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Résumé

Ce mémoire de thése traite de la modélisation du discours dans le cadre grammatical des
Grammaires Catégorielles Abstraites (Abstract Categorial Grammars, ACG). Les ACG offrent un
cadre unifié pour la modélisation de la syntaxe et de la sémantique. Nous nous intéressons en
particulier aux formalismes discursifs qui utilisent une approche grammaticale pour rendre compte
des régularités des structures discursives. Nous étudions plusieurs formalismes grammaticaux
qui s’appuient sur les Grammaires d’Arbres Adjoints (Tree-Adjoining Grammars, TAG): D-LTAG,
G-TAG et D-STAG. Dans notre travail, nous proposons un encodage de G-TAG et un encodage
de D-STAG. GTAG est un formalisme introduit pour la génération de textes en langue naturelle
a partir de représentations conceptuelles (sémantiques). D-STAG est un formalisme synchrone
pour la modélisation de l'interface syntaxe-sémantique du discours. Il a été introduit pour
lanalyse et la construction des structures discursives. L'encodage en ACG de G-TAG et de
D-STAG permet d’éclairer le probléme des connecteurs discursifs médiaux que les formalismes
s’appuyant sur TAG ne traitent pas, du moins pas par un mécanisme grammatical. En effet,
pour prendre en compte ces connecteurs, D-LTAG, G-TAG et D-STAG utilisent tous une étape
extra-grammaticale. Notre encodage offre au contraire une approche purement grammaticale de
la prise en compte de ces connecteurs discursifs. La méthode que nous proposons est générique
et peut servir de solution a tout encodage des connecteurs médiaux de formalismes fondés sur
les TAG. Notre encodage de G-TAG et de D-STAG se fait avec des ACG de second ordre. Les
grammaires de cette classe sont réversibles. Elles recourent aux mémes algorithmes polynémiaux
pour construire les structures d’analyse, que ce soit a partir de chaines de caractéres ou a
partir de formules logiques. Ainsi, ces grammaires peuvent étre utilisées aussi bien en analyse
qu’en génération. Les problémes d’analyse et de génération avec les encodages de G-TAG et de
D-STAG en ACG sont donc de complexité polynomiale.

Mots-clés: Grammaire Catégorielle Abstraite, discours, logique, grammaire, sémantique,
syntaxe, TAG

Abstract

This dissertation addresses the questions of discourse modeling within a grammatical
framework called Abstract Categorial Grammars (ACGs). ACGs provide a unified framework
for both syntax and semantics. We focus on the discourse formalisms that make use of a
grammatical approach to capture structural regularities of discourse. We study several TAG-based
discourse grammar formalisms, D-LTAG, G-TAG, and D-STAG. In the present work, we propose
ACG encodings of G-TAG and D-STAG. G-TAG is a formalism introduced for generating natural
language texts out of conceptual (semantic) representation inputs. D-STAG is a synchronous
formalism for modeling the syntax-semantics interface for discourse. It was introduced for
discourse analysis (parsing). The ACG encodings of G-TAG and D-STAG shed light on the
problem of clause-medial connectives that TAG-based formalisms leave out of account. To deal
with a discourse that contains clause-medial connectives, D-LTAG, G-TAG, and D-STAG, all
make use of an extra grammatical step. In contrast, the ACG encodings of G-TAG and D-STAG
offer a purely grammatical approach to discourse connectives occupying clause-medial positions.
The method we propose is a generic one and can serve as a solution for encoding clause-medial
connectives with the formalisms based on TAGs. The ACG encodings of G-TAG and D-STAG
are second-order. Importantly, the class of second-order ACGs consists of intrinsically reversible
grammars. Grammars of this class use the same polynomial algorithm to build parse structures
both for strings and logical formulas. Thus, second-order ACGs can be used both for parsing
and generation. Therefore, the problems of parsing and generation with the ACG encodings of

G-TAG and D-STAG are of polynomial complexity.

Keywords: Abstract Categorial Grammar, discourse, logic, grammar, semantics, syntax,

TAG
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0.1 Introduction

Dans cette thése, nous étudions le probléme de la modélisation du discours a 'aide des
Grammaires Catégorielles Abstraites (ACG). Une grande variété d’objets linguistiques
peuvent se retrouver sous le terme de "discours”. Ces travaux ne s’intéressent cependant
qu’a une notion limitée de discours, a savoir les monologues écrits.

L’étude du discours a permis de montrer qu’il ne s’agit pas d’un simple sac de
phrases, mais il y a encore débat sur ce dont il s’agit vraiment. Un grand nombre de
chercheurs affirment que le discours a une structure, mais la nature de celle-ci est loin
de faire consensus et donne lieu a diverses théories. Certaines de ces théories analysent
cette structure comme des connexions rhétoriques entre divers éléments signifiants du
discours, appelés unités discursives (constituants discursifs). Deux unités discursives forment
une connexion rhétorique quand il existe une relation rhétorique entre elles. 11 est alors
possible de représenter cette structure en identifiant les unités discursives a des nceuds.
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On peut ensuite relier deux nceuds par une aréte si il y a une relation rhétorique entre
unités discursives dénotées. Il en résulte alors une structure de graphe. D’aprés certaines
approches, ces graphes sont toujours des arbres, tandis que d’autres préonent plutot une
structure de graphe acyclique dirigé (DAG). Lors de cette thése, nous accepterons que
le discours a une structure, mais nous ne trancherons pas sur la forme que prend cette
structure, différente selon la théorie étudiée.

Dans la tradition des approches types logiques, de Groote (2001) a défini les
Grammaires Catégorielles Abstraites (ACGs) dans le but de modéliser la syntaxe et
la sémantique de maniére uniforme. Les Grammaires Catégorielles Abstraites (ACGs)
utilisent un cadre grammatical a deux niveaux : un niveau abstrait et un niveau objet.

Dans cette thése, nous étudions la possibilité d’encoder I'interface syntaxe-sémantique
du discours a l'aide des ACGs. Un des objectifs de ces travaux est de construire des
ACGs permettant de gérer les problémes d’analyse et de génération. En d’autres termes,
nous souhaitons encoder a I'aide des ACGs la maniére dont les systémes d’analyse et
de génération de textes traitent le discours. Dans un méme temps, un autre objectif est
de produire des ACGs utilisables dans le sens ou il serait possible de les implémenter
pour une application pratique.

0.2 Grammaires Formelles

Etant donné qu’un texte est composé de phrases, Panalyse de texte introduit le probléme
de l'analyse de phrase. De nombreuses théories linguistiques ont été proposées dans
le but de décrire les régles syntactiques régissant cette analyse des phrases en langue
naturelle. Parmi elles, celles qui offrent une caractérisation rigoureuse et mathématique
de I'ensemble des phrases (grammaticales, acceptables) d’une langue naturelle a l'aide
d’un nombre fini de régles sont appelées des grammaires formelles.

Un des formalismes ayant prouvé son utilité dans la description de la syntaxe de la
langue naturelle est celui des Grammaires d’Arbres Adjoints (TAGs) (A. K. Joshi, Levy,
and Takahashi, 1975). Une TAG est constituée d’un ensemble fini d’arbres élémentaires,
d’un ensemble de symboles terminaux et non-terminaux ainsi que d’un symbole non-
terminal distingué. Chaque arbre élémentaire est soit initial, soit auxiliaire. Dans ce
second cas, 'arbre a exactement une de ses feuilles qui est marquée comme étant son
neeud pied (qui a nécessairement le méme label non-terminal que la racine de I’arbre).
Etant donné une grammaire TAG, on génére des arbres non-élémentaires, appelés arbres
dérivés, en combinant les arbres élémentaires entre eux, avec d’autres arbres déja dérivés
ou en combinant des arbres dérivés. Il y a deux maniéres de combiner ces arbres TAG
: par substitution ou par adjonction. Substituer un arbre A (dérivé a partir d’un arbre
initial) dans un arbre B signifie remplacer une feuille non-terminale marquée pour la
substitution de B par 'arbre A (voir Figure 0.1). I’adjonction d’un arbre A (dérivé
d’un arbre auxiliaire) dans un arbre B est proche de la substitution mais peut étre
exécutée sur un nceud interne de B. Plus précisément, A remplace un nceud X de B
de telle sorte que le pére de X devienne le pére de la racine de A et que les fils de X
deviennent les fils du pied de A (voir Figure 0.1).

Nous nous intéresserons également aux TAGs synchrones (STAG) (Shieber and
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,,,X,,,l
(a) Substitution sur le (b)
nceud d’étiquette X Larbre
résultant
de la sub-
stitution

Figure 0.1: L'opération de substitution

(a) Adjonction sur le (b

nceud d’étiquette X X Larbre
résul-
tant de

I'adjonction

Figure o.2: L'opération d’adjonction

Schabes, 19g0). Ici, les structures élémentaires sont des paires d’arbres. Dans une paire
(a1, ag), les sites de substitutions et d’adjonctions de a; sont liés a ceux de ag. Cela
permet de définir la substitution/adjonction d’une paire d’arbres avec une autre paire
d’arbres en effectuant cette substitution/adjonction sur les nceuds liés.

0.3 Grammaires Catégorielles Abstraites

De Groote (2001) introduit les Grammaires Catégorielles Abstraites (ACGs) pour traiter
Pinterface syntaxe-sémantique pour laquelle il est intéressant d’encoder a la fois la
syntaxe et la sémantique avec la méme machinerie. Les ACGs s’inspirent a la fois
des idées de Curry, 1960 sur la distinction entre deux niveaux de grammaire et de
lapproche de Montague, 1973 de l'interface syntaxe-sémantique ou il est possible de
traduire les structures syntaxiques en structures sémantiques. Une grammaire ACG
définit deux langages, un langage abstrait et un langage objet, reliés par un lexiqgue. Un
exemple de grammaire ACG est d’avoir un langage abstrait correspondant a I’ensemble
des structures de dérivation d’une grammaire quelconque, tandis que le langage objet
correspond aux réalisations de cette grammaire. Le lexique relie alors chaque dérivation
a une réalisation, résultant de cette dérivation. Par définition, une grammaire ACG
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est un quadruplet composé de deux signatures linéaires d’ordre supérieur, d’un type
distingué et d’un lexique. Une de ces signatures est appelée vocabulaire abstrait et
Pautre vocabulaire objet. Le lexique est un homomorphisme de type faisant correspondre
les constantes et les types du vocabulaire abstrait a des termes construits sur ceux
du vocabulaire objet. Il est nécessaire pour ce lexique que I'image du type d’une
constante soit identique au type de I'image d’une constante. Le langage abstrait est
alors ’ensemble de tous les termes construits sur le vocabulaire abstrait et étant du
type distingué, tandis que le langage objet est I'image de ce langage abstrait par le
morphisme du lexique.

On peut encoder les TAGs a I'aide des ACGs en modélisant les arbres de dérivation
TAG dans le vocabulaire abstrait et les arbres dérivés dans le vocabulaire objet (de
Groote, 2002). Il est ensuite possible de définir une autre ACG dont le langage abstrait
est le langage objet de ’ACG précédente. Le langage objet de cette nouvelle ACG est
le langage des chaines de terminaux (des formes de surface). Le nouveau lexique fait
correspondre les termes représentant des arbres TAG dérivés aux termes représentant
leurs frontiéres. Par conséquent, nous avons deux ACG : une qui modélise un langage
d’arbre TAG dérivé comme son langage objet et une autre qui modélise un langage
de chaine de terminaux TAG comme son langage objet. Comme le langage objet
de la premiére ACG est le langage abstrait de la seconde, on peut s’intéresser a la
composition des deux. Son vocabulaire abstrait est celui de la premiére ACG, son
vocabulaire objet est celui de la seconde, son type distingué est celui de la premiére et
son lexique est la composition des lexiques des deux ACGs. Le lexique de cette ACG
composée traduit donc des arbres de dérivation TAG en des chaines de terminaux.
Cette propriété de composition des ACGs est importante car elle rend possible la
construction d’une architecture modulaire et connectée.

Afin d’encoder les TAGs en ACGs, nous montrerons comment encoder les arbres et
les chaines en A-termes linéaires. Pour les TAGs, nous montrerons que la substitution
et 'adjonction deviennent des applications fonctionnelles sur les A-termes linéaires.
Nous construirons ensuite un vocabulaire abstrait pour une TAG. Pour chaque arbre
élémentaire de cette TAG, nous introduisons une constante du vocabulaire abstrait
dont le type encode les substitutions et adjonctions que cet arbre peut recevoir. Plus
précisément, pour chaque symbole non-terminal labellisant un site de substitution ou
d’adjonction d’un arbre élémentaire, nous définissons un type atomique (les types les plus
simples de la hiérarchie des types) dans le vocabulaire abstrait. Ces sites correspondent
alors a des arguments de type atomique pour la constante modélisant ’arbre élémentaire.
Par conséquent, les arbres adjoints ou substitués dans un arbre donné sont encodés
comme des termes ayant un type atomique. Le lexique traduit différemment les types
atomiques qui encodent des substitutions et ceux qui encodent des adjonctions dans
le vocabulaire objet modélisant les arbres dérivés. Plus précisément, les types des
substitutions deviennent des types atomiques alors que ceux des adjonctions deviennent
des types fonctionnels. De cette maniére, les ACGs encodant des TAGs sont du second
ordre car toutes les constantes du vocabulaire abstrait ont un type du second ordre, ce
qui signifie que les arguments des constantes abstraites ne peuvent étre que de type
atomique. Les ACGs du second ordre peuvent encoder des formalismes plus expressifs
que les TAGs (de Groote and Pogodalla, 2004).

1
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Afin d’encoder des TAGs avec la sémantique de Montague a I'aide des ACGs
(Pogodalla, 2004, 2009), il faut relacher la contrainte de linéarité présente dans la
définition des ACGs. Plus précisément, on autorise le lexique a faire correspondre un
terme d’un type quasi-linéaire a une constante abstraite qui est, elle, d’'un type linéaire
(Kanazawa, 2007). Ceci provient de la sémantique de Montague, dont les A-termes
sémantiques sont non-linéaires. L’architecture ACG utilisée pour les TAGs avec la
sémantique de Montague se compose de deux ACGs partageant un méme vocabulaire
abstrait, qui modélise les arbres de dérivation TAG. Ces deux ACGs ont cependant des
vocabulaires objets distincts, 'un modélisant des arbres TAGs dérivés tandis que I'autre
modélise des formules de la sémantique de Montague. Le premier lexique, que nous
appelons lexique syntactique, traduit donc les arbres de dérivation TAGs en arbres TAGs
dérivés quand le second, appelé lexique sémantique, les traduit en formules logiques.
De cette maniére, les arbres de dérivation TAGs deviennent des médiateurs entre la
syntaxe et la sémantique. Les ACGs que nous construisons ici sont du second ordre car
leur vocabulaire abstrait est du second ordre. Cela est important car la complexité de
Panalyse et de la génération dans le cadre des ACGs du second ordre est polynomiale
(Kanazawa, 2007; Salvati, 2005).

0.4 Formalismes Discursifs

Nous avons parlé des formalismes qui capturent les régularités de la structure du discours
a 'aide de grammaires. Comme ’encodage sous forme d’ACG des TAGs avec la séman-
tique de Montague permet de résoudre le probléme de 'interface syntaxe-sémantique, les
formalismes discursifs fondés sur les TAGs nous intéressent tout particuliérement. Nous
pouvons en effet nous attendre a pouvoir user d’une approche similaire pour encoder
ces formalismes discursifs fondés sur les TAGs dans le cadre des ACGs. Parmi ces
formalismes, nous nous concentrons sur les G-TAG (Danlos, 1998) et sur les D-STAG
(Danlos, 2011). G-TAG est un formalisme cong¢u pour la génération de texte alors que
D-STAG est congu pour 'analyse du discours. G-TAG propose un structure discursive
en forme d’arbre alors que D-STAG permet d’avoir un structure de graphe acyclique
dirigé (DAG).

Les grammaires discursives dans ces formalismes incluent des arbres élémentaires
représentant des connecteurs discursifs, ces derniers étant soit des conjonctions de
subordination, soit des adverbes discursifs, soit la chaine vide (connecteur non exprimé
lexicalement).

0.41 G-TAG

Les G-TAG générent un texte a partir d’'une représentation conceptuelle modélisant
un contenu grace a un langage formel. Elles font correspondre des concepts de cette
représentation conceptuelle a une réalisation linguistique. La structure qui en résulte est
la g-dérivation du texte. Cette g-dérivation rappelle I’arbre de dérivation TAG. Chaque
g-dérivation spécifie un unique arbre g-dérivé. Contrairement aux arbres dérivés TAG,
aucune ancre d’un arbre g-dérivé n’est fléchie, mais ils contiennent les informations
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nécessaires pour les fléchir. Ces informations sont utilisés par le module de post-
traitement des G-TAG, qui calcule la forme fléchie des mots avant de produire un texte.
Les G-TAG ont un traitement spécial pour les textes avec une conjonction réduite, comme
dans ’exemple suivant :

(1) Jean a passé Paspirateur pour étre récompensé par Marie.
S S
Sl S

Sl PP
Adv Sl Prep C
adverbe avant que S|
(a) Un arbre élémentaire (b) Un arbre élémen-
ancré par un adverbe taire ancré par une
conjonction

Figure 0.3: Arbres élémentaires ancrés par un adverbe et une conjonction de subordina-
tion

Comme le montre (1), la clause subordonnée (étre récompensé par Marie) et la
clause matrice (Jean a passé I'aspirateur) partagent leur sujet sémantique Jean qui n’est
syntaxiquement le sujet que de la premiére clause. On appelle ce type de relation des
conjonctions réduites. Pour générer de tels textes, les G-TAG ont une approche ad hoc.
De plus, pour générer des textes dans lesquels un connecteur est médial, les G-TAG
usent également de procédés non-grammaticaux. En effet, comme les connecteurs sont
les ancres lexicales d’arbres élémentaires représentés sur la Figure 0.3, ils ne peuvent
apparaitre qu’en position initiale. Pour générer un texte avec des connecteurs médiaux,
le module de post-traitement des G-TAG commence par générer un texte dans lequel
tous les connecteurs sont initiaux (comme dans (2)(a)) avant de déplacer certains
d’entre eux en position médiale. C’est ainsi qu'une G-TAG peut générer un texte avec
des connecteurs médiaux (comme dans (2)(b)).

(2) a. Jean a passé laspirateur. Ensuite, il a fait une sieste.

b. Jean a passé l'aspirateur. Il a ensuite fait une sieste.

0.4.2 D-STAG

Les D-STAG s’intéressent a l'interface syntaxe-sémantique dans le discours. Elles se
fondent sut les TAGs synchrones, ce qui signifie que les structures élémentaires des
D-STAG sont des paires d’arbres élémentaires. Un des arbres de ces paires d’arbres
élémentaires est ancré par une entrée lexicale tandis que l'autre est ancré par un \-terme
simplement typé, correspondant a I'interprétation sémantique de I’entrée lexicale. Les
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structures dérivés sont alors également des paires d’arbres, I'un d’eux étant appelé
Parbre syntaxique et I’autre ’arbre sémantique.

Lorsque, dans un texte, un connecteur se trouve en position médiale, les D-STAG
doivent commencer par le normaliser en le déplacant en début de clause.

Afin que le discours soit cohérent, I'ajout d’une nouvelle clause doit étre relié au
reste du discours par le biais d’une relation rhétorique. Dans le cadres des D-STAG,
Parbre correspondant a cette nouvelle clause est substitué dans I’arbre ancré par le
connecteur qui exprime cette relation rhétorique. L’arbre dérivé qui en résulte est
ensuite adjoint au discours courant.

DU® DU®
| |
DU® DU®
/NN /NN
DU* Punct DC DU® DU* Punct DC DU®
| |
; conn DU |® ‘ conn DU |®
(a) conn est une conjonction post- (b) conn est un adverbe ou un
posée connecteur vide
DU®
|
DU®

/NN

DC DU® Punct DU®

conn DU|]® : DU*

(c) conn est une conjonction pré-
posée

Figure 0.4: D’arbre auxiliaire ancré par conn, ou conn est soit une conjonction préposée,
soit un adverbe discursif, soit une conjonction postposée (DU provient d’une unité de
discours)

Il y a trois catégories de connecteurs : les conjonctions préposées, les conjonctions
postposés et les adverbiaux. Comme on peut le voir sur la Figure 0.4, les arbres
représentant les conjonctions postposées et les adverbiaux ont la méme structure alors
que ceux représentant les conjonctions préposées ont une structure différente. Cela est
da au fait que les conjonctions préposées créent un <cadre de discours>> (Charolles,
2005).

Si Pon s’intéresse a la forme des arbres élémentaires des D-STAG, on observe que
ladjonction sur divers sites produit des arbres dérivés dont la frontiére est identique.
En d’autres termes, leur forme de surface est la méme. D’un autre c6té, les arbres
sémantiques dérivés obtenus en paralléle des arbres syntaxiques produisent des formules
sémantiques distinctes. Cette propriété implique une ambiguité inhérente a I’analyse de
texte avec les D-STAG.
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0.4.3 Le problémes des connecteurs médiaux

Pour traiter les connecteurs médiaux, tous les formalismes précédemment présentés
nécessitent un traitement (externe a la grammaire) supplémentaire des textes. Ainsi,
ces formalismes utilisent une approche en deux temps pour s’occuper de la génération
et de 'analyse de discours.

