1)$	115.30(12)	$\mathrm{C}(17) \mathrm{C}(16)$	$\mathrm{N}(2)$	118.95(13)
C(7)	$\mathrm{C}(1)$	C(2)	112.20(11)	$\mathrm{C}(21) \mathrm{C}(16)$	$\mathrm{N}(2)$	119.86(13)
C(3)	$\mathrm{C}(2)$	C(1)	113.60(11)	$\mathrm{C}(21) \mathrm{C}(16)$	$\mathrm{C}(17)$	121.19(14)
C(3)	$\mathrm{C}(2)$	C(5)	104.94(11)	$\mathrm{C}(18) \mathrm{C}(17)$	$C(16)$	119.01(15)
C(5)	$\mathrm{C}(2)$	C(1)	103.09(11)	$\mathrm{C}(17) \mathrm{C}(18)$	$C(19)$	120.50(15)
$\mathrm{O}(2)$	$\mathrm{C}(3)$	$\mathrm{N}(2)$	124.91(14)	$\mathrm{C}(20) \mathrm{C}(19)$	$\mathrm{C}(18)$	119.78(15)
$\mathrm{O}(2)$	$\mathrm{C}(3)$	C(2)	126.17(13)	C(19) C(20)	$\mathrm{C}(21)$	120.32(15)
$\mathrm{N}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	108.92(12)	$\mathrm{C}(16) \mathrm{C}(21)$	$\mathrm{C}(20)$	119.20(14)
$\mathrm{O}(3)$	$\mathrm{C}(4)$	$\mathrm{N}(2)$	126.03(14)	$\mathrm{C}(23) \mathrm{C}(22)$	$\mathrm{N}(3)$	120.09(13)
$\mathrm{O}(3)$	$\mathrm{C}(4)$	C(5)	125.80(14)	C (27) $\mathrm{C}(22)$	$\mathrm{N}(3)$	118.62(14)
$\mathrm{N}(2)$	$\mathrm{C}(4)$	C(5)	108.17(11)	C (27) $\mathrm{C}(22)$	$\mathrm{C}(23)$	121.26(14)
$\mathrm{O}(1)$	$C(5)$	$\mathrm{C}(2)$	106.95(11)	C (22) C(23)	$\mathrm{C}(29)$	121.87(14)
$\mathrm{O}(1)$	$\mathrm{C}(5)$	C(4)	111.51(11)	$\mathrm{C}(24) \mathrm{C}(23)$	$\mathrm{C}(22)$	117.28(14)
C(4)	$C(5)$	C(2)	104.67(11)	C (24) $\mathrm{C}(23)$	$\mathrm{C}(29)$	120.81(15)
C(7)	$\mathrm{C}(6)$	$\mathrm{N}(3)$	108.78(12)	$\mathrm{C}(25) \mathrm{C}(24)$	$\mathrm{C}(23)$	121.86(16)

$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(1)$	$125.29(13)$	$\mathrm{C}(26) \mathrm{C}(25)$	$\mathrm{C}(24)$	$119.75(15)$
$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$106.90(13)$	$\mathrm{C}(27) \mathrm{C}(26)$	$\mathrm{C}(25)$	$119.58(15)$
$\mathrm{C}(8)$	$\mathrm{C}(7)$	$\mathrm{C}(1)$	$127.81(13)$	$\mathrm{C}(26) \mathrm{C}(27)$	$\mathrm{C}(22)$	$120.25(15)$
$\mathrm{C}(9)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$107.46(13)$			

Table XXXII. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.

Atom	\boldsymbol{x}	y	z	U(eq)
H(1)	6835	2840	838	20
H(2)	9732	2088	491	19
H(5)	13233	2499	573	20
H(6)	4999	2136	1323	23
H(8)	11378	1600	1074	25
H(9)	9800	789	1487	26
H(12)	5978	4142	1922	33
H(13)	8220	3690	2358	37
H(14)	11225	3020	2206	36
H(15)	11959	2799	1615	30
H(17)	6865	4176	62	26
H(18)	6301	4932	-387	32
H(19)	9151	5137	-796	33
$\mathrm{H}(20)$	12562	4581	-761	33
H(21)	13162	3830	-309	27
H(24)	2464	1087	2429	32
H(25)	1583	25	2282	34
H(26)	3135	-442	1777	31
H(27)	5494	170	1415	28
H(28A)	7141	4180	1019	35(3)
H(28B)	5544	4475	1317	35(3)
H(28C)	4986	3783	1151	35(3)
H(29A)	6771	2022	2079	47(4)
H(29B)	4850	2011	2375	47(4)
$\mathrm{H}(29 \mathrm{C})$	4281	2266	1988	47(4)

E.3. General procedure for the screening of the dipolarophile for the [3+2]cycloaddition:

Diene 241c (1 eq.) and 4-nitrosobenzoate 160 g (3.2 eq.) were dissolved in AcOEt. The reaction mixture was stirred at r.t. for 1.5 h . The dipolarophile (1.1 eq .) was added and the reaction mixture stirred under reflux for 22 h . The crude reaction mixture was evaporated and purified by silica gel chromatography.

Pyrrole 306g.

Formula: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$ MW : 243.26

Diene 241c ($50.0 \mathrm{mg}, 0.24 \mathrm{mmol}$) and 4-nitrosobenzoate $\mathbf{1 6 0 g}$ ($138.3 \mathrm{mg}, 0.76 \mathrm{mmol}$) were dissolved in AcOEt (1.2 mL). The reaction mixture was stirred at r.t. for 1.5 h . Diethyl azodicarboxylate $\mathbf{3 0 7}(45 \mu \mathrm{~L}, 0.28 \mathrm{mmol})$ was added and the reaction mixture stirred under reflux for 22 h . The crude reaction mixture was evaporated and purified by silica gel chromatography (eluent, hexane/AcOEt, $1 / 1, \mathrm{R}_{\mathrm{f}}=0.65$) to afford $\mathbf{3 0 6 g}$ as a yellow-orange solid (19.2 mg, 33\%).
M.p. $=94-95^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 9.88\left(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 8.20-8.14$ (m, $2 \mathrm{H}, \mathrm{H}_{5}$), $7.74\left(\mathrm{dd}, J=2.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 7.52-7.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 7.17(\mathrm{ddd}, \mathrm{J}=3.0,2.1$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=3.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right), 1.42(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}_{1}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $185.5\left(\mathrm{C}_{12}\right), 165.7\left(\mathrm{C}_{3}\right), 142.9\left(\mathrm{C}_{7}\right), 131.6\left(\mathrm{C}_{5}\right)$, $129.4(\mathrm{C}), 128.9(\mathrm{C}), 126.8(\mathrm{CH}), 122.1(\mathrm{CH}), 120.4\left(\mathrm{C}_{6}\right), 110.5\left(\mathrm{C}_{9}\right), 61.5\left(\mathrm{C}_{2}\right), 14.5\left(\mathrm{C}_{1}\right)$.

IR (neat, v) 2973, 1714, 1671, 1614, 1538, 1476, 1286, 1236, 1209, 1100, 1047, 787, 766, $722,692 \mathrm{~cm}^{-1}$.

LRMS (ESI+) 245.5 (90\%) $[\mathrm{M}+2 \mathrm{H}]^{+}$.
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}\right): 244.0974$ found: 244.0983.

Single crystal X-ray structure data for $\mathbf{3 0 6 g}$:

A suitable crystal was selected and measured on a D8V_Mo diffractometer. The crystal was kept at 120 K during data collection. Using Olex $2,{ }^{185}$ the structure was solved with the ShelXS structure solution program ${ }^{182}$ using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. ${ }^{182}$

Table XXXIII. Crystal data and structure refinement.

Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$
Formula weight	243.25
Temperature $/ \mathrm{K}$	120
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
a / \AA	$7.092(2)$
b / \AA	$10.597(3)$
c / \AA	$15.834(5)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90

Volume $/ \AA^{3}$	$1190.0(6)$
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.358
μ / mm^{-1}	0.791
$\mathrm{~F}(000)$	512.0
Crystal size $/ \mathrm{mm}^{3}$	$0.156 \times 0.043 \times 0.04$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	10.044 to 131.582
Index ranges	$-6 \leq \mathrm{h} \leq 8,-11 \leq \mathrm{k} \leq 12,-18 \leq 1 \leq 17$
Reflections collected	7950
Independent reflections	$2011\left[\mathrm{R}_{\text {int }}=0.0911, \mathrm{R}_{\text {sigma }}=0.0897\right]$
Data/restraints $/$ parameters	$2011 / 0 / 164$
Goodness-of-fit on F^{2}	1.006
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0552, \mathrm{wR}_{2}=0.1020$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0994, \mathrm{wR}_{2}=0.1172$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.22 /-0.23$
Flack parameter	$0.5(3)$

Table XXXIV. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right) . U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
$\mathrm{O}(1)$	$1446(4)$	$3288(3)$	$2081.2(17)$	$29.5(9)$
$\mathrm{O}(2)$	$1255(4)$	$5240(3)$	$2620.4(18)$	$34.3(9)$
$\mathrm{O}(3)$	$1721(5)$	$1038(3)$	$8787.9(19)$	$40.9(10)$
N	$1149(5)$	$1798(3)$	$5950(2)$	$20.7(9)$
$\mathrm{C}(1)$	$1180(6)$	$3467(4)$	$3551(3)$	$21.6(11)$
$\mathrm{C}(2)$	$841(6)$	$4194(4)$	$4266(3)$	$25.4(11)$
$\mathrm{C}(3)$	$801(6)$	$3653(4)$	$5052(3)$	$22.7(11)$
$\mathrm{C}(4)$	$1140(6)$	$2371(4)$	$5136(3)$	$19.5(11)$
$\mathrm{C}(5)$	$1445(6)$	$1638(4)$	$4427(3)$	$21.8(11)$
$\mathrm{C}(6)$	$1450(6)$	$2180(4)$	$3637(3)$	$23.6(11)$
$\mathrm{C}(7)$	$1280(6)$	$4105(4)$	$2721(3)$	$27.8(12)$
$\mathrm{C}(8)$	$1724(7)$	$3826(4)$	$1249(3)$	$32.5(13)$
$\mathrm{C}(9)$	$1612(8)$	$2787(4)$	$623(3)$	$46.9(16)$
$\mathrm{C}(10)$	$1583(6)$	$2385(4)$	$6692(2)$	$21.5(11)$
$\mathrm{C}(11)$	$1458(6)$	$1516(4)$	$7335(3)$	$22.7(11)$
$\mathrm{C}(12)$	$949(6)$	$343(4)$	$6958(3)$	$29.0(12)$
$\mathrm{C}(13)$	$762(7)$	$540(4)$	$6126(3)$	$29.3(12)$
$\mathrm{C}(14)$	$1842(7)$	$1798(5)$	$8207(3)$	$31.0(13)$

Table XXXV. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathrm{U}_{11}+2 h k a * b^{*} \mathrm{U}_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
$\mathrm{O}(1)$	$36(2)$	$32.8(18)$	$19.5(17)$	$7.5(15)$	$-0.6(17)$	$-4.1(16)$
$\mathrm{O}(2)$	$45(2)$	$27.3(17)$	$30.8(19)$	$5.8(15)$	$-4.3(17)$	$-0.3(17)$

$\mathrm{O}(3)$	$52(3)$	$46(2)$	$24(2)$	$13.5(17)$	$1.9(18)$
N	$20(2)$	$21.7(19)$	$20(2)$	$-1.3(17)$	$0.7(19)$
$\mathrm{C}(1)$	$14(3)$	$26(2)$	$26(3)$	$5(2)$	$-4(2)$
$\mathrm{C}(2)$	$22(3)$	$20(2)$	$34(3)$	$0(2)$	$-2(2)$
$\mathrm{C}(3)$	$24(3)$	$24(2)$	$20(3)$	$-4(2)$	$-4(2)$
$\mathrm{C}(4)$	$15(3)$	$22(2)$	$21(3)$	$2(2)$	$-5(2)$
$\mathrm{C}(5)$	$21(3)$	$19(2)$	$25(3)$	$-1(2)$	$-3(2)$
$\mathrm{C}(6)$	$21(3)$	$25(2)$	$25(3)$	$-4(2)$	$-3(2)$
$\mathrm{C}(7)$	$19(3)$	$29(3)$	$35(3)$	$-2(2)$	$-5(3)$
$\mathrm{C}(8)$	$35(3)$	$34(3)$	$28(3)$	$11(2)$	$0(2)$
$\mathrm{C}(9)$	$69(5)$	$46(3)$	$26(3)$	$5(3)$	$-3(2)$
$\mathrm{C}(10)$	$19(3)$	$24(2)$	$21(3)$	$-5(2)$	$-2(2)$
$\mathrm{C}(11)$	$16(3)$	$32(2)$	$19(3)$	$0(2)$	$0(2)$
$\mathrm{C}(12)$	$28(3)$	$31(3)$	$28(3)$	$11(2)$	$4(2)$
$\mathrm{C}(13)$	$28(3)$	$24(3)$	$37(3)$	$5(2)$	$-1(2)$
$\mathrm{C}(14)$	$34(3)$	$35(3)$	$24(3)$	$6(2)$	$-4(2)$

Table XXXVI. Bond Lengths.

Atom Atom	Length/Å	Atom Atom	Length/ $/$ ®
$\mathrm{O}(1) \mathrm{C}(7)$	1.338(5)	$\mathrm{C}(2) \mathrm{C}(3)$	1.371(6)
$\mathrm{O}(1) \mathrm{C}(8)$	1.449(5)	$\mathrm{C}(3) \mathrm{C}(4)$	$1.386(5)$
$\mathrm{O}(2) \mathrm{C}(7)$	1.213(5)	$\mathrm{C}(4) \mathrm{C}(5)$	1.382(6)
$\mathrm{O}(3) \mathrm{C}(14)$	$1.225(5)$	$\mathrm{C}(5) \mathrm{C}(6)$	1.376 (6)
$\mathrm{N} \quad \mathrm{C}(4)$	$1.425(5)$	$\mathrm{C}(8) \mathrm{C}(9)$	1.483(6)
$\mathrm{N} \quad \mathrm{C}(10)$	1.364(5)	$\mathrm{C}(10) \mathrm{C}(11)$	$1.376(5)$
$\mathrm{N} \mathrm{C}(13)$	1.390 (5)	$\mathrm{C}(11) \mathrm{C}(12)$	1.425(6)
$\mathrm{C}(1) \mathrm{C}(2)$	1.391(6)	$\mathrm{C}(11) \mathrm{C}(14)$	$1.439(6)$
$\mathrm{C}(1) \mathrm{C}(6)$	1.384(5)	$\mathrm{C}(12) \mathrm{C}(13)$	1.340(6)
$\mathrm{C}(1) \mathrm{C}(7)$	1.479(6)		

Table XXXVII. Bond Angles.

Atom Atom Atom			Angle ${ }^{\circ}$	Atom Atom Atom	Angle/ ${ }^{\circ}$
C(7)	$\mathrm{O}(1)$	$\mathrm{C}(8)$	116.4(3)	$\mathrm{C}(5) \mathrm{C}(6) \mathrm{C}(1)$	120.1(4)
C(10)	N	$\mathrm{C}(4)$	125.8(3)	$\mathrm{O}(1) \mathrm{C}(7) \mathrm{C}(1)$	112.4(4)
C(10)	N	C(13)	108.0(3)	$\mathrm{O}(2) \mathrm{C}(7) \mathrm{O}(1)$	122.9(4)
C(13)	N	C(4)	126.1(3)	$\mathrm{O}(2) \mathrm{C}(7) \mathrm{C}(1)$	124.7(4)
C(2)	C(1)	$\mathrm{C}(7)$	118.6(4)	$\mathrm{O}(1) \mathrm{C}(8) \quad \mathrm{C}(9)$	107.9(3)
C(6)	$\mathrm{C}(1)$	$\mathrm{C}(2)$	119.3(4)	$\mathrm{N} \quad \mathrm{C}(10) \mathrm{C}(11)$	108.5(3)
C(6)	C(1)	$\mathrm{C}(7)$	122.1(4)	$\mathrm{C}(10) \mathrm{C}(11) \mathrm{C}(12)$	106.8(4)
C(3)	$\mathrm{C}(2)$	$\mathrm{C}(1)$	120.7(4)	$\mathrm{C}(10) \mathrm{C}(11) \mathrm{C}(14)$	124.0(4)
C(2)	C(3)	$\mathrm{C}(4)$	119.6(4)	$\mathrm{C}(12) \mathrm{C}(11) \mathrm{C}(14)$	129.1(4)
C(3)	$\mathrm{C}(4)$	N	120.3(4)	$\mathrm{C}(13) \mathrm{C}(12) \mathrm{C}(11)$	107.5(4)
C(5)	$\mathrm{C}(4)$	N	119.7(3)	$\mathrm{C}(12) \mathrm{C}(13) \mathrm{N}$	109.1(4)

$\mathrm{C}(5)$	$\mathrm{C}(4)$	$\mathrm{C}(3)$	$120.0(4)$	$\mathrm{O}(3) \mathrm{C}(14) \mathrm{C}(11)$	$124.8(4)$
$\mathrm{C}(6)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$120.3(4)$		

Table XXXVIII. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}(\mathbf{e q})$
H(2)	635	5076	4210	30
H(3)	542	4153	5536	27
H(5)	1652	757	4484	26
H(6)	1640	1671	3151	28
H(8A)	2972	4242	1217	39
H(8B)	740	4465	1132	39
H(9A)	1880	3119	58	70
H(9B)	343	2422	632	70
H(9C)	2538	2135	766	70
H(10)	1916	3248	6754	26
H(12)	774	-436	7244	35
H(13)	420	-82	5722	35
H(14)	2216	2635	8343	37

E.4. Procedures for the study of the mechanistic aspects:

Pyrrole 277g ($47.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 4-nitrosobenzoate $\mathbf{1 6 0 g}(77.2 \mathrm{mg}, 0.45 \mathrm{mmol})$ were dissolved in AcOEt (1 mL). The reaction mixture was stirred at r.t. A sample was taken by syringe after 1.5 h and the reaction stopped after 24 h . The crude reaction mixture was evaporated, and no purification was performed.

Diene 241c (1 eq .), 4-nitrosobenzoate $\mathbf{1 6 0 g}$ (3.2 eq .) and TEMPO 314 (0.1 or 1 eq .) were dissolved in AcOEt. The reaction mixture was stirred at r.t. for 1.5 h . The solvent was evaporated and the crude reaction mixture analysed by ${ }^{1} \mathrm{H}$ NMR. No purification was performed.

To a solution of 4-nitrosobenzoate $\mathbf{1 6 0 g}$ (3.2 eq.) in AcOEt under an inert atmosphere was added a solution of diene 241c (1 eq.) in AcOEt. The reaction was stirred at r.t. for 1.5 h under an inert atmosphere. The solvent was evaporated and the crude reaction mixture analysed by ${ }^{1} \mathrm{H}$ NMR. No purification was performed.

Compound 315 ($50.0 \mathrm{mg}, 0.14 \mathrm{mmol}$) and 4-nitrosobenzoate $\mathbf{1 6 0 g}$ ($55.0 \mathrm{mg}, 0.31 \mathrm{mmol}$) were dissolved in AcOEt $(0.7 \mathrm{~mL})$. The reaction mixture was stirred r.t. A sample was taken by syringe after 1.5 h and the reaction stopped after 24 h . The crude reaction mixture was evaporated, and no purification was performed.

Boronated dienes and carbonylnitroso compounds

A. Reaction of 1-dienylboronate pinacolate esters with carbonylnitroso compounds

Procedure using $\mathrm{Bu}_{4} \mathrm{NIO}_{4}$:

A solution of diene 241c ($37.5 \mathrm{mg}, 0.19 \mathrm{mmol}$) and nitroso precursor 318a ($32.3 \mathrm{mg}, 0.19$ $\mathrm{mmol})$ in $\mathrm{DCM}(0.5 \mathrm{~mL})$ was cooled to $-5^{\circ} \mathrm{C}$. A DCM solution $(2 \mathrm{~mL})$ of $\mathrm{Bu}_{4} \mathrm{NIO}_{4}(83.8 \mathrm{mg}$ 0.19 mmol) was added dropwise. The reaction mixture was stirred at $-5^{\circ} \mathrm{C}$ for 2 h . The crude mixture was washed with a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(2 \mathrm{x})$, saturated solution of NaHCO_{3} (2 x), water (1 x) and finally brine (1 x). The organic layer was dried over MgSO_{4}, filtered and evaporated. The crude product was analysed by ${ }^{1} \mathrm{H}$ NMR, (no purification was performed).

Procedure using Rose Bengal:

To a solution of Rose Bengal ($4.6 \mathrm{mg}, 0.0045 \mathrm{mmol}$) in $\mathrm{MeCN}(1 \mathrm{~mL})$, was added pyridine $\left(26 \mu \mathrm{~L}, 6.20 \times 10^{-4} \mathrm{~mol} . \mathrm{L}^{-1}\right.$ in MeCN$)$. Nitroso precursor 318a and diene 241c $(87.0 \mathrm{mg}, 0.45$ mmol) were then added successively. The reaction mixture was stirred at $35^{\circ} \mathrm{C}$ (heating from the light) for 22 h under irradiation from a light bulb (40W).

Procedure using aerobic copper method:

A solution of copper source (0.2 eq.) and pyridine (0.05 eq.) was stirred at r.t. in THF for 5 min . To the solution was added diene 241c (1 eq.) and carbonylnitroso precursor 318a (1.5 eq.) and THF. The reaction mixture was stirred at r.t. until TLC showed full completion of the diene. The solvent was evaporated and the crude reaction product was purified by silica gel chromatography.

Carbonylnitroso ene-product 315.

