Thèse soutenue

Modélisation des alliages à base de vanadium et des matériaux poreux cristallins utilisés comme membranes de séparation de gaz

FR  |  
EN
Auteur / Autrice : Jenny Borisova Evtimova
Direction : Anne Julbe
Type : Thèse de doctorat
Discipline(s) : Chimie et physico-chimie des matériaux
Date : Soutenance le 25/11/2016
Etablissement(s) : Montpellier en cotutelle avec Università degli studi della Calabria, Universidad de Zaragoza (Espagne)
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques Balard (Montpellier ; 2003-....)
Partenaire(s) de recherche : Laboratoire : Institut Européen des membranes (Montpellier)
Jury : Président / Présidente : Rob Lammertink
Examinateurs / Examinatrices : Anne Julbe, Rob Lammertink, Martin Paidar, Enrico Drioli, Reyes Mallada
Rapporteurs / Rapporteuses : Rob Lammertink, Martin Paidar

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans cette étude, nous proposons des procédures basées sur des calculs informatiques et des modèles théoriques qui peuvent être utilisés pour prévoir le comportement de certains matériaux membranaires d'intérêt pour les applications de séparation de gaz. En particulier, nous nous sommes concentrés sur: i) des alliages VNiTi de structure cubique centrée, considérés comme de nouveaux matériaux pour les membranes denses sélectives à H2 et ii) sur des matériaux poreux cristallins qui sont des systèmes attractifs pour la séparation de gaz légers tels que H2, O2, CO, CO2, CH4 et N2. Les deux groupes de matériaux sont traités en utilisant une méthodologie différente, adaptée aux besoins des recherches associées à ces matériaux.Dans le cas des membranes métalliques denses, nous nous sommes intéressés à la controverse, connue de longue date, concernant l'occupation de l'hydrogène interstitiel dans les alliages à base de vanadium. Le système V-Ni-Ti est en effet particulièrement intéressant grâce à sa perméabilité élevée pour H2 et à ses propriétés mécaniques accrues par rapport au vanadium pur. Ce travail cible la compréhension de la structure ces alliages à l'échelle atomique, de façon à les optimiser et à activer la conception et le développement de ces matériaux comme nouvelles membranes pour la séparation de H2. Notre approche, basées sur les premiers principes, donne un aperçu des sites préférentiels de l'hydrogène et évalue le rôle des solutés de substitution Ti et Ni, sur l'affinité d'absorption de l'hydrogène. La méthode basée sur la théorie de la fonctionnelle de la densité (DFT) ne nécessite aucune donnée expérimentale autre que l'information sur la structure cristalline. En outre, cette méthode n’utilise aucun paramètre empirique ou d’ajustement, contrairement à d'autres techniques de calcul. Ainsi, cette approche est une voie alternative pour explorer de nouveaux alliages métalliques utilisables comme membranes de séparation de H2. La méthodologie appliquée pourra être utilisé ensuite dans des calculs à haut débit pour cribler diverses compositions d'alliage. Les résultats reportés ici seront utilisés comme guide pour adapter la formulation des solutions solides VNiTi et préparer des membranes en alliage denses à faible coût (par rapport aux membranes à base de palladium) dans le cadre d’autres projets (e.g. Projet Européen FP7- DEMCAMER).Dans le cadre de notre étude sur les membranes cristallines microporeuses, nous démontrons comment les données sur un composant unique peuvent être utilisées pour prédire la sélectivité idéale de ces membranes envers les gaz légers. Des modèles théoriques sont ainsi proposés pour décrire les propriétés de séparation de gaz de matériaux de type zéolithiques (« zeotypes ») en fonction de leurs paramètres structuraux et des conditions de fonctionnement. Les paramètres du modèle peuvent être obtenus expérimentalement ainsi que par le calcul. Afin d’analyser le degré de validité et les limites des modèles, les sélectivités idéales de deux membranes zéolithes classiquement étudiées (NaA, CaA) et d’une membrane MOF (ZIF-8) ont été évaluées. Les résultats démontrent que les expressions théoriques peuvent être utilisées pour le criblage de séries de matériaux microporeux cristallins sous réserve que des données fiables sur l'adsorption de gaz purs soient disponibles pour ces matériaux. Cependant, étant donné que les modèles n’intègrent pas tous les paramètres (notamment liés au design des membranes) et mécanismes impliqués dans le transport de gaz à travers ces membranes, les prédictions doivent être considérées comme celles correspondant à un cas idéal.