0.5 G-TAG comme ACGs

Comme les G-TAG permettent de former une grammaire discursive, on pourrait supposer
qu’encoder les G-TAG a l'aide des ACGs nous permette de modéliser le discours dans
le cadre des ACGs. En effet, GTAG s’inspire des TAGs et I’encodage des TAGs en
ACGs serait un bon point de départ. Cependant, il y a des différences entre les
G-TAG et les TAGs. Par exemple, elles ont une approche différente des informations
lexico-syntaxiques. Tandis que les arbres dérivés TAGs ont des symboles terminaux
fléchis, les arbres dérivés G-TAG ont seulement des lemmes sur leur terminaux, leurs
informations morphologiques et leur flexions se trouvant sur leur nceud pére. Ainsi,
au lieu d’encoder directement les arbres de g-dérivation et les arbres g-dérivés, nous
utiliserons la méme approche que les TAGs, a savoir avoir des terminaux fléchis et non
des lemmes.

Afin d’encoder les G-TAG avec les ACGs, nous construisons un vocabulaire abstrait
modélisant les arbres de g-dérivation. Comme notre approche de la morpho-syntaxe est
celle des TAGs, nous typons nos constantes abstraites par des types du second ordre
construits a partir des sites de substitution et d’adjonction des arbres élémentaires.

Pour encoder les arbres dérivés et les représentations conceptuelles, nous utilisons
de nouveau le vocabulaire objet présenté lors de '’encodage en ACG des TAGs avec la
sémantique de Montague. En revanche, au lieu d’interpréter directement les arbres de
g-dérivation par des arbres dérivés, nous commencons par les interpréter par des arbres
de dérivation TAGs avant d’interpréter ces derniers par des arbres dérivés comme cela
est fait dans I’encodage en ACG des TAGs.

Les G-TAG générent des textes contenant des conjonctions réduites par le biais de
mécanismes extra-grammaticaux. Par opposition, I'approche que nous développons
pour générer ces conjonctions réduites est purement grammaticale. Notre analyse
est présentée en Figure 3. Nous séparons le sujet de la clause matrice, ce qui nous
permet en sémantique d’exprimer le partage de sujet entre la clause matrice et la
clause subordonnée. Du co6té de la syntaxe, nous rendons le sujet seulement a la clause
matrice.

De méme, afin de traiter les textes contenant des connecteurs médiaux, les G-TAG
ont recours a un module de post-traitement qui déplace ces connecteurs médiaux en
position initiale car les mécanismes purement grammaticaux des G-TAG ne permettent
pas d’analyser ou de générer de connecteurs médiaux. C’est pourquoi ’encodage actuel
des G-TAG par les ACGs ne permet pas de traiter ces textes.

8



0.6. Chapter 7 - Clause-Medial Connectives

0.6 Chapter 7 - Clause-Medial Connectives

Pour étendre I’'encodage ACG des G-TAG de sorte qu’il puisse traiter les textes contenant
des connecteurs médiaux, commencons par regarder leur traitement par les TAGs. Dans
ce cadre, on obtient un connecteur médial en adjoignant un arbre auxiliaire de racine
VP ancré par le connecteur dans un arbre dérivé de racine S. Comme ce procédé
place le connecteur dans le VP de la clause, cela provoque un défaut sémantique. En
effet, la relation discursive représentée par ce connecteur n’obtient qu’un seul de ses
deux arguments. Par opposition, les G-TAG représentent cette méme relation discursive
par un arbre initial ancré par le connecteur et disposant de deux sites de substitution
de type S. Avec cette approche, la relation discursive recoit bien ses deux arguments
mais le connecteur ne peut étre qu’en position initiale. Pour traiter correctement cette
situation, nous combinons ces deux visions. Plus précisément, nous proposons d’encoder
les connecteurs médiaux par des constantes abstraites a deux arguments. Un de ces
arguments modélise I’arbre dérivé d’une phrase tandis que I’autre modélise un arbre
incomplet qui attend P'adjonction d’'un VP (qui introduira le connecteur dans le VP) pour
étre I’arbre dérivé d’une phrase. Cette contrainte pourrait étre exprimée par un type
fonctionnel (cette fonction prendrait un arbre auxiliaire de racine VP et produirait un
arbre dérivé de racine S dans lequel le premier arbre a été adjoint au VP). La Figure o.5
illustre cette analyse. Malheureusement, cela produirait une constante du troisiéme
ordre, et donc un vocabulaire abstrait du troisiéme ordre. Or, nous ne disposons pas
d’algorithme garantissant une analyse et une génération de texte en temps polynomial
dans le cadre des ACGs d’ordre supérieur a deux. Afin de contourner ce probléme de
complexité, nous devons nous limiter a des ACGs du second ordre. Par conséquent,
nous attribuons un type du second ordre a nos constantes abstraites en distinguant les
deux arguments de la constante encodant le connecteur médial, chacun recevant un
type atomique différent. Nous interprétons alors différemment ces deux types lors du
passage aux arbres de dérivation TAGs. Le type de ’argument encodant I’arbre dérivé
de racine S se traduit en un type atomique tandis que I'autre se traduit par un type
fonctionnel indiquant que I’arbre TAG correspondant attend une adjonction VP pour
devenir 'arbre dérivé d’une clause.

Un connecteur a la méme sémantique, qu’il se trouve en position initiale ou médiale,
c’est pourquoi nous interprétons les constantes modélisant ces deux catégories de
connecteurs avec les méme termes sémantiques. Ainsi, nous obtenons a la fois une
interprétation syntaxique et une interprétation sémantique de nos constantes abstraites
encodant les connecteurs médiaux. Cette approche nous permet alors d’analyser et de
générer des textes avec ces deux catégories de connecteurs en une seule étape (sans
avoir recours a plus d’étapes de traitements).

0.7 D-STAG comme ACGs

Comme D-STAG est un formalisme discursif dont la partie grammaticale est fondée
sur les TAGs, nous cherchons a le modéliser par le biais des ACGs. Pour encoder
les D-STAG avec les ACGs, nous modélisons les arbres de dérivation D-STAG par un
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1N

S| Punct Sl

VP

VP adv oo VP

Figure o.5: Une analyse d’un texte contenant un connecteur adverbial adv en position
médiale

vocabulaire abstrait tandis que les arbres syntaxiques et sémantiques sont encodés par
des vocabulaires objets. En particulier, nous utilisons pour ce vocabulaire objet celui
que nous avions développé pour I'encodage des TAGs par les ACGs. Nous construisons
donc deux ACGs partageant un méme langage abstrait. Pour modéliser le niveau clausal
de la grammaire, nous utilisons le niveau clausal de la grammaire obtenue en encodant
les TAGs par des ACGs. Nous couvrons donc a la fois le niveau clausal et le niveau
discursif de la grammaire.

Notre encodage ne nécessite pas d’étape de traitement supplémentaire pour nor-
maliser les textes contenant des connecteurs médiaux. Il est cependant capable de gérer
ces connecteurs, que ce soit pour générer ou pour analyser un texte, quand les D-STAG
ne peuvent faire d’analyse qu’aprés une étape de pré-traitement. Plus précisément,
nous développons une approche des connecteurs médiaux similaire a celle décrite
précédemment pour les G-TAG. De plus, notre approche des connecteurs discursifs est
plus uniforme dans le cadre des D-STAG que dans celui des G-TAG. En effet, nous
encodons tous les connecteurs (a I’exception des conjonctions préposées introduisant
un <cadre de discours>) par des constantes du méme type dans notre vocabulaire
abstrait. Ensuite, afin de distinguer les connecteurs médiaux des connecteurs initiaux
dans les arbres syntaxiques, nous les interprétons différemment. Plus précisément, alors
que nous modélisons les connecteurs médiaux a I’aide d’une adjonction sur un nceud
VP, nous modélisons les connecteurs initiaux a I’aide d’une adjonction sur un nceud S.

Linterprétation sémantique des constantes encodant les connecteurs médiaux et
initiaux est identique, puisque la seule différence entre eux se trouve uniquement dans
leurs emplacements syntaxiques dans le texte.

Etant donné que nous pouvons modéliser tous les arbres constructibles avec les
D-STAG, notre encodage hérite de son ambiguité intrinséque lors de I’analyse. De
plus, notre vocabulaire abstrait est du second ordre et notre lexique est quasi-linéaire.
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Dans ce cas, les résultats de Kanazawa, 2007 nous assurent une complexité polynomiale
pour la génération et I'analyse de texte. Ainsi, notre approche permet de modéliser le
discours car les ACGs rendent possible I'analyse et la génération avec des connecteurs
a la fois médiaux et initiaux tout en restant utilisable en pratique et en ne nécessitant
qu'une seule étape.

De plus, nous interprétons les arbres de dérivation D-STAG par des formules
étiquetées. Cela nous permet de nommer explicitement les arguments de nos connecteurs
avec ces étiquettes.

0.8 Conclusion

Dans cette thése, nous avons encodé des phénoménes discursifs a ’aide des ACGs. Nous
avons en particulier encodé deux formalismes du discours, les G-TAG et les D-STAG.
Ces encodages permettent de traiter les connecteurs médiaux de maniére purement
grammaticale. Ces deux encodages sont du second ordre, or les ACGs du second ordre
disposent d’algorithmes polynomiaux de génération et d’analyse. Nous sommes donc
en mesure de générer et d’analyser des textes avec une complexité polynomiale a I'aide
de notre encodage en ACG. La Figure 0.6 illustre I'architecture ACG utilisée a la fois
pour D-STAG et pour G-TAG. Les cercles correspondent aux langages et les fleches
aux lexiques.

RBRES DE DERIVATION|
DU Discours /

_ pTAG
,z; = (gs)vm CRA SEMANTIQUE

g 3 Der |

TAG

| DERIVATIONS TAG |

TAG
) Egym . ;/‘gsm
TG

| ARBRES DERIVES |

Figure 0.6: L’architecture ACG pour G-TAG et D-STAG
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In this chapter we briefly overview some basic concepts and notions that we use throughout
the thesis. We briefly discuss the problems of discourse (text) parsing and gemeration.
Afterwards, we determine the questions within the discourse modeling problem that the
present work addresses.

Since 1950s a number of theories have been proposed for analyzing natural language
sentences, from both the syntactic and semantic points of view. Discourse processing
can be seen as a further step in natural language studies. Under ‘discourse’ one may
understand various kinds of natural language acts, either in written or spoken form, or
a multi-modal one. In this thesis, we will consider a restricted notion of a discourse by
focusing on only monologues. Thus, we consider ‘discourse’ and ‘monologic text’ or
just ’text’ to be synonyms (unless otherwise stated).

1.1 Discourse Coherence, Structure, and Interpretation

Let us begin with a fact: discourse has structure. Whenever we read
something closely, with even a bit of sensitivity, text structure leaps off the
page at us. Hobbs (1985)
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Chapter 1. Introduction

A discourse is not just a set of meaningful propositions (sentences). By listing
sentences, one does not necessarily obtain a meaningful discourse, even though each of
the sentences might be meaningful on its own. The bits of information presented by
different meaningful pieces of a discourse must be related. Otherwise, a discourse would
be hardly comprehensible.

Moreover, even though a discourse may consist of several pieces and they might be
connected to each other in such ways that their conglomeration makes sense, the discourse
may still sound odd. To illustrate that, let us consider the discourses (3) and (4) from
(Asher and Lascarides, 2003).

(3) m1.A burglar broke into Mary’s apartment.
m2. Mary was asleep.

3. He stole some silver.

(4) m1.A burglar broke into Mary’s apartment.
7. A police woman visited her the next day.

3. P?He stole some silver.

Both of the discourses (3) and (4) convey messages that are fairly straightforward to
perceive. Nevertheless, the discourse (4) sounds odd, whereas the discourse (3) does
not. In (4) the anaphoric reference provided by /e in 73 to a bugler in m; makes the
discourse (4) infelicitous. One may argue that a problem with the discourse (4) is due
to the mispositioned sentence 73. Indeed, if m3 were placed right after 71 in (4), then
the resultant discourse would be felicitous. On the other hand, in the discourse (3), 73
does not come right after 7, but in spite of that, the discourse (3) is felicitous. As
Asher and Lascarides (2003) explain, in the discourse (3), m2 provides a background
information to 7. Since my is a background information, it cannot break the main
story line established by ;. Therefore, the discourse 7; w2 73, where /e from 73 refers
to a burglar introduced in 7 (not in mg), is felicitous. However, in the case of the
discourse (4), adding 7 to m; creates a marrative. In this case, m cannot create the
main story line of the discourse. Adding 73 after 7, makes the resultant discourse
infelicitous because the anaphoric pronoun /e from 73 cannot find its antecedent in
due to presence of 7 between 7 and 3.

Various theories address the problem of defining what is a coherent (meaningful,
felicitous) discourse (e.g. (Asher and Lascarides, 2003; Hobbs, 1985; Mann and
Thompson, 1986; Marcu, 1997)). Most of the theories agree that a coherent discourse
should have a connected structure, where the structure is defined by certain relations
connecting discourse units, i.e., meaningful pieces of a discourse. These relations are
sometimes called coherence relations (Hobbs, 1985), or rhetorical relations (Mann and
Thompson, 1986), or simply discourse relations.

Some theories consider the structure to be the main subject of the discourse studies
(Hobbs, 1985; Mann and Thompson, 1987). At the same time, the notion of a
discourse structure is not universally agreed but varies from theory to theory (Asher
and Lascarides, 2003; Mann and Thompson, 1987; Bonnie Webber, Stone, Aravind Joshi,
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and Knott, 2003). Given a discourse, one can consider discourse units (constituents)
as nodes. By placing an edge between two nodes if they are related by a discourse
relation, one obtains a graph representation of a discourse structure. While some
authors assume that a discourse structure is tree-shaped (Mann and Thompson, 1987),
some others argue against that (Danlos, 2011; Wolf and Gibson, 2004). What kind of
non-tree shaped graphs discourse structures are is also among the questions that are
still subjects to discussions. In the rest of the thesis, we will assume that a discourse has
a structure. However, what a discourse structure is will depend on a particular theory.

Apart from theories that study discourse structure, theories such as Discourse
Representation Theory (DRT) (Kamp, 1988; Kamp, van Genabith, and Reyle, 2011)
and Dynamic Predicate Logic (DPL) (Groenendijk and Stokhof, 1991), aim to interpret
a discourse as a logical form, similar to Montague’s (1973) translations of sentences
into logical forms.

Segmented Discourse Representation Theory (SDRT) (Asher and Lascarides, 2003)
has similar goals as DRT and DPL, that is, it also interprets a discourse in a logical
setting. However, SDRT makes use of the pragmatic knowledge coming from the structure
of discourse, to which DRT and DPL do not pay significant attention. For instance,
in order to explain why the discourse (4) sounds odd, the knowledge obtained from
the logical interpretation of (4) would not help much. It is the discourse structure and
its properties (derived from pragmatic knowledge) that show why the discourse (4) is
infelicitous.

1.2 Discourse Processing

In computational linguistics, the problem of discourse processing has been studied
from various points of view. Among fundamental problems of discourse processing are
discourse parsing (analysis) and generation.

1.2.1 Discourse Parsing

Given a discourse theory, the main goal of the discourse parsing (analysis) task is to
find an analysis of that discourse or show that no analysis is applicable to it. Since
discourse theories may significantly differ from each other, some of them may parse
a given discourse, whereas others may fail to parse it. It might be also the case that
two different theories, both can parse a given discourse, but they produce contrasting
analyses of that discourse. Although both an analysis and an output of the analysis of
a discourse depends on a particular approach, there are generic problems that the most
of the theories consider in their discourse parsing tasks. One of them is identification
of basic (atomic, minimal, elementary) discourse units (idea units) in a given discourse.
Then, a problem is to find how these discourse units are related to each other. Another
problem is to determine whether it is possible to group the related discourse units to
create a larger discourse unit; how larger discourse units are related to other discourse
units; when one has to stop the parsing process, etc. All in all, discourse parsing is
a nontrivial task and the output of the discourse parsing task depends on a theory.
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Therefore, while describing a particular approach to discourse parsing, one has to take
into account the assumptions about the discourse structure of that approach.

1.2.2 Discourse Generation

The discourse generation problem is a part of a more generic problem of natural
language generation (NLG). Since we identify a discourse with a monologic text, we
focus on the part of NLG that is concerned with generating monologues.

NLG focuses on building such systems that can produce as understandable, coherent,
texts in natural languages as humans do. As a rule, the starting point of an NLG
system is some nonlinguistic representation of information. Such a representation is
an input to the NLG system. By making use of knowledge about a natural language,
NLG systems try to automatically produce natural language texts. To do that, NLG
should be equipped with a considerable amount of linguistic knowledge at the levels of
pragmatics, semantics, syntax, morphology, and phonology.

In addition to dealing with linguistic problems of text generation, NLG systems deal
with the tasks such as information management, information selection, and information
computing.

One of the first views that comes to a mind while explaining what NLG task is, is
that NLG may be viewed as the opposite to the natural language understanding (analysis,
parsing): While in natural language understanding the system needs to disambiguate
the linguistic input (text, sentence) to produce the machine understandable output, in
NLG the system needs to make decisions about how to put a concept into words, words
into sentences, sentences into paragraphs, and paragraphs into texts. According to
McKeown (1992), a text parsing system does not need to provide the reasons explaining
why a particular choice is made in a text (for instance, why an active form of a verb is
used instead of passive), whereas it is exactly what NLG systems are concerned with.

Thus, ideally, an NLG system should be able to justify why it made a certain choice,
i.e., why the chosen one is one of the best! possible solutions. The following problems
are the ones that NLG is particularly concerned with:

* Determining the content to be communicated;

 and representing already determined content by means of a natural language.

Dale (1995) gives a more elaborated view on the questions that NLG systems address:

1. Deciding how much to say, and what not to say:

* Maintaining brevity;
* avoiding stating the obvious.
2. Designing text structure:
* May need to add material to the basic subject matter;
* controlling the effects of the structure and ordering of the material;
* making the text flow smoothly.

3. Problems in carrying out a detailed text plan once built:

* Determining the sentence boundaries and the use of conjunctions;
* deciding when to use anaphora;

'What is the best and for what it is best are in question as well.
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¢ lexical selection (lexicalization);
» use of marked syntactic structures for particular rhetorical effects.
The tasks 1, 2, and 3 are interrelated, but for the sake of simplicity, in the most of the

cases, they are assumed to be independent and thereby are solved separately.

1.3 An Example of a Text Generation System

EasyText is a fully-operational NLG system (Danlos, Frédéric Meunier, and Combet,
2011). It was developed for providing monthly reports for bank customers about their
bank account activities. EasyText generates texts (in French) from tables that are filled
with numerical data reflecting the account activities of the bank customers. For example,
given the input shown in Figure 1.1, EasyText outputs the following text:

(5) Dans ce secteur, les investissements ont doublé (+130%) pour la variété

MULTIPROD.ORG.FINANCIERS en mai 2008 par rapport a mai 2007. Par
ailleurs, les investissements pour la variété CREDIT PERSONNEL O.F marquent

une progression de 6% pour le cumul a date étudié. Au contraire, pour la variété
MULTIPROD.ORG.FINANCIERS, ils voient leur volume diminuer (-3%) sur la méme

période.

In this sector, investments have doubled (+ 130%) for the variety MULTTI-
PROD.ORG.FINANCIERS in May 2008 compared to May 2007. In addition,
investments for the variety CREDIT PERSONNEL O.F shows an increase of
6% accumulated in time studied. On the contrary, for the variety MULTI-
PROD.ORG.FINANCIERS, they see decrease in their volume (-3%) over the same

period.

The EasyText generation process can be viewed as a pipeline, consisting of the
content determination, document structuring, and tactical components.

2008

Mai
2009

Evol%a

Cumul

Janvier 4 mai

2008

Cumul
janvier & mai
2009

Evol%

ORGANISMES FINANCIERS
CREDIT PERSONNEL O.F
~MULTIPROD.ORG.FINANCIERS
CREDIT RENOUVELABLE O.F
INTERNET TELEMATIQUE 583
RACHAT DE CREDITS O.F
CREDIT AUTO MOTO O.F
CREDIT TRAVAUX OF
PARRAINAGE MECENAT O.F

5 B6B
3243
3930
2648

11227
7463
1994
4 687

732

110
86

91 %
130 %
497,

39 %

216 948

50610
53191
60 094
16 460
15 817
5638

535

E0

53772
51718
34 987
27613
5637
993
797

0

Figure 1.1: An example of an input table of Easyext, borrowed from (Danlos,
Meunier, and Combet, 2011)

Frédéric

The EasyText content determination component selects within a given table the relevant
cells in terms of the information that has to be communicated. As Danlos, Frédéric

19



Chapter 1. Introduction

Meunier, and Combet (2011) note, no reasoning module is developed for this task; the
rules for determining what are the relevant cells are rather hardcoded.

The EasyText document structuring component produces conceptual representations. This
task involves building the discourse structure by relating the semantic content expressed
by the cells in the table. For example, given two cells such that one shows an increase
in the income, whereas the other one shows a significant decrease, within the same
month, one concludes that these cells contain contrasting information. The document
structuring component connects these two cells by the discourse relation CONTRAST. In
EasyText, the principles of the discourse structure follow SDRT (Asher and Lascarides,
2003). The output of the document structuring component is a structured representation
of concepts, where the structure is a discourse structure, and the concepts stand for
events, discourse referents, etc.