A solution of $\mathrm{CuCl}(4.2 \mathrm{mg}, 0.043 \mathrm{mmol})$ and pyridine $\left(18 \mu \mathrm{~L}, 6.19 \times 10^{-4} \mathrm{~mol} . \mathrm{L}^{-1}\right.$ in THF) was prepared in THF (1 mL). After 5 min , diene $241 \mathrm{c}(82.0 \mathrm{mg}, 0.42 \mathrm{mmol}$), carbonyl nitroso precursor 318a ($106.0 \mathrm{mg}, 0.63 \mathrm{mmol}$) and THF (1 mL) were added. The reaction mixture was stirred between 10 and $17^{\circ} \mathrm{C}$ (cryostat) for 28 h . The solvent was evaporated, and the crude reaction product was purified by silica gel chromatography (eluent, hexane/AcOEt, $7 / 3$, $\mathrm{R}_{\mathrm{f}}=0.55$) to afford compound 315 as a white solid ($100.0 \mathrm{mg}, 66 \%$).
M.p. $=98^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{11}, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{13}\right), 7.06(\mathrm{~d}, \mathrm{~J}=$ $\left.18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.66\left(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 5.39\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 5.34\left(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right)$, $5.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 4.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 1.28\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z ~ C h l o r o f o r m - d , ~} \boldsymbol{\delta} \mathbf{~ p p m}$) $157.4\left(\mathrm{C}_{8}\right), 149.2\left(\mathrm{C}_{4}\right), 140.7\left(\mathrm{C}_{5}\right), 135.9\left(\mathrm{C}_{10}\right)$, $128.7\left(\mathrm{C}_{12}\right), 128.4\left(\mathrm{C}_{13}\right), 128.3\left(\mathrm{C}_{11}\right), 121.0\left(\mathrm{C}_{6}\right), 117.6\left(\mathrm{C}_{3}\right), 83.5\left(\mathrm{C}_{2}\right), 68.3\left(\mathrm{C}_{9}\right), 51.6\left(\mathrm{C}_{7}\right)$, $24.9\left(\mathrm{C}_{1}\right)$.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d}, \boldsymbol{\delta} \mathbf{~ p p m}$) 30.1.

IR (neat, v) 3263, 1700, 1605, 1353, 1244, 1101, 1001, 907, 846, 756, 700, $590 \mathrm{~cm}^{-1}$.
LRMS (ESI+) $360.2[\mathrm{M}+\mathrm{H}]^{+}, 315.6$ (59\%), 283.3 (22\%).
HRMS (ESI) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{5}{ }^{11} \mathrm{~B}\right)$: 360.1982 found: 360.1992.

Pyrrole 321.

(1 eq.)
241c

(1.5 eq.) 318b

Oxidation using aerobic copper method was followed using $\mathrm{CuCl}(9.1 \mathrm{mg}, 0.092 \mathrm{mmol})$ and pyridine ($39 \mu \mathrm{~L}, 6.19 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ in THF) in THF (1 mL). After 5 min , diene $241 \mathrm{c}(80.0 \mathrm{mg}$, $0.46 \mathrm{mmol})$, carbonyl nitroso precursor $\mathbf{3 1 8 b}(105.5 \mathrm{mg}, 0.69 \mathrm{mmol})$ and THF (1 mL) were added. The reaction mixture was stirred at r.t. for 48 h . The crude reaction mixture was filtered over a pad of celite and washed with acetone $(150 \mathrm{~mL})$. The solvent was evaporated and the crude product was purified by silica gel chromatography (eluent, hexane/AcOEt, $7 / 3$, $\left.R_{f}=0.60\right)$. to afford pyrrole $\mathbf{3 2 1}$ as a yellow solid ($14.8 \mathrm{mg}, 16 \%$).
M.p. $=120^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.53-7.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}$, H_{9}), $7.23\left(\mathrm{dd}, J=3.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.18-7.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 7.13(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.03-$ $7.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 6.18\left(\mathrm{dd}, J=3.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 2.12\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $137.1\left(\mathrm{C}_{7}\right), 129.4\left(\mathrm{C}_{9}\right), 124.9\left(\mathrm{C}_{10}\right)$, $123.6\left(\mathrm{C}_{2}\right)$, $120.4\left(\mathrm{C}_{8}\right), 118.9\left(\mathrm{C}_{4}\right), 115.8\left(\mathrm{C}_{5}\right), 114.6\left(\mathrm{C}_{3}\right), 12.1\left(\mathrm{C}_{1}\right)$.

IR (neat, v) 3354, 1680, 1600, 1533, 1444, 1339, 1313, 1253, 1085, 781, 744, 688, 599, 575 cm^{-1}.

LRMS (ESI+) $201.5[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\right)$: 201.1028 found: 201.1034.

B. Reaction of tetracoordinated 1-borodienes with carboylnitroso compounds

B.1. Reaction using BMIDA diene 249:

Oxazine 322a.

Procedure using aerobic copper method:

$\mathrm{CuCl}(8.9 \mathrm{mg}, 0.090 \mathrm{mmol})$ and pyridine $\left(36 \mu \mathrm{~L}, 6.19 \times 10^{-4} \mathrm{~mol} . \mathrm{L}^{-1}\right.$ in THF) in THF (1 mL). After 5 min , diene 249 ($100.0 \mathrm{mg}, 0.45 \mathrm{mmol}$), carbonyl nitroso precursor 318a (113.5 mg , $0.67 \mathrm{mmol})$ and THF $(1 \mathrm{~mL})$ were added. The reaction mixture was stirred at r.t. for 9 days. The solvent was evaporated and the crude product was purified by solid phase silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.55$) to afford oxazine 322a as a white solid ($125.4 \mathrm{mg}, 72 \%$).

Procedure using $\mathrm{Bu}_{4} \mathrm{NIO}_{4}$:

A solution of diene $249(40 \mathrm{mg}, 0.18 \mathrm{mmol})$ and nitroso precursor $\mathbf{3 1 8 a}(37.4 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{DCM}(0.5 \mathrm{~mL})$ was cooled to $-5{ }^{\circ} \mathrm{C}$. A DCM solution (2 mL) of $\mathrm{Bu}_{4} \mathrm{NIO}_{4}(97.1 \mathrm{mg} 0.22$ mmol) was added dropwise. The reaction mixture was stirred at $-5^{\circ} \mathrm{C}$ for 2 h . The crude was washed with a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(2 \mathrm{x})$, a saturated solution of $\mathrm{NaHCO}_{3}(2 \mathrm{x})$, water (1 x) and finally brine (1 x). The organic layer was dried over MgSO_{4}, filtered and evaporated. The crude product was purified by solid phase silica gel chromatography (eluent, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2, \mathrm{R}_{\mathrm{f}}=0.55$) to afford oxazine 322a as a white solid ($26.0 \mathrm{mg}, 37 \%$).
M.p. $=185^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.45-7.31\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{14}, \mathrm{H}_{15}\right.$ and $\left.\mathrm{H}_{16}\right)$, $5.64(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{7}\right), 5.21-5.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 4.40\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.30\left(\mathrm{~d}, J=17.2,1 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 4.17(\mathrm{~d}, J=$ $16.4,1 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), $4.16-4.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 4.03\left(\mathrm{~d}, J=17.2,1 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right) 3.86(\mathrm{~d}, J=$ $16.4,1 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), $3.87-3.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 3.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 1.74(\mathrm{dq}, J=2.4,1.1 \mathrm{~Hz}, 3 \mathrm{H}$, H_{9}).
${ }^{13} \mathbf{C}$ NMR (101 MHz , Acetone- $\left.\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 169.1\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 168.0\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 156.3\left(\mathrm{C}_{11}\right)$, $137.4\left(\mathrm{C}_{13}\right), 129.4\left(\mathrm{C}_{15}\right), 129.2\left(\mathrm{C}_{16}\right), 129.1\left(\mathrm{C}_{14}\right), 128.8\left(\mathrm{C}_{8}\right), 120.9\left(\mathrm{C}_{7}\right), 68.2\left(\mathrm{C}_{12}\right), 63.1\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 63.0\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 49.1\left(\mathrm{C}_{10}\right), 46.5\left(\mathrm{C}_{1}\right), 20.1\left(\mathrm{C}_{9}\right)$, B-C not visible.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 9.7.
LRMS (ESI+) $389.1[\mathrm{M}+\mathrm{H}]^{+}, 345.1$ (43\%), 172.1 (75\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{10} \mathrm{~B}\right): 388.1155$ found: 388.1535 .

Oxazine 322b.

Oxidation using aerobic copper method was followed using $\mathrm{CuCl}(8.9 \mathrm{mg}, 0.090 \mathrm{mmol})$ and pyridine ($36 \mu \mathrm{~L}, 6.19 \times 10^{-4} \mathrm{~mol} . \mathrm{L}^{-1}$ in THF) in THF (1 mL). After 5 min , diene 249 (100.0 mg , 0.45 mmol), carbonyl nitroso precursor $\mathbf{3 1 8 b}(103.2 \mathrm{mg}, 0.67 \mathrm{mmol})$ and THF (1 mL) were added. The reaction mixture was stirred at r.t. for 7 days. The solvent was evaporated and the crude product was purified by solid phase silica gel chromatography (eluent $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 8 / 2$, $\mathrm{R}_{\mathrm{f}}=0.6$) to afford oxazine $\mathbf{3 2 2 b}$ as a white solid (37.2 mg, 58\%).
M.p. $=145^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.56-7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 7.32$ $7.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 7.06-6.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 5.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.60\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.38(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}$ or H_{3}), $4.31\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right) 4.26-4.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 4.18(\mathrm{~d}, J$ $=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}$ or $\left.\mathrm{H}_{3}\right), 4.14\left(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right) 3.76-3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 3.32$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{1}$), $1.80\left(\mathrm{dt}, J=2.4,1.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{9}\right)$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Acetone- $\left.\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 168.8\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 168.7\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{5}\right), 156.4\left(\mathrm{C}_{11}\right)$, $139.9\left(\mathrm{C}_{12}\right), 129.7\left(\mathrm{C}_{8}\right), 129.6\left(\mathrm{C}_{14}\right), 123.6\left(\mathrm{C}_{15}\right), 120.7\left(\mathrm{C}_{7}\right), 119.6\left(\mathrm{C}_{13}\right), 63.5\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right), 63.4$ $\left(\mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{3}\right)$, $48.1\left(\mathrm{C}_{10}\right)$, $47.1\left(\mathrm{C}_{1}\right), 20.3\left(\mathrm{C}_{9}\right)$, $\mathrm{B}-\mathrm{C}$ not visible.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 9.7.
LRMS (ESI+) 412.1 (39\%) [M+K] $]^{+}, 396.1$ (100\%) [M+Na] ${ }^{+}$, 264.1, 246.2.
HRMS (ESI+ $)$ calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{11} \mathrm{BNa}\right)$: 396.1343 found: 396.1346.

B.2. Reaction using $B F_{3} K$ diene 276:

Pyrrole 320.

Oxidation using aerobic copper method was followed using $\mathrm{CuCl}(9.1 \mathrm{mg}, 0.092 \mathrm{mmol})$ and pyridine ($39 \mu \mathrm{~L}, 6.19 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ in THF) in THF (1 mL). After 5 min , diene 276 (80.0 mg , $0.46 \mathrm{mmol})$, carbonyl nitroso precursor 318a ($115.3 \mathrm{mg}, 0.69 \mathrm{mmol}$) and THF (1 mL) were added. The reaction mixture was stirred at r.t. for 22 h . The crude reaction mixture was filtered over a pad of celite and washed with acetone $(150 \mathrm{~mL})$. The solvent was evaporated and the crude product was purified by silica gel chromatography (eluent hexane/AcOEt, $7 / 3$, $\left.\mathrm{R}_{\mathrm{f}}=0.85\right)$ to afford pyrrole $\mathbf{3 2 0}$ as a yellow oil ($48.2 \mathrm{mg}, 48 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.45-7.35\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{9}, \mathrm{H}_{10}\right.$ and $\left.\mathrm{H}_{11}\right), 7.21(\mathrm{t}, \mathrm{J}$ $\left.=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.06-7.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 6.09\left(\mathrm{ddd}, J=3.2,1.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 5.35(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{H}_{7}$), $2.06\left(\mathrm{dd}, J=1.2,0.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C h l o r o f o r m - ~} \boldsymbol{d}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) $150.4\left(\mathrm{C}_{6}\right)$, $135.2\left(\mathrm{C}_{8}\right), 128.8\left(\mathrm{C}_{9}\right.$ or $\left.\mathrm{C}_{10}\right), 128.5$ $\left(\mathrm{C}_{9}\right.$ or $\left.\mathrm{C}_{10}\right)$, $123.4\left(\mathrm{C}_{2}\right), 120.3\left(\mathrm{C}_{4}\right), 117.4\left(\mathrm{C}_{5}\right), 114.9\left(\mathrm{C}_{3}\right), 68.8\left(\mathrm{C}_{7}\right), 12.0\left(\mathrm{C}_{1}\right)$.
IR (neat, v) 1739, 1491, 1456, 1406, 1338, 1241, 1222, 1117, 1068, 971, 767, 696, $616 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 216.1 (71\%) [M+H] ${ }^{+}$, 172.4 (100\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}\right): 216.1025$ found: 216.1021.

Pyrrole 321.

Formula: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
MW : 200.24

321

Oxidation using aerobic copper method was followed using $\mathrm{CuCl}(9.1 \mathrm{mg}, 0.092 \mathrm{mmol})$ and pyridine ($39 \mu \mathrm{~L}, 6.19 \times 10^{-4} \mathrm{~mol} . \mathrm{L}^{-1}$ in THF) in THF (1 mL). After 5 min , diene $250(80.0 \mathrm{mg}$, $0.46 \mathrm{mmol})$, carbonyl nitroso precursor $\mathbf{3 1 8 b}(105.5 \mathrm{mg}, 0.69 \mathrm{mmol})$ and THF (1 mL) were added. The reaction mixture was stirred at r.t. for 20 h . The crude reaction mixture was filtered over a pad of celite and washed with acetone $(150 \mathrm{~mL})$. The solvent was evaporated and the crude product was purified by silica gel chromatography (eluent, hexane/AcOEt, $7 / 3$, $\mathrm{R}_{\mathrm{f}}=0.60$). to afford pyrrole 321 as a yellow solid ($49.1 \mathrm{mg}, 53 \%$).

For charactierisation, refer to section A.

The ene-adduct as key intermediate in cascade reactions

A. The Diels-Alder/allyboration sequence

A.1. General procedure for the Diels-Alder step:

To a solution of $\mathbf{3 1 5}$ in the solvent (DCM or toluene) was added the dienophile (1.1 eq). The reaction mixture was stirred at the temperature indicated in the work procedure. The crude reaction mixture was evaporated and the crude product purified by silica gel chromatography.

Diels-Alder cycloadduct 339a.

Formula : $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{BN}_{2} \mathrm{O}_{7}$ MW : 532.40

Compound 315 ($54.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) and N-phenyl maleimide 2a ($28.6 \mathrm{mg}, 0.17 \mathrm{mmol}$) were stirred in DCM (2 mL) at r.t. for 18 h . The crude was purified by silica gel chromatography (eluent, hexane/EtOAc, $1 / 1, \mathrm{R}_{\mathrm{f}}=0.60$) to afford compound 339a as a white solid ($67.1 \mathrm{mg}, 84 \%$).
M.p. $=89-90^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (600 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 7.41-7.37 (m, 2H, H_{18}), $7.36-7.28(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ and H_{19}), 7.23 - $7.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{17}\right), 6.82(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 6.07(\mathrm{dt}, J=4.9,1.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{9}$), $5.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 4.22\left(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.07\left(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.42$ (ddt, $J=9.6,6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}$), 3.25 (ddt, $J=11.7,6.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}$), $2.71-2.65$ (m , $\left.1 \mathrm{H}, \mathrm{H}_{10}\right), 2.30\left(\mathrm{dd}, J=15.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 2.11-2.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 1.28-1.24(\mathrm{~m}, 12 \mathrm{H}$, H_{21}).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $180.1\left(\mathrm{C}_{14}\right), 179.0\left(\mathrm{C}_{15}\right), 157.4\left(\mathrm{C}_{6}\right), 136.0$ $\left(\mathrm{C}_{4}\right), 135.3\left(\mathrm{C}_{8}\right), 132.1\left(\mathrm{C}_{16}\right), 129.1\left(\mathrm{C}_{18}\right), 128.6\left(\mathrm{C}_{3}\right.$ or $\left.\mathrm{C}_{2}\right), 128.3\left(\mathrm{C}_{19}\right.$ or $\left.\mathrm{C}_{1}\right), 128.2\left(\mathrm{C}_{3}\right.$ or $\left.\mathrm{C}_{2}\right), 127.0\left(\mathrm{C}_{19}\right.$ or $\left.\mathrm{C}_{1}\right), 126.7\left(\mathrm{C}_{17}\right), 84.2\left(\mathrm{C}_{20}\right), 68.2\left(\mathrm{C}_{5}\right), 55.2\left(\mathrm{C}_{7}\right), 42.0\left(\mathrm{C}_{13}\right), 40.4\left(\mathrm{C}_{12}\right), 25.9$ $\left(\mathrm{C}_{10}\right), 25.0\left(\mathrm{C}_{21}\right), 24.8\left(\mathrm{C}_{21}\right), 21.8\left(\mathrm{C}_{11}\right)$.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 32.7.
IR (neat, ט) 3316, 1706, 1704, 1700, 1381, 1329, 1167, 1140, 1098, 853, 738, 693, $623 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 533.1 (100%) $[\mathrm{M}+\mathrm{H}]^{+}, 489.2$ (98%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{29} \mathrm{H}_{34}{ }^{10} \mathrm{BN}_{2} \mathrm{O}_{7}\right)$: 532.2495 found: 532.2505 .

Reaction using 2b, 23, 12 and 341 were performed at r.t. in DCM or at $90^{\circ} \mathrm{C}$ in toluene following the general procedure. No products were isolated.

A.2. General procedure for the Lewis acid catalysed Diels-Alder reaction:

In a oven-dried flask were solubilised compound $\mathbf{3 1 5}$ or compound $\mathbf{3 4 2}$ (1 eq.), freshly ground maleic anhydride (1.1 eq.) and the catalyst (0.1 eq.) in dry DCM under inert atmosphere. The reaction mixture was stirred at r.t. for 48 h . The crude reaction mixture was
washed with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{x})$. The aqeuous layer was extracted with $\mathrm{DCM}(2 \mathrm{x})$. The organic layer was dried over MgSO_{4}, filtered and evaporated.

A.3. Calculations for the determination of the stereochemistry of 339a:

Conformational searches were carried out using Spartan '10. ${ }^{186}$ Each structure was drawn and subjected to a full conformational search, using the Monte-Carlo algorithm with 500 conformations examined, and semi-empirical (AM1) energy minimisations to give the predictions of the 10 lowest energy conformations. Dihedral angles generated from the conformational searches were used to calculate coupling constants, using the MestReJ software. ${ }^{187}$

A.4. General procedure for the optimisation of the one-pot Diels-Alder/allylboration

 sequence:

To a solution of $\mathbf{3 1 5}[\mathrm{X}]$ in the solvent, were added N-phenyl maleimide 2a (x eq) and pnitrobenzaldehyde 35 (x eq). The reaction mixture was stirred at the temperature presented in Table 20. The reaction was stirred from 48 hours to 1 week and monitored by ${ }^{1} \mathrm{H}$ NMR analysis. Reaction with [315] $=0.17$ and 0.1 M were directly performed in NMR tube. Reaction with $[\mathbf{3 1 5}]=1.00 \mathrm{M}$ were performed in a hemolysis tube and sample were taken and diluted for NMR measurement.

A.5. General procedure using the optimised reaction conditions with substituted

 arylaldehydes and α, β unsaturated aldehydes:

To a solution of $\mathbf{3 1 5}[1 \mathrm{M}]$ in acetone, were added the dienophile (1.1 eq) and the aldehyde (2.1 eq). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 48 h . The solvent was evaporated and the crude product was purified by silica gel chromatography.

Polycylic product 340a.

Compound 315 ($61.8 \mathrm{mg}, 0.17 \mathrm{mmol}$), N-phenyl maleimide 2a ($32.8 \mathrm{mg}, 0.19 \mathrm{mmol}$) and 4nitrobenzaldehyde $35(54.6 \mathrm{mg}, 0.36 \mathrm{mmol})$ were stirred in acetone $(170 \mu \mathrm{~L})$ at $50^{\circ} \mathrm{C}$ for 48 h. The crude was purified by silica gel chromatography (eluent, hexane/EtOAc, $1 / 1, \mathrm{R}_{\mathrm{f}}=$ 0.40) to afford compound $\mathbf{3 4 0 a}$ as a pale yellow solid ($46.0 \mathrm{mg}, 48 \%$).
M.p. $=127^{\circ} \mathrm{C}$ (changed in state but not liquid), $158^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 8.19$ (bs, $1 \mathrm{H}, \mathrm{N}-\mathrm{OH}$), $8.09-8.07$ (m, 2H, H_{19}) $7.44-7.31\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.14-7.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{18}\right), 6.19\left(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 6.07(\mathrm{dd}$, $\left.J=10.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 5.23-5.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 4.66\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 4.08-4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right)$, $3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{13}\right), 3.34\left(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 2.37-2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 175.0\left(\mathrm{C}_{14}\right), 171.4\left(\mathrm{C}_{15}\right), 158.5\left(\mathrm{C}_{6}\right), 147.6$ $\left(\mathrm{C}_{20}\right), 146.7\left(\mathrm{C}_{17}\right) 135.4\left(\mathrm{C}_{4}\right), 131.5\left(\mathrm{C}_{21}\right), 131.4\left(\mathrm{C}_{11}\right), 129.4(\mathrm{CH}), 129.0(\mathrm{CH}), 128.89(\mathrm{CH})$, $128.86(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 126.3\left(\mathrm{C}_{18}\right), 124.1\left(\mathrm{C}_{9}\right), 123.2\left(\mathrm{C}_{19}\right), 75.4\left(\mathrm{C}_{16}\right), 69.0$ $\left(\mathrm{C}_{5}\right), 53.6\left(\mathrm{C}_{7}\right), 45.0\left(\mathrm{C}_{8}\right), 40.8\left(\mathrm{C}_{13}\right), 36.6\left(\mathrm{C}_{12}\right), 24.9\left(\mathrm{C}_{10}\right)$.
IR (neat, v) $3370,2943,1704,1700,1696,1519,1499,1346,1180,755,731,693 \mathrm{~cm}^{-1}$.
LRMS (ESI+) $558.0(27 \%)[\mathrm{M}+\mathrm{H}]^{+}, 514.1$ (100%).
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{8}\right)$: 558.1876 found: 558.900.

