Thèse soutenue

Développement de nanocomposites à base de polymères d'origine renouvelable - optimisation des propriétés barrière et de transport.
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Yempab Kanake
Direction : Mihai Chirtoc
Type : Thèse de doctorat
Discipline(s) : Chimie des matériaux
Date : Soutenance le 26/04/2016
Etablissement(s) : Reims
Ecole(s) doctorale(s) : Ecole doctorale Sciences, technologies, santé (Reims, Marne)
Partenaire(s) de recherche : Laboratoire : Groupe de Recherche en Sciences Pour l’Ingénieur (GRESPI) EA 4694 (Reims, Marne)
Jury : Président / Présidente : Jérémie Soulestin
Examinateurs / Examinatrices : Mihai Chirtoc, Lan Tighzert, Nicolas Horny, Abderrahim Boudenne
Rapporteurs / Rapporteuses : Bertrand Garnier

Résumé

FR  |  
EN

Les nanocomposites à base de polymères sont utilisés depuis plusieurs années dans différents domaines industriels. Ils permettent une amélioration des propriétés des polymères et/ou l'accès à certaines propriétés presque inexistantes sur le polymère de base. Cependant, les polymères utilisés sont souvent d’origine pétrochimique. Au cours des dernières années, l'accumulation de déchets toxiques a, entre autres, conduit à un remplacement progressif de ces matières par des polymères issus des agro-ressources et/ou biodégradables. Notre étude porte sur deux polymères biodégradables utilisés comme matrice dans des nanocomposites, le poly (acide lactique) (PLA) et le poly (butylène succinate) (PBS). Elle a pour but, d'une part, d’améliorer les propriétés barrière aux gaz et à la vapeur d'eau, et d'autre part, de les rendre conducteur de chaleur. Pour ce faire, deux différents types de charges ont été utilisés. La première, la montmorillonite organiquement modifiée (OMMT) a permis d’obtenir une amélioration significative des propriétés mécaniques et barrière du polymère. La seconde, le graphite expansé (EG) a prouvé sa capacité à augmenter les propriétés de transport de chaleur dans les polymères. Une étude bibliographique a révélé que les conditions de mise en œuvre et les affinités entre les deux composés influencent considérablement les propriétés finales du nanocomposite. Ainsi les conditions de mise en œuvre ont été optimisées en faisant varier le temps et les températures de mélange de même que la méthode de mise en œuvre en fonction des charges utilisées. Pour améliorer les interactions entre la matrice et les charges, ces dernières ont été fonctionnalisées par un alkoxysilane, le 3-AminoPropylTrimethoxy-Silane. Les effets de cette fonctionnalisation sur les propriétés mécaniques, barrière, thermiques et thermophysiques des nanocomposites sont présentés. Pour les nanocomposites chargés en EG, l’effet des tailles et de la distribution des tailles des particules sur les conductivités thermiques des nanocomposites a été discuté en se basant sur un modèle de type Maxwell-Garnett basé sur la théorie des champs moyen.