The output of the document structuring task, i.e., a conceptual representation is
then passed to the tactical component of EasyText, whose theoretical basis is G-TAG
(Danlos, 1998, 2000). G-TAG makes a number of decisions, including ordering of
the sentences, lexicalization, using syntactic constructions within sentences and for
sentences, etc. Here, we will very briefly describe the G-TAG text generation, but in
the further chapters, we will provide its detailed description.

G-TAG defines lexical entries. A lexical entry serves as a lexicalization of some
concept. Each lexical entry is associated with a set of possible syntactic constructions
with that lexical entry. The main process in G-TAG is lexicalization, that is, mapping
of concepts to lexical entries. By lexicalizing all the concepts from the conceptual
representation input, G-TAG produces a g-derivation tree. A g-derivation tree can be
viewed as a semantic dependency tree, additionally decorated with syntactic information.
It contains all the information needed for generating an output. A g-derivation tree
specifies a unique g-derived tree, which can be seen as a syntactic analysis of a text.
While a g-derived tree contains the morphological information for inflecting words, the
words in it are not inflected. It is a post processing module of G-TAG that computes
morphological information from the g-derived tree. Furthermore, it linearizes the tree
and produces a text. In fact, the post processing module can do even more. It can
produce a text and then modify it. The post processing module may issue the modified
version of the original text as the output of the generation process, instead of the
original text, which was directly obtained from the g-derived tree.

1.4 The Problems Considered in the Present Work

Discourse modeling is a complex problem, which one can study from various standpoints,
with various motivations and goals. Ideally, one should take into account all aspects
of a discourse to model it. However, it would be fair to say that this is one of the
hardest problems in computational linguistics. Therefore, in this thesis, we only focus
on the modeling of the syntax-semantics interface for discourse, which one also calls as the
syntax-discourse interface.

The main goal of the present work is to design ACGs that enable one to consider
the problem of discourse modeling. In particular, we aim at studying the ways one
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can model the discourse-level phenomena in addition to sentence-level ones. Whether
it is possible to integrate the sentence-level and the discourse-level phenomena at the
same level of analysis is also a question that one has to answer. On the one hand, one
knows that the border between the sentence-level and the discourse-level analyses is
only conventional. For instance, in some cases, one can express the same meaning by a
single sentence or with several sentences, i.e., by a discourse (text). This suggests that
one already encounters discourse-level phenomena within sentences. On the other hand,
there are certain phenomena that one does not observe in a single clause (idea unit). A
clause itself does not need to be connected to something else in order to make sense.
Therefore, one may still argue for the need of separation of the discourse-level analysis
from the clause-level one. Thus, one can imagine (at least) the following scenarios of
discourse modeling:

* Develop a unified framework for encoding the discourse-level and the clause-level
phenomena.

* Develop a framework where the encodings of the discourse-level and the clause-
level phenomena are provided by the separate modules. In this case, one has to
give an account of how those modules interact with each other.

Although it seems more natural to have a unified framework for modeling both
the discourse-level and clause-level phenomena, how plausible it is to build such a
framework is yet another question that the present work has to answer.

In practical applications of computational linguistics, one aims to design tractable
implementations, i.e., the ones that can be used to perform tasks by consuming a
reasonable amount of resources. Thus, a golden mean between the linguistic adequacy
and the computational cost of an approach is something that one has to establish.

Tasks such as content determination are not part of the problem of the syntax-
semantics interface. In the present work, we do not deal with the tasks that are outside
of the scope of the syntax-semantics interface problem. In addition, we do not study
pragmatic problems, such as whether or why a given discourse is coherent/incoherent.
As we have already mentioned, ideally, one aims to model all kinds of phenomena,
and some theories even study some pragmatic phenomena within the syntax-discourse
interface (Schlenker, 2011), but to our knowledge, no theory provides a fully functioning
model that would enable one to encode pragmatic effects within the syntax-discourse
interface.

Thus, in this thesis, we confine ourselves by studying the possibility of encoding the
syntax-semantics interface for discourse with the help of ACGs. One of the goals of
the present work is to construct such ACGs that allows one to consider problems of
discourse parsing and generation. In other words, with the help of ACGs, we aim to
encode the way text generation and parsing systems deal with discourses. At the same
time, one of the objectives is to design tractable ACGs, i.e., such ACGs that one can
implement in practical applications.
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Introduction

1.5 The Road Map of the Thesis

Part 1: Introduction

Chapter 1: We describe the subject matter of the thesis and some basic notions.

Chapter 2: We present some notions from formal language theory. We define

notions related to formal grammars. We focus on Context-Free Grammars
(CFGs) and Tree-Adjoining Grammars (TAGs). In addition, we briefly discuss
Synchronous TAGs, which were introduced for modeling the syntax-semantics
interface based on TAG grammars.

Chapter 3: We provide the definition of Abstract Categorial Grammars (ACGs),

since ACGs serve as the main framework to the present work. As an example
of ACGs, we illustrate how one encodes CFGs and TAGs as ACGs. In
addition, we describe the ACG encoding of TAG with Montague semantics.
The ACG encoding of TAG with Montague semantics enables one to address
the problems of modeling of the syntax-semantics interface for sentences.

Chapter 4: We discuss the discourse theories. We focus on RST and SDRT. RST

is a theory that studies organizational problems of texts. SDRT is a theory of
dynamic semantics, that is, it interprets a discourse as a logical form. Unlike
other dynamic theories, SDRT makes use of the pragmatic and semantic
information encoded with the discourse structure.

Chapter 5: We present discourse formalisms that study discourse regularities with

grammars. Namely, we explore the TAG-based formalisms, D-LTAG, G-TAG,
and D-STAG. The grammars of these formalisms experience problems in
dealing with certain kinds of texts. In particular, we focus on the problem
that the grammars of these formalisms face in encoding discourses containing
clause-medial connectives. We discuss the ways these formalisms choose in
order to overcome the problem.

Part 2: Thesis Contributions

Chapter 1: We propose an encoding of G-TAG as ACGs. We show how one

encodes the G-TAG grammar and its text generation process with the help
of ACGs.

Chapter 2: We propose a method that one can make use of in TAG-based ap-

proaches to grammatically encode texts containing clause-medial connectives.
In particular, we encode clause-medial connectives by extending the ACG
encoding of G-TAG, which is proposed in the previous chapter. The resultant
ACGs enable one to encode the texts containing clause-medial connectives in
a purely grammatical manner.

Chapter 3: We encode D-STAG as ACGs. By adopting for D-STAG the method
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developed in the previous chapter for modeling clause-medial connectives, we
construct the ACG encoding of D-STAG, which can model texts containing
clause-medial connectives. In addition, we define another version of the ACG
encoding of D-STAG where we define labeled semantic interpretations of
discourses.



1.5. The Road Map of the Thesis

Chapter 4: We briefly discuss the related work to the presented one. We also
present the questions with some solutions that one may investigate as a part
of future research.

Chapter 5: We draw some conclusions about the work presented in the thesis.
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In this chapter, we discuss formal grammars. First, we present phrase-structure grammars
(PSGs) and define the Chomsky hierarchy of grammars. In the Chomsky hierarchy, context-
free grammars (CFGs) are able to capture various phenomena in natural languages. The
parsing problem for them is of polynomial complexity. CFGs, however, cannot give a
fully satisfactory account of certain phenomena in natural languages. 1o find the class of
grammars adequate to describe the syntax of natural languages, a class of mildly-context
sensitive grammar formalisms (MCSGs) was characterized. We focus on Tree-Adjoining
Grammars (TAGs) from the class of MCSGs. TAGs overcome some of the problems that
CFGs face in terms of expressive power. At the same time, the parsing problem for TAGs is
of polynomial complexity. In addition, we present synchronous TAGs (STAGs), which were
introduced with the goal of modeling the syntax-semantics interface with TAG grammars.

2.1 OQOverview

A formal grammar is a mathematical model that allows one to describe a set of admissible
sentences of a language; under ‘language’ one may understand both an artificial (formal,
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programming, etc.) and a natural language. In this thesis, we focus only on formal
grammars that one employs to study natural languages. We may also refer to such
formal grammars as grammatical formalisms.

A number of formal grammars have been proposed (e.g. (Ajdukiewicz, 1935; Bar-
Hillel, 1953; Chomsky, 1956; A. K. Joshi, Levy, and Takahashi, 1975; Lambek, 1958)).
One of them is known as the class of phrase-structure grammars (PSGs) (Chomsky,
1956). A phrase-structure grammar describes a set of sentences (strings) of a language.
Four sub-classes are distinguished in the class of PSGs, called the Chomsky hierarchy
of grammars. One of the sub-class of PSGs, called context-free grammars (CFGs), are
expressive enough to encode a number of natural language phenomena. At the same
time, for CFGs parsing algorithms of polynomial complexity are available.? Polynomial
complexity is considered to be feasible for practical applications.> Although it is true that
CFGs are capable of modeling a number of syntactic phenomena in natural languages,
it has been argued that CFG cannot capture certain natural language phenomena
(Shieber, 1985). In other words, CFGs are not expressive enough to describe all natural
languages. Although the grammars from an upper class in the Chomsky hierarchy,
called context-sensitive grammars (CSGs), can model natural languages, no algorithm
of polynomial complexity can parse them.

A. K. Joshi (1985) proposed criteria to characterize grammatical formalisms that
are necessary to describe all natural languages. He called the class of such formalisms
mildly context-sensitive grammars (MCSGs). One of the criteria is that any formalism
in the class has a polynomial parsing algorithm. Another criteria is that in this class
some formalisms can describe certain kind of structures that CFGs cannot capture.
The criteria for being a member of MCSGs are generalizations of the properties of the
Tree-Adjoining Grammar (TAG) formalism (A. K. Joshi, Levy, and Takahashi, 1975).
TAGs are more expressive than CFGs, but only slightly so that for them also exist
parsing algorithms of polynomial complexity.

2.2 Preliminary Notions

We make use of standard mathematical notions* such as a function, relation, partial
order, graph, Turing machine (algorithm), etc.

2A problem is polynomial (of polynomial complexity) if (1) an answer to it is either yes or no; (2) there
exists a Turing machine (an algorithm) that requires the time that is polynomial to the length of the input
in order to provide an answer to the problem (Goldreich, 2008).

30One refers to an algorithm as feasible if it is polynomial, as the following quote indicates:

In most practical cases ...: polynomial-time algorithms are usually feasible, and non-
polynomial-time algorithms are usually not feasible.
Kreinovich, Lakeyev, Rohn, and Kahl (1998)

“For details, we refer readers to (Hopcroft, Motwani, and Ullman, 2006).

26



2.2.  Preliminary Notions

Alphabet, Word, Language

We denote by IN the set of natural numbers ({0, 1,2,...}), whereas by N, we denote
the set of positive natural numbers ({1,2,...}). We fix the terminology and conventions
by providing the definitions of the following notions:

Definition 2.2.1.

o An alphabet X' is a finite nonempty set of symbols.

» A string (word) is a finite sequence (possibly empty) of symbols of an alphabet X .

o The empty string (empty word), denoted with e, is the string with zero occurrences of
symbols (of any alphabet).
Let w1 and wa be two words over an alphabet Y. Then wiwa denotes the concatenation
of w1 and wo, i.e., wiwy is the word over X obtained out of a copy of w1 followed by
a copy of wa. One can check that ew = we = w for any string w, where € is the empty
string.
A number of occurrences of symbols in w is called the length of w; we denote the
length of w with len(w).
If X is an alphabet, XF denotes the set of strings over X of length k. Thus, the set of
all strings over an alphabet ., denoted with X* (Kleene star of X)), can be defined as
Sollows:

=3x0uxtus?u...

We denote with X the set of non-empty strings of X*, hence: X* = {e} U X,
 Given two languages L and Lo, we define the concatenation of Ly and Lo, denoted by
Ly Ly, as follows:
L1Ly = {wl(,UQ ’ w1 € L1 and wy € LQ}

Convention: Lowercase letters of the Latin alphabet denote symbols; lowercase
letters of the Greek alphabet denote strings (words); and capital letters of the Latin
alphabet denote languages, unless otherwise stated.

Definition 2.2.2 (Prefix Order).
For an alphabet 3., one defines a partial order < over X, called the prefix order, as follows:

Vwi,wy € X% wy <we if and only if 30 € X* : wid = wy
If w1 < wo, we say that wy is a prefix of wo.
It follows from Definition 2.2.2 that € is a prefix for any string w as ew = w.

Definition 2.2.3 (Lexicographic Order).
One defines the lexicographic order over IN*, denoted as <;. Let wi = aj...a, and
wo = by ... b be two strings of IN*, then w1 <; wa holds if and only if
o either w1 is a prefix of wy or
e a; < b, for some 1 < ¢ < min{len(w),len(w2)} and a; = b; for all j such that
j < i, where < is the standard linear order® over IN.

5For a,b € N, a < b if and only if b = a + ¢ for some c € IN,.
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=1 denotes the reflexive closure of <.

Definition 2.2.4 (Tree Domain).
We call D a tree domain if it is a finite subset of the set of strings over the set of positive
natural numbers N (i.e, D is finite and D C IN*, ) satisfying the following properties:
1. For any u and v, where u,v € N*_ , if wv € D, then u € D.
2. For any string uw € N and a natural number i € N, if ui € D, then for any j € N
such that j < i, uj € D.
We refer to elements of a tree domain as positions.

Labeled Trees

Definition 2.2.5 (Labeled Ordered Tree).
Let X be an alphabet. A labeled ordered tree is a pair v = (D, 1) where D is a tree domain
and | : D — X is a tree labeling function. Elements of 3 are called labels.

e Given a labeled ordered tree v = (D, 1) and d € D, the elements of D are called nodes
in 7y (or nodes of ). Sometimes, they are also called as the (Gorn) addresses of . For a
node d in vy, we say that [(d) labels the node d. We call I(d) the label of the node d.

o The root node 1 of the tree v = (D, 1) is the empty string e.

o A node p is a frontier node if and only if Vj € INy : pj ¢ D. We also call frontier
nodes as leaves. If a node in a tree is not a leaf, then we call it an interior or internal
node.

e For an internal node n in the tree v = (D, 1), we say that n has k daughters (children)

in vy if ma%z' = k. We call the nodes n1, ..., nk in ~ the daughters of n,; we call the
ne

node n their mother (parent).

If nl,...,nk are daughters of n, we say that v has k branches at the node n. If k > 1,

the daughter nodes nl, ..., nk of n are siblings.

Ty denotes the set of all trees whose nodes are labeled with symbols from .

Hence, a node in a labeled ordered tree is a position of a tree domain. The label
of a node is an element of an alphabet. Given the nodes my,..., m; in a tree 7 such
that m; is the mother of m;; 1 for i = 1,...1— 1, we say that m; is an ancestor of my, if
1 <75 < h <. In other words, if m and n are two nodes in a tree v such that m is a
prefix of n, then m is an ancestor of n in 7. We depict a tree as a graph where every
node is connected only to its mother node (if any) and its daughter nodes (if any). We
refer to the connection between a mother node and a daughter node as an edge. In the
labeled tree, we decorate the nodes with their labels. Figure 2.1 shows an example of a
labeled ordered tree.

Definition 2.2.6. The yield of a labeled tree ~y, denoted by yield(y), is a string over X*,
defined as follows:

Let the set {ny,---,ny} be the set of frontier nodes of ~y, where ny,--- ng occur in the
lexicographic order, then the yield yield(v) is the string obtained by concatenating the labels
of the frontier nodes, that is, yield(y) = I(n1)---l(n;).
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Figure 2.1: A pictorial representation of a labeled ordered tree

Tree Operations

We define two operations on trees, substitution and adjunction (A. K. Joshi, Levy, and
Takahashi, 1975). To define them, it is useful to define subtrees and supertrees of a tree.

Definition 2.2.7 (Subtree and Supertree (A. K. Joshi, Levy, and Takahashi, 1975)).
For a tree v = (D, () and a node p, we define the subtree and the supertree at p as follows:
Subtree  v/p = {(q,A)|(pg; A) € v, ¢ € N"}
Supertree \p = {{q,A)[{q.A) € 7, p & ¢}

The supertree of a node is the set of its ancestors, its siblings and their ancestors.
The subtree of a node is a set of nodes whose ancestor is the given node. For example,
from Definition 2.2.7 follows that if p is the root node, i.e., p = ¢, then the subtree /e
is 7. The root node has no supertree, i.e., 7\e = (). If p is a frontier node in ~, then
the subtree at p is a tree consisting of p, i.e., v/p = {p}.

Definition 2.2.8 (Substitution). Let p be a frontier node in vy, and o be a tree. We define
the substitution of « into vy at p, denoted by ~v(p <= «), as follows:

Y(p = a) =9\p U pa
where pa = {(pk,A)| (k,A) € a}.

(a) Substituting at the address (b) The tree

D obtained af-
ter substitu-
tion

Figure 2.2: The operation of substitution

Figure 2.3 illustrates the substitution of a tree o in a tree <y at a node p, which, by
definition, is a frontier node in ~.
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Definition 2.2.9 (Adjunction). Let 3 be a tree whose one of the frontier nodes is marked
with the same label X as the root node. We call that frontier node the foot node of 5. Let q
be the foot node of 3. Let v be a tree and p be a node in ~y. One defines the adjunction of the
tree B into v at p, denoted by ¥|p, 5], as follows:

Ylp, 8] £ 7\p U pB Upg(v/p)
where pf3 = {{pk,A)| (k,A) € B} and pq(vy/p) = {({pgk, A)|(k,A) € v/p}.

Figure 2.3 illustrates the adjunction of /5 into ~.6

[, A]
/6 ,y //\
X N Liiix*iii\
X /j,,,p,,,,\ X
q \_/ A AN
(a) S adjoins on the node X into (b) The
¥ tree ob-
tained after
adjunction

Figure 2.3: The operation of adjunction

Ranked Trees

We have defined labeled (ordered) trees by purely set-theoretic means. One can use
another definition of a tree by representing it as a term.

Definition 2.2.10 (Ranked Alphabet).
A ranked alphabet is a pair (A, p), where A is a set and p is a function mapping each
element of A to a natural number. We call A an alphabet. We say that f € A is a symbol of

the rank (or of arity) p(f), or f is a p(f)-ary symbol.
By convention, if f is of arity n > 0, we may write f,; if [ is of arity 0, we write f.

Usually, instead of (A, p), we write A if it does not cause a confusion. We also
define subsets of A as follows: A, = p~1(n) = {f € A|p(f) = n}, where n > 0. Thus,
we may write f € A, to express that f belongs to the alphabet A and the rank of f is
n.

6One can consider a more generic notion of adjunction than the current one provided by Definition2.2.9.
Namely, one can lift the restriction imposed on 8 about having one of the frontier nodes marked with
the same label X as the root node. Nevertheless, we only consider the current version of adjunction as it
fits the formalisms that we will discuss below.
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Definition 2.2.11 (Ranked Tree).
Given a tree domain D and a ranked alphabet (A, p), we define a ranked tree as a pair
(D,1) where | : D — A is a labeling function so that the following holds:

For any p € D, if p(l(p)) = m, then pm € D and for any k > m, km ¢ D.

By definition, a ranked tree is a labeled ordered tree. Conversely, one can transform
a labeled ordered tree into a ranked tree. Indeed, by assigning to the labels of the
nodes in a labeled tree the ranks so that the requirement of Definition 2.2.11 is fullfilled,
one obtains the ranked tree representation of that labeled tree. In particular, if p is a
node of a labeled ordered tree, then we assign to the label /(p) the rank ;1;13}5 i, i.e., the
number of branches in the tree at the node p. However, notice that to one and the same
label, we may have to assign several ranks. If a label f appears at several different tree
addresses, then we may need to introduce several copies of f. For instance, assume that
f appears at m > 1 tree addresses. Let at these tree addresses, the tree has branches
ki,...,kpn such that k; # k; for any 1 < 7,7 < m. We introduce m copies of the label f
with the ranks £i,...,%,. That is, we introduce the following symbols: fi , -, fi,..

It is convenient to use term representations of ranked trees. Since every node of a
ranked tree (D, ) is coupled with a symbol of a ranked alphabet, one can equivalently
define a ranked tree as a term.

Definition 2.2.12 (Term).
The set of terms over the ranked alphabet A, denoted by T a, is the smallest set satisfying the
following conditions:

7. If  is of the rank 0, then f € Ta,

2. if f € Ay, where n > 1, and th ot belong to T A, then f(tt - t") € Ta.

Every term can be represented as a ranked tree whose frontier nodes are labeled
with symbols of arity 0; each internal node is labeled with a symbol of positive arity
that equals to the number of branches at that node. In the rest of this thesis, we
will not specify whether we discuss ranked or unranked trees if it does not cause a
confusion. We will also forget the difference between ranked trees and terms. While
depicting a tree (D, (), usually, we will only depict labels of nodes, i.e., we will omit d
in (d,[), unless otherwise stated.”

2.3 Phrase Structure Grammars

Phrase-structure grammars (PSGs) (Chomsky, 1956) is a class of formal grammars.
PSGs were inspired by Bloomfield’s (1933) linguistic notion of constituents, which allow
one to analyze natural language expressions by determining their constituent structures.?
Let us provide definitions of a phrase-structure grammar (PSG), a phrase-structure
derivation, and a language defined by a phrase-structure grammar.