Polycyclic product 340b.

Compound 315 ($82.2 \mathrm{mg}, 0.23 \mathrm{mmol}$), N-phenyl maleimide 2a ($43.6 \mathrm{mg}, 0.25 \mathrm{mmol}$) and benzaldehyde $4(26 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ were stirred in acetone $(230 \mu \mathrm{~L})$ at $50^{\circ} \mathrm{C}$ for 48 h . The crude was purified by silica gel chromatography (eluent, hexane/EtOAc, $1 / 1, \mathrm{R}_{\mathrm{f}}=0.40$) to afford compound $\mathbf{3 4 0 b}$ as a white solid ($46.0 \mathrm{mg}, 39 \%$).
M.p. $=107^{\circ} \mathrm{C}$ (changed in state but not liquid), $116^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.46-7.25\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right.$ and N-OH), 7.18 $7.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.08-5.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9}\right.$ and $\left.\mathrm{H}_{11}\right), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 4.55(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$,
$\left.\mathrm{H}_{16}\right), 3.92\left(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.51-3.41\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{12}, \mathrm{H}_{13}\right.$ and OH$), 3.49(\mathrm{~d}, J=15.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 2.18\left(\mathrm{dd}, J=13.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 1.69\left(\mathrm{dd}, J=13.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C h l o r o f o r m - d , ~} \boldsymbol{\delta} \mathbf{~ p p m}$) $179.6\left(\mathrm{C}_{14}\right), 175.5\left(\mathrm{C}_{15}\right), 157.8\left(\mathrm{C}_{6}\right), 139.0$ $\left(\mathrm{C}_{17}\right), 135.7\left(\mathrm{C}_{4}\right), 132.7\left(\mathrm{C}_{11}\right), 131.7\left(\mathrm{C}_{21}\right), 129.3(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH})$, $128.5(\mathrm{CH}), 128.2(\mathrm{CH}), 128.16(\mathrm{CH}), 128.0(\mathrm{CH}), 126.4(\mathrm{CH}), 123.2\left(\mathrm{C}_{9}\right), 76.9\left(\mathrm{C}_{16}\right), 68.7$ $\left(\mathrm{C}_{5}\right), 53.9\left(\mathrm{C}_{7}\right), 44.7\left(\mathrm{C}_{8}\right), 40.9\left(\mathrm{C}_{13}\right), 36.8\left(\mathrm{C}_{12}\right), 28.0\left(\mathrm{C}_{10}\right)$

IR (neat, v) 3352, 2948, 1704, 1700, 1696, 1497, 1455, 1378, 1178, 1075, 755, 731, $691 \mathrm{~cm}^{-}$ 1.

LRMS (ESI +) 513.6 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}\right)$: 513.2026 found: 513.2028.

Polycyclic product 340c.

Compound 315 ($85.5 \mathrm{mg}, 0.24 \mathrm{mmol}$), N-phenylmaleimide 2a ($45.4 \mathrm{mg}, 0.26 \mathrm{mmol}$) and 4anisaldehyde 39a ($61 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) were stirred in acetone $(240 \mu \mathrm{~L})$ at $50^{\circ} \mathrm{C}$ for 48 h . The crude was purified by silica gel chromatography (eluent, hexane/EtOAc, $1 / 1, \mathrm{R}_{\mathrm{f}}=0.30$) to afford compound 340 c as a white solid ($21.1 \mathrm{mg}, 16 \%$).
M.p. $=110^{\circ} \mathrm{C}$ (changed in state but not liquid), $132{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.52(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{OH}), 7.48-7.30\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, $7.22-7.15(\mathrm{~m}, 4 \mathrm{H}, \mathrm{HAr}), 6.85-6.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{19}\right), 6.11-5.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9}\right.$ and $\left.\mathrm{H}_{11}\right)$, $5.22(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{H}_{5}\right), 4.51\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 3.90\left(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{25}\right), 3.49$ (d, $\left.J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.49-3.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}, \mathrm{H}_{13}\right.$ and OH$), 2.17(\mathrm{dd}, J=13.8,6.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{10}$), $1.65\left(\mathrm{dd}, J=13.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $179.5\left(\mathrm{C}_{14}\right), 175.5\left(\mathrm{C}_{15}\right), 159.4\left(\mathrm{C}_{20}\right), 157.7$ $\left(\mathrm{C}_{6}\right), 135.7\left(\mathrm{C}_{4}\right), 132.8\left(\mathrm{C}_{11}\right), 131.7\left(\mathrm{C}_{21}\right), 131.0\left(\mathrm{C}_{17}\right), 129.4(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH})$, $128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 126.4(\mathrm{CH}), 123.2\left(\mathrm{C}_{9}\right), 113.6\left(\mathrm{C}_{19}\right), 76.6\left(\mathrm{C}_{16}\right), 68.7$ $\left(\mathrm{C}_{5}\right), 55.4\left(\mathrm{C}_{25}\right), 53.9\left(\mathrm{C}_{7}\right), 44.7\left(\mathrm{C}_{8}\right), 40.9\left(\mathrm{C}_{13}\right), 36.8\left(\mathrm{C}_{12}\right), 28.1\left(\mathrm{C}_{10}\right)$.
IR (neat, v) 3326, 2936, 1704, 1699, 1499, 1380, 1249, 1177, 1141, 1029, 752, $693 \mathrm{~cm}^{-1}$.
LRMS (ESI+) $542.6(100 \%)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7}\right)$: 543.2131 found: 543.2109.

Polycyclic product 345a.

Formula: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{9}$ MW : 482.44

Compound 315 ($83.7 \mathrm{mg}, 0.23 \mathrm{mmol}$), maleic anhydride 2b ($25.1 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 4nitrobenzaldehyde $35(73.0 \mathrm{mg}, 0.48 \mathrm{mmol})$ were stirred in acetone $(240 \mu \mathrm{~L})$ at $50^{\circ} \mathrm{C}$ for 48 h. Acetone was evaoprated and the crude product was dissolved in a minimum of CHCl_{3} and stored 24 h at $+4{ }^{\circ} \mathrm{C}$. The precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x})$ to afford compound $\mathbf{3 4 5 a}$ as a white solid ($64.1 \mathrm{mg}, 75 \%$).
M.p. $=147^{\circ} \mathrm{C}$ (changed in state but not liquid), $189^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}^{\boldsymbol{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 8.68 (bs, $1 \mathrm{H}, \mathrm{N}-\mathrm{OH}$), $8.32-8.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{19}\right)$, $7.77-7.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{18}\right), 7.47-7.26\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{3}\right), 6.18-6.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9}\right.$ and $\left.\mathrm{H}_{11}\right), 5.61\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 5.11-5.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 3.90\left(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right)$, $3.60-3.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{13}\right), 2.95\left(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 2.39-2.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$, 2.13-2.08 (m, 1H, H_{10}).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ A c e t o n e - ~} \boldsymbol{d}^{\boldsymbol{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) $172.2\left(\mathrm{C}_{14}\right), 169.8\left(\mathrm{C}_{15}\right), 158.2\left(\mathrm{C}_{6}\right), 148.9\left(\mathrm{C}_{20}\right)$, $145.2\left(\mathrm{C}_{17}\right), 135.7\left(\mathrm{C}_{4}\right), 133.5\left(\mathrm{C}_{11}\right), 130.0(\mathrm{CH}), 129.2(\mathrm{CH}), 128.9\left(\mathrm{C}_{1}\right), 128.8(\mathrm{CH}), 124.2$ $\left(\mathrm{C}_{19}\right), 85.2\left(\mathrm{C}_{16}\right), 68.0\left(\mathrm{C}_{5}\right), 57.1\left(\mathrm{C}_{7}\right), 46.5\left(\mathrm{C}_{8}\right), 40.2\left(\mathrm{C}_{13}\right), 39.9\left(\mathrm{C}_{12}\right), 26.7\left(\mathrm{C}_{10}\right)$.

IR (neat, v) 3194, 2982, 1717, 1688, 1520, 1349, 1266, 1221, 1170, 1094, 1058, 852, 746, $698 \mathrm{~cm}^{-1}$.

LRMS (ESI+) 483.4 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}, 439.1$ (79\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{9}\right)$: 483.1404 found: 483.1414.

Polycyclic product 345b.

Formula : $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{7}$ MW : 437.45

Compound 315 ($82.5 \mathrm{mg}, 0.23 \mathrm{mmol}$), maleic anhydride 2b ($24.8 \mathrm{mg}, 0.25 \mathrm{mmol}$) and benzaldehyde $4(50 \mu \mathrm{~L}, 0.48 \mathrm{mmol})$ were stirred in acetone $(230 \mu \mathrm{~L})$ at $50{ }^{\circ} \mathrm{C}$ for 48 h . Acetone was evaoprated and the crude product was dissolved in a minimum of CHCl_{3} and stored 24 h at $+4{ }^{\circ} \mathrm{C}$. The precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x})$ to afford compound $\mathbf{3 4 5 b}$ as a white solid ($64.0 \mathrm{mg}, 64 \%$).
M.p. $=121^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}^{\boldsymbol{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 8.61(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{OH}), 7.49-7.28\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, $6.13-6.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9}\right.$ and $\left.\mathrm{H}_{11}\right), 5.39\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 5.07\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5}\right)$, $3.86\left(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.56-3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{13}\right), 2.90\left(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right)$, 2.43 - $2.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 2.08-2.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Acetone- $\boldsymbol{d}^{\mathbf{6}}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) 172.3 (C_{15}), 170.1 ($\left.\mathrm{C}_{14}\right), 159.3\left(\mathrm{C}_{6}\right), 137.9$ (C), 137.6 (C), 134.0 (C9), 129.4 (CH), 129.3 (CH), 129.2 (CH), 128.8 (CH), 128.7 (CH), 128.6 $(\mathrm{CH}), 128.3(\mathrm{CH}), 86.2\left(\mathrm{C}_{16}\right), 67.9\left(\mathrm{C}_{5}\right), 57.4\left(\mathrm{C}_{7}\right), 46.6\left(\mathrm{C}_{13}\right), 40.3\left(\mathrm{C}_{8}\right), 40.0\left(\mathrm{C}_{12}\right), 26.7$ $\left(\mathrm{C}_{10}\right)$.

IR (neat, v) 3184, 2943, 1729, 1717, 1706, 1424, 1374, 1355, 1265, 1221, 1174, 1099, 1054, $747,735,696 \mathrm{~cm}^{-1}$.

LRMS (ESI+) 438.0 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}$, 394.1 (46\%), 331.1 (26\%), 136.1 (27\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{7}\right)$: 438.1553 found: 438.1544.

Polycyclic product 340d.

Compound 315 ($80.0 \mathrm{mg}, 0.22 \mathrm{mmol}$), N-phenyl maleimide 2a ($42.4 \mathrm{mg}, 0.24 \mathrm{mmol}$) and acrolein $346(32 \mu \mathrm{~L}, 0.47 \mathrm{mmol})$ were stirred in acetone $(225 \mu \mathrm{~L})$ at $50^{\circ} \mathrm{C}$ for 48 h . The crude was purified by silica gel chromatography (eluent hexane/EtOAc, $1 / 1, \mathrm{R}_{\mathrm{f}}=0.35$) to afford compound $\mathbf{3 4 0 d}$ as a white solid ($38.1 \mathrm{mg}, 37 \%$).
M.p. $=105^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $8.02(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{OH}), 7.50-7.30\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, $7.25-7.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.09\left(\mathrm{dd}, J=10.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 5.96(\mathrm{dd}, J=10.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, H_{9}), $5.82\left(\mathrm{ddd}, J=16.5,10.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17}\right), 5.29-5.19\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{18}, \mathrm{H}_{16}\right.$ and $\left.\mathrm{H}_{5}\right), 3.90-$ $3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 3.80\left(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.51\left(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{7}\right.$ and OH$), 3.45-$ $3.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 2.14\left(\mathrm{dd}, J=14.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 1.75\left(\mathrm{dd}, \mathrm{J}=14.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 179.6 (C_{13}), 175.5 (C_{12}), 157.6 (C_{6}), 135.8 (C), $135.0(\mathrm{CH}), 132.5\left(\mathrm{C}_{9}\right), 131.7(\mathrm{C}), 129.4(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5$ $(\mathrm{CH}), 126.4(\mathrm{CH}), 123.4(\mathrm{CH}), 119.4\left(\mathrm{C}_{18}\right), 76.3\left(\mathrm{C}_{16}\right), 68.5\left(\mathrm{C}_{5}\right), 53.6\left(\mathrm{C}_{7}\right), 43.7\left(\mathrm{C}_{13}\right), 41.0$ $\left(\mathrm{C}_{8}\right), 36.7\left(\mathrm{C}_{12}\right), 22.8\left(\mathrm{C}_{10}\right)$.
IR (neat, v) 3358, 2923, 1704, 1700, 1498, 1378, 1261, 1179, 1074, 988, 752, $693 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 463.1.0 (32\%) $[\mathrm{M}+\mathrm{H}]^{+}, 445.0$ (100\%), 419.1 (84\%), 401.1 (61\%), 356.1 (22\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}\right)$: 463.1869 found: 463.1874.

Polycyclic product 349a.

Compound 315 ($85.4 \mathrm{mg}, 0.24 \mathrm{mmol}$), N-phenyl maleimide 2a ($45.4 \mathrm{mg}, 0.26 \mathrm{mmol}$) and trans-cinnamaldehyde 347 ($63 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) were stirred in acetone $(240 \mu \mathrm{~L})$ at $50{ }^{\circ} \mathrm{C}$ for 48 h . The crude was purified by silica gel chromatography (eluent, hexane $/ \mathrm{EtOAc}, 1 / 1, \mathrm{R}_{\mathrm{f}}=$ 0.60) to afford compound $\mathbf{3 4 9} \mathbf{a}(62.3 \mathrm{mg}, 47 \%)$.
M.p. $=205^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (700 MHz, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $8.21\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{H}_{24}\right), 7.55-7.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, $7.49-7.36\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.28-7.23\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.28\left(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 5.83$ (dd, $\left.J=10.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 5.41\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 5.25\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, $5.02\left(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17}\right), 4.21\left(\mathrm{dd}, J=9.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 4.05(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}$, H_{7}), $3.59\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 3.40-3.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 3.28\left(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right)$, $3.11(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.25\left(\mathrm{dd}, J=14.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 2.19(\mathrm{dd}, J=14.4,7.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{10}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 195.4\left(\mathrm{C}_{18}\right), 178.2\left(\mathrm{C}_{13}\right), 175.3\left(\mathrm{C}_{12}\right), 155.4$ $\left(\mathrm{C}_{6}\right), 135.3(\mathrm{C}), 134.6(\mathrm{C}), 134.5(\mathrm{CH}), 133.5\left(\mathrm{C}_{9}\right), 132.0\left(\mathrm{C}_{19}\right), 130.2\left(\mathrm{C}_{24}\right), 129.3(\mathrm{CH})$, $129.2(2 \mathrm{CH}), 129.04(2 \mathrm{CH}), 128.98(\mathrm{CH}), 128.71(\mathrm{CH}), 128.68(2 \mathrm{CH}), 126.5(2 \mathrm{CH}), 125.4$ $\left(\mathrm{C}_{11}\right), 79.2\left(\mathrm{C}_{17}\right), 72.0\left(\mathrm{C}_{16}\right), 69.1\left(\mathrm{C}_{5}\right), 51.9\left(\mathrm{C}_{7}\right), 40.5\left(\mathrm{C}_{13}\right), 39.6\left(\mathrm{C}_{8}\right), 36.3\left(\mathrm{C}_{12}\right), 24.5\left(\mathrm{C}_{10}\right)$.

IR (neat, v) 3527, 2917, 1704, 1683, 1675, 1447, 1387, 1228, 1187, 1103, 887, 751, 693, 682 cm^{-1}.

LRMS (ESI+) 553.0 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}$, 505.1 (27\%), 354.2 (19\%).

HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}\right)$: 553.1975 found: 553.1965.

Polycyclic product 350.

Compound 315 ($81.0 \mathrm{mg}, 0.23 \mathrm{mmol}$), maleic anhydride 2b ($24.3 \mathrm{mg}, 0.25 \mathrm{mmol}$) and transcinnamaldehyde $347(60 \mu \mathrm{~L}, 0.47 \mathrm{mmol})$ were stirred in acetone $(230 \mu \mathrm{~L})$ at $50^{\circ} \mathrm{C}$ for 48 h . The crude was purified by silica gel chromatography (eluent, hexane/EtOAc, $1 / 1, \mathrm{R}_{\mathrm{f}}=0.60$) to afford compound $\mathbf{3 5 0}$ ($62.3 \mathrm{mg}, 47 \%$).
M.p. $=195^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (700 MHz , Acetone- $\boldsymbol{d}_{\mathbf{6}}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) $11.02(\mathrm{bs}, 1 \mathrm{H}, \mathrm{COOH}), 8.27-8.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{19}\right)$, $7.65-7.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{21}\right), 7.53-7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{19}\right), 7.44-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{3}\right), 6.21$ (ddd, $\left.J=10.1,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 5.80\left(\mathrm{dt}, J=10.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 5.65(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{16}$), $5.36-5.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 4.84\left(\mathrm{dd}, J=9.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 4.19(\mathrm{~d}, J=14.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{7}\right), 3.74\left(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.63\left(\mathrm{ddd}, J=4.9,2.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 3.35(\mathrm{td}, J=$ $\left.4.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 2.82\left(\mathrm{ddd}, J=13.4,5.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 1.87(\mathrm{dt}, J=13.4,1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{13}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Acetone- $\boldsymbol{d}_{6}, \boldsymbol{\delta} \mathbf{~ p p m}$) $191.1\left(\mathrm{C}_{17}\right), 171.9\left(\mathrm{C}_{13}\right), 168.7\left(\mathrm{C}_{12}\right), 156.2\left(\mathrm{C}_{6}\right)$, $136.8\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{18}\right), 136.4\left(\mathrm{C}_{4}\right.$ or $\left.\mathrm{C}_{18}\right), 135.0\left(\mathrm{C}_{21}\right), 130.5\left(\mathrm{C}_{9}\right), 130.3\left(\mathrm{C}_{19}\right), 130.2\left(\mathrm{C}_{10}\right), 129.6$ $\left(2 \mathrm{x} \mathrm{C}_{\text {Ar }}\right), 129.5\left(\mathrm{C}_{\text {ar }}\right), 129.4\left(\mathrm{C}_{\text {Ar }}\right), 77.0\left(\mathrm{C}_{15}\right), 76.9\left(\mathrm{C}_{16}\right), 69.1\left(\mathrm{C}_{5}\right), 53.7\left(\mathrm{C}_{7}\right), 46.6\left(\mathrm{C}_{11}\right), 39.6$ $\left(\mathrm{C}_{12}\right), 34.6\left(\mathrm{C}_{8}\right), 28.3\left(\mathrm{C}_{13}\right)$.

IR (neat, v) 3069, 2957, 1734, 1690, 1665, 1450, 1361, 1203, 1120, 1089, 757, 694, $650 \mathrm{~cm}^{-}$ ${ }^{1}$.

LRMS (ESI+) 478.0 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}$, 434.1 (15\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{8}\right): 478.1502$ found: 478.1497.

Single crystal X-ray structure for $\mathbf{3 5 0}$:

A suitable crystal obtained in DCM was selected and measured on a D8V_Mo diffractometer. The crystal was kept at 120 K during data collection. Using Olex $2,{ }^{185}$ the structure was solved with the ShelXS structure solution program, ${ }^{182}$ using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. ${ }^{182}$

Table XXXIX. Crystal data and structure refinement

Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{8}$
Formula weight	477.45
Temperature/K	120
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$5.4952(2)$
b / \AA	$14.8829(6)$
c / \AA	$15.0258(6)$
$\alpha /{ }^{\circ}$	$62.4438(14)$
$\beta /{ }^{\circ}$	$85.7136(15)$
$\gamma /{ }^{\circ}$	$89.0614(15)$
Volume $/ \AA^{3}$	$1086.19(7)$
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.460
μ / mm^{-1}	0.109
$\mathrm{~F}(000)$	500.0
Crystal size $/ \mathrm{mm}^{3}$	$0.154 \times 0.103 \times 0.049$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$

2Θ range for data collection $/{ }^{\circ}$	5.264 to 59.996
Index ranges	$-7 \leq \mathrm{h} \leq 7,-20 \leq \mathrm{k} \leq 20,-21 \leq 1 \leq 21$
Reflections collected	24112
Independent reflections	$6336\left[\mathrm{R}_{\text {int }}=0.0370, \mathrm{R}_{\text {sigma }}=0.0419\right]$
Data/restraints/parameters	$6336 / 0 / 320$
Goodness-of-fit on F^{2}	1.029
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0465, \mathrm{wR}_{2}=0.1048$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0727, \mathrm{wR}_{2}=0.1166$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.42 /-0.27$

Table XL. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.
$U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{I J}$ tensor.

