
ANNÉE 2016

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université de Bretagne Loire

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : informatique

Ecole doctorale Matisse
présentée par

Brice Minaud

préparée à l’Institut de Recherche en Informatique et Systèmes

Aléatoires (IRISA), UMR 6074

Analyse de primitives

cryptographiques

récentes

Thèse soutenue à Rennes
le (date)
devant le jury composé de :

Henri GILBERT
Chercheur associé, ANSSI/UVSQ – rapporteur

Louis GOUBIN
Professeur, UVSQ – rapporteur

Anne CANTEAUT
Directrice de recherche, Inria – examinatrice

Jean-Sébastien CORON
Professeur adjoint, U. Luxembourg – examinateur

Antoine JOUX
Professeur, UPMC – examinateur

Reynald LERCIER
Chercheur associé, DGA/IRMAR – examinateur

David POINTCHEVAL
DR, CNRS/ENS/Inria – examinateur

Pierre-Alain FOUQUE
Professeur, U. Rennes 1 – directeur de thèse

7 octobre 2016

ii

Remerciements

En premier lieu je remercie Pierre-Alain et l’ensemble de l’équipe EMSEC pour deux années
de thèse qui ont été à la fois productives et agréables. Pierre-Alain est toujours présent, et en
plus de ses qualités scientifiques, a une patience et une gentillesse qui contribuent largement à
l’atmosphère de l’équipe. Je remercie aussi les membres de l’équipe, en particulier mes confrères
du bureau F413, Pierre, Pierre et Raphaël ; les maîtres du badminton, Benjamin, Cyrille et
Patrick ; les piliers de la pause thé, Baptiste, Florent, Paul et Pauline, mais aussi Alban et Benoît
quand ils sont de passage, et Benjamin H. et Jean-Christophe avant qu’ils ne repartent ; et enfin
Adeline, Barbara, Cécile, Cristina et Gildas, dont la présence est très appréciée nonobstant qu’ils
ne rentrent pas dans une des catégories précédentes.

Je suis aussi très reconnaissant envers les membre du laboratoire de cryptologie de l’ANSSI, en
particulier Henri et Thomas, qui ont accepté d’adopter un logicien pour faire de la cryptanalyse,
puis réussi à créer un poste temporaire dans une conjoncture difficile ; sans oublier mes voisins
de bureau Jean-Pierre, Jérôme et Yannick, qui ne m’ont jamais reproché d’avoir remplacé la
machine à café.

Je remercie aussi Mireille Fouquet, qui a organisé un master de cryptologie impeccable ; David
Pointcheval, qui a accepté que je vienne suivre son cours de preuve hors cursus ; les responsables
des projets BLOC et BRUTUS, qui ont financé plusieurs trajets ; et Louis Granboulan, qui a été
tour à tour mon tuteur à l’ENS, un directeur de projet, et plusieurs fois mon enseignant : c’est
par lui que j’ai entendu pour la première fois parler de cryptographie et que j’ai voulu en savoir
plus.

Je suis également reconnaissant aux collègues et amis avec qui j’ai partagé ma thèse précé-
dente, c’est-à-dire les membre effectifs ou honorifiques du fameux bureau 5C6, qui était devenu
une institution au point que sa fermeture donne lieu à une cérémonie : Ana, Avenilde, David,
Fares, Laura, Luis, Nicole, Pablo, Rémi et Yann.

Enfin, je remercie vivement Henri Gilbert et Louis Goubin pour avoir accepté de rapporter
ma thèse, et tous les membres du jury pour avoir accepté de venir.

iii

iv

Contents

Introduction générale 1

1 Cryptographie symétrique et asymétrique . 1

2 Notions de cryptographie . 2

3 Définitions utiles . 4

Résumé en français 7

1 Organisation du manuscrit . 7

2 Cryptanalyse par auto-similarité des LS-Designs et Zorro 7

3 Cryptanalyse structurelle d’ASASA . 8

4 Construction de primitives prouvables en boîte blanche 10

5 Cryptanalyse d’application multilinéaire sur les entiers 11

6 Autres travaux . 11

7 Liste des publications . 12

General Introduction 13

1 Symmetric and Asymmetric Cryptography . 13

2 Cryptographic Notions . 14

3 Useful Definitions . 16

4 Layout of the Thesis . 17

Notation 19

Chapter 1 Self-Similarity and Invariant Subspace Attacks 21

1.1 Introduction . 21

1.2 Description of LS-Designs, Robin, and iSCREAM 23

1.3 Self-Similarity, Commuting Maps and Invariant Subspaces 25

1.4 Invariant Permutation Attack on LS-Designs . 29

1.5 Invariant Equality Space Attack . 32

1.6 A Second Invariant Subspace Attack on LS-Designs 34

v

Contents

1.7 Commuting Permutation and Invariant Subspace for Zorro 37

1.8 A Generic Algorithm to Detect Invariant Subspaces 38

1.9 Discussion . 42

Chapter 2 Structural Cryptanalysis of ASASA 45

2.1 Introduction . 45

2.2 Notation and Definitions . 49

2.3 Description of ASASA Schemes . 50

2.4 Structural Attack on Black-Box ASASA . 52

2.5 Attacks on χ-based Multivariate ASASA . 57

2.6 Attacks on White-Box ASASA . 67

Chapter 3 Efficient and Provable White-Box Primitives 73

3.1 Introduction . 73

3.2 Models . 77

3.3 Constructions . 84

3.4 Security Proofs . 89

3.5 Implementation . 100

Chapter 4 Cryptanalysis of the CLT15 Multilinear Map 105

4.1 Introduction . 105

4.2 Notation . 109

4.3 Short Introduction to Multilinear Maps . 109

4.4 The CLT15 Multilinear Map . 112

4.5 Cheon et al.’s Attack on CLT13 . 114

4.6 Main Attack . 115

4.7 Recovering x0 without Computing a Determinant 121

Conclusion 127

Tables 129

1 Robin and iSCREAM S-Box . 129

2 Well-Behaved Affine Spaces for the Robin and iSCREAM S-Box 130

3 Commuting Linear Map and Invariant Subspace for Zorro 131

Bibliography 133

vi

Introduction générale

1 Cryptographie symétrique et asymétrique

L’objet premier de la cryptographie est la conception et l’analyse de communications sécurisées.
Au sens moderne, il s’agit de communications informatiques. Cependant on distingue générale-
ment la cryptographie de la sécurité informatique, qui joue un rôle complémentaire.

Une communication informatique peut se décomposer en un certain nombre de niveaux, de-
puis les couches dites de bas niveau, comme les couches matérielles ou les différentes couches
réseau, jusqu’aux couches de haut niveau, qui portent la charge utile de la communication.
Chaque nouvelle couche a tendance à abstraire les couches inférieures, c’est-à-dire à modéliser et
supposer de manière plus ou moins explicite leur bon fonctionnement. La cryptographie s’attache
aux couches supérieures de cette décomposition : elle traite de la sécurité dans un monde par-
tiellement idéalisé, en faisant le plus souvent abstraction des failles de sécurité dûes au contexte
d’exécution : bogues d’implémentation, failles matérielles, virus, etc.

Dans ce cadre, l’objectif le plus simple de la cryptographie, et sans doute l’un des premiers,
est la transmission de messages confidentiels. Ces messages ne doivent être intelligibles que pour
l’émetteur et le récepteur, ou plus généralement tout parti en possession d’un secret qui permet
le déchiffrement. Le terme de confidentialité évoque naturellement une application militaire.
Cependant, avec le déploiement global de réseaux informatiques et d’internet depuis la fin du
siècle dernier, des techniques assurant la confidentialité sont nécessaires à grande échelle pour la
population civile. En effet le commerce par internet ou l’accès aux comptes bancaires en ligne
nécessitent de transmettre des informations privées, qui transitent sur un réseau public.

La première garantie offerte par la cryptographie est donc la confidentialité : un message
chiffré ne donne aucune information sur son contenu, sauf si l’on est en possession de la clef
secrète de déchiffrement. Cependant dans de nombreuses applications cryptographiques, d’autres
garanties classiques de la cryptographie sont nécessaires, comme l’authenticité et l’intégrité.
L’authenticité permet au destinataire de s’assurer que le message provienne bien de l’émetteur
prétendu ; l’intégrité lui permet de vérifier que le message n’a pas été modifié depuis son écriture.

Les trois notions de confidentialité, authenticité et intégrité appartiennent au domaine de la
cryptographie symétrique. Le terme symétrique est employé pour exprimer le fait qu’il existe
un unique secret commun aux partis qui communiquent : ce même secret permet à la fois le
chiffrement et le déchiffrement, l’authentification et sa vérification. La situation entre les partis
possédant le secret est donc symétrique. On peut remarquer notamment que l’authenticité permet
seulement de garantir que le message provient d’un des partis en possession du secret, plutôt que
d’un parti spécifique.

Au contraire la cryptographie asymétrique englobe toutes les situations où les partis qui
communiquent ne partagent pas la même information secrète. Jusqu’à présent nous avons défini
les trois notions de confidentialité, authenticité et intégrité pour la cryptographie symétrique.
La cryptographie asymétrique permet elle aussi de satisfaire des notions de sécurité variées–en

1

Introduction générale

fait en très grand nombre. Nous nous contentons ici de mentionner deux notions parmi les plus
courantes.

La plus simple est peut-être la notion de signature électronique : comme une signature phy-
sique, une signature électronique permet de prouver l’identité du parti qui signe un message, de
manière vérifiable par tous. Ainsi il n’est plus nécessaire d’être en possession d’une information
secrète pour la vérification, comme dans le cas (symétrique) de l’authentification : tout le monde
peut vérifier l’exactitude d’une signature ; mais en principe, une seule personne est capable de la
créer, prouvant par là son identité.

Il y a donc une clef privée, propre au signataire, qui lui confère sa capacité à signer des
messages ; et une clef publique, commune à tous, qui permet de vérifier les signatures. Pour cette
raison on appelle aussi la cryptographie asymétrique cryptographie à clef publique. On peut
définir de la même façon un chiffrement à clef publique, où une clef publique commune permet
de chiffrer des messages, mais ceux-ci ne pourront être déchiffrés qu’à l’aide d’une clef privée,
secrète, associée à la clef publique. Nous rencontrerons par la suite d’autres exemples de notions
asymétriques, comme les échanges de clef multipartis.

En général les primitives de cryptographie symétrique remplissent des fonctions relativement
simples, comme l’authenticité et la confidentialité, mais sont très rapides. Elles peuvent être utili-
sées pour chiffrer de gros volumes de données. Au contraire les primitives asymétriques fournissent
des fonctions plus riches, mais sont relativement lentes. Elles sont utilisées ponctuellement pour
assurer des propriétés de sécurité critiques, tandis que la masse des communications est chiffrée
de manière symétrique.

2 Notions de cryptographie

Dans cette partie nous allons décrire quelques bases de la cryptographie. L’exposé qui suit est
bref et incomplet : il se concentre sur les notions nécessaires pour comprendre les travaux qui
suivent, ou au moins leur donner un contexte.

2.1 Primitives, modes et protocoles

En premier lieu, on peut remarquer que les applications cryptographiques déjà mentionnées,
comme le paiement en ligne, consistent en fait en un échange d’information entre plusieurs
entités. La description précise d’un tel échange est appelée un protocole. Ainsi, sans entrer dans
les détails, lorsqu’un utilisateur se connecte sur un site sécurisé suivant le protocole HTTPS, la
confidentialité de la communication et l’identité des partis sont assurées par le protocole TLS,
qui spécifie très précisément la forme des échanges autorisés.

Un protocole sécurisé s’appuie lui-même sur des éléments cryptographiques plus fondamen-
taux, que sont par exemple le chiffrement ou la signature, déjà évoqués. Dans le cas du chiffre-
ment, il peut reposer à son tour sur une brique encore plus fondamentale, comme un chiffrement
par bloc. Dans ce cas, l’utilisation du chiffrement par bloc pour créer un chiffrement est spécifiée
par ce qu’on appelle un mode opératoire. Dans cet empilement de couches, les constructions les
plus fondamentales, qui ne reposent sur aucune autre, s’appellent les primitives cryptographiques.
La sécurité de ces primitives constitue en quelque sorte les axiomes de la cryptographie.

Dans toute la suite, nous nous intéresserons presque exclusivement aux primitives cryptogra-
phiques, et non aux modes ni aux protocoles.

2

2. Notions de cryptographie

2.2 Modèles et preuves

Comme les autres sciences dures, la cryptographie repose au moins partiellement sur des bases
mathématiques. En particulier les notions de sécurités ébauchées dans l’introduction, comme la
confidentialité ou la sécurité des signatures, peuvent être définies formellement. Ces définitions
sont souvent appelées des modèles, parce qu’elles interprètent mathématiquement des idées à
l’origine informelles. De plus une même notion de sécurité, comme celle d’une signature électro-
nique, peut être exprimée par des modèles différents, selon la propriété exacte que l’on souhaite.

Une fois le modèle de sécurité fixé, une construction visant à satisfaire ce modèle (par exemple
une construction de signature électronique) peut être soit prouvée vis-à-vis du modèle, soit simple-
ment conjecturée sûre dans le modèle, si aucune preuve n’est connue. Les primitives symétriques
et asymétriques diffèrent sur ce point.

Les primitives de cryptographie symétrique ne sont (presque) jamais prouvées. En effet elles
reposent sur des techniques efficaces, mais qui se prêtent (volontairement) peu à l’analyse mathé-
matique. Au contraire les primitives asymétriques s’appuient généralement sur une forte structure
mathématique, nécessaire pour fournir des propriétés d’utilisation plus riches. Cette structure
mathématique peut être exploitée par des attaques, et impose aux primitives asymétriques une
relative lenteur. Par contre grâce aussi aux structures mathématiques sous-jacentes, les primitives
asymétriques classiques, comme les signatures et le chiffrement à clef publique, sont généralement
prouvées.

Il faut cependant qualifier le terme de preuve. On ne prouve pas qu’il soit impossible pour un
attaquant de contredire le modèle de sécurité, parce qu’un attaquant non borné peut toujours
essayer toutes les clefs privées possibles, en quantité a priori bornée. Même pour un attaquant
borné, on ne prouve pas non plus de manière absolue qu’il soit difficile pour lui d’attaquer
le chiffrement, parce que de telles preuves sont hors de portée aujourd’hui1. Les preuves de
sécurité consistent à montrer que si un attaquant sait efficacement attaquer la construction dans
un certain modèle, alors il sait résoudre efficacement un problème réputé difficile, comme la
factorisation de grands entiers. Une preuve fournit ainsi une garantie de sécurité significative,
mais pas absolue.

Il faut encore mentionner d’autres primitives asymétriques moins classiques, comme les appli-
cations multilinéaires, qu’on ne sait pas prouver au sens précédent, et dont on ne sait pas même
encore de manière certaine si elles existent. Suivant un article fameux d’Impagliazzo [Imp95], on
peut décrire un monde cryptographique où ces primitives existent, un autre où elles n’existent
pas, sans savoir encore dans lequel on vit.

2.3 Paramètre de sécurité

Une construction répond à une définition de sécurité définie par un modèle, comme expliqué
plus haut. Ce modèle contient un ou plusieurs paramètres de sécurité, qui expriment la difficulté
pour un adversaire d’attaquer le chiffrement. Dans le cas le plus simple, qui est aussi un des
plus courants, le modèle contient un unique paramètre de sécurité, noté λ. Ce paramètre signifie
qu’un attaquant contre la construction cryptographique ne pourra réussir qu’avec une puissance
de calcul 2λ, mesurée suivant les cas en nombre d’opérations élémentaires ou de chiffrements.
Le paramètre λ est généralement fixé de manière à ce que la puissance de calcul nécessaire à un
attaquant soit irréalisable avec les moyens de l’informatique actuelle, y compris dans un futur

1L’exemple canonique est la non résolution du problème P 6= NP . Mais plus généralement, prouver des bornes
inférieures absolues (non réductionnistes) dans des modèles de complexité standards est un problème que l’on ne
semble pas savoir résoudre actuellement, en dehors de bornes « simples » provenant de la théorie de l’information.

3

Introduction générale

proche2.
Par ailleurs, pour les constructions asymétriques en particulier, une construction cryptogra-

phique est souvent vue comme une famille de constructions, dont λ est l’un des paramètres. On
peut alors s’intéresser à la complexité asymptotique des attaques, qui fournissent une approxi-
mation simple de leur complexité pratique. En particulier on impose en général qu’attaquer un
schéma soit exponentiellement plus coûteux que de l’utiliser.

2.4 Cryptanalyse

La cryptanalyse est le sous-domaine de la cryptographie qui cherche à évaluer la sécurité des
constructions, par opposition notamment à leur conception3. Cela revient essentiellement à re-
chercher des attaques. En effet le choix des paramètres d’une construction doit être tel qu’il rend
toute attaque irréalisable. Ici il faut séparer plusieurs cas, selon que la construction est prouvée
ou non.

Si une construction est non prouvée, la confiance en sa sécurité n’existe généralement que si la
construction fait partie d’un type de construction bien étudié (comme les chiffrements par bloc),
pour lesquels les principaux vecteurs d’attaques sont considérés comme connus et bien maîtrisés
(attaques linéaires et différentielles, par exemple). Dans ce cas, il faut évaluer l’efficacité de ces
attaques, puis fixer les paramètres de la construction de manière à la placer hors de portée
des attaques. Bien sûr la construction peut être conçue de manière à faciliter son évaluation.
D’autre part des attaques dédiées peuvent persister, et une analyse approfondie de la part de
cryptanalystes indépendants, sur un long intervalle de temps, est inévitable.

Si la construction est prouvée, il faut encore séparer deux cas. Soit sa preuve fournit une
réduction efficace vers un problème difficile, auquel cas attaquer la construction revient à attaquer
le problème difficile : la cryptanalyse devient un problème appartenant autant à l’algorithmique
générale qu’à la cryptologie en particulier. C’est le cas des attaques sur le logarithme discret ou
la factorisation, par exemple. Sinon, si la preuve ne fournit pas de réduction efficace, la situation
n’est pas si différente du cas non prouvé : il faut évaluer la sécurité concrète des meilleures
attaques, en tenant compte des fossés éventuels séparant la construction du problème difficile
sous-jacent. C’est encore le cas si le modèle de sécurité n’englobe pas toutes les propriétés de
sécurité que l’on pourrait souhaiter.

Ainsi le travail de la cryptanalyse consiste à attaquer des constructions cryptographiques.
Mais indirectement, sa contribution majeure est aussi de dresser un tableau des attaques per-
tinentes pour un certain type de construction ou de problème. Si une construction résiste à ces
attaques, et à un effort cryptanalytique important et durable, elle peut être considérée comme
sûre. Puisqu’il n’y a (presque) jamais de borne inférieure absolue prouvée sur l’attaquant, c’est
en fin de compte sur cette base que repose la confiance en la sécurité d’un chiffrement.

3 Définitions utiles

Dans cette section, nous donnons quelques définitions usuelles, qui servent à la fois à préciser
certains énoncés informels qui précèdent, et qui seront utiles pour présenter nos travaux dans la
section suivante.

2Pour λ suffisamment élevé, il est aussi possible d’argumenter que la puissance de calcul nécessaire est physi-
quement impossible.

3En français, on réserve parfois le terme de cryptographie pour la conception. Dans ce cas l’ensemble formé par
la cryptographie et la cryptanalyse est appelé cryptologie. Ici nous utilisons la convention anglaise et internationale,
pour laquelle cryptographie désigne la discipline dans son ensemble.

4

3. Définitions utiles

3.1 Chiffrement par bloc

Un chiffrement par bloc est une primitive symétrique définie de la manière suivante.

Definition 1 (Chiffrement par bloc). Étant donné un espace de clef K, un espace de message
clair P et un espace de message chiffré C, un chiffrement par bloc est une fonction E : K×P → C
telle que pour tout K ∈ K, x 7→ E(K,x) est inversible.

Si P et C sont en bijection, ils peuvent être assimilés. Dans ce cas un chiffrement par bloc peut
être vu comme une application de K dans les permutations de P. En général P = C = {0, 1}n
pour un certain entier n, la taille de bloc, typiquement n = 128. De même K = {0, 1}k pour un
certain entier k, la taille de clef.

Informellement, le modèle standard de sécurité associé à un chiffrement par bloc est le suivant.
Aucun adversaire efficace ne sait distinguer un oracle donnant accès à E(K, ·) et son inverse, pour
K tiré uniformément, d’un oracle donnant accès à une permutation uniformément aléatoire et
son inverse. Du point de vue d’un adversaire ne possédant pas la clef secrète, un bon chiffrement
par bloc se comporte donc comme une permutation aléatoire.

D’autres modèles de sécurité sont possibles. En particulier, le modèle à clef liée, qui sera
brièvement mentionné dans le premier chapitre, impose (au minimum) qu’aucun adversaire ef-
ficace ne sache distinguer la donnée conjointe de E(K, ·) et E(f(K), ·) et leurs inverses, pour f
appartenant à une certaine classe de fonctions (typiquement, les translations par XOR), de deux
permutations uniformes indépendantes et leurs inverses.

Dans le même chapitre, nous mentionnerons aussi les chiffrements par bloc avec tweak (twea-
kable bloc cipher), définis comme suit.

Definition 2 (Chiffrement par bloc avec tweak). Étant donné un espace de clef K, un espace
de tweak T , un espace de message clair P et un espace de message chiffré C, un chiffrement
par bloc avec tweak est une fonction E : K × T × P → C telle que pour tout K ∈ K, T ∈ T ,
x 7→ E(K,T, x) est inversible.

La définition ci-dessus est équivalente à un chiffrement par bloc avec espace de clef K × T .
La distinction entre la clef et le tweak apparaît dans le modèle de sécurité : la clef est tirée
uniformément indépendamment d’un adversaire potentiel, tandis que le tweak peut généralement
être non seulement connu, mais choisi par l’adversaire. La définition standard de la sécurité d’un
chiffrement par bloc avec tweak exige que pour K uniforme fixé, la famille paramétrée par T des
permutations E(K,T, ·) avec leur inverse soit indistinguable pour un adversaire efficace d’une
famille de permutations uniformes et indépendantes avec leur inverse.

3.2 Chiffrement à clef publique

Dans les chapitres 2 et 3, il sera question de chiffrement à clef publique. En fait, il sera plus
précisément question de permutation à trappe, une primitive à partir de laquelle un chiffrement
à clef publique peut être ensuite construit de manière standard. Nous donnons ici une définition de
cette primitive. L’idée informelle est qu’une permutation à trappe est une famille de permutations
auxquelles sont associées des « trappes ». Pour chaque permutation, calculer la permutation doit
être facile, mais l’inverser difficile, sauf si l’on connaît la trappe.

Definition 3 (Permutation à trappe). Pour un espace de clef K, un espace de message PK ,
un espace de chiffré CK (généralement dépendants de la clef) et un espace de trappe T , une
permutation à trappe est une famille de permutations EK : PK → CK , paramétrée par une clef
K ∈ K, satisfaisant les propriétés suivantes :

5

Introduction générale

1. Il existe un algorithme efficace permettant de tirer une clef K, avec une trappe T (K) ∈ T
associée.

2. Il existe des algorithmes efficaces permettant de tirer des éléments de PK , pour tout K, et
de calculer E.

3. Pour tout K ∈ K et x ∈ PK , étant donnés T (K) et EK(x), il existe un algorithme efficace
retrouvant x. Autrement dit, la connaissance d’une trappe permet d’inverser efficacement.

4. Pour tout K ∈ K, aucun algorithme efficace ne peut calculer x à partir de la seule donnée
de K et EK(x) avec probabilité de succès non négligeable. Autrement dit, sans connaissance
de la trappe il est difficile d’inverser.

La définition ci-dessus n’est pas entièrement formelle : les permutations et les éléments des
domaines sont implicitement tirés suivant des distributions associées ; et négligeable fait impli-
citement référence à un paramètre de sécurité. D’autre part la définition fait appel à la notion
d’algorithme « efficace ». Cela peut être exprimé par la notion d’algorithme probabiliste polyno-
mial, qui est une manière (pertinente mais assez théorique) de formaliser la notion d’algorithme
efficace.

En ce qui concerne la sécurité pratique, tout ce qui est efficace dans la définition ci-dessus
doit pouvoir être calculé « rapidement », tandis que ce qui n’est calculable par aucune algorithme
efficace ne doit pas pouvoir être calculé plus rapidement qu’une limite imposée par un paramètre
de sécurité, au sens de la Section 2.3.

3.3 Chiffrement en boîte blanche

Le chiffrement en boîte blanche englobe plusieurs modèles de sécurité, moins élémentaires que
les modèles présentés jusqu’ici. Nous nous contentons ici d’évoquer rapidement certains modèles,
en particulier celui de l’incompressibilité, qui sera développé dans le chapitre 3.

De manière idéale, la cryptographie en boîte blanche cherche à protéger une implémentation
contre un attaquant qui la connaît entièrement, avec des garanties comparables à celles que
procure un composant matériel sécurisé. De manière concrète, on ne connaît pas aujourd’hui de
technique qui atteigne pleinement ce but. Plusieurs compromis sont possibles, aussi bien dans le
domaine de l’ingénierie logicielle que de la cryptographie.

Du côté cryptographique, qui nous intéresse, cela se traduit par différents modèles de sécurité.
Le plus fort est celui de l’obfuscation au sens cryptographique, mais il reste hors de portée en
pratique aujourd’hui. Un modèle moins ambitieux est l’irréversibilité : un attaquant ayant accès
à l’implémentation d’un chiffrement ne sait pas l’utiliser pour déchiffrer. Cela revient à définir
une permutation à trappe, telle qu’on l’a vue plus haut.

Si l’on souhaite une performance plus proche de la cryptographie symétrique, on peut consi-
dérer un modèle plus modeste, l’incompressibilité : un adversaire ayant accès à l’implémentation
d’un chiffrement ne peut pas produire une implémentation significativement plus compacte du
même chiffrement. Ce modèle implique qu’il est impossible pour l’attaquant d’extraire une clef
maître courte, qui est l’intention originelle des constructions en boîte blanche. D’autre part, il
implique qu’il est nécessaire pour un attaquant souhaitant produire un outil de déchiffrement
illicite d’extraire la quasi-totalité du code, et non une clef ponctuelle, ce qui se prête mieux à des
techniques d’obfuscation logicielle.

6

Résumé en français

1 Organisation du manuscrit

Les travaux que j’ai effectués pendant ma thèse portent sur des sujets assez variés. Dans ce manus-
crit, j’en ai sélectionné quatre, à la fois pour leur intérêt propre, et parce qu’ils forment une suite
relativement cohérente depuis la cryptanalyse symétrique jusqu’à la cryptanalyse asymétrique,
en passant par la cryptographie en boîte blanche, qui est à certains égards intermédiaire.

Le premier chapitre porte sur la cryptanalyse, par auto-similarité et espaces invariants, des
chiffrements symétriques Robin, iSCREAM et Zorro. Le second chapitre présente la cryptanalyse
structurelle d’une construction nommée ASASA, dont les instances concrètes incluent à la fois
des constructions symétriques et multivariées, dans le contexte de la cryptographie en boîte
blanche. Le chapitre suivant montre comment réaliser de manière prouvée un des modèles de
boîte blanche du chapitre précédent. Enfin du côté purement asymétrique, le dernier chapitre
présente une cryptanalyse d’application multilinéaire. Les chapitres sont en ordre chronologique,
sauf les deux derniers, pour des raisons de cohérence et facilité d’exposition.

Dans le résumé en français qui suit, chacun des chapitres est présenté brièvement. La dernière
section mentionne mes autres travaux, suivis d’une liste des publications.

2 Cryptanalyse par auto-similarité des LS-Designs et Zorro

Les LS-Designs sont une famille de chiffrements par bloc présentée par Grosso, Leurent, Standaert
et Varici à FSE 2014 [GLSV14]. La structure de ces chiffrements est simple : l’état interne est
vu comme une matrice rectangulaire de bits. La fonction de tour se décompose en deux étapes
L et S. L’étape L consiste à appliquer une même fonction linéaire à chaque ligne de la matrice.
L’étape S consiste à appliquer une même boîte S à chaque colonne. L’intérêt de cette structure
est qu’elle peut s’implémenter très facilement en bitslice (pour peu que ce soit le cas de la boîte
S), et se prête naturellement à une implémentation masquée.

L’article d’origine inclut aussi deux instances concrètes, Robin et Fantomas, dont la première
utilise des composants (fonction linéaire L et boîte S) involutifs. Par ailleurs des variantes avec
tweak de ces deux chiffrements, nommées SCREAM et iSCREAM [GLS+14b], ont été proposées
comme candidates à la compétition de chiffrement authentifié CAESAR [Com13].

Dans un travail effectué (en fait, fusionné) avec Gregor Leander et Sondre Rønjom [LMR15],
dans un premier temps, nous montrons que la structure très forte provenant du LS-Design et des
composants involutifs confère des propriétés surprenantes à Robin et iSCREAM : il existe une
permutation des colonnes de l’état interne qui commute avec la fonction de tour.

On appelle « reliés » deux états internes liés par cette permutation, et « faible » un état interne
relié à lui-même ; de même pour les messages, les chiffrés et les clefs, qui sont assimilés à des
états internes. Alors deux messages reliés chiffrés avec deux clefs reliées produisent deux chiffrés

7

Résumé en français

reliés. En particulier, un message faible chiffré avec une clef faible produit une chiffré faible : une
clef faible peut être détectée avec forte probabilité à l’aide d’un seul message choisi. Ainsi dans
un modèle à clef faible (ou reliée), l’indistinguabilité du chiffrement est cassée instantanément
avec essentiellement un message choisi. Dans le cas de Robin, la densité de clefs faibles est de
2−32, ce qui rend l’attaque significative en pratique.

L’attaque précédente ne recouvre pas la clef secrète, mais nous montrons aussi que si la
clef est faible, alors le chiffrement inclut un sous-chiffrement : pour une clef faible, une certaine
projection de la valeur du chiffré ne dépend que de la même projection des valeurs du message
et de la clef. On en déduit une attaque qui retrouve la clef secrète en temps 264 (au lieu de 296

de manière générique pour une clef faible).
L’attaque ci-dessus repose sur la structure spécifique des LS-Designs—et aussi sur le choix des

composants involutifs, et des constantes de tour. Mais il s’avère que la même attaque s’applique
à un chiffrement très différent, Zorro [GGNPS13], également conçu pour avoir un faible surcoût
en masquage. Contrairement aux LS-Designs, d’autres attaques classiques avaient déjà cassé
Zorro. L’intérêt de notre contribution sur ce point est de montrer une autre instance de notre
attaque, sur un chiffrement complètement différent. En effet Zorro est une variante d’AES, basé
sur des octets et non des bits, dont l’innovation principale est une couche non-linéaire partielle.
Cependant la même attaque fonctionne : on peut exhiber, non plus une permutation, mais une
fonction linéaire plus générale sur F28 qui commute avec la fonction de tour. Les conséquences
sont exactement les mêmes, en termes de clefs faibles, clefs reliées et recouvrement de clef. Il se
trouve par ailleurs que la densité de clefs faibles est la même (2−32).

Dans une second temps, on peut remarquer que si l’on s’intéresse à la variante de l’attaque
avec clef faible sur des messages faibles, alors on est en présence d’une attaque par sous-espace
invariant, c’est-à-dire qu’un certain sous-espace (affine) des clefs envoie un certain sous-espace
des messages sur un certain sous-espace des chiffrés. Ce type d’attaque avait été introduit pour la
cryptanalyse de PrintCIPHER en 2011 [LAAZ11], et n’avait pas été développé depuis. Puisque
nous montrons deux nouvelles attaques de ce type, il est légitime de se demander comment les
analyser ou les détecter. Nous proposons un algorithme générique qui recherche automatiquement
les attaques par sous-espace invariant à partir d’une implémentation de la fonction de tour d’un
chiffrement, avec une complexité directement proportionnelle à (l’inverse de) la densité du sous-
espace invariant. En effet l’algorithme procède simplement par clôture, en devinant un élément
du sous-espace invariant, et en clôturant l’espace qu’il génère avec les constantes de tour par
va-et-vient à travers la fonction de tour. Une implémentation de cet algorithme générique a été
rendue publique, et permet de détecter automatiquement les attaques précédentes (sous leur
forme de sous-espace invariant).

3 Cryptanalyse structurelle d’ASASA

Le schéma ASASA a été introduit par Biryukov, Bouillaguet et Khovratovich à Asiacrypt 2014
pour concevoir des chiffrements en boîte blanche [BBK14]. Le constat de départ est que les
constructions en boîte blanche originelles et leurs variantes immédiates cherchaient globalement
à masquer des couches non-linéaires, notamment des boîtes S (couche S), par des couches affines
aléatoires (couches A) composées en entrée et en sortie. On obtient alors une structure de la forme
ASA, qui se prête trop facilement à la cryptanalyse. Par ailleurs, si les couches non-linéaires sont
composées de boîtes S, alors un résultat de Biryukov et Shamir montre que la structure SASAS
peut être cryptanalysée de manière structurelle [BS01], c’est-à-dire qu’un attaquant pouvant
interroger la construction en entrée et en sortie peut retrouver efficacement tous les composants

8

3. Cryptanalyse structurelle d’ASASA

internes (boîtes S et couches linéaires A). Par contre aucune attaque n’était connue sur ASASA.

D’autre part, la cryptographie multivariée, qui peut aussi être utilisée pour la construction de
chiffrements en boîte blanche, tente également de masquer des composants non-linéaires struc-
turés à l’aide de couches linéaires aléatoires externes. De ce point de vue aussi, une construction
ASASA permettrait de gêner les attaques connues4. En conséquence, Biryukov, Bouillaguet et
Khovratovich proposent des constructions ASASA pour la cryptographie en boîte blanche, avec
des instances aussi bien symétriques que multivariées.

Dans un travail avec Patrick Derbez, Pierre Karpman et Pierre-Alain Fouque, nous proposons
une cryptanalyse structurelle d’ASASA [MDFK15]. L’attaque est structurelle au même sens que
la cryptanalyse structurelle de SASAS citée plus haut : c’est-à-dire qu’elle recouvre les composants
internes de la structure ASASA, même s’ils sont uniformément aléatoires. Le terme structurel est
employé par opposition aux attaques traditionnelles sur les primitives symétriques, où tous les
composants sont connus de l’adversaire excepté la clef. Ici seule la structure des composants est
connue (boîtes S, couches linéaires, etc.).

En particulier, notre attaque permet de casser de manière quasi-uniforme les instances dites
en boîte noire, en boîte blanche faible, et une des deux instances multivariées de [BBK14], avec
une complexité estimée de l’ordre de 256 dans le pire des cas, pour un paramètre de sécurité de 128
bits. L’instance multivariée que nous n’attaquons pas est celle qui avait été déjà cryptanalysée
par Gilbert, Plût et Treger à Crypto 2015 [GPT15], à l’aide d’une attaque par décomposition.

Notre attaque recouvre chaque couche d’ASASA successivement. La première couche est
naturellement le point difficile. Notre technique exploite un défaut de degré observable si l’on
devine correctement une partie de la dernière couche linéaire. Ce défaut de degré peut être traduit
en équations quadratiques reliant certains éléments de la couche linéaire. On aboutit à un système
qui peut se résoudre par relinéarisation, et permet de retrouver la dernière couche linéaire. Il est
intéressant de noter que ce défaut de degré est exploitable aussi bien dans l’instance multivariée
que dans les instances symétriques. En fait la même technique reste applicable tant que la
construction n’est pas de degré algébrique maximal, et suite à notre attaque, une note de Biryukov
et Khovratovich montre qu’elle permet encore d’attaquer ASASASA ou même SASASASAS avec
des paramètres raisonnables [BC13].

Par ailleurs, dans le cas de l’instance multivariée, nous proposons aussi une seconde attaque
indépendante, qui réduit le problème à une instance du problème « Learning Parity with Noise »
(LPN) avec des paramètres faibles. Un algorithme de type BKW permet ensuite de casser le
chiffrement [BKW03], légèrement moins efficacement qu’avec l’attaque précédente. L’idée natu-
relle pour faire apparaître LPN dans ce type de construction est d’assimiler heuristiquement les
termes non-linéaires à une forme de bruit. Dans le cas de la construction multivariée que nous
attaquons, pour se ramener à LPN, on calcule la dérivée seconde du chiffrement par rapport à
deux vecteurs arbitraires, et le problème de retrouver un élément de la dernière couche linéaire
se présente comme une variante de LPN. Cependant cette attaque est nettement plus spécifique
que la précédente.

4En fait cette idée avait déjà été proposée par Patarin sous le nom de 2R, mais avait été victime d’attaques
par décomposition. En résumé, celles-ci permettent de retrouver deux fonctions f, g : Fn2 → Fn2 à partir de leur
composée g ◦ f . Ici cette attaque est évitée à l’aide de polynômes quartiques aléatoires mélangés linéairement à
la sortie du chiffrement.

9

Résumé en français

4 Construction de primitives prouvables en boîte blanche

Nous avons mentionné plus haut le modèle d’incompressibilité en boîte blanche. Plusieurs construc-
tions ont déjà été proposées dans ce modèle, ou de proches variantes [DLPR13, BBK14, BI15].
C’est le cas d’une des constructions ASASA de la section précédente. Cependant ces constructions
offrent des garanties purement heuristiques.

Dans un travail avec Pierre-Alain Fouque, Pierre Karpman et Paul Kirchner [FKKM16], nous
partons de l’idée qu’en s’autorisant AES comme sous-composant, on peut obtenir d’une part des
garanties prouvables d’incompressibilité reposant uniquement sur la sécurité de l’AES, et d’autre
part des implémentations logicielles très performantes en présence d’instructions matérielles AES
(l’implémentation logicielle étant la préoccupation originelle de la boîte blanche). On réalise ainsi
des constructions prouvables, avec des performances comparables aux solutions existantes, non
prouvées.

En fait nous définissons deux modèles d’incompressibilité. Le modèle dit faible correspond
essentiellement aux notions définies précédemment dans la littérature : il est impossible pour un
attaquant ayant accès à l’implémentation d’un chiffrement d’en produire une autre significati-
vement plus compacte, fonctionnellement équivalente sur la plupart des entrées. Le modèle fort,
que nous introduisons, ajoute qu’un attaquant ayant accès à l’implémentation compressée ne
peut même pas l’utiliser pour distinguer, avec probabilité de succès significative, le chiffrement
de départ d’une fonction ou permutation aléatoire.

Notre travail part aussi du constat, déjà observé dans la littérature, dès même l’article fon-
dateur de Chow et al., que les constructions en boîte blanche peuvent être utilisées pour l’en-
capsulation de clef plutôt que pour chiffrer chaque bloc de données [CEJO02a]. Cela amortit le
coût de la boîte blanche, de la même manière que le chiffrement hybride pour le chiffrement à
clef publique. Dans ce cas (et d’ailleurs d’une manière plus générale), il n’est pas nécessaire de
se limiter au chiffrement par bloc comme unique primitive en boîte blanche.

Suite à cette observation, nous proposons deux primitives en boîte blanche. La première est
un chiffrement par bloc en boîte blanche, classique dans ses garanties de sécurité. Ce chiffrement
est prouvé, avec une hypothèse heuristique, dans le modèle d’incompressibilité faible, c’est-à-dire
celui des constructions non prouvées existantes. Il permet donc une comparaison directe. La
seconde construction est un générateur de clef, prouvable dans le modèle fort (et dans le faible).
Nos implémentations montrent que ces deux primitives ont des performances comparables ou
meilleures que les constructions précédentes.

L’idée générale de notre chiffrement par bloc est d’alterner des appels à AES avec une couche
d’appels à une large table pseudo-aléatoire, également générée avec AES. Grossièrement, les
appels alternés à AES rendent « aléatoires » les appels à la table, de sorte que si un adversaire ne
retient pas une partie significative de la table, il est incapable de chiffrer la plupart des messages.
La preuve repose sur des considérations combinatoires.

Le générateur de clef parallélise la même idée : l’entrée est utilisée pour générer une suite de
blocs aléatoires en utilisant AES en mode compteur. Chaque bloc passe à travers une large table
pseudo-aléatoire. Enfin cette nouvelle série de bloc est traitée par un extracteur d’entropie. En ef-
fet l’observation centrale est qu’un générateur de clef en boîte blanche correspond à un extracteur
local d’entropie : si une implémentation compacte créée par un adversaire est significativement
plus petite que la table pseudo-aléatoire d’origine, alors la table a une grande (min-)entropie
conditionnée à la connaissance de l’implémentation compacte. Pour avoir une sortie uniforme
aux yeux de l’adversaire, il suffit donc d’extraire cette entropie au sens d’un extracteur classique.
Par ailleurs on souhaite que l’extracteur soit local, c’est-à-dire qu’il n’utilise qu’un faible nombre
d’appels à la table, pour des raisons de performance. Dans le domaine des extracteurs locaux, un

10

5. Splendeurs et misères des applications multilinéaires

article fondamental de Vadhan démontre un théorème modulaire qui permet de prouver notre
construction dans le modèle fort [Vad04]. Nous donnons aussi une preuve combinatoire directe
dans le modèle faible, dont les bornes permettent de choisir des paramètres plus performants.

5 Cryptanalyse d’application multilinéaire sur les entiers

Les applications multilinéaires sont une primitive asymétrique expressive et polyvalente, qui per-
met de réaliser une grande variété de constructions cryptographiques. Informellement, on appelle
parfois cette primitive « crypto-complète » dans le sens où la plupart des constructions crypto-
graphiques connues peuvent êtres réalisées à partir d’applications multilinéaires. Cela inclut aussi
des constructions qu’on ne sait pas aujourd’hui réaliser autrement, comme les échanges de clefs
multipartis sans interaction, ou, suite à un article fondateur de Garg, Gentry, Halevi, Raykova,
Sahai et Waters, l’obfuscation générale de programme [GGH+13b]. Cette dernière application en
particulier a suscité un grand intérêt de la communauté envers les applications multilinéaires.

Paradoxalement, à côté de cette riche variété de constructions fondées sur les applications
multilinéaires, il existe très peu de constructions effectives. En particulier, aucune construction
n’admet de réduction de sécurité vers un problème difficile standard. La première construction
d’application multilinéaire, par Garg, Gentry et Halevi (GGH13), utilise des réseaux idéaux
[GGH13a]. Elle a été suivie de près par une seconde construction sur les entiers par Coron,
Lepoint et Tibouchi (CL13) [CLT13]. Ces constructions ont toutes deux été cassées en temps
polynomial pour certaines applications, dont l’échange de clef multiparti sans interaction.

Cela a conduit Coron, Lepoint et Tibouchi à présenter une nouvelle version de leur construc-
tion à Crypto 2015 (CLT15), conçue pour résister aux attaques précédentes [CLT15]. Dans un
travail commun avec Pierre-Alain Fouque [MF15], puis fusionné avec Jung Hee Cheon, Chang-
min Lee et Hansol Ryu [CFL+16], nous montrons que cette nouvelle construction peut elle aussi
être attaquée en temps polynomial. En fait notre technique consiste à retrouver un paramètre
secret de la construction, qui permet de ramener la sécurité de la nouvelle construction à celle de
la version originale. De plus, notre attaque utilise uniquement les données essentielles de la clef
publique, et fonctionne pour toutes les applications possibles de CLT15. Ainsi, tandis que CLT13
n’a pas d’attaque connue pour certaines applications, CLT15 peut être écarté entièrement.

Comme toutes les attaques sur les applications multilinéaires jusqu’ici, notre technique d’at-
taque évite les problèmes difficiles sur lesquels les constructions proposées voudraient heuristi-
quement reposer, typiquement des problèmes de réseaux. Dans notre cas l’observation cruciale
est qu’une fonction bien choisie est Z-linéaire sur un sous-domaine pertinent. L’attaque se conclut
ensuite avec des techniques d’algèbre linéaire. L’attaque est polynomiale, et d’ailleurs instantanée
pour une version optimisée de CLT15 proposée dans l’article d’origine. Nous proposons aussi une
seconde attaque, probabiliste.

En prenant en compte l’attaque récente du schéma GGH15 par Coron, Lee, Lepoint et Ti-
bouchi [CLLT16], toutes les propositions majeures d’application multilinéaire ont finalement
été cassées pour l’échange de clef multiparti, qui est leur application la plus directe. Le statut
d’autres applications, notamment l’obfuscation générale de programme, reste à déterminer dans
la plupart des cas.

6 Autres travaux

Lors du séjour que j’ai effectué à l’ANSSI, j’ai publié deux articles de cryptanalyse symétrique. Le
premier, en commun avec Thomas Fuhr, met au point une technique de rencontre au milieu avec

11

Résumé en français

un nouveau type de précalcul sur la phase centrale de l’attaque [FM14]. Cela permet d’améliorer
les attaques existantes sur KATAN, un chiffrement par bloc atypique utilisant des registres à
décalage non-linéaires.

Un second article exhibe de faibles biais linéaires sur AEGIS, un candidat de chiffrement
authentifié de la compétition CAESAR, avec des performances extrêmement élevées en software
[Min14]. L’attaque permet en particulier de recouvrer des bits de message clair avec 2220 données
sur la version à 256 bits de sécurité d’AEGIS, et surcoût en temps négligeable par rapport à la
lecture des données. C’est une attaque entièrement théorique au vu de la quantité de données
nécessaire. Il n’y a pas aujourd’hui d’autre attaque connue sur AEGIS, ni d’ailleurs sur les
chiffrements qui s’en inspirent directement, MORUS et Tiaoxin.

Enfin dans un autre domaine, un travail en commun avec Yannick Seurin montre que l’avan-
tage d’un distingueur entre une permutation aléatoire et le carré (ou l’autocomposition un nombre
fixé de fois) d’une permutation aléatoire est en Θ(q/N), où q est le nombre de requêtes et N la
taille de l’espace d’entrée [MS15]. Montrer O(q2/N) est bien sûr immédiat par le paradoxe des
anniversaires, le but étant de démontrer une borne asymptotique linéaire en q. On en déduit assez
directement que la composition de deux chiffrements identiques avec la même clef n’induit pas
de perte de sécurité significative au point de vue de la sécurité prouvable. Ce travail a été suscité
par une question ouverte dans un travail précédent de Chen, Lampe, Lee, Seurin et Steinberger.

7 Liste des publications

• Thomas Fuhr and Brice Minaud. Match box meet-in-the-middle attack against KATAN.
In Fast Software Encryption, pages 61–81. Springer, 2014.

• Brice Minaud. Linear biases in AEGIS keystream. In Selected Areas in Cryptography–SAC
2014, pages 290–305. Springer, 2014.

• Gregor Leander, Brice Minaud, and Sondre Rønjom. A generic approach to invariant sub-
space attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In Advances in Cryptology–
EUROCRYPT 2015, pages 254–283. Springer, 2015.

• Brice Minaud and Yannick Seurin. The iterated random permutation problem with appli-
cations to cascade encryption. In Advances in Cryptology–CRYPTO 2015, pages 351–367.
Springer, 2015.

• Brice Minaud, Patrick Derbez, Pierre-Alain Fouque, and Pierre Karpman. Key-recovery
attacks on ASASA. In Advances in Cryptology–ASIACRYPT 2015, pages 3–27. Springer,
2015. Invited to the Journal of Cryptology.

• Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu.
Cryptanalysis of the new CLTmultilinear map over the integers. InAdvances in Cryptology–
EUROCRYPT 2016, pages 509–536. Springer, 2016.
(Fusion de [MF15] et [CLR15])

• (En soumission) Pierre-Alain Fouque, Pierre Karpman, Paul Kirchner, and Brice Minaud.
Efficient and provable white-box primitives. To appear in the proceedings of Asiacrypt
2016, 2016.

12

General Introduction

1 Symmetric and Asymmetric Cryptography

The primary object of cryptography is the design and analysis of secure communications. Mod-
ern cryptography is mainly concerned with electronic communication, and belongs to the field
of computer science. Nevertheless it is distinct from computer security, which plays a comple-
mentary role.

An electronic communication, such as occurs on a computer network, may be decomposed
into several layers. Low-level layers include physical and various network layers, while high-level
layers bear the payload of the communication. Conceptually, each new layer is built on top
of the underlying layers, often modeling their behavior, and assuming they function correctly.
Cryptography studies the higher levels of this hierarchy. As such it deals with security in a
partially idealized world, and generally disregards security flaws that stem from the execution
context, such as implementation bugs, hardware failures, or viruses.

In this context, one the simplest and earliest goals of cryptography is confidentiality. Confi-
dential messages must only be readable by their sender and receiver, or more generally any party
in possession of a secret key. This definition naturally suggests military applications. However
with the ever more widespread use of computer networks and internet, confidentiality has become
a common requirement. It is necessary for applications such as e-commerce or online banking,
where private information travels on a public network.

Confidentiality ensures that an encrypted message leaks no information about its content,
except when the secret decryption key is known. However in many applications of cryptography,
other standard cryptographic guarantees are required, such as integrity and authenticity. Au-
thenticity allows the receiver to verify that the message was indeed sent by its purported sender.
Integrity allows the receiver to verify that the message was not tampered with during transit.