’Since from a pictorial representation of a tree, one can unequivocally reconstruct the tree addresses,
one can omit them while depicting a tree.
8Because of this, PSGs are also known as constituency grammars.
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Definition 2.3.1 (Phrase-Structure Grammars (Chomsky, 1956)).
A phrase-structure grammar (PSG) is a quadruple G = (N, X, P,S), where
o N is a finite set of symbols called the non-terminal symbols;
e X is a set of symbols called the terminal symbols such that X NN = ();
* S € N is a symbol called the start (initial, distinguished) symbol;
e PC(YUN)" x (Y UN)* is a finite set of production (rewrite) rules.
By convention, for p = (v, 0) € P, we write v — 0.

We use lower case symbols of the Latin alphabet (a,b,...) to denote symbols of ¥
(terminal symbols), where for non-terminals symbols, i.e., elements of N, we use capital
letter symbols (A,B,...). To denote a string of terminals and non-terminal symbols, i.e.,
a string over 2 U N, we use a lower case symbol of the Greek alphabet.

Definition 2.3.2 (One-step Derivation). Given a PSG G = (N, X, P,S), the one-step
derivation = is the binary relation over (X' U N)*, defined as follows: « = [ holds if
and only if there are 61 € (Y UN)*, 62 € (X UN)*, and p € P, where p = (11 — p2), such
that

a = 0141162 and 3 = 01202

Definition 2.3.3 (Derivation and Generated Language). Given a PSG G = (N, P, S),
the derivation relation =7, is the reflexive and transitive closure of = g.
The language generated by G is a set L defined as follows:

L={a|S=%a}

2.3.1 The Chomsky Hierarchy of Grammars

By constraining rewriting rules of a PSG, one can define various classes of PSGs. Chom-
sky (1956) determines three proper sub-classes of PSGs, provided within Definition 2.3.4.

Definition 2.3.4 (Four Types of Grammars).

Type-0 A PSG G = (N, X, P,S) is called type-0, or unrestricted, if each of its production
rules p € P has the form o — 3, where « € (YUN)T and 8 € (Y UN)*, or
equivalently, if production rules of G are unvestricted, then G is a type-0 grammar.

Type-1 A PSG G = (N, X, P,S) is called type-1, or context-sensitive, if each of its
production rules p € P is either of the form S — €, or aAB — auf, where o, B €
(PUN)*; ne (YUN)Y; and A€ N.

Type-2 A PSG G = (N, X, P,S) is called type-2, or context-free, if each of its production
rules p € P has the form A — w, where A€ N and w € (Y UN)*

Type-3 A PSG G = (V, X, P,S) is called type-3, or regular, if each of its production rules
p € P is either of the following forms A — ¢, A — a, or A — aB, where A,B € N,
and a € X.

An immediate consequence of Definition 2.3.4 are the following inclusions (Chomsky,
1956):
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{Tpe0 Grammars} O {Type-l Grammars}y O {Tjpe2 Grammars} O {Tjpe-3 Grammars}
(2.1)

The inclusions in (2.1) are known as the Chomsky hierarchy. Type-0 grammars generate
exactly recursively enumerable languages (the languages that Turing machines accept).
Thus, one only knows that if a string w belongs to a language L generated/accepted
by a type-0 grammar G, then there is a Turing machine ) that halts in a final state.
If w¢ Lg, then M halts in a non-final state or does not halt at all, i.e., loops forever.
Thus, the question whether a w € L holds is undecidable. That is why one does not
make use of type-0 grammars in practical applications.

The next class in the Chomsky hierarchy is Type-1, also known as the class of
context-sensitive grammars. The problem whether a given string belongs to the language
generated/accepted by a context-sensitive grammar is PSPACE-complete.® The class
of CFGs is the next class in the Chomsky hierarchy. Importantly, for a context-free
language (CFL), i.e., for the language generated by a CFG, there are several polynomial
parsing algorithms.

2.3.2 Context-Free Grammars
Given a CFG G = (N, X, P,S), one defines a set of derivation trees associated with G.

Definition 2.3.5 (CFG Derivation Tree).
For a CFG grammar G = (V, X, P,S), we define a derivation tree as follows:
1. Every node of a derivation tree has a label (either a terminal or a non-terminal symbol).
2. Any interior node is labeled with a non-terminal symbol.
3. Each frontier node is labeled by either a non-terminal or a terminal symbol, or €. If €
labels a frontier node, then it must be the only child of its mother.
4- If nodes ny, ..., ny, (ordered according to the lexicographic order) are mutually distinct
daughters of a node n with labels Ay, ..., Ay, respectively (ie, [(n;)) = A; for i =
1,...,n), and the label of n is A, then A — Ay ... Ay, is a production rule of G.

With the help of derivation trees, we define parse trees.'°

Definition 2.3.6 (Parse Tree). We refer to a derivation tree t of a CFG G as a parse tree
if each frontier node of t is labeled with either a terminal symbol or €. We denote a set of
parse trees of G with PTR(G), whereas we denote with PTR(G, A) the set of parse trees whose
root is labeled with A.

Theorem 2.3.1. Let a string of terminals w belongs to the language of a CFG G, then there
is a parse tree with the root labeled by S whose yield is w. That is, if w € Lg, then there
exists t € PTR(G,S) such that yield(t) = w. Conversely, if a parse tree of a grammar G has
the root labeled by S and its yield is w, then w belongs to the language generated by G.

°If a problem can be solved by an algorithm that uses an amount of space that is polynomial to the
size of its input, the problem is said to be in the class PSPACE. A problem is PSPACE-complete if any
other problem that can be solved in polynomial space can be transformed to it in polynomial time (for
more details, we refer readers to (Goldreich, 2008)).

1"While some authors do not make a distinction between derivation trees and parse trees, we follow
(Nijholt, 1980), which defines a parse tree as a derivation tree of a specific kind.
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Hence, Theorem 2.3.1 states that the set of parse trees of L, i.e., the parse trees
whose yields are in Ly coincides with the set PTR(G,S). We may refer to PTR(G,S) as
the set of parse trees generated by G.

Example 2.1.

(2) Fred is grumpy because he failed an exam.

Figure 2.4 shows a CFG generating/accepting the sentence (2). Figure 2.5 illustrates
the derivation tree of the sentence (2).

S — NP VP

S — S Conjunction S
VP — V NP

VP — Aux Adjective
NP — Propername
NP — Pronoun

NP — Det N
Propername — fred

Pronoun — he

Adjective — grumpy

Aux — s

Det — an

N — exam

\Y% — failed

Conjunction — because

Figure 2.4: An example of a context-free grammar

S

\\
S Conjunction S
N | RN
NP VP  because NP VP
| /N | /N
Propername  Aux Adjective Pronoun V

A '\

fred is grumpy he  failed Det N

an exam

Figure 2.5: A CFG parse tree
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For parsing purposes, it is beneficial to simplify CFG rules without weakening its
expressive power. Given a CFG G, one aims to transform G to some G’ so that G
generates the same language as G but the production rules of G follow certain patterns.
Definition 2.3.7 and Definition 2.3.8 present Chomsky Normal Form (CNF) and Greibach
Normal Form (GNF), respectively.

Definition 2.3.7 (Chomsky Normal Form). A CFG is in Chomsky Normal Form (CNF) if
its production rules have either of the following forms:

« A—=BC

cA—a

e S —e€
Where A, B, and C are nonterminals; S is the start symbol; a is a terminal symbol, and € is
the empty string.

Theorem 2.3.2 (Chomsky, 1959). Any context-free language is generated by some CFG in
Chomsky Normal Form.

Definition 2.3.8 (Greibach Normal Form). 4 CFG is in Greibach Normal Form (CNF) if
its production rules have either of the following forms:

e A— a81 cee Bk

cA—=a

*S—e
Where A and B, for i = 1,... k (k> 1), are nonterminals; S is the start symbol; o is a
terminal symbol; and € is the empty string.

Theorem 2.3.3 (Greibach, 1965). Any context-free language is generated by some context-free
grammar in Greibach Normal Form.

If G is a CFG in CNF, then Cocke-Younger-Kasami (CYK) algorithm!! parses an
input of size n in O(n?®) time. A CFG in GNF has a property that each production rule
contains a terminal symbol. To parse a string of terminals with a CFG in GNF, one
only selects those production rules that contain a symbol in the string. A normalization
of a CFG has its trade-offs, however. In particular, converting a CFG in CNF and GNF
forms may drastically increase the size of the original set of production rules.

2.4 Regular Tree Grammars

Regular Tree Grammars (RTGs) (Brainerd, 1969) is a free generating formalism whose
production rules can be seen as production rules of CFGs. In particular, one can obtain
the set of parse trees of the language generated by a CFG as the tree language generated
by some regular tree grammar.

Definition 2.4.1 (Regular Tree Grammar (Brainerd, 1969)).
A regular tree grammar (RTG) is a quadruple G = (N, X, P,S), where:

For more details, one can refer to (Jurafsky and Martin, 2000).
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e N is a finite set of non-terminal symbols of rank 0;

o X is a finite ranked alphabet;

o P is a finite set of productions A — 1, Ac N and t € Tyyy;

* S € N is a non-terminal symbol, called the distinguished symbol of the grammar.

Definition 2.4.2. A derivation step s — s with s,s € Tyuy is obtained by selecting an
occurrence of a non-terminal A (by definition of rank 0) in s and a production A — t in P
and constructing s from s by replacing the selected occurrence of A with t. One defines the
language L(G) determined by an RTG G as follows:

L(G)={seTy |S=" s}

Definition 2.4.3. Given an RTG G with the tree language G (L), we can define the string
language determined by G as follows:

yield(G) = {w | 3t € L(G) : yield(t) = w}

Theorem 2.4.1 (Brainerd, 196g).
o If G is a context-free grammar, then the set of parse trees of L is a regular tree language.
o If L is a regular tree language then yield(L) is a context-free language.

Definition 2.4.4. (Generative Capacity and Equivalence of Grammars)

o The weak generative capacity (WGC) of a grammar is the set of strings that a
grammar generates, that is, WGC is the string language defined by the grammar.
We say that two grammars are weakly equivalent if and only if they define the same
set of strings.

o The strong generative capacity (SGC) of a grammar is the set of structural
descriptions (syntactic analyses) that the grammar generates.
We say that two grammars are strongly equivalent if and only if they define the same
set of structural descriptions.

In Definition 2.4.4, under ‘structural description’, one means syntactic trees. If two
grammars are strongly equivalent, then they are weakly equivalent too because the set
of structural descriptions defined by a grammar uniquely determines the string language
defined by that grammar. In this terminology, a claim that Theorem 2.4.1 makes is that
for any RTG, there exists its weakly equivalent CFG.

2.5 Mildly-Context Sensitivity

A. K. Joshi (1985) proposed the class of mildly context-sensitive grammars (MCSGs)
with the aim to determine the class of grammars that is necessary for describing natural
languages. We refer to a language as a mildly context-sensitive language (MCSL) if it is a
language defined by an MCSG. The class of MCSGs (at least) possesses the following
properties (A. K. Joshi, 1985):

1. MCSLs contain CFLs as a proper sub-class.

2. An MCSL has a polynomial parsing algorithm.
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3. MCSGs are only slightly more powerful than CFGs. Namely, an MCSG can
capture (at least) the following two kinds of dependencies:

(a) Limited nested dependencies, illustrated by the following German sentence:

(3) Hans Peter Marie schwimmen lassen sah.
Hans Peter Marie swim make saw

‘Hans saw Peter make Marie swim.’

(b) Limited crossing dependencies, illustrated by the following Swiss-German
sentence:1?

(4) ... mer d’chind em Hans es huss lind hélfe aastriiche.
. we the childrenscc Hansox the houseacc let help paint

¢

. we let the children help Hans paint the house’

4. An MCSL has the constant growth property, that is, for a given MCSL L, there
is a constant ¢ such that for each w € L, there is w € L, such that len(w ) <
len(w) < len(w )—|— c.

2.6 Tree-Adjoining Grammars

In the tradition of phrase-structure grammars, A. K. Joshi, Levy, and Takahashi (1975)
introduced the Tree-Adjoining Grammar (TAG) formalism. Like CFGs, TAGs also make
use of rewriting in order to analyze/generate a sentence. However, while for a CFG
the object of rewriting is a string, TAGs rewrite trees into trees. TAGs are capable
of encoding both nested dependencies and Swiss-German cross-serial dependencies.
Thus, TAGs are more expressive than CFGs. However, the expressive power of TAGs is
only slightly greater than the one of CFGs so that the parsing complexity of a TAG is
O(n®) (Schabes and A. K. Joshi, 1988). String languages determined by tree languages
generated by TAGs have the constant growth property. Thus, TAGs belong the class of
MCSGs.

2.6.1 Basic Notions and Properties

Tree-Adjoining Grammar (TAG) (A. K. Joshi, Levy, and Takahashi, 1975; A. K. Joshi
and Schabes, 19g7) is a tree generating formalism. It generates (derives) trees by
rewriting trees into trees. In a TAG, elementary trees serve as a starting point for deriving
a tree. Sometimes, one refers to elementary trees as grammar entries. Among elementary
trees, one distinguishes two kinds of trees, initial and auxiliary trees. TAG defines two
operations on trees, substitution and adjunction. While in a CFG derivation step, one
rewrites a non-terminal symbol with the help of a production rule, in a TAG derivation
step, one either substitutes or adjoins a tree into a tree. A resultant tree of a TAG

12Although CFGs can capture limited nested dependencies (A. K. Joshi, 1994), as Shieber (1985)
shows, the pattern of Swiss-German limited crossing dependencies cannot be described by CFGs.
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derivation step is called a derived tree. That is, a tree constructed by combining (either
by substitution or adjunction) two trees is a derived tree. In TAG, one defines the
notion of the derivation tree of a derived tree. The derivation tree of a given derived
tree represents (records) the information how the derived tree was built. Thus, given a
derivation tree, one can reconstruct the derived tree.

Definition 2.6.1 (Tree-Adjoining Grammar (A. K. Joshi and Schabes, 1997)).
A TAG is a quintuple (N, X, 1, A,S), where
1. N is a finite set of non-terminal symbols.
2. XY is a finite set of terminal symbols.
3. S is a distinguished non-terminal symbol.
4- I is a finite set of finite trees, called initial trees. One identifies an initial tree by the
Jfollowing properties:

o its internal nodes are labeled with non-terminal symbols;

o its frontier nodes are either labeled with terminal symbols, or non-terminal ones,
which are marked for substitution with |.

5. A is a finite set of finite trees, called auxiliary trees. One identifies an auxiliary tree by
the following properties:

o its internal nodes are labeled by non-terminals symbols;

o its frontier nodes are labeled by terminals, or by non-terminal nodes marked for
substitution, except for exactly one non-terminal node that is labeled with the same
label as the root node; this node is marked with * and referred to as the foot node
of the auxiliary tree.

We define substitution of a tree into another one as in Definition 2.2.8 on page 29
but with an additional requirement that if o substitutes into v at the node p, then the
root of o and p should have the same label. Moreover, & must be derived from an
initial tree, that is, (1) either « is an initial tree with no substitution sites; (2) or « is
obtained from an initial tree by filling its substitution sites with some trees. Figure 2.6
illustrates the adjunction of a tree into another tree.

Adjunction is defined in the same way as in Definition 2.2.9 on page 30 but with
the following additional requirement: 3 can adjoin into 7 at the node p, where p is
not marked for substitution, if and only if § is an auxiliary tree or derived from an
auxiliary tree and the label of the root (and therefore of the foot) node of 3 coincides
with label of p. Figure 2.7 illustrates the adjunction of a tree into another tree.

Convention: We call an initial (resp. auxiliary, derived) tree an X-initial (resp.
auxiliary, derived) if its root is labeled with a non-terminal X. We refer to a node
labeled with X as an X-substitution site if it is marked for substitution. If a node labeled
with X is not marked for substitution, then it is an adjunction site, which we may refer
to as X-adjunction site.

Definition 2.6.2 (Completed Tree (A. K. Joshi and Schabes, 1997)).
A tree (either initial or derived) is considered completed if its frontier is made of nodes labeled
by terminal symbols only.

We may refer to a completed tree as a derived tree, unless we do not need to
underline that it is a completed tree but not any other derived tree.
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Y

X

(a) Substituting at the node X (b) The
tree ob-
tained after
substitu-
tion

Figure 2.6: The TAG operation of substitution

B g Y
X Y. X
N _ o .
(a) B adjoins on the node X into (b) The
~ tree ob-
tained after
adjunction

Figure 2.7: The TAG operation of adjunction

Definition 2.6.3 (TAG Tree and String Languages (A. K. Joshi and Schabes, 1997)).
One defines the tree and string languages determined by a TAG G as follows:
o T denotes the set of completed trees of G derived from S-initial trees, that is, we have:

Ta = {t |t is completed tree derived from some S-initial tree}
 One defines the string language of G, denoted by Lg, as follows:
Lg = {w|3te Tg such that yield(t)= w}

Sometimes, we may say a derived (parse) tree of a sentence, under which we mean a
derived tree whose yield is the given sentence.

Example 2.2.
(5) Fred is grumpy because he failed an exam.

Let our TAG grammar consist of the elementary trees depicted in Figure 2.8.1* To
obtain the derived tree of the sentence (5), one combines these elementary trees as it

¥The grammar follows the principles of X'TAG (XTAG-Group, 1998).
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failed QA grumpy & Fred Ohe Qexam
S S NP NP NP
/N / N\ | |
NP+ VP NP+ VP Fred he exam
/ A\ /\
vV NP V AP
|
failed € grumpy

(a) Initial trees

ﬁis ﬁan Bbecause

VP NP S
/NN A
V. VP* Det NP* S* S

| | /\

is an A S|

because

(b) Auxiliary trees

Figure 2.8: TAG elementary trees

is shown in Figure 2.9(a) (we use dashed lines to illustrate adjunction, and solid lines
for substitution). In result, one constructs the derived tree depicted in Figure 2.9(b).

Adjoining Constraints

In a TAG, any non-terminal symbol that is not marked for substitution is an adjunction
site. This may cause over-generation. For instance, using the trees in Figure 2.8, one
can adjoin f,, into ap.q so that one obtains an NP rooted tree with the yield an Fred.
To control the derived structures of a TAG, one defines adjoining constrains. Namely,
one makes use of the following adjoining constrains:

* Selective Adjunction (SA): Only auxiliary trees from a set of auxiliary trees 7' C A
can adjoin on a given node in a tree. Adjunction of these auxiliary trees is not
mandatory.

* Null Adjunction (NA): No adjunction is allowed on a given node in a tree.

 Obligatory Adjunction (OA): An auxiliary tree from a set of auxiliary trees 7' C A
must be adjoined on a given node in a tree.

By convention, one indicates an adjunction constraint (if any) with the help of a

subscript on a node label, X(T)n4, X(T)o4, and X(T)g4. If no set T is specified for
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N | \/\

Fred NP .- + VP .

-

/\ = /\

VP ) Conj Siw\
/N \ | -

vV VP* € grumpy because S ,’ NP
is NPi f Det NP*
ﬁ NPi exam
he failed

TAG elementary trees

/\
VAN

Conj

\/\ | /\

Fred V VP  because NP

VA \/\

is V AP he V
| / \
€

grumpy failed Det NP

an exam

(b) A completed tree derived from S-rooted initial tree

Figure 2.9: Derivation of a (completed) derived tree

the adjunction site X, we assume that 7' is the set of X-auxiliary trees, unless otherwise

Derivation Trees

By using Gorn addresses, one can indicate the site where an operation (either a
substitution of adjunction) is applied in a derivation step. With this in mind, one can
construct a derivation tree of a derived tree as follows:

» Labels of the nodes in the derivation tree stand for the employed elementary

trees.
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agrumpy

€’ ’ In 2&
5 because 5 18 Q Fred
22

Afailed

1/ \22
Qhe Qezam
e
|

Ban

Figure 2.10: A derivation tree

o If v substitutes (resp. adjoins) into ¢, then in the derivation tree a node labeled
with 7 is a child of a node labeled with 4. We put a solid (resp. dashed) edge in
the derivation tree between the nodes labeled with v and J. We label this edge
with the Gorn address in ¢ that serves as the substitution (resp. adjunction) site
at which v substitutes (resp. adjoins) into J.

For instance, the tree shown in Figure 2.10 records derivation of the derived tree
shown in Figure 2.9(b) on the preceding page.

Example 2.3. Let us consider a TAG grammar that allows one to describe (limited)
cross-serial dependencies. With the help of the adjunction constraints, it becomes
possible to generate the tree language whose yield is the string language {a"b"c"},
which no CGF can generate.