Atom	\boldsymbol{x}	y	z	U(eq)
$\mathrm{O}(1)$	2389(2)	6123.7(9)	9156.8(9)	24.5(2)
$\mathrm{O}(2)$	-492.3(19)	5658.0(9)	8476.0(9)	26.8(3)
$\mathrm{O}(3)$	2079.4(17)	3160.4(7)	8638.6(7)	16.6(2)
$\mathrm{O}(4)$	1676(2)	3642.3(8)	9802.5(8)	23.2(2)
$\mathrm{O}(5)$	5366.9(17)	2292.1(7)	6989.7(7)	16.6(2)
$\mathrm{O}(6)$	355.2(19)	1495.9(8)	8484.4(8)	22.8(2)
$\mathrm{O}(7)$	9312(2)	1900.1(8)	6315.2(8)	23.2(2)
$\mathrm{O}(8)$	10465.7(18)	3559.7(8)	5432.5(8)	20.8(2)
N	7228(2)	3062.4(8)	6599.6(9)	15.1(2)
C(1)	1618(3)	5797.3(10)	8539.4(11)	18.1(3)
C(2)	3698(2)	5617.3(10)	7914.8(10)	16.0(3)
C(3)	2755(3)	5751.4(10)	6949.3(10)	17.6(3)
C(4)	3141(2)	5097.4(10)	6586.1(10)	15.4(3)
C(5)	4711(2)	4175.6(10)	7063.2(10)	12.2(2)
C(6)	6388(2)	4304.1(10)	7765.3(10)	14.1(3)
C(7)	4779(2)	4545.2(10)	8497.1(10)	14.6(3)
C(8)	2748(2)	3764.8(10)	9020.8(10)	15.4(3)
C(9)	3060(2)	3233.1(10)	7685(1)	13.5(2)
C(10)	4337(2)	2234.2(10)	7919.7(10)	14.4(3)
C(11)	6105(2)	4049.7(10)	6202.9(10)	14.6(3)
C(12)	2492(3)	1337.3(10)	8354.5(10)	16.8(3)
C(13)	3355(3)	297.2(11)	8610.0(11)	19.2(3)
C(14)	1727(3)	-508.0(12)	9174.2(12)	26.3(3)
C(15)	2354(3)	-1489.7(12)	9396.8(13)	30.8(4)
C(16)	4582(3)	-1675.3(12)	9045.4(13)	28.8(4)
C(17)	6223(3)	-885.7(13)	8498.9(16)	36.2(4)
C(18)	5640(3)	100.2(12)	8288.1(15)	31.5(4)
C(19)	9116(2)	2889.2(11)	6037.4(10)	16.3(3)
C(20)	11286(3)	1625.8(12)	5791.2(12)	23.9(3)
C(21)	10423(3)	1601.0(11)	4878.4(11)	20.1(3)
C(22)	8280(3)	1082.0(13)	4946.4(14)	30.1(4)
C(23)	7543(3)	1041.5(15)	4103.6(16)	38.5(4)
C(24)	8931(4)	1502.5(15)	3202.2(15)	37.7(4)
C(25)	11059(4)	2011.2(14)	3132.5(13)	35.2(4)

Table XLI. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
$\mathrm{O}(1)$	$24.0(6)$	$29.8(6)$	$26.7(6)$	$-19.7(5)$	$4.0(5)$	$-2.3(4)$
$\mathrm{O}(2)$	$16.8(5)$	$35.9(6)$	$33.8(6)$	$-22.3(5)$	$4.6(4)$	$-2.4(4)$
$\mathrm{O}(3)$	$17.6(5)$	$16.4(5)$	$15.9(5)$	$-8.3(4)$	$5.3(4)$	$-3.6(4)$
$\mathrm{O}(4)$	$28.7(6)$	$21.8(5)$	$19.2(5)$	$-11.1(4)$	$9.2(4)$	$-1.4(4)$
$\mathrm{O}(5)$	$18.7(5)$	$15.2(5)$	$17.3(5)$	$-9.2(4)$	$4.0(4)$	$-4.4(4)$
$\mathrm{O}(6)$	$19.7(5)$	$19.4(5)$	$27.9(6)$	$-10.1(5)$	$2.3(4)$	$-3.4(4)$
$\mathrm{O}(7)$	$28.1(6)$	$20.2(5)$	$25.1(6)$	$-14.7(5)$	$4.1(4)$	$4.6(4)$
$\mathrm{O}(8)$	$17.4(5)$	$24.2(5)$	$21.9(5)$	$-12.2(4)$	$2.9(4)$	$0.5(4)$
N	$16.6(5)$	$12.2(5)$	$16.6(5)$	$-7.3(4)$	$2.7(4)$	$-1.3(4)$
$\mathrm{C}(1)$	$23.5(7)$	$11.8(6)$	$19.3(7)$	$-8.0(5)$	$2.9(5)$	$-0.5(5)$
$\mathrm{C}(2)$	$16.0(6)$	$13.3(6)$	$19.8(7)$	$-9.4(5)$	$4.5(5)$	$-2.2(5)$
$\mathrm{C}(3)$	$17.8(6)$	$14.3(6)$	$16.5(6)$	$-4.1(5)$	$2.0(5)$	$1.7(5)$
$\mathrm{C}(4)$	$13.9(6)$	$15.8(6)$	$13.2(6)$	$-4.2(5)$	$0.5(5)$	$0.2(5)$
$\mathrm{C}(5)$	$12.1(6)$	$12.2(6)$	$12.1(6)$	$-5.8(5)$	$0.5(5)$	$0.3(4)$
$\mathrm{C}(6)$	$12.1(6)$	$15.5(6)$	$16.4(6)$	$-8.9(5)$	$0.5(5)$	$0.0(5)$
$\mathrm{C}(7)$	$13.6(6)$	$17.1(6)$	$15.4(6)$	$-9.6(5)$	$0.6(5)$	$-0.1(5)$
$\mathrm{C}(8)$	$16.1(6)$	$13.3(6)$	$15.8(6)$	$-6.1(5)$	$0.0(5)$	$3.5(5)$
$\mathrm{C}(9)$	$13.3(6)$	$14.5(6)$	$13.2(6)$	$-7.0(5)$	$0.8(5)$	$-0.8(5)$
$\mathrm{C}(10)$	$15.9(6)$	$13.4(6)$	$13.4(6)$	$-6.2(5)$	$0.9(5)$	$-1.0(5)$
$\mathrm{C}(11)$	$16.0(6)$	$13.8(6)$	$13.5(6)$	$-6.2(5)$	$1.6(5)$	$0.4(5)$
$\mathrm{C}(12)$	$19.6(7)$	$15.2(6)$	$14.9(6)$	$-6.2(5)$	$-0.6(5)$	$-2.4(5)$
$\mathrm{C}(13)$	$24.0(7)$	$14.7(7)$	$19.1(7)$	$-7.9(6)$	$-3.0(6)$	$-1.8(5)$
$\mathrm{C}(14)$	$34.3(9)$	$18.9(7)$	$23.3(8)$	$-8.6(6)$	$6.1(6)$	$-5.4(6)$
$\mathrm{C}(15)$	$44.4(10)$	$15.4(7)$	$26.8(8)$	$-5.4(6)$	$2.2(7)$	$-7.6(7)$
$\mathrm{C}(16)$	$38.4(9)$	$15.8(7)$	$33.2(9)$	$-10.7(7)$	$-12.8(7)$	$2.9(6)$
$\mathrm{C}(17)$	$26.5(8)$	$22.3(8)$	$60.8(13)$	$-20.1(8)$	$-2.9(8)$	$4.0(6)$
$\mathrm{C}(18)$	$24.0(8)$	$17.9(7)$	$50.4(11)$	$-14.1(7)$	$-0.3(7)$	$-3.1(6)$
$\mathrm{C}(19)$	$16.4(6)$	$20.4(7)$	$15.9(6)$	$-11.4(6)$	$-3.7(5)$	$4.4(5)$
$\mathrm{C}(20)$	$22.6(7)$	$28.0(8)$	$28.7(8)$	$-19.7(7)$	$-3.4(6)$	$10.6(6)$
$\mathrm{C}(21)$	$20.4(7)$	$19.4(7)$	$25.5(7)$	$-14.8(6)$	$-3.3(6)$	$8.8(5)$
$\mathrm{C}(22)$	$23.9(8)$	$35.5(9)$	$37.6(9)$	$-23.0(8)$	$0.9(7)$	$1.5(7)$
$\mathrm{C}(23)$	$29.1(9)$	$46.3(11)$	$58.0(12)$	$-38(1)$	$-13.2(8)$	$7.6(8)$
$\mathrm{C}(24)$	$48.4(11)$	$42.3(11)$	$37.1(10)$	$-29.1(9)$	$-20.4(9)$	$20.7(9)$
$\mathrm{C}(25)$	$51.0(11)$	$30.7(9)$	$24.8(8)$	$-14.0(7)$	$-2.6(8)$	$11.4(8)$
$\mathrm{C}(26)$	$28.4(8)$	$23.7(8)$	$30.5(8)$	$-15.0(7)$	$0.7(7)$	$2.8(6)$

Table XLII. Bond Lengths.

Atom Atom	Length/ \AA	Atom Atom	Length/ $\mathbf{\AA}$
$\mathrm{O}(1) \mathrm{C}(1)$	$1.3259(17)$	$\mathrm{C}(5) \mathrm{C}(11)$	$1.5377(18)$
$\mathrm{O}(2)$	$\mathrm{C}(1)$	$1.2000(18)$	$\mathrm{C}(6)$
	$\mathrm{C}(7)$	$1.5262(18)$	

$\mathrm{O}(3)$	$\mathrm{C}(8)$	$1.3395(16)$	$\mathrm{C}(7) \mathrm{C}(8)$	$1.5096(19)$
$\mathrm{O}(3)$	$\mathrm{C}(9)$	$1.4485(15)$	$\mathrm{C}(9) \mathrm{C}(10)$	$1.5314(18)$
$\mathrm{O}(4)$	$\mathrm{C}(8)$	$1.2089(16)$	$\mathrm{C}(10) \mathrm{C}(12)$	$1.5413(18)$
$\mathrm{O}(5)$	N	$1.4252(14)$	$\mathrm{C}(12) \mathrm{C}(13)$	$1.491(2)$
$\mathrm{O}(5)$	$\mathrm{C}(10)$	$1.4326(16)$	$\mathrm{C}(13) \mathrm{C}(14)$	$1.392(2)$
$\mathrm{O}(6)$	$\mathrm{C}(12)$	$1.2130(17)$	$\mathrm{C}(13) \mathrm{C}(18)$	$1.387(2)$
$\mathrm{O}(7)$	$\mathrm{C}(19)$	$1.3363(17)$	$\mathrm{C}(14) \mathrm{C}(15)$	$1.383(2)$
$\mathrm{O}(7)$	$\mathrm{C}(20)$	$1.4553(17)$	$\mathrm{C}(15) \mathrm{C}(16)$	$1.371(3)$
$\mathrm{O}(8)$	$\mathrm{C}(19)$	$1.2066(17)$	$\mathrm{C}(16) \mathrm{C}(17)$	$1.378(2)$
N	$\mathrm{C}(11)$	$1.4525(17)$	$\mathrm{C}(17) \mathrm{C}(18)$	$1.388(2)$
N	$\mathrm{C}(19)$	$1.3851(17)$	$\mathrm{C}(20) \mathrm{C}(21)$	$1.501(2)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.5236(19)$	$\mathrm{C}(21) \mathrm{C}(22)$	$1.390(2)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.501(2)$	$\mathrm{C}(21) \mathrm{C}(26)$	$1.379(2)$
$\mathrm{C}(2)$	$\mathrm{C}(7)$	$1.5552(19)$	$\mathrm{C}(22) \mathrm{C}(23)$	$1.385(2)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.3258(19)$	$\mathrm{C}(23) \mathrm{C}(24)$	$1.375(3)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.5114(18)$	$\mathrm{C}(24) \mathrm{C}(25)$	$1.375(3)$
$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.5285(18)$	$\mathrm{C}(25) \mathrm{C}(26)$	$1.386(2)$
$\mathrm{C}(5)$	$\mathrm{C}(9)$	$1.5383(18)$		

Table XLIII. Bond Angles.

Atom Atom Atom					
$\mathrm{C}(8)$	$\mathrm{O}(3)$	$\mathrm{C}(9)$	$124.63(10)$	$\mathrm{C}(10) \mathrm{C}(9) \mathrm{C}(5)$	$113.45(10)$
N	$\mathrm{O}(5)$	$\mathrm{C}(10)$	$107.46(9)$	$\mathrm{O}(5) \mathrm{C}(10) \mathrm{C}(9)$	$108.06(10)$
$\mathrm{C}(19)$	$\mathrm{O}(7)$	$\mathrm{C}(20)$	$115.82(12)$	$\mathrm{O}(5) \mathrm{C}(10) \mathrm{C}(12)$	$105.59(10)$
$\mathrm{O}(5)$	N	$\mathrm{C}(11)$	$109.26(10)$	$\mathrm{C}(9) \mathrm{C}(10) \mathrm{C}(12)$	$111.18(11)$
$\mathrm{C}(19)$	N	$\mathrm{O}(5)$	$113.52(10)$	N	$\mathrm{C}(11) \mathrm{C}(5)$
$\mathrm{C}(19)$	N	$\mathrm{C}(11)$	$119.75(11)$	$\mathrm{O}(6) \mathrm{C}(12) \mathrm{C}(10)$	$1189.85(11)$
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$112.89(12)$	$\mathrm{O}(6) \mathrm{C}(12) \mathrm{C}(13)$	$121.35(13)$
$\mathrm{O}(2)$	$\mathrm{C}(1)$	$\mathrm{O}(1)$	$123.78(13)$	$\mathrm{C}(13) \mathrm{C}(12) \mathrm{C}(10)$	$119.75(12)$
$\mathrm{O}(2)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$123.33(13)$	$\mathrm{C}(14) \mathrm{C}(13) \mathrm{C}(12)$	$117.36(13)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(7)$	$111.53(11)$	$\mathrm{C}(18) \mathrm{C}(13) \mathrm{C}(12)$	$123.56(13)$
$\mathrm{C}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$108.53(12)$	$\mathrm{C}(18) \mathrm{C}(13) \mathrm{C}(14)$	$119.04(14)$
$\mathrm{C}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(7)$	$110.73(11)$	$\mathrm{C}(15) \mathrm{C}(14) \mathrm{C}(13)$	$120.65(16)$
$\mathrm{C}(4)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$123.45(13)$	$\mathrm{C}(16) \mathrm{C}(15) \mathrm{C}(14)$	$120.02(15)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$123.59(13)$	$\mathrm{C}(15) \mathrm{C}(16) \mathrm{C}(17)$	$119.80(15)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$109.79(11)$	$\mathrm{C}(16) \mathrm{C}(17) \mathrm{C}(18)$	$120.83(17)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$109.22(10)$	$\mathrm{C}(13) \mathrm{C}(18) \mathrm{C}(17)$	$119.59(16)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(11)$	$107.20(11)$	$\mathrm{O}(7) \mathrm{C}(19) \mathrm{N}$	$111.03(12)$
$\mathrm{C}(6)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$108.65(10)$	$\mathrm{O}(8) \mathrm{C}(19) \mathrm{O}(7)$	$126.41(13)$
$\mathrm{C}(6)$	$\mathrm{C}(5)$	$\mathrm{C}(11)$	$113.27(10)$	$\mathrm{O}(8) \mathrm{C}(19)$	N
$\mathrm{C}(11)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$108.64(10)$	$\mathrm{O}(7) \mathrm{C}(20) \mathrm{C}(21)$	$1122.37(13)$
$\mathrm{C}(7)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$107.32(10)$	$\mathrm{C}(22) \mathrm{C}(21) \mathrm{C}(20)$	$120.51(15)$
$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(2)$	$109.30(11)$	$\mathrm{C}(26) \mathrm{C}(21) \mathrm{C}(20)$	$120.21(14)$
$\mathrm{C}(8)$	$\mathrm{C}(7)$	$\mathrm{C}(2)$	$110.14(11)$	$\mathrm{C}(26) \mathrm{C}(21) \mathrm{C}(22)$	$119.25(15)$

$\mathrm{C}(8)$	$\mathrm{C}(7)$	$\mathrm{C}(6)$	$111.43(11)$	$\mathrm{C}(23) \mathrm{C}(22) \mathrm{C}(21)$	$119.84(17)$
$\mathrm{O}(3)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$120.74(11)$	$\mathrm{C}(24) \mathrm{C}(23) \mathrm{C}(22)$	$120.43(18)$
$\mathrm{O}(4)$	$\mathrm{C}(8)$	$\mathrm{O}(3)$	$116.86(12)$	$\mathrm{C}(25) \mathrm{C}(24) \mathrm{C}(23)$	$119.96(17)$
$\mathrm{O}(4)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$122.39(12)$	$\mathrm{C}(24) \mathrm{C}(25) \mathrm{C}(26)$	$119.96(17)$
$\mathrm{O}(3)$	$\mathrm{C}(9)$	$\mathrm{C}(5)$	$113.32(10)$	$\mathrm{C}(21) \mathrm{C}(26) \mathrm{C}(25)$	$120.54(16)$
$\mathrm{O}(3)$	$\mathrm{C}(9) \mathrm{C}(10)$	$106.83(10)$			

Table XLIV. Hydrogen Bonds

\mathbf{D}	\mathbf{H}	\mathbf{A}	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \AA$	$\mathbf{d}(\mathbf{H}-\mathbf{A}) / \AA$	$\mathbf{d}(\mathbf{D}-\mathbf{A}) / \AA$	$\mathbf{D}-\mathbf{H}-\mathbf{A} /{ }^{\circ}$
$\mathrm{O}(1)$	$\mathrm{H}(1)$	$\mathrm{O}(4)^{1}$	$0.88(2)$	$1.86(2)$	$2.7410(15)$	$175(2)$

${ }^{1}-\mathrm{X}, 1-\mathrm{Y}, 2-\mathrm{Z}$

Table XLV. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.

Atom	\boldsymbol{x}	y	z	U(eq)
H(1)	1070(40)	6161(18)	9512(18)	56(7)
H(2)	5019	6136	7751	19
H(3)	1832	6336	6579	21
H(4)	2390	5215	5993	18
H(6A)	7289	3673	8138	17
H(6B)	7587	4863	7373	17
H(7)	5810	4547	9017	18
H(9)	1651	3279	7282	16
H(10)	5636	2112	8393	17
H(11A)	4966	4114	5697	18
H(11B)	7380	4589	5867	18
H(14)	169	-382	9409	32
H(15)	1241	-2035	9793	37
H(16)	4993	-2346	9178	35
H(17)	7772	-1018	8264	43
H(18)	6799	637	7925	38
H(20A)	11897	951	6251	29
H(20B)	12651	2125	5585	29
H(22)	7323	756	5569	36
H(23)	6069	693	4149	46
H(24)	8419	1470	2628	45
H(25)	12028	2324	2512	42
H(26)	13246	2431	3914	32

Polycyclic product 349b.

Compound 315 ($65.0 \mathrm{mg}, 0.18 \mathrm{mmol}$), 4-nitro- N-phenylmaleimide $\mathbf{3 4 8 (4 3 . 5 \mathrm { mg } , 0 . 2 0 \mathrm { mmol }) ~}$ and trans-cinnamaldehyde $347(48 \mu \mathrm{~L}, 0.38 \mathrm{mmol})$ were stirred in acetone $(180 \mu \mathrm{~L})$ at $50{ }^{\circ} \mathrm{C}$ for 70 h . The crude was purified by silica gel chromatography (eluent, hexane/EtOAc, $1 / 1, \mathrm{R}_{\mathrm{f}}$ $=0.55)$ to afford compound $\mathbf{3 4 9 b}(16.2 \mathrm{mg}, 15 \%)$.
M.p. $=173{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 8.35-8.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{21}\right), 8.22-8.20(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{24}\right), 7.60-7.52\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{20}\right.$ and $\left.\mathrm{H}_{26}\right), 7.50-7.22\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.28(\mathrm{dd}, J=10.1,4.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{11}\right), 5.83\left(\mathrm{dd}, J=10.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 5.40\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 5.26(\mathrm{~d}, J=11.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 5.00\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17}\right), 4.18\left(\mathrm{dd}, J=9.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 4.06(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}$), 3.64 (ddd, $J=9.2,3.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}$), $3.40-3.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 3.31(\mathrm{~d}$, $\left.J=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.33\left(\mathrm{dd}, J=14.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 2.15(\mathrm{dd}, \mathrm{J}=$ $14.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $195.4\left(\mathrm{C}_{18}\right), 177.4\left(\mathrm{C}_{13}\right), 174.6\left(\mathrm{C}_{12}\right), 155.3$ $\left(\mathrm{C}_{6}\right), 147.0\left(\mathrm{C}_{22}\right), 137.6\left(\mathrm{C}_{19}\right), 135.2(\mathrm{C}), 134.7(\mathrm{C}), 134.4\left(\mathrm{C}_{26}\right), 133.4\left(\mathrm{C}_{9}\right), 130.2\left(\mathrm{C}_{24}\right), 129.2$ $(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.7(\mathrm{CH}), 126.9\left(\mathrm{C}_{20}\right), 125.0\left(\mathrm{C}_{11}\right), 124.5\left(\mathrm{C}_{21}\right), 79.1\left(\mathrm{C}_{17}\right)$, $71.8\left(\mathrm{C}_{16}\right), 69.2\left(\mathrm{C}_{5}\right), 52.5\left(\mathrm{C}_{7}\right), 40.3\left(\mathrm{C}_{13}\right), 39.5\left(\mathrm{C}_{8}\right), 36.6\left(\mathrm{C}_{12}\right), 24.6\left(\mathrm{C}_{10}\right)$

IR (neat, v) 3487, 2947, 1700, 1676, 1525, 1499, 1384, 1346, 1229, 1176, 1098, 854, 813, $751,695,683 \mathrm{~cm}^{-1}$.

LRMS (ESI+) 598.2 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}$, 554.1 (20\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{9}\right)$: 598.1826 found: 598.1844.

B. Modification of the boron substituent

B.1. Trifluoroboronated salt 356a synthesis:

A solution of diene $315(209 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. An aqueous solution of $\mathrm{KHF}_{2} \mathbf{1 4 6}(137 \mathrm{mg}, 1.75 \mathrm{mmol}$, in 4 mL$)$ was added to the reaction mixture. The reaction was allowed to reach r.t., and stirred overnight. The crude was evaporated to dryness. The residue was dissolved in acetone and the remaining salt was filtered. The salt was washed with acetone and the filtrate was evaporated. The white solid was resolubilised in the minimum amount of acetone. The solution was stirred vigorously and $\mathrm{Et}_{2} \mathrm{O}$ was added to precipitate the afford compound $\mathbf{3 5 6}$ a a a white solid ($170.0 \mathrm{mg}, 86 \%$).
M.p. $=123{ }^{\circ} \mathrm{C}$ (decomposition).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- $\left.\boldsymbol{d}_{\boldsymbol{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 8.47$ (bs, 1H, NH), $7.43-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{9}, \mathrm{H}_{10}\right.$ and $\left.\mathrm{H}_{11}\right), 6.38\left(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 5.80\left(\mathrm{dq}, J=18.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 5.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 4.89$ (s, 2H, H_{7}), $4.31\left(\mathrm{t}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1 ~ M H z ~ A c e t o n e - ~} \boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 157.9\left(\mathrm{C}_{6}\right), 143.9\left(\mathrm{C}_{3}\right), 138.1\left(\mathrm{C}_{8}\right), 135.0(\mathrm{q}, J=4.7$ $\left.\mathrm{Hz}, \mathrm{C}_{2}\right), 129.2\left(\mathrm{C}_{10}\right), 128.65\left(\mathrm{C}_{9}\right), 128.64\left(\mathrm{C}_{11}\right) 111.1\left(\mathrm{C}_{4}\right), 67.5\left(\mathrm{C}_{7}\right), 53.2\left(\mathrm{C}_{5}\right)$, B-C not visible.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Acetone- $\boldsymbol{d}_{\mathbf{6}}, \boldsymbol{\delta} \mathbf{~ p p m}$) 2.6.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, Acetone- $d_{6}, \boldsymbol{\delta} \mathbf{~ p p m}$) -141.8.
IR (neat, v) 3234, 1655, 1600, 1457, 1414, 1358, 1275, 1253, 1106, 1088, 999, 971, 942, 893, 761, 694, $596 \mathrm{~cm}^{-1}$.