The three notions of confidentiality, authenticity and integrity belong to the realm of symmet-
ric cryptography. The term symmetric is used to reflect the fact that a unique secret is shared
among the communicating parties. This one secret enables both encryption and decryption,
authentication and verification. The situation is thus entirely symmetric between parties that
share the secret. In particular, one may observe that authenticity only ensures that the message
was written by one of the parties in possession of the secret, rather than any one specific party.

By contrast, asymmetric cryptography encompasses all cases where communicating parties do
not share a common secret. So far we have seen the three notions of confidentiality, authenticity
and integrity for symmetric cryptography. Asymmetric cryptography also allows to fulfill various
security notions—in fact, a large number of them. For the purpose of this introduction we will
only consider two common definitions.

The most basic asymmetric notion is perhaps that of an electronic signature. Similar to a
physical signature, an electronic signature proves the identity of the signing party, in a way that
anyone can verify. It is no longer necessary to know any secret information in order to verify a

13

General Introduction

signature, contrary to the (symmetric) case of authenticity. Anyone can verify a signature, but
only one party can generate it, thus proving its identity.

The signature is generated using a private key, which only the signing party knows. Mean-
while a public key, generally accessible to anyone, allows to verify a signature. For this reason,
asymmetric cryptography is also called public-key cryptography. In the same way, one can define
public-key encryption schemes. In such a scheme, anyone can encrypt messages using a public
key. Meanwhile, decryption requires a private key, secretly associated to the public key. We will
later encounter other examples of asymmetric schemes, such as multipartite key exchanges.

In general, symmetric primitives fulfill relatively simple purposes, such as authenticity and
confidentiality, but do so very efficiently. They can be used to encrypt large amounts of data. On
the other hand, asymmetric primitives provide richer functionality sets, but are comparatively
slow. They are used at key points to achieve critical security properties, while the bulk of
communications is encrypted using symmetric primitives.

2 Cryptographic Notions

In this section we set out to describe some basic notions of cryptography. Our presentation shall
be brief and incomplete: we will focus on those notions that are necessary to understand our
work, or at least provide some context for it.

2.1 Primitives, Modes and Protocols

Many applications of cryptography, such as online payments, require communication between
several entities over a number of messages. The precise description of the authorized sequence of
messages is called a protocol. For example, when a user connects to a secure website using the
HTTPS protocol, security properties such as authentication are enforced by the TLS protocol.
The TLS protocol defines in a rigorous manner what type of message is authorized at each step
of the protocol.

A security protocol such as TLS is built on top of more fundamental cryptographic elements,
such as encryption schemes and signatures. An encryption scheme may in turn be built from an
even more basic cryptographic brick, such as a block cipher. In that case, a mode of operation
specifies how the block cipher is used to derive an encryption scheme. At the bottom of this
multilayered composition of cryptographic elements, the most fundamental constructions, which
do not rely on any other, are called cryptographic primitives. In the remainder, we will almost
exclusively be interested in primitives, as opposed to modes or protocols.

2.2 Models and Proofs

Modern cryptography is (at least partially) underpinned by mathematics. Security notions that
we have alluded to so far, such as signatures, can be formally defined. These definitions are often
called models, because they interpret informal notions in a mathematical way. Moreover a given
security notion may be captured by distinct models, depending on the required properties.

For a given security model, a cryptographic scheme aiming to satisfy the model may either
be proven in that model, or simply be conjectured secure, if no proof is known. Symmetric and
asymmetric primitives differ in this regard.

Symmetric primitives are (almost) never proven. They rely on efficient techniques, but do
not lend themselves well to mathematical analysis (in some sense this is by design). On the
contrary, asymmetric primitives rely on a strong mathematical structure in order to provide

14

2. Cryptographic Notions

richer usage properties. This structure may be exploited by attacks, and makes asymmetric
primitives comparatively slow. On the other hand, thanks to this underlying structure, standard
asymmetric primitives, such as public-key encryption schemes, are typically proven.

However the meaning of proof should be qualified. A security proof does not show that
an arbitrary adversary is unable to attack the scheme, because an unbounded adversary can
exhaustively try every private key. Even when considering bounded adversaries, it is not proven
that it is impossible for the adversary to break the scheme, because such proofs seem out of
reach at the moment5. Instead, security proofs show that if an adversary can efficiently break
the scheme, then she can efficiently solve a reputedly hard problem, such as factoring large
integers. The security guarantees afforded by a proof are meaningful, but not absolute.

In the case of some less common asymmetric primitives, such as multilinear maps, not only is
there no known security proof, but it is not yet clear whether the primitives exist. In such a case,
following a famous article by Impagliazzo [Imp95], one may describe and study a hypothetical
world where these primitives exist, and one where they do not, without knowing which one we
live in.

2.3 Security Parameter

A cryptographic scheme targets a security definition provided by a model, as explained earlier.
The security model may include one or several security parameters, which express the hardness
of breaking the scheme. In the simplest case, which is also the most common, the model contains
a single security parameter, denoted by λ. This parameter means that an adversary against the
scheme cannot succeed with less than 2λ computing power, tallied either in number of encryptions
or basic operations. The parameter λ is usually chosen in such a way that the required computing
power is infeasible with current technology, including in the near future6.

Cryptographic schemes, especially asymmetric ones, are often viewed as a family of construc-
tions, one of whose parameters is λ. In that case, one may be interested in the asymptotic
complexity of an attack, which provides a simple approximation of its practical complexity. In
this context, it is generally expected that attacking a scheme is exponentially more expensive
than using it.

2.4 Cryptanalysis

Cryptanalysis is the branch of cryptography that seeks to evaluate the security of schemes. This
mostly amounts to finding attacks. Indeed, the choice of parameters of a cryptographic scheme
must be such that all attacks are infeasible. However the nature of attacks is somewhat different
depending on whether a security proof is available.

If no security proof is known, confidence in the security of a scheme generally only exists if
the scheme belongs to a well-studied type of construction (such as block ciphers), for which the
main attack vectors are believed to be known (linear and differential attacks, for example). In
that case, the efficiency of these attacks is assessed, and the parameters of the scheme are chosen
such that it is comfortably out of reach of attacks. The scheme itself may be designed in a way
that facilitates its security assessment. Nevertheless dedicated attacks may still exist, and an
in-depth analysis by independent experts, over a long period of time, is unavoidable.

5A canonical example of this limitation is the inability so far to solve the problem P 6= NP . But more
generally, proving absolute (non-reductionist) lower bounds in a standard complexity model seems currently
intractable, outside of “simple” bounds arising from information theory.

6For higher values of λ, it is also possible to argue that the required computing power is physically impossible.

15

General Introduction

If a security proof is available, two cases should be considered. Either the proof provides a
tight reduction to a hard problem. In that case, attacking the scheme amounts to attacking the
hard problem, and cryptanalysis belongs to general algorithmic as much as it does to cryptog-
raphy. Examples include attacks on discrete logarithm or factorization. Otherwise, if the proof
does not provide a tight reduction, the situation is similar to the unproven case: the concrete
efficiency of the best attacks must be assessed, taking into account possible gaps between the
scheme and the underlying hard problem. This is also the case should the security model fail to
capture all desirable security properties.

Cryptanalysis consists in attacking cryptographic schemes. But indirectly, one of its main
contributions is to draw a picture of the most relevant attacks against a given type of scheme or
problem. If a scheme is able to resist these attacks, as well as a extensive cryptanalytic effort,
then it may be regarded as secure. Since absolute lower bounds on adversaries (almost) never
exist, this is what confidence in the security of a scheme is ultimately based on.

3 Useful Definitions

In this section, we provide a few relevant definitions. This is intended to make some informal
statements from the previous sections more precise, as well as to provide a basis for the next
chapters.

3.1 Block Ciphers

A block cipher is a symmetric primitive defined as follows.

Definition 4 (Block Cipher). Given key space K, plaintext space P, and ciphertext C, a block
cipher is a mapping E : K × P → C such that for all K ∈ K, x 7→ E(K,x) is invertible.

In most cases P and C have the same cardinality, and can be identified. A block cipher can
then be regarded as a mapping from K into the permutations of P. Typically, P = C = {0, 1}n
for some integer n, denoting the block size, e.g. n = 128. Similarly K = {0, 1}k for some integer
k, denoting the key size.

Informally, the usual security model associated with a block cipher is as follows. No efficient
adversary should be able to distinguish an oracle giving access to E(K, ·) and its inverse, for
uniform K, from an oracle giving access to a uniformly random permutation and its inverse.
From the point of view of an adversary with no knowledge of the secret key, a good block cipher
looks like a uniformly random permutation.

Other security models are possible. The related-key model, which shall be briefly mentioned
in the first chapter, asks (at the very least) that no efficient adversary is able to distinguish
E(K, ·), E(f(K), ·), and their inverses, for f belonging to some class of functions (typically
constant additions) from two uniformly random permutations and their inverses.

In the same chapter, we will also mention tweakable block ciphers.

Definition 5 (Tweakable Block Cipher). Given key space K, tweak space T , plaintext space P,
and ciphertext space C, a tweakable block cipher is a mapping E : K×T ×P → C such that for
all K ∈ K, T ∈ T , x 7→ E(K,T, x) is invertible.

The above definition is equivalent to a block cipher with key space K × T . The difference
between key and tweak lies in the security model: the key is drawn uniformly independently of
any adversary, whereas the tweak can in general be controlled by the adversary. The standard

16

4. Layout of the Thesis

security definition of a tweakable block cipher asks that for uniform K, the family parametrized
by T of permutations E(K,T, ·) and their inverse is indistinguishable for an efficient adversary
from a family of uniformly random permutations and their inverse.

3.2 Public-Key Encryption Scheme

Chapters 2 and 3 will mention public-key encryption, and more precisely, trapdoor permutations.
Public-key encryption schemes can be built from trapdoor permutations in a standard manner.
We now define this primitive. Informally, a trapdoor permutation is a family of permutations
with associated traps. Each permutation should be easy to compute, but difficult to invert, unless
the associated trap is know.

Definition 6 (Trapdoor Permutation). Given key space K, plaintext space PK , ciphertext space
CK (which may depend on the key), and trap space T , a trapdoor permutation is a family of
permutations EK : PK → CK , parametrized by key K ∈ K, with the following properties :

1. There exists an efficient algorithm sampling K, together with associated trap T (K) ∈ T .

2. There exist efficient algorithms sampling from PK , for all K, and computing E.

3. For all K ∈ K and all x ∈ PK , given T (K) et EK(x), there exists an efficient algorithm
recovering x. In other words, inverting is easy whenever the trap is known.

4. For all K ∈ K, no efficient algorithm is able to compute x from knowledge only of K and
EK(x), except with negligible probability of success. In other words, inverting is difficult
without knowledge of the trap.

The above definition is not entirely formal: permutations and elements are implicitly drawn
according to some associated distributions; and “negligible” implicitly refers to a security param-
eter. The definition also uses the notion of an efficient algorithm. This can be captured by the
notion of probabilistic polynomial time algorithm, which is a (meaningful but rather theoretical)
way of formalizing the notion of efficient algorithm.

With regards to practical security, every “efficient” algorithm in the above definition should
be “fast” in practice; meanwhile, whatever is not computable by any efficient algorithm should
not be computable faster than some limit imposed by a security parameter, in the sense of
Section 2.3.

4 Layout of the Thesis

During my thesis, I have worked on a variety of subjects. In this manuscript, I have selected
four, based on their individual interest, and also because they form a relatively coherent sequence
from symmetric cryptanalysis to asymmetric cryptanalysis, via white-box cryptography, which
in some respects may be regarded as a middle ground between the two.

The first chapter presents self-similarity and invariant subspace cryptanalyses of symmetric
ciphers Robin, iSCREAM and Zorro. The second chapter moves on to the structural cryptanal-
ysis of the so-called ASASA construction, whose concrete instances include both symmetric and
multivariate schemes, in the context of white-box cryptography. The third chapter shows how
to provably achieve one of the white-box models of the previous chapter. Finally on the purely
asymmetric side, the last chapter proposes a polynomial-time cryptanalysis of a recent multilin-
ear map candidate construction. The chapters are presented in chronological order, except for
the last two, for the sake of coherence and ease of exposition.

17

General Introduction

18

Notation

The following notation is used throughout this work.

4
=: equality by definition.

Zn: ring Z/nZ of integers modulo n.
Fq: finite field of size q.

|S|: cardinality of the set S.(
n
k

)
: binomial for k elements among n.

log: logarithm in base 2.
ln: natural logarithm.

EK or EncK : encryption function with key K.

19

Notation

20

Chapter 1

Self-Similarity and Invariant Subspace
Attacks

1.1 Introduction

In this chapter we show the existence of self-similarity attacks in some recent block cipher designs:
the lightweight cipher Robin introduced at FSE 2014 as a concrete instance of the LS-design
framework [GLSV14], the closely related CAESAR [Com13] candidate iSCREAM [GLS+14b]7,
as well as the lightweight cipher Zorro presented at CHES 2013 [GGNPS13]. The self-similarity
property we consider, where a linear map commutes with the round function, also entails the
existence of invariant subspaces in the same ciphers, and leads to practical attacks in all cases.

Self-similarity properties were first formally defined in [BB02] to study alternative descrip-
tions of AES, and later used in [BDLF10] to cryptanalyze the SHA-3 candidate Lesamnta and
the lightweight cipher XTEA. Meanwhile invariant subspace attacks were introduced for the
cryptanalysis of PRINTcipher [LAAZ11], and made no other appearance prior to our work.
Since then, a few more cases have arisen [GJN+15, Røn16, GRR16].

Both of these attacks are unusual in that they rely on an unexpected form of symmetry in the
round function, and yield attacks that are independent of the number of rounds. It is notable that
neither attack surfaced until recently, nor have they been successfully applied to older designs8.
This may be regarded as a consequence of the recent profusion of designs aiming to fulfill strong
performance requirements, such as low hardware footprint (e.g. PRESENT [BKL+07], LED
[GPPR11], KATAN [CDK09]), low memory consumption on small embedded processors (e.g.
ITUBee [KDH13], SPECK [BSS+], PRIDE [ADK+14]), low latency (e.g. PRINCE [BCG+12])
or ease of side-channel protection (e.g. Zorro [GGNPS13], LS-Designs [GLSV14]). Ciphers
aiming to fulfill these requirements tend to feature innovative designs: they may rely on simpler
round functions, or minimal key schedules. While in most cases, guarantees against traditional
linear or differential attacks are still offered, the simpler structure of many of these ciphers may
lend itself to new attacks, such as self-similarity and invariant subspace attacks.

We now give a brief overview of the core property at play in our attack. The self-similary
we exploit is the existence of a linear map commuting with the round function. Of course the
existence of such a map is quite suprising in itself, but it also leads to a number of powerful
attacks. Define related inner states (resp. plaintexts, ciphertexts or keys) as pairs of states
(resp. plaintexts, ciphertexts or keys) linked by the linear map. Define self-related inner states

7Due to our attacks, iSCREAM has now been dismissed from the CAESAR competition.
8However a generalization of invariant subspaces was recently applied to AES [GRR16].

21

Chapter 1. Self-Similarity and Invariant Subspace Attacks

(resp. plaintexts, ciphertexsts or keys) as those that are related to themselves. Weak keys are
self-related keys. Then related keys map related plaintexts to related ciphertexts. In particular,
weak keys map self-related plaintexts to self-related ciphertexts. As a result in a weak (or related)
key setting, indistiguishability can be broken using essentially a single chosen plaintext. In all
ciphers we target, the density of weak keys turns out to be 2−32, making the attack quite relevant
in practice.

Moreover in all ciphers considered, as a consequence of the special type of self-similarity
property involved, our analysis also shows that whenever a weak key is used, the ciphers contain
an embedded subcipher. That is, a certain projection of the ciphertext only depends on a
projection of the plaintext and key. This property has been called a “linear factor” in an older line
of work [RM85, CE85, Eve87], which aimed to disprove the existence of such a property in DES.
To the best of our knowledge, our attacks are the first actual occurrence of this phenomenon
within “serious” block cipher designs, although only in a weak key setting. For all ciphers
considered, the embedded subcipher allows key recovery in 264 operations whenever a weak key
is used, with minimal data.

In the case of LS-designs, we furthermore present a second attack, based on S-box-dependent
invariant subspaces, without an underlying self-similarity. We obtain a new set of weak keys with
the same properties as above, although much less dense. This yields a weaker attack. However it
also uncovers a different security caveat of LS-Designs, which is nicely symmetric with the main
attack, as it swaps the roles of the linear and nonlinear layers in the attack.

Since our attack applies to block cipher designs as different as iSCREAM and Zorro, a
natural question is whether it is possible to detect this type of attack in a generic, reusable
manner. Note that finding invariant subspaces is enough, as (most) commuting linear maps of
the type we consider will give rise to a non-trivial invariant subspace. In the last part of the
chapter, we present a generic algorithm that is able to detect invariant subspaces. The running
time of this algorithm depends on the block size of the primitive and the density of the existing
invariant subspaces. In particular, it is especially efficient if relatively large invariant subspaces
exist. As the impact of an invariant subspace increases with its dimension, this can be seen
as detecting stronger attacks significantly faster than minor attacks. The algorithm is able to
detect the invariant subspaces from our previous attacks in less than a day on a standard desktop
computer9.

Layout of the Chapter.

In Section 1.2, we provide a description of LS-designs, including our targets Robin and iSCREAM.
In Section 1.3, we define self-similarity and invariant subspace attacks, then give the outline of
our attack. In Sections 1.4, 1.5 and 1.6, we develop our attacks against LS-designs, introduce
a particular self-similarity property, the resulting invariant subspaces, and finally describe a
different invariant subspace attack not underpinned by self-similarity. In Section 1.7, we apply
the same attacks to Zorro. In Section 1.8, we present our generic algorithm for detecting invariant
subspaces. Finally, in Section 1.9, we conclude with a discussion of our results and outline
interesting open problems.

9The source code of our tool is available at http://invariant-space.gforge.inria.fr.

22

http://invariant-space.gforge.inria.fr

1.2. Description of LS-Designs, Robin, and iSCREAM

1.2 Description of LS-Designs, Robin, and iSCREAM

1.2.1 LS-Designs

LS-designs were introduced by Grosso, Leurent, Standaert and Varici at FSE 2014 [GLSV14].
We refer the interested reader to their article for a detailed presentation of LS-designs and their
design rationale. For our purpose, a brief technical description suffices.

An LS-design is a block cipher encrypting n-bit plaintext blocks using a n-bit key. The inner
state of the cipher, as well as the plaintext, ciphertext, and key, are all represented as an r × c
bit array, with r the number of rows and c the number of columns. A concrete LS-design is
parametrized by the following components:

• A choice of r and c. The size of the key and message blocks is n = r · c.

• An r-bit S-box s.

• A bijective linear map ` on c-bit vectors, called the L-box.

• A number of rounds t.

• A choice of k-bit round constants C(i) for 1 ≤ i ≤ t.

In order to encrypt a given n-bit plaintext block, the plaintext is first loaded into the inner
state of the cipher, and the master key is added in (all additions are bitwise XORs). Then a round
function is applied successively for rounds 1 to t. At that point the cipherext is equal to the
inner state. The round function at round i proceeds as follows:

1. The round constant C(i) is added to the inner state.

2. The S-box s is applied to each column of the state.

3. The L-box ` is applied to each row of the state.

4. The n-bit master key K is added to the state.

1.2.2 Notation

When dealing with LS-designs, we will always use the previous notation; that is:
r the number of rows of the state.
c the number of columns.
n the size of the state; that is, n = r · c.
s the r-bit S-box.
S the S-box step; that is, the application of s on each column of the state.
` the c× c binary matrix representing the linear layer, identified with the

corresponding linear map on Fc2.
L the L-box step; that is, application of ` on each row of the state.

1.2.3 Robin

In [GLSV14], two concrete LS-designs are proposed, Robin and Fantomas. The idea behind
Robin is that both the S-box and L-box are involutive. This allows the same circuitry to be
reused when computing these components and their inverse operation, i.e. when encrypting
and decrypting. This saves valuable space on embedded devices when both encryption and

23

Chapter 1. Self-Similarity and Invariant Subspace Attacks

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

Figure 1.1: Matrix representing the L-box of Robin and iSCREAM. Dark cells stand for 1’s and
white cells for 0’s.

decryption capabilities are required. The trade-off is that involutive components have more
structure, resulting in a slightly higher number of rounds to reach the same security level as an
LS-design based on non-involutive components.

Robin strictly fits within the LS-design framework recalled in the previous section. As such
it can be fully described by the following parameters:

• The inner state of Robin has 8 rows and 16 columns, resulting in 128-bit blocks and a
128-bit key.

• The 8-bit involutive S-box is given in Appendix 1.

• The 16-bit involutive L-box is depicted as a 16× 16 binary matrix on Fig. 1.1.

• The number of rounds is 16.

• At round i (starting from 1), the round constant C(i) is zero outside of the first row, where
it is equal to `(i), with ` the L-box matrix.

1.2.4 iSCREAM

SCREAM and iSCREAM [GLS+14b] are two authenticated ciphers closely related to LS-designs.
In fact iSCREAM is essentially a tweaked version of Robin, together with a Tweakable Au-
thenticated Encryption (TAE) mode of operation [LRW02]. Meanwhile SCREAM is similar to
Fantomas, with a different linear layer. The TAE mode of operation requires a tweakable block
cipher [LRW02]. Accordingly, the difference between the block cipher underlying iSCREAM and
Robin stems from the introduction of a 128-bit tweak T into the (previously non-existent) key
schedule.

In the remainder we focus on weaknesses of the block cipher on which iSCREAM is built,
independently of the mode of operation. We may abuse notations and write iSCREAM to mean
its underlying block cipher.

This block cipher can be described as an LS-design, except for the fact that during the key
addition phase, instead of adding in K every round: at odd rounds, K + T is added; while at
even rounds, T ≪c 1 is added, where T ≪c 1 denotes a circular shift of the columns of T
by one column towards the left. The combination of two rounds is called a step. Beside that,
iSCREAM can be described by the following parameters:

24

1.3. Self-Similarity, Commuting Maps and Invariant Subspaces

• The inner state of iSCREAM has 8 rows and 16 columns, resulting in 128-bit blocks and
a 128-bit key.

• The S-box and L-box are those of Robin.

• The number of rounds depends on the required security level. The original article lists
six variants. However the primary recommendation for iSCREAM as per CAESAR re-
quirements is 12 steps (24 rounds) [GLS+14a]. A secondary recommendation claiming
related-key security has 14 steps (28 rounds). Since our attacks are essentially independent
of the number of rounds, we omit other variants.

• At round i (starting from 1), the round constant C(i) is zero outside of the first row, where
it is equal to 27 · i modulo 256 (affecting only the first 8 bits of the row).

1.3 Self-Similarity, Commuting Maps and Invariant Subspaces

We start by recalling the concept of self-similarity, instantiate it with commuting linear maps,
and relate the result to invariant subspaces. We then explain how these properties can be used in
an S-box-independent manner. In that case, we also show that involutive commuting maps imply
the existence of an embedded subcipher, enabling key recovery attacks. These techniques will
later be applied to LS-designs in general and to Robin and iSCREAM in particular (Section 1.4),
then to Zorro (Section 1.7).

1.3.1 Self-Similarity Properties and Linear Commutant

In [BB02] and [BDLF10], self-similarity in general is defined as:

Definition 7 (Self-similarity in a block cipher). For a fixed block cipher E, let EK(x) denote the
ciphertext block resulting from the encryption of plaintext block x under key K. A self-similarity
relation is given by invertible and efficiently computable mappings φ, ψ, θ such that:

∀K,x : θ(EK(x)) = Eψ(K)(φ(x))

What we are interested in is the case where M = φ = ψ = θ is a linear map. This situation
will arise if the cipher follows a generalized Even-Mansour structure where key-independent round
functions Fi alternate with the addition of a fixed key K (i.e. no key schedule); andM commutes
with the round functions Fi. This last condition is very demanding; but this is precisely what
happens in both Robin and Zorro, despite their difference in structure10. The following lemma
sums up the attack.

Lemma 1. Consider a block cipher composed of round functions Fi separated by addition of a
fixed key K. Suppose there exists a linear map M such that M commutes with the Fi’s. Then:

∀x : M(EK(x)) = EM(K)(M(x))

In particular, if K = M(K):

∀x : M(EK(x)) = EK(M(x))

10We expand on why this might be the case in Section 1.9.

25

Chapter 1. Self-Similarity and Invariant Subspace Attacks

In our applications, M will be involutive, so we focus on the case i = 1. In the remainder,
whenever two plaintext blocks (or ciphertext blocks, or inner states, or keys) satisfy x2 = M(x1),
we say that they are related. If a plaintext block (or ciphertext block, or inner state, or key)
is related to itself, we say that it is self-related. A weak key is a self-related key. In short, our
attack states that weak keys map self-related plaintexts to self-related ciphertexts; while related
keys map pairs of related plaintexts to pairs of related ciphertexts.

1.3.2 Invariant Subspace Attacks

Invariant subspace attacks were introduced and applied to PRINTCipher in [LAAZ11]. We
recall the basic principle here.

Consider a n-bit block cipher with round function FK consisting of a key addition and a SP
layer F : Fn2 → Fn2 . That is, FK is defined by FK(x) = F (x + K). Assume the SP-layer F is
such there exists a subspace A ⊆ Fn2 and two constants u, v ∈ Fn2 with the property:

F (u+A) = v +A

Then, given a (round) key K ∈ u − v + A, i.e. K = KA + u − v with KA ∈ A, the following
holds:

FK(v +A) = F (v +A+ u− v) = F (u+A) = v +A

i.e. the round function maps the affine subspace v + A onto itself. If all round keys are in
u − v + A, in particular if identical round keys are used as in LS-designs and Zorro, then this
property is iterative over an arbitrary number of rounds.

In the case where an identical key is added in every round (there is no key schedule), a key
is said to be weak iff it belongs to u − v + A. Whenever a key is weak, plaintexts in v + A are
mapped to ciphertexts in v +A, breaking plaintext confidentiality. The number of weak keys is
the cardinality of A.

In order to detect whether an unknown key is weak, it is enough to encrypt one plaintext in
v +A, and test whether the resulting ciphertext is in the same space. Indeed, over the set of all
keys, false positives will occur with the same frequency as true positives, and can be discarded
with a second chosen plaintext.

The commuting linear mapM from the previous section can be interpreted from the invariant
subspace perspective. Indeed, if we let A = ker(M i + Id) for any i, A is an invariant subspace11.
Of course self-similarity is a stronger property stemming from a stronger requirement on the
cipher.

1.3.3 S-box-Independent Setting

The previous attack can be specialized to the case where the cipher is a substitution-permutation
network (SPN), whose round function Fi consists of an S-box layer with identical S-boxes, a linear
map L, addition of a round constant C(i), and addition of a fixed key K. From the invariant
subspace (resp. self-similarity) perspective, we are interested in subspaces (resp. linear maps)
that traverse (resp. commute with) each of these components.

It is quite apparent that the main roadblock is the nonlinear S-box layer. However even in a
generic setting where we do not take into account a particular choice of S-box, any permutation
of the S-box inputs will commute with the S-box layer (due to S-boxes being identical). We shall

11It may be that a non-trivial commuting matrix leads only to trivial invariant subspaces, as evidenced by the
2× 2 binary matrix with rows [01] and [11]. However if M is involutive, ker(M + Id) is at least half of the space.

26

1.3. Self-Similarity, Commuting Maps and Invariant Subspaces

say that we are in the S-box-independent setting iff the linear map acts as a permutation on
S-box inputs. Note the we were careful in our phrasing to encompass the case where the S-box
layer may be only partial, i.e. S-box inputs do not cover the whole state, in order to account for
Zorro later on. In that case the linear map is required to act as a permutation on S-box inputs,
but is subject to no special requirement on the rest of the state.

In terms of invariant subspaces, this setting corresponds to subspaces containing those vectors
whose coordinates belonging to the same cycle in the permutation are equal; that is, subspaces
that only require S-box inputs to be equal to some other input, or independent. We call such
spaces equality spaces. Note that these are vector subspaces and no longer affine subspaces. Our
strongest attacks actually occur in this setting.

As for constant and key addition, asking that their addition commutes with M amounts to
asking that they belong to ker(M + Id). Now it remains to find permutations that commute
with the linear layer. An efficient algorithm to do so is provided in [LMR15, Appendix G]. The
invariant subspace variant seems more difficult, as we do not know an algorithm able to efficiently
enumerate equality spaces that traverse a linear map.

1.3.4 Embedded Subcipher

By themselves, self-similarity and invariant subspace properties stemming from a commuting
linear map break plaintext confidentiality. In addition, if the commuting map M is involutive
and is S-box-independent as per the previous section (which will be the case in our applications),
efficient key recovery is possible. That is because the cipher embeds a subcipher, which is
nontrivial as long as ker(M + id) is not the full space. Indeed, if M is a permutation, the
projection of the ciphertext on the fixed points of M only depends on the projection of the
plaintext and key on the same space. More generally if M is not a permutation, the role of the
fixed points of M in the previous statement is played by a supplementary space of Im(M + id).

We now formalize and prove the above statement. We want to encompass the case where
the S-box layer is only partial. We ask that the linear map commuting with the round function
present itself as a block matrix, where the first block covers all S-box inputs, and is only allowed
to permute them as before; while the second block is a general bijective linear map with no
further restriction (if the S-box layer is not partial, this second block is simply nonexistent).

Let us then denote S = ker(M + Id) (the self-related space), and define I = Im(M + Id).
Observe that because M is involutive, I is a subspace of S (indeed, (M + Id)(M(x) + x) =
M(M(x) + x) +M(x) + x = M(M(x)) + x = 0). Our claim is the following.

Lemma 2. Consider an SPN whose round function is composed of:

• A potentially partial S-box layer;

• A linear layer L;

• Addition of a fixed key K;

• Addition of rounds constants.

We assume the existence of an involutive linear map M commuting with all of these components.
Furthermore M is a block matrix, where the first block covers all S-box inputs, and only permutes
them; while the second block is a general bijective linear map with no further restriction.

27

Chapter 1. Self-Similarity and Invariant Subspace Attacks

Let S = ker(M + Id) and I = Im(M + Id). We already know that x ∈ S and K ∈ S implies
EK(x) ∈ S. But in addition:

∀K1,K2, x1, x2 ∈ S :
x1 + x2 ∈ I
K1 +K2 ∈ I

}
⇒ EK1(x1) + EK2(x2) ∈ I

Proof. We show that if two self-related inner states s1 and s2 satisfy s1 +s2 ∈ I, this remains
true after every component of the round function:

• S-box layer: let us restrict our attention to the part E of the state affected by S-boxes. We
view E as a subspace of the states, and we group bits corresponding to the same S-box
input together to view E as a space on Fb2, where b is the bit size of an S-box. We know
that M acts as a permutation P on E. Since P is involutive, E can be decomposed into 3
disjoint subspaces E = F +A+B, where F are the fixed points of the permutation, and A
and B are mapped to each other by P . Let Z be the space of vectors whose value is zero
on F in the previous decomposition.

We claim that I = S ∩ Z. Indeed I ⊆ S because P is involutive; and I ⊆ Z because
P (x) + x equals zero on fixed points of P ; so I ⊆ S ∩ Z. Conversely choose x ∈ S ∩ Z;
then let x′ be the projection of x on A (parallel to B + Z); then x = x′ + P (x′). To see
this, use the decomposition along Z + A + B: x and x′ + P (x′) are both zero on Z; they
are equal on A, as x and x′ are equal on A by definition and P (x′) is zero; and finally they
are equal on B because they are equal on the rest and both sides are self-related. Thus we
have shown I ⊇ S ∩ Z; so I = S ∩ Z.
Now observe that if s1 and s2 satisfy s1 + s2 ∈ Z, this remains true after the S-box layer,
since belonging to Z for the sum of two states only means that the columns of these two
states in F are equal. We already know that belonging to S is preserved by the S-box
layer; so in the end s1 + s2 ∈ S ∩Z = I implies that this is still true after the S-box layer.

• Linear layer: assume s1 + s2 ∈ I; then L(s1) + L(s2) ∈ L(I). However L(I) = I, because
L commutes with M + Id, so the property of belonging to the image of M + Id is stable
by L. Indeed, ∀x : x ∈ I ⇔ x = P (y) + y ⇔ L(x) = P (L(y)) + L(y)⇔ L(x) ∈ I.

• Constant addition: this step does not affect the value of s1 + s2.

• Key addition: it is assumed that K1 +K2 ∈ I, so s1 +s2 ∈ I implies (s1 +K1)+(s2 +K2) ∈
I.

As a consequence, provided the key is in S (i.e. weak), and we encrypt self-related plaintexts,
the value of the ciphertext on any supplementary space F of I in S only depends on the value
of the plaintext and key on the same space (we denote this supplementary space by F , as in the
case where M is a permutation on the full state, the fixed points of M is a valid choice). This
allows us to try and guess the value of the key on F independently of the rest of the key, by
encrypting any self-related plaintext.

The number of key bits we are thus allowed to guess independently of the rest is the dimension
of F , which is dim(S) − dim(I) = 2 · dim(S) − n (this number is positive because M is an
involution). Another viewpoint is that the cipher contains an embedded subcipher operating
on F with a dim(F)-bit key: we can project self-related plaintexts, ciphertexts and keys on F
parallel to I and obtain a well-defined new cipher. Note that this embedded subcipher may lend
itself to further attacks; this is a direction we have not investigated, as we believe ciphers are
sufficiently broken at that point.

28

1.4. Invariant Permutation Attack on LS-Designs

1.4 Invariant Permutation Attack on LS-Designs

Notation. In the S-box-independent setting of Section 1.3.3, for an LS-design, a permutation
of S-box inputs is simply a permutation of the columns of the state. Let us write P for such
a permutation. We always denote by the lowercase p its effect on a single row. Thus, P is the
application of p on each row of the state. We identify p with the corresponding c×c permutation
matrix. We adopt notations from Section 1.2.2.

The particular structure of LS-designs means that P commutes with L iff p commutes with
`. This is still a strong requirement, but we expect the L-box of an LS-design to have some
structure in order to provide a good branch number, especially if it is involutive. In the case
of Robin for instance, the linear layer is built from a Reed-Muller code and provides plenty of
structure. Applied to LS-designs, Lemma 1 becomes:

Lemma 3. For an LS-design, assume there exists a permutation P with the following properties:

• P commutes with L.

• P (C(i)) = C(i) for all round indices i.

Then for any plaintext message m:

EncP (K)(P (m)) = P (EncK(m))

In particular, if K = P (K):
EncK(P (m)) = P (EncK(m))

Note that the identity permutation trivially satisfies the above requirements. Hereafter we
always assume P is non-trivial. If ncycles(p) is the number of cycles of p, weak keys form a
proportion 2−r·(c−ncycles(p)) of all keys (namely, those keys whose columns are equal on each cycle
of p).

Key Recovery

The previous attack breaks plaintext confidentiality. In addition, when P is involutive, efficient
key recovery is possible, as shown in Section 1.3.4. We propose a simpler statement and proof
below, dedicated to LS-designs.

Lemma 4. Consider an LS-design, and assume there exists a permutation P with the same
requirements as in Lemma 3. Also assume that P is an involution. Consider a weak key K =
P (K). Denote by F the set of fixed points of P .

Take any self-related plaintext m = P (m). Then the value of the ciphertext EncK(m) on the
columns in F only depends on the value of m and K on the same columns.

Proof. Since P is an involution, all of its cycles have length 1 or 2. Hence we can partition the
columns of the state into three subsets F , A, B, such that P is the identity on F , and maps A
and B into each other. Take any self-related message m that is zero on F . Then the linear layer
maps m to a self-related state L(m) that is also zero on F . To see this, write m = mA + mB,
where mA is equal to m on A, and zero elsewhere, and likewise mB is equal to m on B and zero
elsewhere. Then P (mA) = mB, hence P (L(mA)) = L(mB) by commutativity of P and L. Since
P is the identity on F , this implies that L(mA) + L(mB) is zero on F , so L(m) is zero on F .

Thus, if m = P (m) is zero on F , so is L(m). By linearity, this implies that if m1 and m2

are self-related and equal on F , then so are L(m1) and L(m2). Thus, the property that two

29

Chapter 1. Self-Similarity and Invariant Subspace Attacks

self-related states are equal on F goes through the linear layer. This property automatically
goes through the S-box layer since it is column-wise. Since the same key and round constants
are added to both sides, they have no impact. Hence this property goes through the whole
cipher.

For clarity, we emphasize that this is only a special case of Section 1.3.4.

Permutation Characteristic

Instead of considering only permutations P commuting with L, we can naturally look for pairs
of permutations (P,Q) such that L ·P = Q ·L. We denote this by P → Q, representing the fact
that if two inner states are related by P before the linear layer, then after the linear layer they
are related by Q.

From there we can hope to build a form of characteristic P0 → P1 → P2 → P3 → . . .
The commutative case in the previous section corresponds to P → P . Note that the set of
permutations P such that Q = L · P · L−1 is a permutation forms a group. Also note that if L
is involutive, P → Q is equivalent to Q → P : indeed L · P = Q · L implies P−1 · L = L · Q−1,
implies L ·Q = P · L: hence any transition P → Q yields an iterative characteristic of length at
most 2.

A particularly interesting case occurs whenever P → Pα for some α 6= 0. Indeed, in that case
we automatically have a cyclic characteristic P → Pα → Pα

2 → · · · → Pα
i

= P . Moreover the
attack from Lemma 3 goes through with exactly the same requirements on the key and round
constants (namely they are self-related by P).

Application to Robin

Applying our attack to Robin amounts to finding a permutation p commuting with the matrix
` in Fig. 1.1, such that P leaves all round constants C(i) invariant. More generally, as pointed
out just above, we can actually look at transitions P → Q, i.e. permutations p, q such that
` ·p = q · `. It turns out there are 720 such transitions, and all of them are of the form P → P−1.
Moreover 76 of these permutations are involutive, and hence commute with L.

Recall that the round constants of Robin are defined as C(i) = `(i) on the first row, and
zero on the others, for 1 ≤ i ≤ t. Hence we want p(`(i)) = `(i), which amounts to p(i) = i
by commutativity. Since i ranges from 1 to 16, what we are looking for is simply permutations
leaving the first 5 columns fixed. It turns out there exists exactly one such permutation, namely
the involutive permutation P0 switching columns 8, 9, 10, 11 respectively with columns 12, 13,
14, 15. Looking at Fig. 1.1, one can indeed see that permuting the rows and columns of the
matrix of ` by p0 leaves the matrix invariant, which is the same as saying p0 commutes with `.

With P0, weak keys are simply keys whose last four columns are equal to the previous four.
In particular the proportion of weak keys is 2−32. Furthermore P0 leaves the first 8 columns
fixed, so Lemma 4 shows that for self-related plaintexts, the first 8 columns of ciphertexts only
depend on the first 8 columns of plaintext and key. This makes it possible to guess the value of
the master key on the first 8 columns independently of the rest of the key. This means 64 bits
of the key can be guessed separately; then the remaining 64 bits are symmetric through P0, so
only 32 bits remain to be guessed. Thus the full key can be recovered in time complexity 264

by encrypting any self-related message. This may yield a few solutions, which can be checked
against any other plaintext/ciphertext pair.

Beside P0, two other permutations P1 and P2 commuting with L leave the round constants
invariant up to the very last round (cf. Table 1.1). This means related plaintexts are mapped

30

1.4. Invariant Permutation Attack on LS-Designs

Table 1.1: Permutations p0, p1 and p2. Fixed points are omitted.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p0 12 13 14 15 8 9 10 11
p1 8 9 10 15 4 5 6 7
p2 12 13 14 11 7 4 5 6

to related inner states after 15 encryption rounds; followed by the final constant addition, S-box
layer, L-box layer, and key addition. The final linear layer can be reversed, and the resulting
states will agree on pairs of columns transposed by P on which C(16) is equal. In both cases,
there is one such pair, so self-related keys with respect to P1 and P2 can still be detected easily
by encrypting a few self-related plaintexts, reversing the last linear layer, and checking that these
two columns agree.

Permutations P1 and P2 both leave 8 columns fixed and hence yield an attack with essentially
the same properties as P0. Actually some key bits can be recovered faster than with P0 thanks
to the one-round differential at the end, but this involves the symmetric part of the key (that is,
outside the fixed points of the permutation) and thus the overall key recovery time is still 264.

Application to iSCREAM

Recall that iSCREAM and Robin share the same linear layer. Round constants only affect the
first eight columns of the state, and so we are looking for permutations commuting with L and
leaving the first eight columns unchanged. As a matter of fact, there exists exactly one such
permutation, namely the same permutation P0 as above, which switches the last four columns
of the state with the previous four.

Another difference between Robin and iSCREAM is the number of rounds, but that is actually
irrelevant for our attack. The last difference is the presence of a tweak in the key schedule. Recall
that at odd rounds, T +K is added, while at even rounds, T ≪c 1 is added, where T is a 128-bit
tweak. In a chosen-tweak scenario, we can simply set T to zero, or any other value such that
T and T ≪c 1 are invariant by P . Then the attack against Robin from the previous section
applies to iSCREAM essentially unchanged, with the same consequences.

A small variant of our attack is also possible when using P0 as the commuting permutation.
What we truly want is that K + T and T ≪c 1 should be self-related. This amounts to asking
that columns 8, 9, 10, 11 should be equal to columns 12, 13, 14, 15. Since T ≪c 1 is a column-
wise shift of T by one column towards the left, this means that columns 9, 10, 11, 12 of T should
be equal to columns 13, 14, 15, 0. Note that there is no condition on column 8 of T . As a
consequence, for K + T to be self-related for some choice of T , it is enough to ask that columns
9, 10, 11 of K should be equal to columns 13, 14, 15. Indeed in that case, we can fix T to be
all-zero, except for column 8 which can take any value: exactly one such choice of T will satisfy
that K+T is self-related. Thus we obtain a larger set of weak keys (with ratio 2−24), at the cost
of requiring 28 chosen-tweak messages in order to detect whether a fixed unknown key is weak.

In addition, some variants of iSCREAM claim related-key security. If two keys are related by
P0, then our attack applies immediately without any weak key requirement, following the first
consequence of Lemma 3. That is, related plaintexts are mapped by the related keys to related
ciphertexts. Thus it is easy to check whether a pair of keys is related, and the cipher is broken
in a strong sense.

31

Chapter 1. Self-Similarity and Invariant Subspace Attacks

Generalizations of the Permutation Attack

There appears to be a few simple ways in which our attack could be generalized. We discuss
them briefly here.

We could consider a probabilistic version of the attack. Instead of requiring L · P = P · L,
we could consider P ’s such that the kernel of L · P − P · L is almost the full space. In the case
of Robin or iSCREAM, this would incur a cost at least 2−8 per round.

Another natural extension is to consider cases where all round constants are P -invariant
except for the last few rounds (or first few rounds). Then our attack goes through most of the
encryption process, and eventually yields a differential attack on the remaining rounds. When
encrypting self-related plaintexts, this differential attack turns into an inner differential.

1.5 Invariant Equality Space Attack

In this section we study invariant subspaces for LS-designs following the S-box-independent
setting of Section 1.3.3. We begin by defining equality spaces, and then present our results on
Robin and iSCREAM. On the way, we will relate it to the commuting permutations from the
previous section.

1.5.1 Equality Spaces

As always, we use notations from Section 1.2.2. We always view n-bit vectors as an r× c matrix.
In Section 1.3.3, we defined equality spaces in general terms for an SPN; we now provide a more
specific definition suited to LS-designs.

Definition 8. A subspace E of {0, 1}c is an equality space iff there exists a partition of {0, . . . , c−
1} such that E is the set of vectors whose values on coordinates belonging to the same class in
the partition are equal.

The dimension of E is the number of classes of the partition. By Er we denote the set of
n-bit states whose columns belonging to the same class in the partition underlying E are equal.
Equivalently, this means that every row of the state belongs to E, hence the notation Er. By
extension we also call Er an equality space. The point of this definition is that equality spaces
are preserved by the S-box layer. The question is to determine which equality spaces are also
preserved by the linear layer. That is, we are looking for equality spaces E ⊂ {0, 1}c such that
`(E) = E.

As pointed out in Section 1.3.1, when a permutation P commutes with L, the equality
space defined by the cycles of P is preserved by the linear layer. The idea is that equality spaces
preserved by the linear layer do not necessarily stem from a commuting permutation. Conversely,
commuting permutations are an interesting special case, since they lead to a stronger property:
indeed, when considering equality spaces rather than permutations, we are looking at a property
of a single state, and there is no equivalent to the property that distinct related plaintexts are
mapped to related ciphertexts; there is also no equivalent to Lemma 4. Meanwhile, Lemma 3
becomes:

Lemma 5. For an LS-design, assume there exists an equality space E such that:

• `(E) = E.

• C(i) ∈ Er for all round indexes i.

32

1.5. Invariant Equality Space Attack

Then for any key K and plaintext message m:

If K ∈ Er and m ∈ Er then EncK(m) ∈ Er

The lemma trivially holds if E is the full space {0, 1}c; hereafter we assume this is not the
case. Then we have an attack in the weak key setting, where weak keys are keys in Er. Hence
the proportion of weak keys is 2−r·(c−dim(E)).

1.5.2 Variants of the Attack

Essentially the same extensions as in Section 1.4 apply to equality spaces.
Characteristics: if the image F = L(E) of an equality space E is also an equality space,

we write E → F . As with permutations, we can aim to build a characteristic E0 → E1 → . . .
over several rounds. Note that the set of equality spaces is closed under intersection, and as
a direct consequence, the set of equality spaces E such that L(E) is an equality space is also
closed under intersection. If L is involutive, E → F is equivalent to F → E, so characteristics
are automatically cyclic.

Probabilistic attack: Instead of asking F = L(E), we can require the dimension of the
quotient space F/L(E) to be small.

Differential ending: If all round constants are in the required equality spaces except for
the last few (or first few) rounds, it may be possible to cover the remaining rounds with an inner
differential characteristic. Indeed in the case E → E, the equality space attack may be seen as
an all-zero inner differential attack.

Differential attack: the entire attack itself may be transposed into the differential world, at
the expense of becoming probabilistic. Consider a state difference living in Er with L(E) = E.
Then at each round, require that the S-box layer preserves this equality; that is, the output
of some S-boxes which receive equal input, should remain equal. Note that if E stems from
an involutive permutation commuting with L, the columns corresponding to fixed points of the
permutation can be set to a zero difference: this will be preserved by the linear layer (cf. the
proof of Lemma 4). This attack avoids key and round constant requirements, at the cost of much
lower probability, and hence high data requirements. In practice this would lead to a weaker
attack against Robin than truncated differential product trails in the original article [GLSV14],
because the branch number is 8 and the non-fixed points of P0 involve 8 S-boxes.

1.5.3 Application to Robin and iSCREAM

Since Robin and iSCREAM share the same linear layer L, we consider them together. We
enumerated all equality spaces E such that L(E) is an equality space (there are around 233

partitions of 16 elements, so this is feasible), and analyzed the results.
Our first observation is that there are many more well-behaved equality spaces E (in the

sense that L(E) is also an equality space), than well-behaved permutations P (in the sense that
Q = L · P · L−1 is also a permutation). Namely, there are 720 well-behaved permutations for L,
while there are 30162 well-behaved spaces of dimension 8 or more. Even if we remove from this
list spaces that are an intersection of larger well-behaved spaces (and thus could have a chance
of indirectly resulting from well-behaved permutations), 7746 well-behaved spaces remain.

Recall that L is involutive, so any transition E → F (i.e. L(E) = F with E and F two
equality spaces) yields a cyclic characteristic E → F → E. Hence all well-behaved spaces belong
to cycles of length 1 or 2. The aforementioned 7746 intersection-reduced well-behaved spaces of
dimension at least 8 form 2506 cycles of length 1 (that is, E → E) and 2620 cycles of length 2

33

Chapter 1. Self-Similarity and Invariant Subspace Attacks

(that is E → F → E). Thus equality spaces offer considerably more potential attacks, depending
on round constants.

However, all equality spaces compatible with actual round constants for Robin minus the last
round, and hence directly usable in an attack, stem from commuting permutations. There exist
four such spaces: three of them correspond to permutations P0, P1 and P2 from Table 1.1, and
the last one is a space of dimension 8 resulting from the composition of any two of the previous
permutations (any combination yields the same permutation or its inverse). As for iSCREAM,
the only well-behaved space compatible with round constants is the one resulting from P0. Thus,
our previous attack is not improved. Moreover, the largest well-behaved spaces have dimension
12 and all stem from involutive permutations (there are 15 of them). The largest well-behaved
equality spaces not stemming from a well-behaved permutation have dimension 10. This may be
interpreted to mean that the strongest phenomenon is due to commuting permutations.

Thus for both Robin and iSCREAM, the equality space induced by P0 is the only equality
space that goes through the whole cipher, including the last round. This space has dimension
96 over F2.