To generate {a™b"c"}, one considers the grammar consisting of one auxiliary A and
one initial tree I depicted in Figure 2.11 on the next page. The auxiliary tree A has
only one available adjunction site (at the Gorn address 2). Since A is an S-auxiliary tree,
A can adjoin into a tree with an S-adjunction site. The initial tree I has an S-adjunction
site, which at the same time serves as its root node. If we adjoin the tree A on the
S-node into the tree I, we obtain a derived tree shown in Figure 2.11(c) on the facing
page, denoted with AI. The yield of the tree AI is abec. In order to obtain a derived
tree whose yield is aabbecc, one adjoins A into AI. Thanks to adjunction constraints, AI
has only one adjunction site. By adjoining the auxiliary tree A at that adjunction site,
one obtains the tree shown in Figure 2.11(d) on the next page, denoted by AAI. The
yield of the tree AAI is the string aabbecc. The tree AAI also has only one adjunction
site. Assume that we derived a tree with the yield {a*b*ec*}. To obtain a derived
tree with the yield {a**1p**+1eck+1}] one adjoins the auxiliary tree A into the derived
tree with yield {a*b*ec¥}. In this way, the TAG grammar consisting of two elementary
trees I and A generates the tree language whose yield is the string language {a"b"ec"}.
Since ¢ stands for the empty string, the language {a"b"ec"} is the same as {a"b"c"}.
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Sna
/\
a Sna
/A
Sna a S
Sna a/ \S b/ \

Na ¢

/\S S / N AR

a Na Nao ¢
N \ \
b SNA C € € €

(a) A (b) I (c) AT (d) AAI

Figure 2.11: TAG derived trees for {a"b"c"}

2.6.2 LTAG - Lexicalized TAG

Definition 2.6.4 (Lexicalized Grammar (A. K. Joshi and Schabes, 1997)).
A grammar is lexicalized if it consists of:
o A finite set of structures each associated with a lexical item; each lexical item will be
called the anchor of the corresponding structure.
o An operation or operations for composing the structures.

One can apply the notion of lexicalized grammars to TAGs to define lexicalized
TAGs (LTAGs). It has been claimed that LTAGs are more beneficial than non-lexicalized
TAGs in terms of parsing. The advantages that the parsing with LTAGs has over
the parsing with non-lexicalized TAGs is the possibility of grammar filtering (Schabes,
Abeillé, and A. K. Joshi, 1988; Schabes and A. K. Joshi, 1988, 1991). To parse an
input string with an LTAG, one filters the grammar by selecting only the trees whose
anchors are present in the input string. Let us provide a definition of an LTAG.

Definition 2.6.5 (Lexicalized TAG (A. K. Joshi and Schabes, 1997)).

We say that a TAG is a lexicalized TAG (LTAG) if at least one terminal symbol called anchor
appears at the frontier of every elementary tree. If c is an anchor of a tree ~y, then we say that
¢ anchors v or vy is anchored with c.

For instance, Figure 2.8 on page 40 shows elementary trees anchored by the lexical
items from the sentence (5); Fred, he, exam, failed, and grumpy, each of them anchors an
initial tree; because, is, and an anchor auxiliary trees.

While in an LTAG, each elementary tree is associated with a lexical item, one lexical
item might anchor finitely many elementary trees. For the sake of illustration, let us
consider [like.
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(6) The boys like; apples.

o ®

Apples the boys likes.

o

Apples are likeds by the boys.
d. The boys ate apples likes this one.

e. Nectarines look likes apples.

(6) provides five different usages of like. To cover all of the examples in (6), an
LTAG grammar contains five distinct trees!* anchored with /ike shown in Figure 2.12.
The initial trees in Figure 2.12(a) and Figure 2.12(b) correspond to the usages of
like as the predicate in the active (e.g. (6)(a)) and passive (e.g. (6)(c) constructions,
respectively. Figure 2.12(c) shows an initial tree anchored with /ike modeling like in
the topicalized constructions (e.g. (6)(b)). The auxiliary tree in Figure 2.12(d) is used
in a case where [ike is the prepositional head of an NP post-modifier (e.g. (6)(d)).
Figure 2.12(e) shows the auxiliary used in a case where [like is a VP post-modifier (e.g.

(6)(d)).

S
/ A\

S NP, VP S NP VP
/\ / N\ /\ /\ / N\
NP| VP v PP NP, S NP* PP VP* PP
/\ I/ /\ /\ /\
V. NPJ like P NP| NP| VP P NP P NPJ
| | /\ | |
like by like ¢ like like

(a) (b) (c) (d) (e)
Figure 2.12: LTAG trees anchored with like

Note that elementary trees of a TAG can be of any size and shape. In a TAG
(LTAG), a hypothesis is that locally occurring dependencies associated with a lexical
item can be encoded with an elementary tree anchored by the lexical item. This is
known as the property of extended domain of locality. For example, one can encode the
arguments of a predicate within an elementary tree anchored with the predicate.

The argument structure is not reduced to a list of arguments as the usual
subcategorization frames. It is the syntactic structure constructed with the
lexical value of the predicate and with all the nodes for its arguments. The
argument structure for a predicate is its maximal structure. An argument is
present in the argument structure even if it is optional and its optionality is
stated in the structure. Schabes, Abeillé, and A. K. Joshi (1988)

14The example is adapted from (B. L. Webber, 2004).
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Extended domain of locality allows TAG to give an account of long-distance depen-
dencies. In particular, one expands locally occurring dependencies encoded with an
elementary tree by recursively adjoining trees into the elementary tree. In the resultant
tree, the dependents will be located at a greater distance from each other compared
to the distance between them in the original elementary tree. The fact that one can
distribute content among different trees that adjoin into a given tree is known as the
property of factoring recursion.

Example 2.4.
Let us consider an example from the TAG literature that illustrates how one factors
recursion over several trees in order to model long-distance dependencies.

(7) John Bill claims Mary seems to love.

S S
/\ /\

NP, S NP, VP VP
/\ /\ /\
NP) VP V  Sx vV  VP*
| |
to love claims seems

(a) (b) (c)
Figure 2.13: LTAG elementary trees

Figure 2.13 shows elementary trees anchored with the lexical items of the sentence
(7). The locally occurring dependencies, the subject and object of ¢o love, are encoded
within an initial tree anchored with fo love. One distributes (factors) the lexical entries
claims and seems over two different auxiliary trees. Figure 2.14(a) depicts the derived of
the sentence (7). As the derivation tree of this derived tree indicates (see Figure 2.14(b)),
the auxiliary trees anchored with claims and seems adjoin into the initial tree anchored
with to love.

Convention: In an LTAG derivation tree, we identify a node denoting an elementary
tree by the lexeme /lex.entry that anchors it together with the name of the tree (if there
are several trees anchored with the same lexeme). We use aje; entry (reSp. Bies.entry) to
denote an initial (resp. auxiliary) tree anchored with lex.entry. In order to denote either
an initial, or auxiliary, or derived tree, we use 7y, unless otherwise stated.

Some Extensions of TAGs

The operation of adjunction in TAG can be seen as follows: 3 adjoins on the node n
into 7 is equivalent to say that there are two trees 7, and 7; such that v, adjoins at
the root of § and at the same time <, substitutes at the foot of 5. Indeed, one can
take as vy, and 7, the supertree and the subtree of v at n, respectively. Thus, one can
consider a derivation step where one adds a set of trees to a tree. Multicomponent
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NP/S\S
N

John NP VP
VRN
Bill V S

| /N
claims NP VP

VA

Mary V VP O‘t/o-l(ive
‘ ‘ %// 22\\\£
seems V Qjohn  claims ~ Dseems  Mary
| .
to love QBill
(a) The derived tree (b) The derivation tree

Figure 2.14: The derived and the derivation trees

TAGs (MCTAGs) are based on a generalization of this idea (Vijay-Shanker, David ]J.
Weir, and A. K. Joshi, 1987). An MCTAG is a like a TAG, but MCTAG elementary
structures are sets of elementary trees. In a derivation step, one must use all trees from
one elementary tree set.

MCTAGs are linguistically interesting because they extend the domain of
locality since the contributions of single lexical elements are separated into
different trees. Kallmeyer (2010)

One can define adjunction and substitution of one tree set into another one in
various ways. Thus, the notion of derivation in an MCTAG can be defined in various
ways, which gives rise to different variants of MCTAGs. In particular, one considers
tree-local, set-local and non-local MCTAGs. An MCTAG is tree-local if, at each derivation
step, all trees from the same tree set adjoin and/or substitute only at nodes belonging to
a single elementary tree. An MCTAG is set-local if, at each derivation step, all trees from
the same tree set adjoin and/or substitute only at nodes belonging to trees from the
same elementary tree set. If an MCTAG is neither tree-local nor set-local, then it is called
non-local. Tree-local and set-local MCTAGs belong to the class of MCSGs, whereas
non-local MCTAGs do not.

Another formalism from the class of MCSGs is linear-context free rewriting system
(LCFRS) (Vijay-Shanker, David J. Weir, and A. K. Joshi, 1987). LCFRS and set-local
MCTAG are weakly equivalent formalisms (David Jeremy Weir, 1988). At the same
time, set-Local MCTAGs and LCFRSs are more expressive than TAG. In contrast to
setlocal MCTAG and LCFRS, tree-local MCTAG and TAG generate the same tree
languages. Indeed, one can encode a single derivation step in a tree-local MCTAG
as a sequence of derivation steps of a corresponding TAG. However, the recognition
problem of a tree-local MCTAG (that is, to determine whether a given string is in a
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given language or not) is NP-complete (Nesson, Satta, and M. Shieber, 2010).

2.7 Synchronous Tree Adjoining Grammar

Synchronous Tree Adjoining Grammar (STAG) is a synchronous variant of TAG (Shieber
and Schabes, 1990). An STAG defines derived structures with the help of elementary
structures. A structure of an STAG is a pair of TAG elementary trees. The nodes of
the two trees making a pair are linked. This makes possible to define simultaneous
substitutions/adjunctions on the linked nodes of the trees that are components of a
tree pair. At a derivation step of an STAG, one combines two tree pairs by either
simultaneously substituting or adjoining one tree pair into another one.

One of the motivations for introducing STAGs is to model the syntax-semantics
interface so that both syntactic and semantic analyses of natural language expressions
are provided with the help of TAG grammars. Since the grammar is synchronous, the
syntactic and semantic derived trees have the isomorphic derivation trees (see Remark 2.2

on page 49).

SO FOO®
/ N\ N
NPJ® VP2 R T|® TJ|®
/N |
V NPJ@ love NPD TO
loves George george
(a) a (b) B
VPO FO
/\ /\
NPOD TO Adv  VP* R F*
| | | |
broccoli broccoli really really
(c) v (d) 6

Figure 2.15: STAG elementary structures

More formally, an entry of an STAG is a triple (vyz, vg, ~), where 77 and r are
TAG elementary trees; ~ is the linking relation between the nodes of the trees v, and
vgr. To illustrate that two node are linked with, we annotate them with the same marker
@, where i =1,2.... We will call @ a link between the nodes. Thus, we represent the
non-empty linking relation ~ as a set of links {®, ..., @}, where i, ..., i are natural
numbers. For instance, Figure 2.15(a) shows that both the S and VP nodes are linked
with F. We denote the link between S and F with @, whereas the link between VP and
Fis @.

An STAG defines the tree language by tree pair rewriting. The rewriting process
of an STAG involves adjoining/substituting in a derived tree pair another tree pair as
follows:
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1. We choose a link @ between two nodes ny and np in a given derived tree pair

!

VLR~ )3

2. We choose a tree pair (5z, Og, AH) such that 7 can adjoin/substitute at ny in 7,
and fr can adjoin/substitute at np in yp.

3. We obtain a derived tree pair <7L/,7R/, mm) by adjoining/substituting (1 at ny in
vz and SR at ng in yg. The linking relation ~""is defined as follows: All links
in ~ and ~" are also in ~ except that the chosen link @.

The language defined by an STAG is a set of derived tree pairs (yr,7g). For
instance, Figure 2.15 shows the elementary structures of an STAG. If one enriches the
derivation tree of one of the trees with the information about the related nodes, it
is possible to use the derivation tree of v, as the derivation tree for yr (as they are
isomorphic). For instance, by using the grammar entries in Figure 2.15, one produces
the pair of TAG derived trees shown in Figure 2.17. One of them is the syntactic
derived tree, whose yield is George really loves broccoli, whereas the other one encodes
the formula really(love(george, broccoli)).

Remark 2.1. A tree rooted in F encodes a logical formula as follows:
o The predicate is the terminal symbol whose parent node is labeled with the non-terminal
R;
o an argument of a predicate is (a) either a terminal symbol whose parent is labeled with
a non-terminal T (b) or a sub-tree whose root is a non-terminal symbol F.

«

~
N

3@ o
B vy

Figure 2.16: An STAG derivation tree

S

NP/ \VP F

| /N PN

George  Adv VP R F
VAN - 1 S

really 'V NP really R ‘ T
loves  broccoli love george broccoli
(c) A syntactic derived tree (d) A semantic derived tree

Figure 2.17: An STAG derived tree pair
To obtain the pair of derived trees illustrated in Figure 2.17, one makes use of the

operations of substitution and adjunction on the elementary tree pairs as it is shown by
the derivation tree in Figure 2.16. In this derivation tree, one records the substitution of
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$ and v into « at the nodes with the links ® and @, respectively; ¢ adjoins into « on
the node with the link @ (see «, /3, v and 0 in Figure 2.15). In this way, one obtains
both the syntactic and semantic derived trees. Thus, the derivation tree in Figure 2.16
can serve as the derivation tree for the derived syntactic tree (Figure 2.17(c)) as well as
for the derived semantic tree (Figure 2.17(d)).

Remark 2.2. We confine ourselves with the above provided informal definition of the STAG
formalism. However, under this definition, in a pair L(G) = (Lr, Lg) of languages generated
by an STAG G, one of the languages Ly or Lr may not be a TAG language (Shieber, 1994).
For instance, Figure 2.18 shows a STAG grammar that gives rise to the pair of languages
({ab™c"d™e™f"g"h"}, {€}). No TAG can generate the language {a"b"c"d™e"f"g"h"}.
Shieber (1994) provides a solution to the problem. In particular, he redefines the notion of
derivation in an STAG that reduces the expressive power of STAGs. With the new definition,
the derivation trees of two trees in a tree pair are isomorphic. As it was already indicated
above, we assume that the latter requirement holds for the trees in a derived tree pair.

S S{B1})sa D@ A S*({B2}) 0a®
A | /1IN |
AD BO € a AD d €
] / I\
€ € b A* ¢
(a) Tree tree pair o (b) Tree tree pair 31
S*({A1})s2@

s

g

/ I\
f B* h
(c) Tree tree pair 39

Figure 2.18: A grammar producing an STAG language ({a"b"c"d"e™f"g"h"}, {€})
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3.8.2 Interpretations as Montague Semantics . . . ... ... ... 81

In this chapter, we discuss the Abstract Categorial Grammar (ACG) framework. We show
how to encode CFGs and TAGs as ACGs. Afterwards, we make a concise overview of the
ACG hierarchy. Among various classes of ACGs, we focus on second-order ones because (1)
they allow one to encode a number of formal grammars; (2) the problems of parsing and
generation for them are polynomial. In addition, we define a more expressive version of
second-order ACGs, called \-CFGs. They enable us to encode Montague semantics within
ACGs. Despite the increase in the expressive power, the parsing and generation problems for
A-CFGs are polynomial. Finally, we show how one encodes TAG with Montague semantics
with the help of ACGs.

3.1 Introduction

In the tradition of type-logical approaches to the natural language modeling (Curry,
1960; Lambek, 1958; Montague, 1973; Moortgat, 1997; Morrill, 1994; D. Oehrle,
1995; R. T. Oehrle, 1988, 1994; Ranta, 1994), de Groote (2001) and Muskens (2001)
independently proposed two very similar formalisms. The one by de Groote (2001) is
referred to as the Abstract Categorial Grammar (ACG) framework, or sometimes as
Abstract Categorial Grammars (ACGs), and the one by Muskens (2001) is known as
Lambda Grammars. In this thesis, we follow de Groote’s (2001) ACGs.

ACGs present a grammatical framework, which can be seen as a generalization of
Categorial Grammars (Lambek, 1958). An ACG defines two levels of grammar, called
the abstract and object vocabularies. The idea of a two-level structure that an ACG
defines was inspired by Curry’s (1960) view on a language, expressed by the following
quote:

... we may conceive of the grammatical structure of the language as something
independent of the way it is represented in terms of expressions ... This
gives us two levels of grammar, the study of grammatical structure in
itself, and a second level which has much the same relation to the first
that morphophonemics does to morphology. In order to have terms for
immediate use I shall call these two levels tectogrammatics and phenogrammatics
respectively ...

Curry (1960)

Montague’s works (Montague, 1970a,b, 1973) (called Montague Grammar) addressing
the modeling of the syntax-semantics interface had served as an inspiration source for
introducing ACGs. The ideological basis of Montague’s work was his famous thesis,
quoted as follows:

There is in my opinion no important theoretical difference between natural
languages and the artificial languages of logicians; indeed, I consider it
possible to comprehend the syntax and semantics of both kinds of languages
within a single natural and mathematically precise theory.

Montague (1970b)
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One of the primary goals of ACGs is to deal with the problems of the syntax-
semantics interface within a computational framework, as the following quote indicates:

The distinction between syntax and semantics is of course relevant from a
linguistic point of view. This does not mean, however, that it must be wired
into the computational model. On the contrary, a computational model based
on a small set of primitives that combine via simple composition rules will
be more flexible in practice and easier to implement. De Groote (2001)

Generalizing the idea of a functional translation from syntax to semantics proposed
in Montague Grammar, an ACG defines the notion of a lexicon. The lexicon is a
homomorphism from the abstract vocabulary to the structures built upon the object
vocabulary.

ACGs are capable of encoding various grammatical formalisms. De Groote (2001,
2002) encodes CFGs and TAGs as ACGs. De Groote and Pogodalla (2004) construct
ACGs that are (strongly) equivalent to linear!> context-free tree grammars and linear
context-free rewriting systems (LCFRSs). Since LCFRSs are weakly equivalent to set-local
MCTAGs!® and Minimalist Grammars,!” ACGs provide a framework where one encodes
a number of grammatical formalisms. Pogodalla (2004, 2009) presents a modeling of
the syntax-semantics interface where one interprets TAG derivation trees into semantic
formulas. To do so, one makes use of higher-order interpretations reminiscent of ones
introduced by Montague (1973). However, to encode Montague’s (1973) semantics
with ACGs, it is necessary to extend the original version of ACGs. Kanazawa (2007)
provides one of such extensions of ACGs, called A\-CFGs. It is noteworthy that for the
ACGs encodings of all the above-mentioned formalisms (including the one for modeling
TAG with Montague semantics), the problems of parsing and generation are polynomial
(Kanazawa, 2007; Salvati, 2005).

3.2 Mathematical Preliminaries
We provide some mathematical notions that ACGs involve (de Groote, 2001).

Definition 3.2.1 (Linear Implicative Type).
Let A be a set of atomic types. We define two sets T (A) and T (A), called the set of linear
implicative types built upon A and the set of implicative types built upon A respectively.
Linear implicative types

1. AC T(A);

2. ifae T°(A) and p € T (A), then (« — ) € T "(A).
Implicative types

1. AC T (A);

2 ifae T (A) and B € T (A), then (a — 3) € T (A).

15Here, linear means non-duplicating and non-deleting.
16(David Jeremy Weir, 1988).
17(Michaelis, 2001).
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By convention, we write a1 — ... —o ay, —o f for (a1 — (... —o (ap — 8)...));
and a1 —» ... > ay = B for (ag — (... = (ap = 5)...)).

Definition 3.2.2 (Order of Type).
Given a set of atomic types A, the order oxd() of a type belonging to either T (A) or T (A)
is inductively defined as follows:

e otd(a) =1 for any atomic o (i.e, for any o € A);

s ord(a — ) = max{ord(a) + 1, 0td(3)} for any o, B € T (A).

e ord(a — B) = max{otd(a) + 1, oxd(B)} for any o, 3 € T (A).

Definition 3.2.3 (Higher-Order Signature and Higher-Order Linear Signature).

A higher-order linear signature (HOS) is a triple X = (A, C,T ") defined as follows:
o A is a finite set of atomic types;
o C is a finite set of constants;
e 1 : C — T (A) is type assignment that maps each constant from C o a linear
implicative type built upon A.
A higher-order signature is a tripe ¥ = (A, C,T ) defined as follows:
o A is a finite set of atomic types;
o C is a finite set of constants;
ot C — T (A) is type assignment that maps each constant from C to an
implicative type built upon A.

To express that a is of type a, i.e., that T (a) = a or T (a) = a, we write a : a. In
T and T, we drop the superscripts —o and — if it does not cause a confusion.

Definition 3.2.4. We define the order of a HOS X = (A, C, 1), denoted by ord(X), to be
the maximum of the orders of the types of its constants, that is, ord(X) = max ord(t(a)).
ac

We also make use of standard notions and notations'® from A-calculus such as free
and bound variables of a A-term, where one denotes with FV(t) the set of free variables
of a term t; a closed term, i.e., a term without any free variable; a combinator, i.e., a
term with neither constants nor free variables; the notions of a-equivalence (+ ),
a single step (-reduction (—g), a multi-step S-reduction (—g), S-equivalence (> ),
n-conversion, (n-equivalence (<> ), S-normal form, Sn-normal form, etc. By assuming
these notions, we define linear lambda terms (abbreviated as X°-terms).

Definition 3.2.5 (Linear Lambda Terms).
Let X be a countably infinite set of variables and ¥ = (A, C,T) be a higher-order linear
signature, then A(X) the set of X°-terms built on 3 is defined as follows:
e X C A(X);
s O CAX);
e ifr € X and t € A(X) and if x has exactly one free occurrence in t, then X’x.t € A(X);
e ift € A(X), u € A(X) and t and u do not share any free variable, that is, FV(t) N
FV(u) =0, then (tu) € A(X).