LRMS (ESI+) 300.3 (23\%) [M-K] ${ }^{+}$, 278.3 (49\%), 234.2 (100\%).
HRMS (ESI+) calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{14}{ }^{10} \mathrm{BNO}_{3} \mathrm{~F}_{3}\right)$: 299.1055 found: 299.1046.

B.2. Boronated MIDA ester derivative synthesis:

To a solution of $315(50.0 \mathrm{mg}, 0.14 \mathrm{mmol})$ in a mixture of toluene/DMSO $(15 / 1: 3 \mathrm{~mL})$, were added MIDA 248 ($18.4 \mathrm{mg}, 0.12 \mathrm{mmol}$) and phenothiazine (2 mg) as polymerisation inhibitor. The reaction mixture was heated under inert atmosphere in reflux conditions for 4 h . The solution was cooled to r.t. and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The reaction mixture was stirred overnight. The white precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to provide starting MIDA ester 248 as a white solid (quantitative). The filtrate was evaporated and a mixture of starting 315, pinacol 255, and another boron species were obtained.

B.3. Boronated DEA ester derivative synthesis:

A solution of diethanolamine $\mathbf{2 5 0}(80.2 \mathrm{mg}, 0.76 \mathrm{mmol})$ and $\mathbf{3 1 5}(54.8 \mathrm{mg}, 0.15 \mathrm{mmol})$ in DCM (1 mL) was evaporated to dryness. The crude reaction mixture was then distillated by bulb to bulb distillation at $80^{\circ} \mathrm{C}$ for 2 h , then at $120^{\circ} \mathrm{C}$ for 3 h . The crude reaction mixture was cooled to r.t., then $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the reaction mixture was stirred overnight. The white precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x}) .{ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR showed a mixture of two species.

C. The metathesis/arylnitroso Diels-Alder/ring contraction

sequence

C.1. General procedure for the Synthesis of the O-substituted hydroxycarbamates:

A solution of diene $\mathbf{3 1 5}$ (1 eq) in DCM was cooled to $0^{\circ} \mathrm{C}$. Organohalide $\mathbf{3 5 7}$ (1.2 eq.) and base (1.2 eq.) were added successively at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , then at r.t. for 16 h . BHT was added and the crude mixture was evaporated. The crude was diluted in the minimum amount of DCM. The crude was filtered over a pad of silica and eluted with a mixture hexane/ $\mathrm{AcOEt}(9 / 1)$ containing BHT. The filtrate was evaporated.

Allyl-protecetd ene-product 358a.

General procedure was followed using diene $\mathbf{3 1 5}(719 \mathrm{mg}, 2.00 \mathrm{mmol})$, allylbromide $\mathbf{3 5 7 a}$ ($208 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$) and DBU ($359 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$) in DCM $(17 \mathrm{~mL})$. The crude was filtered over a pad of silica (hexane/AcOEt, $7 / 3, \mathrm{R}_{\mathrm{f}}=0.80$) and eluted with a mixture hexane/AcOEt ($9 / 1,555 \mathrm{~mL}$) containing BHT (18 mg). The filtrate was evaporated to afford a mixture of compound 358a/BHT (88/12, ${ }^{1}$ H NMR measurement, $768 \mathrm{mg}, 85 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.42-7.29\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{11}, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{13}\right)$, $7.07(\mathrm{~d}, J$ $\left.=18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.90\left(\mathrm{ddt}, J=16.9,10.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 5.66\left(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, $5.39\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 5.34\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 5.30-5.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{16}\right), 5.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 4.33$ - $4.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 4.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 1.28\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z ~ C h l o r o f o r m - ~} \boldsymbol{d}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) $157.2\left(\mathrm{C}_{8}\right), 149.3\left(\mathrm{C}_{4}\right), 141.0\left(\mathrm{C}_{5}\right), 136.2\left(\mathrm{C}_{10}\right)$, $132.4\left(\mathrm{C}_{15}\right), 128.6\left(\mathrm{C}_{12}\right), 128.3\left(\mathrm{C}_{13}\right), 128.1\left(\mathrm{C}_{11}\right), 121.5\left(\mathrm{C}_{6}\right), 120.0\left(\mathrm{C}_{16}\right), 117.6\left(\mathrm{C}_{3}\right), 83.5$ $\left(\mathrm{C}_{2}\right), 76.6\left(\mathrm{C}_{14}\right), 67.4\left(\mathrm{C}_{9}\right), 51.2\left(\mathrm{C}_{7}\right), 24.9\left(\mathrm{C}_{1}\right)$.
${ }^{11} \mathbf{B}$ NMR (96 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 30.1.
IR (neat, v) 2978, 1706, 1630, 1600, 1380, 1338, 1217, 1143, 1090, 971, 929, 849, 754, 697 cm^{-1}.
LRMS (ESI+) 422.0 (37%) $[\mathrm{M}+\mathrm{Na}]^{+}, 400.7$ (74\%) $[\mathrm{M}+\mathrm{H}]^{+}, 356.9$ (100%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{5}{ }^{10} \mathrm{~B}\right)$: 399.2333 found: 399.2332.

Acetyl-protected ene-product 342.

Formula: $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{BNO}_{6}$
MW : 401.27

General procedure was followed using diene $\mathbf{3 1 5}(59.6 \mathrm{mg}, 0.17 \mathrm{mmol})$, acetylchloride 357b ($18 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(15 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL})$. The crude was filtered over a pad of silica (hexane/AcOEt, $7 / 1, \mathrm{R}_{\mathrm{f}}=0.20$) and eluted with a mixture hexane/ AcOEt ($9 / 1,335 \mathrm{~mL}$) containing BHT (10 mg). The filtrate was evaporated to afford a mixture of compound $\mathbf{3 4 2}$ /BHT ($87 / 13$, ${ }^{1} \mathrm{H}$ NMR measurement, $37.1 \mathrm{mg}, 56 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.45-7.26\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{11}, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{13}\right), 7.05(\mathrm{~d}, J$ $\left.=18.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.64\left(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 5.36-5.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 5.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{9}\right)$, $4.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{15}\right), 1.27\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z ~ C h l o r o f o r m - ~} \boldsymbol{d}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) $168.5\left(\mathrm{C}_{14}\right), 155.5\left(\mathrm{C}_{8}\right), 148.5\left(\mathrm{C}_{4}\right), 140.3\left(\mathrm{C}_{5}\right)$, $135.7\left(\mathrm{C}_{10}\right), 128.7\left(\mathrm{C}_{12}\right), 128.4\left(\mathrm{C}_{13}\right), 128.1\left(\mathrm{C}_{11}\right), 121.5\left(\mathrm{C}_{6}\right), 117.9\left(\mathrm{C}_{3}\right), 83.5\left(\mathrm{C}_{2}\right), 68.5\left(\mathrm{C}_{9}\right)$, $51.5\left(\mathrm{C}_{7}\right), 24.9\left(\mathrm{C}_{1}\right), 18.4\left(\mathrm{C}_{15}\right)$.
${ }^{11} \mathbf{B}$ NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d}, \boldsymbol{\delta} \mathbf{~ p p m}$) 29.8.
IR (neat, v) 2976, 1792, 1717, 1456, 1330, 1260, 1169, 1142, 1089, 1008, 850, 697, 673, 593 cm^{-1}.

LRMS (ESI+) 402.1 (36\%) [M+H] ${ }^{+}$, 359.0 (78\%), 298.1 (100\%).
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{6}{ }^{10} \mathrm{~B}\right)$: 399.2124 found: 401.2138.

Acryloyl-protected ene-product 358c.

General procedure was followed using diene 315 ($202.0 \mathrm{mg}, 0.56 \mathrm{mmol}$), acryloylchloride $357 \mathrm{c}(55 \mu \mathrm{~L}, 0.68 \mathrm{mmol})$ and $\mathrm{DBU}(101 \mu \mathrm{~L}, 0.68 \mathrm{mmol})$ in DCM $(5 \mathrm{~mL})$. The crude was filtered over a pad of silica (hexane/AcOEt, $7 / 1, \mathrm{R}_{\mathrm{f}}=0.20$) and eluted with a mixture hexane/AcOEt $(9 / 1,335 \mathrm{~mL})$ containing BHT $(11 \mathrm{mg})$. The filtrate was evaporated to afford a mixture of compound $\mathbf{3 5 8 c} / \mathrm{BHT}\left(82 / 18,{ }^{1} \mathrm{H}\right.$ NMR measurement, $\left.198.4 \mathrm{mg}, 70 \%\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.43-7.29\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{11}, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{13}\right), 7.05(\mathrm{~d}, J$ $\left.=18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 6.53\left(\mathrm{dd}, J=17.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 6.15\left(\mathrm{dd}, J=17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{15}\right)$, $5.96\left(\mathrm{dd}, J=10.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 5.65\left(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 5.37-5.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right)$, $5.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 4.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 1.27\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR (101 MHz Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 163.9\left(\mathrm{C}_{14}\right), 155.5\left(\mathrm{C}_{8}\right), 148.9\left(\mathrm{C}_{4}\right), 140.3\left(\mathrm{C}_{5}\right)$, $135.7\left(\mathrm{C}_{10}\right), 134.0\left(\mathrm{C}_{16}\right), 128.7\left(\mathrm{C}_{12}\right), 128.4\left(\mathrm{C}_{13}\right), 128.1\left(\mathrm{C}_{11}\right), 124.9\left(\mathrm{C}_{15}\right), 121.5\left(\mathrm{C}_{6}\right), 83.5$ $\left(\mathrm{C}_{2}\right), 68.5\left(\mathrm{C}_{9}\right), 51.6\left(\mathrm{C}_{7}\right), 24.9\left(\mathrm{C}_{1}\right)$, B-C not visible.
${ }^{11} \mathbf{B}$ NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 29.8.
IR (neat, v) 2983, 1795, 1708, 1442, 1335, 1255, 1171, 1153, 1090, 1002, 847, 703, 653, 586 cm^{-1}.

LRMS (ESI+) 414.0 (100%) $[\mathrm{M}+\mathrm{H}]^{+}, 368.8$ (58\%), 297.4 (72\%), 172.0 (57\%).
HRMS (ESI+) calcd. for [M+H]+($\left.\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{6}{ }^{10} \mathrm{~B}\right)$: 413.2124 found: 413.2140 .

Propargyl-protected ene-product 358d.

General procedure was followed using diene $\mathbf{3 1 5}(92.0 \mathrm{mg}, 0.26 \mathrm{mmol})$, propargylbromide 357d $(35 \mu \mathrm{~L}, 0.31 \mathrm{mmol})$ and $\mathrm{DBU}(46 \mu \mathrm{~L}, 0.31 \mathrm{mmol})$ in $\mathrm{DCM}(2.5 \mathrm{~mL})$. The crude was filtered over a pad of silica (hexane/AcOEt, $7 / 1, \mathrm{R}_{\mathrm{f}}=0.25$) and eluted with a mixture hexane/AcOEt $(9 / 1,270 \mathrm{~mL}$) containing BHT (6 mg). The filtrate was evaporated to afford a mixture of compound $\mathbf{3 5 8 d} / \mathrm{BHT}\left(80 / 20,{ }^{1} \mathrm{H}\right.$ NMR measurement, $77.3 \mathrm{mg}, 60 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.39-7.29\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{11}, \mathrm{H}_{12}\right.$ and H_{13}), $7.07(\mathrm{~d}, J$ $\left.=18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.64\left(\mathrm{~d}, \mathrm{~J}=18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 5.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 5.31(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$, H_{6}), $5.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 4.46\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 4.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 2.45(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, H_{16}), 1.28 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{H}_{1}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 157.1\left(\mathrm{C}_{8}\right), 149.3\left(\mathrm{C}_{4}\right), 140.7\left(\mathrm{C}_{5}\right), 135.9\left(\mathrm{C}_{10}\right)$, $128.6\left(\mathrm{C}_{12}\right), 128.3\left(\mathrm{C}_{13}\right), 128.2\left(\mathrm{C}_{11}\right), 121.2\left(\mathrm{C}_{6}\right), 117.5\left(\mathrm{C}_{3}\right), 83.5\left(\mathrm{C}_{2}\right), 78.2\left(\mathrm{C}_{15}\right), 76.0\left(\mathrm{C}_{16}\right)$, $68.1\left(\mathrm{C}_{9}\right), 62.9\left(\mathrm{C}_{14}\right), 51.6\left(\mathrm{C}_{7}\right), 24.9\left(\mathrm{C}_{1}\right)$.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 30.1.
IR (neat, v) 2977, 1712, 1600, 1338, 1217, 1143, 1089, 997, 970, 848, 754, 696, $633 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 398.7 (83\%) [M+H] ${ }^{+}$, 355.0 (100\%), 298.1 (49\%), 283.2 (34%), 172.0 (53%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5}{ }^{10} \mathrm{~B}\right)$: 397.2175 found: 397.2188.

C.2. Protection of the hydroxycarbamate with the $\mathrm{BF}_{3} \mathrm{~K}$ variant:

Pathway 1:

A solution of diene $\mathbf{3 5 6 a}(0.30 \mathrm{mg}, 0.074 \mathrm{mmol})$ in acetone $(1 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Allylbromide 357a ($8 \mu \mathrm{~L}, 0.089 \mathrm{mmol}$) and DBU ($14 \mu \mathrm{~L}, 0.089 \mathrm{mmol}$) were added successively at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , then at r.t. for 16 h . The reaction mixture was evaporated.

Pathway 2:

A solution of diene $315(57.5 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{DCM}(0.5 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Allylbromide 357a ($17 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$) and $\mathrm{DBU}(48 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$ were added successively at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , then at r.t. for $7 \mathrm{~h} . \mathrm{DCM}$ was evaporated and the crude reaction mixture was diluted in $\mathrm{MeOH}(1 \mathrm{~mL})$, then cooled to $0^{\circ} \mathrm{C}$. An aqueous solution of $\mathrm{KHF}_{2} \mathbf{1 4 6}(37.5 \mathrm{mg}$ in 0.5 mL$)$ was added to the crude at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at r.t. overnight (18 h). The mixture was evaporated.

C.3. The ring closure metathesis (RCM) of hydroxamates 358a-c

Metathesis product 380.

Compound 358a ($170 \mathrm{mg}, 0.43 \mathrm{mmol}$) and Grubbs catalyst $2^{\text {nd }}$ generation $361(18.1 \mathrm{mg}$, $0.021 \mathrm{mmol})$ were solubilised in dry $\mathrm{DCM}(13 \mathrm{~mL})$ under inert atmosphere. The reaction mixture was stirred at $45^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to r.t. and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the aqueous phase extracted with DCM (3x). The organic phase was dried over MgSO_{4}, filtered and evaporated. The crude product was purified by silica gel chromatography (eluent, hexane/AcOEt, $8 / 1, \mathrm{R}_{\mathrm{f}}=0.05$) to afford $\mathbf{3 8 0}$ as a white solid (98.0 $\mathrm{mg}, 70 \%)$.
M.p. $=124^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.42-7.29\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{11}, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{13}\right), 6.97(\mathrm{~d}, J$ $\left.=18.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.98\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 5.48\left(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 4.53(\mathrm{~d}$, $\left.J=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 4.31\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 1.27\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR (101 MHz Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $155.5\left(\mathrm{C}_{8}\right), 147.0\left(\mathrm{C}_{4}\right), 136.0\left(\mathrm{C}_{10}\right)$, $133.0\left(\mathrm{C}_{5}\right)$, $128.7\left(\mathrm{C}_{12}\right), 128.4\left(\mathrm{C}_{13}\right), 128.3\left(\mathrm{C}_{11}\right), 127.2\left(\mathrm{C}_{6}\right), 115.8\left(\mathrm{C}_{3}\right), 83.6\left(\mathrm{C}_{2}\right), 68.7\left(\mathrm{C}_{14}\right), 67.9\left(\mathrm{C}_{9}\right)$, $44.8\left(\mathrm{C}_{7}\right), 24.9\left(\mathrm{C}_{1}\right)$.
${ }^{11} \mathbf{B}$ NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 30.0.
IR (neat, v) 2977, 1704, 1608, 1343, 1319, 1217, 1200, 1129, 1093, 1010, 965, 846, 790, $747,694,651 \mathrm{~cm}^{-1}$.

LRMS (ESI+) 372.0 (81%) $[\mathrm{M}+\mathrm{H}]^{+}, 329.6$ (100\%), 234.1 (34\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{5}{ }^{10} \mathrm{~B}\right)$: 371.2015 found: 371.2019.

Single crystal X-ray structure data for 380:

A suitable crystal obtained in DCM was selected and measured on a D8V_Mo diffractometer. The crystal was kept at 120 K during data collection. Using Olex $2,{ }^{185}$ the structure was solved with the ShelXS structure solution program, ${ }^{182}$ using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. ${ }^{182}$

Table XLVI. Crystal data and structure refinement.

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{BNO}_{5}$
Formula weight	371.23
Temperature/K	120
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a / \AA	$12.8072(10)$
b / \AA	$10.7432(9)$
c / \AA	$14.2090(11)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$98.573(3)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1933.2(3)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.275
$\mu \mathrm{~m}^{-1}$	0.090
$\mathrm{~F}(000)$	792.0
Crystal size $/ \mathrm{mm}^{3}$	$0.316 \times 0.311 \times 0.257$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	4.64 to 61.886
Index ranges	$-18 \leq \mathrm{h} \leq 18,-15 \leq \mathrm{k} \leq 15,-20 \leq 1 \leq 20$
Reflections collected	44140
Independent reflections	$6129\left[\mathrm{R}_{\text {int }}=0.0325, \mathrm{R}_{\text {sigma }}=0.0206\right]$
Data/restraints/parameters	$6129 / 2 / 256$
Goodness-of-fit on F^{2}	1.038
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0455, \mathrm{wR} \mathrm{R}_{2}=0.1184$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0543, \mathrm{wR}_{2}=0.1247$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.56 /-0.34$

Table XLVII. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	y	z	U(eq)
$\mathrm{O}(1)$	5357.6(6)	9295.8(7)	8423.5(5)	17.86(15)
$\mathrm{O}(2)$	6237.4(7)	9548.3(7)	7146.1 (5)	21.09(16)
$\mathrm{O}(4)$	4818.2(8)	3145.7(9)	5356.0(7)	$31.6(2)$
$\mathrm{O}(5)$	3405.0(6)	2024.0(7)	5658.2(5)	19.71(16)
N	3731.6(7)	3889.0(8)	6348.0(6)	17.84(17)
C(1)	5788.6(8)	10556.9(9)	8502.0(7)	17.14(18)
C(2)	6655.5(9)	10502.7(9)	7838.3(7)	18.79(19)
C(3)	4878.7(10)	11427.3(11)	8143.6(10)	29.1(2)
C(4)	6207.5(10)	10813.0(11)	9539.3(8)	24.2(2)
C(5)	6816.5(12)	11697.6(11)	7312.5(9)	29.2(3)
C(6)	7710.0(9)	10013.3(12)	8331.8(10)	28.3(2)
C(7)	5106.3(8)	7572.3(9)	7159.8(7)	16.88(18)
C (8)	4401.3(8)	6941.4(9)	$7582.4(7)$	15.38(18)
C(9)	3891.3(8)	5770.0(9)	7270.8(7)	14.74(17)
$\mathrm{C}(10)$	3197.2(10)	5249.2(11)	7765.5(8)	25.2(2)
$\mathrm{C}(11)$	2612.4(9)	4086.7(11)	7450.7(8)	24.7(2)
$\mathrm{C}(12)$	4163.6(9)	5134.2(10)	6393.8(8)	20.8(2)
$\mathrm{C}(13)$	4038.0(8)	3026.8(9)	5735.2(7)	17.95(19)
C(14)	3744.9(11)	1027.5(12)	5082.4(10)	31.1(3)
$\mathrm{C}(15)$	2890.6(9)	62.2(10)	4968.8(7)	20.1(2)
$\mathrm{C}(16)$	1871(1)	359.2(11)	$4538.2(9)$	26.3(2)
$\mathrm{C}(17)$	1083.5(10)	-531.9(13)	4433.8(9)	30.3(3)
$\mathrm{C}(18)$	1308.4(11)	-1736.4(12)	4752.9(9)	30.7(3)
C(19)	2317.8(12)	-2038.4(11)	5169.3(9)	29.9(3)
C(20)	3111.7(10)	-1141.6(11)	5276.6(8)	24.7(2)
B	5576.4(9)	8815(1)	7579.5(8)	16.2(2)
O(3A)	2665.4(6)	3838.9(8)	6472.7(6)	18.82(17)
$\mathrm{O}(3 \mathrm{~B})$	3233(5)	3366(6)	7060(4)	20.5(13)