1.5.4 A note on Fantomas and SCREAM

The matrix L of Fantomas is a permutation of the lines and columns of the matrix of Robin. As a
consequence, they have the same number of well-behaved permutations and spaces. However we
found no cycle among well-behaved spaces of Fantomas of dimension 6 or more (lower dimensions
would yield very weak attacks); and no characteristic of length more than 2. Hence Fantomas
seems safe from this attack.

The same is true for SCREAM. However, it is worth noting that there exists no well-behaved
permutation for the matrix of SCREAM, while we found 5404 well-behaved spaces of dimension
8 or more.

1.6 A Second Invariant Subspace Attack on LS-Designs

In this section we present a different invariant subspace attack on LS-designs, which may be
regarded as a form of dual of the previous attack. This attack does not stem from an underlying
permutation; nor does it have an equivalent for Zorro. Thus, this section is specific to LS-designs,
and takes advantage of their particular structure: namely, the fact that LS-designs not only rely
on a layer of identical S-boxes, but also on a layer of identical L-boxes.

Due to the S-box-indenpendent setting, the invariant space we have uncovered is automati-
cally preserved by the S-box layer. It is natural to ask if, conversely, something similar can be
done with the L-box layer. That is, we are now going to look for subspaces that are automatically
preserved by the L-box layer.

This gives us more freedom, since we can leverage linearity. Essentially, if all columns of the
state live in the same linear subspace, this will remain true after the linear layer (in [LMR15,
Appendix D], we show that this is in fact the most general property generically preserved by
the linear layer); whereas in the previous case, we were limited to equality spaces. Beside this
difference, the attack is essentially a dual version of the previous one, reversing the roles of the
L-box and S-box layers.

34

1.6. A Second Invariant Subspace Attack on LS-Designs

1.6.1 Description of the Attack

In the previous attack, we searched for equality spaces E ⊂ {0, 1}c on the rows of the state such
that `(E) = E. Instead, we are now interested in general linear subspaces A ⊂ {0, 1}r on the
columns of the state such that s(A) = A. Once again, if A is a linear space on the columns (or
one of its cosets), we denote by Ac the set of states whose columns all belong to A.

The core of the attack is the following: assume s(A) = A for some linear space A. If the
inner state lies in Ac, this will remain true after the S-box layer. Moreover, this property is
automatically preserved by the linear layer. Indeed, the linear layer of an LS-design is not truly
“line-wise”: precisely because the same linear map is applied to each row, the linear layer may be
seen as directly adding together column vectors. From this point of view, it becomes clear that
if all columns lie in the same linear space A, this remains true after the linear layer.

Thus we are still within the invariant subspace framework, and follow the corresponding
strategy: we choose A such that all round constants belong to Ac, and we consider a weak key
scenario by requiring that the key also lie in Ac. If these requirements are fulfilled, plaintexts in
Ac are mapped to ciphertexts in Ac.

More generally, we can consider cosets of linear spaces (i.e. affine spaces) rather than just
linear spaces: indeed, as long as each coordinate at the output of ` is the sum of an odd number
of coordinates at the input, the linear layer still preserves the property that all columns belong
to a fixed coset. The following lemma sums up the attack.

Lemma 6. Let u, v, w be r-bit vectors, and A be a linear subspace of r-bit vectors. Assume the
following conditions hold:

• The S-box s maps all vectors in u+A to vectors in v +A.

• Either v = 0 or all rows of the matrix of ` have an odd number of 1’s.

• The columns of all round constants are in w +A.

• The columns of the key are in (u+ v + w) +A.

Then any plaintext in (u+w) +A is encrypted into a ciphertext in (u+w) +A (and conversely).

Weak keys are keys in (u + v + w) + E. This means a proportion 2−c·(r−dim(A)) of keys is
weak.

1.6.2 Application to Robin and iSCREAM

In the case of Robin, the second condition in Lemma 6 is automatically true. In order to satisfy
the third condition (round constants), since round constants only affect the first row of the state,
we require that the r-bit vector denoted by 1, with 1 on the first row and 0 elsewhere, belongs
to E. To instantiate the attack, it remains to look for affine spaces whose direction contains the
vector 1, that are mapped by the S-box to affine spaces with the same direction.

It turns out the largest such spaces have dimension 3, and are mapped into themselves. We
list all six choices in Table 1.2. Since these spaces have dimension 3, and the state has 8 rows and
16 columns, a proportion 2−16·5 = 2−80 of keys are weak. This means our attack is considerably
weaker than the first one against Robin. By comparison, a generic multi-target time-memory
trade-off with 248 memory would lead to key recovery for the same proportion of keys. Of course
our attack requires no memory or table lookup.

35

Chapter 1. Self-Similarity and Invariant Subspace Attacks

Table 1.2: Six affine spaces of dimension 3 invariant through s.
Values in A Dir(A)

00 01 26 27 84 85 a2 a3 01 26 84
18 19 7c 7d 9e 9f fa fb 01 64 86
28 29 32 33 8a 8b 90 91 01 1a a2
3c 3d 5e 5f b2 b3 d0 d1 01 62 8e
44 45 66 67 c8 c9 ea eb 01 22 8c
4e 4f 54 55 6c 6d 76 77 01 1a 22

We now turn to iSCREAM. Recall that its S-box is the same as that of Robin, and round
constants still only affect the first row of the state. We want both K + T and T to live in the
same coset, so we require T to lie in (u+ v + w +A)c, and K to lie in Ac. In our actual attack
we have u = v and w = 0 so in the end, we can set the tweak to zero (or any value in Ac), and
the attack goes through with the same parameters as before.

1.6.3 Taking Advantage of the iSCREAM Tweak Schedule

In the case of iSCREAM, it is possible to leverage the tweak schedule to create a trade-off between
the ratio of weak keys and the number of chosen-tweak messages required to detect a weak key.
To simplify notations, we explain this technique using vector spaces; it extends to their cosets
in a straightforward manner. Assume we have two vector spaces A and B with S(A) = B. As
before, we assume 1 ∈ A and 1 ∈ B so that round constants belong to Ac and Bc. Since S is
involutive, we have S(B) = A, so A→ B → A is a characteristic for the the S-box.

In order for this characteristic to traverse encryption, we needK+T ∈ Ac, and T ≪c 1 ∈ Bc,
which is equivalent to T ∈ Bc. For this it is enough to ask K ∈ Ac + Bc = (A + B)c. Indeed
in that case, write K = KA + KB with KA ∈ Ac and KB ∈ Bc. Then for T = KB, we have
K + T ∈ Ac and T ∈ Bc, which is precisely what we want. Of course the key is unknown
to the attacker, so she cannot compute T in this way. Instead, she can try every value in the
supplementary space of Ac in (A + B)c (which is smaller than Bc, if only because 1 ∈ A ∩ B).
For exactly one such value of the tweak, every plaintext in Ac will be encrypted to a ciphertext
in Bc.

Now the question is to find two spaces A and B as above. Actually we look for cosets of
linear spaces with the same properties, since the linear layer of iSCREAM also preserves these
cosets. In summary, we look for affine spaces u+A 6= v+B such that S(u+A) = v+B, and 1
belongs to A ∩B.

It turns out the largest such spaces have dimension 3. There are 11 such spaces (counting
only 1 for u + A → v + B and v + B → u + A), listed in Appendix 2. Furthermore, 8 of these
spaces satisfy dim(A + B) = 5, which is the maximal possible value since 1 belongs to A ∩ B.
Thus K ∈ (A+B)c yields a ratio of weak keys of 2−c·(r−dim(A+B)) = 2−48.

In order to detect whether a key is weak, one needs to encrypt a message for each tweak in
the supplementary of Ac in (A+B)c, which is of dimension 2 ·c, hence 232 chosen-tweak messages
are required (for a random key and a given choice of the tweak, a false positive has probability
only 2−80, and can be discarded by one additionnal chosen-tweak message). Finally, once a weak
key is detected in this way, we know K + T ∈ Ac for one specific T , hence K = T +Ac, so only
2c·dim(A) = 248 possibilities remain for the value of the key.

36

1.7. Commuting Permutation and Invariant Subspace for Zorro

1.6.4 Variants of the Attack

It seems natural to consider a probabilistic version of the attack, where instead of requiring that
every vector in u + A be mapped by the S-box to a vector in v + A, we only require most of
them to comply. If only x elements in u+A are not mapped to v+A, the probability to pass an
S-box is 1− x/2r. The cost for each round is then (1− x/2r)c. In the case of Robin, there is no
A of dimension 4 with x < 3, so there does not appear to be an obvious interesting probabilistic
version of the attack.

1.7 Commuting Permutation and Invariant Subspace for Zorro

1.7.1 Description of Zorro

The block cipher Zorro was introduced at CHES 2013 [GGNPS13]. Like LS-designs, the design
goal is to offer a cipher that can efficiently be made resistant to side-channel attacks through
masking [PR13]. This is achieved by two main techniques: first, a carefully constructed 8-bit
S-box; and second, an AES-like structure where S-boxes are only applied on the first row of the
state.

The 128-bit state is represented as a 4 × 4 array of 8-bit cells. The round function applies
the following transformations:

• SubBytes: A fixed 8-bit S-box is applied to the first row of the state.

• AddConstant: At round i, the constants i, i, i and i << 3 are added to the four cells of
the first row (from left to right).

• ShiftRow: This step is identical to AES. Row i, counting from zero, is shifted by i cells to
the left.

• MixColumns: This step is again identical to AES. A fixed 4× 4 circulant matrix on F28 is
applied to each column of the state. The matrix is the same as that of AES.

Four consecutive rounds are called a step. After each step, the 128-bit master key is simply
added to the inner state: there is no key schedule. Encryption consists in key addition, followed
by 6 steps (24 rounds), each followed by key addition.

1.7.2 Prior Cryptanalyses

Many attacks have been carried out against Zorro, mostly differential or linear in nature [GNPW13,
WWGY14, RASA14, BODD+, Sol14]. The best attack in [BODD+] is a differential attack re-
quiring 241 data and time complexity 245 to break the full cipher. Our attack is of a different
nature: it holds in the weak key setting (with 296 weak keys out of 2128), requires minimal data
and time, and is independent of the number of rounds. In [LMR15, Appendix F], we show that
our attack can be readily extended to Zorro-like ciphers, similar to [BODD+]. Nevertheless the
point of our work on Zorro is mainly to show another application of the main attack, beside
LS-designs (for which there was no priori cryptanalysis).

1.7.3 Self-Similarity and Invariant Subspace

We are interested in an S-box-independent commuting linear map, as in Section 1.3.1. To
simplify, we focus on a single round: commuting with every round is a sufficient condition to

37

Chapter 1. Self-Similarity and Invariant Subspace Attacks

commute with every step. Thus we are looking for a linear map M acting as a permutation on
the S-boxes, and commuting with the linear layer.

Since there are only four S-boxes, there are only 24 choices for the permutation. In fact,
because the constant added to the fourth S-box is different from the others, we impose that this
S-box should remain fixed by the permutation, leaving only 6 possibilities. In this way, our linear
map will automatically commute with both the S-box and constant addition layers.

For each of the 6 permutation choices on the first 3 S-boxes, the set of linear maps behaving
as this particular permutation on the first 4 cells, and independently on the other cells, is itself a
vector space. Furthermore the commutant of the linear layer is naturally a vector space. Thus,
it suffices to intersect these two spaces to find a solution, if it exists.

It turns out there exists exactly one solution, for the permutation swapping the first and
third S-boxes, and leaving the other two fixed. This solution is given in Appendix 3, together
with the resulting invariant subspace. This subspace has dimension 12 over F28 , that is, 96 over
F2. Hence the proportion of weak keys is 2−32.

In [LMR15, Appendix F], we show how to enumerate all invariant subspaces for Zorro, and
deduce that the previous space is in fact the only invariant subspace (in the S-box-independent
setting). The strategy used to enumerate spaces extends naturally to any SPN with a partial
S-box layer of only a few S-boxes per round.

1.7.4 Key Recovery

Since the commuting map we have uncovered is involutive, the key recovery strategy from Sec-
tion 1.3.4 applies to Zorro.

As a consequence, once a key is recognized as weak, 64 bits of the key can be guessed
independently of the rest using one chosen plaintext (any self-related plaintext). Indeed, the
part of the key in I only influences the part of the ciphertext in I. After these 64 bits have been
recovered by brute force, only 32 bits remain to be guessed, due to the key being weak. Thus
key recovery requires only one chosen plaintext and a time complexity of 264 offline encryptions.

1.8 A Generic Algorithm to Detect Invariant Subspaces

In this section we present our algorithmic approach to detect invariant subspaces in a generic
manner, followed by experimental results.

1.8.1 A Generic Algorithm

In this section we present a simple and entirely generic probabilistic algorithm able to discover
invariant subspaces for a given round function. The algorithm gives instant results for vector
subspaces, and is able to discover affine subspaces in time proportional to their density. Despite
its simplicity, this algorithm is enough to automatically discover all invariant subspace attacks
elaborated upon in the previous sections.

The algorithm will identify minimal invariant subspaces and thereby identify invariant sub-
space attacks automatically. However, further analysis usually allows to significantly improve
upon the attacks recovered automatically by the algorithm and gain further insights in the struc-
ture of the detected weakness. Furthermore, as the expected running time is determined by the
density of invariant subspaces, it might well be that not all possible attacks are detected. Thus,
for the moment, this generic algorithm cannot be used to fully exclude the existence of invariant
subspaces.

38

1.8. A Generic Algorithm to Detect Invariant Subspaces

Identifying Minimal Subspaces

Assume we are given a permutation F : Fn2 → Fn2 . Here F could be a (keyless) round of a
block cipher or a cryptographic permutation (like Keccak-f). Our goal is to find affine subspaces
u+A ⊂ Fn2 such that:

F (u+A) = v +A

for some v ∈ Fn2 .
Our algorithm is based on the following trivial observation.

Lemma 7. Assume u + A is an affine subspace such that F (u + A) is also an affine subspace
v +A. Then for any subset X ⊆ A, the linear span of (F (u+X)− v) ∪X is contained in A.

The idea is to first guess one possible offset u′ of the affine space to be found and use
v′ = F (u′). Next, we guess a one-dimensional subspace of A, denote this by A0. The algorithm
will succeed if and only if u′ +A0 is contained in u+A.

1. We compute Ai+1 from Ai as:

Ai+1 = span{(F (u′ +Ai)− v′) ∪Ai}

2. If the dimension of Ai+1 equals the dimension of Ai, we found an invariant subspace and
exit.

3. If not, we continue with step 1.

Thus, the idea is to start with what we denote nucleon of A and map it using F until it stabilizes.
In the case that our initial guess was wrong and u′ + A0 is not contained in some non-trivial
invariant subspace we will end up with the full space after at most n iterations of the above.

Note that it is not necessary to really map the complete spaces Ai using F but a randomly
chosen subset of relatively small size is enough for our purpose and significantly speeds up the
process.

If the largest invariant subspace of F has dimension d, the algorithm will detect this space
(or any invariant subspaces of this space) after an expected number of 22(n−d) guesses for A0 and
u′. Thus, in this basic form, the algorithm becomes quickly impractical. However, in the case
of round functions of a cipher (or a cryptographic permutation) that differ by round constants
only, its running time can be greatly improved as described next.

Knowing the Nucleon

For block ciphers with identical round keys or cryptographic permutations, we actually have a
very good idea about the nucleon we want to be included in the space A, namely the round
constants. More precisely, we consider round functions Fi : Fn2 → Fn2 that differ only by the
addition of constants, i.e.

Fi(x) = F (x) + ci

for ci ∈ Fn2 , where for simplicity we assume c0 = 0. We are looking for affine subspaces u + A
that are mapped to v +A by all round functions. In particular

F0(u+A) = F (u+A) = v +A

39

Chapter 1. Self-Similarity and Invariant Subspace Attacks

and
Fi(u+A) = F (u+A) + ci = v +A

which implies
v +A = ci + v +A

and thus ci ∈ A. Thus, given the situation as above, any subspace that is invariant under all
round functions must necessarily contain the linear span of all round constants ci.

For the algorithm outlined above this has significant consequences. Here, the only thing we
have to guess is the offset. Therefore, the expected number of iterations of the algorithm is
reduced from 22(n−d) to 2n−d.

Moreover, after running the algorithm for m iterations with randomly chosen guesses for the
offset, the probability that an invariant subspace of dimension d is not detected by the approach
is given by

pm,n,d :=
(

1− 2n−d
)m

which can be approximated by
log pm,n,d ≈ −m2d−n.

The Algorithm

Algorithm 1: Closure
Input: function F , nucleon A, offset u.
Output: a non-trivial invariant subspace, if one exists.
v ← F (u)
StableCount← 0
while StableCount < N do

Pick a random x
$←− u+ span{A}

if F (x)− v ∈ span{A} then
StableCount = StableCount + 1

else
Add F (x)− v to A
StableCount← 0

Return u+ span{A}

For offset u and nucleon A, the above procedure outputs the smallest affine subspace contain-
ing u+ span{A}, that is mapped to a coset of the same space by F (with high probability). The
algorithm depends on a global parameter N that controls the risk of error. Namely, when the
algorithm exits, elements of u + span{A} are mapped to v + span{A} with probability greater
than 1− 2−N . This probabilistic result is enough for an invariant subspace attack to go through
even for moderate choices of N .

Guessing the Offset

If we are actually looking for stable vector spaces rather than affine spaces, as will be the case in
the S-box independent setting described in Section 1.3.3, guessing the offset is not needed: we
can choose zero as the offset. Then the algorithm above finds the smallest invariant subspace
instantly.

40

1.8. A Generic Algorithm to Detect Invariant Subspaces

Table 1.3: Experimental Results: Here n is the block size and d0.001 is the smallest dimension of
an invariant subspace that has a probability to exist upper bounded by 0.001

Primitive n Dimension found d0.001 Running Time (h)
LED 64 - 34 24

Noekeon [DPAR00] 128 - 98 40
Fantomas 128 - 98 40

Robin 128 96 - 22
iSCREAM 128 96 - 22

Zorro 128 96 - <1

In the general case where we are looking for any (affine) invariant subspace, we need to guess
one offset u belonging to the affine space we are searching for. Then we can run the procedure
above to find the generated invariant subspace, if it exists (otherwise, the algorithm will simply
output the full space). If the space we are looking for has dimension d, guessing such an offset
u by brute force will require 2n−d tries on average. Of course we just require one invariant
subspace; so in general 2n−d can be replaced by the density of vectors belonging to (non-trivial)
invariant subspaces.

Each iteration of the algorithm requires Gaussian reduction to determine whether a certain
n-bit vector belongs to some subspace, amounting to n2 operations. Hence the overall running
time to find an invariant subspace of dimension d is roughly n2 ·2n−d. Thus if n is large, the above
approach will only work if n − d is relatively small, or more generally the density of invariant
subspaces is large. The case where n is small is also useful in order to find invariant subspaces
through a single S-box: this is how we found spaces in Appendix 2 (after making the algorithm
deterministic and exhaustive, which is affordable for small n).

1.8.2 Applications

We applied the algorithm to the block ciphers Zorro, Robin, Fantomas, LED and Noekeon, as
well as to the CAESAR candidate iSCREAM. We chose N = 50 to be very conservative. We
ran the algorithm with approximately 234 iterations for each primitive, stopping earlier in the
case where an invariant subspace was detected. The results are summarized in Table 1.3.

For LED, Noekeon and Fantomas, no invariant subspaces were detected given our limited
iterations. In that case, Table 1.3 indicates the dimension d0.001 of the largest invariant subspace
that has a probability to exist upper bounded by 0.001. More precisely, if x denotes the codi-
mension of the largest invariant subspace, each random guess of an offset has probability 2−x of
falling into this subspace. After T tries, the probability of not having found the subspace is thus
(1− 2−x)T ≈ e−T2−x . We want this probability to be 1/1000 within T = 232 tries, which yields
x = 32 − log(ln(1000)) ≈ 30, so d0.001 ≈ n − 30. Thus it is unlikely that invariant subspaces of
dimension above 98 exist for Noekeon. However, the existence of smaller subspaces cannot be
excluded with high probability by our results.

For Zorro, Robin and the CAESAR candidate iSCREAM the largest invariant subspace has
dimension 96 out of 128, i.e. density 2−32. Thus the time complexity is expected to be 232

Gaussian eliminations on 128 × 128 binary matrices. Our experiments confirm this estimation.
Discovering the invariant subspace took 22 hours on a single desktop PC equipped with an Intel
Xeon Core i7 with 12 virtual cores used in parallel. The invariant subspaces discovered by the
algorithm are exactly those that were uncovered by the analysis of the previous sections (in

41

Chapter 1. Self-Similarity and Invariant Subspace Attacks

particular they all stem from a commuting linear map).
In the case of Zorro, we chose to use a single round as target function, rather than the four

rounds separating key addition. It turns out many cosets of the invariant subspace in Appendix 3
are sent to another coset by a single round (namely, all cosets stemming with offsets where cells 0
and 3 are equal). Our generic approach discovers this fact and the associated subspace instantly,
hence the “< 1” time in the previous table.

1.9 Discussion

In this chapter, we have presented a unified cryptanalysis of several ciphers based on invariant
properties traversing the cipher under certain conditions, while providing generic tools for this
type of attack. Our attacks are able to break lightweight ciphers Robin, iSCREAM and Zorro
in a practical setting.

Our attacks from sections 1.5 and 1.6 are quite similar in principle. The state of an LS-design
is a rectangular array. A fixed line-wise operation is performed in each direction. Each attack
looks for properties of the inner state that would be structurally preserved in one direction (in
the sense that this does not depend on the specificities of the S-box or linear layer), that would
happen to also be preserved in the other (this time due to the particular choices of S or L).

In the case where the generic direction is linear, any linear space is preserved, and under
some conditions any coset; if it is nonlinear, only equality spaces are preserved. In [LMR15,
Appendix C and D], we prove that these are in fact the most general properties structurally
preserved in each direction, so our attacks fully realize the program outlined in the previous
paragraph. It remains an open question whether a similar attack could in some way combine
information from both directions; that is, neither direction would preserve the invariant property
in a fully generic way.

Concerning our first attack on LS-designs from sections 1.4 and 1.5 (encompassing both
invariant permutations and invariant equality spaces), the structure of the linear map is a key
component. It seems unlikely that the attack could succeed in cases where the linear layer is not
involutive. Indeed, as shown by the matrices of SCREAM and Fantomas, even in the presence
of a large number of well-behaved equality spaces, it appears that iterative characteristics do
not occur by accident. By contrast, if the linear layer is involutive, any well-behaved equality
space (or permutation) yields a cyclic characteristic of length at most 2; and indeed, in the case
of Robin and iSCREAM, thousands of iterative characteristics exist. Of course, the matrix of
Robin and iSCREAM has much more structure than a generic involutive matrix.

It is quite striking that exactly the same attacks exist on Zorro, despite its quite different
structure (byte-oriented vs. bit-oriented, partial S-box layer vs. full, AES-like vs. somewhat
SERPENT-like). It is worth noting however that both ciphers attempt precisely the same goal,
namely to offer efficient masked implementations. As a result both reduce nonlinear operations
per round to a minimum, while giving more weight to the linear layer; LS-designs achieve this by
parallelizing the S-box through bit slicing; Zorro by resorting to a partial S-box layer. In both
cases the contribution of the nonlinear layer is very structured with respect to the linear layer;
this, together with the minimal key schedule and simple round constants leads to our attacks.

We note that all our attacks can be prevented by a careful choice of round constants. One
needs only ensure that no weaker (such as probabilistic or differential) version of the attack is
left behind. This is particularly true when claiming related-key security (as in iSCREAM), since
in this setting our attacks do not require weak keys, and hence weaker probabilistic versions are
all the more relevant.

42

1.9. Discussion

Going back to the generic algorithm used to find the attacks, an interesting open problem is
to specialize it to SPN structures, hoping to achieve better time complexity. In particular, it may
be worthwhile to find an algorithm that is able to enumerate all invariant subspaces through a
layer of n S-boxes, given n and the S-box. With improvements in time complexity, it may become
possible to entirely disprove the existence of invariant subspaces for some SPNs.

Finally, we hope our analysis contributes some insight for the design of future ciphers with
minimal key schedules and the choice of round constants in cryptographic permutations.

43

Chapter 1. Self-Similarity and Invariant Subspace Attacks

44

Chapter 2

Structural Cryptanalysis of ASASA

2.1 Introduction

In the previous chapter, we have seen some interrelated attacks on symmetric primitives. While
symmetric and asymmetric primitives are fairly distinct in general, a few primitives attempt
to span both worlds. In fact, the idea of creating a public-key cryptosystem by obfuscating
a symmetric cipher was proposed by Diffie and Hellman in 1976, in the same seminal paper
that introduced the idea of public-key encryption [DH76a]. While the RSA cryptosystem was
introduced only a year later, creating a public-key scheme based on symmetric components
has remained an open challenge. The interest of this problem is not merely historical: beside
increasing the variety of available public-key schemes, one can hope that a solution may help
bridge the performance gap between public-key and secret-key cryptosystems, or at least offer
new trade-offs in that regard.

Multivariate cryptography is one way to achieve this goal. This area of research dates back
to the 1980’s [MI88, FD86], and has been particularly active in the late 1990’s and early 2000’s
[Pat95, Pat96, RP97, FJ03, . . .]. Many of the proposed public-key cryptosystems build an
encryption function from a structured, easily invertible polynomial, which is then scrambled by
affine maps (or similarly simple transformations) applied to its input and output to produce the
encryption function.

This approach might be aptly described as an ASA structure, which should be read as the
composition of an affine map “A”, a nonlinear transformation of low algebraic degree “S” (not
necessarily made up of smaller S-boxes), and another affine layer “A”. The secret key is the
full description of the three maps A,S,A′, which makes computing both ASA′ and (ASA′)−1

easy. The public key is the function ASA′ as a whole, which is described in a generic manner
by providing the polynomial expression of each output bit in the input bits (or group of n bits
if the scheme operates on F2n). Thus the owner of the secret key is able to encrypt and decrypt
at high speed (provided that S admits an efficient expression). The downside is slow public key
operations, and a large key size.

The ASASA Construction.

Historically, most attempts to build public-key encryption schemes based on the above principle
have been ill-fated [FJ03, BFP11, DGS07, DFSS07, WBDY98, . . .]12. However new ideas to

12The HFEv- variant used in Quartz [PGC01] seems to be an exception in this regard.

45

Chapter 2. Structural Cryptanalysis of ASASA

build multivariate schemes were recently introduced by Biryukov, Bouillaguet and Khovratovich
at Asiacrypt 2014 [BBK14]. The paradigm federating these new ideas is the so-called ASASA
structure: that is, combining two quadratic mappings S by interleaving random affine layers A.
With quadratic S layers, the overall scheme has degree 4, so the polynomial description provided
by the public key remains of reasonable size.

This is very similar to the 2R scheme by Patarin [PG97], which fell victim to several attacks
[Bih00, DFKYZD99], including a powerful decomposition attack [DFKYZD99, FP06] (later de-
veloped in a general context by Faugère et al. [FvzGP10, FP09a, FP09b]). The general course of
this attack is to differentiate the encryption function, and observe that the resulting polynomials
in the input bits live in a “small” space entirely determined by the first ASA layers. This allows
the scheme to be broken down into its two ASA sub-components, which are easily analyzed once
isolated. A later attempt to circumvent this and other attacks by truncating the output of the
cipher proved insecure against the same technique [FP06] — roughly speaking truncating does
not prevent the derivative polynomials from living in too small a space.

In order to thwart attacks including the decomposition technique, the authors of [BBK14]
propose to go in the opposite direction: instead of truncating the cipher, a perturbation is added,
consisting in new random polynomials of degree four added at fixed positions, prior to the last
affine layer13. The idea is that these new random polynomials will be spread over the whole
output of the cipher by the last affine layer. When differentiating, the “noise” introduced by
the perturbation polynomials is intended to drown out the information about the first quadratic
layer otherwise carried by the derivative polynomials, and foil the decomposition attack.

Based on this idea, two public-key cryptosystems are proposed. One uses random quadratic
expanding S-boxes as nonlinear components, while the other relies on the χ function, most famous
for its use in the SHA-3 winner Keccak. However the first scheme was broken at Crypto 2015
by a decomposition attack [GPT15]: the number of perturbation polynomials turned out to be
too small to prevent this approach. This leaves open the question of the robustness of the other
cryptosystem, based on χ (which we shall answer in the negative).

Black-Box ASASA.

Besides public-key cryptosystems, the authors of [BBK14] also propose a secret-key (“black-box”)
scheme based on the ASASA structure. While the structure is the same, the context is entirely
different. This black-box scheme is in fact the exact counterpart of the SASAS structure analyzed
by Biryukov and Shamir [BS01]: it is a block cipher operating on 128-bit inputs; each affine layer
is a random affine map on F128

2 , while the nonlinear layers are composed of 16 random 8-bit S-
boxes14. The secret key is the description of the three affine layers, together with the tables of
all S-boxes.

In some sense, the “public key” is still the encryption function as a whole; however it is only
accessible in a black-box way through known or chosen-plaintext or ciphertext attacks, as any
standard secret-key scheme. A major difference however is that the encryption function can be
easily distinguished from a random permutation because the constituent S-boxes have algebraic
degree at most 7, and hence the whole function has degree at most 49; in particular, it sums
up to zero over any cube of dimension 50. The security claim is that the secret key cannot be
recovered, with a security parameter evaluated at 128 bits.

13A similar idea was used in [Din04].
14Other choices for the number and size of S-boxes are obviously possible, but for the sake of concreteness we

focus on the instance proposed by Biryukov et al.

46

2.1. Introduction

White-Box ASASA.

The structure of the black-box scheme is also used as a basis for several white-box proposals. In
that setting, a symmetric (black-box) ASASA cipher with small block (e.g. 16 bits) is used as a
super S-box in a design with a larger block. A white-box user is given the super S-box as a table.
The secret information consists in a much more compact description of the super S-box in terms
of alternating linear and nonlinear layers. The security of the ASASA design is then expected to
prevent a white-box user from recovering the secret information.

2.1.1 Attacks on ASASA

Structural Attack

Despite the difference in nature between the χ-based public-key scheme, the black-box and the
white-box scheme, we present a structural attack on ASASA able to break all three constructions.
We call the attack structural in the same sense as the structural cryptanalysis of SASAS in [BS01]:
that is, the attack recovers internal layers of the ASASA structure from black-box access to the
function, even if the layers are uniformly random. The term structural is used by opposition to
traditional attacks on symmetric constructions, where all components are known to the adversary
save for a small secret key. Here only the structure of the components is known (S-boxes, linear
layers, etc).

Our attack is underpinned by a degree deficiency that manifests itself when the nonlinear layer
is composed of small S-boxes; but the same deficiency is also present in the χ-based multivariate
scheme, and can be exploited in the same way. In the case of the multivariate scheme, some tweaks
need to be made to account for the presence of the perturbation polynomials. Nevertheless the
attack applies regardless of the amount of perturbation. Thus, contrary to the attack of [GPT15],
there is no hope of patching the scheme by increasing the number of perturbation polynomials.

While the same attack applies to the black-box and multivariate schemes, bottlenecks for the
time complexity come from different stages of the attack. For the χ scheme, the time complexity
is dominated by the need to compute the kernel of a binary matrix of dimension 213, which can
be evaluated to 239 basic linear operations15. As for the black-box scheme, the time complexity
is dominated by the need to encrypt 263 chosen plaintexts, and the data complexity follows.

This attack actually only peels off the last linear layer of the scheme, reducing ASASA to
ASAS. In the case of the black-box scheme, the remaining layers can be recovered in negligible
time using Biryukov and Shamir’s techniques [BS01]. In the case of the χ scheme, removing
the remaining layers poses non-trivial algorithmic challenges (such as how to efficiently recover
quadratic polynomials A,B,C ∈ F2[X1, . . . , Xn]/〈X2

i −Xi〉, given A + B · C). Nevertheless, in
the end the remaining layers are peeled off and the secret key is recovered in time complexity
negligible relative to the cost of removing the first layer.

We note that our attack does not apply to one of the two multivariate instances of [BBK14].
This is precisely the instance that was already broken by Gilbert, Plût and Treger at Crypto
2015 [GPT15].

In addition to the structural attack, we also present two alternative, dedicated attacks. The
first applies to the χ-based multivariate scheme, and the second to the white-box instances of
[BBK14]. We emphasize that in both cases, the structural attack still applies, and is in fact

15In practice, vector instructions operating on 128-bit inputs would mean that the meaningful size of the matrix
is 213−7 = 26, and in this context the number of basic linear operations would be much lower. We also disregard
asymptotic improvements such as the Strassen or Coppersmith-Winograd algorithms and their variants. The
main point is that the time complexity is quite low — well within practical reach.

47

Chapter 2. Structural Cryptanalysis of ASASA

more efficient. The alternative attacks merely serve to highlight other exploitable aspects of the
ASASA construction.

LPN-Based Attack on the χ Scheme.

In Section 2.5.2, we present an independent attack, dedicated to the χ public-key scheme. This
attack exploits the fact that each bit at the output of χ is “almost linear” in the input: indeed
the nonlinear component of each bit is a single product, which is equal to zero with probability
3/4 over all inputs. Based on this property, we are able to heuristically reduce the problem of
breaking the scheme to an LPN-like instance with easy-to-solve parameters. By LPN-like instance,
we mean an instance of a problem very close to the Learning Parity with Noise problem (LPN),
on which typical LPN-solving algorithms such as the Blum-Kalai-Wasserman algorithm (BKW)
[BKW03] are expected to immediately apply. The time complexity of this approach is higher
than the previous one, and can be evaluated at 256 basic operations. However it showcases
a different weakness of the χ scheme, providing a different insight into the security of ASASA
constructions. In this regard, it is noteworthy that the security of another recent multivariate
scheme, presented by Huang et al. at PKC 2012 [HLY12], was also reduced to an easy instance
of LWE [Reg05], which is an extension of LPN, in [AFF+14]16.

Heuristic Attack on the White-Box Scheme.

In the case of the white-box ASASA instances, as an alternative to the main structural attack,
we present another heuristic attack. The attack technique is unrelated to the previous ones, and
relies on heuristics rather than a theoretical model. On the other hand it is very effective on the
smallest white-box instances of [BBK14] (with a security level of 64 bits), which we break under
a minute on a laptop computer.

Regarding the white-box instances, another attack was found independently by Dinur, Dunkel-
man, Kranz and Leander [DDKL15b]. Their approach focuses on small-block ASASA instances,
and is thus only applicable to the white-box scheme of [BBK14]. Section 5 of [DDKL15b] is es-
sentially the same attack as our heuristic attack. On the other hand, the authors of [DDKL15b]
present other methods to attack small-block ASASA instances that are less reliant on heuristics
for the same performance, showcasing another weakness of small-block ASASA.

2.1.2 Layout of the Chapter

Section 2.3 provides a brief description of the three ASASA schemes under attack. In Section 2.4,
we present our main structural attack, as applied to the secret-key (“black-box”) scheme. In
particular, an overview of the attack is given in Section 2.4.1. The attack is then adapted to
the χ public-key scheme in Section 2.5.1, while the LPN-based attack on the same scheme is
presented in Section 2.5.2. Finally, attacks on the white-box scheme are presented in Section 2.6.

2.1.3 Implementation

Implementations of our attacks have been made available at:

http://asasa.gforge.inria.fr/

16On this topic, the authors of [BBK14] note that “the full application of LWE to multivariate cryptography is
still to be explored in the future”.

48

http://asasa.gforge.inria.fr/

2.2. Notation and Definitions

2.2 Notation and Definitions

Binary Vectors.

The set of n-bit vectors is denoted interchangeably by {0, 1}n or Fn2 . However the vectors
are always regarded as elements of Fn2 with respect to addition + and dot product 〈·|·〉. In
particular, addition should be understood as bitwise XOR. The canonical basis of Fn2 is denoted
by e0, . . . , en−1.
For any v ∈ {0, 1}n, vi denotes the i-th coordinate of v. In this context, the index i is always
computed modulo n, so v0 = vn and so forth. Likewise, if F is a mapping into {0, 1}n, Fi denotes
the i-th bit of the output of F .
For a ∈ {0, 1}n, 〈F |a〉 is a shorthand for the function x 7→ 〈F (x)|a〉.
For any v ∈ {0, 1}n, bvck denotes the truncation (v0, . . . , vk−1) of v to its first k coordinates.
For any bit b, b stands for b+ 1.

Derivative of a Binary Function.

For F : {0, 1}m → {0, 1}n and δ ∈ {0, 1}m, we define the derivative of F along δ as ∂F/∂δ 4=
x 7→ F (x) + F (x+ δ). We write ∂dF/∂v0 . . . ∂vd−1

4
= ∂(. . . (∂F/∂v0) . . .)/∂vd−1 for the order-d

derivative along v0, . . . , vd−1 ∈ {0, 1}m. For convenience we may write F ′ instead of ∂F/∂v when
v is clear from the context; likewise for F ′′.
The degree of Fi is its degree as an element of F2[X0, . . . , Xm−1]/〈X2

i −Xi〉 in the binary input
variables. The degree of F is the maximum of the degrees of the Fi’s.

Cube.

A cube of dimension d in {0, 1}n is simply an affine subspace of dimension d. The terminology
comes from [DS09]. Note that summing a function F over a cube C of dimension d, i.e. com-
puting

∑
c∈C F (c), amounts to computing the value of an order-d differential of F at a certain

point: it is equal to ∂dF/∂v0 . . . ∂vd−1(a) for a, (vi) such that C = a + span{v0, . . . , vd−1}. In
particular if F has degree d, then it sums up to zero over any cube of dimension d+ 1.

Bias.

For any probability p ∈ [0, 1], the bias of p is |2p − 1|. Note that the bias is sometimes defined
as |p − 1/2| in the literature. Our choice of definition makes the formulation of the Piling-up
Lemma more convenient:

Lemma 8 (Piling-up Lemma [Mat94]). For X1, . . . , Xn independent random binary variables
with respective biases b1, . . . , bn, the bias of X =

∑
Xi is b =

∏
bi.

Learning Parity with Noise (LPN).

The LPN problem was introduced in [BKW03], and may be stated as follows: given (A,As+ e),
find s, where:

• s ∈ Fn2 is a uniformly random secret vector.

• A ∈ FN×n2 is a uniformly random binary matrix.

• e ∈ FN2 is an error vector, whose coordinates are chosen according to a Bernoulli distribu-
tion with parameter p.

49

Chapter 2. Structural Cryptanalysis of ASASA

x x′ y y′ z z′
Ax Sx Ay Sy Az

Figure 2.1: The ASASA structure.

2.3 Description of ASASA Schemes

2.3.1 Overview and Notation

ASASA is a general design scheme for public or secret-key ciphers (or cipher components). An
ASASA cipher is composed of 5 interleaved layers: the letter A represents an affine layer, and
the letter S represents a nonlinear layer (not necessarily made up of smaller S-boxes). Thus the
cipher may be pictured as in Fig. 2.1.
We borrow the notation of [GPT15] and write the encryption function F as:

F = Az ◦ Sy ◦Ay ◦ Sx ◦Ax

Moreover, x = (x0, . . . , xn−1) is used to denote the input of the cipher; x′ is the output of the
first affine layer Ax; and so on as in Fig. 2.1. The variables x′i, yi, etc., will often be viewed
as polynomials over the input bits (x0, . . . , xn−1). Similarly, F denotes the whole encryption
function, while F y = Sx ◦ Ax is the partial encryption function that maps the input x to the
intermediate state y, and likewise F x′ = Ax, F y′ = Ay ◦ Sx ◦Ax, etc.

One secret-key (“black-box”) and two public-key ASASA ciphers are presented in [BBK14].
The secret-key and public-key variants are quite different in nature, even though our main attack
applies to both. We now present, in turn, the black-box construction, and the public-key variant
based on χ.

Remark 1. The name we use for each ASASA construction differs slightly from [BBK14]. In
our work, we tend to regard the “strong white-box” scheme as a trapdoor permutation. As a
consequence we refer to this variant of ASASA as public-key or multivariate, which are more
standard terms than strong white-box. Meanwhile the “weak white-box” construction is referred
to as simply white-box or small-block ASASA.

2.3.2 Description of the Black-Box Scheme

It is worth noting that the following ASASA scheme is the exact counterpart of the SASAS
structure analyzed by Biryukov and Shamir [BS01], with the affine layer taking the place of the
S-box one and vice versa. Black-box ASASA is a secret-key encryption scheme, parameterized
by m, the size of the S-boxes and k, the number of S-boxes. Let n = km be the block size of the
scheme (in bits). The overall structure of the cipher follows the ASASA construction, where the
layers are as follows:

• Ax, Ay, Az are a random invertible affine mappings Fn2 → Fn2 . Without loss of generality,
the mappings can be considered purely linear, because the affine constant can be integrated
into the preceding or following S-box layer. In the remainder we assume the mappings to
be linear.

50

2.3. Description of ASASA Schemes

• Sx, Sy are S-box layers. Each S-box layer consists in the application of k parallel random
invertible m-bit S-boxes.

All linear layers and all S-boxes are chosen uniformly and independently at random among
invertible elements.

In the concrete instance of [BBK14], each S-box layer contains k = 16 S-boxes over m = 8
bits each, so that the scheme operates on blocks of n = 128 bits. The secret key consists in
three n-bit matrices and 2k m-bit S-boxes, so the key size is 3 · n2 + 2k ·m2m-bit long. For this
instance, this amounts to 14 KB.

It should be pointed out that the scheme is not IND-CPA secure. Indeed, an 8-bit invertible
S-box has algebraic degree (at most) 7, so the overall scheme has algebraic degree (at most) 49.
Thus, the sum of ciphertexts on entries spanning a cube of dimension 50 is necessarily zero. As
a result the security claim in [BBK14] is only that the secret key cannot be recovered, with a
security parameter of 128 bits.

2.3.3 Description of the White-Box Scheme

As another application of the symmetric ASASA scheme, Biryukov et al. propose its use as a
basis for designing white-box block ciphers. In a nutshell, their idea is to use ASASA to create
small ciphers of, say, 16-bit blocks and to use them as super S-boxes in e.g. a substitution-
permutation network (SPN). Users of the cipher in the white-box model are given access to
super S-boxes in the form a table, which allows them to encrypt and decrypt at will. Yet if
the small ciphers used in building the super S-boxes are secure, one cannot efficiently recover
their keys even when given access to their entire codebook, meaning that white-box users cannot
extract a more compact description of the super S-boxes from their tables. This achieves weak
white-box security as defined by Biryukov et al. [BBK14]:

Definition 9 (Key equivalence [BBK14]). Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a (symmetric)
block cipher. E(k) is called the equivalent key set of k if for any k′ ∈ E(k) one can efficiently
compute E′ such that ∀ p E(k, p) = E′(k′, p).

Definition 10 (Weak white-box T -security [BBK14]). Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a
(symmetric) block cipher. W(E)(k, ·) is said to be a T -secure weak white-box implementation
of E(k, ·) if ∀ p W(E)(k, p) = E(k, p) and if it is computationally expensive to find k′ ∈ E(k) of
length less than T bits when given full access to W(E)(k, ·).

Example 1. If S 16 is a secure cipher with 16-bit blocks, then the full codebook of S 16(k, ·) as a
table is a 220-secure weak white-box implementation of S 16(k, ·).

For their instantiations, Biryukov et al. propose to use several super S-boxes of different
sizes, among others:

• A 16-bit ASASA16 where the nonlinear permutations S are made of the parallel application
of two 8-bit S-boxes, with conjectured security of 64 bits.

• A 24-bit ASASA24 where the nonlinear permutations S are made of the parallel application
of three 8-bit S-boxes, with conjectured security of 128 bits.

51

Chapter 2. Structural Cryptanalysis of ASASA

2.3.4 Description of the χ-based Public-Key Scheme

The χ mapping was introduced by Daemen [Dae95] and later used for several cryptographic
constructions, including the SHA-3 competition winner Keccak. The mapping χ : {0, 1}n →
{0, 1}n is defined by:

χi(a) = ai + ai+1ai+2

The χ-based ASASA scheme presented in [BBK14] is a public-key encryption scheme oper-
ating on 127-bit inputs, the odd size coming from the fact that χ is only invertible on inputs of
odd length. The encryption function may be written as:

F = Az ◦ (P + χ ◦Ay ◦ χ ◦Ax)

where:

• Ax, Ay, Az are random invertible affine mappings F127
2 → F127

2 . In the remainder we will
decompose Ax as a linear map Lx followed by the addition of a constant Cx, and likewise
for Ay, Az.

• χ is as above.

• P is the perturbation. It is a mapping {0, 1}127 → {0, 1}127. For 24 output bits at a fixed
position, it is equal to a random polynomial of degree 4. On the remaining 103 bits, it is
equal to zero.

Since χ has degree only 2, the overall degree of the encryption function is 4. The public key
of the scheme is the encryption function itself, given in the form of degree 4 polynomials in the
input bits, for each output bit. The private key is the triplet of affine maps (Ax, Ay, Az).

Due to the perturbation, the scheme is not actually invertible. To circumvent this, some
redundancy is required in the plaintext, and the 24 bits of perturbation must be guessed during
decryption. The correct guess is determined first by checking whether the resulting plaintext has
the required redundancy, and second by recomputing the ciphertext from the tentative plaintext
and checking that it matches. This is not relevant to our attack, and we refer the reader to
[BBK14] for more information.

2.4 Structural Attack on Black-Box ASASA

Our goal in this section is to recover the secret key of the black-box ASASA scheme, in a chosen-
plaintext model. For this purpose, we begin by peeling off the last linear layer, Az. Once Az

is removed, we obtain an ASAS structure, which can be broken using Biryukov and Shamir’s
techniques [BS01] in negligible time. Thus the critical step is the first one.

2.4.1 Attack Overview

Before progressing further, it is important to observe that the secret key of the scheme is not
uniquely defined. In particular, we are free to compose the input and output of any S-box with
a linear mapping of our choosing, and use the result in place of the original S-box, as long as
we modify the surrounding linear layers accordingly. Thus, S-boxes are essentially defined up
to linear equivalence. When we claim to recover the secret key, this should be understood as
recovering an equivalent secret key; that is, any secret key that results in an encryption function
identical to the black-box instance under attack.

52

2.4. Structural Attack on Black-Box ASASA

In particular, in order to remove the last linear layer of the scheme, it is enough to determine,
for each S-box, the m-dimensional subspace corresponding to its image through the last linear
layer. Indeed, we are free to pick any basis of this m-dimensional subspace, and assert that each
element of this basis is equal to one bit at the output of the S-box. This will be correct, up
to composing the output of the S-box with some invertible linear mapping, and composing the
input of the last linear layer with the inverse mapping; which has no bearing on the encryption
output.

Thus, peeling off Az amounts to finding the image space of each S-box through Az. For this
purpose, we will look for linear masks a, b ∈ {0, 1}n over the output of the cipher, such that the
two dot products 〈F |a〉 and 〈F |b〉 of the encryption function F along each mask, are each equal
to one bit at the output of the same S-box in the last nonlinear layer Sy. Let us denote the set
of such pairs (a, b) by S (as in “solution”).

In order to compute S, the core property at play is that if masks a and b are as required, then
the binary product 〈F |a〉〈F |b〉 has degree only (m − 1)2 over the input variables of the cipher,
whereas it has degree 2(m − 1)2 in general. This means that 〈F |a〉〈F |b〉 sums to zero over any
cube of dimension (m− 1)2 + 1.

We now define the two linear masks a and b we are looking for as two vectors of binary
unknowns. Then f(a, b) = 〈F |a〉〈F |b〉 may be expressed as a quadratic polynomial over these
unknowns, whose coefficients are 〈F |ei〉〈F |ej〉 for (ei) the canonical basis of Fn2 . Now, the fact
that f(a, b) sums to zero over some cube C gives us a quadratic condition on (a, b), whose
coefficients are

∑
c∈C〈F (c)|ei〉〈F (c)|ej〉.

By computing n(n−1)/2 cubes of dimension (m−1)2 +1, we thus derive n(n−1)/2 quadratic
conditions on (a, b). The resulting system can then be solved by relinearization. This yields the
linear space K spanned by S.

However we want to recover S rather than its linear combinations K. Thus in a second step,
we compute S as S = K ∩ P , where P is essentially the set of elements that stem from a single
product of two masks a and b. While P is not a linear space, by guessing a few bits of the
masks a, b, we can get many linear constraints on the elements of P satisfying these guesses, and
intersect these linear constraints with K.

The first step may be regarded as the core of the attack; and it is also its bottleneck: essen-
tially we need to encrypt plaintexts spanning n(n − 1)/2 cubes of dimension (m − 1)2 + 1. We
recall that in the actual black-box scheme of [BBK14], we have S-boxes over m = 8 bits, and the
total block size is n = 128 bits, covered by k = 16 S-boxes, so the complexity is dominated by
the computation of the encryption function over 213 cubes of dimension 50, i.e. 263 encryptions.

2.4.2 Description of the Attack

We use the notation of Section 2.3.1: let F = Az ◦ Sy ◦ Ay ◦ Sx ◦ Ax denote the encryption
function. We are interested in linear masks a ∈ {0, 1}n such that 〈F |a〉 depends only on the
output of one S-box. Since 〈F |a〉 = 〈Sy ◦Ay ◦ Sx ◦Ax|(Az)Ta〉, this is equivalent to saying that
the active bits of (Az)Ta span a single S-box.

