Thèse soutenue

Modélisation et simulation haut-niveau de micro-systèmes électromécaniques pour le prototypage virtuel multi-physique en SystemC-AMS
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Benoît Vernay
Direction : François PêcheuxMarie-Minerve LouëratGerold Schröpfer
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 16/06/2016
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris
Partenaire(s) de recherche : Laboratoire : LIP6 (1997-....)
Jury : Président / Présidente : Habib Mehrez
Examinateurs / Examinatrices : Skandar Basrour, Robert Sobot
Rapporteurs / Rapporteuses : Gaëlle Lissorgues, Matthieu Moy

Résumé

FR  |  
EN

L'évolution des systèmes embarqués se traduit aujourd'hui par des ensembles complexes, dits systèmes cyber-physiques, opérant principalement en réseau et interagissant fortement avec leur environnement.Intégrés à des circuits de contrôle et de traitement du signal, les micro-systèmes électromécaniques, ou MEMS, jouent un rôle primordial dans ces ensembles en tant que capteurs ou actionneurs.La conception de tels systèmes requiert des solutions globales et pluri-disciplinaires telles que le prototypage virtuel.Basée sur des modèles haut-niveau, cette technique permet d'anticiper le comportement du système dès les premières phases de conception et de le raffiner lors de phases plus avancées.Ces méthodes ont progressivement été appliquées à la conception de circuits intégrés, notamment avec l'utilisation de langages de description matérielle, tels que VHDL ou Verilog.En adoptant un niveau d'abstraction supérieur, SystemC a largement contribué au développement concourant des parties matérielles et logicielles.Parallèlement, les extensions proposées dans SystemC-AMS répondent au nombre croissant de composants analogiques dans les circuits intégrés et constituent une base prometteuse pour le prototypage virtuel de systèmes hétérogènes.Pour cette raison, cette thèse traite de la modélisation et de la simulation haut-niveau de dispositifs MEMS en SystemC-AMS.Dans un premier temps, nous évaluons les capacités actuelles du standard et des modèles de calcul proposés dans SystemC-AMS.Nous démontrons les limites et la difficulté d'élaborer des modèles équivalents de dispositifs MEMS dont la géométrie et les couplages internes nécessitent des descriptions plus détaillées.Nous proposons donc, dans un deuxième temps, d'intégrer directement dans SystemC-AMS des modèles réduits de dispositifs MEMS.La réduction d'ordre de modèle est une méthode mathématique permettant de créer des représentations compactes de systèmes initialement très larges en termes de degrés de liberté.Ainsi, nous utilisons les modèles générés depuis l'outil d'analyse en éléments finis \emph{MEMS+} et proposons une interface de programmation pour les insérer dans des modèles SystemC-AMS.Après avoir détaillé les principales fonctionnalités de l'interface, nous discutons les améliorations possibles du standard et de la solution présentée.Enfin, nous vérifions notre solution avec l'étude d'un accéléromètre et comparons les résultats avec l'état de l'art en termes de précision des modèles et de performances de simulation.Cette thèse propose ainsi une méthodologie complète pour intégrer des dispositifs MEMS dans un environnement de simulation haut-niveau.