Table XLVIII. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a *{ }^{*} U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
$\mathrm{O}(1)$	$23.4(4)$	$13.1(3)$	$18.1(3)$	$-2.6(3)$	$6.5(3)$	$-4.1(3)$
$\mathrm{O}(2)$	$30.1(4)$	$16.8(3)$	$17.9(3)$	$-5.7(3)$	$8.7(3)$	$-8.9(3)$
$\mathrm{O}(4)$	$35.4(5)$	$27.6(4)$	$37.4(5)$	$-14.4(4)$	$23.5(4)$	$-13.5(4)$
$\mathrm{O}(5)$	$23.5(4)$	$16.7(3)$	$20.9(4)$	$-8.0(3)$	$9.6(3)$	$-6.7(3)$
N	$16.7(4)$	$16.4(4)$	$22.0(4)$	$-6.2(3)$	$8.1(3)$	$-5.6(3)$
$\mathrm{C}(1)$	$23.4(5)$	$11.1(4)$	$17.3(4)$	$-1.8(3)$	$4.2(3)$	$-1.9(3)$
$\mathrm{C}(2)$	$26.2(5)$	$13.7(4)$	$17.2(4)$	$-3.4(3)$	$5.5(4)$	$-6.5(4)$
$\mathrm{C}(3)$	$31.8(6)$	$20.0(5)$	$34.7(6)$	$-3.0(4)$	$2.2(5)$	$7.2(4)$
$\mathrm{C}(4)$	$36.4(6)$	$19.7(5)$	$16.6(4)$	$-4.0(4)$	$4.9(4)$	$-6.0(4)$

$\mathrm{C}(5)$	$47.2(7)$	$18.8(5)$	$23.2(5)$	$0.1(4)$	$10.0(5)$	$-12.7(5)$
$\mathrm{C}(6)$	$22.7(5)$	$26.0(5)$	$36.2(6)$	$-6.1(5)$	$4.7(4)$	$-3.5(4)$
$\mathrm{C}(7)$	$19.3(4)$	$13.7(4)$	$18.0(4)$	$-3.1(3)$	$3.8(3)$	$-1.7(3)$
$\mathrm{C}(8)$	$16.4(4)$	$13.8(4)$	$15.6(4)$	$-2.9(3)$	$1.4(3)$	$-0.4(3)$
$\mathrm{C}(9)$	$15.1(4)$	$14.4(4)$	$14.5(4)$	$-1.5(3)$	$1.4(3)$	$-1.1(3)$
$\mathrm{C}(10)$	$28.3(5)$	$28.1(5)$	$21.3(5)$	$-9.7(4)$	$11.0(4)$	$-12.1(4)$
$\mathrm{C}(11)$	$25.9(5)$	$27.7(5)$	$22.9(5)$	$-7.7(4)$	$11.8(4)$	$-12.6(4)$
$\mathrm{C}(12)$	$22.8(5)$	$16.4(4)$	$25.4(5)$	$-6.6(4)$	$11.0(4)$	$-6.2(4)$
$\mathrm{C}(13)$	$21.8(5)$	$16.7(4)$	$15.9(4)$	$-3.6(3)$	$5.0(3)$	$-4.2(4)$
$\mathrm{C}(14)$	$35.1(6)$	$26.0(5)$	$37.2(6)$	$-19.4(5)$	$22.1(5)$	$-12.9(5)$
$\mathrm{C}(15)$	$26.1(5)$	$17.3(4)$	$18.7(4)$	$-8.2(4)$	$9.2(4)$	$-5.3(4)$
$\mathrm{C}(16)$	$34.1(6)$	$18.0(5)$	$26.4(5)$	$-3.1(4)$	$3.4(4)$	$1.5(4)$
$\mathrm{C}(17)$	$25.4(5)$	$33.5(6)$	$30.5(6)$	$-9.6(5)$	$-0.7(5)$	$-1.6(5)$
$\mathrm{C}(18)$	$37.3(7)$	$28.3(6)$	$27.9(6)$	$-8.8(5)$	$9.5(5)$	$-16.2(5)$
$\mathrm{C}(19)$	$49.4(8)$	$17.4(5)$	$23.5(5)$	$1.0(4)$	$7.3(5)$	$-4.1(5)$
$\mathrm{C}(20)$	$28.7(5)$	$24.5(5)$	$20.3(5)$	$-3.2(4)$	$2.0(4)$	$2.1(4)$
B	$18.2(5)$	$13.8(4)$	$16.6(5)$	$-1.3(4)$	$2.8(4)$	$-1.1(4)$
$\mathrm{O}(3 \mathrm{~A})$	$12.9(3)$	$23.5(4)$	$20.7(4)$	$-7.2(3)$	$4.5(3)$	$-4.6(3)$

Table XLIX. Bond Lengths.

Atom Atom	Length $/ \AA$	Atom Atom	Length $/ \AA$		
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$1.4609(12)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.3404(14)$
$\mathrm{O}(1)$	B	$1.3724(13)$	$\mathrm{C}(7)$	B	$1.5471(14)$
$\mathrm{O}(2)$	$\mathrm{C}(2)$	$1.4657(12)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.4560(13)$
$\mathrm{O}(2)$	B	$1.3682(13)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.3357(14)$
$\mathrm{O}(4)$	$\mathrm{C}(13)$	$1.2105(13)$	$\mathrm{C}(9)$	$\mathrm{C}(12)$	$1.5068(14)$
$\mathrm{O}(5)$	$\mathrm{C}(13)$	$1.3430(12)$	$\mathrm{C}(10) \mathrm{C}(11)$	$1.4903(15)$	
$\mathrm{O}(5)$	$\mathrm{C}(14)$	$1.4530(13)$	$\mathrm{C}(11) \mathrm{O}(3 \mathrm{~A})$	$1.4264(14)$	
N	$\mathrm{C}(12)$	$1.4454(13)$	$\mathrm{C}(11) \mathrm{O}(3 \mathrm{~B})$	$1.293(6)$	
N	$\mathrm{C}(13)$	$1.3682(13)$	$\mathrm{C}(14) \mathrm{C}(15)$	$1.4987(15)$	
N	$\mathrm{O}(3 \mathrm{~A})$	$1.4039(11)$	$\mathrm{C}(15) \mathrm{C}(16)$	$1.3940(17)$	
N	$\mathrm{O}(3 \mathrm{~B})$	$1.393(6)$	$\mathrm{C}(15) \mathrm{C}(20)$	$1.3809(16)$	
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.5612(15)$	$\mathrm{C}(16) \mathrm{C}(17)$	$1.3824(18)$	
$\mathrm{C}(1)$	$\mathrm{C}(3)$	$1.5215(16)$	$\mathrm{C}(17) \mathrm{C}(18)$	$1.387(2)$	
$\mathrm{C}(1)$	$\mathrm{C}(4)$	$1.5166(15)$	$\mathrm{C}(18) \mathrm{C}(19)$	$1.378(2)$	
$\mathrm{C}(2)$	$\mathrm{C}(5)$	$1.5148(15)$	$\mathrm{C}(19) \mathrm{C}(20)$	$1.3925(17)$	
$\mathrm{C}(2)$	$\mathrm{C}(6)$	$1.5198(17)$			

Table L. Bond Angles.

Atom	Atom Atom	Angle ${ }^{\circ}$	Atom	Atom Atom	Angle ${ }^{\circ}$
B	$\mathrm{O}(1) \mathrm{C}(1)$	106.96(8)	C(10)	$\mathrm{C}(9) \mathrm{C}(8)$	120.37(9)
B	$\mathrm{O}(2) \mathrm{C}(2)$	106.83(8)	$\mathrm{C}(10)$	$\mathrm{C}(9) \mathrm{C}(12)$	119.97(9)
C(13)	$\mathrm{O}(5) \mathrm{C}(14)$	114.14(8)	C(9)	$\mathrm{C}(10) \mathrm{C}(11)$	122.50(10)
C(13)	$\mathrm{N} \quad \mathrm{C}(12)$	120.73(8)	O(3A)	$\mathrm{C}(11) \mathrm{C}(10)$	110.73(9)
295					

$\mathrm{C}(13)$	N	$\mathrm{O}(3 \mathrm{~A})$	$115.53(8)$	$\mathrm{O}(3 \mathrm{~B}) \mathrm{C}(11) \mathrm{C}(10)$	$108.5(3)$	
$\mathrm{C}(13)$	N	$\mathrm{O}(3 \mathrm{~B})$	$113.3(3)$	N	$\mathrm{C}(12)$	$\mathrm{C}(9)$
$\mathrm{O}(3 \mathrm{~A})$	N	$\mathrm{C}(12)$	$113.75(8)$	$\mathrm{O}(4)$	$\mathrm{C}(13)$	$\mathrm{O}(5)$
$\mathrm{O}(3 \mathrm{~B})$	N	$\mathrm{C}(12)$	$123.7(3)$	$\mathrm{O}(4)$	$\mathrm{C}(13)$	N
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$102.36(7)$	$\mathrm{O}(5)$	$\mathrm{C}(13)$	N
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(3)$	$106.41(9)$	$\mathrm{O}(5)$	$\mathrm{C}(14) \mathrm{C}(15)$	$123.09(9)$
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(4)$	$108.50(8)$	$\mathrm{C}(16)$	$\mathrm{C}(15) \mathrm{C}(14)$	$107.17(9)$
$\mathrm{C}(3)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$113.51(9)$	$\mathrm{C}(20)$	$\mathrm{C}(15) \mathrm{C}(14)$	$120.66(11)$
$\mathrm{C}(4)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$114.42(9)$	$\mathrm{C}(20)$	$\mathrm{C}(15) \mathrm{C}(16)$	$119.20(10)$
$\mathrm{C}(4)$	$\mathrm{C}(1)$	$\mathrm{C}(3)$	$110.86(9)$	$\mathrm{C}(17)$	$\mathrm{C}(16) \mathrm{C}(15)$	$120.61(11)$
$\mathrm{O}(2)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$102.11(8)$	$\mathrm{C}(16)$	$\mathrm{C}(17) \mathrm{C}(18)$	$119.89(12)$
$\mathrm{O}(2)$	$\mathrm{C}(2)$	$\mathrm{C}(5)$	$108.96(9)$	$\mathrm{C}(19)$	$\mathrm{C}(18) \mathrm{C}(17)$	$119.73(11)$
$\mathrm{O}(2)$	$\mathrm{C}(2)$	$\mathrm{C}(6)$	$106.15(9)$	$\mathrm{C}(18)$	$\mathrm{C}(19) \mathrm{C}(20)$	$120.47(11)$
$\mathrm{C}(5)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$115.32(9)$	$\mathrm{C}(15)$	$\mathrm{C}(20) \mathrm{C}(19)$	$120.09(11)$
$\mathrm{C}(5)$	$\mathrm{C}(2)$	$\mathrm{C}(6)$	$110.11(10)$	$\mathrm{O}(1)$	B	$\mathrm{C}(7)$
$\mathrm{C}(6)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$113.41(9)$	$\mathrm{O}(2)$	B	$\mathrm{O}(1)$
$\mathrm{C}(8)$	$\mathrm{C}(7)$	B	$120.87(9)$	$\mathrm{O}(2)$	B	$\mathrm{C}(7)$
$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$127.04(9)$	N	$\mathrm{O}(3 \mathrm{~A}) \mathrm{C}(11)$	$113.40(9)$
$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{C}(12)$	$119.65(8)$	$\mathrm{C}(11)$	$\mathrm{O}(3 \mathrm{~B})$	N

Table LI. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	U(eq)
$\mathrm{H}(3 \mathrm{~A})$	4630	11258	7470	$38(3)$
$\mathrm{H}(3 \mathrm{~B})$	5120	12292	8218	$38(3)$
H(3C)	4300	11292	8512	$38(3)$
H(4A)	5617	10851	9905	$32(2)$
H(4B)	6586	11609	9593	$32(2)$
H(4C)	6691	10144	9790	$32(2)$
H(5A)	7366	11572	6910	$39(3)$
H(5B)	7033	12362	7773	$39(3)$
H(5C)	6154	11932	6914	$39(3)$
H(6A)	7599	9236	8663	$34(2)$
H(6B)	8035	10631	8793	$34(2)$
H(6C)	8177	9858	7857	$34(2)$
H(7)	5320	7252	6595	20
H(8)	4214	7297	8146	18
H(10)	3071	5634	8340	30
H(11A)	2921	3379	7844	30
H(11B)	1865	4174	7543	30
H(11C)	2382	3664	8004	30
H(11D)	1978	4288	6988	30
H(12A)	3865	5608	5819	25
H(12B)	4940	5416	664	6421
H(14A)	3856	1350	4452	37
H(14B)	1716	182	4314	37
H(16)				32

$\mathrm{H}(17)$	389	-320	4144	36
$\mathrm{H}(18)$	769	-2351	4685	37
$\mathrm{H}(19)$	2473	-2864	5385	36
$\mathrm{H}(20)$	3806	-1358	5562	30

Table LII. Atomic Occupancy.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
$\mathrm{H}(11 \mathrm{~A})$	0.875	$\mathrm{H}(11 \mathrm{~B})$	0.875	$\mathrm{H}(11 \mathrm{C})$	0.125
$\mathrm{H}(11 \mathrm{D})$	0.125	$\mathrm{O}(3 \mathrm{~A})$	0.89	$\mathrm{O}(3 \mathrm{~B})$	0.11

Reactions using 358b and 358c were performed using the same procedure as for 358a. No products were isolated.

C.4. General procedure for the arylnitroso Diels-Alder/ring contraction sequence:

To a solution of $\mathbf{3 8 0}$ (1 eq) in a mixture of $\mathrm{MeOH} / \mathrm{DCM}$ (6/1) was added arylnitroso compounds $\mathbf{1 6 0}$ (1.5 to 3 eq). The reaction mixture was stirred at the indicated temperature in the experimental procedure. The solvent was evaporated and the crude product was purified by silica gel chromatography.

Fused oxazine-pyrrole 386a.

Compound $\mathbf{3 8 0}$ ($51.3 \mathrm{mg}, 0.14 \mathrm{mmol}$) and nitrosobenzene $\mathbf{1 6 0 a}(37.5 \mathrm{mg}, 0.35 \mathrm{mmol})$ were stirred in $\mathrm{DCM} / \mathrm{MeOH}(6 / 1)(2 \mathrm{~mL})$ at $\mathrm{r} . \mathrm{t}$. for 24 h . The crude product was purified by silica gel chromatography (eluent, hexane $/ \mathrm{EtOAc}, 6 / 1, \mathrm{R}_{\mathrm{f}}=0.30$) to afford compound 386a as an orange oil ($39.0 \mathrm{mg}, 96 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.47-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right)$, $6.87\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 6.19\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 5.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{8}\right)$, $4.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right)$
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 155.6\left(\mathrm{C}_{6}\right), 139.1\left(\mathrm{C}_{13}\right)$, $136.1\left(\mathrm{C}_{4}\right), 129.8$ $\left(\mathrm{C}_{15}\right), 128.7\left(\mathrm{C}_{2}\right), 128.4\left(\mathrm{C}_{1}\right), 128.3\left(\mathrm{C}_{3}\right), 126.9\left(\mathrm{C}_{16}\right), 123.4\left(\mathrm{C}_{10}\right), 123.1\left(\mathrm{C}_{14}\right), 121.0\left(\mathrm{C}_{12}\right)$, $114.7\left(\mathrm{C}_{9}\right), 106.3\left(\mathrm{C}_{11}\right), 68.0\left(\mathrm{C}_{5}\right), 67.9\left(\mathrm{C}_{8}\right), 45.1\left(\mathrm{C}_{7}\right)$
IR (neat, v) 1704, 1503, 1454, 1390, 1338, 1312, 1202, 1072, 1115, 787, $753 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 336.4 (100%) $[\mathrm{M}+\mathrm{H}]^{+}$, 291.2 (20\%), 246.1 (84\%), 170.0 (77\%), 156.0 (65\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$: 335.1396 found: 335.1391.

Fused oxazine-pyrrole 386b.

Formula : $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{3}$ MW : 368.82

Compound 380 ($54.0 \mathrm{mg}, 0.14 \mathrm{mmol}$) and 4-chloronitrosobenzene 160b ($30.9 \mathrm{mg}, 0.22$ $\mathrm{mmol})$ were stirred in $\mathrm{DCM} / \mathrm{MeOH}(6 / 1)(2.4 \mathrm{~mL})$ at r.t. for 24 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, $6 / 1, \mathrm{R}_{\mathrm{f}}=0.35$) to afford compound $\mathbf{3 8 6}$ b as an orange oil ($41.1 \mathrm{mg}, 77 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.44-7.31\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}\right.$ and H_{15}), 7.14 $7.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 6.82\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 6.19\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 5.26(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{H}_{5}\right), 4.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 4.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right)$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C h l o r o f o r m - d , ~} \boldsymbol{\delta} \mathbf{~ p p m}$) 155.6 (C_{6}), 137.7 (C_{13}), 136.1 ($\left.\mathrm{C}_{4}\right), 132.6$ $\left(\mathrm{C}_{16}\right), 130.0\left(\mathrm{C}_{15}\right), 128.7\left(\mathrm{C}_{2}\right), 128.4\left(\mathrm{C}_{1}\right), 128.3\left(\mathrm{C}_{3}\right), 124.3\left(\mathrm{C}_{14}\right), 123.4\left(\mathrm{C}_{10}\right), 121.0\left(\mathrm{C}_{12}\right)$, $115.1\left(\mathrm{C}_{9}\right), 106.7\left(\mathrm{C}_{11}\right), 68.0\left(\mathrm{C}_{5}\right), 67.7\left(\mathrm{C}_{8}\right), 55.7\left(\mathrm{C}_{17}\right), 45.1\left(\mathrm{C}_{7}\right)$
IR (neat, v) 1723, 1501, 1401, 1340, 1308, 1203, 1169, 1069, 838, 752, 695, $659,515 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 369.5 (100%) $[\mathrm{M}+\mathrm{H}]^{+}, 280.0$ (22\%), 204.0 (17%).
HRMS (ESI+ $)$ calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{3}\right)$: 369.1006 found: 369.1013.

Fused oxazine-pyrrole 386d.

Formula : $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$
MW : 364.40

Compound 380 ($51.5 \mathrm{mg}, 0.14 \mathrm{mmol}$) and 4-methoxynitrosobenzene 160d ($57.2 \mathrm{mg}, 0.42$ $\mathrm{mmol})$ were stirred in $\mathrm{DCM} / \mathrm{MeOH}(6 / 1)(2.4 \mathrm{~mL})$ at r.t. for 72 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, $6 / 1, \mathrm{R}_{\mathrm{f}}=0.15$) to afford compound $\mathbf{3 8 6 d}$ as an orange oil ($37.1 \mathrm{mg}, 73 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- $\left.\boldsymbol{d}, \boldsymbol{\delta} \mathbf{~ p p m}\right) 7.43-7.31\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{3}\right), 7.15-7.09$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 6.97-6.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{15}\right), 6.78\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 6.15(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$, H_{11}), $5.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 4.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 4.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{17}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 158.6 (C_{16}), 155.6 (C_{6}), 136.1 ($\left.\mathrm{C}_{4}\right), 132.2$ $\left(\mathrm{C}_{13}\right), 128.7\left(\mathrm{C}_{2}\right), 128.4\left(\mathrm{C}_{1}\right), 128.3\left(\mathrm{C}_{3}\right), 124.8\left(\mathrm{C}_{14}\right), 123.6\left(\mathrm{C}_{10}\right), 121.3\left(\mathrm{C}_{12}\right), 114.9\left(\mathrm{C}_{15}\right)$, $114.0\left(\mathrm{C}_{9}\right), 105.7\left(\mathrm{C}_{11}\right), 67.9\left(\mathrm{C}_{5}\right), 67.8\left(\mathrm{C}_{8}\right), 55.7\left(\mathrm{C}_{17}\right), 45.1\left(\mathrm{C}_{7}\right)$.
IR (neat, v) 1703, 1515, 1390, 1248, 1202, 1169, 1107, 1071, 1030, 834, 697, $604 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 366.5 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}, 276.1$ (20\%), 186.1 (46\%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$: 365.1501 found: 365.1500.

Fused oxazine-pyrrole 386f.

Formula: $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ MW : 348.40

Compound $\mathbf{3 8 0}$ ($61.0 \mathrm{mg}, 0.16 \mathrm{mmol}$) and 2-nitrosotoluene $\mathbf{1 6 0 f}(58.2 \mathrm{mg}, 0.48 \mathrm{mmol})$ were stirred in DCM/MeOH (6/1) (2.4 mL) in reflux condition for 72 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, $6 / 1, \mathrm{R}_{\mathrm{f}}=0.25$)to afford compound $\mathbf{3 8 6 f}$ as a yellow oil ($38.2 \mathrm{mg}, 67 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.41$ - $7.29\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}\right.$ and $\left.\mathrm{H}_{18}\right), 7.24$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 7.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{17}\right), 6.63\left(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 6.16\left(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right)$, $5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 4.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{19}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d, $\boldsymbol{\delta} \mathbf{~ p p m}$) $155.7\left(\mathrm{C}_{6}\right), 137.9\left(\mathrm{C}_{13}\right), 136.2\left(\mathrm{C}_{4}\right), 135.3$ $\left(\mathrm{C}_{14}\right), 131.3\left(\mathrm{C}_{15}\right), 128.7\left(\mathrm{C}_{18}\right), 128.6\left(\mathrm{C}_{2}\right), 128.3\left(\mathrm{C}_{1}\right), 128.2\left(\mathrm{C}_{3}\right), 127.4\left(\mathrm{C}_{17}\right), 126.8\left(\mathrm{C}_{16}\right)$, $124.3\left(\mathrm{C}_{10}\right), 122.0\left(\mathrm{C}_{12}\right), 113.0\left(\mathrm{C}_{9}\right), 105.2\left(\mathrm{C}_{11}\right), 67.8\left(\mathrm{C}_{5}\right), 67.5\left(\mathrm{C}_{8}\right), 45.0\left(\mathrm{C}_{7}\right), 17.4\left(\mathrm{C}_{19}\right)$.

IR (neat, v) 1702, 1501, 1455, 1405, 1340, 1308, 1204, 1171, 1130, 1070, 752, 718, $696 \mathrm{~cm}^{-}$ 1

LRMS (ESI+) 350.1 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}, 260.3$ (17\%), 184.1 (26\%).
HRMS (ESI +) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$: 349.1552 found: 349.1548.

Fused oxazine-pyrrole 386g.