In fact we are searching for the set S of pairs of masks (a, b) such that (Az)Ta and (Az)Tb
span the same single S-box. Formally, Ot = span{ei : mt ≤ i < m(t + 1)} be the span of the
output of the t-th S-box, then:

S = {(a, b) ∈ {0, 1}n × {0, 1}n : ∃t, (Az)Ta ∈ Ot and (Az)Tb ∈ Ot}

The core property exploited in the attack is that if (a, b) belongs to S, then 〈F |a〉〈F |b〉 has
degree at most (m − 1)2, as shown by Lemma 9 below. On the other hand, if (a, b) 6∈ S, then

53

Chapter 2. Structural Cryptanalysis of ASASA

〈F |a〉〈F |b〉 will look like the product of two independent random polynomials of degree (m−1)2,
and reach degree 2(m− 1)2 with overwhelming probability.

Lemma 9. Let G be an invertible mapping {0, 1}n → {0, 1}n with n > 2. For any two n-bit
linear masks a and b, H = 〈G|a〉〈G|b〉 has degree at most n− 1.

Proof. It is clear that the degree cannot exceed n, since we depend on only n variables (and we
live in F2). What we show is that it is less than n − 1, as long as n > 2. If a = 0 or b = 0 or
a = b, this is clear, so we can assume that a, b are linearly independent. Note that there is only
one possible monomial of degree m, and its coefficient is equal to

∑
x∈{0,1}n H(x). So all we have

to show is that this sum is zero.
Because G is invertible, G(x) spans each value in {0, 1}n once as x spans {0, 1}n. As a

consequence, the pair (〈G|a〉, 〈G|b〉) takes each of its 4 possible values an equal number of times.
In particular, it takes the value (1, 1) exactly 1/4 of the time. Hence 〈G|a〉〈G|b〉 takes the value
1 exactly 2n−2 times, which is even for n > 2. Thus

∑
x∈{0,1}n H(x) = 0 and we are done.

In the remainder, we regard two masks a and b as two sequences of n binary unknowns
(a0, . . . , an−1) and (b0, . . . , bn−1).

Step 1: Kernel Computation.

If a, b are as desired, 〈F |a〉〈F |b〉 has degree at most (m − 1)2. Hence the sum of this product
over a cube of dimension (m−1)2 +1 is zero, as this amounts to an order-(m−1)2 +1 differential
of a degree (m − 1)2 function. Let then C denote a random cube of dimension (m − 1)2 + 1 –
that is, a random affine space of dimension (m− 1)2+1, over {0, 1}n. We have:∑

c∈C
〈F (c)|a〉〈F (c)|b〉 =

∑
c∈C

∑
i<n

aiFi(c)
∑
j<n

bjFj(c)

=
∑
i,j<n

(∑
c∈C

Fi(c)Fj(c)
)
aibj

=
∑
i<j<n

(∑
c∈C

Fi(c)Fj(c)
)

(aibj + ajbi)

To deduce the last line, notice that
∑

c∈C FiFi = 0 since F has degree less than dimC.
Since the equation above really only says something about aibj + ajbi rather than aibj (which is
unavoidable, since the roles of a and b are symmetric), we define E = Fn(n−1)/2

2 , see its canonical
basis as ei,j for i < j < n, and define λ(a, b) ∈ E by: λ(a, b)i,j = aibj + ajbi. By convention we
set λj,i = λi,j and λi,i = 0. The previous equations tells us that knowing only the n(n−1)/2 bits∑

c∈C Fi(c)Fj(c) yields a quadratic condition on (a, b), and more specifically a linear condition
on λ(a, b). Whence we proceed with Alg. 2.

Let M be a binary matrix of size (n2/2) × (n(n − 1)/2), whose rows are separate outputs
of Alg. 2. Let K be the kernel of this matrix. Then for all (a, b) ∈ S, λ(a, b) is necessarily in
K. Thus K contains the span of the λ(a, b)’s for (a, b) ∈ S. Because M contains more than
n(n − 1)/2, with overwhelming probability K contains no other vector17. This is confirmed by
our experiments.

17This point is the only reason we pick n2/2 rows rather than only n(n − 1)/2; but we may as easily choose
n(n− 1)/2 plus some small constant. In practice it we can just pick n(n− 1)/2 rows, and add more as required
until the kernel has the expected dimension km(m− 1)/2.

54

2.4. Structural Attack on Black-Box ASASA

Algorithm 2: GenerateCondition
Input: A random cube C of dimension (m− 1)2 + 1 over {0, 1}n

1 Let sum = (0, . . . , 0) ∈ E
2 for c ∈ C do
3 (x0, . . . , xn−1)← F (c)
4 t← (xixj for i < j < n) ∈ E
5 sum = sum+ t

6 return sum

Complexity analysis. Overall, the dominant cost is to compute 2(m−1)2+1 encryptions per
cube, for n2/2 cubes, which amounts to a total of n22(m−1)2 encryptions. With the parameters of
[BBK14], this is 263 encryptions. In practice, we could limit ourselves to dimension-(m− 1)2 + 1
subcubes of a single dimension-(m− 1)2 + 2 cube, which would cost only 2(m−1)2+2 encryptions.
However we would still need to sum (pairwise bit products of) ciphertexts for each subcube, so
while this approach would certainly be an improvement in practice, we believe it is cleaner to
simply state the complexity as n22(m−1)2 encryption equivalents.

Beside that, we also need to compute the kernel of a matrix of dimension n(n− 1)/2, which
incurs a cost of roughly n6/8 basic linear operations. With the parameters of [BBK14], we need
to invert a binary matrix of dimension 213, costing around 239 (in practice, highly optimized)
operations, so this is negligible compared to the required number of encryptions.

Step 2: Mask Extraction.

Let:

P = {λ ∈ E : ∃a, b ∈ {0, 1}n, λ = λ(a, b)}

Clearly we have λ(S) ⊆ K ∩ P . In fact, we assume λ(S) = K ∩ P , which is confirmed by our
experiments. We now want to compute K ∩ P , but we do not need to enumerate the whole
intersection K ∩ P directly: for our purpose, it suffices to recover enough elements of λ(S) such
that the corresponding masks span the output space of all S-boxes. Indeed, recall that our end
goal is merely to find the image of all k S-boxes through the last linear layer. Thus, in the
remainder, we explain how to find a random element in K ∩P . Once we have found km linearly
independent masks in this manner, we will be done.

The general idea to find a random element of K ∩ P is as follows. We begin by guessing
the value of a few pairs (ai, bi). This yields linear constraints on the λi,j ’s. As an example, if
(a0, b0) = (0, 0), then ∀i, λ0,i = 0. Because the constraints are linear and so is the space K,
finding the elements of K satisfying the constraints only involves basic linear algebra. Thus, all
we have to do is guess enough constraints to single out an element of S with constant probability,
and recover that element as the one-dimensional subspace of K satisfying the constraints.

More precisely, assume we guess 2r bits of a, b as:

a0, . . . , ar−1 = α0, . . . , αr−1

b0, . . . , br−1 = β0, . . . , βr−1

We view pairs (αi, βi) as elements of F2
2. Assume there exists some linear dependency between

55

Chapter 2. Structural Cryptanalysis of ASASA

the (αi, βi)’s: that is, for some (µi) ∈ {0, 1}r:
r−1∑
i=0

µi(αi, βi) = (0, 0)

Then for all j < n, we have:

r−1∑
i=0

µiλi,j = bj

r−1∑
i=0

µiai + aj

r−1∑
i=0

µibi = 0 (2.1)

Now, since F2
2 has dimension only 2, we can be sure that there exist r − 2 independent linear

relations between the (αi, βi)’s, from which we deduce as above (r − 2)n linear relations on the
λi,j ’s.

Fact 1. At least (r − 2)(n− r) of these relations are linearly independent.

Proof. The problem may be formalized as follows. We are given α, β ∈ Fr2. The set of µ ∈ Fr2
such that

∑
µi(αi, βi) = (0, 0) is (isomorphic to) the annihilator A of span{α, β} in the dual

space (Fr2)∗. Let M = Fn×n2 denote the space of n × n binary matrices, with basis ei,j . Let
D = span({e∗i,i} ∪ {e∗i,j + e∗j,i}). The space D is isomorphic to the annihilator of E = Fn(n−1)/2

2 ;
that is, the space of the λi,j ’s in Section 2.4.2. Let B = span{∑µie

∗
i,j : µ ∈ A, j > r}.

The point of the previous definitions is that the linear relations on E obtained from Eq. 2.1
for j > r are exactly the vectors of the space B ∩D.

First, we prove that dimB ≥ (r − 2)(n− r). Clearly the projection of B on Cj = span{e∗i,j :
i < n} (which may be seen as looking at a column in the space M) has dimension dimA for
j > r. Since

∑
Cj ⊆ B and the Cj ’s are disjoint, we have dimB ≥ (n−r) dimA ≥ (r−2)(n−r)

since A is the annihilator of a space of dimension 2.
Now it remains to show that dim(B ∩ D) = dimB. To see this, it suffices to observe that

every functional e∗i,i and e
∗
i,j + e∗j,i involves a distinct basis element e∗i,j for which i ≤ j, whereas

B is entirely disjoint from the span of those elements.

Now, the cardinality of S is k(2m−1)(2m−2) ≈ k22m. Hence if we choose r = blog(|S|)/2c ≈
m + 1

2 log k, and randomly guess the values of (ai, bi) for i < r, then we can expect that with
constant probability there exists exactly one element in S satisfying our guess. More precisely,
each element has a probability (close to) 2−2b|S|/2c ≈ 2−|S| of fitting our guess of 2r bits, so this
probability is close to |S|

(
|S|−1(1 − |S|−1)|S|−1

)
≈ 1/e. Thus, if we denote by T the subspace

of E of vectors satisfying the linear constraints induced by our guess, with probability roughly
1/3, λ(S) ∩ T contains a single element.

On the other hand, K is generated by pairs of masks corresponding to distinct bits for each
S-box in Sy. Hence dimK = km(m−1)/2 = n(m−1)/2. As shown earlier, from our 2r guesses,
we deduce (at least) (r− 2)(n− r) linear conditions on the (λi,j)’s, so codim T ≥ (r− 2)(n− r).
Since we chose r = m+ 1

2 log k, this means:

codim T ≥ (m− 2 +
1

2
log k) · (n−m− 1

2
log k)

dimK = (m− 1) · (n/2)

Thus, having 1
2 log k ≥ 1, i.e. k ≥ 4, andm+ 1

2 log k ≥ n/2, which is easily the case with concrete
parameters m = 8, k = 16, n = 128, we have codim T ≥ dimK, and so K ∩ T is not expected
to contain any extra vector beside the span of λ(S) ∩ T . This is confirmed by our experiments.

56

2.5. Attacks on χ-based Multivariate ASASA

In summary, if we pick r = m + 1
2 log k and randomly guess the first r pairs of bits (ai, bi),

then with probability close to 1/e, K∩T contains only a single vector, which belongs to λ(S)∩T
and in particular to λ(S). In practice it may be worthwhile to guess a little less than m+ 1

2 log k
pairs to ensure K ∩ T is nonzero, then guess more as needed to single out a solution. Once we
have a single element in λ(S), recovering the two masks (a, b) it stems from simply amounts to
inverting λ.

We now show that inverting λ is straightforward. Note that λ is symmetric bilinear and
∀a, λ(a, a) = 0. As a consequence λ(a, b) = λ(a+ b, b) = λ(a, a+ b). Moreover λ(a, b) = 0 if and
only if a, b are linearly related; indeed the image of λ(a, b) is the set of all determinants of 2× 2
submatrices of the 2×n matrix whose rows are a and b, i.e. the set of all 2-minors of the matrix.

As a consequence of the previous properties, by inverting λ, we mean recovering one of
{a, b}, {a+ b, b}, {a, a+ b} given λ(a, b), and provided λ(a, b) 6= 0 (otherwise any linearly depen-
dent a, b is a preimage). For this purpose we use the following algorithm. Consider the n × n
matrix M such that Mi,j = λ(a, b)i,j . Let Ri denote the i-th row of M , i.e. Rij = aibj + ajbi.
Then observe that Ri = aib + bia. Thus we see that M has rank 2, and in order to invert λ in
the previous sense, we need only pick any two linearly independent rows of M .

In the end, we recover two masks (a, b) coming from the same S-box. If we repeat this process
n = km times on average, the masks we recover will span the output of each S-box (indeed we
recover 2 masks each time, so n tries is more than enough with high probability). Furthermore,
checking whether two masks belong to the same S-box is very cheap (for two masks a, b, we only
need to check whether λ(a, b) is in K), so we recover the output space of each S-box.

Complexity analysis. In order to get a random element in S, each guess of 2r bits yields
roughly 1/3 chance of recovering an element by intersecting linear spaces K and T . Since K has
dimension n(m− 1)/2, the complexity is roughly (n(m− 1)/2)3 per try, and we need 3 tries on
average for one success. Then the process must be repeated n times. Thus the complexity may
be evaluated to roughly 3

8n
4(m− 1)3 basic linear operations. With the parameters of [BBK14],

this amounts to 236 linear operations, so this step is negligible compared to Step 1 (and quite
practical besides).

Before closing this section, we note that our attack does not really depend on the randomness
of the S-boxes or affine layers. All that is required of the S-boxes is that the degree of zizj vary
depending on whether i and j belong to the same S-box. This makes the attack quite general,
in the same sense as the structural attack of [BS01].

2.5 Attacks on χ-based Multivariate ASASA

In this section, our goal is to recover the private key of the χ-based ASASA scheme, using only
the public key. For this purpose, we peel off one layer at a time, starting with the last affine
layer Az. We actually propose two different ways to achieve this. The first attack is our main
structural attack from Section 2.4, with some adjustments to account for the specificities of χ
and the presence of the perturbation. It is presented in Section 2.5.1. The second attack reduces
the problem to an instance of LPN, and is presented in Section 2.5.2. Once the last affine layer
has been removed with either attack, we move on to attacking the remaining layers one at a time
in Sections 2.5.3 and 2.5.4.

57

Chapter 2. Structural Cryptanalysis of ASASA

2.5.1 Structural Attack on the χ Scheme

The χ scheme can be attacked in exactly the same manner as the black-box scheme in Section 2.4.
Using the notations of Sections 2.3.1 and 2.3.4, we have:

zizi+1 = (y′i + y′i+1y
′
i+2) · (y′i+1 + y′i+2y

′
i+3)

= y′iy
′
i+1 + y′iy

′
i+2y

′
i+3

Here the crucial point is that y′i+2 is shared by the only degree-4 term of both sides. Thus the
degree of zizi+1 is bounded by 6. Likewise, the degree of zi+1(zi+zi+2) = zizi+1 +zi+1zi+2 is also
bounded by 6, as the sum of two products of the previous form. On the other hand, any product
of linear combinations (

∑
αizi)(

∑
βizi) not of the previous two forms does not share common

y′i’s in its higher-degree terms, so no simplification occurs, and the product reaches degree 8 with
overwhelming probability.

As a result, we can proceed as in Section 2.4. Let n = 127 be the size of the scheme, p = 24
the number of perturbation polynomials. The positions of the p perturbation polynomials are
not defined in the original paper; in the sequel we assume that they are next to each other.
Other choices of positions increase the tedium of the attack rather than its difficulty.Due to the
rotational symmetry of χ, the positions of the perturbed bits is only defined modulo rotational
symmetry; for convenience, we assume that perturbed bits are at positions zn−p to zn−1.

The full attack presented below has been verified experimentally for small values of n.

Step 1: Kernel Computation.

We fill the rows of an n(n−1)/2×n(n−1)/2 matrix with separate outputs of Algorithm 2, with
the difference that the dimension of cubes in the algorithm is only 7 (instead of (m−1)2 +1 = 50
in the black-box case). Then we compute the kernel K of this matrix. Since n(n − 1)/2 ≈ 213

the complexity of this step is roughly 239 basic linear operations.

Step 2: Mask Extraction.

The second step is to intersect K with the set P of elements of the form λ(a, b) to recover actual
solutions (see Section 2.4, step 2). In Section 2.4 we were content with finding random elements
of K ∩ P . Now we want to find all of them. To do so, instead of guessing a few pairs (ai, bi)
as earlier, we exhaust all possibilities for (a0, b0) then (a1, b1) and so forth along a tree-based
search. For each branch, we stop when the dimension of K intersected with the linear constraints
stemming from our guesses of (ai, bi)’s is reduced to 1. Each branch yields a solution λ(a, b),
from which the two masks a and b can be easily recovered.

Step 3: Mask Sorting.

Let ai = ((Lz)T)−1ei be the linear mask such that zi = 〈F |ai〉 (for the sake of clarity we first
assume Cz = 0; this has no impact on the attack until step 4 in Section 2.5.3 where we will recover
Cz). At this point we have recovered the set S of all (unordered) pairs of masks {ai, ai+1} and
{ai, ai−1 + ai+1} for i < n − p, i.e. such that the corresponding zi’s are not perturbed. Now
we want to distinguish masks ai−1 + ai+1 from masks ai. For each i such that zi−1, zi, zi+1 are
not perturbed, this is easy enough, as ai appears exactly three times among unordered pairs in
S: namely in the pairs {ai, ai−1}, {ai, ai+2} and {ai, ai−1 + ai+1}; whereas masks of the form
ai−1 + ai+1 appear only once, in {ai−1 + ai+1, ai}.

58

2.5. Attacks on χ-based Multivariate ASASA

Thus we have recovered every ai for which zi−1, zi, zi+1 are not perturbed. Since perturbed
bits are next to each other, we have recovered all unperturbed ai’s save the two ai’s on the
outer edge of the perturbation, i.e. a0 and an−p−1. We can also order all recovered ai’s simply
by checking whether {ai, ai+1} is in S. In other words, we look at S as the set of edges of a
graph whose vertices are the elements of pairs in S; then the chain (a1, . . . , an−p−2) is simply the
longest path in this graph. In fact we recover (a1, . . . , an−p−2), minus its direction: that is, so
far, we cannot distinguish it from (an−p−2, . . . , a1). If we look at the neighbors of the end points
of the path, we also recover {a0, a0 + a2} and {an−p−1, an−p−3 + an−p−1}. However we are not
equipped to tell apart the members of each pair with only S at our disposal.

To find a0 in {a0, a0 +a2} (and likewise an−p−2 in {an−p−1, an−p−3 +an−p−1}), a very efficient
technique is to anticipate a little and use the distinguisher from Section 2.5.2. Namely, in short,
we differentiate the encryption function F twice using two fixed random input differences δ1 6= δ2,
and check whether for a fraction 1/4 of possible choices of (δ1, δ2), 〈∂2F/∂δ1∂δ2|x〉 is equal to
a constant with bias 2−4: this property holds if and only if x is one of the ai’s. This only
requires around 216 encryptions for each choice of (δ1, δ2), and thus completes in negligible time.
Another more self-contained approach is to move on to the next step (in Section 2.5.3), where
the algorithm we use is executed separately on each recovered mask ai, and fails for a0 + a2 but
not a1. However this would be slower in practice.

Regardless of which solution was chosen, we now assume that we know the whole ordered chain
(a0, . . . , an−p−1) of masks corresponding to unperturbed bits. At this stage we are only missing
the direction of the chain, i.e. we cannot distinguish (a0, . . . , an−p−1) from (an−p−1, . . . , a0).
This will be corrected at the next step.

As mentioned earlier, we propose two different techniques to recover the first linear layer
of the χ scheme: one is our main technique, and another based on LPN. We have now just
completed the algebraic technique. In the next section we present the LPN-based technique.
Afterwards we will move on to the remaining steps, which are common to both techniques, and
fully break the cipher with the knowledge of (a0, . . . , an−p−1), in Sections 2.5.3 and 2.5.4.

2.5.2 LPN-based Attack on the χ Scheme

We now present a different approach to remove the last linear layer of the χ scheme. This
approach relies on the fact that each output bit of χ is almost linear, in the sense that the only
nonlinear component is the product of two input bits. In particular this nonlinear component is
zero with probability 3/4. The idea is then to treat this nonlinear component as random noise.
To achieve this we differentiate the encryption function F twice. So the first ASA layers of F ′′

yield a constant; then ASAS is a noisy constant due to the weak nonlinearity; and ASASA is a
noisy constant accessed through Az. This allows us to reduce the problem of recovering Az to
(a close variant of) an LPN instance with tractable parameters.

We now describe the attack in detail. First, pick two distinct random differences δ1, δ2 ∈
{0, 1}n. Then compute the order 2 differential of the encryption function along these two differ-
ences. That is, let F ′′ = ∂F/∂δ1∂δ2. This second-order differential is constant at the output of
F y
′

= Ay ◦ χ ◦Ax, since χ has degree only two:

(F y
′
)′′(x)

4
= ∂F y

′
/∂δ1∂δ2 = C(δ1, δ2)

Now if we look at a single bit at the output of F z = χ ◦ F y′ , we have:

(F z)′′i (x) = (F y
′
)′′i (x) + F y

′

i+1F
y′

i+2(x) + F y
′

i+1F
y′

i+2(x+ δ1)

+ F y
′

i+1F
y′

i+2(x+ δ2) + F y
′

i+1F
y′

i+2(x+ δ1 + δ2) (2.2)

59

Chapter 2. Structural Cryptanalysis of ASASA

That is, a bit at the output of (F z)′′ still sums up to a constant, plus the sum of four bit products.
If we look at each product as an independent random binary variable that is zero with probability
3/4, i.e. bias 2−1, then by the Piling-up Lemma (8) the sum is equal to zero with bias 2−4.

Experiments show that modeling the four products as independent is not quite accurate: a
significant discrepancy is introduced by the fact that the four inputs of the products sum up
to a constant. For the sake of clarity, we will disregard this for now and pretend that the four
products are independent. We will come back to this issue later on.

Now a single linear layer remains between (F z)′′ and F ′′. Let si ∈ {0, 1}n be the linear mask
such that 〈F |si〉 = F zi (once again we assume Cz = 0, and postpone taking Cz into account until
step 4 of the attack). Then 〈F ′′|si〉 is equal to a constant with bias 2−4. Now let us compute N
different outputs of F ′′ for some N to be determined later, which costs 4N calls to the encryption
function F . Let us stack these N outputs in an N × n matrix A.

Then we know that A ·si is either the all-zero or the all-one vector (depending on (F y
′
)′′i) plus

a noise of bias 2−4. Thus finding si is essentially an LPN problem with dimension n = 127 and
bias 2−4 (i.e. noise 1/2 + 2−5). Of course this is not quite an LPN instance: A is not uniform,
there are n solutions instead of one, and there is no output vector b (although we could isolate
the last column of A and define it as the output vector). However in practice none of this should
hinder the performance of a BKW algorithm [BKW03]. Thus we make the heuristic assumption
that BKW performs here as it would on a standard LPN instance18.

In the end, we recover the masks si such that zi = 〈F |si〉. Before moving on to the next
stage of the attack, we go back to the earlier independence assumption.

Dependency Between the Four Products.

In the reasoning above, we have modeled the four bit products in Equation 2.2 as independent
binary random variables with bias 2−1. That is, we assumed the four products would behave as:

Π = W1W2 +X1X2 + Y1Y2 + Z1Z2

where Wi, Xi, Yi, Zi are uniformly random independent binary variables. This yields an ex-
pectancy E[Π] with bias 2−4. As noted above, this is not quite accurate, and we now provide a
more precise model that matches with our experiments.

Since F y′ has degree two, (F y
′
)′′ is a constant, dependent only on δ1 and δ2. This implies that

in the previous formula, we haveW1 +X1 +Y1 +Z1 = (F y
′
)′′i+1 andW2 +X2 +Y2 +Z2 = (F y

′
)′′i+2.

To capture this, we look at:

E(c1, c2) = E[Π |W1 +X1 + Y1 + Z1 = c1,W2 +X2 + Y2 + Z2 = c2]

It turns out that E(0, 0) has a stronger bias, close to 2−3; while perhaps surprisingly, E(a, b)
for (a, b) 6= (0, 0) has bias zero, and is thus not suitable for our attack. Since G′′ is essentially
random, this means that our technique will work for only a fraction 1/4 of output bits. However,
once we have recovered these output bits, we can easily change δ1, δ2 to obtain a new value of
G′′ and start over to find new output bits.

18To the best of our knowledge, we have yet to see an LPN-like problem with a matrix A on which BKW
underperforms significantly compared to the uniform case, unless the problem was specifically crafted for this
purpose. The existence of multiple solutions is also a notable difference in our case. However in a classic
application of BKW with a fast Fourier transform at the end, this only means that the Fourier transform will
output several solutions. Note that the dimension of the Fourier transform will be close to 127/3 ≈ 42 [LF06],
and we have only ≈ 214 solutions, so they are distinct on their last 42 bits with very high probability.

60

2.5. Attacks on χ-based Multivariate ASASA

After k iterations of the above process, a given bit at position i ≤ 127 will have probability
(3/4)k of remaining undiscovered. In order for all 103 unperturbed bits to be discovered with
good probability, it is thus enough to perform k = − log(103)/ log(3/4) ≈ 16 iterations.

In the end we recover all linear masks ai corresponding to unperturbed bits at the output
of the second χ layer; i.e. ai = ((Az)T)−1ei for 0 ≤ i < n − p. The ai’s can then be ordered
into a chain (a0, . . . , an−p−1) like in Section 2.5.1: neighbouring ai’s are characterized by the
fact that 〈F |ai〉〈F |ai+1〉 has degree 6. We postpone distinguishing between (a0, . . . , an−p−1) and
(an−p−1, . . . , a0) until Section 2.5.3.

Complexity analysis. According to Theorem 2 in [LF06], the number of samples needed to
solve an LPN instance of dimension 127 and bias 2−4 is N = 244 (attained by setting a = 3
and b = 43). This requires 4N = 246 encryptions. Moreover the dominant cost in the time
complexity is to sort the 244 samples a times, which requires roughly 3 · 44 · 244 < 252 basic
operations. Finally, as noted above, we need to iterate the process 16 times to recover all
unperturbed output bits with good probability, so our overall time complexity is increased to
256 for BKW, and 250 encryptions to gather samples (slightly less with a structure sharing some
plaintexts between the 16 iterations).

2.5.3 From ASAS to ASA

The next layer we wish to peel off is a χ layer, which is entirely public. It may seem that applying
χ−1 should be enough. The difficulty arises from the fact that we do not know the full output of
χ, but only n− p bits. Furthermore, if our goal was merely to decrypt some specific ciphertext,
we could use other techniques, e.g. the fact that guessing one bit at the input of χ produces a
cascade effect that allows recovery of all other input bits from output bits, regardless of the fact
that the function has been truncated [Dae95]. However our goal is different: we want to recover
the secret key, not just be able to decrypt messages. For this purpose we want to cleanly recover
the input of χ in the form of degree 2 polynomials, for every unperturbed bit. We propose a
technique to achieve this below.

From the previous step, we are in possession of (a0, . . . , an−p−1) as defined above. Since by
definition zi = 〈F |ai〉, this means we know zi for 0 ≤ i < n − p. Note that y′i has degree only
2, and we know that zi = y′i + y′i+1y

′
i+2. In order to reverse the χ layer, we set out to recover

y′i, y
′
i+1, y

′
i+2 from the knowledge of only zi, by using the fact that y′i, y

′
i+1, y

′
i+2 are quadratic.

This reduces to the following problem: given P = A + B · C, where A,B,C are degree-2
polynomials, recover A,B,C. A closer look reveals that this problem is not possible exactly
as stated, because P can be equivalently written in several different ways, such as: A + B · C,
A+B+B ·C, or A+C+ (B+C) ·C. On the other hand, we assume that for uniformly random
A,B,C, the probability that P may be written in some unrelated way, i.e. P = C + D · E
for C,D,E not in the linear span of A,B,C, 1, is overwhelmingly low. This situation has never
occurred in our experiments. Thus our problem reduces to:

Problem 1. Let A,B,C be quadratic polynomials in Q = F2[X0, . . . , Xn−1]/〈X2
i − Xi〉. Let

P = A+B · C. The problem is to recover quadratic A′, B′, C ′ such that P = A′ +B′ · C ′, given
only P .

Remark 2. Problem 1 is part of a general family of polynomial decomposition problems which
have very recently been shown to be solvable in polynomial time [BHT15]. However our particular
instance is much easier than the general case considered in [Bha14, BHT15]. This allows us to

61

Chapter 2. Structural Cryptanalysis of ASASA

propose a much simpler and more efficient dedicated algorithm. Our algorithm is unrelated to
those used in the general case, which rely on higher-order Fourier analysis.

Our previous assumption says A′ ∈ span{A,B,C, 1}; B′, C ′ ∈ span{B,C, 1}. A straightfor-
ward approach to tackle the problem is to write B formally as a generic degree-2 polynomial with
unknown coefficients This gives us k = 1 + n + n(n + 1)/2 ≈ n2/2 binary unknowns. Then we
observe that B · P has degree only 4 (since B2 = B). Each term of degree 5 in B · P must have
a zero coefficient, and thus each term gives us a linear constraint on the unknown coefficients of
B. Collecting the constraints takes up negligible time, at which point we have a k × k matrix
whose kernel is span{B,C, 1}. This gives us a few possibilities for B′, C ′, which we can filter by
checking that A′ = P − B′ · C ′ has degree 2. The complexity of this approach boils down to
inverting a k-dimensional binary matrix, which costs essentially 23k basic linear operations. In
our case this amounts to 239 basic linear operations. While this is a straightforward approach,
and its complexity is reasonable, a much more efficient algorithm is given below.

An Efficient Algorithm for Problem 1.

As previously mentioned, A′ = A,B′ = B,C ′ = C cannot be the only solution; for instance
A′ = A + C,B′ = B + C,C ′ = C is also possible. Conceptually, our algorithm will attempt to
recover B and C; but in effect it recovers any two linearly independent elements of span{B,C, 1},
which are indistinguishable from (B,C) with knowledge of only P .

In fact our algorithm only attempts to recover the homogeneous degree-2 components of B,C.
The linear components can then be defined as 2n unknowns and recovered using simple linear
algebra from the degree-3 monomials of P . This only involves inverting a matrix in dimension
2n = 254, which has negligible cost. Moreover A = P −B · C. Thus we focus on recovering the
degree-2 monomials of B,C. In the remainder we will slightly abuse notation and write B,C to
mean the homogeneous degree-2 components of B,C, i.e. we disregard the linear and constant
components.

In an effort to reduce notational clutter, we always assume knowledge of P , and do not pass it
as parameter to every algorithm. Let n = 127 and [n] = {0, . . . , n−1}. For D ∈ Q, we write Di,j

for the coefficient of XiXj in D (we identify elements of Q with their square-free representation
in F2[X0, . . . , Xn−1]). By convention Di,i = 0. Likewise we define Pi,j,k,l as the coefficient of
XiXjXkXl in P . Finally, for D ∈ Q, Di,∗ is the vector (Di,0, . . . , Di,n−1) ∈ Fn2 .

Our algorithm makes use of two simple “zero oracles” Z (Alg. 4) and Z ′ (Alg. 3). The oracle
Z(i, j) returns True if and only if Bi,j = Ci,j = 0. It makes use of the oracle Z ′, which returns
True if and only if:

Bi,j = Bj,k = Bi,k = Ci,j = Cj,k = Ci,k = 0 (2.3)

Both oracles attempt to find information on Bi,j and Ci,j , and in their description above, we
describe their output as depending on B and C. But the oracle answers are actually computed
without access to either, as we shall see. In both cases there is a small chance of the oracle answer
being wrong. However this happens with low probability, and our algorithm is made resilient to
such errors at a later point.

Note that we have:

Pi,j,k,l = Bi,jCk,l +Bi,kCj,l +Bi,lCj,k +Bj,kCi,l +Bj,lCi,k +Bk,lCi,j (2.4)

62

2.5. Attacks on χ-based Multivariate ASASA

Algorithm 3: ZeroTripletOracle Z ′

Input: distinct i, j, k ∈ [n]
Output: True if Eq. 2.3 holds, False otherwise

1 for l 6= i, j, k ∈ [n] do
2 if Pi,j,k,l = 1 then
3 return False

4 return True

So Eq. 2.3 implies ∀l, Pi,j,k,l = 0. Conversely if Eq. 2.3 does not hold, then Pi,j,k,l = 0 holds for
all l 6= i, j, k with probability close to 2−(n−3) = 2−124. As a result, Z ′ is correct except with
negligible probability.

Now we use Z ′ to build Z, which returns True if and only if Bi,j = Ci,j = 0. As with Z ′,

Algorithm 4: ZeroPairOracle Z
Input: distinct i, j ∈ [n]
Output: True if Bi,j = Ci,j = 0, False otherwise

1 for k 6= i, j ∈ [n] do
2 if Z(i, j, k) then
3 return True

4 return False

there is a low probability of incorrect answer for Z ′, but our algorithm will be made resilient to
these errors later on.

Now we build a function FindGood(i) (Alg. 5), whose purpose will become clear shortly.
FindGood picks j, k randomly until Z(i, j) and Z(i, k) hold, but not Z(j, k). This is the case

Algorithm 5: FindGood
Input: i ∈ [n]
Output: j, k ∈ [n] such that Bi,j = Bi,k = Ci,j = Ci,k = 0, but (Bj,k, Cj,k) 6= (0, 0)

1 while True do
2 j ←$ [n]− {i}
3 k ←$ [n]− {i, j}
4 if Z(i, j) and Z(i, k) and not Z(j, k) then
5 return (j, k)

with probability roughly 2−6, and there are n(n−1)/2 choices for j, k so the probability of failure
is negligible. Now we explain the point of FindGood.

Let (λ, µ) = (Bj,k, Cj,k). The point of having the conditions at the output of FindGood is
that due to Eq.2.4, they imply:

∀l, Pi,j,k,l = λBi,l + µCi,l

so we recover (λB + µC)i,l for all l simply by looking at Pi,j,k,l. For simplicity we assume
(λ, µ) = (1, 0), and so we are recovering Bi,l (other cases correspond to the other two nonzero

63

Chapter 2. Structural Cryptanalysis of ASASA

elements of span{B,C}, which as pointed earlier cannot be distinguished from B). If we view B
as an n×n symmetric binary matrix with entries Bi,j , this means we recover a row of B, namely
Bi,∗. Now we can naturally define GetSpace(i) (Alg. 6), which recovers span{Bi,∗, Ci,∗}:

Algorithm 6: GetSpace
Input: i ∈ [n]
Output: span{Bi,∗, Ci,∗}

1 Let v ∈ Fn2
2 Let E = {0} ⊆ Fn2
3 while dimE < 2 do
4 (j, k)← FindGood(i)
5 for l ∈ [n] do
6 vl ← Pi,j,k,l

7 E ← E + span{v}
8 return E

For all i we now know span{Bi,∗, Ci,∗}. All that remains to do in order to build B (or C,
or B + C) is to choose a nonzero element of GetSpace(0) as the first row; then an element of
GetSpace(1) as the second row; and so forth. At each step i, we make sure that our choice of
elements is coherent up to this point by checking that the submatrix of rows 0 to i and columns
0 to i is symmetric. If not, we change our choice of element, backtracking if necessary. This is
described in Alg. 7.

Algorithm 7: Solve

Input: G,H ∈ Fn×n2 , step ∈ [n]
Output: span{B,C} or FAIL

1 if step = n then
2 return span{G,H}
3 for try ∈ {1, 2} do
4 for each choice of (x, y) linearly independent in GetSpace(step) do
5 Gstep,∗ ← x
6 Hstep,∗ ← y
7 if ∀i < step, Gi,step = Gstep,i and Hi,step = Hstep,i then
8 S ← Solve(G,H, step + 1)
9 if S 6= FAIL then

10 return S

11 return FAIL

In the end, span{B,C} is recovered as Solve(0, 0, 0) (where the first two parameters are the
zero matrix of Fn×n2). Notice that every recursive call to Solve repeats its inner loop twice in
case of failure. This is to account for the very rare case where the output of GetSpace might
be wrong. Our implementation never returns FAIL and completes within a second for n = 127,
which is the actual n value for the χ-based ASASA scheme (see Section 2.1.3 for a link to our
implementation).

64

2.5. Attacks on χ-based Multivariate ASASA

Application to ASAS.

Note that we only need to go through the previous algorithm for the first unperturbed bit in
the chain (z0, . . . , zn−p−1), namely z0. Indeed, we then recover y′0, y′1, y′2, and for the next bit we
have z1 = y′1 + y′2y

′
3, so only y′3 remains to be determined. This can be performed in negligible

time, as the system of equations stemming from this equality on the coefficients of y′3 is very
sparse19. By induction we can propagate this process to all other unperturbed bits.

However in the course of this process we also have to deal with the fact that even from the
start, we do not recover y′0, y′1, y′2 exactly, but span{y′0, y′1, y′2, 1} and span{y′1, y′2, 1}. Thus we
need to guess y′0, y′1, y′2 from the elements of these two vector spaces, then start the process of
rebuilding the rest of the chain (y′0, . . . , y

′
n−p−1) as in the previous paragraph. In our experiments,

it turns out that as long as p ≥ 2, there are always exactly 8 solutions for the chain of degree-2
polynomials (y′0, . . . , y

′
n−p−1).

To understand why, we need to look at the last unperturbed bit zn−p−1. For this bit, we
recover span{y′n−p−1, y

′
n−p, y

′
n−p+1, 1} and span{y′n−p, y′n−p+1, 1}. We can recognize y′n−p−1 in the

first space (or rather span{y′n−p−1, 1}) because it is also one of the factors in the expression of
zn−p−2. We can also identify span{y′n−p, 1} for the same reason. However there is fundamentally
no way to tell y′n−p−1 apart from y′n−p−1, and likewise for y′n−p, y′n−p, because the necessary
information is erased from the public key by the perturbation. For y′n−p for instance, we could
flip the (n − p)-th bit in the constant C1 of Ay and also flip the perturbed bit zn−p and this
would flip y′n−p without changing (z0, . . . , zn−p−1). Thus all 8 solutions for (y′0, . . . , y

′
n−p−1) are

valid in the sense that they correspond to equivalent keys, and we are free to choose one of them
arbitrarily.

Finally, up to this stage of the attack, we have pretended that Cz = 0. This actually
has no impact on any algorithm so far, except the one just above. With nonzero Cz, we have
〈F |ai〉 = zi+ci for c = (Az)−1Cz. This merely adds another degree of freedom in the construction
of the previous chain: we guess c0 and attempt to go through the process of building the chain.
If our guess was incorrect the algorithm fails after two iterations. Once it goes through for two
iterations we guess c1 and attempt one more iteration, and so forth. Since the chain-building
step has negligible complexity, this takes up negligible time.

Overall our algorithm is able to solve Problem 1 for the full n = 127 within a second on a
laptop computer. Thus the time complexity of this step is negligible.

2.5.4 Peeling off the Remaining ASA Layers

From ASA to SA.

At the end of the previous step we have recovered the chain (y′0, . . . , y
′
n−p−1) of polynomials at the

output of Ay. Now we are left with the task of recovering Ax, bAycn−p fromH = bAy◦χ◦Axcn−p.
Up to now we have always taken advantage of the very simple action of χ when considering only
a single output bit. However because Ay is truncated, we cannot expect that there exist linear
masks on the truncated output of Ay that give us access to a single bit at the output of χ. For
this reason we switch gear and set out to remove the first layer Ax instead.

First, we want to compute the linear component Lx of Ax. Let ∆ = {(Lx)−1ei : i < n}
denote the set of differences δ that activate only a single bit at the input of χ. Observe that a
single bit difference at the input of χ only affects 3 output bits. As a result we have an oracle

19For instance each degree-4 term in z1 may be written in only
(
4
2

)
= 6 ways as a product of two quadratic

terms, and so the corresponding equation on the coefficients of y′3 involves only 3 terms on average, and many
such equations have only one term, yielding a direct equality.

65

Chapter 2. Structural Cryptanalysis of ASASA

O that recognizes elements of ∆: namely for δ ∈ ∆, the output of H ′ = ∂H/∂δ has dimension
only 3 as x spans {0, 1}n.

Furthermore, a closer look reveals that if we remove the constant component in the output
of H ′, then the output of H ′ has dimension only 2. The reason for this is that, while each bit at
the input of χ affects 3 bits at the output, only 2 bits are affected in a nonlinear manner; and
since we are differentiating H, the linear component of χ only affects the constant component in
the output of H ′.

Let us define an input difference δ as a vector of n binary unknowns. Then we can formally
compute the function H ′. Assume δ ∈ ∆. Per the previous observation, we know that the
linear component of H ′(x) has dimension only two as x spans {0, 1}n. That is, for any pairwise
distinct k0, k1, k2 < n− p, there exists a nonzero vector (λ0, λ1, λ2) such that

∑
λiH

′
ki

= C(δ) is
constant20.

Now observe that H ′ has degree only one in its input variables xi, and the coefficient of each
xi is a linear combination of δi’s, hence the above equality gives us n linear conditions on δ.
Since δ lives in a space of dimension n, we can hope that this is enough to recover δ, at the cost
of guessing the λi’s (only 8 possibilities).

In short the algorithm so far sums up to:

1. Pick pairwise distinct k0, k1, k2 < n− p arbitrarily.

2. Guess λ = (λ0, λ1, λ2).

3. Write the polynomial equality
∑
λiH

′
ki

= 0. By looking at the coefficient of each xi in this
equality, we have n linear conditions on δ.

Let K(k, λ) denote the linear subspace of vectors satisfying these conditions. Then we know that
for every δ ∈ ∆, and every choice of k, there exists λ such that δ ∈ K(k, λ).

Note that the cardinality of ∆ is 128 = 27, while λ only contains 3 bits of information. Hence,
in order to single out each element of ∆, we repeat the previous algorithm 3 times. This gives us
3 sets of 8 spaces K(k, λ). For every choice of K in each set, we compute the intersection of the
spaces (83 = 29 possibilities). This yields 29 intersections. By construction we know that each
element of ∆ is in one of the intersections. So we recover ∆ by testing every element in every
intersection against the oracle O.

There are 29 intersections, so the only remaining question is whether some of the intersections
have dimension greater than 0 or 1 (which may considerably slow down the algorithm). Our
experiments show that this is in fact the case, but the resulting spaces still have very low
dimension. This is due to “false positives” caused by differences δ that activate 2 or 3 differences
at the input of δ; but these are quickly weeded out by testing against the oracles O.

We have now recovered the linear component of Ax. Thus we have access to bAy ◦ χ ◦
(⊕Cx)cn−p, where ⊕Cx denotes the addition of the constant Cx. In order to recover Cx, we
can use the fact that χ(v) + χ(v + ei) = ei (where ei is the canonical basis of Fn2) if and only if
vi−1 = vi+1 = 0. So for each i, we can flip the bits at position i − 1 and i + 1 at the input of
bAy ◦χ ◦ (⊕Cx)cn−p until the previous equality holds. This allows us to recover Cx very quickly.

Overall the complexity of this step can be approximated by 29 intersections of 3 spaces of
dimension 128, which costs around 29 · 2 · (27)3 = 231, so this step is negligible compared to step
1. In fact we have implemented this step on the full version of the scheme, and it takes only
about a minute to complete on a laptop computer.

20We always mean “constant” and “non-constant” with respect to the input x of H ′, and not the difference δ.

66

2.6. Attacks on White-Box ASASA

From SA to A.

We know bAy ◦ χcn−p, and we want to recover bAycn−p. Observe that χ(0) = 0, so bCycn−p =
F (0). Moreover χ(ei) = ei so bLy(ei)cn−p = bAy ◦ χcn−p(ei) and we are done.

2.6 Attacks on White-Box ASASA

In this section we show that the actual security of small-block ASASA ciphers is much lower than
was estimated by Biryukov et al.. First, we note that our main structural attack still applies.
Then, we present a different heuristic attack. As mentioned in the introduction, the structural
attack is not only more general, but also more efficient. The interest of the heuristic attack is
merely to show a different approach to analyzing ASASA.

2.6.1 Application of the Structural Attack

The observation that our structural attack still applies to small-block ASASA instances is due to
Itai Dinur, Orr Dunkelman, Thorsten Kranz and Gregor Leander [DDKL15a]. We are grateful
to them for bringing this fact to our attention, and allowing us to mention it here. At first sight
it may seem that our structural attack does not apply. Take for example the 16-bit instance,
composed of two 8-bit S-boxes. The overall degree is bounded by 7 · 7 = 49, which would require
a cube of dimension 50. This is not possible in F16

2 .
The crux of the matter is that the algebraic degree is actually much lower. This result is

due to Boura and Canteaut [BC13], and used by Dinur et al. in [DDKL15b] to show that the
degree of the ASASA construction is at most n− k, where n is the block size and k the number
of S-boxes. A cube of dimension n − k + 1 is then enough: the structural attack still applies,
with complexity close to n22n. In fact this implies the structural attack applies to any ASASA
construction, as far as degree deficiency is concerned. The only limitation is its complexity as
the block size grows larger.

The observation that our structural attack extends beyond its original target as a direct
consequence of generic bounds on the algebraic degree of SPN constructions is quite fruitful. It
was also observed independently by Biryukov and Khovratovich [BK15] to extend the attack to
ASASASA and beyond. Once again we are thankful to Dinur et al. for pointing this out.

2.6.2 Overview of the Heuristic Attack

We now describe a different procedure to recover the secret components of small-block schemes,
thus breaking their weak white-box security (Definition 10). Our algorithm relies rather heav-
ily on heuristics, and evaluating its efficiency requires actual implementation. We focused on
the smallest white-box instance, 16-bit ASASA16, whose claimed security level is 64 bits. Our
algorithm was able to recover its secret components under one minute on a laptop computer.

The small block size of white-box ASASA instances makes it possible to compute the distri-
bution of output differences for a single input difference in very reasonable time. In fact, one can
compute and store the entire difference distribution table (DDT) of a 16-bit cipher using just a
standard PC. For slightly bigger instances such as a 24-bit cipher, computing and storing the
entire DDT is still barely possible, even though it would require 3TB of space and 248 invocations
of the cipher; computing the distribution of only a few differences on the other hand remains
manageable.

67

Chapter 2. Structural Cryptanalysis of ASASA

Remark 3. Our attack makes use of the full codebook of the ciphers, which in general may be
seen as a very strong requirement. This is however only natural in the case of attacking white-box
implementations, as the user is actually required to be given the full codebook of the super S-boxes
as part of the implementation.

Similarly to the attack of the black box scheme, it is already enough to recover only one
of the external affine (or linear) layers in order to break the security of ASASA. Indeed, this
allows to reduce the cipher to either of ASAS or SASA, which can then be attacked in practical
time [BS01]. Thus we focus on removing the first linear layer. In accordance with the opening
remarks of Section 2.4.1, this amounts to finding the image space of each S-box through (Ax)−1.

The general idea of the attack is to create an oracle able to recognize whether an input
difference δ activates one or two S-boxes in the first S-box layer Sx. More accurately, we create
a ranking function F such that F(δ) is expected to be significantly higher if δ activates only one
S-box rather than two.

We present two choices for F which are both heuristic but nonetheless quite efficient as
shown by experiments. Both begin by computing the entire output difference distribution D(δ)
for the input difference δ, i.e. the row corresponding to δ in the DDT. Then the value of F(δ)
is computed from D(δ).

Walsh Transform.

The idea behind this version of the attack is quite intuitive. If δ activates only one S-box, then
after the first SA layers, two inner states computed from any two plaintexts with input difference
δ are equal on the output of the inactive S-box. Hence after the first ASA layers, they are equal
along 28 − 1 non-zero linear masks. Since these masks only traverse a single S-box layer before
the output of the cipher, linear cryptanalysis [Mat94] tells us that we can expect some linear
masks to be biased at the output of the cipher. On the other hand if both S-boxes are active
in the first round, no such phenomenon occurs, and linear biases on the output differences are
expected to be weaker.

In order to measure this difference, we propose to compute, for every output mask a, the value
f(a) = (

∑
x∈{0,1}16〈∂F∂δ(x)|a〉) − 215 (where the sum is computed in Z). That is, 2−15f(a) is

the bias of the output differences D(δ) along mask a. The function f can be computed efficiently,
since it is precisely the Walsh transform of the characteristic function of D(δ), and we can use a
fast Fourier transform algorithm. Then as a ranking function F we simply choose max(f), i.e.
the highest bias among all output masks21.

Number of Collisions.

It turns out that performing the Walsh transform is not truly necessary. Indeed, the number of
collisions in D(δ) is higher when δ activates only 1 S-box; where by number of collisions we mean
215 minus the number of distinct values in D(δ). This may be understood as a consequence
of the fact that whenever δ activates a single S-box, only 27 output differences are possible
after the first ASA layers; and depending on the properties of the active (random) S-box, the
distribution between these differences may be quite uneven. Whereas if both S-boxes are active,

21Alternatively a less clean but more efficient ranking function in practice is to compute the number of large
values of f , where a value is considered large if it is higher than 4σ, for σ the standard deviation in the case
where δ activates 2 S-boxes (which needs only be computed once for some fixed random ASASA instance — in
fact δ ≈ 250 for ASASA16).