18Following (Barendregt, 1992).
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We follow the standard conventions:

» We write ¢ ..., for application ((...(t1t2)...) t);

o we write X°z1 ...z, t for (Nz;.(Xap. ... (Nzp. t)...)).

o we write X°Z.t for (Xz;.(Xza. ... (Nzy. t)...)), where ¥ stands for the sequence
T1,22,...,Tp.

Definition 3.2.6 (Typing Judgments for X’-Terms).
Let ¥ = (A, C,1) be a HOS. The typing rules are given with an inference system whose
Judgments are of the form I' by t : o, where
o T is a finite set of variable declarations of the form x : x, where v € X and x € T (A),
so that any variable declaration can occur in I' at most once;
et € A(X);
cacJ(A).
One derives typing judgments according to the following inference system:
Axioms:

Y
(con) (var)
by c:1(c), wherec € C by z:x, wherex € X
Inference Rules:
Nex:akyt:
zrabet:f (lin.abs) Pk t:a—p Al_zuza(lina[)[))
ks Xzt:a—f L ARy (tu): B )

We drop the subscript ¥ in -y ¢ : @ whenever it does not cause a confusion.

3-2.1  Strings and Trees as \-terms

We show the standard way of encoding trees and strings as X’-terms.

3.2.1.1  Strings

Definition 3.2.7 (String Signature).
Given a set A, we consider a HOS Eer‘g = (A, C,7) defined as follows:
7. EX”"g has a single atomic type *, ie, A = {x}.
2. O =A.
3. For each c € C, t(c) = % —o x. The type x —o x is called the string type.

We call EX"ng a string signature over A.

Given a finite alphabet A, we build a HOS ZXm‘g according to Definition 3.2.7.
Constants of XA model symbols in A. We have a single atomic type * in XA. One
encodes a sting over A with a X-term in A(XA) of type * —o * as follows:

aj ...ap € A is represented as a term XN z.ap (- (ap 2)---) 1% —o %,

We encode a string concatenation with a combinator Xu; ug. X’ z. u; (ug 2). Indeed,
if #; is a X°-term encoding a string #; and #; is a X°-term encoding 62, then Xz. ¢ (& 2)
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encodes the concatenation of the two strings #102. To obtain the term X°z. 7 (¢ z), one
applies the combinator Xz; zp. X’ z. 21 (22 2) to t; and #. Let us illustrate this on an
example.

Example 3.1. One computes the concatenation of a string ab and a string c as follows:

(. i N /

abc

~\~

~
concatenation ab

(Nup. Xug. X z.uq (ug2)) (X 2. a(bz)) (X y. cy) =g XN z.a(b(cz))

We denote the combinator Xu; ug. X° z. u; (u2 2z) encoding the string concatenation
operation with +. With this notation, (Xuj up. X° z. ug (up 2)) (¢) (u) becomes +t u. We
use an infix notation ¢+ u instead of the Polish notation +¢wu. The type of + is
(¥ —o %) —o (% —o %) —o % —o x. One can check that the string concatenation operator +
has the following properties:

1. There is a term € that encodes the empty string, that is, for any \>-term ¢ encoding

a string, the following holds: ¢ + € = €+ ¢ = ¢, where = should be understood as
<>gy. Indeed, the identity function X’z.z plays the role of .

2. + is associative, i.e., for any X’-terms ¢, u, and v that encode strings, the following

holds: (t+4 u)+v =1+ (u+v).

Since for each a in C, the type of a is * —o *, the signature X is second-order. As
V a € C, we have t(a) = * —o %, and + is of type (x —o %) —o (% —o %) —o % —o x,
by denoting * —o x with o, we get that V a € C, t(a) = o; the type of + becomes
o —o 0 —o o. Thereafter, we use a convention that instead of EX””g = ({x},A, 1), we

write Zerg = ({0}, A,1,). We may call o the type of a string signature ZXmg, though
it abbreviates a functional type * —o *. Whenever it does not cause a confusion, we

string

drop the subscript A in ¥, and the subscript o in T,.

Example 3.2. Let A be an alphabet consisting of three symbols Fred, failed and exams.
To model strings over A, we introduce EX”"g, which is ({o}, {Fred, failed, exams}, T,)
where T, (Fred) = T, (failed) = 1,(exams) = 0. We encode strings obtained by concate-
nating symbols of A as terms of type o over E”ng. For example, we model a string
Fred failed exams over A as a term Fred + failed 4 exams of type o.

3.2.1.2 Trees

Definition 3.2.8 (Tree Signature).
For a ranked alphabet (A, p), we define a HOS Y8 = (A, C, 1) as follows:
1. XX has a single atomic type 7, i.e, A= {T}.

2. C =A
3 Forevery f €A, T(f) =7 ... oT—oT.
o(f) times

We call S5 a tree signature (determined by the ranked alphabet A).
One models the tree set Ta as the subset of A(¥A) whose elements are closed

terms of type 7. Whenever it does not cause a confusion, we drop the subscript A in
Ztree.
A
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S
/N
NP VP
/N
Fred V NP

failed  exams

Figure 3.1: A syntactic tree

Example 3.3. Let us consider a tree depicted in Figure 3.1. To model this tree as
a term over a tree signature, we follow Definition 3.2.8 and define the following tree
signature 1%

¢ = ({r}, {Fred, failed, exams, NP1, V1, So, VP2}, 1)

Where Fred, failed, and exams are of type 7; NP1, and V; are of type 7 —o 7; Sy and
VPy are of type 7 —o 7 —o 7. We model the tree in Figure 3.1 with a term u : 7 over
Y defined as follows:

u = Sg (NPy Fred) (VPy (Vi failed) (NPy exams)) : 7 (3-1)

It follows from Definition 3.2.8 that, like string signatures, tree signatures are
second-order ones.

3.2.2 Adjunction and Substitution as Functional Application

We saw how to encode trees as X-terms of type 7. We encode the operations of
substitution and adjunction over trees as the operation of functional application over
X-terms (de Groote, 2002).

3-2.2.1 Substitution as Functional Application

If a tree o substitutes into a tree 7, then we encode v as an operator, and « as its
operand. The operator applies to the operand. The result of the application of the
operator to the operand encodes the tree obtained by substituting o into 7. Let a
X-term a be the encoding of the tree o and a X’-term g be encoding of . We encode
the node at which o substitutes into  with the help of a X-variable z in g. Indeed,
the functional application of g to a will insert a in the place of z in g. For example

NP
let us consider | in the role of a, whereas we take the tree in Figure 3.2(a) in the
Fred

role of . The tree obtained by substituting « into v at the node marked with | is
shown in Figure 3.2(b). We already saw how to encode trees with no substitution sites
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NP
as X-terms. Thus, we encode | as the following X-term of type 7:
Fred

a = NPy Fred : 7 (3.2)

An encoding of the tree in Figure 3.2(a) should be an operator with one operand of
type 7. The output of the application of the operator to the operand is also a term of
type 7. In other words, the encoding of the tree in Figure 3.2(a) transforms a term of
type 7 into a term of type 7. Hence, it is a term of type 7 —o 7.

S S
/N NP/ \P

NP| VP Vv
Vv NP Fred V NP

failed  exams failed  exams

(a) A tree with a substi- (b) The obtained tree

tution site

Figure 3.2: Two trees

To encode the tree in Figure 3.2(a) as a X-term, we denote the node marked for
substitution | with . We encode the obtained tree as a X°-term, as follows:

So x (VPy (V; failed) (NP exams))

However, the latter term lacks the information that z is going to be substituted by a
term of type 7 (as it models a tree with no substitution sites). To do that, we bind z
by X’z. Hence, one proposes the following encoding of the tree in Figure 3.2(a).

g=Xxz.Se z (VP2 (V1 failed) (NP exams)) : 7 —o T (3-3)
The following checks that the term (g a) indeed models the tree Figure 3.2(b):

ga= (Xz. Sy z (VP (Vi failed) (NP1 exams))) (NPy Fred) —3
So (NPy exams) (VP2 (Vi failed) (NPy exams)) (3.4)

3.2.2.2 Adjunction as Functional Application

Similar to the case of substitution, we view a tree that adjoins into another tree as an
operand, and the tree where it adjoins is an operator. However, while a substitution takes
place at a frontier node in a tree, an adjunction takes place at an internal node in a tree.
Hence, in the case of adjunction, the variable nodes, which we are going to substitute
by auxiliary trees, are internal ones. To model adjunction as functional application, we
cannot use the type 7 used in the case of substitution, because adjunction is a more
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complex operation than substitution. Indeed, when a tree 3 adjoins into a tree v, 3
substitutes an internal node n of v so that (1) the mother of n becomes the mother
of the root node of 3; (2) the daughters of n become daughters of the foot node of j.
Thus, we encode the tree 3 as an argument of the tree 7 such that [ itself receives an
argument (the subtree of v at n). In other words, the auxiliary tree § is an operator

whose operand is the subtree of v at n. Hence, we model 5 with a functional type. For

VP
example, let us consider an adjunction of a tree 3= _——__  on the VP-adjunction

almost VP*
site into the tree v in Figure 3.2(b) on the preceding page (for now, let us assume that

it is the only adjunction site in ). The resultant tree is depicted in Figure 3.3.

S
NP/ \VP
| / N\

Fred almost VP
\% NP

failed  exams
Figure 3.3: A tree obtained by adjoining 3 into vy

We model 5 with a term of type 7 —o 7, as follows:
b= Xy. VP almost y : 7 —o 7 (3-5)

The encoding of the tree  should be able to apply to the term b. We propose the
following encoding of ~:

g =X2z. Sy (NPy Fred) (z (VP2 (V; failed) (NPy exams))): (1t —o7) —o T (3.6)

Let us check that the term (g b) indeed models the tree in Figure 3.3:

gb =Xz Sy (NPy Fred) (z (VP2 (Vi failed) (NP exams))) (X’y. VP2 almost y) —3
So (NPy Fred) ((Xy. VP2 almost y) (VP2 (V1 failed) (NP1 exams))) —g
So (NPy Fred) (VPy almost (VP2 (Vi failed) (NPy exams))) (3.7)

In this way, we model adjunction as functional application where an operator applies
to an operand of type 7 —o 7.

Remark 3.1. In a TAG, one can substitute o into v, if « is derived from an initial tree.

NP
One can assume that o does not have unfilled substitution sites, like | . Indeed, if o has
Fred

some unfilled substitution sites, we first fill these substitution sites and then we substitute the
obtained tree into ~y. Hence, one can model o« with a term of type 7. This means that we
model a substitution as a functional application where the operand is of type T.
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If B adjoins in v, we assume that 3, which is either an auxiliary tree or is derived from
an auxiliary tree, has no substitution sites. Indeed, if B has substitution sites, then we first fill
the substitution sites and then we adjoin the obtained tree into . This means that we model
an adjunction as a functional application where the operand is of type T —o T.

The two above made assumptions do not cause any restrictions on the language defined by
the TAG. Indeed, by definition, trees of the TAG derived tree language are completed ones,
that is, they do not have unfilled substitution sites. Thus, in order to derive a completed tree -,
one has to fill the substitution sites of the elementary trees that are involved in the derivation
of v. The order in which one performs these substitutions does not have an impact on the
derived tree (Schabes and Shieber, 1994). Thus, one generates the same tree language under these
assumpitions.

3.3 Abstract Categorial Grammars

In this section, we present the definition of ACGs (de Groote, 2001).

Definition 3.3.1 (Lexicon (de Groote, 2001)).
A lexicon from a HOS 1 = (A1, C1,711) to a HOS Yo = (Ay, (o, T2) is a pair £ = (F, G),
defined as follows:

1. F: Ay — T (A2) maps atomic types in Ay to linear implicative types built on As;
we also denote by the same symbol F the homomorphic extension of F over T (A1), i.e,
we write F : T (A1) — T (A).

2. G : Oy — A(X2) maps constants in Cy to N-terms built on o; we also denote
by the same symbol G the homomorphic extension of G over A(X1), ie, we write
G : A(Zl) — A(Zg).

3. F and G are such that for any c € Cy, it holds that by, G(c) : F(t1(c)) is a provable
(derivable) typing judgment. The latter condition ensures that the mapping of types and
the mapping of constants are in concordance with each other, that is, £ is well-defined.

By convention, we write £ instead of F' and G whenever it does not cause a confusion.

We write £ : Y1 — Yo to denote that £ is a lexicon between two HOSs X1 and .

Given .Z: 31 — Y9, one can check that if ¢ € A(X;) is of type &« —o [ and Zis a
lexicon, then .#(t) is of type (o) — Z(F). That is, a lexicon interprets functional
types into functional ones.

Definition 3.3.2 (Abstract Categorial Grammars (de Groote, 2001)).
An abstract categorial grammar (ACG) G is a quadruple (31,32, %, s), where
1. X1 and Yo are higher-order linear signatures, called the abstract vocabulary and the
object vocabulary, respectively;
2. L8 —> X9 is a lexicon from X1 to Xo;
3. s is a type of the abstract vocabulary (either atomic or built upon the atomic types in
Y1), called the distinguished type of the grammar.

Definition 3.3.3 (Abstract and Object Languages (de Groote, 2001)). Let G be an ACG,
where G = (X1,%9,.Z,s). Two sets, called the abstract language A(G) and the object
language O(G), are associated with G. They are defined as follows:
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The abstract language: A(G) ={t € A(X1)| Fx, t:s is derivable}

The object language:  O(G) ={u € A(X2) | It € A(G) : u = Lt}

We say that an ACG G defines (generates) the abstract and object languages A(G) and
O(G), respectively.

It may be useful of thinking of the abstract language as a set of abstract
grammatical structures, and of the object language as the set of concrete
forms generated from these abstract structures. De Groote (2001)

Hence, the abstract language is a set of closed X’-terms over the abstract vocabulary
of the distinguished type. The object language is an image of the abstract language
under the lexicon. Thus, a term over the object vocabulary « is a member of the object
language if and only if there is a closed term ¢ over the abstract vocabulary of the
distinguished type s such that Z(t) = u, where = is <> g,. We may write Z(t) = u
also as t ;=g u, or just as ¢ := u if it does not cause a confusion. If we say that an
ACG @ generates a language L, without specifying whether L is the abstract language
or the object one, then one assumes that L is the object language.

As Definition 3.3.3 indicates, the abstract and object vocabularies are the same
kind of mathematical structures as both are HOSs. Instead of the abstract and object
languages, we may rather consider only the abstract and object vocabularies, the
distinguished type, and the lexicon of an ACG, because they unequivocally determine
the abstract and object languages defined by the ACG. We also may refer to constants
and terms over the abstract (resp. object) vocabulary as abstract constants (resp. object
constants) and abstract terms (resp. object terms) whenever it does not cause a confusion.

Figure 3.4 illustrates an ACG, where the larger disks are pictorial representations of
the involved vocabularies and the smaller ones stand for languages. The arrow linking
the vocabularies, and subsequently the languages, stands for the lexicon.®

Figure 3.4: A picture of an ACG with its abstract and object languages

“The ellipse with the dotted borderline in Figure 3.4 indicates that this is an ACG whose building
blocks (i.e. two signatures linked with a lexicon) are in the confines of the ellipse. We do not draw a
borderline of an ACG whenever it does not create a confusion.
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3.3-1 An Example of an ACG

As one of the examples of ACGs, we encode the correspondence between trees and their
yields. We model trees as abstract terms and yields as their images under the lexicon.
We assume that trees are ranked trees over some ranked alphabet A = N U X, where
NNX =0. Elements of ¥ are terminal symbols and elements of N are non-terminal
symbols. Terminal symbols are of rank 0, whereas the rank of a non-terminal symbol is
a positive natural number.

For a given A, we consider two signatures, ¥X* and Z;ﬁ"g. ¥R is the abstract
vocabulary and E”ng is the object vocabulary of the ACG we are building. The
distinguished type of the ACG is the atomic type of X¥%, i.e., 7. We define a lexicon
Lield from X% to the terms over Zzﬂng as follows:

 The image of the tree type 7 of the ¥X* under .7,

Lield(T) = 0.

o« If X € X% is of type 7 (X encodes a 0-ary symbol of A, which means that X is

a terminal symbol), then: .Z{;q(X) = X.

o If X, € E’Xee is of type 7 — ... — 7 —o 7 where n > 1 (X,, encodes an n-ary

ield i the string type o, i.e.,

n—times

symbol of A), then:

Z

VieldX) = X2 .. 2. 1+ ...+ @, g —o...—og-—o0

n—times

Closed terms over XL4* of type 7 encode trees over A. Their images under .Z;eq en-

code yields of these trees. For the sake of example, let us consider the tree shown in Fig-
ure 3.5. We encode this tree as a X°-term u, where u = So (NP Fred) (VP2 (V; failed) (NP exams)) :
7. By interpreting u with Z{;,4, we obtain the following:

gyield(u) =
Zield(S2) (ZLield(NP1) Liield (Fred)) (Lyield(VP2) (Lield(V1) Liield (failed))

(gyield (N Pl) gyield (exams))> B

—» g Fred + failed + exams : o

S
/ N\
NP VP
/N
Fred V NP

failed  exams

Figure 3.5: A syntactic tree
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In the rest of the thesis, we will make use of the ACG (XX%, EXM"g, ZLyield, T) while
discussing encodings of ACG encodings of grammatical formalisms. We may not specify
string

A if it clear from the context. We refer to the ACG (XX% X, ZLield, ) as the yield
ACG for A, or simply as a yield ACG.

3-3.2 ACGs with the Same Abstract Language

The abstract language of an ACG does not depend on a lexicon; it rather depends on
the abstract signature and on the distinguished type. Thus, if several ACGs share the
same abstract vocabulary and their distinguished types are the same, then these ACGs
define the same abstract languages. In this case, we depict these ACGs with the help
of only one abstract signature and several object signatures and lexicons, for example,
as it is in Figure 3.6. This architecture is useful for modeling the syntax-semantics
interface using the ACGs encoding of TAG. With the shared abstract vocabulary we
encode TAG derivation trees. One of the lexicons maps TAG derivation trees to TAG
derived trees (one of the ACGs). The other one maps TAG derivation trees to semantic
interpretations (another ACG).

Figure 3.6: Two ACGs with the same abstract language

3.3-3 Composition of ACGs

The abstract and object vocabularies are both higher-order signatures. A lexicon is a
function. One can compose functions. Thus, if we have two lexicons %7 : ¥; — X2 and
£y 1 ¥y — X3, then we can consider a lexicon .Z3 : ¥ — X3 that maps a constant
(resp. a type) a of ¥ to a term (resp. type) over X3 as follows: Z3(a) = %2 (Z1(a)).
One can check that .#3 meets the requirements imposed on a lexicon, namely, it is a
homomorphism; and for every constant a of X1, if a : k, Z3(a) : £3(k). We denote
23 with %5 0. Z1. Relying on this property of the lexicon composition, one defines the
composition of ACGs.
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Definition 3.3.4 (ACG Composition).
Let Gi = (X1,%9,21,51) and Gy = (X9,%3, %, s2) be two ACGs. We define the ACG
Gs = (X1,33, %3, s3) as follows:

s3=258 and L3=_%0.7.
Thus, we have:
A(G3) = A(G1) ={t € A(X1) | bx, t:s1 is derivable}
O(G3) ={t | Ju e O(G1) : L2(u) =t}
We call G the composition of ACGs G1 and Go and denote with Go o Gy.

GinGy o gl
Figure 3.7: An ACG Composition

3.4 CFGs as ACGs

In this section, we discuss de Groote’s (2001) encoding of CFGs?° as ACGs. Let G be
the ACG encoding of a CFG G. G has the following properties:

* The abstract language of G is the set derivations defined by G.

* The object language of G is the language of G.
Thus, the ACG encoding of a CFG (' is strongly equivalent to G.

20We refer readers to See Section 2.3.2 on page 33 for the definitions and notations that we use for
CFGs.
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3.4-1 General Principles

We build two ACGs, G1 and Ga. ) establishes the correspondence between derivations
of G and parse trees determined by (. That is, if the string of terminals w is generated
by the grammar G using some rules in some order, call it a derivation of w, then G;
corresponds to this derivation a parse tree whose yield is w. G interprets a parse tree
as its yield. The composition of these two ACGs is the ACG encoding of G.
The ACG encoding of a context-free grammar relies on the following ideas:
* One identifies the atomic types of the abstract vocabulary with the nron-terminal
symbols of the grammar.
* One associates the constants of the abstract vocabulary with the production rules of
the grammar.
* The type of a constant C, associated with a production rule p is built with the
help of the non-terminal symbols occurring in the production rule p.
* The lexicon of G; maps an abstract constant C, to a tree associated with a rule
.
* Gy is a yield ACG, defined in Section 3.3.1 on page 62.
* Goo@; is the ACG encoding of G.

3.-4-2 An Exemplifying Encoding

For the sake of illustration, we consider a CFG grammar G = (N, X, P,S) generating
the Dyck language. Figure 3.8 shows the production rules of this grammar. We construct
the ACG encoding this grammar.

Pl S— e
P - S — aSbS

Figure 3.8: Production rules of the CFG G

We can associate with each production X — w a tree whose root node is labeled
with X. The children of the root node are the frontier nodes in the tree. The frontier
nodes in the tree are labeled with the symbols from w. The order of nodes follows the
order of their labels in w. For instance, the rules p; and p2 can be represented as trees
shown in Figure 3.9.