Compound 380 ($51.3 \mathrm{mg}, 0.14 \mathrm{mmol}$) and ethyl 4-nitrosobenzoate $\mathbf{1 6 0 g}$ ($37.1 \mathrm{mg}, 0.21$ $\mathrm{mmol})$ were stirred in $\mathrm{DCM} / \mathrm{MeOH}(6 / 1)(2.4 \mathrm{~mL})$ at r.t. for 24 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, $6 / 1, \mathrm{R}_{\mathrm{f}}=0.25$) to afford compound $\mathbf{3 8 6 g}$ as an orange oil $(46.1 \mathrm{mg}, 82 \%)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 8.13-8.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{15}\right), 7.43-7.32(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{H}_{1}, \mathrm{H}_{2}$ and $\left.\mathrm{H}_{3}\right), 7.23-7.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 6.91\left(\mathrm{~d}, J_{12-11}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 6.22\left(\mathrm{~d}, J_{11-12}=3.0\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 5.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 4.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{18}\right), 1.41\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{19}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 165.8 (C_{17}), 155.7 (C_{6}), 142.7 (C_{13}), 136.1 $\left(\mathrm{C}_{4}\right), 131.4\left(\mathrm{C}_{15}\right), 128.7\left(\mathrm{C}_{2}\right), 128.6\left(\mathrm{C}_{16}\right), 128.4\left(\mathrm{C}_{1}\right), 128.3\left(\mathrm{C}_{3}\right), 123.5\left(\mathrm{C}_{10}\right), 122.1\left(\mathrm{C}_{14}\right)$, $120.8\left(\mathrm{C}_{12}\right), 115.9\left(\mathrm{C}_{9}\right), 107.3\left(\mathrm{C}_{11}\right), 68.0\left(\mathrm{C}_{5}\right), 67.9\left(\mathrm{C}_{8}\right), 61.4\left(\mathrm{C}_{18}\right), 45.1\left(\mathrm{C}_{7}\right), 14.5\left(\mathrm{C}_{19}\right)$.

IR (neat, v) $1709,1608,1516,1271,1202,1168,1100,1072,1017,772,732,696 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 307.0 (100%) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$: 707.1607 found: 407.1603.

Fused oxazine-pyrrole 386h.

Compound 380 ($61.0 \mathrm{mg}, 0.16 \mathrm{mmol}$) and 4-bromonitrosobenzene $\mathbf{1 6 0 h}$ ($45.9 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ were stirred in $\mathrm{DCM} / \mathrm{MeOH}(6 / 1)(2.4 \mathrm{~mL})$ at r.t. for 24 h . The crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, $6 / 1, \mathrm{R}_{\mathrm{f}}=0.35$) to afford compound $\mathbf{3 8 6 h}$ as a yellow/orange solid ($58.0 \mathrm{mg}, 66 \%$).
M.p. $=92-95{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right) 7.59-7.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{15}\right), 7.44-7.31(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3}), $7.08-7.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 6.82\left(\mathrm{~d}, J_{6-5}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 6.19\left(\mathrm{~d}, J_{5-6}=2.9\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 5.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 4.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 4.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right)$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $155.6\left(\mathrm{C}_{6}\right), 138.2\left(\mathrm{C}_{13}\right), 136.1\left(\mathrm{C}_{4}\right), 132.9$ $\left(\mathrm{C}_{15}\right), 128.7\left(\mathrm{C}_{2}\right), 128.4\left(\mathrm{C}_{1}\right), 128.3\left(\mathrm{C}_{3}\right), 124.6\left(\mathrm{C}_{14}\right), 123.4\left(\mathrm{C}_{10}\right), 120.9\left(\mathrm{C}_{12}\right), 120.4\left(\mathrm{C}_{16}\right)$, $115.2\left(\mathrm{C}_{9}\right), 106.8\left(\mathrm{C}_{11}\right), 68.0\left(\mathrm{C}_{5}\right), 67.7\left(\mathrm{C}_{8}\right), 45.1\left(\mathrm{C}_{7}\right)$

IR (neat, v) 1723, 1498, 1401, 1340, 1308, 1203, 1169, 1070, 836, 751, 694, $508 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 414.9 (100%) $[\mathrm{M}+\mathrm{H}]^{+}, 368.1$ (12%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{3}\right)$: 413.0501 found: 413.0507.

D. The Diels-Alder/allylboration sequence

Polycylic product 390.

To a solution of $\mathbf{3 8 0}(50.0 \mathrm{mg}, 0.14 \mathrm{mmol})[1 \mathrm{M}]$ in acetone ($140 \mu \mathrm{l})$, were added N-phenyl maleimide $2 \mathrm{a}(25.7 \mathrm{mg}, 0.15 \mathrm{mmol})$ and and 4-nitrobenzaldehyde $35(42.8 \mathrm{mg}, 0.28 \mathrm{mmol})$. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 48 h . The solvent was evaporated and the crude product was purified by silica gel chromatography (eluent, hexane/EtOAc, $1 / 1, \mathrm{R}_{\mathrm{f}}=0.50$) to afford compound $\mathbf{3 9 0}$ ($28.1 \mathrm{mg}, \mathbf{3 8 \%}$).
M.p. $=79-81^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (700 MHz , Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) $7.44-7.29\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H}$, H_{Ar}), $6.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 5.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 4.47\left(\mathrm{~d}, J=14.2, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.45(\mathrm{dd}, J=12.0,7.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{8}$), $4.36\left(\mathrm{dd}, J=12.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 4.21\left(\mathrm{ddt}, J=15.7,3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.58$ (dd, $\left.J=8.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{14}\right), 3.35\left(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 2.90\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 1.92$ (dt, $J=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}$), $1.30\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{H}_{22}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C h l o r o f o r m - ~} \boldsymbol{d}$, $\boldsymbol{\delta} \mathbf{~ p p m}$) $178.1\left(\mathrm{C}_{16}\right), 176.2\left(\mathrm{C}_{15}\right), 155.4\left(\mathrm{C}_{6}\right), 136.0$ $\left(\mathrm{C}_{4}\right), 131.8\left(\mathrm{C}_{17}\right), 130.7\left(\mathrm{C}_{9}\right), 129.2(\mathrm{CH}), 128.70(\mathrm{CH}), 128.68(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 126.5(\mathrm{CH}), 124.6\left(\mathrm{C}_{11}\right), 84.4\left(\mathrm{C}_{21}\right), 71.4\left(\mathrm{C}_{8}\right), 68.0\left(\mathrm{C}_{5}\right), 49.5\left(\mathrm{C}_{7}\right), 43.0\left(\mathrm{C}_{14}\right), 41.7$ $\left(\mathrm{C}_{13}\right), 33.0\left(\mathrm{C}_{10}\right), 25.1\left(\mathrm{C}_{22}\right), 24.9\left(\mathrm{C}_{22}\right), 20.2\left(\mathrm{C}_{12}\right)$.
${ }^{11}$ B NMR ($\mathbf{9 6} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 32.4.
IR (neat, v) 2964, 1706, 1700, 1372, 1344, 1259, 1139, 1087, 1016, 795, 752, $693 \mathrm{~cm}^{-1}$.
LRMS (ESI+) 545.1 (67\%) [M+H] ${ }^{+}$, 501.1 (100%).
HRMS (ESI+) calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{30} \mathrm{H}_{34}{ }^{10} \mathrm{BN}_{2} \mathrm{O}_{7}\right)$: 544.2495 found: 544.2513.

References

${ }^{1}$ Zhu, J.; Bienaymé, H. Eds. Multicomponent Reactions Wiley-VCH, Weinheim, Germany, 2005.
${ }^{2}$ Dömling, A. Chem. Rev., 2006, 106, 17-89.
${ }^{3}$ Eckert, H. Heterocycles, 2007, 73, 149-158.
${ }^{4}$ Sunderhaus, J. D.; Martin, S. F. Chem. Eur. J., 2009, 15, 1300-1308.
${ }^{5}$ Coquerel, Y.; Boddaert, T.; Presset, M.; Mailhol, D.; Rodriguez, J. Ideas in Chemistry and Molecular Sciences: Advances in Synthetic Chemistry; Pignataro, B., Eds.Wiley-VCH: Weinheim, Germany, 2010; pp. 187-202.
${ }^{6}$ Orru, R. V. A.; Ruijter, E. Eds. Synthesis of Heterocycles via Multicomponent Reactions I; Topics in Heterocyclic Chemistry; Springer Verlag: New York, NY, USA, 2010; Volume 23.
${ }^{7}$ Orru, R. V. A.; Ruijter, E., Eds. Synthesis of Heterocycles via Multicomponent Reactions II; Topics in Heterocyclic Chemistry; Springer Verlag: New York, NY, USA, 2010; Volume 25.
${ }^{8}$ Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem. Int. Ed., 2011, 50, 6234-6246.
${ }^{9}$ Van der Heijden, G.; Ruijter, E.; Orru, R. V. A. Synlett, 2013, 24, 666-685.
${ }^{10}$ Matteson, D. S.; Kaufmann, D. Eds. Boron compounds In Science of Synthesis, Houben-Weyl, Methods of Molecular Transformations, George Thieme Verlag. Stuttgart, Germany, 2004, vol. 6.
${ }^{11}$ Hall, D. G. Ed. Boronic acids: Preparation, Applications in Organic Synthesis and Medicine, 2nd Edition, Wiley-VCH: Weinheim, Germany, 2011.
${ }^{12}$ Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett., 1993, 34, 583-586.
${ }^{13}$ Candeias, N. R.; Montalbano, F.; Cal, P. M.; Gois, P. M. Chem. Rev., 2010, 110, 6169-6193.
${ }^{14}$ Batey, R. A. In Boronic acids: Preparation, Applications in Organic Synthesis and Medicine, Hall, D. G. Ed.; 2nd Edition, Wiley-VCH: Weinheim, Germany, 2011, pp 427-477.
${ }^{15}$ Carboni, B.; Berrée, F. In Science of Synthesis: Multicomponent Reactions, Müller, T. J. J., Ed; Thieme: New York, 2013, vol 5.
${ }^{16}$ Luan, Y.; Schaus, S. E. Org. Lett., 2011, 13, 2510-2513.
${ }^{17}$ Kielland, N.; Catti, F.; Bello, D.; Isambert, N.; Soteras, I.; Luque, F. J.; Lavilla, R. Chem. Eur. J., 2010, 16, 7904-7915.
${ }^{18}$ Yang, C. M.; Jeganmohan, M.; Parthasarathy, K.; Cheng, C. H. Org. Lett., 2010, 12, 3610-3613.
${ }^{19}$ Berree, F.; Gernigon, N.; Hercouet, A.; Lin, C. H.; Carboni, B. Eur. J. Org. Chem., 2009, 329-333.
${ }^{20}$ Liao, L.; Jana, R.; Urkalan, K. B.; Sigman, M. S. J. Am. Chem. Soc., 2011, 133, 5784-5787.
${ }^{21}$ Melhado, A. S.; Brenzovich, W. E.; Lackner, A.D.; Toste, F. D. J. Am. Chem. Soc., 2010, 132, 8885-8887.
${ }^{22}$ Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc., 2006, 128, 74-75.
${ }^{23}$ Tonogaki, K.; Itami, K.; Yoshida, J. J. Am. Chem. Soc., 2006, 128, 1464-1465.
${ }^{24}$ Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc., 2004, 126, 3712-3713.
${ }^{25}$ Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc., 2005, 127, 9625-9631.
${ }^{26}$ Nishiyabu, R.; Kubo, Y.; James, T. D.; Fossey, J. S. Chem. Comm., 2011, 47, 1124-1150.
${ }^{27}$ For previous reviews of this topic, see: Hilt, G.; Bolze, P. Synthesis, 2005, 13, 2091-2114.
${ }^{28}$ Welker, M. A. Tetrahedron, 2008, 64, 11529-11539.
${ }^{29}$ Mikhailov, B. M.; Cherkasova, K. L. Zhu. Obsh. Khim., 1972, 42, 138-146.
${ }^{30}$ Vaultier, M.; Truchet, F.; Carboni, B.; Hoffmann, R. W.; Denne, I. Tetrahedron Lett., 1987, 28, 4169-4172.
${ }^{31}$ Renard, P. Y.; Lallemand, J-Y. Bull. Soc. Chem. Fr., 1996, 133, 143-149.
${ }^{32}$ Renard, P. Y.; Six, Y.; Lallemand, J-Y. Tetrahedron Lett., 1997, 38, 6589-6590.
${ }^{33}$ Six, Y.; Lallemand, J-Y. Tetrahedron Lett., 1999, 40, 1295-1296.
${ }^{34}$ Lallemand, J-Y.; Six, Y.; Ricard, L. Eur. J. Org. Chem., 2002, 3, 503-513.
${ }^{35}$ Vaultier, M.; Lorvelec, G.; Plunian, B.; Paulus, O.; Bouju, P.; Mortier, J. In Contemporary Boron Chemistry, Davidson, M. G.; Hughes, A. K.; Marder, T. B.; Wade, K., Eds, The Royal Society of Chemistry, Cambridge, 2000, pp 464-471.

```
\({ }^{36}\) Wang, X. Chem. Commun., 1991, 21, 1515-1517.
\({ }^{37}\) Garnier, L.; Plunian, B.; Mortier, J.; Vaultier, M. Tetrahedron Lett., 1996, 37, 6699-6700.
\({ }^{38}\) Mortier, J.; Vaultier, M.; Plunian, B.; Toupet, L. Heterocycles, 1999, 50, 703-711.
\({ }^{39}\) Zhang, A.; Kan, Y.; Jiang, B. Tetrahedron., 2001, 57, 2305-2309
\({ }^{40}\) Renard, P. Y.; Lallemand, J-Y. Tetrahedron: Asymmetry, 1996, 7, 2523-2524.
\({ }^{41}\) Gao, X.; Hall, D. G. Tetrahedron Lett., 2003, 44, 2231-2235.
\({ }^{42}\) Hercouet, A.; Berrée, F.; Lin, C. H.; Toupet, L.; Carboni, B. Org. Lett., 2007, 9, 1717-1720.
\({ }^{43}\) Hilt, G.; Hess, W.; Harms, K. Org. Lett., 2006, 8, 3287-3290.
\({ }^{44}\) Linker, T.; Krüger, T.; Hess, W.; Hilt, G. Arkivoc, 2007, 8, 85-96.
\({ }^{45}\) Hilt, G.; Lüers, S.; Smolko, K. I. Org. Lett., 2005, 7, 251-253.
\({ }^{46}\) Cannillo, A.; Norsikian, S.; Retailleau, P.; Tran Huu Dau, M. E.; Iorga, B. I.; Beau, J. M. Chem. Eur. J., 2014,
20, 9127-9131.
\({ }^{47}\) Cannillo, A.; Norsikian, S.; Tran Huu Dau, M. E.; Retailleau P.; Iorga, B. I.; Beau, J. M. Chem. Eur. J., 2013,
19, 12133-12143.
\({ }^{48}\) Zhao, T. S. N.; Zhao, J.; Szabo, K. J. Org. Lett., 2015, 17, 2290-2293.
\({ }^{49}\) Guennouni, N.; Rasset-Deloge, C.; Carboni, B.; Vaultier, M. Synlett, 1992, 581-584.
\({ }^{50}\) Kamabuchi, A.; Moriya,T.; Miyaura, N.; Suzuki, A. Tetrahedron Lett., 1993, 34, 4827-4828.
\({ }^{51}\) Carreaux, F.; Possémé, F.; Carboni, B.; Arrieta, A.; Lecea, B.; Cossio, F. P. J. Org. Chem., 2002, 67, 9153-
9161.
\({ }^{52}\) De, S.; Welker, M. E. Org. Lett., 2005, 7, 2481-2484.
\({ }^{53}\) De, S.; Day, C.; Welker, M. E. Tetrahedron, 2007, 63, 10939-10948.
\({ }^{54}\) Wang, L.; Day, C. S.; Wright, M. W.; Welker, M. E. Beilstein J. Org. Chem., 2009, 5, 1-9.
```

${ }^{55}$ Wang, L.; Welker, M. E. J. Org. Chem., 2012, 77, 8280-8286.
${ }^{56}$ De, E.; Solano, J. M.; Wang, L.; Welker, M. E. J. Organomet. Chem., 2009, 694, 2295-2298.
${ }^{57}$ Wang, L.; Welker, M. E. J. Organomet. Chem., 2013, 723, 15-18.
${ }^{58}$ Shimizu, M.; Kurahashi, T.; Hiyama, T. Synlett, 2001, 1006-1008.
${ }^{59}$ Kurahashi, T.; Hata, T.; Masai, H.; Kitagawa, H.; Shimizu, M.; Hiyama, T. Tetrahedron, 2002, 58, 6381-6395.
${ }^{60}$ Shimizu, M.; Shimino, K.; Hiyama, T. Chem. Asian J., 2007, 2, 1142-1149.
${ }^{61}$ Gonzalez, J. R.; Soderquist, J. A. Org. Lett., 2014, 16, 3840-3843.
${ }^{62}$ Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Angew. Chem. Int. Ed., 2013, 52, 12400-12403.
${ }^{63}$ Gao, X.; Hall, D. G. J. Am. Chem. Soc., 2003, 125, 9308-9309.
${ }^{64}$ Deligny, M.; Carreaux, F.; Carboni, B.; Toupet, L.; Dujardin, G. Chem. Commun., 2003, 24, 276-277.
${ }^{65}$ Deligny, M.; Carreaux, F.; Toupet, L.; Carboni, B. Adv. Synth. Catal., 2003, 345, 1215-1219.
${ }^{66}$ Deligny, M.; Carreaux, F.; Carboni, B. Synlett, 2005, 9, 1462-1464.
${ }^{67}$ Carreaux, F.; Favre, A.; Carboni, B.; Rouaud, I.; Boustie, J. Tetrahedron Lett., 2006, 47, 4545-4548.
${ }^{68}$ Favre, A.; Carreaux, F.; Deligny, M.; Carboni, B. Eur. J. Org. Chem., 2008, 29, 4900-4907.
${ }^{69}$ Bouziane, A.; Régnier, T.; Carreaux, F.; Carboni, B.; Bruneau, C.; Renaud, J. L. Synlett, 2010, 2, 207-210.
${ }^{70}$ Gao, X.; Hall, D. G. J. Am. Chem. Soc., 2005, 127, 1628-1629.
${ }^{71}$ Marion, O.; Gao, X.; Marcus, S.; Hall, D. G. Bioorg. Med. Chem., 2009, 17, 1006-1017.
${ }^{72}$ Penner, M.; Rauniyar, V.; Kaspar, L. T.; Hall, D. G. J. Am. Chem. Soc., 2009, 131, 14216-14217.
${ }^{73}$ Tailor, J.; Hall, D. G. Org. Lett., 2000, 2, 3715-3718.
${ }^{74}$ Touré, B. B.; Hoveyda, H. R.; Tailor, J.; Ulaczyk-Lesanko, A.; Hall, D. G. Chem. Eur. J., 2003, 9, 466-474.
${ }^{75}$ Ulaczyk-Lesanko, A.; Pelletier, E.; Lee, M.; Prinz, H.; Waldmann, H.; Hall, D. G. J. Comb. Chem., 2007, 9, 695-703.
${ }^{76}$ Touré, B. B.; Hall, D. G. Angew. Chem. Int. Ed., 2004, 43, 2001-2004.
${ }^{77}$ Touré, B. B.; Hall, D. G. J. Org. Chem., 2004, 69, 8429-8436.
${ }^{78}$ Mackay, E. G.; Sherburn, M. S. Pure Appl. Chem., 2013, 85, 1227-1239.
${ }^{79}$ Tripoteau, F.; Verdelet, T.; Hercouet, A.; Carreaux, F.; Carboni, B. Chemistry, Eur. J., 2011, 17, 1367013675.
${ }^{80}$ Wichterle, O. Collec. Czech. Chem. Comm., 1947, 12, 292-304.
${ }^{81}$ Arbuzov, Y. A. Doklady Akad. Nauk S.S.S.R., 1948, 60, 993.
${ }^{82}$ a) Streith, J.; Defoin, A. Synthesis, 1994, 1107-1117, b) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem., 2006, 2031-2043, c) Bodnar, B. S.; Miller, M. J. Angew. Chem. Int. Ed., 2011, 50, 5630-5647, d) Carosso, S.; Miller, M. J. Org. Biomol. Chem., 2014, 12, 7445-7468.
${ }^{83}$ Cohen, A. D.; Zeng, B. B.; King, S. B.; Toscano, J. P. J. Am. Chem. Soc., 2003, 125, 1444-1445.
${ }^{84}$ a) Ridd, Q. Q. Chem. Soc. Rev., 1961, 15, 418-441, b) Challis, B. C.; Lawson, A. J. J. Chem. Soc. B, 1971, 770-775, c) Bosch, E.; Kochi. J. K. J.Org. Chem., 1994, 59, 5573-5586, d) Atherton, J. H.; Moodie R. B.;