68

2.6. Attacks on White-Box ASASA

215 differences are possible and the distribution is expected to be less skewed. Thus we pick as
ranking function F the number of collisions in D(δ) in the previous sense.

Once we have chosen a ranking function F , we simply compute the ranking of every possible
input difference, sort the differences, and choose the highest 16 linearly independent differences
according to our ranking. Our hope is that these differences only activate a single S-box. In a
second step, we will group together differences that activate the same S-box.

2.6.3 Description of the Heuristic Attack

We now describe the attack in detail. We focus on the collision ranking function, which is slightly
more efficient in practice.

First Step.

We wish to recover the individual components of the ASASA16 cipher Az ◦S y ◦Ay ◦Sx ◦Ax. The
first step of our attack consists in finding 16 linearly independent input differences to the cipher
such that only one of the two S-boxes of Sx is active. In other words, we want to find a family of
differences δi such that for all i, Ax(δi) is zero in its 8 most significant or 8 least significant bits.
As Ax is invertible, there are 2 × (28 − 1) non-trivial such differences, but we need an efficient
way to test if a given difference is one of them. This can be done by considering the distribution
of its corresponding output differences, and counting the number of collisions, as outlined in the
previous section.

That is, we attempt to recover 16 suitable differences δi by computing the entire DDT of
ASASA16, sorting the input differences by their decreasing number of collisions, and selecting the
first 16 linearly independent entries. We describe this formally as Algorithm 8.

Algorithm 8: Finding a basis of differences activating only one S-box of Sx at a time
Input: An instance of ASASA16

Output: A set D of 16 linearly independent differences activating only one S-box of Sx

1 for δ := 1 to 216 − 1 do
2 F [δ] := 215 - # range(∂ASASA16/∂δ)

3 L := sorted differences δ’s in decreasing order for F
4 D := ∅
5 i := 0
6 while #D < 16 do
7 if L[i] is linearly independent from D then
8 D := D ∪ L[i]

9 i := i+ 1

10 Return D

Complexity analysis (Alg. 8). Computing one iteration of Line 2 requires 216 calls to
ASASA16, each one corresponding to one memory access, and at most 216 words of tempo-
rary storage. The loop of Line 1 therefore requires 232 calls in total and 217 words of memory,
including R. The sorting of Line 3 can be done in about 220 accesses to R and does not require
additional memory. The loop of Line 6 has negligible cost. The total time complexity is thus of

69

Chapter 2. Structural Cryptanalysis of ASASA

the order of 232 memory accesses and the memory complexity of the order of 217 words (about
218 bytes in this case), which are respectively quadratic and linear in the size of the domain of
ASASA16

Second Step.

From the previous step, we know 16 input differences δi that each activate only one S-box of Sx,
and we can now use this knowledge to recover the first layer Ax. Similarly to the attack of the
black-box scheme of Section 2.4, it is not possible to uniquely determine Ax; but it is enough to
recover one of the equivalent mappings and later choose the affine equivalent representation of
the S-boxes accordingly. The consequence of this is that we only need to identify two groups of
8 linearly independent δi’s, respectively activating the first and the second S-box. Once this is
done, we may assume any value for the images of a group as long as they are linearly independent
and indeed activate only one S-box.

In order to achieve our goal, we can use the fact that sums of differences of a single group still
activate only one S-box, while if the differences come from two groups they obviously activate
two. We can use the same method as in the first step to determine whether a sum activates one
or two S-boxes, and thence we may hope to find the correct grouping by ensuring that every
linear combination of a group (or equivalently every combination of two differences of a group)
only activates a single S-box.

We can conveniently describe the resulting problem with a weighted graph and solve it with
a simple greedy algorithm. We define the vertices of the graph as being the differences δi, and
draw an edge between every pair of two (thus making the graph complete); the weight of the edge
(δi, δj) is defined as the ranking F(δi + δj) of δi + δj . The two partitions of 8 differences are then
initialized arbitrarily, with their weight defined as the sum of the weight of edges between vertices
belonging to the same partition. Finally, the following process is iterated until a fixed point is
reached: for any pair of vertices in different partitions, the pair is swapped if and only if this
would result in increasing the weight of the partition. We describe this formally as Algorithm 9.

Complexity analysis (Alg. 9). Assuming that the computations of Line 4 have been cached
when running Algorithm 8, every individual step can be computed with negligible time and
memory. We then only need to estimate how many times the loop of Line 7 is executed before
exiting on Line 16. First it is easy to see that the algorithm does indeed eventually terminate,
as W(S1) +W(S2) increases every time there is as swap of differences. Then, because there are
at most

(
16
8

)
= 12870 partitions to consider, we know that the process stops within this number

of iterations. In practice, it is unlikely for two S-boxes to be swapped more than once, and the
observed time complexity is actually very small.

2.6.4 Experimental Results and Discussion

We implemented the previous algorithm in C++. The implementation was able to recover the
first linear layer of 16-bit ASASA in a minute on average. This strongly invalidates the security
level of 64 bits estimated by [BBK14].

Moreover we implemented a faster but more heuristic algorithm in the Sage formal compu-
tation language [Tea]. This variant implements an oracle O that predicts whether a difference δ
activates one or two S-boxes, rather than a ranking function. The oracle simply calls the ranking
function, and decides that δ activates a single S-box if F(δ) is above a certain threshold. The
threshold is determined by comparing values of F for δ’s that activate one S-box, versus values

70

2.6. Attacks on White-Box ASASA

Algorithm 9: Computing partitions of D activating the same S-box
Input: A set D of 16 linearly independent differences activating only one S-box of Sx

Output: A partition (S1,S2) of D such that the S-box activated by differences in S1

(resp. S2) is the same for every difference
1 Define W(S) as

∑
i,j∈S,i 6=j W [i][j]

2 for i := 1 to 16 do
3 for j := 1 to 16 do
4 W [i][j] := F(D[i] + D[j])

5 S1 := {D[i], i := 0. . .7}
6 S2 := {D[i], i := 8. . .15}
7 while ∞ do
8 for δi ∈ S1 do
9 for δj ∈ S2 do

10 S′1 := ((S1 − {δi}) ∪ {δj})
11 S′2 := ((S2 − {δj}) ∪ {δi})
12 if W(S′1) +W(S′2) >W(S1) +W(S2) then
13 S1 := S′1
14 S2 := S′2

15 if Neither S1 nor S2 has been modified then
16 Return (S1,S2)

obtained when δ activates both S-boxes (this computation only occurs once, by picking a known
but random instance and performing the measure).

The algorithm then proceeds by picking random δ’s and using the oracle to check whether
δ activates a single S-box. Once 16 such linearly independent δ’s are found the first step is
complete. The second step is identical to the original algorithm. Each δ has probability 2−8

of activating a single S-box. Hence the expected number of δ’s that will need to be tested
is 16 · 28 = 224, which is lower than the 232 DDT row computations incurred by the original
algorithm. However this algorithm requires the existence of a clean threshold between the two
cases for δ’s.

Sage is a high-level interpreted language, which makes it significantly slower than an equiv-
alent implementation in C++. Nonetheless due to its lower complexity, the previous algorithm
was also able to succeed in a minute on average, with either choice of the ranking function F .

All of the implementations are publicly available. A link is provided in Section 2.1.3.

Remark 4. An interesting observation is that both ranking functions distinguish δ’s that activate
one or two S-boxes much less efficiently if Ay is maximum distance separable (MDS). However the
attack still goes through, meaning that relying on such matrices is not a suitable countermeasure.

2.6.5 Adapting the Algorithm to Larger White-Box Instances

The algorithm from the previous section can be adapted to larger white-box instances in a
straightforwards manner. However the required computational power is higher. Beside the 16-
bit instance, we have also successfully run the attack on the 20-bit instance.

71

Chapter 2. Structural Cryptanalysis of ASASA

72

Chapter 3

Efficient and Provable White-Box
Primitives

3.1 Introduction

White-Box Cryptography

We have seen some constructions of white-box cryptography in the previous chapter. Our struc-
tural attacks was able to break these schemes. In this chapter, we propose our own constructions,
which offer provable security guarantees. We begin with an overview of white-box cryptography,
aiming to introduce the incompressibility model in which our constructions hold.

The notion of white-box cryptography was originally introduced by Chow et al. [CEJO02a,
CEJO02b]. The basic goal of white-box cryptography is to provide implementations of cryp-
tographic primitives that offer cryptographic guarantees even in the presence of an adversary
having direct access to the implementation. The exact content of these security guarantees
varies, and different models have been proposed.

Ideally, white-box cryptography can be thought of as trying to achieve security guarantees
similar to a Trusted Execution Environment [ARM09] or trusted enclaves [CD16], purely through
implementation means–in so far as this is feasible. Of course this line of research finds appli-
cations in many situations where code containing secret information is deployed in untrusted
environments, such as software protection (DRM) [Wys09, Gil16].

Concretely, the initial goal in [CEJO02a, CEJO02b] was to offer implementations of the DES
and AES block ciphers, such that an adversary having full access to the implementation would not
be able to extract the secret keys. Unfortunately both the initial constructions and later variants
aiming at the same goal (such as [XL09]) were broken [BGEC04, GMQ07, WMGP07, DMRP12,
. . .]: to this day no secure white-box implementation of DES or AES is known.

Beside cryptanalytic weaknesses, defining white-box security as the impossibility to extract
the secret key has some drawbacks. Namely, it leaves the door open to code lifting attacks,
where an attacker simply extracts the encryption function as a whole and achieves the same
functionality as if she had extracted the secret key: conceptually, the encryption function can be
thought of as an equivalent secret key22.

This has led research on white-box cryptography into two related directions. One is to find
new, sound and hopefully achievable definitions of white-box cryptography. The other is to
propose new constructions fulfilling these definitions.

22This can be partially mitigated by the use of external encodings [CEJO02a]

73

Chapter 3. Efficient and Provable White-Box Primitives

In the definitional line of work, various security goals have been proposed for white-box
constructions. On the more theoretical end of the spectrum, the most demanding property one
could hope to attain for a white-box construction would be that of virtual black-box obfuscation
[BGI+01]. That is, an adversary having access to the implementation of a cipher would learn no
more than they could from interacting with the cipher in a black-box way (i.e. having access to
an oracle computing the output of the cipher). Tremendous progress has been made in recent
years in the domain of general program obfuscation, starting with [GGH+13b]. However the
current state of the art is still far off practical use, both in terms of concrete security (see e.g.
[Hal15b]) and performance (see e.g. an obfuscation of AES in [Zim15]).

A less ambitious goal, proposed in [DLPR13, BBK14] is that an adversary having access to
the implementation of an encryption scheme may be able to encrypt (at least via code lifting),
but should remain unable to decrypt. This notion is called strong white-box in [BBK14] and one-
wayness in [DLPR13]. Such a goal is clearly very similar to that of a trapdoor permutation. And
indeed, known constructions rely on public-key primitives. As a consequence they are no faster
than public key encryption. An interesting way to partially circumvent this issue, proposed in
[BBK14], is to use multivariate cryptography, where knowledge of the secret information allows
encryption and decryption at a speed comparable to standard symmetric ciphers (although public
key operations are quite slow). However multivariate cryptography lacks security reductions
to well-established hard problems (although they are similar in flavor to MQ), and numerous
instantiations have been broken, including those of [BBK14]: see [GPT15, DDKL15b, MDFK15].

Finally, on the more modest but efficiently achievable end of the spectrum, one can ask
that an adversary having access to the white-box implementation cannot produce a functionally
equivalent program of significantly smaller size. This notion has been called incompressibility in
[DLPR13], weak white-box in [BBK14] and space-hardness in [BI15]23. This definition implies
in particular that it is difficult for an adversary to extract a short master key, which captures
the goal of the original white-box constructions by Chow et al. In addition, the intent behind
this approach is that large, incompressible code can more easily be made resistant to code lifting
when combined with engineering obfuscation techniques [BBK14, BI15, Gil16]; and make code
distribution more cumbersome for a potential hacker.

As mentioned earlier, there is no known implementation of AES or DES that successfully
hides the encryption key. A fortiori there is no known way to achieve incompressibility for
AES, DES or indeed any pre-existing cipher. However recent constructions have proposed new,
ad-hoc, and quite efficient ciphers specifically designed to meet the incompressibility criterion
[BBK14, BI15]. These constructions aim for incompressibility by relying on a large pseudo-
random table hard-coded into the implementation of the cipher. Repeated calls to the table are
made during the course of encryption. The idea is that, without knowledge of all or most of the
table, most plaintexts cannot be encrypted. This enforces incompressibility.

In [BBK14], the table is used as an S-box in a custom block cipher design. This requires build-
ing the table as a permutation, which is achieved using an ASASA construction, alternating secret
affine and non-linear layers. Unfortunately this construction was broken [DDKL15b, MDFK15].
This type of attack is completely avoided in the new SPACE construction [BI15], where the
table is built by truncating calls to AES. This makes it impossible for an adversary to recover
the secret key used to generate the table, based solely on the security of AES. However this also
implies that the table is no longer a permutation and cannot be used as an S-box. Accordingly,
in SPACE, the table is used as a round function in a generalized Feistel network. While an ad-

23Here, we lump together very similar definitions, although they are technically distinct. More details are
provided in Section 3.2.1.

74

3.1. Introduction

versary seeking to extract the key is defeated by the use of AES, there is no provable resistance
against an adversary trying to compress the cipher.

WhiteBlock and WhiteKey: Provable Schemes

Both of the previously mentioned constructions in [BBK14, BI15] use ad-hoc designs. They
are quite efficient, but cannot hope to achieve provable security. Our goal is to offer provable
constructions, while retaining similar efficiency.

First, we introduce new formal definitions of incompressibility, namely weak and strong in-
compressibility. Weak incompressibility is very close to incompressibility definitions in previous
work [BBK14, BI15], and can be regarded as a formalization of the space-hardness definition of
[BI15]. Strong incompressibility on the other hand is a very demanding notion; in particular it
is strictly stronger than the incompressibility definition of [DLPR13].

Our main contribution is to introduce two provably secure white-box constructions, named
WhiteKey and WhiteBlock. We prove both constructions in the weak model. The bounds we
obtain are close to a generic attack, and yield quite efficient parameters. Moreover we also prove
WhiteKey in the strong model.

Previous work has concentrated on building white-box block ciphers. This was of course
unavoidable when attempting to provide white-box implementations of AES or DES. However,
it was already observed in the seminal work of Chow et al. that the use of white-box components
could be limited to key encapsulation mechanisms [CEJO02a]. That is, the white-box component
is used to encrypt and decrypt a symmetric key, which is then used to encrypt or decrypt the
rest of the message. This is of course the same technique as hybrid encryption, and beneficial
for the same reason: white-box component are typically slower than standard symmetric ciphers
(albeit to a lesser extent than public-key schemes).

In this context, the white-box component must not necessarily be a block cipher, and our
WhiteKey construction is in fact a key generator. That is, it takes a random string as input
and outputs a key, which can then be used with any standard block cipher. Its main feature
is that it is provably strongly incompressible. Roughly speaking, this implies it is infeasible
for an adversary, given full access to an white-box implementation of WhiteKey, to produce a
significantly smaller implementation that is functionally equivalent on most inputs. In fact, an
efficient adversary knowing this smaller implementation cannot even use it to distinguish, with
noticeable probability, outputs of the original WhiteKey instance from random.

However, WhiteKey is not invertible, and in particular it is not a block cipher, unlike prior
work. Nevertheless we also propose a white-box block cipher named WhiteBlock. WhiteBlock
can be used in place of any 128-bit block cipher, and is not restricted to key generation. However
this comes at a cost: WhiteBlock has a more complex design, and is slightly less efficient than
WhiteKey. Furthermore, it is proven only in the weak incompressibility model (essentially the
same model as that of SPACE [BI15]), using a heuristic assumption. Thus WhiteKey is a cleaner
and more efficient solution, if the key generation functionality suffices (which is likely in most
situations where a custom white-box design can be used).

Regarding the proof of WhiteKey in the strong incompressibility model, the key insight is
that what we are trying to build is essentially an entropy extractor. Indeed, roughly speaking, the
table can be regarded as a large entropy pool. If an adversary tries to produce an implementation
significantly smaller than the table, then the table still has high (min-)entropy conditioned on
the knowledge of the compressed implementation. Thus if the key generator functions as a good
entropy extractor, then the output of the key generator looks uniform to an (efficient) adversary
knowing the compressed implementation.

75

Chapter 3. Efficient and Provable White-Box Primitives

Furthermore, for efficiency reason, we want our extractor to be local, i.e. we want our white-
box key generator to make as few calls to the table as possible. Hence a local extractor does
precisely what we require, and as a result our proof relies directly on previous work on local
extractors [Vad04]. Meanwhile our proofs in the weak incompressibility model use dedicated
combinatorial arguments.

Finally, we provide concrete instantiations of WhiteKey and WhiteBlock, named Puppy-
Cipher and CoureurDesBois respectively. Our implementations show that these instances
are quite efficient, yielding performance comparable to previous ad-hoc designs such as SPACE.
Like in previous work, our instances also offer various choices in terms of the desired size of the
white-box implementation.

Relation of White-Box Cryptography with Other Models

It is noteworthy that the standard formalization of white-box cryptography is very close to
other models. For example, the bounded-storage model considers the problem of communicating
securely given a long public random string which the adversary is unable to store. Indeed, up
to renaming, it is essentially the same as the incompressibility of the key, and one of our design
is inspired by a solution proposed to this problem [Vad04]. Another model, even stronger than
incompressibility, is intrusion-resilience [Dzi06]. The goal is to communicate securely, even when
a virus may output any data to the adversary during the computations of both parties, as long
as the total data leaked is somewhat smaller than the key size. The disadvantage of this model is
that it requires rounds of communication (e.g. 9 rounds in [CDD+07]), while white-box solutions
need only add some computations.

An independent work by Bellare, Kane and Rogaway was accepted to Crypto 2016 [BKR16],
whose underlying goal and techniques are similar to our strong incompressibility model, and the
WhiteKey construction in particular. Although the setting of [BKR16] is different and no mention
is made of white-box cryptography, the design objective is similar. The setting considered in
[BKR16] is that of the bounded-retrieval model [ADW09], and the aim is to foil key exfiltration
attempts by using a large encryption key. The point is that encryption should remain secure
in the presence of an adversary having access to a bounded exfiltration of the big key. The
exfiltrated data is modeled as the output of an adversarially-defined function of the key with
bounded output.

The compressed implementation plays the same role in our definition of strong incompress-
ibility: interestingly, our strong model almost matches big-key security in that sense (contrary
to prior work on incompressible white-box cryptography, which is closer to our weak model).
Relatively minor differences include the fact that we require a bound on the min-entropy of the
table/big key relative to the output of the adversarially-defined function, rather than specifically
the number of bits; and we can dispense with a random oracle at the output because we do not
assume that the adversary is able to see generated keys directly, after the compression phase.
A notable difference is how authenticity is treated: we require that the adversary is unable to
encrypt most plaintexts, given the compressed implementation; whereas the authors of [BKR16]
only enforce authenticity when there is no leakage. A word-based generalization of the main
result in [BKR16], as mentioned in discussion of that paper, would be very interesting from our
perspective, likely allowing better bounds for WhiteKey in the strong incompressibility model.
Proofs of weak incompressibility, the WhiteBlock construction, as well as the concrete design of
the WhiteKey instance using a variant of the extractor from [CMNT11], are unrelated.

As mentioned earlier in the introduction, the design of local extractors is also directly related
to our proof in the strong incompressibility model, most notably [Vad04].

76

3.2. Models

3.2 Models

3.2.1 Context

As noted in the introduction, the term white-box cryptography encompasses a variety of models,
aiming to achieve related, but distinct security goals. Here we are interested in the incompress-
ibility model. The basic goal is to prevent an attacker who has access to the full implementation
of a cipher to produce a more compact implementation.

Incompressibility has been defined under different names and with slight variations in prior
work. It is formally defined as (λ, δ)-Incompressibility in [DLPR13]. A very similar notion is
called weak white-box in [BBK14], and space-hardness in [BI15]. In [BBK14], the weak white-box
model asks that an efficient adversary, given full access to the cipher implementation, is unable
to produce a new implementation of the same cipher of size less than some security parameter T .
In [BI15], this notion is refined by allowing the adversary-produced implementation to be correct
up to a negligible proportion 2−Z of the input space. Thus a scheme is considered (T,Z)-space-
hard iff an efficient adversary is unable to produce an implementation of the cipher of size less
than T , that is correct on all but a proportion 2−Z of inputs. This is essentially equivalent to
the (λ, δ)-incompressibility definition of [DLPR13], where λ and δ play the respective roles of T
and 2−Z .

In this work, we introduce and use two main notions of incompressibility, which we call
weak and strong incompressibility. Weak incompressibility may be regarded as a formalization
of space-hardness from [BI15]. As the names suggest, strong incompressibility implies weak
incompressibility (cf. Section 3.2.6). The point of strong incompressibility is that it provides
stronger guarantees, and is a natural fit for the WhiteKey construction.

3.2.2 Preliminary Groundwork

To our knowledge, all prior work that has attempted to achieve white-box incompressibility
using symmetric means24 has followed a similar framework. The general idea is as follows.
The white-box implementation of the cipher is actually a symmetric cipher that uses a large
table as a component. The table is hard-coded into the implementation. To an adversary
looking at the implementation, the table looks uniformly random. An adversary attempting to
compress the implementation would be forced to retain only part of the table in the compressed
implementation. Because repeated pseudo-random calls to the table are made in the course of
each encryption and decryption, any implementation that ignores a significant part of the table
would be unable to encrypt or decrypt accurately most messages. This enforces incompressibility.

To a legitimate user in possession of the shared secret however, the table is not uniformly
random. It is in fact generated using a short secret key. Of course this short master key should
be hard to recover from the table, otherwise the scheme could be dramatically compressed.

Thus a white-box encryption scheme is made up of two components: an encryption scheme,
which takes as input a short master secret key and uses it to encrypt data, and a white-box
implementation, which is functionally equivalent, but does not use the short master secret key
directly. Instead, it uses a large table (which can be thought of as an equivalent key) that has
been derived from the master key. This situation is generally formalized by defining a white-
box scheme as an encryption scheme together with a white-box compiler, which produces the
white-box implementation of the scheme.

24This excludes the incompressible construction from [DLPR13], which is based on a modified RSA.

77

Chapter 3. Efficient and Provable White-Box Primitives

Definition 11 (encryption scheme). An encryption scheme is a mapping E : K×R×P → C, tak-
ing as input a key K ∈ K, possibly some randomness r ∈ R, and a plaintext P ∈ P. It outputs a
ciphertext C ∈ C. Furthermore it is required that the decryption scheme be invertible, in the sense
that there exists a decryption function D : K×C → P such that ∀K,R, P,D(K,E(K,R, P)) = P .

Definition 12 (white-box encryption scheme). A white-box encryption scheme is defined by a
pair of two encryption schemes:

E1 : K ×R×P → C
E2 : T ×R× P → C

together with a white-box compiler C : K → T , such that for all K ∈ K, E1(K, ·, ·) is functionally
equivalent to E2(C(K), ·, ·).

In the definition above, E1 can be thought of as a standard encryption scheme relying on a
short (say, 128-bit) master key K, while E2 is its white-box implementation, relying on a large
table T derived from K. To distinguish between E1 and E2, we will sometimes call the first
scheme the cipher, and the second the (white-box) implementation.

3.2.3 Splitting the Adversaries

A white-box scheme is faced with two distinct adversaries:

• The black-box adversary attempts to attack the cipher itself with respect to some standard
black-box security notion.

• The white-box adversary attempts to break incompressibility by producing a smaller im-
plementation of the encryption scheme.

The black-box adversary can be evaluated with respect to standard security notions such as
IND-CCA. The specificity of white-box schemes is of course the second adversary, on which we
now focus. The white-box adversary itself can be decomposed into two distinct adversaries:

• The compiler adversary attempts to recover the master key K of E1 given the implemen-
tation E2. This is the adversary that succeeds in the cryptanalyses of e.g. [BGEC04,
GMQ07, DDKL15b, MDFK15]. More generally this adversary attempts to distinguish
C(K) for K ←$ K from a uniform element of T .

• Finally, the implementation adversary does not attempt to distinguish T , and instead
regards T as uniformly random. She focuses purely on the white-box implementation E2.
She attempts to produce a functionally equivalent (up to some error rate specified by the
security parameters), but smaller implementation of E2.

Nicely enough, the three black-box, compiler and implementation adversaries target respec-
tively the E1, C, and E2 components of the white-box scheme (hence their name). Of course the
two white-box adversaries (targeting the compiler and implementation) break incompressiblity,
so they can be captured by the same security definition (as in [DLPR13]). However it is helpful
to think of the two as separate adversaries, especially because they can be thwarted by separate
mechanisms. Moreover it is clear that resistance to both adversaries implies incompressibility
(the dichotomy being whether the table can be efficiently distinguished from random).

78

3.2. Models

The authors of [BI15] introduce a new general method to make sure that the compiler ad-
versary fails, i.e. C(T) is indistinguishable from uniform. Namely, they propose to generate the
table T by truncating the output of successive calls to AES (or some other fixed block cipher).
In this scenario the master key K of E1 is the AES key. Assuming AES cannot be distinguished
from a uniformly random permutation, and the truncated output is (say) at most half of the
original cipher, then the table T is indistinguishable from a random function.

3.2.4 Weak Incompressibility

As noted in the previous section, using the technique from [BI15], defeating the compiler ad-
versary is quite easy, and relies directly and provably on the security of a standard cipher. As
a result, our security definition (and indeed, our constructions) focus on the implementation
adversary.

The weak incompressibility notion we define below is very close to the space-hardness notion
of [BI15], indeed it is essentially a formalization of it. Like in [BBK14, BI15], the definition is
specific to the case where the table T is actually a table (rather than an arbitrary binary string).
As such the table is a function (or permutation) T : I → O, and can be queried on inputs i ∈ I.

We write weak incompressibility as ENC-TCOM: ENC reflects the fact that the adversary’s
ultimate goal is to encrypt a plaintext. TCOM stands for table-compressed, as the adversary is
given access to a compressed form of the table. This is of course weaker than being given access
to a compressed implementation defined in an arbitrary adversarially-defined way, as will be the
case in the next section.

In the following definition, the encryption scheme should be thought of as the white-box
implementation E2 from the previous sections. In particular the “key” can be thought of as a
large table.

Definition 13 (Weak incompressibility, ENC-TCOM). Let E : T ×R×P denote an encryption
scheme. Let s, λ denote security parameters. Let us further assume that the key T ∈ T is a
function T : I → O for some input and output sets I and O. The encryption scheme is said
to be τ -secure for (s, λ, δ)-weak incompressibility iff, with probability at least 1 − 2−λ over the
random choice of T ∈ T (performed in the intial step of the game), the probability of success of
the adversary running in time τ in the following game is upper-bounded by δ.

1. The challenger B picks T ∈ T uniformly at random.

2. For 0 ≤ i < s, the adversary chooses qi ∈ I, and receives T (qi) from the challenger. Note
that the queries are adaptive.
At this point the adversary is tasked with trying to encrypt a random message:

3. The challenger chooses P ∈ P uniformly at random, and sends P to the adversary.

4. The adversary chooses C ∈ C. The adversary wins iff C decrypts to P (for key T).

In other words, a scheme is (s, λ, δ)-weakly incompressible iff any adversary allowed to adap-
tively query up to s entries of the table T can only correctly encrypt up to a proportion δ of
plaintexts (except with negligible probability 2−λ over the choice of T). Note that (s, λ, δ)-weak
incompressibility matches exactly with (s,− log(δ))-space-hardness in [BI15]. The only difference
is that our definition is more formal, as is necessary since we wish to provide a security proof.
In particular we specify that the adversary’s queries are adaptive.

79

Chapter 3. Efficient and Provable White-Box Primitives

It should also be noted that the adversary’s goal could be swapped for e.g. indistinguishability
in the definition above. The reason we choose a weaker goal here is that it matches with prior
white-box defintions, namely space-hardness [BI15] and weak white-box [BBK14]. Moreover it
makes sense in white-box contexts such as DRM, where a hacker is attempting to create a rogue
encryption or decryption algorithm: the point is that such an algorithm should fail on most
inputs, unless the adversary has succeeded in extracting the whole table (or close to it), and the
algorithm includes it.

It is noteworthy that in our definitions, “incompressibility” is captured as a power given
to the adversary. The adversary’s goal, be it encryption or indistinguishability, can be set
independently of the specific form of compressed implementation she is allowed to ask for. This
makes the definition conveniently modular, in the spirit of standard security notions such as
IND-CCA.

3.2.5 Strong Incompressibility

We now introduce a stronger notion of incompressibility. This definition is stronger in two
significant ways.

1. First, there is no more restriction on how the adversary can choose to compress the im-
plementation. In the case of weak incompressibility, the adversary was only allowed to
“compress” by learning a portion of the table. With strong incompressbility, she is allowed
to compress the implementation in an arbirary way, as long as the table T retains enough
randomness from the point of view of the adversary (e.g. she does not learn the whole
secret).

2. Second, the adversary’s goal is to distinguish the output of the encryption function from
random, rather than being able to encrypt. This requirement may be deemed too demand-
ing for some applications, but can be thought of as the best form of incompressibility one
can ask for.

We denote strong incompressibility by IND-COM because the ultimate goal of the adversary
is to break an indistinguishability game (IND), given a compressed (or compact) implementation
of their choice (COM). We actually give more power to the adversary than this would seem to
imply, as the adversary is also given the power to query plaintexts of her choice after receiving
the compressed implementation.

Note that in the following definitions, f is not computationally bounded, so generating the
tables via a pseudorandom function is not possible.

Definition 14 (Strong incompressibility, IND-COM). Let E : T ×R×P denote an encryption
scheme. Let µ denote a security parameter. Let us further assume that the key T ∈ T is chosen
according to some distribution D (typically uniform). The scheme E is said to be (τ, ε)-secure
for µ-strong incompressibility iff the advantage of an adversary A running in time τ and playing
the following game is upper-bounded by ε.

1. The adversary chooses a set S and a function f : T → S, subject only to the condition that
for all s ∈ S, the min-entropy of the variable T conditioned on f(T) = s is at least µ. The
function f should be thought of as a compression algorithm chosen by the adversary.

2. Meanwhile the challenger B picks T ∈ T according to the distribution D (thus fixing an
instance of the encryption scheme).

80

3.2. Models

3. The adversary receives f(T). At this point the adversary is tasked with breaking a standard
IND-CPA game, namely:

4. The adversary may repeatedly choose any plaintext P ∈ P, and learns E(T,R, P).

5. The adversary chooses two plaintext messages P0, P1 ∈ P, and sends (P0, P1) to B.

6. The challenger chooses a uniform bit b ∈ {0, 1}, randomness R ∈ R, and sends E(T,R, Pb)
to the adversary.

7. The adversary computes b′ ∈ {0, 1} and wins iff b′ = b.

It may be tempting, in the previous definition, to allow the adversary to first query E, and
choose f based on the answers. However it is not necessary to add such interactions to the
definition: indeed, such interactions can be folded into the function f , which can be regarded as
an arbitrary algorithm or protocol between the adversary and the challenger having access to T .
The only limitation is that the min-entropy of T should remain above µ from the point of view
of the adversary. It is clear that a limitation of this sort is necessary, otherwise the adversary
could simply learn T .

Furthermore, while a definition based on min-entropy may seem rather impractical, it en-
compasses as a special case the simpler space-hard notion of [BI15]. In that case the table T is a
uniform function, and f outputs a fixed proportion 1/4 of the table. The min-entropy µ is then
simply the number of unknown output bits of the table (namely 3/4 of its output).

The WhiteKey construction we define later on is actually a key generator. That is, it takes
as input a uniformly random string and outputs a key. The strong incompressibility definition
expects an encryption scheme. In order for the WhiteKey key generator to fulfill strong incom-
pressibility, it needs to be converted into an encryption scheme. This is achieved generically by
using the generated key (the output of WhiteKey) with a conventional symmetric encryption
scheme, as in a standard hybrid cryptosystem. For instance, the plaintext can be XORed with
the output of a pseudorandom generator whose input is the generated key. Strictly speaking,
when we say that WhiteKey satisfies strong incompressilibility, we mean that this is the case
when WhiteKey is used as a key generator in combination with any conventional symmetric
encryption process.

Note that this does not enforce authenticity. For instance, if the generated key is used as an
input to a stream cipher, forgeries are trivial. More generally it is not possible to prevent existen-
tial forgeries, as the adversarially compressed implementation could include any fixed arbitrary
valid ciphertext. However universal forgeries can be prevented. This is naturally expressed by
the following model. The model actually captures the required goal in previous definitions of
incompressibility, in fact the model as a whole is essentially equivalent to incompressibility in
the sense of [DLPR13].

Definition 15 (Encryption incompressibility, ENC-COM). Let E : T × R × P denote an en-
cryption scheme. Let µ denote a security parameter. Let us further assume that the key T ∈ T
is chosen according to some distribution D (typically uniform). The scheme E is said to be
(τ, ε)-secure for µ-strong incompressibility iff the advantage of an adversary A running in time
τ and playing the following game is upper-bounded by ε.

1. The adversary chooses a distribution D with min-entropy at least µ.

81

Chapter 3. Efficient and Provable White-Box Primitives

2. The adversary chooses a set S and a function f : T → S, subject only to the condition that
for all s ∈ S, the min-entropy of the variable T conditioned on f(T) = s is at least µ. The
function f should be thought of as a compression algorithm chosen by the adversary.

3. Meanwhile the challenger B picks T ∈ T according to the distribution D (thus fixing an
instance of the encryption scheme).

4. The adversary receives f(T).
At this point the adversary is tasked with forging a message, namely:

5. The adversary samples a plaintext M ∈ P from the distribution D.

6. The adversary may repeatedly choose any plaintext P ∈ P, and learns E(T,R, P).

7. The adversary wins iff she can computes a C ∈ C such that D(T,C) = M .

This model can also be fulfilled by the WhiteKey scheme, if we derive the required randomness
from H(P) + r where H is a random oracle, P is the plaintext, and r is uniform value of µ bits
put in the encryption. The decryption starts by recovering the key, and then checks if the
randomness used came from H(P ′, r) where P ′ is the decrypted plaintext. This naturally makes
any encryption scheme derived from a key generator resistant to universal forgeries.

Remark that it is necessary in the model to have the forged message generated independently
of f(T), otherwise one can simply put an encryption of the message in f(T).

Finally, observe that ENC-COM is stronger than ENC-TCOM, as ENC-TCOM it is the
special case of ENC-COM where the adversary’s chosen function f does nothing more than
querying T on some adaptatively chosen inputs, and returning the outputs.

3.2.6 Strong Incompressibility Implies Incompressibility

In this section, we show that the ENC-COM security definition from Section 3.2.5 implies in-
compressibility as defined in [DLPR13]. More precisely, recall from Section 3.2 that we split the
white-box adversary into two separate entities, called the compiler and implementation adver-
saries. In a nutshell, we show that if both adversaries fail, then the adversary against incompress-
ibility in the sense of [DLPR13] also fails. Thus, we actually prove two things: 1) it was indeed
legitimate to split the white-box incompressibility adversary into compiler and implementation
adversaries, and 2) resistance against both adversaries (the second of which is captured by strong
incompressibility) implies incompressibility in the sense of [DLPR13]. Since resistance against
the compiler adversary is easy using the technique from [BI15] (cf. Section 3.2), the statement
(2) can be summed up as “strong incompressibility implies incompressibility”.

The main point of this result is that incompressibility in the sense of [DLPR13] captures very
directly a natural notion of a program being incompressible. Meanwhile, our definition of strong
incompressibility, albeit more expressive and general, may not appear at first as saying anything
about the encryption scheme being incompressible. The following proof clarifies this point.

In order to establish the result, we first need to formally defined the compiler adversary. This
can be done quite naturally as follows.

Definition 16 (Compiler security). A white-box compiler C : K → T (as defined in Defi-
nition 12) is said to be (τ, ε)-secure iff the advantage of an adversary running in time τ and
playing the following game is upper-bounded by ε. The game is a simple real-or-random game
where the adversary interacts with a challenger.

82

3.2. Models

1. The challenger chooses a uniform bit b ∈ {0, 1}. If b = 0, the challenger picks T uniformly
in T . If b = 1, the challenger picks K uniformly in K, and sets T = C(K). In both cases
the challenger sends T to the adversary.

2. Upon receiving T , the adversary computes a bit b′ and wins iff b′ = b.

We now recall the incompressibility definition of [DLPR13], adapated to our setting. The
version given below is slightly simpler than the original, because we specialize it to a symmetric
setting, where it is assumed that an adversary given access to a white-box implementation can
encrypt and decrypt at will. Thus we ignore the difference between CPA and CCA versions of
the definition. We also disregard recompilation attacks, although this section could be extended
in a straightforward way to include that case (by modifying the definition of compiler security
to allow recompilations). We also slightly adapt the definition to account for the fact that we
allow randomness in the encryption scheme. Finally we also add the constraint that the running
time of the program P output by the adversary is upper-bounded by the running time τ of the
adversary. This is to eliminate trivial and generic attacks in the case where P is computationally
unbounded (e.g. part of T is hard-coded in P and P uses it to brute force the master secret K).

Definition 17 ((λ, δ)-incompressibility). Let (E1, E2, C) be a white-box scheme, with cipher
E1 : K ×R× P → C, white-box implementation E2 : T ×R× P → C and compiler C : K → T .
The scheme is said to be (τ, ε)-secure for (λ, δ)-incompressibility iff the success probability of an
adversary running in time τ and playing the following game is upper-bounded by ε.

1. The challenger chooses K uniformly in K, and sends C(K) to the adversary.

2. The adversary creates a program p : P → C. The adversary wins iff the size of p is less
than λ, and for all but a fraction δ of plaintexts P , p(P) decrypts to P .

Thus informally, (λ, δ)-incompressibility says that an adversary, given a white-box implemen-
tation of an instance of the scheme, is unable to produce with noticeable probability a program
of size less than λ that is functionally equivalent on a fraction δ of inputs, i.e. that correctly
encrypts a fraction δ of plaintexts.

For simplicity, we assume below that tables T ∈ T are uniformly random functions of a fixed
size, and denote by |T | the total number of output bits of a table (equivalently, the total number
of bits necessary to encode T).

Theorem 1. Let (E1, E2, C) denote a white-box encryption scheme. Assume that E2 is (τ, ε−ε′)-
secure for (|T | − λ,− log(ε), δ)-ENC-COM, and C is (τ ′, ε′)-secure for compiler security. Then
the scheme is (τ, ε)-secure for (λ, δ) incompressibility.

Proof. Assume we have an adversary A breaking (τ, ε)-security for (λ, δ) incompressibility. Also
assume that C is (τ ′, ε′)-secure. Then we are going to build an adversary breaking (τ, ε − ε′)-
security for (|T | − λ,− log(ε), δ)-ENC-COM.

To see this, first consider the adversary A, playing the incompressibility game GINC . We
now replace GINC with G′INC , where the only difference is that in the step 1 of GINC , instead of
choosing K and sending T = C(K) to the adversary, the challenger directly chooses T uniformly
at random in T and sends it to the adversary. Distinguishing the views of the adversary in GINC
and G′INC is exactly expressed by the compiler security game. As a result, provided τ ′ ≥ τ , the
same adversary A breaks (τ, ε− ε′)-security for G′INC .

We now build an adversary A′ against ENC-COM. The function f chosen by A′ is actually
the adversary A itself, viewed as a function f = A of T outputting a program p. Since the size

83

Chapter 3. Efficient and Provable White-Box Primitives

of p is upper-bounded by λ and T is uniform, the min-entropy of T conditioned on p = f(T)
is at least |T | − λ. Moreover, given p, A′ is able to correctly encrypt a fraction more than
δ of plaintexts, except with probability at most ε, simply by running the program p on any
challenge plaintext. This is by definition of G′INC . It follows that A′ breaks (τ, ε − ε′)-security
for (|T | − λ,− log(ε), δ)-ENC-COM security definition.

3.3 Constructions

In this section, we present two constructions that are provably secure in the weak white-box
model of Section 3.2: the WhiteBlock block cipher, and the WhiteKey key generator. WhiteKey
is also provable in the strong model. We also propose PuppyCipher and CoureurDesBois
as concrete instantiations of each construction, using the AES as underlying primitive.

3.3.1 The WhiteBlock Block Cipher

The general idea of WhiteBlock is to build a Feistel network whose round function uses calls to
a large table T . An adversary who does not extract and store a large part of this table should be
unable to encrypt most plaintexts. For that purpose, it is important that the inputs of table calls
be pseudo-random, or at least not overly structured. Otherwise the adversary could attempt to
store a structured subset of the table that exploits this lack of randomness. In WhiteBlock, the
pseudo-randomness of table calls is enforced by interleaving calls to a block cipher between each
Feistel round. The point of our proof is to show that this introduces enough randomness that
the adversary is essentially unable to select a subset of the table to store that would significantly
outperform just storing a random subset of the same size (in terms of how many plaintexts this
subset of the table allows the adversary to encrypt).

Concretely, WhiteBlock defines a family of block ciphers with blocks of size b = 128 bits,
and a key of size κ = 128 bits25. The family is parameterized with a size parameter which
corresponds to the targeted size of a white-box implementation. In principle, this size can be
anything from a few dozen bytes up to ≈ 264 bytes, but we will mostly restrict this description
to the smallest case considered in this article, which has an implementation of size 221 bytes.

Formally, we define one round of WhiteBlock (with tables of input size 16 bits) as follows.
Let Ak denote a call to the block cipher A with key k, and T i : {0, 1}16 → {0, 1}64 denote the
i-th table. The Feistel round function is defined by:

F : {0, 1}64 → {0, 1}64,
x63 . . . x0 7→ T 3(x63 . . . x48)⊕ T 2(x47 . . . x32)⊕ T 1(x31 . . . x16)⊕ T 0(x15 . . . x0)

and one round of WhiteBlock with key k is defined as:

Rk : {0, 1}128 → {0, 1}128

x127 . . . x0 7→ Ak
(
((x127 . . . x64)⊕ F(x63 . . . x0))||x63 . . . x0

) .
A full instance of WhiteBlock is then simply the composition of a certain number of independently-
keyed round functions, with the addition of one initial top call to A: WhiteBlockk0,...kr :
{0, 1}128 → {0, 1}128, x 7→ Akr ◦Rkr−1 ◦ · · · ◦Rk0(x). We give an illustration of this construction
(omitting the outer sandwiching calls to A) in Figure 3.1.

25This generalizes well to other sizes.

84

3.3. Constructions

b b

t

t

t

t′

b/2

Akr−1

..
.

..
.

. . .

. . .

. . .

. . .

. . .

T 0 T 1 T c−1

..
.

..
.

. . .

. . .

. . .

. . .

. . .

T 0 T 1 T c−1

. . .Ak1

..
.

..
.

. . .

. . .

. . .

. . .

. . .

T 0 T 1 T c−1

Figure 3.1: The WhiteBlock construction, with tables on t bits, without the outer calls to A.
We have t′ = (b/2) mod s, c = b(b/2)/tc.

Constructing the Tables.

For WhiteBlock instances with small tables, the most efficient way to implement the cipher is
simply to use the white-box implementation, i.e. use a table-based implementation of F (this
will be clear from the results of Section 3.5). In that case, it is easy to generate the tables
“perfectly” by drawing each entry uniformly at random, either by using a suitable source of
randomness (in that case, no one may be able to compress the tables) or by using the output of
a cryptographically-strong PRG seeded with a secret key. In the latter case, the owner of the
secret knows how to compactly represent the tables, but this knowledge seems to be hard to
exploit in a concrete implementation.

For larger instances, it is not true anymore that the fastest implementation is table-based,
and it may be useful in some contexts to be able to compute the output of a table more efficiently
than by querying it. Surely, if one knows how to compactly represent a table, it is desirable that
he would be able to do so, at least for large tables. In that respect, drawing the tables at random
would not be satisfactory anymore.

Consequently, the tables used in WhiteBlock are generated as follows. Let again T i :
{0, 1}16 → {0, 1}64 be such a table (in the 16-bit case), then an instance of it is defined with
two parameters k ∈ {0, 1}128, c ∈ {0, 1}128−16 as T (x) := bAk(c||x)c64, with b·c64 denoting the
truncation to the 64 lowest bits.

An instance of WhiteBlock can thus always be described and implemented compactly when
knowing k and c. Of course this knowledge is not directly accessible in a white-box implemen-
tation, where a user would only be given the tables as a whole.

Concrete Parameters for Various Instances of WhiteBlock.

We need to address two more points before finishing this description of WhiteBlock in the ideal
case: 1) given the size of the tables, how many rounds r are necessary to obtain a secure white-
box construction; 2) how to generate the multiple round keys k0, . . . kr. The answer to 1) is
provided by the analysis of the construction done in Section 3.4.2. By instantiating the formula
of Thm. 3 with concrete parameters, we obtain the results given in Tbl. 3.1. As for 2), we further
delay the discussion to Section 3.5 dealing with concrete speed-ups.

85

Chapter 3. Efficient and Provable White-Box Primitives

Instance WB size #
Tables/round

WB security #rounds

WhiteBlock 16 221 B 4 112 bits @ 1/4 18
WhiteBlock 20 224.6 B 3 108 bits @ 1/4 23
WhiteBlock 24 228 B 2 104 bits @ 1/4 34
WhiteBlock 28 232 B 2 100 bits @ 1/4 34
WhiteBlock 32 236 B 2 96 bits @ 1/4 34

Table 3.1: Number of rounds for WhiteBlock instances with tables of selected input sizes from
t = 16 to 32 bits, at a white-box security level of 128 − t bits for a compression factor of 4.
Black-box security is 128 bits in all cases.

PuppyCipher: WhiteBlock in Practice.

So far WhiteBlock has been described from an abstract point of view, where all components
are derived from a block cipher A. In practice, we need to specify a concrete cipher; we thus
define the PuppyCipher family as an instatiation of WhiteBlock using AES128 [DR02] for the
underlying block cipher. Furthermore, though relying to a secure block cipher is an important
argument in the proof of the construction, one can wish for a less expensive round function in
practice. Hence we also define the lighter, more aggressive alternative “Hound” which trades
provable security for speed. The only differences between PuppyCipher and Hound are:

1. The calls to the full AES128 are traded for calls to AES128 reduced to five rounds (this
excludes the calls in the table generation, which still use the full AES)

2. The round keys kr . . . k0 used as input to A are simply derived from a unique key K as
ki := K ⊕ i. Note that using a tweakable cipher such as KIASU would also be possible
[JNP14].

In Section 3.5, we discuss the efficiency of PuppyCipher and Hound implemented with the
AES instructions, for tables of 16, 20, and 24-bit inputs.

3.3.2 The WhiteKey Key Generator

In WhiteBlock, we generated pseudo-random calls to a large table by interleaving a block cipher
between table calls. If we are not restricted by the state size of a block cipher, generating pseudo-
random inputs for the table is much easier: we can simply use a pseudo-random generator. From
a single input, we are then able to generate a large number of pseudo-random values to be used
as inputs for table calls. It then remains to combine the outputs of these table calls into a single
output value of appropriate size. For this purpose, we use an entropy extractor. More details on
our choice of extractor are provided in the design rationale below.

We now describe the WhiteKey function family, which can in some way be seen as an unrolled
and parallel version of WhiteBlock, with some adjustments. As with WhiteBlock, we describe
the main components of WhiteKey for use with a 128-bit block cipher and tables of 16-bit inputs,
but this generalizes easily to other sizes.

Thus WhiteKey uses a table T : {0, 1}16 → {0, 1}128. Let n denote the number of table
calls (which will be determined later on by security proofs), t 4= dn/8e and d

4
= d√ne. At a

high level, the construction of WhiteKey can be described by the following process: 1) from a

86

3.3. Constructions

random seed, generate t 128-bit values using a block cipher A with key k in counter mode; 2)
divide each such value into eight 16-bit words; 3) use these words as n inputs to the table T
(possibly ignoring from one to seven of the last generated values), resulting in n 128-bit values
Qi,j , 0 ≤ i, j ≤ d = d√ne (if n is not a square, the remaining values Qi,j are set to zero); 4)
from a random seed, generate d 128-bit values ai and d 128-bit values bi using A with key k′ in
counter mode; 5) the output of WhiteKey is

∑
i,j Qi,j · ai · bj , the operations being computed in

F2128 .
Let us now define this more formally. We write Atk(s) for the t first 128-bit output blocks

of A in counter mode with key k and initial value s. We write Cn for the parallel application
of n ≤ 8 × t tables T : {0, 1}16 → {0, 1}128 (written here in the case n = 8 × t for the sake of
simplicity):

Cn : {0, 1}t×128 → {0, 1}n×128

xt128−1xt128−2 . . . x0 7→ T (xt128−1 . . . xt128−16)|| . . . || T (x15 . . . x0)

We write Sn for the “matrixification” mapping; taking d := d√ne (here with n = 57, for a
not too complex general case):

Sn : {0, 1}n×128 →Md(F2128)

xn128−1xn128−2 . . . x0 7→

 x127 . . . x0 x255 . . . x0 · · · x1023 . . . x896

...
...