S S

VAANN
€ a S b S
(a) (b) p2
D1

Figure 3.9: Trees representations of production rules
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By definition, a string belongs to Lg if one can derive it from the start symbol
S with the help of the production rules of G. Let p:A 5w andp A —w
be production rules such that A" has an occurrence in w . Let us select one of the
occurrences of A’ into w' . In a derivation step, we replace the selected occurrence of
A" in w" with w. This corresponds to the substitution of the tree associated with p
into the tree associated with p at the node corresponding to the selected occurrence

of A" in w'. For instance, let us consider a parse tree with the yield ab, shown in
Figure 3.10(a). This parse tree corresponds to the following derivation:

S = aSbS=>¢ aebS = aebe

p2 p1 Y4t

One can obtain the parse tree in Figure 3.10(a) by substituting the occurrences of S
in the frontier of the tree associated with py (see Figure 3.9(b)) by the tree associated
with p; (see Figure 3.9(a)).

Thus, to each derivation corresponds a parse tree. We build an ACG G; that allows
one to interpret a derivation of a string as the corresponding parse tree. The object
vocabulary is a tree signature so that terms over it model derivation trees of the CFG.
Constants of the abstract vocabulary model production rules so that abstract terms
model CFG derivations. To type a constant C, modeling a production rule p, we
refer to its tree representation. Let the non-terminals labeling the frontier of the tree
representation of p be Xi,..., X, (from left to right); and the root label be X. We
type C, with the type X; —o ... — X;, —o X. In other words, the non-terminal symbols
X1,...,X, label substitution sites in the tree representation of p. At the node labeled
with X;, one can only substitute a tree whose root is labeled with X;, for i =1,...,n.
We model the substitution site labeled with X; as an argument of C), of type X;, for
1 =1,...,n. If all the substitution sites are filled, one obtains a tree with the root
labeled by X. This modeling is expressed by typing C), with X; —o ... —0 X;, —o X,

Thus, to model the grammar in Figure 3.8, we introduce two constants C,, and
Cp, associated with the rules p; and ps respectively. We type C,, with S, whereas we
type Cp, with S — S —o S. A rewriting of an occurrence of S by € in p» corresponds to
an application of C), to C,,. In derivation trees, the application of (), to C,, is to
substitute an occurrence of S at the frontier of the tree representation of py with the
tree representation of p;. For instance, we model the parse trees in Figure 3.10 by the
terms ?; and fp respectively, defined as follows:

t1=Cp, Cp Cp =S (3-8)
tp = Cp, (CPQ Cp, Cp1) Cp, =S (3-9)

Thus, we build the following abstract vocabulary:
1= {{S}, {Cpy 5. Cpy S —S}}

The abstract language is a set of closed terms of type S. The abstract language
gives rise to PTR(G,S), i.e., the set of parse trees whose root is labeled with S.
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S a/S/S\b\S
AN SN
a S b S a S b S

€

€ € € €
(a) A parse tree (b) A parse tree with the
with the yield ab yield aabb

Figure 3.10: Two parse trees

Cp, =g, Si¢€
Cpy =g, X1y.S4azxby

Figure 3.11: Interpretations of the constants modeling the production rules

To construct this set, we interpret constants of X; to the frees that they the give rise
to. Thus, we build a lexicon .Z¢ : X1 — X4% ;.. Figure 3.11 shows the interpretations
of Cp, and C,.

Where S;:7 — 7, S4: 7 —oT7 —o7T—o7T—0T; a, b, and € are of type 7. For
instance, the terms ¢; and ¢y have the following interpretations under .Z:

$G<t1> —>g S4a(51 6)[)(51 6) T (3-10)
Za(t2) 75 S1a(S1a(S1€)b(S1€))b(Sie):7 (3.11)

In this way, we build an ACG G; = (31, X4f5.,-Z¢,S). The object language of G
is the set PTR(G,S).

Afterwards, one can interpret terms modeling parse trees as their yields with the
help of a yield ACG, in the same way as we did that in Section 3.3.1. Thus, we define
Gy = (Eﬁ\%z, E;ﬁ"g, Zyieldv 7). The composed ACG G = Gy 0§ is the ACG encoding of
G. The object language of the composed ACG is the string language defined by the
original CFG G.

3-4-3 General Case

Given a CFG G = (N,X,P,S), we use the following notations. One defines [w]x
using a structural induction on w (denoting a string of terminals and non-terminals) as
follows:

1. [e]lx =%

2. [Yu]x =Y —o Jw]x if Y € N;

3. [aw]x = [w]x if a is a terminal symbol, i.e., a € X.

By &, we denote a sequence of variables and constants of some signature. We write

u,0 to denote a sequence u, u', ..., u™, where & denotes the sequence ul, . um
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We define (w]) as follows:

1. (¢) = (z; z).

2. (Yw) = (y,01;y,02), where (w) = (d1;02), Y € N and y is a fresh variable;

3. (aw) = (01; a,02), where (01;02) = (w) and a € X.

One builds an ACG G = (X1, 24 y., Z¢,S) strongly equivalent to G = (N, X, P,S)
as follows:

The Abstract Vocabulary ¥ = (A;, C1, 1)

e X € A; if and only if X € N, i.e., the set of the abstract atomic types of the
ACG is exactly the same as the set of non-terminal symbols of the CFG.

* To each production rule p : X — w corresponds a constant C, of the abstract
vocabulary .

* If C, is a constant of }; associated with a production rule p : X — w, then

1 (Cp) = [wx.
The Object Vocabulary X5 5. = ({7}, C2, T7)

e For each a € X, we have a € (5.

o For every A € N and w = u!...u" such that there is a production rule

in P of the form A — w, we have a constant A, € Cy (i.e, T (4,) =

T —0...—0T —0T).
_\,_/

n-times

The distinguished symbol is the start symbol S.

The Lexicon Zg : ¥ — Etéf;g

* Z¢ interprets every atomic type of ¥ as the tree type 7.
* Z¢ interprets each constant C, € (1, where p : A — w, as follows:

Z6(Cyp) = Xai. Ay ub o u”

Where (w) = (51;6%) and &5 denotes the sequence u',..., u".

In order to obtain the string language, one defines a yield ACG .

The Abstract Vocabulary of G is X4% - = ({7}, {N},T-). That is, we declare the non-
terminal symbols of G as the constants of the abstract vocabulary.

The Object Vocabulary of Gy is Zigmg = ({o},{X},t5). That is, we declare the termi-
nal symbols of G as the constants of the object vocabulary.
The distinguished type of Go is 7.

The Lexicon Zeq : Zt(f — E;ﬁ”g is defined according Section 3.3.1.

The object vocabulary of G; serves as the abstract vocabulary to Go. Thus, we can
consider the composition of G; and G2. The ACG composition of Gy o G; establishes
the correspondence between the derivations and the generated strings.
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3.5 TAGs as ACGs

This section provides an encoding of a TAG as ACGs, proposed in (de Groote, 2001,
2002). Given a TAG G, the ACG encoding of G generates the object language
isomorphic to the tree language generated by G.

3-5.1 General Principles

We already discussed how to model the operations of adjunction and substitution on
trees as functional application of the X’-terms modeling trees (see Section 3.2.2). In a
TAG, a tree derived from an initial (resp. auxiliary) tree can substitute (resp. adjoin)
at a given substitution (resp. adjunction) site in a tree if its root has the same label
as the substitution (resp. adjunction) site does. However, the encoding of substitution
and adjunction that we proposed does not have this property. To model the way TAG
controls derived structures, for a substitution (resp. adjunction) site labeled with X,
we introduce a type X (resp. X,). The substitution (resp. adjunction) of a tree J at
a node with the label X into a tree v becomes the functional application where the
operand, which models the tree J, is a term of type X (resp. X,). In this way, we
obtain terms modeling TAG derivation trees. To obtain TAG derived trees, we interpret
terms modeling TAG derivation trees as terms modeling derived trees, i.e., terms over a
tree signature. We interpret the types X and X,, modeling substitution and adjunction
respectively, as 7 and 7 —o T, respectively.

3.5.2 An Exemplifying Encoding
We consider a TAG G generating a non-context free language {a"b"c"} and model it

as ACGs. Elementary trees of G are illustrated in Figure 3.12.

Sna
/|
a S S
ARN |
b SNA* C €

(a) A (b) T

Figure 3.12: Elementary trees of a TAG generating {a"b"c"}

3.5.2.1 TAG Derivation Trees as Abstract Terms

To construct the abstract vocabulary encoding derivation trees of the TAG whose
elementary trees are shown in Figure 3.12, in the abstract vocabulary we introduce
two atomic types, S, and S. The type S encodes S-substitution sites, whereas the type
S, encodes S-adjunction sites. The type S is the distinguished type of the ACG we
are building, because the non-terminal S is the distinguished symbol of the grammar.
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As the grammar consists of two elementary trees, we introduce two constants in the
abstract vocabulary. We denote these constants by C, and C,, where we associate
C, with the auxiliary tree A (see Figure 3.12(a)) and C; with the initial tree I (see
Figure 3.12(b)). These constants do not directly encode syntactic trees, but rather
correspond to the nodes in TAG derivation trees that stand for these elementary trees. To
put it another way, for each elementary tree, we introduce its representative constant in
the abstract vocabulary, similar to a node representing that elementary tree in a TAG
derivation tree. We propose the following abstract vocabulary:

Z'I?Ae(riG = {CI : SA —0 S; CA . SA —0 SA, ISA . SA}

C; is of type S, —o S, which one constructs by the breadth first, left to right
traversing the initial tree I. Indeed, the type S, — S encodes the fact that the initial
tree I can receive an S-adjunction (a term of type S,). By adjoining a tree into the
initial tree I, one obtains an S-rooted completed TAG derived tree. The byproduct of
this derived tree is a TAG derivation tree, which we encode with a term of type S.

C, is of type S, — S,, which one constructs by the breadth first, left to right
traversing the auxiliary tree A. The type S, — S, encodes the fact that the auxiliary
tree A receives an adjunction on its S node and the resultant tree (a term of type S,)
can adjoin on an S-node of some tree.

Since we use simple types, if a constant models a tree with an X-adjunction site,
then this adjunction site is obligatory. For instance, C, is of type S, — S, which models
that the initial tree I has an S-adjunction site. This adjunction is not obligatory in I.
Thus, one can use I as a derived tree of the TAG language. However, as C, is of type
Sy, — S, it must apply to some term of type S, in order to produce a term of type
S. To be able to handle cases where no adjunction takes place at an adjunction site
modeled by the type X,, de Groote (2002) introduces a constant Ix, of type X, in the
abstract vocabulary. Ix, can be seen as an X-rooted empty (fake) auxiliary tree, as it
adjoins at an X-adjunction site in a tree but does not modify the tree. However, once it
adjoins in some tree, no other adjunction can be made at that adjunction site of the
tree. One can view Is, as an auxiliary tree X} ,. Indeed, X}, consists of a single node,
which is its root and foot node at the same time, and it accepts no adjunction. For
instance, to model the case where I is a derived tree of the TAG tree language, we
define a term C; Is, whose type is indeed S.

Remark 3.2. Figure 3.13 shows a representation of the term C,; (Cyls,) as a tree. This tree
is reminiscent of the derivation tree in Figure 3.14(a) on the facing page. The main difference
between the two is due to the occurrence of the empty adjunction ls, in the term. The presence
of empty adjunctions is an explicit declaration that no adjunction takes place. In the case of a
TAG derivation tree, however, it is implied that if there is no information about an adjunction
on a node into a tree, then there is no adjunction on that node.

3.5.2.2 Derived Trees as Object Terms

We encode TAG derived trees as terms over 4% .. Figure 3.12 shows the elementary

trees I and A. To encode them, in the tree signature Zj\rféz, we have constants,
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G
|
Ca
|
Is,

Figure 3.13: A tree-representation of a term modeling a derivation tree

Sna
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o1 b Sya ¢
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(a) A (b) A derived tree
deriva-
tion
tree

Figure 3.14: A derivation and a derived tree

S1:7—o7,S5:7T—o7—o7,and S3: T — 7 —o 7 —o 7, which model symbols of arity
1, 2, and 3, respectively.

3.5.2.3 Interpretations as Derived Trees

We map the constants C; and C, to the terms over L7 that serve as the encodings of
the elementary trees I and A. Thus, we build a lexicon £ [ interpreting C, and C,
(see Figure 3.15). It remains to interpret Is, : S,. Since Is, models an empty adjunction,
it should not change a tree into which it adjoins. We interpret it as an identity function

Nr.x:T—oT.

Types and Constant of ¥; | Their interpretations under Z'/¢
S, T—oT
S T
G, X P.P(S; e
Ca X P.X z.Sea(P(Ssbzc))
Is, XNz.x

Figure 3.15: The lexicon interpreting TAG derivation trees into TAG derived trees

In order to obtain a derived tree specified by a derivation tree, one interprets the
term encoding the derivation tree by the lexicon. For instance, to obtain the term
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G

modeling the derived tree depicted in Figure 3.14(b), the lexicon £ [’{
term C, (C, Ig,) as follows:

interprets the

Z(C(Calsy)) = 200G (Z550(Ch) Z 050 (Ts)) =

synt synt synt synt

(XP.P(S1€)(XPXxSya (P(Sgbxc))) (Nz. x)) -3S2a(S3b(S1€)c) 7

3.5.2.4 Yields as Object Terms

In order to obtain yields of TAG derived trees, we build a yield ACG, defined in
Section 3.3.1. By composing the latter ACG with the former, we obtain an ACG that
provides interpretations of TAG derivation trees as yields of TAG derived trees.

3.5.3 General Case
Given a TAG G = (N,X I, A,S), we build an ACG Gg = (X1, X5, Z2¢ 5). The

synt ?

abstract language A(G;) models the derivation trees of G, wheres the object language
O(Gg) is isomorphic to the tree language of G.

The Abstract Vocabulary >°2

* Y1 has type a X (resp. X,) for every non-terminal symbol in N labeling a
substitution (resp. adjunction) site in some elementary tree of G.
* For each elementary tree v of G, ¥ has a constant C,. If v is an X-initial
(resp. X-auxiliary) tree, the we type C, with the type &, where & is of the
form ay — ... — X (resp. a3 — ... —o X,). To construct @, we make
the breadth first left to right traversal of v and record the substitution and
adjunction sites in the order they appear in the traversal.
* For every X labeling a non-obligatory adjunction site, ¥; contains a constant
Ix, : X, modeling an empty X-adjunction.
The Object Vocabulary ¥4, is a tree signature over XU N.
The Lexicon .Z[% : ¥1 — ¥, interprets types and constants as follows:
o ZM(X)=17 and LX) =T —o 7.

synt synt
o« Z2(C,) = uy, where C, is a constant associated with an elementary tree ~;

synt

and u, is a X’-term encoding 7.
o L™(Ix,) = Xz.x, where X, is an abstract type modeling X-adjunction sites.

synt

3-5-4 The ACG Encoding of an Exemplifying LTAG for a Frag-
ment of English

We provide an exemplifying LTAG to analyze the following English sentences, which we
use in further chapters as well:
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3-5. TAGs as ACGs

(12) a. Fred is really grumpy.
b. Fred failed an important exam.
c. Fred is grumpy because he failed an exam.

d. John Mary seems to love.

As we will refer to this encoding in further chapters, we name signatures and
lexicons used in this example as follows:

o 3% denotes the abstract vocabulary, where we encode derivation trees;

« Y% denotes the object vocabulary, where we encode derived trees.

Table 3.1 on the next page provides constants in Y3¢ modeling derivation trees
of TAG elementary trees anchored with lexical items from Example (12) and their
translations in TAG derived trees. In particular, Table 3.1 shows the encodings of initial
trees anchored with verbs, such as failed, seems, etc. To model their substitution and
adjunction sites, we use types Np, S, S,, V, etc. In addition, Table 3.1 contains constants
encoding nouns, adjectives, articles and quantifiers. We use the type np to model noun
phrases. n, and Ny are types encoding adjunctions on an initial tree anchored with a
common noun (CN). For the types n, and ng, as for any type encoding a non-obligatory
adjunction site, we have the abstract constants encoding empty adjunctions of these
types, In, : Ny and Iy, : Ny, respectively. Notice that we type Ccy with ng —o n, —o np.
That is, we have two different possible adjunctions at the node of an initial tree anchored

by a common noun, which is not a standard interpretation. In other words, instead of

Nad
e egs N . \
the initial tree anchored by a CN, | , we interpret Ccy as a tree na . The way we

CN \
CN

interpret CNs is motivated by the way (XTAG-Group, 1998) encodes them, which is
expressed by the following quote:

Common nouns do not require determiners in order to form grammatical

NPs ... Common nouns have negative(“—”) values for determiner features
in the lexicon in our analysis and can only acquire a positive(“+”) value for
those features if determiners adjoin to them. XTAG-Group (1998)

Thus, according to (XTAG-Group, 19g8), a CN anchors an NP-initial tree whose
root has a feature —DET. The feature —DET of the root node becomes +DET if a
determiner adjoins on it. Figure 3.16 shows the XTAG analyses of determiners and
CNs. Since we do not use features but types, we use the type n; in order to enable
an adjunction of a determiner into an N-initial tree anchored with a CN. By adjoining
a determiner in an N-initial tree anchored with a CN, we obtain an NP-derived tree.
Hence, in our notations N is NP with the feature —DET, whereas NP is NP with the
feature +DET.

Example 3.4. We model the derivation the trees of the sentences listed in Example
(12) as the terms in A(X2%) shown in Figure 3.17.

For instance, the terms ¢, : S and ¢, : S model the TAG derivation trees depicted in
Figure 3.18(b) and Figure 3.20(b) on page 76, respectively.
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Abstract constants of E-?Eé Their images by £ ;Fy/;? The corresponding TAG trees
T T NP
Chrea : NP — NPy Fred Yrred = |
Fred
S
) i(r—oT)—o(T—oT)—oT—oT — NP
Cgrumpy :Sp—oVa—onp—S = Xavs. a (S2 s (v (VP2 (VP €) grumpy))) Ygrumpy = 1 VP
€ grumpy
S
Sp —oV —o np :(T_OT)_O(T_OT) — T~
Coed: A VA Cor o707 vaiog = NPL VP
failed —onp —o S
= Xavso. a (S2 s (v (VP2 failed 0))) — T
Sailed NP
. H(r—o7) (1 —o7) - "
Cis = Va — Va = Xvz.v (VP2 is z) Yis = l's/\VP*
. H(r o) o (r—o7) _ e
Ceems : Va = Va = Xuvz.v (VP2 seems z) Yseems = see{\vp*
S
S v (1 —oT)—o (T —o7T)— NP‘L/'\S
- Sp—Va T—T—oT .
Cio love * —onp —np — S = X0 avs0.52 o o fove = NPL/\VP
(a1 (S2 s (v (VP1 to love)))) |
to love
S
C :Sp S-S (T —oT) =T — (T —T) —S*/\S
because * VA A = Xasz. a (S2 x (S2 because s)) Tbecause = —
because S,
VP
_ (1 —o7) — (7 —oT) _
Creatty : VA — Va = Xuz.v (VPy really z) Yreally = ,mf\vp*
G ny oA —onp i(tr—T)—o(T—o7T)—oT N _ N
exam - 1ld A = X da.d (a (N1 exam)) exam ex‘am
G e o H(r—1) = (r—7) o1 R N
important * A A =X an. a (N2 importantn) Yimportant = imporiant N
c . ‘T —oT NP
an * Nd =X n.NP3an Ya= a/\N*
iT—oT NP
Ceac}, ‘Ng = X0 n.NPs cackn Yeach = eadl/—\N*
C ) T —oT B NP
every - Nd = X0 n.NP> everyn, Yevery = evm*
Iy : Xa Xrz:7—oT

Table 3.1: TAG as ACG: the Z[7 lexicon
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NP
DET
NP [+DET]
[~DET] / \

‘ an NP
exam [-DET]
(a) A tree (b) A tree an-
anchored chored with an

with  an article

CN
Figure 3.16: XTAG analyses of determiners and CNs

ly Cgrumpy ISA (Cis (Cvery IVA)) Crrea @ S

ts | Craitea ISA IVA Chrea (Cexam InA Can) : S

tg Cgrumpy (Cbecause ISA (Cfailed ISA IVA Che (Cexam InA Can))) (Cis IVA) Chea @ S
t4 Cio tove ISA ISA (Cseems IVA) Cjohn CMary : S

Figure 3.17: Examples of terms over X% modeling LTAG derivation trees

Example 3.5.

Let us provide some examples of the terms modeling TAG derivation trees. One
obtains the corresponding TAG derived trees by interpreting those terms by the lexicon
2 (defined in Table 3.1 on the preceding page). In particular, we consider the terms
t, and t,, defined in Table 3.17 . Table 3.19 shows the interpretations of the terms ¢,
and #, under the lexicon .Z’[’’. As one can see, the terms £ 0(7,) and Z[}7(t,) model

the TAG derived trees shown in Figure 3.18(c) and Figure 3.20(c), respectively.?!

3.6 The ACG Hierarchy of Languages

One defines the order of an ACG and the order of a lexicon as follows.