Noble, D. R. J. Chem. Soc., Perkin Trans. 2, 2000, 229-234, e) Kauffman, J. M.; Green, J.; Cohen, M. S.; Fein, M. M.; Cottrill, E. L. J. Am. Chem. Soc., 1964, 86, 4210-4211, f) Eaborn, C.; Jenkinsand, I. D.; Walton, D. R. M. J. Chem. Soc., Perkin Trans. 1, 1974, 870-871, g) Taylor, E. C.; Danforth, R. H.; McKillop, A. J. Org. Chem., 1973, 38, 2088-2089.
${ }^{85}$ a) Streith, J.; Defoin, A. Synthesis, 1994, 1107-1117, b) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem., 2006, 2031-2043, c) Bodnar, B. S.; Miller, M. J. Angew. Chem. Int. Ed., 2011, 50, 5630-5647, d) Carosso, S.; Miller, M. J. Org. Biomol. Chem., 2014, 12, 7445-7468.
${ }^{86}$ Martin, S. F.; Hatmann, M.; Josey, J. A. Tetrahedron Lett., 1992, 33, 3583-3586.
${ }^{87}$ Jenkins, N. E.; Ware, Jr., R. W.; Atkinson, R. N.; King, S. B. Synth. Commun., 2000, 30, 947-953.
${ }^{88}$ Dao, L. H.; Dust, J. M.; Mackay, D.; Watson, K. N. Can. J. Chem., 1979, 57, 1712-1719.
${ }^{89}$ a) Flower, K. R.; Lightfoot, A. P.; Wan, H.; Whiting, A. Chem. Commun., 2001, 18, 1812-1813, b) Iwasa, S.; Tajima, K.; Tsushima, S.; Nishiyama, H. Tetrahedron Lett., 2001, 42, 5897-5899, c) Flower, K. R.; Lightfoot, A. P.; Wan, H.; Whiting, A. J. Chem. Soc., Perkin Trans 1, 2002, 18, 2058-2064, d) Iwasa, S.; Fakhruddin, A.; Tsukamoto, Y.; Kameyama, M.; Nishiyama, H. Tetrahedron Lett., 2002, 43, 6159-6161, e) Fakhruddin, A.; Iwasa, S.; Nishiyama, H.; Tsutsumi, K. Tetrahedron Lett., 2004, 45, 9323-9326, f) Kalita, B.; Nicholas, K. M. Tetrahedron Lett., 2005, 46, 1451-1453, g) Adamo, M. F. A.; Bruschi, S. J. Org. Chem., 2007, 72, 2666-2669, h) Atkinson, D.; Kabeshov, M. A.; Edgar, M.; Malkov, M. V. Adv. Synth. Catal., 2011, 353, 3347-3351, i) Hoshino, Y.; Suzuki, K.; Honda, K. Synlett, 2012, 23, 2375-2380.
${ }^{90}$ a) Chaiyaveij, D.; Cleary, L.; Batsanov, A.; Marder, T. B.; Shea, K. J.; Whiting, A. Org. Lett., 2011, 13, 34423445, b) Frazier, C. P.; Engelkind, J. R.; Read de Alaniz, J. J. Am. Chem. Soc., 2011, 133, 10430-10433.
${ }^{91}$ Baidya, M.; Griffin, K. A.; Yamamoto, H. J. Am. Chem. Soc., 2012, 134, 18566-18569.
${ }^{92}$ a) Teo, Y. C.; Pan, Y.; Tan, C. H. ChemCatChem., 2013, 5, 235-240, b) Frazier, C. P.; Palmer, L. I.; Samoshin, A. V.; Read de Alaniz, J. Tetrahedron Lett., 2015, 56, 3353-3357.
${ }^{93}$ Quadrelli, P.; Mella, M.; Invernizzi, A. G.; Caramella, P. Tetrahedron, 1999, 55, 10497-10510.
${ }^{94}$ O'Bannon, P. E.; William, D. P. Tetrahedron Lett., 1988, 29, 5719-5722.
${ }^{95}$ Corrie, J. E. T.; Kirby, G. W.; Mackinnon, J. W. M. J. Chem. Soc., Perkin Trans. 1, 1985, 4, 883-886.
${ }^{96}$ Quadrelli, P.; Mella, M.; Caramella, P. Tetrahedron Lett., 1999, 40, 797-800.
${ }^{97}$ a) Srivastava, R. S.; Nicholas, K. M. Chem. Commun., 1996, 20, 2335-2336, b) Ho, C.-M.; Lau, T.-C. New J. Chem., 2000, 24, 859-863, c) Srivastava, R. S.; Khan, M. A.; Nicholas, K. M. J. Am. Chem. Soc., 2005, 127, 7278-7279.
${ }^{98}$ a) Kresze, G.; Saitner, H.; Firl, J.; Kosbahn, W. Tetrahedron, 1971, 27, 1941-1950, b) Kresze, G.; Kosbahn, W. Tetrahedron, 1971, 27, 1931-1939.
${ }^{99}$ a) Weinreb, S. M.; Staib, R. R. Tetrahedron, 1982, 38, 3087-3128, b) Boger, D. L.; Patel, M.; Takusagawa, F. J. Org. Chem., 1985, 50, 1911-1916.
${ }^{100}$ Defoin, A.; Fritz, H.; Geffroy G.; Streith, J. Tetrahedron Lett., 1986, 27, 3135-3138.
${ }^{101}$ McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc., 1993, 42, 6094-6100.
${ }^{102}$ Benbow, J. W.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc., 1993, 115, 12305-12314.
${ }^{103}$ Monbaliu, J-C.; Tinant, B.; Marchand-Brynaert, M. J. org. Chem., 2010, 75, 547-5486.
${ }^{104}$ Berti, F.; Di Bussolo, V.; Pineschi, M. J. Org. Chem., 2013, 78, 7324-7329.
${ }^{105}$ Kirby, G. W.; Bentley, K. W.; Horsewood, P.; Singh S. J. Chem. Soc., Perkin Trans. 1, 1979, 12, 3064-3066.
${ }^{106}$ a) Aoyagi S.; Tanaka, R.; Naruse, M.; Kibayashi, C. Tetrahedon Lett., 1998, 39, 4513-4516, b) Aoyagi S.; Tanaka, R.; Naruse, M.; Kibayashi, C. J. Org. Chem., 1998, 63, 8397-8406.
${ }^{107}$ Hudlicky, T.; Rinner, U.; Gonzalez, D.; Akgun, H.; Schilling, S.; Siengalewicz, P.; Martinot, T. A.; Pettit, G. R. J. Org. Chem., 2002, 67, 8726-8743.
${ }^{108}$ Ozawa, T.; Aoyagi S.; Kibayashi, C. J. Org. Chem., 2001, 66, 3338-3347.
${ }^{109}$ Blakemore, P. R.; Kim, S-K.; Schulze, V. K.; White, J. D.; Yokochi, A. F. T. J. Chem. Soc., Perkin Trans 1, 2001, 15, 1831-1847.
${ }^{110}$ a) Ghosh, A.; Ritter, A. R.; Miller, M. J. J. Org. Chem., 1995, 60, 5803-5813, b) Zhang, D.; Ghosh, A.; Süling C.; Miller, M. J. Tetrahedron Lett., 1996, 37, 3799-3802, c) Vogt P. F.; Hansel, J-G.; Miller, M. J. Tetrahedron Lett., 1997, 38, 2803-2804, d) Mulvihill, M. J.; Miller, M. J. Tetrahedron, 1998, 54, 6605-6626, d) Shireman, B. T.; Miller M. J. Tetrahedron Lett., 2000, 41, 9537-9540, e) Jiang, M. X. W.; Jin, B.; Gage, J. L.; Priour, A.; Savela, G.; Miller, M. J. J. Org. Chem., 2006, 71, 4164-4169.
${ }^{111}$ Behr, J-B.; Chevrier, C.; Defoin, A.; Tarnus, C.; Streith J. Tetrahedron, 2003, 59, 543-553.
${ }^{112}$ Yang, B.; Miller, P. A.; Möllmann, U.; Miller, M. J. Org. Lett., 2009, 11, 2828-2831.
${ }^{113}$ Pereira, S.; Srebnik, M. Organomet., 1995, 14, 3127-3128.
${ }^{114}$ Schabel, T.; Plietker B. Chem. Eur. J., 2013, 19, 6938-6941.
${ }^{115}$ Brown, H. C.; Naik, R. G.; Bakshi, R. K.; Pyun, C.; Singaram, B. J. Org. Chem., 1985, 50, 5586-5592.

```
\({ }^{116}\) Martinez-Fresneda, P., Vaultier, M. Tetrahedron Lett., 1989, 30, 2929-2932.
\({ }^{117}\) Woerly, E. M., Cherney, A. H., Davis, E. K.; Burke, M. D. J. Am. Chem. Soc., 2010, 132, 6941-6943.
\({ }^{118}\) Sun, J.; Perfetti, M. T.; Santos, W. L. J. Org. Chem., 2011, 76, 3571-3575.
\({ }^{119}\) Rasset-Deloge, C.; Vaultier M. Bull. Soc. Chim. Fr., 1994, 131, 919-925.
\({ }^{120}\) Wang, C.; Tobrman, T.; Xu, Z.; Negishi E.-I. Org. Lett., 2009, 11, 4092-4095.
\({ }^{121}\) Guennouni, N.; Rasset-Deloge, C.; Carboni, B.; Vaultier, M. Synlett, 1992, 7, 581-584.
\({ }^{122}\) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M. D. J. Am. Chem. Soc., 2008, 130, 466-468.
\({ }^{123}\) Woerly E. W.; Miller, J. E.; Burke, M. D. Tetrahedron, 2013, 69, 7732-7740.
\({ }^{124}\) Molander, G. A.; Bernardi, C. R. J. Org. Chem., 2002, 67, 8424-8429.
```

${ }^{125}$ a) Al-Harrasi, A.; Bouché L.; Zimmer, R.; Reissig, H.-U. Synthesis, 2011, 109-118, b) Bressel, B.; Reissig, H.-U. Org. Lett., 2009, 11, 527-530, c) Krchnak, V.; Waring, K. R.; Noll, B. C.; Moellmann, U.; Dahse, H-M.; Miller, M. J. J. Org. Chem., 2008, 73, 4559-4567, d) Pulz, R.; Schade, W.; Reissig, H.-U. Synlett, 2003, 405407, e) Blakemore, P. R.; Kim, S-K.; Schulze, V. K.; White, J. D.; Yokochi, A. F. J. Chem. Soc., Perkin Trans. 1, 2001, 1831-1847, f) Hart, H.; Ramaswami, S.K.; Willer, R. J. Org. Chem. 1979, 44, 1-7.
${ }^{126}$ Kefalas, P.; Grierson, D. S. Tetrahedron Lett., 1993, 34, 3555-3558.
${ }^{127}$ a) Givens, R. S.; Choo, D. J.; Merchant, S. N.; Stitt, R. P.; Matuszewski, B. Tetrahedron Lett., 1982, 23, 1327-1330, b) Scheiner, P.; Chapman, O. L.; Lassila, J. D. J. Org. Chem., 1969, 34, 813-816.
${ }^{128}$ Ragaini, F.; Cenini, S.; Brignoli, D.; Gasperini, M.; Gallo, E. J. Org. Chem., 2003, 68, 460-466.
${ }^{129}$ Jasiński, M.; Watanabe, T.; Reissig, H.-U. Eur. J. Org. Chem., 2013, 605-610.
${ }^{130}$ Calvet, G.; Blanchard, N.; Kouklovsky, C. Synthesis, 2005, 3346-3354.
${ }^{131}$ a) Humenny, W. J.; Kyriacou, P.; Sapeta, K.; Karadeolian, A.; Kerr, M. A. Angew. Chem. Int. Ed., 2012, 51, 1-5, b) Shi, G-Q.; Schlosser M. Tetrahedron, 1993, 49, 1445-1456, c) Firl, J. Chem. Ber., 1968, 101, 218-225.
${ }^{132}$ a) Cha, J. S.; Brown, H. C. Bull. Korean Chem. Soc., 2005, 26, 292-296, b) Bonin, H.; Delacroix, T.; Gras, E. Org. Biomol. Chem., 2011, 9, 4714-4724.
${ }^{133}$ a) Gillis, E. P.; Burke, M. D. Aldrichim. Acta, 2009, 42, 17-27 and references therein, b) Knapp, D.M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc., 2009, 131, 6961-6963, c) He, Z.; Zajdlik, A.; Yudin, A. K. Acc. Chem. Res., 2014, 47, 1029-1040, d) Li, J.; Ballmer, S. G.; Gillis, E. P.; Fujii, S.; Schmidt, M. J.; Palazzolo, A. M. E.; Lehmann, J. W.; Morehouse, G. F.; Burke, M. D. Science, 2015, 347, 1221-1226.
${ }^{134}$ Tran, A. T.; Liu, P.; Houk, K. N.; Nicholas, K. M. J. Org. Chem., 2014, 79, 5617-5626.
${ }^{135}$ Berionni, G.; Maji, B.; Knochel, P.; Mayr, H. Chem. Sci., 2012, 3, 878-882.
${ }^{136}$ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani G.; Barone, V.; Mennucci, B.; G. Petersson, A.; Nakatsuji, H.; Caricato, M.; Li, X.; . Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda, R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; . Staroverov, V. N.; Kobayashi, R.; Normand J.; Raghavachari K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; . Pomelli, C.; Ochterski, J. W.; Martin R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
${ }^{137}$ a) Becke, A. D. J. Chem. Phys., 1993, 98, 5648-5652, b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37, 785-789, c) Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys., 1991, 94, 6081-6090, d) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys., 1988, 89, 21932218.
${ }^{138}$ Leach, A. G.; Houk, K. N. J. Org. Chem., 2001, 66, 5192-5200.
${ }^{139}$ Tripoteau, F.; Eberlin, L.; Fox, M. A.; Carboni, B.; Whiting, A. Chem. Commun., 2013, 49, 5414-5416.
${ }^{140}$ a) Herrera, R.; Nagarajan, A.; Morales, M. A.; Mendez, F.; Jimenez-Vazquez, H. A.; Zepeda, L. G.; Tamariz. J. J. Org. Chem., 2001, 66, 1252-1263, b) Kliegel, W.; Metge, J.; Rettig, S. J.; Trotter, J. Can. J. Chem., 1998, 76, 389-399.

```
\({ }^{141}\) Padwa, A.; Pearson, W. H. The Chemistry of Heterocyclic Compounds, Vol 59: Synthetic Applications of 1,3Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, 2002, pp 1-81.
\({ }^{142}\) Knight, G. T.; Pepper, B. Tetrahedron, 1971, 27, 6201-6208, and references therein.
\({ }^{143}\) Sullivan, A. B. J. Org. Chem., 1966, 31, 2811-2817.
\({ }^{144}\) Kang, J. Y.; Bugarin, A.; Connell, B. T. Chem. Commun., 2008, 30, 3522-3524.
\({ }^{145}\) Sasaki, T.; Eguchi, S.; Ishii, T.; Yamada, H. J. Org. Chem., 1970, 35, 4273-4275.
\({ }^{146}\) Chachignon, H.; Scalacci, N.; Petricci, E.; Castagnolos D. J. Org. Chem., 2015, 80, 5287-5295.
\({ }^{147}\) Palmer, L.; Frazier, C.P.; Read de Alaniz, J. Synthesis, 2014, 46, 269-280.
\({ }^{148}\) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev., 2004, 104, 1013-1045.
\({ }^{149}\) Fukuzumi, S.; Karlin, K. D. Coordination Chemistry Reviews, 2013, 257, 187-195.
\({ }^{150}\) Deng, Y.; Zhang G.; Qi, X.; Liu, C.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lan, Y.; Lei, A. Chem. Comтип., 2015, 51, 318-321.
\({ }^{151}\) Susnik, P.; Hilt, G. Organomettalics, 2014, 33, 5907-5910.
\({ }^{152}\) Alesandri, L.; Angeli, A.; Pegna, R. Chem. Abs., 1910, 4, 2457.
\({ }^{153}\) Woodward, R. B.; Hoffmann, R. Ang. Chem. Int. Ed. Engl., 1969, 8, 781-853.
```

${ }^{154}$ a) Davies, A. G.; Schiesser, C. H. Tetrahedron, 1991, 47, 1707-1726, b) Adam W.; Bottke, N.; Krebs, O. J. Am. Chem. Soc., 2000, 122, 6791-6792, c) Adam W.; Bottke, N.; Engels, B.; Krebs, O. J. Am. Chem. Soc., 2001, 123, 5542-5543.
${ }^{155}$ a) Leach, A. G.; Houk, K. N. J. Am. Chem. Soc., 2002, 124, 14820-14821, b) Leach, A. G.; Houk, K. N. Org. Biomol. Chem., 2003, 1, 1389-1403.
${ }^{156}$ Hamer, J.; Macaluso, A. Tetrahedron. Lett., 1963, 4, 381-384.
${ }^{157}$ For a review on nitroso ene reaction : Adam W.; Krebs, O. Chem. Res., 2003, 103, 4131-4146.
${ }^{158}$ Eberlin, L.; Tripoteau, F.; Carreaux, F.; Whiting, A.; Carboni, B. Beilstein J. Org. Chem., 2014, 10, 237-250.
${ }^{159}$ a) Kennedy, J. W.; Hall, D. G. in Boronic Acids, Hall, D. G. Ed. Wiley-VCH, Weinheim, 2005, 241-277, b) Lachance, H.; Hall, D. G. Org. React. 2008, 73, 1-573, c) Hall, D. G. Pure Appl. Chem., 2008, 80, 913-927.
${ }^{160}$ Mo, J.; Kim, S. H.; Lee, P. H.; Org. Lett., 2010, 12, 424-427.
${ }^{161}$ Schmidt, V. A.; Alexanian, E. J. Chem. Sci., 2012, 3, 1672-1674.

162 a) Schmidt, B.; Hanke, S.; Krehl, S.; Kunz, O. Comprehensive Organic Synthesis II, $2^{\text {nd }}$ edition, Elsevier B. V., Amsterdam, 2014, Vol 5, 1400-1482, b) Zukowska, K.; Grela, K. Comprehensive Organic Synthesis II, $2^{\text {nd }}$ edition, Elsevier B. V., Amsterdam, 2014, Vol 5, 1257-1301, c) Zukowska, K.; Szadkowska, A.; Grela, K. Comprehensive Inorganic Chemistry II, Elsevier B. V., Amsterdam, 2013, Vol 6, 105-126, d) Herndon, J. W. Comprehensive Organometallic Chemistry III, Elsevier Ltd, Oxford, 2007, Vol 1, 167-195, e) Grubbs, R. H.; Wenzel, A. G.; Chatterjee, A. K. Comprehensive Organometallic Chemistry III, Elsevier Ltd, Oxford, 2007, Vol 11, 179-205, f) Li, J.; Lee, D. Eur. J. Org. Chem., 2011, 23, 4269-4287, g) Van Otterlo, W. A. L.; de Koning, C. B. Chem. Rev., 2009, 109, 3743-3782, h) Kurteva, V. B.; Afonso, C. A. M. Chem. Rev., 2009, 109, 6809-6857, i) Gradillas, A.; Pérez-Castells, J. Ang. Chem. Int. Ed., 2006, 45, 6086-6101, j) Deiters, A.; Martin, S. F. Chem. Rev., 2004, 104, 2199-2238, k) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1, 1998, 371-388, 1) Grubbs, R. H.; Chang, S. Tetrahedron, 1998, 54, 4413-4450
${ }^{163}$ Yang, Y.-K.; Tae, J. Synlett, 2003, 7, 1043-1045.
${ }^{164}$ Le Flohic, A.; Meyer, C.; Cossy, J.; Desmurs J.-R. Tetrahedron Lett., 2003, 44, 8577-8580.
${ }^{165}$ Watson, K. D.; Carosso, S.; Miller, M. J. Org. Lett., 2013, 15, 358-361.
${ }^{166}$ a) Koide, K.; Finkelstein, J. M.; Ball, Z.; Verdine, G. L. J. Am. Chem. Soc., 2001, 123, 398-408, b) Miyabe, H.; Moriyama, K.; Takemoto, Y. Chem. Pharm. Bull., 2011, 59, 714-720.
${ }^{167}$ Yang, Y.-K.; Lee, S.; Tae, J. Bull. Korean Chem. Soc., 2004, 25, 1307-1308.
${ }^{168}$ Thadani, A. N.; Batey, R. A.; Lough, A. J. Acta Cryst., 2001, E57, 1010-1011.
${ }^{169}$ Williams, D. B. G.; Lawton, M. J. Org. Chem., 2010, 75, 8351-8354.
${ }^{170}$ Hoshi, M.; Kawamura, N.; Shirakawa, K. Synthesis, 2006, 12, 1961-1970.
${ }^{171}$ Coombs, J. R.; Zhang, L.; Morken, J. P. Org. Lett., 2015, 17, 1708-1711.

```
\({ }^{172}\) Shade R. E.; Hyde, A. M.; Olsen, J-C.; Merlic, C. A. J. Am. Chem. Soc.; 2010, 132, 1202-1203.
\({ }^{173}\) Vaultier, M.; Truchet, F.; Carboni, B. Tetrahedron Lett., 1987, 36, 4169-4172.
\({ }^{174}\) Jin, B.; Liu, Q.; Sulikowski, G.A. Tetrahedron, 2005, 61, 401-408.
\({ }^{175}\) Brinker, U. H.; Boxberger, M. J. Chem. Res., 1983, 100-101.
\({ }^{176}\) Schmidt, B.; Krehl, S.; Jablowski, E. Org. Biomol. Chem., 2012, 10, 5119-5130.
\({ }^{177}\) Meng, J.; Li, Y-J.; Zhao, Y-L.; Bu, X-B.; Liu, Q. Chem. Commun., 2014, 50, 12490-12492.
\({ }^{178}\) Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc., 2001, 123, 2074-2075.
\({ }^{179}\) Bilodeau, F.; Brochu, M-C.; Guimond, N.; Thesen, K. H.; Forgione, P. J. Org. Chem. 2010, 75, 1550-1560.
\({ }^{180}\) Matuszak, N.; Muccioli, G. G.; Labar, G.; Lamber D. M. J. Med. Chem., 2009, 52, 7410-7420.
\({ }^{181}\) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.;
Polidori, G.; Spagna, R. J. Appl. Cryst., 1999, 32, 115-119.
\({ }^{182}\) Sheldrick G. M. Acta Cryst. A64, 2008, 64, 112-122.
\({ }^{183}\) Farrugia, L. J. J. Appl. Cryst., 1999, 32, 837-838.
\({ }^{184}\) Egi, M.; Azechi, K.; Akai, S. Org. Lett. 2009, 11, 5002-5005.
\({ }^{185}\) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst., 2009, 42,
339-341.
\({ }^{186}\) Spartan '10, Wavefunction, Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612 U.S.A.
\({ }^{187}\) MestRej, Mestrelab Research, S.L., 9B Bajo, 15706 Santiago de Compostela, Spain.
```


[^0]: ${ }^{*}$ Reaction performed by previous PhD student (Fabien Tripoteau) and has not been repeated.

[^1]: [a] Reaction in which the by-product 281g was isolated in 18\% yield.

[^2]: Scheme 65. Study of the reactivity of the diene 249 and 241c toward nitrosobenzene 160a.

[^3]: ${ }^{\dagger}$ Computational studies were performed by Dr Mark A. Fox in the Chemistry Department at Durham University.

[^4]: ${ }^{\ddagger}$ Calculations performed by Prof. Andrew Whiting.

[^5]: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}, $\boldsymbol{\delta} \mathbf{~ p p m}$) 7.39 - $7.24(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$.

[^6]: ${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- \boldsymbol{d}, $\left.\boldsymbol{\delta} \mathbf{~ p p m}\right)$ 154.1, 142.2, 131.0, 128.8, 127.5, 123.9, 111.8, 105.1.