. . .
...

xn128−1 . . . xn128−128 0 · · · 0

 .

Finally, we write E the “product” mapping:

E : Fd2128 × Fd2128 ×Md(F2128) → F2128

a, b,Q 7→∑
i,j Qi,j · ai · bj

We can then describe an instance of WhiteKey parametered by (k1, s1, k2, s2) over t and n
values as WhiteKeyt,nk1,s1,k2,s2 := E ◦Adk2(s2) ◦ Adk2(s2 + d) ◦ Sn ◦ Cn ◦At(k1, s1) (using a Curried
version of E for simplicity of notations).

Constructing the Tables.

The table used in an instance of WhiteKey is built in the same way as for WhiteBlock. The only
difference is that the output of A is not truncated and the full 128 bits are used.

Design Rationale of WhiteKey

The first part of the scheme is to select part of the key, which is a mandatory feature. The fastest
way to do so is to parallelize memory accesses, and they are therefore generated independently.

The second part is to derive a short key from the table values, which are of high min-entropy.
The standard way to build a key derivation function is to use a hash function [Kra10]. However it
is slow, since even a fast hash function like BLAKE2b takes 3 cycles per byte on modern proces-
sors [ANWOW13]. Instead, we decided to use an extractor, which has also the advandage to be
unconditionally secure for a uniform seed. The extractor literature focused primarily on reducing
the number of seed bits and maximizing the number of extracted bits, because of their impor-
tance in theoretical computer science; see [Sha11] for a survey. In our case, we want to extract
only a few bits and speed is the principal concern. The approach recommended by [BDK+11] is
to generate pseudo-random elements in a large field using a standard pseudorandom generator

87

Chapter 3. Efficient and Provable White-Box Primitives

(say, AES-CTR) and to compute a dot product with the input. The main problem of this ex-
tractor is that it uses a seed which is very large, and it takes about as much time to generate
it (with AES-NI) as to use it. Hence, we decided to use the extractor introduced in [CMNT11],
which has a seed length around the square root of the length of the input. Since we can evaluate∑

i,j Qi,jaibj with about one multiplication and one addition in the field per input value, the
computation of the extractor takes essentially the same time. Indeed, the complexity of the
extractor is similar to GHASH.

Another possibility for the extractor is to increase the degree, for instance use
∑

i,j,kQi,j,kaibjck.
While this approach, proposed by [CNT12], is indeed sound and allows to reduce the seed fur-
ther, the best bound we know on the statistical distance of the output is about q−1/2 when
working over Fq. The main problem is that the tensor decomposition of Qi,j,k does not have
the needed properties, so that Coron et al. use a generic bound on the number of zeroes, which
must account for elliptic curves and therefore a deviation of q−1/2 is required. The specific case
of
∑1

k=0

∑
i,j Qi,j,kaibjck can probably be tackled using linear matrix pencil theory, at a cost of

a much more difficult proof.

Concrete Parameters for Various Instances of WhiteKey.

Once the size of an instance of WhiteKey has been chosen (i.e. the output size of the table T),
the only parameter that needs to be determined is the number of calls to the tables n, and thus
the number of output blocks t of A. This is obtained by instantiating the formula of Thm. 3 for
a given white-box security (note that unlike WhiteBlock, the maximum security that is possible
to reach for a table of x-bit inputs is 128− x). We give the parameters for instances of various
sizes in Tbl. 3.2. The tables used in these instances have the same input size as the ones of the
WhiteBlock instances of Tbl. 3.1, but they are twice as large because of their larger output size,
which impacts the size of a white-box implementation similarly. On the other hand, a single
table is used in WhiteKey, whereas up to four (for input sizes of 16 bits and more) are necessary
in WhiteBlock.

Instance WB size # Table/block WB security #Table calls
(#blocks)

WhiteKey 16 220 B 8 112 bits @ 1/4 57 (8)
WhiteKey 20 224 B 6 108 bits @ 1/4 55 (10)
WhiteKey 24 228 B 5 104 bits @ 1/4 53 (11)
WhiteKey 28 232 B 4 100 bits @ 1/4 51 (13)
WhiteKey 32 236 B 4 96 bits @ 1/4 49 (13)

Table 3.2: Number of table calls for WhiteKey instances with tables of selected input sizes
from 16 to 32 bits, at a white-box security level of 96 to 112 bits for a compression factor of 4.
Black-box security is 128 bits in all cases.

CoureurDesBois: WhiteKey in Practice.

Similarly to WhiteBlock and PuppyCipher, we define the CoureurDesBois family as a con-
crete instantiation of WhiteKey. It simply consists in using AES128 for A and a specific repre-
sentation for F2128 , e.g. F2[x]/x128 + x7 + x2 + x+ 1 (the “GCM” field).

88

3.4. Security Proofs

Unlike PuppyCipher, the components of CoureurDesBois are not cascaded multiple
times; hence we cannot hope for a similar tradeoff of provable security against speed. However,
the main advantage of CoureurDesBois compared to PuppyCipher is that it lends itself
extremely well to parallelization. This allows to optimally hide the latency of the executions of
AES and of the queries to the table in memory.

We further discuss the matter in Section 3.5, with implementations of CoureurDesBois
with AES instructions for tables of 16 to 24-bit inputs.

3.4 Security Proofs

For both the WhiteBlock and WhiteKey constructions, we provide proofs in the weak incompress-
ibility model. These proofs provide concrete bounds, on which we base our implementations. This
allows direct comparison to previous work [BBK14, BI15]. Moreover in the case of WhiteKey,
we provide a proof in the strong incompressibility model. This proof shows the soundess of the
general construction in a very demanding model. However we do not use it to fix the parameters
of our constructions.

Recall that weak incompressibility (Definition 13) depends on three parameters (s, λ, δ):
essentially if the number of outputs of the table known to the adversary is s, then (s, λ, δ)-
incompressibility says that with probability at least 1− 2−λ, the adversary is unable to encrypt
more than a ratio δ of plaintexts, no matter which s table outputs she chooses to learn. If inputs
to the table are t-bit long, then α = s2−t is the fraction of the table known to the adversary.
We can fix α = 1/4 as in [BI15], hence s = α2t. In that case weak incompressibility essentially
matches (s,− log(δ))-space hardness from [BI15], and − log(δ) can be thought of as the number
of bits of white-box security.

However we do not claim security for δ = 2−128, which would express 128 bits of white-box
security. Instead, we claim security for δ = 2−128+t. Thus for larger table of size ≈ 228, white-box
security drops to around 2100. We believe this is quite acceptable.

The reason we claim only 128− t bits of white-box security rather than 128 is a result of our
security proofs, as we shall see. This should be compared with the fact that an adversary allowed
to store s table inputs could use the same space to store s outputs of the whole scheme (within a
small constant factor λ/t due to the size difference between outputs of the table and outputs of
the scheme). Such an adversary would naturally be able to encrypt a proportion s2−λ of inputs.
Since s = 2t/4, with a small constant factor 1/4, this yields the 128− t bits of white-box security
achieved by our proofs.

Our security claims are summarized in tables 3.3.1 and 3.3.2. We provide proofs of both
WhiteKey and WhiteBlock in the weak incompressibility model. In the case of WhiteKey,
a proof is also available in the strong incompressibility model. We begin with the proof of
WhiteKey for weak incompressibility, which is fairly straightforward, yields better bounds (as
one would expect), and also serves as a warm-up for the combinatorially more involved proof of
WhiteBlock.

3.4.1 Weak Incompressibility of WhiteKey

Overview.

The initial layer of WhiteKey is comprised of a PRF generating the inputs of the table calls. Using
standard arguments, this pseudo-random function can be replaced by a random function. The
effect this has on the weak incompressibility adversary is upper-bounded by the distinguishing

89

Chapter 3. Efficient and Provable White-Box Primitives

advantage of a real-or-random adversary against the PRF. Thus we are essentially free to treat
the initial PRF as a random function.

In the weak incompressibility game, the adversary learns the output of the table on some
adaptatively chosen inputs. By nature of white-box security, any keying material present in the
PRF is known to the adversary (formally, in our definition of white-box encryption scheme this
keying material would have to be appended to the table T of the white-box implementation, and
could be recovered with a single or few queries). Hence the adversary can choose which table
inputs she queries based on full knowledge of the initial PRF.

On the other hand, for a given PRF input, as soon as the adversary does not know a single
output of the table, due to the linearity of the final layer of the construction, the output has full
128-bit entropy from the point of view of the adversary.

Thus the core of the proof, is to show that, with high probability over the random choice
of the PRF, for the best possible choice of s table inputs the adversary chooses to query26,
most PRF outputs still include at least one table input that is unknown to the adversary. We
explicitely compute this upper bound in the next section.

More precisely, Theorem 2 will show:

log (Pr [µ(s) ≥ k]) ≤ 2t − k log

(
k

ρ

)
− (n− k) log

(
n− k
n− ρ

)
(3.1)

where:
n = 2λ is the size of the input space of WhiteKey;

t is the number of bits at the input of a table;
s is the number of table entries stored by the adversary;
ρ = 2λ(s/2t)m, with m the number of table calls in the construction;
k is the maximal number of inputs the adversary may be able to encrypt;

and µ(s) is the maximal number of WhiteKey inputs that can be encrypted with storage size
s; it is a random variable over the uniform choice of the initial PRF (A in counter mode, in the
previous description).

We want this bound to be below −λ. We are now interested in what this implies, in terms of
number of table calls m necessary to achieve a given security level. As noted earlier, the bound
imposes k ≈ 2t. For simplicity we let k = 2t, which means we achieve λ − t bits of white-box
security (i.e. δ = 2t−λ in the sense of Definition 13). We can also fix s/2t = 1/4 for the purpose
of being comparable to [BI15].

The term (n− k) ln ((n− k)/(n− ρ)) is equivalent to ρ− k as k/n tends to zero27. Since we
are looking for an upper bound we can approximate it by k. This yields a probability:

2t
(

1− k2−t
(

log

(
k

ρ

)
− 1

))
= 2t

(
1− k2−t (log(k)− λ+ 2m− 1)

)
= −2t (log(k)− λ+ 2m)

In the end, we get that m only needs to be slightly larger than λ−log(k)
2 . Indeed, as long as

this is the case, the 2t factor will ensure that the bound is (much) lower than −128.
This actually matches a generic attack. If the adversary just stores s = 2t/4 random outputs

of the table, then on average she is able to encrypt a ratio 2−2m of inputs. This imposes
2−2m < k2−λ, so m > (λ − log(k))/2. When testing our parameter choices against Eq. 3.1,

26In this respect, the adversary we consider is computationally unbounded.
27In fact, simple functional analysis shows that we can bound the right-hand term by 4(ρ−k) provided αm < 1/2

and k < 4n, which will always be the case.

90

3.4. Security Proofs

we find that it is enough to add a single table call beyond what the generic attack requires: in
essence, Theorem 2 implies that no strategy is significantly better than random choices.

Proof of Weak Incompressibility for WhiteKey

The following assumptions sum up our proof model.

1. The table T is modeled as being chosen uniformly at random among functions from t bits
into λ bits. It is fully known to the adversary.

2. The PRG F used in the initial part of the construction is also modelled as being chosen
uniformly at random among functions from λ bits into m · t bits. It is also fully known to
the adversary.

3. The adversary attempts to compress the construction by storing the full outputs of some
(adversarially chosen) subset S of the entries of the table.

Note that our proof is within the information theoretical setting: in other words, the adversary
is allowed unlimited computational power. We formalize the previous assumptions as follows.
We use the same notation as in the previous section, and in addition:

Notation.

F is a function from λ bits into tm bits (the initial PRG).
α
4
= s2−t is the proportion of the table stored by the adversary.

For x ∈ {0, 1}m·t and i < m, we split x into m t-bit substrings and define x(i,t) as the i-th
t-bit substring of x, i.e. x(i,t) = xti . . . xt(i+1)−1. In the remainder t is fixed and always denotes
the number of bits at the input of T , so we will simply write x(i).

For F : {0, 1}λ → {0, 1}tm and S ⊆ {0, 1}t, we say that x ∈ {0, 1}λ is bad iff the adversary
has stored all table inputs appearing at the output of F (x). More formally, we define the set of
bad x’s as:

BF
S
4
= {x ∈ {0, 1}λ : ∀i < m,F (x)(i) ∈ S}

If F is chosen uniformly at random, BF
S becomes a random variable, which we will simply write

as BS .
For a given F , the adversary in our model wants to find S so as to maximize |BF

S |. Thus we
are interested in bounding, whp over the random choice of F , the random variable:

µ(s) = max
|S|=s

|BS |

Note that if we fix |S| = s, although the |BS |’s are not independent, they follow the same
distribution. Moreover, because the outputs of F are uniformly random and independent,
E(|BS |) = 2λ(s/2t)m = ρ.

Theorem 2. Let F be chosen uniformly at random among functions {0, 1}λ → {0, 1}tm. Then
for all k > ρ, we have:

log (Pr [µ(s) ≥ k]) ≤ 2t − k log

(
k

ρ

)
− (n− k) log

(
n− k
n− ρ

)
(3.2)

91

Chapter 3. Efficient and Provable White-Box Primitives

Proof. In the remainder we consider probabilities over the random choice of F . Since F is a
random function, each output is uniformly random and independent. It follows that each output
of F has probability αm of having its m t-bit substrings within S. As a result |BS | follows a
simple binomial distribution:

Pr [|BS | = k] =

(
n

k

)
αkm(1− αm)n−k

On the other hand we have:

Pr [µ(s) ≥ k] = Pr

 ⋃
|S|=s

[|BS | ≥ k]

≤
∑
|S|=s

Pr [|BS | ≥ k]

=

(
2t

s

)
Pr [|BS | ≥ k]

Indeed, for any choice of S of fixed size s, the probability of the event |BS | ≥ k is the same
(recall that the probability is taken over the uniformly random choice of F).

The terms |BS | ≥ k above are the tails of a binomial distribution, namely that of |BS |. As
such they can be bounded using e.g. Hoeffding’s or Chernoff’s inequalities. In our case αm will
typically be very small, and we use the following form of Chernoff’s bound:

Pr [|BS | ≥ k] ≤ exp

(
−n ·D

(
k

n
||αm

))
where D(a||b) denotes the relative entropy of Bernouilli trials with parameters a and b:

D(a||b) 4= a · ln a
b

+ (1− a) ln
1− a
1− b

This yields:

Pr [|BS | ≥ k] ≤ exp

(
−k ln

(
k

nαm

)
− (n− k) ln

(
1− k

n

1− αm

))

= exp

(
−k ln

(
k

ρ

)
− (n− k) ln

(
n− k
n− ρ

))
Finally, bounding

(
2t

s

)
by 22t , we get the result.

It is worth noting that the term on the left-hand side is essentially the tail bound for a Poisson
distribution (recall that the binomial distribution converges towards the Poisson distribution for
bounded ρ as n→∞).

3.4.2 Weak Incompressibility of WhiteBlock.

Overview.

The general approach of the proof is the same as above. However the combinatorial arguments
are much trickier, essentially because table calls are no longer independent (they depend on table
outputs in the previous round.). Nevertheless an explicit bound is proven in the next section.

92

3.4. Security Proofs

However, what we prove is only that whp, for most inputs to WhiteBlock, during the com-
putation of the output, at least two table calls at different rounds are unknown to the adversary.
Since table outputs cover half a block, this implies at two separate rounds during the course of
the computation, 64 bits are unknown and uniform from the point of view of the adversary. At
this point we heuristically assume that for an efficient adversary, this implies the output cannot
be computed with probability significantly higher then 2−128. In practice the bottleneck in the
bound provided by the proof comes from other phenomena, namely we prove 128 − t bits of
security for t-bit tables. Nevertheless this means our proof is heuristic.

More precisely, Theorem 3 shows:

log (Pr [µ(s) ≥ k]) ≤ 2t + k

(
λ+m

(
1− 1

k
− 1

r

)
log
(s

2t

))
where:

λ is the input size of WhiteBlock;
t is the number of bits at the input of a table;
r is the number of rounds;
m is the total number of table calls in the construction (m 4

= b(λ/2)/tc · r);
s is the number of table entries stored by the adversary;
k is the maximal number of inputs the adversary may be able to encrypt;

and µ(s) is the maximal number of WhiteBlock inputs that can be encrypted with storage
size s; it is a random variable over the uniform choice of the round permutations Aki .

We are now interested in what this bound implies, in terms of number of rounds r to achieve a
given security level. Observe that the bound requires k ≈ 2t. For simplicity we let k = 2t, which
means we achieve λ − t bits of white-box security (i.e. δ = 2t−λ in the sense of Definition 13).
We can also fix s/2t = 1/4 for the purpose of being comparable to [BI15]. Observe that 1/k is
negligible compared to 1/r. Let c = b(λ/2)/tc be the number of table calls per round. Then our
bound asks:

λ− 2m

(
1− 1

r

)
= λ− 2c(r − 1) < 0

Indeed, as long as this value is negative, the preceding k = 2t factor will ensure that the bound
is (much) lower than −128. We get:

r >
λ

2c
+ 1

We can compare this bound with the previous generic attack, where the adversary stores
table outputs at random. As we have seen, this attack implies m > (λ − log(k))/2, so r >
(λ − log(k))/(2c). Instead our proof requires r > λ

2c + 1. Thus the extra number of rounds
required by our security proof, compared to the lower bound coming from the generic attack, is
less than log(k)/(2c) + 1: it is only a few extra rounds (and not, for instance, a multiplicative
factor).

Proof of Weak Incompressibility for WhiteBlock.

The outline of the proof is the same as WhiteKey, but the reasoning is more intricate because
table inputs are no longer independent. The goal of the proof is summed up as follows.

1. The table T is modeled as being chosen uniformly at random among functions from t bits
into λ/2 bits. It is fully known to the adversary.

93

Chapter 3. Efficient and Provable White-Box Primitives

2. The PRP’s P1, . . . , Pr are modelled as being chosen independently and uniformly at random
among permutations on λ bits. They are also fully known to the adversary.

3. The adversary attempts to compress the construction by storing the full outputs of some
(adversarially chosen) subset S of the entries of the table.

Note that our proof is within the information theoretical setting: in other words, the adversary
is allowed unlimited computational power. We formalize the previous assumptions as follows.
We reuse the previous notation, and in addition:

Notation.

c
4
= b(λ/2)/tc is the number of table calls per round.
P1, . . . , Pr−1 are permutations on λ bits (the PRP’s).

n
4
= 2λ is the number of entries of the Pi’s.

α
4
= s2−t is the proportion of the table stored by the adversary.

For x ∈ {0, 1}λ and i < c, write x(i,t) for the i-th t-bit substrings of x, i.e. x(i,t) =
xti . . . xt(i+1)−1. As before t is fixed and always denotes the number of bits at the input of
the table T , so we will omit it and write x(i).

Let Qi denote the i-th round function of the construction. That is, Qi is the composition
of one round of c table calls followed by Pi. Since Pi is uniformly random, so is Qi. Let
Ri

4
= Qi ◦ · · · ◦Q1 denote the first i rounds of the construction. Note that the Ri’s still form a

sequence of uniformly random and independent permutations. Let ~R = (R1, . . . , Rr−1) denote
the sequence of the Ri’s.

If x ∈ {0, 1}λ is the input of the cipher, thenRi(x) is the state of the cipher after i rounds, with
the convention that R0 is the identity. As a consequence the Ri(x)(j)’s for 0 ≤ i < r, 0 ≤ j < c
are the inputs of the table calls during the execution of the cipher on input x.

Note that R0 plays a special role as it is the identity, whereas the other Ri’s are uniformly
random. Before proceeding it is convenient to “symmetrize” the problem by composing every
permutation Ri with the same uniformly random permutation. This does not change the value
of any random variable we are interested in since it just amounts to permuting the input of
the construction. But this allows all Ri’s to be uniformly random, avoiding unnecessary special
treatment for R0.

As earlier we denote by S the set of inputs of the table T that is stored by the adversary. In
our construction the output of the table has size λ/2 bits. Hence in order to force the adversary
to guess λ bits to compute the output of the cipher on input x, we want that Ri(x)j falls outside
of S for at least two distinct rounds i and i′ (if this happens on the same round, note that the
adversary still only has to guess λ/2 bits).

Thus, given ~R and S, we shall say that an input x is bad if for all but at most one round,
the adversary knows all Ri(x)(j)’s. Formally:

x is bad iff |{0 ≤ i < r : ∀j < c,R
(j)
i ∈ S}| ≥ r − 1

Let B ~R
S denote the set of bad x’s. If ~R is chosen uniformly at random, B ~R

S becomes a random
variable, which we will simply write as BS .

For a given ~R, the adversary in our model wants to find S so as to maximize |B ~R
S |. Thus we

are interested in bounding, whp over the random choice of ~R, the random variable:

µ(s) = max
|S|=s

|BS |

94

3.4. Security Proofs

Theorem 3. Let ~R be chosen uniformly at random among sequences of r permutations on {0, 1}λ.
Assume r < n/e and s ≤ (n− k)/2. Then with the previous notation we have:

log (Pr [µ(s) ≥ k]) ≤ 2t + k

(
λ+m

(
1− 1

k
− 1

r

)
log
(s

2t

))
Proof. As in the previous case, we begin by bounding µ(s) as follows:

Pr [µ(s) ≥ k] = Pr

 ⋃
|S|=s

[|BS | ≥ k]

≤
∑
|S|=s

Pr [|BS | ≥ k]

=

(
2t

s

)
Pr [|BS | ≥ k]

for any fixed S satisfying |S| = s. The difficulty lies in the fact that |BS | does not quite follow
a binomial distribution anymore. Our goal from now on is to upper bound the tail distribution
of |BS | whp, i.e. upper bound Pr [|BS | ≥ k].

Let X ⊆ {0, 1}λ denote the set of states for which the adversary knows all table calls, that
is:

X
4
= {x ∈ {0, 1}λ : ∀i < c, x(i) ∈ S}

Thus x is bad iff for all but at most one i < r, Ri(x) ∈ X. It is worth noting in passing that
the only aspect of the Ri’s that actually matters is whether Ri(x) lies in X, rather that its exact
value. Let s′ 4= sc2λ−tc so that |X| = s′.

Fix k ∈ N and S ⊆ {0, 1}t with |S| = s. Since ~R is uniform, computing the probability of
|BS | = k is the same as counting the number of ~R’s for which |B ~R

S | = k.
Let us consider the event where a fixed subset A ⊆ {0, 1}λ of size |A| = k contains only bad

x’s, i.e. define the event:
EA,S = [A ⊆ BS]

The point is that we have:

[|BS | ≥ k] ⊆
⋃
|A|=k

[A ⊆ BS]

Pr [|BS | ≥ k] ≤
∑
|A|=k

Pr [EA,S]

so we are now interested in upper bounding Pr [EA,S].
The event EA,S tells us that for all a ∈ A, all Ri(a)’s are in X except at most one. We

now partition this event by considering which Ri(a)’s are in X. Formally, we consider the set of
functions I : A→ {0, . . . , r} ∪ {⊥}, and for I ∈ I we define the event:

E′I,A,S
4
= [∀a ∈ A,∀0 ≤ i < r, (Ri(a) 6∈ X)⇔ (I(a) = i)]

Thus, we have:

EA,S =
⋃
I∈I

E′I,A,S

Pr [EA,S] ≤
∑
I∈I

Pr
[
E′I,A,S

]
95

Chapter 3. Efficient and Provable White-Box Primitives

Lemma 10. Using the previous notation, for all choices of I, A, S, if 2s′ ≤ n− k then:

Pr
[
E′I,A,S

]
≤
((

n− k
s′ − (k − dk/re)

)(
n

s′

)−1
)r

Proof. Fix I, A and S. For 0 ≤ i < r, let b(i) 4= |I−1(i)|. The event E′I,A,S occurs iff for all
0 ≤ i < r:

{a ∈ A : Ri(a) 6∈ X} = I−1(i)

Thus E′I,A,S imposes independent constraints on each of the Ri’s, which are sampled indepen-
dently. It follows that:

Pr
[
E′I,A,S

]
=
∏

0≤i<r
Pr
[
{a ∈ A : Ri(a) 6∈ X} = I−1(i)

]
Fact 2. Fix X, A, i < r and I ∈ I as above. The following holds.

Pr
[
{a ∈ A : Ri(a) 6∈ X} = I−1(i)

]
=

(
n− k

s′ − k + b(i)

)(
n

s′

)−1

Proof. The event E = [{a ∈ A : Ri(a) 6∈ X} = I−1(i)] may be rewritten as [R−1(X) ∩ A =
I−1(i)]. As such the event is entirely determined by the value of R−1(X). Because Ri is uniformly
random, all

(
n
s′

)
choices of R−1(X) are equiprobable. Thus computing the probability of E

amounts to a simple counting problem, namely how many of the
(
n
s′

)
choices of R−1(X) satisfy

R−1(X) ∩ A = I−1(i). In fact there are exactly
(

n−k
s′−(k−b(i))

)
such choices. Indeed, there are(

n−k
s′−(k−b(i))

)
choices for R−1(X) ∩ ({0, 1}λ \A).

We can now deduce:

Pr
[
E′I,A,S

]
=
∏

0≤i<r

((
n− k

s′ − k + b(i)

)(
n

s′

)−1
)

(3.3)

Since
⋃
I−1(i) ⊆ A, the b(i)’s satisfy: ∑

0≤i<r
b(i) ≤ k (3.4)

with equality iff I−1(⊥) is empty. We wish to upper bound Pr [EI,A,S]. For this purpose we set
out to upper bound the product (3.3) subject to inequality (3.4).

To this end we begin by eliminating cases where (3.4) is not an equality, i.e. I−1(⊥) 6= ∅.
This is taken care of by the following fact.

Fact 3. Assume 2s ≤ n− k. Choose I ∈ I such that I−1(⊥) 6= ∅. Then there exists I ′ ∈ I such
that EI′,A,S is more probable than EI,A,S. Hence I does not maximize the probability of EI,A,S.

96

3.4. Security Proofs

Proof. Let I be such that I−1(⊥) 6= ∅. Note that necessarily b(0) < k. Pick i ∈ I−1(⊥). Take
I ′ such that I ′(i) = 0 and I ′(j) = I(j) for j 6= i. Then by (3.3) we have:

Pr
[
E′I′,A,S

]
Pr
[
E′I,A,S

] =

(
n− k

s′ − k + b(0) + 1

)(
n− k

s′ − k + b(0)

)−1

=
n− s′ − b(0)

s′ − k + b(0) + 1

≥ n− s′ − k
s

using b(0) < k

≥ 1 using the assumption 2s′ ≤ n− k

Thus in order to maximize Pr [EI,A,S], we are free to only consider the case where (3.4) is an
equality. The following fact completes the lemma.

Fact 4. Pick integers r and k < s < n. Consider vectors ~b = (b(i))0≤i≤r in N such that∑
b(i) = k. Then the quantity:

f(~b)
4
=
∏

0≤i<r

((
n− k

s′ − k + b(i)

)(
n

s′

)−1
)

is maximal when bk/rc ≤ b(i) ≤ dk/re for all i.

Proof. In essence Fact 4 can be viewed as a convexity argument on the function x 7→ log(
(

n−k
s′−k+x

)
).

However because we are dealing with integers it will be less cumbersome to prove it directly.
Assume that the statement ∀i, bk/rc ≤ b(i) ≤ dk/re is false. We are going to show that

f(~b) is not maximal. Because ∀i, bk/rc ≤ b(i) ≤ dk/re is false, there exist i 6= j such that
b(i) + 2 ≤ b(j). Define ~b′ by b′(i) = b(i) + 1, b′(j) = b(j) − 1 and b′(l) = b(l) for l 6= i, j. We
claim that f(~b′) > f(~b). To see this, letting n′ = n− k, s′′ = s′ − k, compute:

f(~b′)

f(~b)
=

(
n′

s′′ + b(i) + 1

)(
n′

s′′ + b(i)

)−1(n′

s′′ + b(j)− 1

)(
n′

s′′ + b(j)

)−1

=
n′ − b(i)

s′′ + b(i) + 1
· s′′ + b(j)

n′ − b(j)− 1

=
n′ − b(i)

n′ − b(j)− 1
· s′′ + b(j)

s′′ + b(i) + 1

> 1 using b(i) + 1 < b(j)

Thus if f(~b) is maximal, then ∀i, bk/rc ≤ b(i) ≤ dk/re. Conversely, if ∀i, bk/rc ≤ b(i) ≤ dk/re,
because

∑
b(i) = k, the values of the b(i)’s are fixed up to permutation. In particular f(~b) is

entirely determined, and necessarily maximal.

Combining Facts 3 and 4 with Eq. (3.3) yields the lemma.

Corollary 1. With the previous notation, as long as 2s′ ≤ n− k, it holds that:

log
(
Pr
[
E′I,A,S

])
≤ r

(
k + (k − dk/re) log

(
s′

n

))
97

Chapter 3. Efficient and Provable White-Box Primitives

Proof. Letting k′ 4= k − dk/re, we have:(
n− k

s′ − (k − dk/re)

)(
n

s′

)−1

=
s′!

(s′ − k′)!
k′−1∏
i=0

1

n− i
s′∏
i=k′

n− i− dk/re
n− i

≤
k′−1∏
i=0

s′ − i
n− i

≤
(
s′

n

)k′
Plugging this inequality into Lemma 10 yields:

Pr
[
E′I,A,S

]
≤
(
s′

n

)k′r
Tracing our way back through the previous computations and letting k′ = k−dk/re as before,

we have:

log
(
Pr
[
E′I,A,S

])
≤ r (k − dk/re) log

(
s′

n

)
Using |I| = rk we deduce:

log (Pr [EA,S]) ≤ k log(r) + rk′ log

(
s′

n

)
log (Pr [|BS | ≥ k]) ≤ log

(
n

k

)
+ k log(r) + rk′ log

(
s′

n

)
Finally, upper bounding

(
2t

s′

)
by 22t we get:

log (Pr [µ(s) ≥ k]) ≤ 2t + log

(
n

k

)
+ k log(r) + rk′ log

(
s′

n

)
We could immediately upper bound log

(
n
k

)
by k log(n) = kλ but we would like to get rid of

the term k log(r) above, which is clearly negligible. To get the desired result, we show that
log
(
n
k

)
+ k log(r) ≤ kλ:

log

(
n

k

)
≤ k log(n)− log(k!)

≤ kλ− k log

(
k

e

)
using k! >

(
k

e

)n
log

(
n

k

)
+ k log(r) ≤ kλ+ k

(
log(r)− log

(n
e

))
≤ kλ

In the last line, we make use of the assumption r < n/e. Note that in practice n is exponentially
larger than r. In the end, we get:

log (Pr [µ(s) ≥ k]) ≤ 2t + kλ+ rk′ log

(
s′

n

)
Lower bounding k′ = k − dk/re by k − k/r − 1 yields the result.

98

3.4. Security Proofs

3.4.3 Strong Incompressibility of WhiteKey

We first prove that
∑

i,j Qi,jaibj ∈ Fq is a strong extractor. This extractor comes mostly
from [CMNT11, Section 4.2] but we tighten the proof.

Definition 18. A family H of hash functions h : X 7→ Y is ε-pairwise independent if∑
x 6=x′

(
Pr
h←H

[h(x) = h(x′)]− 1

Y

)
≤ ε|X|2

Y
.

The next lemma is a variant of the leftover hash lemma, proven in [Sti02, Theorem 8.1].

Lemma 11. Let h ∈ H be uniformly sampled, and x ∈ X be an independent random variable
with min-entropy at least k. Then, the statistical distance between (h(x), h) and the uniform
distribution is at most √

|Y |2−k + ε.

We now prove that our function is indeed pairwise independent.

Lemma 12. Let H = F2n
q , X = Mn(Fq) and Y = Fq. Then, the function ha,b(Q) =

∑
i,j Qi,jaibj =

atQb is 11q−n-pairwise independent.

Proof. We first count the number of a, b such that
∑

i,j Qi,jaibj = atQb = 0. Let Q be a matrix
of rank r. Then, there exist r vectors u, v such that Q =

∑r−1
k=0 uiv

t
i and the ui as well as the vi

are linearly independent. Thus,

atQb =
r−1∑
k=0

atuiv
t
ib

and therefore, by a change of basis, this form has the same number of zeros as

r−1∑
k=0

aibi

which is q2n−1 + q2n−r − q2n−r−1.
Now, there are

∏r−1
k=1

(qn−qk)2

qr−qk matrices of rank r. We deduce :

∑
x 6=x′

(
Pr
h←H

[h(x) = h(x′)]− 1

Y

)
=

n∑
r=1

(
(q−r − q−r−1)q−n

2
r−1∏
k=0

(qn − qk)2

qr − qk
)

≤
n∑
r=1

q−rq−n
2
q2nr−r2

∞∏
k=1

1

1− 1/qk

≤2− 1/q

1− 1/q
q−n

∞∏
k=1

1

1− 1/qk

≤11q−n

Hence, if the input of our extractor has at least 2µ bits of entropy, the generated key will
be essentially uniform. The proof for the security of sampling the seed from a pseudorandom
generator (from which we cannot build a public-key primitive) is in [BDK+11]. We now prove
that the input has indeed a lot of entropy.

99

Chapter 3. Efficient and Provable White-Box Primitives

Lemma 13. Let f : [n] 7→ [0; 1] be of average µ. Then, the average of the image k uniform
elements is at least µ− δ, except with probability

exp(− k2δ2/2

k/4 + δµ/3
).

Proof. This is the result of Bernstein’s inequality (see [BLB04, Theorem 3]), since the variance
of all terms is at most 1/4 and they are all positive.

We now use a lemma of Vadhan [Vad04, Lemma 9] :

Lemma 14. Let S be a random variable over [n]t with distinct coordinates and µ, δ, ε > 0, such
that for any function f : [n] 7→ [0; 1] of average (δ − 2τ)/ log(1/τ), we have that the probability
that the average of the image of the t positions given by S is smaller than (δ − 3τ)/ log(1/τ) is
at most ε.

Then, for every X of min-entropy δn over {0, 1}n, the variable (S,XS) where XS is the subset
of bits given by S is ε+2−Ω(τn) close to (A,B) where B conditioned on A = a has a min-entropy
(δ − τ)t.

Finally, it is clear that if the sampling is done with a pseudorandom generator instead of a
uniform function leads to a low min-entropy key, we have a distinguisher on the pseudorandom
generator.

3.5 Implementation

In this section, we evaluate the efficiency of PuppyCipher {16,20,24}, Hound {16,20,24} and
CoureurDesBois {16,20,24}, when implemented with the AES and PCLMULQDQ instruc-
tions (the latter being only used for the finite field arithmetic of CoureurDesBois) on a recent
Haswell CPU. For each algorithm, we tested table-based white-box implementations and “secret”
implementations where one has the knowledge of the key used to generate the tables. In the case
of PuppyCipher, we also implemented the Hound variants.

The number of rounds we choose was directly deduced from proofs in the weak model (cf.
Sections 3.3 and 3.4). Since this model essentially matches that of previous work [BBK14, BI15],
this allows for a direct comparison.

The processor on our test machine was an Intel Xeon E5-1603v3, which has a maximal clock
frequency of 2.8GHz and a 10MB cache (which is thus larger than the implementation sizes of the
‘16 instances). The machine has 32GB of memory, in four sticks of 8GB all clocked at 2133MHz.
All measurements were done on an idle system, without Turbo Boost activated28. As a reference,
we first measured the performance of AES128 implemented with the AES instructions, given in
Tbl. 3.3. We give the average (Avg.) number of clock cycles and the standard deviation (Std.
Dev.) for one execution, both in the transient and steady regime (in practice, when performing
series of independent runs, the transient regime only corresponds to the first run of the series).
The average and standard deviation are computed from 25 series of 11 runs. The figures obtained
from this test are coherent with the theoretical performance of the AES instruction set (even if
slightly lower): on a Haswell architecture, the aesenc and aesenclast instructions both have
a latency of 7 cycles, and the cost of a single full AES128 is dominated by the 10 × 7 calls to
perform the 10 rounds of encryption.

28As a matter of fact, this CPU does not have Turbo Boost support.

100

3.5. Implementation

Transient Avg. Transient Std.
Dev.

Steady Avg. Steady Std. Dev.

AES128 79 3.6 68 2.4

Table 3.3: Performance of a single call to AES128 with AES instructions on a Xeon E5-1603v3.
All numbers are in clock cycles.

3.5.1 PuppyCipher

Writing a simple implementation of PuppyCipher is quite straightforward. The main potential
for instruction-level parallelism (ILP) are the calls to the tables (or the analogous on-the-fly
function calls); the rest of the cipher is chiefly sequential, especially the many intermediate
calls to the (potentially reduced) AES. This parallelism is however somewhat limited, especially
starting from PuppyCipher 24 where only two parallel calls to the tables can be made.

In all implementations, we precompute the sub-keys for the calls to AES (including the
potential table function calls). Not doing so would only add a negligible overhead.

The performance measurements were done in a setting similar to the reference test on
AES128 from above. We give the results for PuppyCipher {16,20,24} in Tbl. 3.4 and for
Hound {16,20,24} in Tbl. 3.5. In both tables, we also express the performance in the steady
regime as the number of equivalent AES128 calls (Eq. A) with AES instructions on the same
platform (taken to be 68 cycles, as per Tbl. 3.3), as it is a block cipher with similar expected se-
curity, and as the number of equivalent ephemeral Diffie-Hellman key exchanges with the FourQ
elliptic curve (Eq. F), one of the fastest current implementation of ECDHE [CL15] (measured
at 92000 cycles on the Haswell architecture), as there is some overlap in what white-box and
public-key cryptography try to achieve.

Tr.
Avg.

Tr. Std. Dev. St.
Avg.

St. Std.
Dev.

Eq. A Eq. F

PC 16 (white-box) 2960 130 2800 70 41 0.030
PC 16 (secret) 4140 60 3940 10 58 0.043

PC 20 (white-box) 13660 1000 11500 1190 169 0.125
PC 20 (secret) 4810 60 4540 100 67 0.049

PC 24 (white-box) 27570 1410 23390 1340 344 0.25
PC 24 (secret) 6760 120 6600 60 97 0.072

Table 3.4: Performance of a single call to PuppyCipher {16,20,24} (“PC”) on a Xeon E5-1603v3.
All numbers are in clock cycles, rounded to the nearest ten. The “white-box” instances are table-
based, and the “secret” instances uses on-the-fly computations of the tables on their queried
values. All calls to AES use the AES instructions.

Discussion.

As it was mentioned in Section 3.3, for a small white-box implementation such as the one of
PuppyCipher 16, table-based implementations may be the most efficient way of implementing

101

Chapter 3. Efficient and Provable White-Box Primitives

Tr.
Avg.

Tr. Std. Dev. St.
Avg.

St. Std.
Dev.

Eq. A Eq. F

HD 16 (white-box) 2300 180 2190 130 32 0.024
HD 16 (secret) 3520 80 3280 2 48 0.036

HD 20 (white-box) 11870 980 9940 1030 146 0.11
HD 20 (secret) 4000 230 3700 65 54 0.040

HD 24 (white-box) 26540 1450 21740 1230 320 0.24
HD 24 (secret) 5490 60 5360 60 79 0.058

Table 3.5: Performance of a single call to Hound {16,20,24} (“HD”) on a Xeon E5-1603v3. All
numbers are in clock cycles, rounded to the nearest ten. The “white-box” instances are table-
based, and the “secret” instances uses on-the-fly computations of the tables on their queried
values. All calls to AES use the AES instructions.

the cipher, especially as the entire tables can usually fit in the cache. However, from a certain
size on, the random RAM accesses inherent to such implementations cost more than recomputing
the necessary outputs of the tables (when the secret is known).

It is quite easy to estimate how much time is spent in RAM accesses compared to the time
spent in calls to the (potentially reduced) AES. Indeed, knowing the number of rounds and
the cost of one AES execution, one can subtract this contribution to the total. For instance,
based on the cycle counts in the steady and transient regimes, for PuppyCipher 24, at least
2380 = 35× 68 and at most 2765 = 35× 79 cycles are expected to be spent in AES instructions;
the real figure in this case is about 2690 cycles, for an average cost per AES call of 77 cycles.
All in all, this means that in steady regime, close to 90% of the time is spent in RAM accesses.
This is understandingly slightly more for the Hound 24 variant, where RAM accesses represent
about 93% of the execution time.

It is also interesting to look at how many RAM accesses can effectively be done in parallel.
As two to four table calls are independent every round, we may hope to partially hide the latency
of some of these. For PuppyCipher 24, removing one of the two table accesses decreases the
cycle count to 19400 on average. This means that the second table call only adds less than 4000
cycles. Put another way, using a single table per round, one table access takes 490 cycles on
average, but this goes down to 300 cycles when two tables are accessed per round. In the end,
the 68 table access of PuppyCipher 24 only cost an equivalent 42 purely sequential accesses.
A similar analysis can be performed for PuppyCipher 20 and PuppyCipher 16, where the 69
and 72 parallel accesses cost 31 and 23 equivalent accesses respectively.

Comparison with SPACE. We can compare the performance of PuppyCipher with the one
of SPACE-(16,128) and SPACE-(24,128), which offer similar white-box implementation sizes as
PuppyCipher 16 and PuppyCipher 24 respectively. As the authors of SPACE do not provide
cycle counts for their ciphers but only the number of necessary cache or RAM accesses, a few
assumptions are needed for a brief comparison. Both SPACE instances need 128 table accesses,
which is much more than the 72 of PuppyCipher 16 and 68 of PuppyCipher 24. However,
there is an extra cost in PuppyCipher due to the sandwiching AES calls, which need to be
taken into account. On the other hand, the table accesses in SPACE are necessarily sequential,
which is not the case for PuppyCipher, and we have just seen that parallel accesses can bring a

102

3.5. Implementation

considerable gain. It is thus easiest to use our average sequential access times as a unit. In that
respect, PuppyCipher 24 and Hound 24 cost on average 48 = 23390/490 and 44 = 21790/490
table accesses, which is significantly less than the 128 of SPACE-(24,128). Similarly, we measured
one sequential table access for PuppyCipher 16 to take 59 cycles on average, and we thus have a
cost of 47 = 2800/59 and 37 = 2190/59 for table accesses for PuppyCipher 16 and Hound 16.

The performance gap reduces slightly when one considers the case of “secret” implementa-
tions. As the tables of SPACE use the AES as a building block, the cost of a secret SPACE
(24-128) implementation should correspond to approximately 128 sequential calls to AES; the
corresponding PuppyCipher and Hound implementations cost an equivalent 97 and 79 AES
respectively.

3.5.2 CoureurDesBois

The main advantage of CoureurDesBois compared to PuppyCipher is the higher degree of
parallelism that it offers. Unlike PuppyCipher, the calls to AES can be made in parallel, and
there is no limit either in the potential parallelism of table accesses. Because the output of the
tables are of a bigger size, there is also fewer accesses to be made. Consequently, we expect
CoureurDesBois to be quite more efficient than PuppyCipher.

A consequence of the higher parallelism of CoureurDesBois is that there are more po-
tential implementation tradeoffs than for PuppyCipher. In our implementations, we chose to
parallelize the AES calls up to four calls at a time, and the table accesses (or equivalent secret
computations) at the level of one block (i.e. from eight parallel accesses for CoureurDes-
Bois 16 to five for CoureurDesBois 24). The final step of CoureurDesBois also offers
some parallelism; we have similarly regrouped the calls to AES used for random generation by
four, and the finite field multiplications are regrouped by rows of eight.

The results for CoureurDesBois {16,20,24} are given in Tbl. 3.6.

Tr.
Avg.

Tr. Std. Dev. St.
Avg.

St.
Std.
Dev.

Eq. A Eq. F

CDB 16 (white-box) 3190 460 2020 20 29.7 0.022
CDB 16 (secret) 3100 380 2150 30 31.6 0.023

CDB 20 (white-box) 7880 880 4700 600 69.1 0.051
CDB 20 (secret) 4060 460 2900 20 42.6 0.032

CDB 24 (white-box) 17360 980 11900 610 175 0.13
CDB 24 (secret) 4470 560 3050 30 44.9 0.033

Table 3.6: Performance of a single call to CoureurDesBois {16,20,24} (“CDB”) on a Xeon E5-
1603v3. All numbers are in clock cycles, rounded to the nearest ten. The “white-box” instances
are table-based, and the “secret” instances uses on-the-fly computations of the tables on their
queried values. All calls to AES use the AES instructions.

Discussion.

We can notice a few things from these results. First, CoureurDesBois is indeed more efficient
than PuppyCipher; for instance, CoureurDesBois 24 is about twice as fast as Hound 24.

103

Chapter 3. Efficient and Provable White-Box Primitives

Second, the performance gap between secret and white-box implementations is somewhat smaller
for the smaller instances of CoureurDesBois; on the other hand, the gap between transient
and steady regime performance is slightly bigger than for PuppyCipher.

As pointed out above, more tradeoffs are possible in implementing CoureurDesBois than
for PuppyCipher. As a result, it would be interesting to evaluate alternatives in practice.

104

Chapter 4

Cryptanalysis of the CLT15 Multilinear
Map

4.1 Introduction

Cryptographic multilinear maps are a powerful and versatile tool to build cryptographic schemes,
ranging from one-round multipartite Diffie-Hellman to witness encryption and general program
obfuscation. The notion of cryptographic multilinear map was first introduced by Boneh and
Silverberg in 2003, as a natural generalization of bilinear maps such as pairings on elliptic
curves [BS03]. However it was not until 2013 that the first concrete instantiation over ideal
lattices was realized by Garg, Gentry and Halevi [GGH13a], quickly inspiring another construc-
tion over the integers by Coron, Lepoint and Tibouchi [CLT13]. Alongside these first instan-
tiations, a breakthrough result by Garg, Gentry, Halevi, Raykova, Sahai and Waters achieved
(indistinguishability) obfuscation for all circuits from multilinear maps [GGH+13b]. From that
point multilinear maps have garnered considerable interest in the cryptographic community, and
a host of other applications have followed.

However this wealth of applications rests on the relatively fragile basis of only three con-
structions of multilinear maps to date: namely the original construction over ideal lattices
[GGH13a], the construction over the integers [CLT13], and another recent construction over lat-
tices [GGH15]. Moreover none of these constructions relies on standard hardness assumptions.
In fact the first two constructions have since been broken for applications requiring low-level
encodings of zero, including the “direct” application to one-round multipartite Diffie-Hellman
[HJ15, CHL+15]. Thus building candidate multilinear maps and assessing their security may be
regarded as a work in progress, and research in this area has been very active in recent years.

Following the attack by Cheon et al. on the [CLT13] multilinear map over the integers, several
attempts to repair the scheme were published on ePrint, which hinged on hiding encodings of
zero in some way; however these attempts were quickly proven insecure [CGH+15]. At Crypto
2015, Coron, Lepoint and Tibouchi set out to repair their scheme by following a different route
[CLT15]: they essentially retained the structure of encodings from [CLT13], but added a new
type of noise designed to thwart Cheon et al.’s approach. Their construction was thus able to
retain the attractive features of the original, namely conceptual simplicity, relative efficiency, and
wide range of presumed hard problems on which applications could be built.

In the remainder of this chapter, we propose a polynomial attack on the new multilinear
map over the integers presented by Coron, Lepoint and Tibouchi at Crypto 2015 [CLT15]. The
attack operates by computing the secret parameter x0, and from there all other secret parameters

105

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

can be recovered via (a close variant of) Cheon et al.’s attack [CHL+15].
In the optimized version of the scheme where an exact multiple of x0 is provided in the public

parameters, the attack recovers x0 instantly. In the more general non-optimized version of the
scheme, the complexity of our polynomial attack is very close to the security parameters for the
concrete instances implemented in [CLT15], e.g. 282 for the 80-bit instance.

Moreover the attack applies to virtually all possible applications of the CLT15 multilinear
map. Indeed, while it does require low-level encodings of zero, these encodings are provided by
the ladders given in the public parameters. In this respect CLT15 is weaker than CLT13. A
more detailed look at the impact of our attack is provided in Section 4.1.2. Our attacks have
been verified on the reference implementation of CLT15.

We also describe a secondary, probabilistic attack on CLT15, with the same effect as our main
attack. The probabilistic attack relies on finding and exploiting divisors of the secret parameter
v0. While it is less simple than the main attack, it offers a different approach to attacking the
scheme.

4.1.1 Overview of the Main Attack

We begin by briefly recalling the CLT15 multilinear map (more precisely, graded encoding
scheme). The message space is Zg1×· · ·×Zgn for some small primes g1, . . . , gn, and (m1, . . . ,mn)
is encoded at some level k ≤ κ as:

CRT(pi)

(rigi +mi

zk

)
+ ax0

where:

(pi) is a sequence of n large primes.
x0 =

∏
pi.

CRT(pi)(xi) is the unique integer in (−x0/2, x0/2] congruent to xi modulo pi.
z is a fixed secret integer modulo x0.
ri is a small noise.
a is another noise.

Encodings at the same level can be added together, and the resulting encoding encodes the sum
of the messages. Similarly encodings at levels i and j can be multiplied to yield an encoding at
level i+ j of the coordinate-wise product of the encoded messages. This behavior holds as long
as the values rigi + mi do not go over pi, i.e. reduction modulo pi does not interfere. In order
to prevent the size of encodings from increasing as a result of additions and multiplications, a
ladder of encodings of zero of increasing size is published at each level. Encodings can then be
reduced by subtracting elements of the ladder at the same level.

The power of the multilinear map comes from the zero-testing procedure, which allows users
to test whether an encoding at the maximal level κ encodes zero. This is achieved by publishing
a so-called zero-testing parameter denoted pzt ∈ Z, together with a large prime N � x0. An
encoding at the maximal level κ may be written as:

e =
∑

(ri +mig
−1
i mod pi)ui + ax0

where ui
4
=
(
giz
−κ(p∗i)

−1 mod pi
)
p∗i with p∗i =

∏
j 6=i

pj .

106

4.1. Introduction

That is, some constants independent of the encoding have been folded with the CRT coefficients
into ui. Now pzt is chosen such that vi

4
= uipzt mod N and v0

4
= x0pzt mod N satisfy |vi| � N

and |v0| � N . In this way, for any encoding e of zero at level κ, since mi = 0, we have:

|epzt mod N | =
∣∣∑ rivi + av0

∣∣� N

provided the noises ri and a are small enough. Thus, users can test whether e is an encoding of
zero at level κ by checking whether |epzt mod N | � N .

Integer Extraction.

Our attack proceeds in two steps. As a first step, we define the integer extraction procedure
φ : Z → Z. In short, φ computes

∑
i rivi + av0 over the integers for any level-κ encoding e (of

size up to the largest ladder element). Note that this value is viewed over the integers and not
modulo N . If e is “small”, then φ(e) = epzt mod N , i.e. φ matches the computation from the
zero-testing procedure.

If e is “large” on the other hand, then e would need to be reduced by the ladder before zero-
testing can be applied. However the crucial observation is that φ is Z-linear as long as the values
rigi + mi associated with each encoding do not go over pi. Thus e can be ladder-reduced into
e′, then φ(e′) = e′pzt mod N is known, and φ(e) can be recovered from φ(e′) by compensating
the ladder reduction using Z-linearity. In a nutshell, φ allows us to ignore ladder reductions in
equations appearing in the rest of the attack.

Recovering x0.

In the optimized variant of the scheme implemented in [CLT15], a small multiple qx0 of x0 is
given in the public parameters. In that case qx0 may be regarded as an encoding of zero at level
κ, and φ(qx0) = qv0. Since this holds over the integers, we can compute q = gcd(qx0, qv0) and
then x0 = qx0/q.

In the general case where no exact multiple of x0 is given in the public parameters, pick n+1
encodings ai at some level t, and n + 1 encodings of zero bi at level κ − t. Note that ladder
elements provide encodings of zero even if the scheme itself does not. Then compute:

ωi,j
4
= φ(aibj).

If we write ai mod v0 = CRT(pj)(ai,j/z
t) and bi mod v0 = CRT(pj)(ri,jgj/z

κ−t), then we get:

ωi,j mod v0 =
∑
k

ai,krj,kvk mod v0.

Similar to Cheon et al.’s attack on the CLT13 multilinear map, this equality can be viewed as a
matrix product. Indeed, let Ω denote the (n + 1) × (n + 1) integer matrix with entries ωi,j , let
A denote the (n + 1) × n integer matrix with entries ai,j , let R denote the (n + 1) × n integer
matrix with entries ri,j , and finally let V denote the n×n diagonal matrix with diagonal entries
vi. If we embed everything into Z/v0Z, then we have:

Ω = A · V ·RT in Z/v0Z.

Since A and R are (n+ 1)× n matrices, this implies that Ω is not full-rank when embedded
into Z/v0Z. As a consequence v0 divides det(Ω). We can repeat this process with different
choices of the families (ai), (bi) to build another matrix Ω′ with the same property. Finally we
recover v0 as v0 = gcd(det(Ω),det(Ω′)), and x0 = v0/pzt mod N .

107

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

Recovering other secret parameters.

Once x0 is known, Cheon et al.’s attack can be applied by taking all values modulo v0, and every
remaining secret parameter is recovered, fully breaking the scheme.

4.1.2 Impact of the Attack

Two variants of the CLT15 multilinear map should be considered. Either a small multiple of x0

is provided in the public parameters. In that case x0 can be recovered instantly, and the scheme
becomes equivalent to CLT13 in terms of security (cf. Section 4.6.1). In particular it falls victim
to Cheon et al.’s attack when low-level encodings of zero are present, but it may still be secure
for applications that do not require such encodings, such as obfuscation. However the scheme is
strictly less efficient than CLT13 by construction, so there is no point in using CLT15 for those
applications.

Otherwise, if no small multiple of x0 is given out in the public parameters, then ladders of
encodings of zero must be provided at levels below the maximal level. Thus we have access
to numerous encodings of zero below the maximal level, even if the particular application of
multilinear maps under consideration does not require them. As a result our determinant-based
attack is applicable (cf. Section 4.6.5), and we still recover x0 in polynomial time, albeit less
efficiently than the previous case. Moreover once x0 is recovered, encodings of zero provided by
the ladder enable Cheon et al.’s attack, and every secret parameter is recovered.

In summary, the optimized version of CLT15 providing a small multiple of x0 is no more
secure than CLT13, and less efficient. On the other hand in the general non-optimized case, the
scheme is broken for virtually all possible applications due to encodings of zero provided by the
ladder. Thus overall the CLT15 scheme can be considered fully broken.

4.1.3 Independent Attack by Cheon et al.

Another polynomial attack on CLT15 was discovered independently by Cheon, Lee and Ryu
(CLR) [CLR15]. The impact of both attacks is the same, and their practical complexity is
similar. Our attacks were merged for publication at Eurocrypt [CFL+16].

The CLR attack relies on integer extraction as well, which is defined in the same manner.
The second half of the attack is where it differs. The CLR attack looks into the exact expression
of the value a in the term av0 appearing in integer extractions. This makes it possible to uncover
a matrix product similar to Cheon et al.’s original attack on CLT13, albeit a more complex one.
By contrast our attack treats the value a in av0 as a noise, which we get rid off by recovering v0

and taking equations modulo v0.

4.1.4 Layout of the Chapter

We begin by defining multilinear maps and graded encoding schemes in Section 4.3. The CLT15
construction itself is described in Section 4.4. In Section 4.5 we recall Cheon et al.’s attack on
CLT13 since it serves as a follow-up to our attack once x0 is recovered, and shares similar ideas.
Readers already familiar with the CLT15 multilinear map can skip straight to Section 4.6 where
we describe our main attack. The main attack has been verified on a reference implementation
(some implementation issues are discussed in the appendix of [MF15]). As an alternative to the
main attack, a probabilistic attack is given in Section 4.7.

108

4.2. Notation

4.2 Notation

For n an integer, size(n) is the size of n in bits.

Modular arithmetic.

The group Z/nZ of integers modulo n is denoted by Zn. The notation “mod p” should be
understood as having the lowest priority. For instance, the expression a · b mod p is equivalent
to (a · b) mod p.

We always view a mod p as an integer in Z. The representative closest to zero is always
chosen, positive in case of tie. In other words −p/2 < a mod p ≤ p/2.

Chinese Remainder Theorem.

Given n prime numbers (pi), we define p∗i as in [Hal15a]:

p∗i =
∏
j 6=i

pj .

For (x1, . . . , xn) ∈ Zn, let CRT(pi)(xi) denote the unique integer in Z ∩ (−1
2

∏
pi,

1
2

∏
pi] such

that CRT(pi)(xi) mod pi = xi mod pi, as per the Chinese Remainder Theorem.
It is useful to observe that for any (x1, . . . , xn) ∈ Zn:

CRT(pi)(xip
∗
i) =

∑
i

xip
∗
i mod

∏
i

pi. (4.1)

4.3 Short Introduction to Multilinear Maps

In this section we give a brief introduction to multilinear maps. In particular we only consider
symmetric multilinear maps. We refer the interested reader to [GGH13a, Hal15b] for a more
thorough presentation.

4.3.1 Multilinear Maps and Graded Encoding Schemes

Cryptographic multilinear maps were introduced by Boneh and Silverberg [BS03], as a natu-
ral generalization of bilinear maps stemming from pairings on elliptic curves, which had found
striking new applications in cryptography [Jou00, BF01, ...]. A (symmetric) multilinear map is
defined as follows.

Definition 19 (Multilinear Map [BS03]). Given two groups G,GT of the same prime order, a
map e : Gκ → GT is a κ-multilinear map iff it satisfies the following two properties:

1. for all a1, . . . , aκ ∈ Z and x1, . . . , xκ ∈ G,

e(xa11 , . . . , x
aκ
κ) = e(x1, . . . , xκ)a1···aκ

2. if g is a generator of G, then e(g, . . . , g) is a generator of GT .

A natural special case are leveled multilinear maps:

109

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

Definition 20 (Leveled Multilinear Map [HSW13]). Given κ + 1 groups G1, . . . ,Gκ,GT of the
same prime order, and for each i ≤ κ, a generator gi ∈ Gi, a κ-leveled multilinear map is a set
of bilinear maps {ei,j : Gi × Gj → Gi+j |i, j, i + j ≤ κ} such that for all i, j with i + j ≤ κ, and
all a, b ∈ Z:

ei,j(g
a
i , g

b
j) = gabi+j .

Similar to public-key encryption [DH76b] and identity-based cryptosystems [Sha85], multi-
linear maps were originally introduced as a compelling target for cryptographic research, without
a concrete instantiation [BS03]. The first multilinear map was built ten years later in the break-
through construction of Garg, Gentry and Halevi [GGH13a]. More accurately, what the authors
proposed was a graded encoding scheme, and to this day all known cryptographic multilinear
maps constructions are actually variants of graded encoding schemes [Hal15b]. For this reason,
and because both constructions have similar expressive power, the term “multilinear map” is used
in the literature in place of “graded encoding scheme”, and we follow suit.

Graded encoding schemes are a relaxed definition of leveled multilinear map, where elements
xai for xi ∈ Gi, a ∈ Z are no longer required to lie in a group. Instead, they are regarded
as “encodings” of a ring element a at level i, with no assumption about the underlying struc-
ture. Formally, encodings are thus defined as general binary strings in {0, 1}∗. In the following
definition, S(α)

i should be regarded as the set of encodings of a ring element α at level i.

Definition 21 (Graded Encoding System [GGH13a]). A κ-graded encoding system consists of a
ring R and a system of sets S = {S(α)

i ⊂ {0, 1}∗|α ∈ R, 0 ≤ i ≤ κ}, with the following properties:

1. For each fixed i, the sets S(α)
i are pairwise disjoint as α spans R.

2. There is an associative binary operation ‘+’ and a self-inverse unary operation ‘−’ on
{0, 1}∗ such that for every α1, α2 ∈ R, every i ≤ κ, and every u1 ∈ S(α1)

i , u2 ∈ S(α2)
i , it

holds that:
u1 + u2 ∈ S(α1+α2)

i and − u1 ∈ S(−α1)
i

where α1 + α2 and −α1 are addition and negation in R.

3. There is an associative binary operation ‘×’ on {0, 1}∗ such that for every α1, α2 ∈ R,
every i1, i2 ∈ N such that i1 + i2 ≤ κ, and every u1 ∈ S

(α1)
i1

, u2 ∈ S
(α2)
i2

, it holds that
u1 × u2 ∈ S

(α1·α2)
i1+i2

. Here α1 · α2 is the multiplication in R, and i1 + i2 is the integer
addition.

Observe that a leveled multilinear map is a graded encoding system where R = Z and, with
the notation from the definitions, S(α)

i contains the single element gαi . Also note that the behavior
of addition and multiplication of encodings with respect to the levels i is the same as that of a
graded ring, hence the graded qualifier.

All known constructions of graded encoding schemes do not fully realize the previous defini-
tion, insofar as they are “noisy”29. That is, all encodings have a certain amount of noise; each
operation, and especially multiplication, increases this noise; and the correctness of the scheme
breaks down if the noise goes above a certain threshold. The situation in this regard is similar
to somewhat homomorphic encryption schemes.

29In fact the question of achieving the functionality of multilinear maps without noise may be regarded as an
important open problem [Zim15].

110

4.3. Short Introduction to Multilinear Maps

4.3.2 Multilinear Map Procedures

The exact interface offered by a multilinear map, and called upon when it is used as a primitive
in a cryptographic scheme, varies depending on the scheme. However the core elements are the
same. Below we reproduce the procedures for manipulating encodings defined in [CLT15], which
are a slight variation of [GGH13a].

In a nutshell, the scheme relies on a trusted third party that generates the instance (and is
typically no longer needed afterwards). Users of the instance (that is, everyone but the generating
trusted third party) cannot encode nor decode arbitrary encodings: they can only combine
existing encodings using addition, negation and multiplication, and subject to the limitation
that the level of an encoding cannot exceed κ. The power of the multilinear map comes from the
zero-testing (resp. extraction) procedure, which allows users to test whether an encoding at level
κ encodes zero (resp. roughly get a λ-bit “hash” of the value encoded by a level-κ encoding).

Here users are also given access to random level-0 encodings, and have the ability to re-
randomize encodings, as well as promote any encoding to a higher-level encoding of the same
element. These last functionalities are tailored towards the application of multilinear maps to
one-round multi-party Diffie-Hellman. In general different applications of multilinear map require
different subsets of the procedures below, and sometimes variants of them.

instGen(1λ, 1κ): the randomized instance procedure takes as input the security parameter λ, the
multilinearity level κ, and outputs the public parameters (pp,pzt), where pp is a description
of a κ-graded encoding system as above, and pzt is a zero-test parameter (see below).

samp(pp): the randomized sampling procedure takes as input the public parameters pp and
outputs a level-0 encoding u ∈ S(α)

0 for a nearly uniform α ∈ R.

enc(pp, i, u): the possibly randomized encoding procedure takes as input the public parameters
pp, a level i ≤ κ, and a level-0 encoding u ∈ Sα0 for some α ∈ R, and outputs a level-i encoding
u′ ∈ S(α)

i .

reRand(pp, i, u): the randomized rerandomization procedure takes as input the public parameters
pp, a level i ≤ κ, and a level-i encoding u ∈ Sαi for some α ∈ R, and outputs another level-i
encoding u′ ∈ S(α)

i of the same α, such that for any u1, u2 ∈ S(α)
i , the output distributions of

reRand(pp, i, u1) and reRand(pp, i, u2) are nearly the same.

neg(pp, u): the negation procedure is deterministic and that takes as input the public parameters
pp, and a level-i encoding u ∈ S(α)

i for some α ∈ R, and outputs a level-i encoding u′ ∈ S(−α)
i .

add(pp, u1, u2): the addition procedure is deterministic and takes as input the public parameters
pp, two level-i encodings u1 ∈ S(α1)

i , u2 ∈ S(α2)
i for some α1, α2 ∈ R, and outputs a level-i

encoding u′ ∈ S(α1+α2)
i .

mult(pp, u1, u2): the multiplication procedure is deterministic and takes as input the public
parameters pp, two encodings u1 ∈ S(α1)

i , u2 ∈ S(α2)
j of some α1, α2 ∈ R at levels i and j such

that i+ j ≤ κ, and outputs a level-(i+ j) encoding u′ ∈ S(α1·α2)
i+j .

isZero(pp, u): the zero-testing procedure is deterministic and takes as input the public parameters
pp, and an encoding u ∈ S(α)

κ of some α ∈ R at the maximum level κ, and outputs 1 if α = 0,
0 otherwise, with negligible probability of error (over the choice of u ∈ S(α)

κ).

111

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

ext(pp,pzt, u): the extraction procedure is deterministic and takes as input the public parameters
pp, the zero-test parameter pzt, and an encoding u ∈ S(α)

κ of some α ∈ R at the maximum
level κ, and outputs a λ-bit string s such that:

1. For α ∈ R and u1, u2 ∈ S(α)
κ , ext(pp,pzt, u1) = ext(pp,pzt, u2).

2. The distribution {ext(pp,pzt, v)|α← R, v ∈ S(α)
κ } is nearly uniform over {0, 1}λ.

4.4 The CLT15 Multilinear Map

4.4.1 The CLT15 Multilinear Map over the Integers

Shortly after the multilinear map over ideal lattices by Garg, Gentry and Halevi [GGH13a],
another construction over the integers was proposed by Coron, Lepoint and Tibouchi [CLT13].
However a devastating attack was published by Cheon, Han, Lee, Ryu and Stehlé at Eurocrypt
2015 (on ePrint in late 2014). In the wake of this attack, a revised version of their multilinear
map over the integers was presented by Coron, Lepoint and Tibouchi at Crypto 2015 [CLT15].
In the remainder, we will refer to the original construction over the integers as CLT13, and to
the new version from Crypto 2015 as CLT15.

In this section we recall the CLT15 construction. We omit aspects of the construction that
are not relevant to our attack, and refer the reader to [CLT15] for more details. The message
space is R = Zg1×· · ·×Zgn , for some (relatively small) primes gi ∈ N. An encoding of a message
(m1, . . . ,mn) ∈ Zg1 × · · · × Zgn at level k ≤ κ has the following form:

e = CRT(pi)

(rigi +mi

zk
mod pi

)
+ ax0 (4.2)

where:

• The pi’s are n large secret primes.

• The ri’s are random noise such that |rigi +mi| � pi.

• x0 =
∏
i≤n pi.

• z is a fixed secret integer modulo x0.

• a is random noise.

The scheme relies on the following parameters:

λ : the security parameter.
κ : the multilinearity level.
n : the number of primes pi.
η : the bit length of secret primes pi.

γ = nη : the bit length of x0.
ρ : the bit length of the gi’s and initial ri’s.

Addition, negation and multiplication of encodings is exactly addition, negation and multi-
plication over the integers. Indeed, mi is recovered from e as mi = (e mod pi) mod gi, and as
long as rigi +mi does not go over pi, addition and multiplication will go through both moduli.
Thus we have defined encodings and how to operate on them.

112

4.4. The CLT15 Multilinear Map

Regarding the sampling procedure from Section 4.3.2, for our purpose, it suffices to know
that it is realized by publishing a large number of level-0 encodings of random elements. Users
can then sample a new random element as a subset sum of published elements. Likewise, the
rerandomization procedure is achieved by publishing a large number of encodings of zero at each
level, and an element is re-randomized by adding a random subset sum of encodings of zero at
the same level. The encoding procedure is realized by publishing a single level-1 encoding y of
1 (by which we mean (1, . . . , 1) ∈ Zg1 × · · · × Zgn): any encoding can then be promoted to an
encoding of the same element at a higher level by multiplying by y.

Zero-testing in CLT13.

We now move on to the crucial zero-testing procedure. This is where CLT13 and CLT15 differ.
We begin by briefly recalling the CLT13 approach.

In CLT13, the product x0 of the pi’s is public. In particular, every encoding can be reduced
modulo x0, and every value below should be regarded as being modulo x0. Let p∗i =

∏
j 6=i pj .

Using (4.1), define:

pzt
4
=
∑
i≤n

(hizκ
gi

mod pi
)
p∗i = CRT(pi)

(hizκ
gi

p∗i mod pi
)

mod x0.

where the hi’s are some relatively small numbers with |hi| � pi. Now take a level-κ encoding of
zero:

e = CRT(pi)

(rigi
zκ

mod pi
)

mod x0.

Since multiplication acts coordinate-wise on the CRT components, using (4.1) again, we have:

ω
4
= epzt = CRT(pi)(hirip

∗
i) =

∑
i

hirip
∗
i mod x0.

Since p∗i = x0/pi, as long as we set our parameters so that |hiri| � pi, we have |ω| � x0.
Thus the zero-testing procedure is as follows: for a level-κ encoding e, compute ω = epzt mod x0.

Output 1, meaning we expect e to encode zero, iff the ν most significant bits of ω are zero, for
an appropriately chosen ν. In [CLT13], multiple pzt’s can be defined in order to avoid false
positives; we restrict our attention to a single pzt.

Zero-testing in CLT15.

In CLT13, an encoding at some fixed level is entirely defined by its vector of associated values
ci = rigi +mi. Moreover, addition and multiplication of encodings act coordinate-wise on these
values, and the value of the encoding itself is Zx0-linear as a function of these values. Likewise,
ω is Zx0-linear as a function of the ri’s. This nice structure is an essential part of what makes
the devastating attack by Cheon et al. [CHL+15] possible. In CLT15, the authors set out to
break this structure by introducing a new noise component a.

For this purpose, the public parameters include a new prime number N � x0, with size(N) =
γ+ 2η+ 1. Meanwhile x0 is kept secret, and no longer part of the public parameters. Encodings
are thus no longer reduced modulo x0, and take the general form given in (4.2), including a new
noise value a. Equivalently, we can write an encoding e of (mi) at level k as:

e =
∑
i

(
ri +mi(g

−1
i mod pi)

)
ui + ax0 (4.3)

with ui
4
=
(
giz
−k(p∗i)

−1 mod pi
)
p∗i .

113

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

That is, we fold the giz−k multiplier of ri with the CRT coefficient into ui.
The zero-testing parameter pzt is now defined modulo N in such a way that:

v0
4
= x0pzt mod N ∀i, vi 4= uipzt mod N (4.4)

satisfy: |v0| � N |vi| � N

To give an idea of the sizes involved, size(v0) ≈ γ and size(vi) ≈ γ + η for i > 0. We refer the
reader to [CLT15] for how to build such a pzt. The point is that if e is an encoding of zero at
level κ, then we have:

ω = epzt mod N =
∑

rivi + av0 mod N.

In order for this quantity to be smaller than N , the size of a must be somehow controlled.
Conversely as long as a is small enough and the noise satisfies |ri| � pi then |ω| � N . We refer
the reader to [CLT15] for an exact choice of parameters.

Thus the size of a must be controlled. The term ax0 will be dominant in (4.3) in terms of
size, so decreasing a is the same as decreasing the size of the encoding as a whole. The scheme
requires a way to achieve this without altering the encoded value (and without publishing x0).

For this purpose, inspired by [VDGHV10], a ladder (X
(k)
i)i≤` of encodings of zero of increasing

size is published for each level k ≤ κ. The size of an encoding e at level k can then be reduced
without altering the encoded value by recursively subtracting from e the largest ladder element
smaller than e, until e is smaller than X0. More precisely we can choose X0 small enough that
the previous zero-testing procedure goes through, and then choose X` twice the size of X0, so
that the product of any two encodings smaller than X0 can be reduced to an encoding smaller
than X0. After each addition and multiplication, the size of the resulting encoding is reduced
via the ladder.

In the end, the zero-testing procedure is very similar to CLT13: given a (ladder-reduced)
level-κ encoding e, compute ω = epzt mod N . Then output 1, meaning we expect e to encode
zero, iff the ν high-order bits of ω are zero.

Extraction.

The extraction procedure simply outputs the ν high-order bits of ω, computed as above. For
both CLT13 and CLT15, it can be checked that they only depend on the mi’s (as opposed to
the noises a and the ri’s).

4.5 Cheon et al.’s Attack on CLT13

In this section we provide a short description of Cheon et al.’s attack on CLT13 [CHL+15], as
elements of this attack appear in our own. We actually present (a close variant of) the slightly
simpler version in [CGH+15].

Assume we have access to a level-0 encoding a of some random value, n level-1 encodings (bi)
of zero, and a level-1 encoding y of 1. This is the case for one-round multi-party Diffie-Hellman
(see previous section). Let ai = a mod pi, i.e. ai is the i-th value “rigi +mi” associated with a.
For i ≤ n, define ri,j = biz/gj mod pj , i.e. ri,j is the j-th value “rj” associated with bi (recall
that bi is an encoding of zero, so mj = 0). Finally let yk = yz mod pk.

Now compute:

ei,j = a · bi · bj · yκ−2 mod x0 ωi,j = ei,jpzt mod x0

e′i,j = bi · bj · yκ−2 mod x0 ω′i,j = e′i,jpzt mod x0

114

4.6. Main Attack

Note that:

ωi,j =
∑
k

(
ak
ri,kgk
z

rj,kgk
z

yκ−2
k

zκ−2

hkz
κ

gk
mod pk

)
p∗k

=
∑
k

akri,krj,kck with ck = gky
κ−2
k hkp

∗
k. (4.5)

Crucially, in the second line, the modulo pk disappears and the equation holds over the integers,
because ei,j is a valid encoding of zero, so the correctness of the scheme requires |ei,jzκ/gk mod pk| �
pk.

Equation (4.5) may be seen as a matrix multiplication. Indeed, define Ω, resp. Ω′, as the
n× n matrix with entries ωi,j , resp. ω′i,j , and likewise R with entries ri,j . Moreover let A, resp.
C, be the diagonal matrix with diagonal entries ai, resp. ci. Then (4.5) may be rewritten:

Ω = R ·A · C ·RT

Ω′ = R · C ·RT

Ω · (Ω′)−1 = R ·A ·R−1.

Here matrices are viewed over Q for inversion (they are invertible whp).
Once Ω · (Ω′)−1 has been computed, the (diagonal) entries of A can be recovered as its

eigenvalues. In practice this can be achieved by computing the characteristic polynomial, and all
computations can be performed modulo some prime p larger than the ai’s (which are size 2ρ).

Thus we recover the ai’s, and by definition ai = a mod pi, so pi can be recovered as pi =
gcd(a− ai, x0). From there it is trivial to recover all other secret parameters of the scheme.

4.6 Main Attack

4.6.1 On the Impact of Recovering x0

If x0 is known, CLT15 essentially collapses to CLT13. In particular, all encodings can be reduced
modulo x0 so ladders are no longer needed. What is more, all ωi,j ’s from Cheon et al.’s attack
can be reduced modulo v0 = x0pzt mod N , which effectively removes the new noise a. As a
direct consequence Cheon et al.’s attack goes through and all secret parameters are recovered
(cf. [CLT15, Section 3.3]). Moreover ladder elements reduced by x0 provide low-level encodings
of zero even if the scheme itself does not. Also note that Cheon et al.’s attack is quite efficient
as it can be performed modulo any prime larger than the values we are trying to recover, i.e.
larger than 22ρ.

Our attack recovers x0. As a first step, we introduce integer extraction.

4.6.2 Integer Extraction

Integer extraction essentially removes the extra noise induced by ladder reductions when per-
forming computations on encodings. In addition, as we shall see in Section 4.6.4, this step is
enough to recover x0 when an exact multiple is known, as is the case in the optimized variant
proposed and implemented in [CLT15].

115

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

Integer Extraction of Level-κ Encodings of Zero.

In the remainder we say that an encoding at level k is small iff it is less than X(k)
0 in absolute

value. In particular, any ladder-reduced encoding is small.

Definition 22 (integer extraction of an encoding). Let e ∈ Z, and write:

e =

n∑
i=1

riui + ax0

with: ui =
(
giz
−k(p∗i)

−1 mod pi
)
p∗i as in (4.3)

ri ∈ Z ∩ (−pi/2, pi/2].

Note that ri is uniquely defined as ri = eg−1
i zk mod pi, and a = (e −∑ riui)/x0. Hence the

following map is well-defined over Z:

φ : e 7→
∑
i

rivi + av0

with: v0 = x0pzt mod N, and ∀i > 0, vi = uipzt mod N as in (4.4).

We call φ(e) the integer extraction of e.

Remark. φ is defined over the integers, and not modulo N . Indeed the vi’s are seen as
integers: recall from Section 4.2 that throughout this paper x mod N denotes an integer in
Z ∩ (−N/2, N/2].

The point is that if e is a small encoding of zero at level κ, then φ(e) = epzt mod N . In
that case φ(e) matches the extraction in the sense of the ext procedure of Section 4.3.2 (more
precisely ext returns the high-order bits of φ(e)).

However we want to compute φ(e) even when e is larger. For this purpose, the crucial point
is that φ is actually Z-linear as long as for all encodings involved, the associated ri’s do not go
over pi/2, i.e. reduction modulo pi does not interfere. More formally:

Lemma 15. Let e, a, r1, . . . , rn ∈ Z with −pi/2 < ri ≤ pi/2 such that e =
∑
riui + ax0 as in

Definition 22. Define e′ =
∑
r′iui + a′x0 in the same manner. Let k ∈ Z.

1. If ∀i,−pi/2 < ri + r′i ≤ pi/2, then: φ(e+ e′) = φ(e) + φ(e′)

2. If ∀i,−pi/2 < kri ≤ pi/2, then: φ(ke) = kφ(e)

An important remark is that the conditions on the ri’s above are also required for the cor-
rectness of the scheme to hold. In other words, as long as we perform valid computations from
the point of view of the multilinear map (i.e. there is no reduction of the ri’s modulo pi, and
correctness holds), then the Z-linearity of φ also holds.

Using this observation, we can recursively compute the integer extraction of every ladder
element X(κ)

i . Indeed φ(X
(κ)
0) = X

(κ)
0 pzt mod N . Then assume we know φ(X

(κ)
0), . . . , φ(X

(κ)
i)

for some i < `. Reduce Xi+1 by the previous elements of the ladder. We get:

Yi+1
4
= X

(κ)
i+1 − αiX

(κ)
i − · · · − α0X

(κ)
0

with: |Yi+1| < |X(κ)
0 |

whence: φ(X
(κ)
i+1) = φ(Yi+1) +

∑
j≤i

αjφ(X
(κ)
j)

116

4.6. Main Attack

Since |Yi+1| < |X0| we can compute φ(Yi+1) = Yi+1pzt mod N , and deduce φ(X
(κ)
i+1).

In exactly the same manner, we can compute φ(e) for any valid level-κ encoding of zero,
by first reducing via the ladder and then compensating using Z-linearity. Here, by valid we
mean of size up to X`, and such that the corresponding ri’s are within the limit imposed by the
correctness of the multilinear map.

4.6.3 Integer Extraction of Products

In this section, we show that it is in fact possible to compensate ladder reductions at intermediate
levels for any computation on encodings, e.g. compute φ(abc) for a three-way product abc. This
extends integer extraction beyond products of two elements. Note however that this will not be
necessary for our main attack.

Using Section 4.6.2, if a, b are two small encodings at levels s and κ − s respectively, and b
encodes zero, we know how to compute φ(ab), because the size of ab is at most that of X`.

We now consider larger products. Let a1, . . . , am, be small encodings at level s1, . . . , sm, with
tj
4
=
∑

i≤j si, tm = κ, and with am an encoding of zero. We would like to compute φ(a1 · · · am).

Note that a1 · · · am may be much larger than X
(κ)
` in the absence of ladder reduction, so our

previous technique is not enough.
Instead, a valid computation is to compute the product π 4= a1 · · · am pairwise from the left,

and reduce at each step. That is, let π1
4
= a1, and recursively define the ladder-reduced partial

product πi+1
4
= πiai+1−

∑
j α

i+1
j X

(ti+1)
i < X

(ti+1)
0 for i < m. Thus πm < X

(κ)
0 encodes the same

element as π, and φ(πm) = πmpzt mod N . In order to compute φ(π), observe:

π =
((

(a1a2 −
∑

α
(2)
i X

(t2)
i) . . .

)
am−1 −

∑
αm−1
i X

(tm−1)
i

)
am −

∑
α

(m)
i X

(κ)
i

+
∑

2≤k≤m

∑
i

α
(k)
i X

(tk)
i ak+1 · · · am

Hence:

φ(a1 · · · am) = φ(πm) +
∑

2≤k≤m

∑
i

α
(k)
i φ(X

(tk)
i ak+1 · · · am)

In the above equation, φ(πm) is known since πm is small, so we are reducing the computation of
a product π of m elements to a sum of products of m− 1 elements, of the form X

(tk)
i ak+1 · · · am.

As mentioned earlier we already know how to compute φ for products of 2 small elements, so by
induction we are done.

To be more precise, the induction is carried out on the hypothesis: we know how to compute
φ for products of up to m small encodings (with the last being an encoding of zero so that the
overall product encodes zero). In order to apply the induction hypothesis onX(tk)

i ak+1 · · · am, the
term X

(tk)
i would need to be small, which is not the case. However it can be reduced by previous

ladder elements, i.e. first compute X(tk)
0 ak+1 · · · am, then define Y1 = X

(tk)
1 − α0X

tk
0 < X

(tk)
0 ,

whence φ(X
(tk)
1 ak+1 · · · am) = φ(Y1ak+1 · · · am) + α0φ(Xtk

0 ak+1 · · · am), and so forth as in the
previous section. Thus the induction goes through and we know how to compute φ(π).

All in all, while the above formalism may obfuscate the process somewhat, the idea is simple:
φ is (Z-)linear as long as we are performing valid computations from the point of view of the
scheme. As a consequence every ladder reduction involved during a computation can be compen-
sated for at its last stage, when the level-κ encoding is multiplied by the zero-testing parameter.
The payback is that we will be able to ignore ladder reductions in the rest of the attack.

117

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

Remark. While the above reasoning is concerned with products only, ladder reductions
coming from additions can also be compensated in a similar way. In summary, we can actually
compute φ(F (a1, . . . , an)) for any computation F on encodings ai, as long as the computation
is valid for the scheme itself (i.e. noises are within acceptable bounds for the correcntess of the
multilinear map to hold).

A note on complexity. It may seem that computing φ(a1 · · · am) using the previous approach
has a huge complexity, but actually most of the computation overlaps. In fact we only ever
need to compute the φ(X

(tk)
i ak+1 · · · am)’s for each i, k. Memorizing intermediate results yields

a complexity in `m, where ` is the size of the longest ladder. The time required for each term is
quite close to using the multi-party Diffie-Hellman scheme.

4.6.4 Recovering x0 when an Exact Multiple is Known

The authors of [CLT15] propose an optimized version of their scheme, where a multiple qx0 of
x0 is provided in the public parameters. The size of q is chosen such that qx0 is about the same
size as N . Ladders at levels below κ are no longer necessary: every encoding can be reduced
modulo qx0 without altering encoded values or increasing any noise. The ladder at level κ is
still needed as a preliminary to zero-testing, however it does not need to go beyond qx0, which
makes it much smaller. In the end this optimization greatly reduces the size of the public key
and speeds up computations, making the scheme much more practical (cf. Section 4.6.6).

In this scenario, note that qx0 may be regarded as an encoding of 0 at level κ (and indeed
every level). Moreover by construction it is small enough to be reduced by the ladder at level κ
with a valid computation (i.e. with low enough noise for every intermediate encoding involved
that the scheme operates as desired and zero-extraction is correct). As a direct consequence we
have:

φ(qx0) = qv0

and so we can recover q as q = gcd(qx0, φ(qx0)), and get x0 = qx0/q. This attack has been
verified on the reference implementation, and recovers x0 instantly.

Remark. qv0 is larger thanN by design, so that it cannot be computed simply as qx0pzt mod N
due to modular reductions (cf. [CLT15, Section 3.4]). The point is that our computation of φ is
over the integers and not modulo N .

4.6.5 Recovering x0 in the General Case

We now return to the non-optimized version of the scheme, where no exact multiple of x0 is
provided in the public parameters.

The second step of our attack recovers x0 using a matrix product similar to Cheon et al.’s (cf.
Section 4.5), except we start with families of n+1 encodings rather than n. That is, assume that
for some t we have n+ 1 level-t small encodings (ai) of any value, and n+ 1 level-(κ− t) small
encodings (bi) of zero. This is easily achievable for one-round multi-party Diffie-Hellman (cf.
Section 4.3.2), e.g. choose t = 1, then pick (n+ 1) level-1 encodings (ai) of zero from the public
parameters, and let bi = a′iy

κ−2 for a′i another family of (n+ 1) level-1 encodings of zero and y
any level-1 encoding, where the product is ladder-reduced at each level. In other applications of
the multilinear map, observe that ladder elements provide plenty of small encodings of zero, as
each ladder element can be reduced by the elements below it to form a small encoding of zero.
Thus the necessary conditions to perform both our attack to recover x0, and the follow-up attack
by Cheon et al. to recover other secret parameters once x0 is known, are very lax. In this respect
CLT15 is weaker than CLT13.

118

4.6. Main Attack

Let ai,j = aiz mod pj , i.e. ai,j is the j-th value “rjgj +mj” associated with ai. Likewise for
i ≤ n, let ri,j = biz

κ−1/gj mod pj , i.e. ri,j is the j-th value “rj” associated with bi (recall that
bi is an encoding of zero, so mj = 0). Now compute:

ωi,j
4
= φ(aibj).

If we look at the ωi,j ’s modulo v0 (which is unknown for now), everything behaves as in CLT13
since the new noise term av0 disappears, and the ladder reduction at level κ is negated by the
integer extraction procedure. Hence, similar to Section 4.5, we have:

ωi,j mod v0 =
∑
k

ai,krj,kvk mod v0. (4.6)

Again, equation (4.6) may be seen as a matrix product. Indeed, define Ω as the (n+1)×(n+1)
integer matrix with entries ωi,j , let A be the (n + 1) × n matrix with entries ai,j , let R be the
(n+ 1)×n matrix with entries ri,j , and finally let V be the n×n diagonal matrix with diagonal
entries vi. Then (4.6) may be rewritten modulo v0:

Ω = A · V ·RT in Zv0 .

Since A and R are (n+ 1)× n matrices, this implies that Ω is not full-rank when embedded
into Zv0 . As a consequence v0 divides det(Ω), where the determinant is computed over the
integers. Now we can build a new matrix Ω′ in the same way using a different choice of bi’s, and
recover v0 as v0 = gcd(det(Ω), det(Ω′)). Finally we get x0 = v0/pzt mod N (note that N � x0

by construction).
The attack has been verified on the reference implementation with reduced parameters. In

Section 4.7 we propose two different techniques to recover v0 while avoiding the determinant
computation step. Section 4.7.2 in particular proposes a probabilistic attack quite different from
our main attack.

Remark. As pointed out above, Ω cannot be full-rank when embedded into Zv0 . Our attack
also requires that it is full-rank over Q (whp). This holds because while Ω can be nicely decom-
posed as a product when viewed modulo v0, the “remaining” part of Ω, that is Ω− (Ω mod v0)
is the matrix of the terms av0 for each ωi,j , and the value a does have the nice structure of
ωi,j mod v0. This is by design, since the noise a was precisely added in CLT15 in order to defeat
the matrix product structure of Cheon et al.’s attack.

4.6.6 Attack Complexity

It is clear that the attack is polynomial, and asymptotically breaks the scheme. In this section
we provide an estimate of its practical complexity. When an exact multiple of x0 is known, the
attack is instant as mentioned in Section 4.6.4, so we focus on the general case from Section 4.6.5.

In the general case, a ladder of encodings of size ` ≈ γ is published at every level30. Using
the scheme requires κ ladder reductions, i.e. κ` additions of integers of size γ. Since there are κ
users, this means the total computation incurred by using the scheme is close to κ2γ2. For the
smallest 52-bit instance, this is already ≈ 246. Thus using the scheme a hundred times is above

30As the level increases, it is possible to slightly reduce the size of the ladder. Indeed the acceptable level of
noise increases with each level, up to ρf at level κ. As a consequence it is possible to leave a small gap between
ladder elements as the level increases. For instance if the base level of noise is 2ρ for ladder elements, then at
level κ it is possible to leave a gap of roughly ρf − 2ρ − log ` bits between ladder elements. We disregard this
effect, although it slighly improves our complexity.

119

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

the security parameter. This highlights the importance of the optimization based on publishing
qx0, which makes the scheme much more practical. More importantly for our current purpose,
this makes it hard to propose an attack below the security parameters.

As a result, what we propose in terms of complexity evaluation is the following. For com-
putations that compare directly to using the multilinear scheme, we will tally the complexity as
the number of operations equivalent to using the scheme, in addition to the bit complexity. For
unrelated operations, we will count the number of bit operations as usual.

There are two steps worth considering from a complexity point of view: computing Ω and
computing its determinant. In practice both steps happen to have comparable complexity. Com-
puting the final gcd is negligible in comparison using a subquadratic algorithm [Möl08], which
is practical for our parameter size.

Computing Ω.

As a precomputation, in order to compute φ, the integer extraction of ladder elements at level
κ needs to be computed. This requires ` integer extractions, where ` ≤ γ. Computing Ω itself
requires (n + 1)2 integer extractions of a single product. Each integer extraction requires 1
multiplication, and 2` additions (as well as ` multiplications by small scalars). For comparison,
using the multilinear scheme for one user requires 1 multiplication and ` additions on integers
of similar size. Thus overall computing Ω costs about γ + n2 times as much as simply using the
multilinear scheme. For the 52-bit instance proposed in [CLT15] for instance, this means that if
it is practical to use the scheme about a million times, then it is practical to compute Ω. Here
by using the scheme we mean one (rather than κ2) ladder reduction, so the bit complexity is
O(γ3 + n2γ2).

Computing the Determinant.

Let n denote the size of a matrix Ω (it is (n+ 1) in our case but we will disregard this), and β
the number of bits of its largest entry. When computing the determinant of an integer matrix,
one has to carefully control the size of the integers appearing in intermediate computations. It
is generally possible to ensure that these integers do not grow past the size of the determinant.
Using Hadamard’s bound this size can be upper bounded as log(det(Ω)) ≤ n(β+ 1

2 log n), which
can be approximated to nβ in our case, since β is much larger than n.31

As a result, computing the determinant using “naive” methods requires O(n3) operations on
integers of size up to nβ, which results in a complexity Õ(n4β) using fast integer multiplication
(but slow matrix multiplication). The asymptotic complexity is known to be Õ(nωβ) [Sto05];
however we are interested in the complexity of practical algorithms. Computing the determinant
can be reduced to solving the linear system associated with Ω with a random target vector:
indeed the determinant can then be recovered as the least common denominator of the (rational)
solution vector32. In this context the fastest algorithms use p-adic lifting [Dix82], and an up-
to-date analysis using fast arithmetic in [MS04] gives a complexity O(n3β log2 β log log β) (with
log n = o(β)).33

For the concrete instantiations of one-round multipartite Diffie-Hellman implemented in
[CLT15], this yields the following complexities:

31This situation is fairly unusual, and in the literature the opposite is commonly assumed; algorithms are often
optimized for large n rather than large β.

32In general extra factors may appear, but this is not relevant for us.
33This assumes a multitape Turing machine model, which is somewhat less powerful than a real computer.

120

4.7. Recovering x0 without Computing a Determinant

Security parameter: 52 62 72 80
Building Ω: 260 266 274 282

Determinant: 257 266 274 281

Thus, beside being polynomial, the attack is actually coming very close to the security parameter
as it increases to 80 bits.34

4.7 Recovering x0 without Computing a Determinant

In this section we describe two alternate approaches to recovering x0 in the general case. The first
approach is very similar to our main attack, and simply replaces the determinant computation
with solving a rational system. The complexity is essentially equivalent.

The second approach is quite different. It relies on finding and exploiting divisors of v0. The
attack is probabilistic in the sense that it works on roughly 90% of instances: the probabilistic
aspect is purely dependent on instance generation.

4.7.1 First approach: Rational System Solving

As mentioned earlier, this approach is very similar to our main attack. We begin by computing
matrices Ω, Ω′ exactly as in Section 4.6.5. From there recovering v0 can be roughly modeled as
the following problem:

Problem 2. Let n, β, v be positive integers, with v � β. Let A, B be two integer matrices chosen
uniformly at random among (n+ 1)× (n+ 1) matrices with the following properties:

1. All entries are in Z ∩ [−2β, 2β]

2. A, B are full-rank.

3. A, B are rank n when embedded into Zv.

The problem is to find (the largest possible) v given A and B.

Remark. As it it stated above, the problem provides two matrices A, B satisfying the three
conditions. However the problem makes sense even with just one such matrix.

In our main attack, we solve this problem by observing v| det(A), so v = gcd(det(A),det(B)).
However it is not clear that this is the best approach. We think that this is an interesting problem
and there may be more efficient solutions.

In this section we will simply sketch another solution based on solving a rational system,
whose complexity is essentially the same as computing a determinant in our main attack.

Decompose A as a block matrix in the following way:

A =

 A′ b

c d

34We may note in passing that in a random-access or log-RAM computing model [Für14], which is more realistic

than the multitape model, the estimated determinant complexity would already be slightly lower than the security
parameter.

121

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

In this representation, A′ is the submatrix containing the first n rows and columns of A, and b, c,
d are respectively n×1, 1×n and 1×1 matrices. Whp A′ is invertible both over Zv and over Q.
Then over Zv we have c(A′)−1b = d since A is not full-rank. Hence if we compute d′ = c(A′)−1b
over the rationals, then d − d′ mod v = 0. If we write d′ = p/q with p, q coprime integers, this
means that v|qd− p. We can repeat this process with B (or using another decomposition of A),
and recover v as the gcd of qd− p computed as above for each matrix.

The complexity of this method is essentially the same as that of a determinant, because it
amounts to solving a rational system, namely A′x = b, which is also the bottleneck for the most
efficient determinant algorithms. Thus the real challenge would be to solve Problem 2 without
somehow resorting to solving a rational system with parameters close to those of A.

4.7.2 Second Approach: Probabilistic Algorithm

If we try to apply Cheon et al.’s attack directly to CLT15, there are two obstacles: ladder
reductions, and the noise term av0. Using integer extraction, the effect of ladder reductions is
negated. Then, if v0 is somehow recovered, Cheon et al.’s attack can be applied modulo v0, since
this makes the term av0 disappear. However the same is true for any divisor π of v0.

Based on this idea our second approach proceeds in two steps: first, we find a prime π|v0.
Second, we exploit π to recover all secret parameters using a variant of Cheon et al.’s attack,
modulo increasing powers of π.

Step 1: Finding π.

Observe that v0 has no reason to be prime. In fact, it is defined as a large sum of various param-
eters with no common denominator, and heuristically we expect it to behave like a uniformly
random number modulo π for any sufficiently small π (e.g. π � 2γ). In particular, choose some
bound b and define:

B(b)
4
=

∏
p∈P,p<b

p

p(b)
4
= Pr[x←$ Z ∩ [0, B(b)] : ∃p ∈ P, p < b, p|x]

where P denotes the set of prime numbers. Then as long as B(b) � v0 we expect that the
probability that some prime π < b divides v0 is very close to p(b).

If we take e.g. b = 100 then already p(b) ≈ 0.88. In general Merten’s third theorem provides
an asymptotic formula which is quite tight for our purpose:

1− p(b) ∼ e−γ

ln b

where γ ≈ 0.58 is Euler’s constant.
We could simply try to guess π and carry out the rest of the attack. However a better method

in order to find π < b, π|v0, is to compute a matrix Ω and its determinant as in Section 4.6.5, ex-
cept all computations are carried out modulo B(b). Thus determinant computation in particular
is much cheaper (for a reasonable choice of b). Once we know det(Ω) mod B(b), we can check
whether p|det(Ω) for each prime p < b. If so then with high probability p|v0. False positives can
be eliminated by repeating this process a few times. The overall probability of success is p(b).

122

4.7. Recovering x0 without Computing a Determinant

Step 2: Rationale.

Before presenting the attack itself, we highlight the main ideas. At this point we know some
small π|v0. This means we can reduce every equation modulo π and perform Cheon et al.’s
attack. Thus for some level-0 encodings ci

4
= CRT(pj)(ci,j) we can recover the ci,j ’s modulo π.

We want to recover the ci,j ’s in their entirety.
However we are only able to recover secret information modulo π. If we consider, say, the

ci,j ’s as integers in base π, a natural idea in order to recover the next digit of the ci,j ’s is to
somehow divide them by π, in order to shift the second digit into the first position. Thus we
create a linear combination d 4= CRT(pj)(dj) of the encodings ci such that dj mod π = 0. Then
we divide d by π over the integers and apply Cheon et al.’s attack. In the end we find some
linear information on the ci,j ’s modulo π2.

We could repeat this process for increasing powers of π. However we only recover information
on some linear combinations of the ci’s, and the size of these linear combinations increases as we
go on. Moreover we would lose n degrees of freedom at each step, which implies we would need
a large number of ci’s at the start, which the scheme may not provide.

Instead, we use a second idea, which is to recover information modulo π not directly on
the ci’s, but on their pairwise products. This gives us much more information, which makes it
possible to recover information modulo πm on the ci,j ’s themselves, and not just a subspace of
codimension n spanned by some linear combinations. As a result the number of ci’s required
does not grow with the number of induction steps.

We now move on to the actual attack.

Step 2.1: Computing the Matrices Ωx,y.

Let α = d
√

2n+ 1e, and pick:

ai
4
= CRT(pj)(ai,j/z

t) : a sequence of n encodings at some level t.
bi
4
= CRT(pj)(bi,jgj/z

κ−t) : a sequence of n encodings of zero at level κ− t.
cx
4
= CRT(pj)(cx,j) : a sequence of α encodings at level 0.

Now define:

Ω : the n× n integer matrix with entries φ(aibj).
Ωx,y : the n× n integer matrix with entries φ(cxcyaibj).
Ω′x,y

4
= Ωx,yΩ

−1 over the rationals.

That is, we compute the matrix from Cheon et al.’s attack for all encodings cxcy. When Ω′x,y is
viewed modulo π, its eigenvalues are the cx,icy,i’s modulo π as in Section 4.5 (this assumes Ω is
invertible modulo π, which holds whp). In particular this enables us to recover the cx,i’s modulo
π.

Step 2.2: Main Induction.

Assume we know all cx,i’s modulo πm for some m > 0. We want to recover the cx,i’s modulo
πm+1. To this end, decompose cx,i as:

cx,i = c′x,iπ
m + c′′x,i, with |c′′x,i| < πm

So far we know c′′x,i, and we are looking for c′x,i mod π.

123

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

Because there are α2 > 2n+ 1 encodings cxcy, we can create n+ 1 linear combinations:

dk
4
=
∑

λ(k)
x,ycxcy, with λ

(k)
x,y ∈ Z ∩ (−πm/2, πm/2], for k ≤ n+ 1

such that if we let dk,i
4
= dk mod pi =

∑
λ

(k)
x,ycx,icy,i be the i-th component of the encoding dk,

then dk,i mod πm = 0.
In addition, spending one more degree of freedom, we can create n linear combinations of the

dk’s that are zero modulo πm. Without loss of generality, we assume dk mod πm = 0 for k ≤ n.
We now restrict our attention to the first n dk’s.

Let d′k
4
= dk/π

m, where the division is exact over the integers. Then d′k,i
4
= d′k mod pi, when

regarded modulo πm+1, satisfies:

d′k,i =
1

πm

∑
λ(k)
x,ycx,icy,i

=
1

πm

∑
λ(k)
x,y(c

′
x,iπ

m + c′′x,i)(c
′
y,iπ

m + c′′y,i)

=
∑

λ(k)
x,y(c

′
x,ic
′′
y,i + c′′x,ic

′
y,i) +

1

πm

∑
λ(k)
x,yc
′′
x,ic
′′
y,i

where the last division is exact by construction of the λ(k)
x,y’s.

Recall that the c′′x,i’s are known by induction hypothesis, so what knowledge of the d′k,i’s
really gives us is n linear equations over the c′x,i’s (and c′y,i’s). Hence whp knowing the d′k,i’s
modulo π allows us to recover the c′x,i’s modulo π we are looking for.

Thus the induction comes down to recovering the d′k,i’s modulo π. Observe that the d′k’s are
valid encodings at level 0. Moreover if we apply Cheon et al.’s attack modulo π on the d′k’s, then
due to the Z-linearity of φ, the associated matrix will be 1

πm
∑
λ

(k)
x,yΩ′x,y. Thus in the end the

d′k,i’s modulo π are the eigenvalues of 1
πm
∑
λ

(k)
x,yΩ′x,y modulo π,35 and we are done.

Final Step.

Once πm > cx,i, i.e. m > 2ρ/ log π, we know cx,i. Then pi|cx− cx,i and we can recover pi e.g. as
gcd(c1−c1,i, c2−c2,i). From there all other secret parameters of the scheme are easily computed.

Noise Growth.

In its application to multipartite Diffie-Hellman, the multilinear map needs to support multipli-
cation of one level-0 encoding with κ level-1 encodings. The noise of the final encoding at level
κ (by which we mean the size of its value modulo pi) will be close to 2ρ(κ+ 1). Meanwhile our
attack induces a noise at level κ equivalent to multiplying three level-0 encodings: namely cx, cy
and multiplication by λ(k)

x,y; with an encoding at level t and another at level κ−t. By using ladder
elements as encodings, the resulting noise will be close to 2ρ ·5. Thus the attack is applicable for
κ ≥ 4. This assumes that encodings with the base level of noise 2ρ are available at each level:
this is provided by ladder elements.

35The matrix M = 1
πm

∑
λ
(k)
x,yΩ′x,y may seem ill-defined modulo π due to the division by πm. However the

division is over the rationals before embedding into Zπ, and it is exact on the numerator of each entry. Indeed
M = (1

πm

∑
λ
(k)
x,yΩx,y)Ω−1, and the sum on the left-hand side yields an integer matrix, where each element is an

image by φ of some product d′kaibj , by construction of the λ’s and by Z-linearity. Thus all we ever need is for the
single matrix Ω to be invertible modulo π.

124

4.7. Recovering x0 without Computing a Determinant

Complexity.

It is clear that the attack is polynomial. We provide a quick look at its complexity. The main
steps of the attack are as follows. We can choose e.g. b = 100 as this already ensures a high
probability of success.

1. Step 1: Finding π. This step is similar to our main attack, except the determinant
computation is much cheaper, as it is performed modulo B(b). If we let β 4= logB(b) then
the complexity given in Section 4.6.6 yields O(n3β log2 β log log β). For b = 100, β ≈ 121,
and this step will be negligible relative to the next ones.

2. Step 2.1: Computing the Matrices Ωx,y. This requires α2n2 ≈ n3 calls to φ for a
four-way product. This is more or less equivalent to using the scheme n3γ times. For the
smallest instance implemented in [CLT15], n3γ ≈ 247.

3. Step 2.2: Main Induction: We repeat the induction m ≈ 2ρ/ log(π) times. Each
induction step involves:

(a) Inverting a matrix of dimension n with entries of size up to 2ρ. This can be evaluated
to O(n3ρ log ρ log log ρ) bit operations.

(b) Recovering the eigenvalues of (a linear combination over Q of) Ω′x,y’s modulo π. Since
π is quite small, this essentially costs n3 operations, which is negligible (moreover the
eigenvectors are always the same, and can be recovered once for a further speedup).

125

Chapter 4. Cryptanalysis of the CLT15 Multilinear Map

126

Conclusion

In this thesis we have focused mostly on cryptanalyses of some recent cryptographic schemes.
Part of the goal of cryptanalysis is to identify the most relevant attacks against a given type of
cryptographic scheme or problem. In this respect, a large part of our work pertains to schemes
where the picture of the most relevant attacks still appears incomplete, or at least not fully
delineated. As such many open questions remain.

In Chapter 1, we have presented a unified cryptanalysis of block ciphers Robin, iSCREAM
and Zorro. Our analysis was based on self-similarity and invariant subspace properties. We also
provided generic tools for detecting this type of attack.

Since our work, invariant subspaces have made a few more appearances [GJN+15, Røn16,
GRR16]. In the first two cases [GJN+15, Røn16], invariant subspaces can be regarded as a
simple oversight by the designers, and could be easily prevented by tweaking round constants.
This would suggest a view of invariant subspaces similar to slide attacks: devastating in some
cases, but easy to prevent for designers who are aware of this type of attack. However [GRR16]
presents a generalization of invariant subspaces applied to AES, and drops the requirement that
the key schedule be trivial. This hints that the future of invariant subspaces may be more
complex, and more work is needed in that direction. My two coauthors from [LMR15] will
certainly continue to investigate. It is also interesting to note that [GRR16] has a strong integral
attack flavor. Together with recent work on the division property such as [Tod15], this suggests
that new types of integral attacks may still be waiting to be uncovered.

Meanwhile there is no other recorded occurence of commuting maps, such as the ones that
appear in Robin and Zorro. It is an open question whether weaker (e.g. probabilistic) variants
of these properties could be useful for the analysis of other ciphers.

In Chapter 2 we proposed a structural cryptanalysis of ASASA. The attack was applied to
both black-box and white-box schemes, including a multivariate trapdoor permutation. A very
interesting follow-up work by Biryukov and Khovratovich shows that our structural attack on
ASASA can be extended to longer structures, even SASASASAS for some parameters [BK15].
The main obstacle is the degree of the overall function, which is bounded using results by Boura
and Canteaut on the degree of composite functions [BC13]. On the other hand no technique is
known as soon as the ASASA . . . construction reaches full degree. A distinguisher that would
be successful on this type of construction beyond full degree would be very interesting, as it
might be usable to attack SPN block ciphers. Another interesting new avenue of applications for
structural cryptanalysis is a recent line of work that has looked at reverse-engineering S-boxes
[BPU16], or other permutations whose structure may not be fully understood [PUB16].

Going back to white-box cryptography, which was the motivation behind ASASA [BBK14],
in Chapter 3, we build two efficient white-box schemes with provable security guarantees. This
follows several works on incompressible white-box constructions [DLPR13, BBK14, BI15], which
either relied on asymmetric primitives or offered no provable security. So far, previous symmetric
white-box constructions [BBK14, BI15] aimed to resist standard symmetric attacks, as well

127

Conclusion

as structural attacks in the case of [BBK14]. However when approached from the provable
security angle (as is the case in our work), new parallells with other cryptographic models appear.
This includes local extractors [Vad04] and intrusion resilience [Dzi06]. Most notably, our strong
model of incompressibility is quite close to a very recent independent work on big-key encryption
[BKR16]. In this respect, at least from a theoretical perspective, the problem of white-box
incompressibility seems less isolated, and may be regarded as one of the more practical ends of a
larger spectrum of models. Techniques from [BKR16] may be especially helpful for future work.

Finally, in Chapter 4, we described a polynomial attack on a multilinear map candidate
construction. The current picture of multilinear map is as follows. Three major schemes have
been proposed [GGH13a, CLT13, GGH15]. Two variants have been proposed for the CLT scheme
[CLT13, CLT15], however our contribution is precisely to show that the CLT15 variant can
be discarded entirely. Of the other three schemes, every one has been broken when used to
instantiate non-interactive multipartite key exchange [HJ15, CHL+15, CLLT16], and GGH13
has also been broken for some constructions of indistinguishability obfuscation (iO) [MSZ16a].
While new constructions of multilinear maps may still be possible, all these attacks appear
to have shaken the faith of the community in building a generic multilinear map (or graded
encoding scheme). Instead, recent work adapts and restricts the usage of existing multilinear
map constructions, in such a way that a large class of attack becomes impossible. This class
is designed to include all known attacks [GMS16, MSZ16b]. The point is that even in the
presence of these restrictions, multilinear maps can still be used to achieve indistinguishability
obfuscation. These constructions are dedicated to iO, and the status of other constructions
relying on multilinear maps is unknown. On the cryptanalytic side, important open questions
include whether CLT13 is secure when used to build iO, e.g. using [Zim15], and whether the
aforementioned recent construtions of iO that structurally avoid known attacks are secure.

128

Tables

1 Robin and iSCREAM S-Box
*0 *1 *2 *3 *4 *5 *6 *7 *8 *9 *a *b *c *d *e *f

0* 00 85 65 d2 5b ff 7a ce 4d e2 2c 36 92 15 bd ad
1* 57 f3 37 2d 88 0d ac bc 18 9f 7e ca 41 ee 61 d6
2* 59 ec 78 d4 47 f9 26 a3 90 8b bf 30 0a 13 6f c0
3* 2b ae 91 8a d8 74 0b 12 cc 63 fd 43 b2 3d e8 5d
4* b6 1c 83 3b c8 45 9d 24 52 dd e4 f4 ab 08 77 6d
5* f5 e5 48 c5 6c 76 ba 10 99 20 a7 04 87 3f d0 5f
6* a5 1e 9b 39 b0 02 ea 67 c6 df 71 f6 54 4f 8d 2e
7* e7 6a c7 de 35 97 55 4e 22 81 06 b4 7c fb 1a a1
8* d5 79 fc 42 84 01 e9 5c 14 93 33 29 c1 6e a8 b8
9* 28 32 0c 89 b9 a9 d9 75 ed 58 cd 62 f8 46 9e 19
a* cb 7f a2 27 d7 60 fe 5a 8e 95 e3 4c 16 0f 31 be
b* 64 d3 3c b3 7b cf 40 ef 8f 94 56 f2 17 0e af 2a
c* 2f 8c f1 e1 dc 53 68 72 44 c9 1b a0 38 9a 07 b5
d* 5e d1 03 b1 23 80 1f a4 34 96 e0 f0 c4 49 73 69
e* da c3 09 aa 4a 51 f7 70 3e 86 66 eb 21 98 1d b7
f* db c2 bb 11 4b 50 6b e6 9c 25 fa 7d 82 3a a6 05

129

Tables

2 Well-Behaved Affine Spaces for the Robin and iSCREAM S-
Box

Only spaces whose direction contains 1 are listed.
V

al
u

es
in
u

+
A

B
as

is
of
A

V
al

u
es

in
v

+
B

=
S

(u
+
A

)
B

as
is

of
B

d
im

(A
+
B

)

00
01

26
27

84
85

a2
a3

01
26

84
00

01
26

27
84

85
a2

a3
01

26
84

3

18
19

7c
7d

9e
9f

fa
fb

01
64

86
18

19
7c

7d
9e

9f
fa

fb
01

64
86

3

28
29

32
33

8a
8b

90
91

01
1a

a2
90

91
8a

8b
32

33
28

29
01

1a
a2

3

3c
3d

5e
5f

b2
b3

d0
d1

01
62

8e
b2

b3
d0

d1
3c

3d
5e

5f
01

62
8e

3

44
45

66
67

c8
c9

ea
eb

01
22

8c
c8

c9
ea

eb
44

45
66

67
01

22
8c

3

4e
4f

54
55

6c
6d

76
77

01
1a

22
77

76
6d

6c
55

54
4f

4e
01

1a
22

3

28
29

32
33

6c
6d

76
77

01
1a

44
90

91
8a

8b
54

55
4e

4f
01

1a
c4

4

28
29

32
33

4e
4f

54
55

01
1a

66
90

91
8a

8b
76

77
6c

6d
01

1a
e6

4

2e
2f

38
39

8c
8d

9a
9b

01
16

a2
6f

6e
63

62
cd

cc
c1

c0
01

0c
a2

4

08
09

2e
2f

8c
8d

aa
ab

01
26

84
4d

4c
6f

6e
c1

c0
e3

e2
01

22
8c

5

08
09

38
39

9a
9b

aa
ab

01
30

92
4d

4c
63

62
cd

cc
e3

e2
01

2e
80

5

0a
0b

12
13

c6
c7

de
df

01
18

cc
2c

2d
36

37
68

69
72

73
01

1a
44

5

0e
0f

16
17

c2
c3

da
db

01
18

cc
bd

bc
ad

ac
f1

f0
e1

e0
01

10
4c

5

20
21

3e
3f

86
87

98
99

01
1e

a6
59

58
5d

5c
e9

e8
ed

ec
01

04
b0

5

22
23

34
35

80
81

96
97

01
16

a2
78

79
74

75
d8

d9
d4

d5
01

0c
a0

5

24
25

3a
3b

82
83

9c
9d

01
1e

a6
47

46
43

42
fd

fc
f9

f8
01

04
ba

5

4a
4b

50
51

8e
8f

94
95

01
1a

c4
e4

e5
f4

f5
a8

a9
b8

b9
01

10
4c

5

130

3. Commuting Linear Map and Invariant Subspace for Zorro

3 Commuting Linear Map and Invariant Subspace for Zorro

The commuting linear map M is represented as a 16 × 16 matrix over F28 , using the AES
representation of F28 as F2[x]/(x8 + x4 + x3 + x+ 1).

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 34 101 35 101 50 249 50 249 249 116 249 116
0 0 0 0 101 35 101 34 249 50 249 50 116 249 116 249
0 0 0 0 35 101 34 101 50 249 50 249 249 116 249 116
0 0 0 0 101 34 101 35 249 50 249 50 116 249 116 249
0 0 0 0 17 86 17 86 1 0 0 0 249 50 249 50
0 0 0 0 86 17 86 17 0 0 0 1 50 249 50 249
0 0 0 0 17 86 17 86 0 0 1 0 249 50 249 50
0 0 0 0 86 17 86 17 0 1 0 0 50 249 50 249
0 0 0 0 51 190 51 190 86 17 86 17 35 101 34 101
0 0 0 0 190 51 190 51 17 86 17 86 101 34 101 35
0 0 0 0 51 190 51 190 86 17 86 17 34 101 35 101
0 0 0 0 190 51 190 51 17 86 17 86 101 35 101 34

The invariant subspace ker(M +Id) is generated by the following 12 row vectors, in the same

representation.

(1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 1 0 0 0 0 0 0 38 0 0 159 0)
(0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3)
(0 0 0 0 0 0 1 0 0 0 0 38 0 0 159 0)
(0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3)
(0 0 0 0 0 0 0 0 1 0 0 79 0 0 38 1)
(0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 1 79 0 0 38 1)
(0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1)

131

Tables

132

Bibliography

[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander, Christof
Paar, and Tolga Yalçin. Block ciphers - focus on the linear layer (feat. PRIDE).
In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 57–76,
2014.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Survey: Leakage resilience and the
bounded retrieval model. In Information Theoretic Security, pages 1–18. Springer,
2009.

[AFF+14] Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick, Ludovic Perret,
Yosuke Todo, and Keita Xagawa. Practical Cryptanalysis of a Public-Key En-
cryption Scheme Based on New Multivariate Quadratic Assumptions. In Hugo
Krawczyk, editor, Public-Key Cryptography – PKC 2014, volume 8383 of Lecture
Notes in Computer Science, pages 446–464. Springer Berlin Heidelberg, 2014.

[ANWOW13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. Blake2: simpler, smaller, fast as md5. In Applied Cryptography and
Network Security, pages 119–135. Springer, 2013.

[ARM09] ARM. Security technology building a secure system using TrustZone technol-
ogy. White paper, available at infocenter.arm.com/help/topic/com.arm.doc.
prd29-genc-009492c/, 2009.

[BB02] Elad Barkan and Eli Biham. In how many ways can you write rijndael? In Yuliang
Zheng, editor, Advances in Cryptology — ASIACRYPT 2002, volume 2501 of
Lecture Notes in Computer Science, pages 160–175. Springer Berlin Heidelberg,
2002.

[BBK14] Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. Cryptographic
Schemes Based on the ASASA Structure: Black-Box, White-Box, and Public-Key.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology–ASIACRYPT
2014, volume 8873 of Lecture Notes in Computer Science, pages 63–84. Springer
Berlin Heidelberg, 2014. Full version: http://eprint.iacr.org/2014/474.

[BC13] Christina Boura and Anne Canteaut. On the influence of the algebraic degree of
on the algebraic degree of. Information Theory, IEEE Transactions on, 59(1):691–
702, 2013.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneže-
vić, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian

133

infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
http://eprint.iacr.org/2014/474

Bibliography

Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçın. PRINCE -
A Low-Latency Block Cipher for Pervasive Computing Applications - Extended
Abstract. In ASIACRYPT, volume 7658 of LNCS, pages 208–225. Springer, 2012.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak,
François-Xavier Standaert, and Yu Yu. Leftover hash lemma, revisited. In Ad-
vances in Cryptology–CRYPTO 2011, pages 1–20. Springer, 2011.

[BDLF10] Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, and Pierre-Alain Fouque.
Another look at complementation properties. In Seokhie Hong and Tetsu Iwata,
editors, Fast Software Encryption, volume 6147 of Lecture Notes in Computer
Science, pages 347–364. Springer Berlin Heidelberg, 2010.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing.
In Advances in Cryptology–CRYPTO 2001, pages 213–229. Springer, 2001.

[BFP11] L. Bettale, J.-C. Faugère, and L. Perret. Cryptanalysis of Multivariate and Odd-
Characteristic HFE Variants. In Public Key Cryptography - PKC 2011, volume
6571, pages 441–458. Springer-Verlag, 2011.

[BGEC04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a white box
aes implementation. In Selected Areas in Cryptography, pages 227–240. Springer,
2004.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Advances in cryptology–CRYPTO 2001, pages 1–18. Springer, 2001.

[Bha14] Arnab Bhattacharyya. Polynomial decompositions in polynomial time. In An-
dreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014 - 22th
Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceed-
ings, volume 8737 of Lecture Notes in Computer Science, pages 125–136. Springer,
2014.

[BHT15] Arnab Bhattacharyya, Pooya Hatami, and Madhur Tulsiani. Algorithmic regu-
larity for polynomials and applications. In Piotr Indyk, editor, Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015, pages 1870–1889. SIAM, 2015.

[BI15] Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited: Space-
hard ciphers. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 1058–1069. ACM, 2015.

[Bih00] Eli Biham. Cryptanalysis of Patarin’s 2-Round Public Key System with S-Boxes
(2R). In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science, pages 408–416. Springer Berlin
Heidelberg, 2000.

[BK15] Alex Biryukov and Dmitry Khovratovich. Decomposition attack on SASASASAS.
Cryptology ePrint Archive, Report 2015/646, 2015. http://eprint.iacr.org/.

134

http://eprint.iacr.org/

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and Charlotte Vikkelsø.
PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES 2007,
volume 4727 of Lecture Notes in Computer Science, pages 450–466. Springer Berlin
Heidelberg, 2007.

[BKR16] Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-key symmetric encryption:
Resisting key exfiltration. Cryptology ePrint Archive, Report 2016/541, to appear
in the proceedings of CRYPTO 2016, 2016. http://eprint.iacr.org/.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. Journal of the ACM (JACM), 50(4):506–
519, jul 2003.

[BLB04] Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequal-
ities. In Advanced Lectures on Machine Learning, pages 208–240. Springer, 2004.

[BODD+] Achiya Bar-On, Itai Dinur, Orr Dunkelman, Virginie Lallemand, Nathan Keller,
and Boaz Tsaban. Cryptanalysis of SP networks with partial non-linear layers.
EUROCRYPT 2015, to appear. Available at http://eprint.iacr.org/2014/228.

[BPU16] Alex Biryukov, Léo Perrin, and Aleksei Udovenko. Reverse-engineering the S-box
of Streebog, Kuznyechik and STRIBOBr1. In EUROCRYPT 2016, pages 372–402.
Springer, 2016.

[BS01] Alex Biryukov and Adi Shamir. Structural Cryptanalysis of SASAS. In Birgit
Pfitzmann, editor, Advances in Cryptology–EUROCRYPT 2001, volume 2045 of
Lecture Notes in Computer Science, pages 395–405. Springer Berlin Heidelberg,
2001.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptogra-
phy. Contemporary Mathematics, 324(1):71–90, 2003.

[BSS+] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK families of lightweight block ciphers.
Cryptology ePrint Archive, Report 2013/404. http://eprint.iacr.org/2013/
404.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX explained. Technical report,
Cryptology ePrint Archive, Report 2016/086, 20 16. http://eprint. iacr. org, 2016.

[CDD+07] David Cash, Yan Zong Ding, Yevgeniy Dodis, Wenke Lee, Richard Lipton, and
Shabsi Walfish. Intrusion-resilient key exchange in the bounded retrieval model.
In Theory of Cryptography, pages 479–498. Springer, 2007.

[CDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A family of small and efficient hardware-oriented block ciphers. In
Cryptographic Hardware and Embedded Systems - CHES 2009, 11th International
Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, pages 272–
288, 2009.

135

http://eprint.iacr.org/
http://eprint.iacr.org/2014/228
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404

Bibliography

[CE85] David Chaum and Jan-Hendrik Evertse. Crytanalysis of des with a reduced num-
ber of rounds: Sequences of linear factors in block ciphers. In Advances in Cryptol-
ogy - CRYPTO ’85, Santa Barbara, California, USA, August 18-22, 1985, Proceed-
ings, volume 218 of Lecture Notes in Computer Science, pages 192–211. Springer,
1985.

[CEJO02a] Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot. White-box
cryptography and an AES implementation. In Selected Areas in Cryptography,
pages 250–270. Springer, 2002.

[CEJO02b] Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot. A white-
box DES implementation for DRM applications. In Digital Rights Management,
pages 1–15. Springer, 2002.

[CFL+16] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol
Ryu. Cryptanalysis of the new CLT multilinear map over the integers. In Advances
in Cryptology–EUROCRYPT 2016, pages 509–536. Springer, 2016.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing
without low-level zeroes: New attacks on multilinear maps and their limitations.
In Advances in Cryptology–CRYPTO 2015, pages 247–266. Springer, 2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien
Stehlé. Cryptanalysis of the multilinear map over the integers. In Advances in
Cryptology–EUROCRYPT 2015, pages 3–12. Springer, 2015.

[CL15] Craig Costello and Patrick Longa. FourQ: Four-Dimensional Decompositions on
a Q-curve over the Mersenne Prime. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part I, volume 9452
of Lecture Notes in Computer Science, pages 214–235. Springer, 2015.

[CLLT16] Jean-Sebastien Coron, Moon Sung Lee, Tancrede Lepoint, and Mehdi Tibouchi.
Cryptanalysis of ggh15 multilinear maps. Technical report, Cryptology ePrint
Archive, Report 2015/1037, 2015. To appear in the proceedings of CRYPTO 2016.,
2016.

[CLR15] Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the new
CLT multilinear maps. Cryptology ePrint Archive, Report 2015/934, 2015. http:
//eprint.iacr.org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multi-
linear maps over the integers. In Advances in Cryptology–CRYPTO 2013, pages
476–493. Springer, 2013.

[CLT15] Jean-Sebastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear
maps over the integers. In Advances in Cryptology–CRYPTO 2015, pages 267–286.
Springer, 2015.

136

http://eprint.iacr.org/
http://eprint.iacr.org/

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi.
Fully homomorphic encryption over the integers with shorter public keys. In
Advances in Cryptology–CRYPTO 2011, pages 487–504. Springer, 2011.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compres-
sion and modulus switching for fully homomorphic encryption over the integers.
In Advances in Cryptology–EUROCRYPT 2012, pages 446–464. Springer, 2012.

[Com13] CAESAR Committee. CAESAR– Competition for Authenticated Encryption:
Security, Applicability, and Robustness. General secretary Daniel J. Bernstein,
information available at http://competitions.cr.yp.to/caesar.html, 2013.

[Dae95] Joan Daemen. Cipher and hash function design strategies based on linear and
differential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, Leuven,
Belgium, 1995.

[DDKL15a] Itai Dinur, Orr Dunkelman, Thorsten Kranz, and Gregor Leander. Personal com-
munication, 2015.

[DDKL15b] Itai Dinur, Orr Dunkelman, Thorsten Kranz, and Gregor Leander. Decompos-
ing the ASASA block cipher construction. Cryptology ePrint Archive, Report
2015/507, 2015. http://eprint.iacr.org/2015/507/.

[DFKYZD99] Ye Ding-Feng, Lam Kwok-Yan, and Dai Zong-Duo. Cryptanalysis of “2R”
Schemes. In Michael Wiener, editor, Advances in Cryptology – CRYPTO’ 99, vol-
ume 1666 of Lecture Notes in Computer Science, pages 315–325. Springer Berlin
Heidelberg, 1999.

[DFSS07] Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern. Practical
Cryptanalysis of SFLASH. In Alfred Menezes, editor, Advances in Cryptology -
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 1–12.
Springer Berlin Heidelberg, 2007.

[DGS07] Vivien Dubois, Louis Granboulan, and Jacques Stern. Cryptanalysis of HFE
with Internal Perturbation. In Tatsuaki Okamoto and Xiaoyun Wang, editors,
Public Key Cryptography – PKC 2007, volume 4450 of Lecture Notes in Computer
Science, pages 249–265. Springer Berlin Heidelberg, 2007.

[DH76a] W. Diffie and M. E. Hellman. Multiuser cryptographic techniques. In AFIPS 1976
National Computer Conference, pages 109–112. ACM, 1976.

[DH76b] Whitfield Diffie and Martin E Hellman. Multiuser cryptographic techniques. In
Proceedings of the June 7-10, 1976, national computer conference and exposition,
pages 109–112. ACM, 1976.

[Din04] Jintai Ding. A New Variant of the Matsumoto-Imai Cryptosystem through Per-
turbation. In Feng Bao, Robert Deng, and Jianying Zhou, editors, Public Key
Cryptography – PKC 2004, volume 2947 of Lecture Notes in Computer Science,
pages 305–318. Springer Berlin Heidelberg, 2004.

[Dix82] John D. Dixon. Exact solution of linear equations using P-adic expansions.
Nümerische Mathematik, 40(1):137–141, 1982.

137

http://competitions.cr.yp.to/caesar.html
http://eprint.iacr.org/2015/507/

Bibliography

[DLPR13] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain. White-
box security notions for symmetric encryption schemes. In Selected Areas in
Cryptography–SAC 2013, pages 247–264. Springer, 2013.

[DMRP12] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao–Lai
white-box AES implementation. In Selected Areas in Cryptography, pages 34–49.
Springer, 2012.

[DPAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. NESSIE
proposal: Noekeon. Homepage http://gro.noekeon.org/, 2000.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

[DS09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials. In
Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume 5479
of Lecture Notes in Computer Science, pages 278–299. Springer Berlin Heidelberg,
2009.

[Dzi06] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In The-
ory of Cryptography, pages 207–224. Springer, 2006.

[Eve87] Jan-Hendrik Evertse. Linear structures in blockciphers. In Advances in Cryptology
- EUROCRYPT ’87, Workshop on the Theory and Application of of Cryptographic
Techniques, Amsterdam, The Netherlands, April 13-15, 1987, Proceedings, volume
304 of Lecture Notes in Computer Science, pages 249–266. Springer, 1987.

[FD86] Harriet Fell and Whitfield Diffie. Analysis of a Public Key Approach Based on
Polynomial Substitution. In HughC. Williams, editor, Advances in Cryptology
– CRYPTO ’85 Proceedings, volume 218 of Lecture Notes in Computer Science,
pages 340–349. Springer Berlin Heidelberg, 1986.

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic Cryptanalysis of Hidden Field
Equation (HFE) Cryptosystems Using Gröbner Bases. In Dan Boneh, editor, Ad-
vances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 44–60. Springer Berlin Heidelberg, 2003.

[FKKM16] Pierre-Alain Fouque, Pierre Karpman, Paul Kirchner, and Brice Minaud. Efficient
and provable white-box primitives. To appear in the proceedings of Asiacrypt 2016,
2016.

[FM14] Thomas Fuhr and Brice Minaud. Match box meet-in-the-middle attack against
KATAN. In Fast Software Encryption, pages 61–81. Springer, 2014.

[FP06] Jean-Charles Faugère and Ludovic Perret. Cryptanalysis of 2R- Schemes. In
Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, volume 4117 of
Lecture Notes in Computer Science, pages 357–372. Springer Berlin Heidelberg,
2006.

[FP09a] J.-C. Faugère and L. Perret. An Efficient Algorithm for Decomposing Multivariate
Polynomials and its Applications to Cryptography. Journal of Symbolic Compu-
tation, 44(12):1676–1689, 2009.

138

http://gro.noekeon.org/

[FP09b] J.-C. Faugère and L. Perret. High Order Derivatives and Decomposition of Mul-
tivariate Polynomials. In ISSAC ’09: Proceedings of the 2009 international sym-
posium on Symbolic and algebraic computation, pages 207–214. ACM, 2009.

[Für14] Martin Fürer. How fast can we multiply large integers on an actual computer? In
LATIN 2014: Theoretical Informatics, pages 660–670. Springer, 2014.

[FvzGP10] J.-C. Faugère, J. von zur Gathen, and L. Perret. Decomposition of Generic Mul-
tivariate Polynomials. In ISSAC ’10: Proceedings of the 2010 international sym-
posium on Symbolic and algebraic computation, pages 131–137. ACM, 2010. isbn:
0747-7171 (updated version).

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Eurocrypt, volume 7881, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, pages 40–49. IEEE, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Theory of Cryptography, pages 498–527. Springer, 2015.

[GGNPS13] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier Stan-
daert. Block ciphers that are easier to mask: How far can we go? In Guido
Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2013, volume 8086 of Lecture Notes in Computer Science,
pages 383–399. Springer Berlin Heidelberg, 2013.

[Gil16] Henri Gilbert. On white-box cryptography. invited talk, Fast Software Encryption
2016, slides available at https://fse.rub.de/slides/wbc_fse2016_hg_2pp.pdf,
2016.

[GJN+15] Jian Guo, Jérémy Jean, Ivica Nikolić, Kexin Qiao, Yu Sasaki, and Siang Meng
Sim. Invariant subspace attack against full Midori64. Technical report, Cryptology
ePrint Archive, Report 2015/1189, 2015.

[GLS+14a] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
François Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. Addendum to the
CAESAR submission for SCREAM and iSCREAM. Posted on the official
CAESAR submission list, available at http://competitions.cr.yp.to/round1/
scream-ordering.txt, 2014.

[GLS+14b] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
François Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. SCREAM & iS-
CREAM. Entry in the CAESAR competition [Com13], available at http:
//competitions.cr.yp.to/round1/screamv1.pdf, 2014.

[GLSV14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
LS-designs: Bitslice encryption for efficient masked software implementations. To
appear in the proceedings of FSE 2014, available at http://www.uclouvain.be/
crypto/people/show/382, 2014.

139

https://fse.rub.de/slides/wbc_fse2016_hg_2pp.pdf
http://competitions.cr.yp.to/round1/scream-ordering.txt
http://competitions.cr.yp.to/round1/scream-ordering.txt
http://competitions.cr.yp.to/round1/screamv1.pdf
http://competitions.cr.yp.to/round1/screamv1.pdf
http://www.uclouvain.be/crypto/people/show/382
http://www.uclouvain.be/crypto/people/show/382

Bibliography

[GMQ07] Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis of
white box DES implementations. In Selected Areas in Cryptography, pages 278–
295. Springer, 2007.

[GMS16] Sanjam Garg, Pratyay Mukherjee, and Akshayaram Srinivasan. Obfuscation with-
out the vulnerabilities of multilinear maps. Technical report, Cryptology ePrint
Archive, Report 2016/390, 2016.

[GNPW13] Jian Guo, Ivica Nikolić, Thomas Peyrin, and Lei Wang. Cryptanalysis of Zorro.
Cryptology ePrint Archive, Report 2013/713, 2013. http://eprint.iacr.org/
2013/713.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED block
cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware
and Embedded Systems – CHES 2011, volume 6917 of Lecture Notes in Computer
Science, pages 326–341. Springer Berlin Heidelberg, 2011.

[GPT15] Henri Gilbert, Jérôme Plût, and Joana Treger. Key-Recovery Attack on the
ASASA Cryptosystem With Expanding S-Boxes. In CRYPTO 2015. Springer,
2015.

[GRR16] Lorenzo Grassi, Christian Rechberger, , and Sondre Rønjom. Subspace trail crypt-
analysis and its applications to AES. Cryptology ePrint Archive, Report 2016/592,
http://eprint.iacr.org/2016/592, to appear in the proceedings of CRYPTO
2016, 2016.

[Hal15a] Shai Halevi. Cryptographic graded-encoding schemes: Recent developments.
TCS+ online seminar, available at https://sites.google.com/site/plustcs/
past-talks/20150318shaihaleviibmtjwatson, 2015.

[Hal15b] Shai Halevi. Graded encoding, variations on a scheme. Technical report, Cryptol-
ogy ePrint Archive, Report 2015/866, 2015. http://eprint. iacr. org, 2015.

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. Technical report, Cryp-
tology ePrint Archive, Report 2015/301, 2015.

[HLY12] Yun-Ju Huang, Feng-Hao Liu, and Bo-Yin Yang. Public-Key Cryptography from
New Multivariate Quadratic Assumptions. In Marc Fischlin, Johannes A. Buch-
mann, and Mark Manulis, editors, Public Key Cryptography - PKC 2012 - 15th
International Conference on Practice and Theory in Public Key Cryptography,
Darmstadt, Germany, May 21-23, 2012. Proceedings, volume 7293 of Lecture Notes
in Computer Science, pages 190–205. Springer, 2012.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (lev-
eled) multilinear maps and identity-based aggregate signatures. In Advances in
Cryptology–CRYPTO 2013, pages 494–512. Springer, 2013.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in
Complexity Theory Conference, 1995., Proceedings of Tenth Annual IEEE, pages
134–147. IEEE, 1995.

140

http://eprint.iacr.org/2013/713
http://eprint.iacr.org/2013/713
http://eprint.iacr.org/2016/592
https://sites.google.com/site/plustcs/past-talks/20150318shaihaleviibmtjwatson
https://sites.google.com/site/plustcs/past-talks/20150318shaihaleviibmtjwatson

[JNP14] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Tweaks and keys for block ci-
phers: the TWEAKEY framework. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 274–288. Springer,
2014.

[Jou00] Antoine Joux. A one round protocol for tripartite Diffie–Hellman. In Algorithmic
number theory, pages 385–393. Springer, 2000.

[KDH13] Ferhat Karakoç, Hüseyin Demirci, and Emre Harmancı. ITUbee: A Software Ori-
ented Lightweight Block Cipher. In Second International Workshop on Lightweight
Cryptography for Security and Privacy (LightSec), 2013.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The hkdf scheme.
In Advances in Cryptology–CRYPTO 2010, pages 631–648. Springer, 2010.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik Zen-
ner. A cryptanalysis of PRINTcipher: The invariant subspace attack. In Phillip
Rogaway, editor, Advances in Cryptology — CRYPTO 2011, volume 6841 of Lec-
ture Notes in Computer Science, pages 206–221. Springer Berlin Heidelberg, 2011.

[LF06] Éric Levieil and Pierre-Alain Fouque. An Improved LPN Algorithm. In Roberto
De Prisco and Moti Yung, editors, Security and Cryptography for Networks, vol-
ume 4116 of Lecture Notes in Computer Science, pages 348–359. Springer Berlin
Heidelberg, 2006.

[LMR15] Gregor Leander, Brice Minaud, and Sondre Rønjom. A generic approach to invari-
ant subspace attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In Advances
in Cryptology–EUROCRYPT 2015, pages 254–283. Springer, 2015.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In Moti Yung, editor, Advances in Cryptology — CRYPTO 2002, volume 2442
of Lecture Notes in Computer Science, pages 31–46. Springer Berlin Heidelberg,
2002.

[Mat94] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor Helleseth,
editor, Advances in Cryptology – EUROCRYPT ’93, volume 765 of Lecture Notes
in Computer Science, pages 386–397. Springer Berlin Heidelberg, 1994.

[MDFK15] Brice Minaud, Patrick Derbez, Pierre-Alain Fouque, and Pierre Karpman. Key-
recovery attacks on ASASA. In Advances in Cryptology–ASIACRYPT 2015, pages
3–27. Springer, 2015.

[MF15] Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the new multilinear map
over the integers. IACR-ePrint (http://eprint. iacr. org/2015/941), 2015.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public Quadratic Polynomial-Tuples for Ef-
ficient Signature-Verification and Message-Encryption. In D. Barstow, W. Brauer,
P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller,
J. Stoer, N. Wirth, and Christoph G. Günther, editors, Advances in Cryptology
– EUROCRYPT ’88, volume 330 of Lecture Notes in Computer Science, pages
419–453. Springer Berlin Heidelberg, 1988.

141

Bibliography

[Min14] Brice Minaud. Linear biases in AEGIS keystream. In Selected Areas in
Cryptography–SAC 2014, pages 290–305. Springer, 2014.

[Möl08] Niels Möller. On Schönhage’s algorithm and subquadratic integer GCD computa-
tion. Mathematics of Computation, 77(261):589–607, 2008.

[MS04] Thom Mulders and Arne Storjohann. Certified dense linear system solving. Jour-
nal of Symbolic Computation, 37(4):485–510, 2004.

[MS15] Brice Minaud and Yannick Seurin. The iterated random permutation problem
with applications to cascade encryption. In Advances in Cryptology–CRYPTO
2015, pages 351–367. Springer, 2015.

[MSZ16a] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. Technical
report, Cryptology ePrint Archive, Report 2016/147, 2016.

[MSZ16b] Eric Miles, Amit Sahai, and Mark Zhandry. Secure obfuscation in a weak multilin-
ear map model: A simple construction secure against all known attacks. Technical
report, Cryptology ePrint Archive, Report 2016/588, 2016.

[Pat95] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt’88. In Don Coppersmith, editor, Advances in Cryptology – CRYPTO’
95, volume 963 of Lecture Notes in Computer Science, pages 248–261. Springer
Berlin Heidelberg, 1995.

[Pat96] Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polyno-
mials (IP): Two New Families of Asymmetric Algorithms. In Ueli Maurer, editor,
Advances in Cryptology – EUROCRYPT ’96, volume 1070 of Lecture Notes in
Computer Science, pages 33–48. Springer Berlin Heidelberg, 1996.

[PG97] Jacques Patarin and Louis Goubin. Asymmetric Cryptography with S-Boxes. In
ICICS’97, volume 1334 of Lecture Notes in Computer Science, pages 369–380.
Springer, 1997.

[PGC01] Jacques Patarin, Louis Goubin, and Nicolas Courtois. Quartz, 128-bit long digital
signatures. CT-RSA Conference, 2001.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in
Computer Science, pages 142–159. Springer Berlin Heidelberg, 2013.

[PUB16] Léo Perrin, Aleksei Udovenko, and Alex Biryukov. Cryptanalysis of a theorem:
Decomposing the only known solution to the big APN problem. ePrint report, to
appear in the proceedings of CRYPTO 2016, 2016.

[RASA14] Shahram Rasoolzadeh, Zahra Ahmadian, Mahmood Salmasizadeh, and Moham-
mad Reza Aref. Total break of Zorro using linear and differential attacks. The
ISC International Journal of Information Security, 6(1), 2014. Available at http:
//isecure-journal.com/index.php/isecure/article/view/14-215/104.

142

http://isecure-journal.com/index.php/isecure/article/view/14-215/104
http://isecure-journal.com/index.php/isecure/article/view/14-215/104

[Reg05] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. In STOC’05, pages 84–93. ACM Press, 2005.

[RM85] J.A. Reeds and J.L. Manferdelli. Des has no per round linear factors. In Georg-
eRobert Blakley and David Chaum, editors, Advances in Cryptology, volume 196
of Lecture Notes in Computer Science, pages 377–389. Springer Berlin Heidelberg,
1985.

[Røn16] Sondre Rønjom. Invariant subspaces in Simpira. Technical report, Cryptology
ePrint Archive, Report 2016/248, 2016.

[RP97] Vincent Rijmen and Bart Preneel. A family of trapdoor ciphers. In Eli Biham, edi-
tor, Fast Software Encryption, volume 1267 of Lecture Notes in Computer Science,
pages 139–148. Springer Berlin Heidelberg, 1997.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in
cryptology, pages 47–53. Springer, 1985.

[Sha11] Ronen Shaltiel. An introduction to randomness extractors. In Automata, languages
and programming, pages 21–41. Springer, 2011.

[Sol14] Hadi Soleimany. Probabilistic slide cryptanalysis and its applications to LED-
64 and Zorro. To appear in the proceedings of FSE 2014, available at http:
//research.ics.aalto.fi/publications/bibdb2014/pdf/fse2014.pdf, 2014.

[Sti02] Douglas Robert Stinson. Universal hash families and the leftover hash lemma, and
applications to cryptography and computing. Journal of Combinatorial Mathe-
matics and Combinatorial Computing, 42:3–32, 2002.

[Sto05] Arne Storjohann. The shifted number system for fast linear algebra on integer
matrices. Journal of Complexity, 21(4):609 – 650, 2005. Festschrift for the 70th
Birthday of Arnold Schonhage.

[Tea] The Sage Development Team. Sage Mathematics Software. http://www.
sagemath.org.

[Tod15] Yosuke Todo. Integral cryptanalysis on full MISTY1. In CRYPTO 2015, pages
413–432. Springer, 2015.

[Vad04] Salil P Vadhan. Constructing locally computable extractors and cryptosystems in
the bounded-storage model. Journal of Cryptology, 17(1):43–77, 2004.

[VDGHV10] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In Advances in cryptology–EUROCRYPT
2010, pages 24–43. Springer, 2010.

[WBDY98] Hongjun Wu, Feng Bao, RobertH. Deng, and Qin-Zhong Ye. Cryptanalysis of
Rijmen-Preneel Trapdoor Ciphers. In Kazuo Ohta and Dingyi Pei, editors, Ad-
vances in Cryptology – ASIACRYPT’98, volume 1514 of Lecture Notes in Com-
puter Science, pages 126–132. Springer Berlin Heidelberg, 1998.

[WMGP07] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis of
white-box DES implementations with arbitrary external encodings. In Selected
Areas in Cryptography, pages 264–277. Springer, 2007.

143

http://research.ics.aalto.fi/publications/bibdb2014/pdf/fse2014.pdf
http://research.ics.aalto.fi/publications/bibdb2014/pdf/fse2014.pdf
http://www.sagemath.org
http://www.sagemath.org

Bibliography

[WWGY14] Yanfeng Wang, Wenling Wu, Zhiyuan Guo, and Xiaoli Yu. Differential crypt-
analysis and linear distinguisher of full-round Zorro. In Ioana Boureanu, Philippe
Owesarski, and Serge Vaudenay, editors, Applied Cryptography and Network Secu-
rity, volume 8479 of Lecture Notes in Computer Science, pages 308–323. Springer
International Publishing, 2014.

[Wys09] Brecht Wyseur. White-box cryptography. PhD thesis, KU Leuven, 2009.

[XL09] Yaying Xiao and Xuejia Lai. A secure implementation of white-box AES. In Com-
puter Science and its Applications, 2009. CSA’09. 2nd International Conference
on, pages 1–6. IEEE, 2009.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Advances in Cryptology-
EUROCRYPT 2015, pages 439–467. Springer, 2015.

144

Résumé

Dans cette thèse, nous nous intéressons à la sécurité de quelques primitives cryptographiques
récentes, d’abord symétriques puis asymétriques, en passant par le modèle en boîte blanche, qui
est à certains égards intermédiaire.

Dans un premier temps, nous montrons l’existence de fonctions linéaires non triviales com-
mutant avec la fonction de tour de certains chiffrements par bloc, dont découlent des attaques
par autosimilarité et sous-espace invariant. Nous nous intéressons ensuite à la cryptanalyse de
la structure ASASA, où deux couches non linéaires S sont imbriquées dans des couches affines
A. Notre cryptanalyse structurelle permet de casser des instances de chiffrement symétrique,
multivarié et en boîte blanche. En nous concentrant sur le modèle d’incompressibilité en boîte
blanche, nous montrons ensuite comment réaliser un chiffrement par bloc et un générateur de
clef efficaces dont la sécurité est prouvable. Finalement, du côté purement asymétrique, nous
décrivons une attaque polynomiale contre une construction récente d’application multilinéaire.

Mots-clés: Cryptanalyse symétrique, cryptanalyse structurelle, sécurité prouvable, boîte blanche,
applications multilinéaires.

Abstract

In this thesis, we study the security of some recent cryptographic primitives, both symmetric
and asymmetric. Along the way we also consider white-box primitives, which may be regarded
as a middle ground betwen symmetric and asymmetric cryptography.

We begin by showing the existence of non-trivial linear maps commuting with the round func-
tion of some recent block cipher designs, which give rise to self-similarity and invariant subspace
attacks. We then move on to the structural cryptanalysis of ASASA schemes, where nonlinear
layers S alternate with affine layers A. Our structural cryptanalysis applies to symmetric, mul-
tivariate, as well as white-box instances. Focusing on the white-box model of incompressibility,
we then build an efficient block cipher and key generator that offer provable security guaran-
tees. Finally, on the purely asymmetric side, we describe a polynomial attack against a recent
multilinear map proposal.

Keywords: Symmetric Cryptanalysis, Structural Cryptanalysis, Provable Security, White-Box
Cryptography, Multilinear Maps.

	Remerciements
	Contents
	Introduction générale
	Cryptographie symétrique et asymétrique
	Notions de cryptographie
	Définitions utiles

	Résumé en français
	Organisation du manuscrit
	Cryptanalyse par auto-similarité des LS-Designs et Zorro
	Cryptanalyse structurelle d'ASASA
	Construction de primitives prouvables en boîte blanche
	Cryptanalyse d'application multilinéaire sur les entiers
	Autres travaux
	Liste des publications

	General Introduction
	Symmetric and Asymmetric Cryptography
	Cryptographic Notions
	Useful Definitions
	Layout of the Thesis

	Notation
	Self-Similarity and Invariant Subspace Attacks
	Introduction
	Description of LS-Designs, Robin, and iSCREAM
	Self-Similarity, Commuting Maps and Invariant Subspaces
	Invariant Permutation Attack on LS-Designs
	Invariant Equality Space Attack
	A Second Invariant Subspace Attack on LS-Designs
	Commuting Permutation and Invariant Subspace for Zorro
	A Generic Algorithm to Detect Invariant Subspaces
	Discussion

	Structural Cryptanalysis of ASASA
	Introduction
	Notation and Definitions
	Description of ASASA Schemes
	Structural Attack on Black-Box ASASA
	Attacks on -based Multivariate ASASA
	Attacks on White-Box ASASA

	Efficient and Provable White-Box Primitives
	Introduction
	Models
	Constructions
	Security Proofs
	Implementation

	Cryptanalysis of the CLT15 Multilinear Map
	Introduction
	Notation
	Short Introduction to Multilinear Maps
	The CLT15 Multilinear Map
	Cheon et al.'s Attack on CLT13
	Main Attack
	Recovering x0 without Computing a Determinant

	Conclusion
	Tables
	Robin and iSCREAM S-Box
	Well-Behaved Affine Spaces for the Robin and iSCREAM S-Box
	Commuting Linear Map and Invariant Subspace for Zorro

	Bibliography
	Résumé
	Abstract