Definition 3.6.1 (Order of an ACG and a Lexicon).
o The order of an ACG is the maximum of the orders of the types of the constants in the
abstract vocabulary.
o The order of the lexicon £ = (F,G) of an ACG G = (X1,%9,.%,s), where 1 =
(A1, C1, 1), is defined as follows:

0rd(Y) = max ord(F(a))

Thus, the order of an ACG is the order of the abstract vocabulary. The order of a
lexicon is the maximum of the orders of types of images of the abstract constants. For

2In Appendix A, we provide ACG codes for these examples, which one can run using the ACG
development software (the ACG toolkit).
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Cgrumpy Agrumpy
N N
I A Checause Cis Crea Brecause Bis QA Fred
/ N\ \ 22
IS Crailed IVA Qfgiled
VRN 1/ \22
ISA Che Cexam Qpe Qexam
/ N\ 0f
InA Can Ban
(a) A term as a tree (b) A TAG derivation

tree
S
/\S
/\ A/\
\ /\ | /\

Fred V VP  because NP

/N \/\

is V AP he
!

| \ / \

grumpy failed Det NP

an exam

(c) A TAG derived tree

Figure 3.18: A derivation tree, a term modeling it, and a derived tree

TAG

Terms over Y% | Their interpretations under &7

ty Sy

(So (NP Fred) (VPg is (VPy (VPy €) grumpy)))
(So because (Sg (Ny Fred)(VPq failed (NP2 an (N exam))))) : 7
t, So (NPy Mary) (S2 (NPy John) (VPy seems (VPy to-love))) : 7

Figure 3.19: Interpretations of terms over X% under the lexicon £ ¢

synt

/\
\/\

John NP

Curtoe | / \
/ / \ \ Mary V VP

S seems Cjohn CMary ato-love ‘ ‘
| seems V
/22 : yl ‘

IVA Qjohn ﬂseems OMary to love

(a) A term as a tree (b) A TAG derivation tree (c) A TAG derived tree

Figure 3.20: A term as a tree, a TAG derivation tree, and a TAG derived tree
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instance, in de Groote’s (2002) encoding of TAGs as ACGs, the lexicon is second-order.
Indeed, an abstract type X models either an adjunction site, or a substitution site, or
the distinguished symbol of the grammar. In the case of adjunction, one maps X to
T —o 7 (a type of order 2); otherwise, one maps X to 7.

Definition 3.6.2 (Class of ACGs). By G(m,n) we denote the subclass of ACGs whose
members have the following property: G = (31,39, %, s) is in this class if oxd(X1) < m and

o0rd(L) < n.

We call?? a string (resp. tree) ACG an ACG whose object vocabulary is a string (resp.
tree) signature and whose distinguished type is mapped to the type o (resp. 7) of a
string (resp. tree) signature defined in Definition 3.2.7 (resp. Definition 3.2.8). We
denote a class of string (resp. tree) ACGs with G (resp. G'").

Definition 3.6.3 (Yoshinaka, 2006).

Let G be an ACG G = (X1,%2,%,s). A constant c € ¥ is called lexical in G, if £(c)
contains a constant of Xo. If each abstract constant of an ACG G is lexical, then G is called
lexicalized. We denote the class of lexicalized ACGs by Gi,y.

With the help of these notions, one can define various classes of ACGs. For instance,
G*(2,2) denotes the class of second-order lexicalized tree ACGs whose lexicons are
second-order.

3.6.1 Second-Order ACGs

We already discussed the ACG encodings of CFGs and TAGs (de Groote, 2001, 2002).
Both of the encodings are second-order ones. It is noteworthy that second-order ACGs
can encode a number of more powerful grammatical formalisms than CFGs and TAGs
(de Groote and Pogodalla, 2003, 2004). Second-order ACGs are lexicalized by second-
order ACGs (Kanazawa and Yoshinaka, 2005). At the same time, the problems of
parsing and generation with a second-order ACG are polynomial (Kanazawa, 2007;
Salvati, 2005).

Proposition 3.6.1 (Kanazawa and Yoshinaka, 2005). For each second-order ACG ¢ =
(31,39,.%,s), there is an RTG G such that the tree language generated by G is isomorphic to
the abstract language generated by the ACG 9.

3.6.1.1 String Languages

De Groote and Pogodalla (2004) encode several formalisms as second-order ACGs.
They show that the string languages generated by context-free string grammars are
included in the class G*™(2,2). It is noteworthy that the ACGs in the class G*"™(2, 2)
generate only context-free string languages, that it, the class of contextfree string
grammars and G*"™(2 2) coincide (see Table 3.223). The string languages generated

22Following the terminology of (Kanazawa, 2006; Yoshinaka, 2006).
2We borrow Table 3.2 from (Yoshinaka, 2006).
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by linear context{ree tree grammars2* are included in the class G*"™8(2,3). Any linear
context free rewriting system (LCFRS) can be encoded with some ACG from the class
Gstring(Q’ 4)

Theorem 3.6.1 (Salvati, 2005). Any second-order string ACG in G*"™8(2,n) for n > 1 can
be encoded with an equivalent LCFRS.

Since for each LCFRS, there exists its equivalent ACG from the class G*"4(2 4),
Salvati’s (2005) theorem entails the following corollary:

Corollary 3.6.1.1 (Salvati, 2005). For every second-order string ACG from the class G*"™"¢(2, n),
there is an equivalent ACG in the class G*"™8(2,4).

Context-Free Grammars
Linear Context Free-Tree Grammars
Linear Context Free Rewriting Systems

Gstring(z’ 2)
Gstn‘ng(Q’ 3)
GSm8(2 n) for n > 4

(eINI

Table 3.2: The ACG hierarchy of string languages

3.6.1.2 Tree Languages

To discuss the generative power of second-order tree ACGs, it is useful to define the
sub-class of second-order ACGs, called relabeling second-order ACGs (Yoshinaka, 2000).

Definition 3.6.4 (Yoshinaka, 2006).
We say that the lexicon £ of a second-order ACG is relabeling if (1) £ is first-order; and (2)
Z maps any abstract constant to some object constant.

We define the class of second-order relabeling ACGs, denoted with G(2, 1(1)), as the class
of second-order ACGs whose lexicons are relabeling.

Since the lexicon of a second-order relabeling ACG G € G(2, 1(r)) is first-order,
every abstract (atomic) type is mapped to an atomic type. Thus, the abstract and
object languages defined by such an ACG are isomorphic.

The class of RTGs generate the same tree languages as G*(2,1(r)). Indeed, the
abstract language of a second-order ACG is a regular tree language. Since the object
language of any ACG in G"%(2,1(r)) is isomorphic to the abstract language of that
ACG, we conclude that the class of languages generated by G"*(2,1(r)) is a subclass
of the class of regular tree languages. On the other hand, given an RTG G, there is an
ACG in G'"*(2,1(r)) whose object language is isomorphic to the tree language of G
(Kanazawa and Yoshinaka, 200p5).

The ACG encoding of TAG by de Groote (2001, 2002) (with the tree signature
as the object vocabulary) falls into the class G"*(2,2). In addition, de Groote and

2*Here, linear means non-duplicating (i.e non-copying) and non-deleting, whereas usually in the context
of grammars, it means only non-duplicating. Some authors (e.g. (Maletti and Engelfriet, 2012)), instead of
linear, use simple in order to refer to non-duplicating and non-deleting context-free tree grammars.
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Pogodalla (2004) show that ACGs in G“*(2,2) generate exactly the same languages as
linear context free tree grammars. We provide the ACG hierarchy of tree languages in
Table 3.3.2

Regular Tree Grammars = | G'"(2,1)
Tree Adjoining Grammars C | G'™(2,2)
Linear Context-Free Tree Grammars | = | G"%(2,2)

Table 3.3: The ACG hierarchy of tree languages

3.6.2 ACGs of Order n > 3

For the order of 3 or above, there is an ACG in G[%(3,1) generating an NP-complete
language (Salvati, 2005, 2010). Salvati (2005) showed that in general, the decision
problem whether a term belongs to the (object) language generated by an ACG is
equivalent to the decidability of Multiplicative-Exponential Linear Logic (MELL) (Girard,

1987a,b), which recently was shown to be decidable (Bimbd, 2015).

3.7 Second-Order Almost-Linear ACGs (\-CFGs)

The original definition of ACGs employs the notion of linearity of A-terms, which
sometimes is a strong requirement. In particular, the linearity condition does not allow
one to encode Montague semantics because terms encoding semantic interpretations
are not linear. For instance, a term such as Az.man(z) A walk(z) is not linear (z
has two occurrences bound with the same M-abstraction). To overcome the problem,
Kanazawa (2007) introduces almost-linear M-terms. With almost-linear A-terms, one
is able encode Montague semantics. At the same time, the parsing and generation
problems of second-order ACGs where object terms are almost-linear are polynomial
(Kanazawa, 2007).

Definition 3.7.1 (Kanazawa, 2007).
Let X = (A, C,T) be a higher-order signature. One defines a set of almost-linear terms over ¥,
denoted by N'(X), and the type of a term t € N(X), denoted by T'(t). The set N'(X) is the
smallest set satisfying the following properties:
7. Ift,u e N(X), T(t) =a — B, T(u) = o, and if for any z € FV(t) NFV(u), T(z)
is atomic, then (t v) € N'(X) and T (t u) = S.
2. Ift € N(X), T(t) = B, and © € FV(t), where T(z) = o and « is atomic, then
Mot € N(2) and T/ (\z.t) = a — B.
3. N(X) is closed under Bn-equivalence.

One obtains the definition of linearity by strengthening the requirement of the clause
2 of Definition 3.7.1 as follows: FV(¢)NFV(u) = 0. Thus, any linear term is also
almost-linear. Although almost linear M-terms generalize X’-terms, we still would like

25We borrow Table 3.3 from (Yoshinaka, 2006).
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to emphasize the fact that a given term is linear, or a given A-abstraction is linear. In
other words, if = : o is a variable with a single occurrence in ¢ : 3 € A(X), we write
Xr.t:a—f e N(X).

Definition 3.7.2 (\-CFG (Kanazawa, 2007)).
A context-free \-grammar (\-CFG) G is a quadruple (31,32, 2, s), where
e ¥y = (A1, C1, 1) is a linear higher-order signature and Yo = (Aa, Co,T2) is a higher-
order signature, called the abstract and the object vocabularies of G, respectively. ¥ is
second-order.
o Z is a lexicon between 1 and Yo, which is a homomorphism between 31 and o
defined in Definition 3.3.1 with the difference that (a) a constant of X1 may translate to
an almost-linear \-term over Xo; (b) an abstract atomic type translates to an almost-linear

Lype.
o s € Ay is the distinguished type of the \-CFG.

Kanazawa (2007) named almost-linear second-order ACGs as A\-CFGs due to the
fact that they can be seen as CFGs that rewrite A\-terms instead of strings. Indeed, the
abstract language of any second-order ACG can be viewed as a regular tree language.
The yield of a regular tree language is context-free language.

Below, while discussing semantic encodings within second-order ACGs, that is, the
signatures with the help of which one encodes semantic interpretations, we will have in
mind second-order almost-linear ACGs, i.e., A-CFGs, unless otherwise stated; in rest of
cases, we stick to de Groote’s (2001) linear version of ACGs. We will write A(X) for
denoting both the sets of almost-linear A-terms and X-terms over ¥, unless otherwise
stated. With HOS, we abbreviate both a linear higher-order signature and a higher-order
signature whenever it does not cause a confusion.

3.8 TAG with Montague Semantics as ACGs

As we already discussed in Section 3.5, to model a TAG as an ACG, one represents
TAG derivation trees as abstract terms and TAG derived trees as object ones.

To model the syntax-semantic interface using TAGs, Pogodalla (2004) proposes
to compute the semantic representations from TAG derivation trees by interpreting
them as underspecified semantic formulas. (Pogodalla, 2009) presents another version
of this encoding, where one defines fully specified semantic representations, instead
of underspecified ones. In both of these encodings, one makes use of higherorder
interpretations reminiscent of ones provided in (Montague, 1973). Due to this, one
refers to these encodings as the ACG encoding of TAG with Montague semantics. We
follow (Pogodalla, 200g) while discussing the encoding of TAG with Montague semantics
as ACGs.

3.-8.1 Montague Semantics as Object Terms

We interpret TAG derivation trees as Montague’s (1973) logical semantic formulas.
Thus, we consider an ACG whose abstract terms encode TAG derivation trees, whereas
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the object ones encode semantic interpretations. To encode Montague semantics, we
introduce a signature ¥ . We interpret constants and types of the vocabulary X% as
terms and types over X . The signature Y contains two types, ¢ for propositions
and e for individuals. It has constants encoding n-place predicates, logical connectives
and quantifiers, as it is shown in Table 3.4.

Log

fred, john, mary, he e because :{-—ot-—ot

exam, important, grumpy :¢e¢ ot fail, love :e-—oe—ot

really it —ot seem (e —ot)—oe—ot
A it—ot-—ot V it—ot-——ot

= t—ot—ot - ct—ot

3 (e —>t)—ot v (e —>t)—ot

Table 3.4: Constants in the semantic vocabulary ¥

3.8.2 Interpretations as Montague Semantics

We interpret a type nNp as a type (e —o t) —o ¢, which is the linear version of
Montague’s (1973) higher-order interpretation of noun phrases. The interpretation of
the distinguished type S is ¢t. As Table 3.5 shows, one interprets S, as ¢ —o ¢, since the
terms of type S, model S-modifiers, i.e., the ones that modify clauses (terms of type ?).
V, translates to (¢ —o t) —o e —o t as a term of type V, models a modifier of a verb
phrase (i.e., a term of type e —o t). Hence, by translating V, as (e —o ¢) —o e —o t,
one also makes a semantic difference between the types V, and S,. Nevertheless, to
interpret both V, and S, as ¢t —o ¢ is also possible.

Types in X% | Their semantic interpretations
np (e —t) —ot

S ¢

Sa t—ot

V, (e —ot) —o(e—ot)

Na (e > t) —o (e —1t)

Ng (e > t)—o(e—1t)—ot

Table 3.5: The semantic interpretations of abstract types

Elementary Trees Anchored with Nouns, Adjectives, and Determiners

The interpretations of constants modeling initial and auxiliary trees that we use in
order to encode noun phrases, that is, trees anchored with articles, quantifiers, and
adjectives, are shown in Table 3.6. Table 3.5 provides interpretations of atomic types
involved in the types of these constants.

Notice that in Table 3.6, the constants V and 3 used in the encodings of quantifier
words (e.g. each, every) and articles (e.g. an) are of type (e — t) —o t, which is not
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Constants of X027 Their interpretations by .20

Cexam : Ng —0 Ny —o NP | X° det adj . det (adj (A\x.exam z))

Cimportant : Na —© N, X adj n.adj (\z.(important z) A (n z))
Cevery s Ceaen 1 Ng XPQQ.Vz.(Pz) = (Qx)

C,,Ca 1 Ny XPQ.Jzx.(Px) A (Qz)

Table 3.6: Semantic interpretations of constants

a linear type. This is due to the fact that the same variable z (of type e) has two
occurrences in the same sub-term. Therefore, one has a non-linear abstraction over that
variable. Hence, we interpret the type n; with the help of a (non-linear) implicative type
(see Table 3.5 on the previous page). Nevertheless, our semantic terms are almost-linear.
Hence, in this case, Kanazawa’s (2007) results apply, which guarantee that the parsing
and generation problems are of polynomial complexity. Moreover, we could interpret
np as (e — t) —o ¢, which would make possible to use a variable corresponding to an
individual (that is, a variable of type e) within a sub-term more than once. Still, we
would obtain an almost-linear second-order ACG (\-cfg). We translate the constants
modeling empty adjunctions Is,, Iy,, In, to X z.z.

Remark 3.3. In Montague Grammar (Montague, 1973), one translates neither articles nor
quantifier words directly, but rather gives the recipes for translating noun phrases such as ‘every
CN’, ‘a CN’, etc. In contrast with Montague Grammar, in the ACG encoding of TAG with
Montague semantics, one provides interpretations of articles, quantifiers, plural markers, and
common nouns separately. Out of these interpretations, one produces the interpretation of a
noun phrase as the composition of the interpretations of an article/ quantifier/plural marker, of

adjectives, and of a CN.

Elementary Trees Anchored with Predicative Adjectives, Verbs, Adverbs, and
Copulas

To interpret the abstract constants modeling initial and auxiliary trees anchored with
verbs, we interpret S-adjunctions and VP-adjunctions with the help of higherorder
predicates. For instance, Table 3.7 shows the interpretation of a constant modeling an
initial tree anchored by a transitive verb failed. The interpretations of adjunctions on S
and VP nodes, which are denoted with the variables s, and v,, scope over (failz y) as
they modify the content expressed by the predicate fail and its arguments. The type
of fail is e —o e —o ¢{. We interpret the substitution sites of the initial tree anchored
with failed using the higher-order interpretations of noun phrases. In this way, one can
encode the predicate-argument relations expressed by a verb anchoring an initial tree.

A predicative adjective plays the role of a predicate. In TAG elementary trees,
predicative adjectives anchor initial trees. Thus, we interpret an initial tree anchored by
a predicative adjective similar to what we do in the case of verbs (see Table 3.7).

We interpret elementary trees according to the semantic properties of their anchors.
To illustrate this, let us consider auxiliary trees anchored with adverbs (e.g. really) and
ones anchored with raising verbs (such as seems). Although these trees are VP-auxiliary
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’ Constants of 3% ‘ Their interpretations by .Z5" ‘

Cgrumpy X sq vq subje. sq (subje (vg (Xz. ((grumpy z))))) :
(t—ot) — (¢ —o 1) o e —o ) —o (e —o £) —o 1) —o ¢
Chaited X sq v, subje obj. s, (subje (Xz. (vg (0bj (Xy. failzy))))) :

(t—t)—((e—~t)—oe—ot)—o((eot)—oe—ot)—o

—o ((e —~t) —t)—ot

Ceo tove X’ 8q1 802 Va 0] subje. sq1 (Sa2 (subje (vq (Xz. (0bj (Xy. lovezy))))))) :
(t—t) —(t —t) —o((e—ot)—oe—ot)—o

—o ((e —~t) —t) —o((e—ot)—ot)—t

Cieems Xwup,r.vp, (Xz.seem 1) :

((c —o ) —o e —o 1) —o (¢ —o 1) —o (¢ —o 1
Creany X wp, . vp, (XNz. really (rz)) :

((c —o ) —o e —o 1) —o (e —o t) —o (e —o 1
C, Xup,r.vp, (Xz. (rz)) :

(e = t) = e—ot) —o (e —ot) —o (e — 1)

Table 3.7: Semantic interpretations of elementary trees anchored with predicative
adjectives, verbs, adverbs, and copulas

trees, we interpret them differently as they have contrasting semantic properties. For
example, Table 3.7 provides interpretations of the constants encoding auxiliary trees
anchored with seems and really. To illustrate that their semantic properties are different,
we provide the interpretations of the sentences John Mary seems to love and Mary really
loves John in Equation (3.13) and Equation (3.14), respectively.

iseems = seem (X’ x. love x john) mary : ¢ (3-13)

ireqlly = really (love mary john) : ¢ (3.14)

The difference between iscems and ieqy reflects that one models seems as a two-place
(higher-order) predicate, whereas really is a one-place predicate.

As Table 3.7 shows, we interpret the constant C, : V, modeling the VP-auxiliary tree
anchored with the copula is as a term without any constant, i.e., without any semantic
material.

Furthermore, let us interpret Cyeue : Sa — S — S,, which models an S-auxiliary

S

tree s s . Let because denote the predicate signaled by because. The predicate
because relates two clauses. In other words, because is a 2-place predicate whose
arguments are propositions.

The predicate because receives one of the arguments by substituting an S-rooted
(completed) derived tree in the S-substitution site of the auxiliary tree anchored with
because. By adjoining the auxiliary anchored with because into an S-rooted derived tree,
one provides the predicate because with the other argument. To model the way because
obtains its arguments, we interpret C,... as it is shown in Table 3.8.
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Constants of X2 LTAG trees Their interpretations under Z5%"
S
/\
Checanse : Op —0 S —0 G, | s* s X $q5%.5, (becausesx) : (t —ot) —ot —ot
. /\S
ecause 1

Table 3.8: The semantic interpretation of the LTAG tree anchored with because

Example 3.6. ¢

((12)(d), repeated) John Mary seems to love.

Figure 3.20(c) on page 76 shows the derived tree whose yield is the sentence (12)(d).
The derivation tree of this derived tree is shown in Figure 3.20(b). As one may notice,
the derivation tree does not encode the correct semantic dependencies. Indeed, coiove
dominates (scopes over) [seems. However, from a semantic standpoint, seems scopes over
to love, as we already saw in isems (see Equation (3.13)). We model this derivation tree
by the term ¢, given in Table 3.17 on page 75. To obtain the semantic interpretation of
the sentence (12)(d), we interpret the term ¢, by the lexicon .Z" as follows:

"ZI'SAeGm(tlt) = "?'I'SAeCI:‘n(Cto love ISA ISA (Cseems IVA) C CMary) H-)B

John

— 3 seem ((\’ z. love john z) mary) :{ (3.15)

Thus, we obtain the term seem (X’ z. love john ) mary as the semantic interpretation
of t,. In contrast to the derivation tree, the obtained semantic interpretation encodes
the correct semantic dependencies (love is indeed under the scope of seem).

Example 3.7.

((12)(c), repeated) Fred is grumpy because he failed an exam.

In the case of the sentence (12)(c), we model the derivation tree (in Figure 3.18(b)
on page 76) with a term ¢, defined in Table 3.17 on page 75. We compute the image of
t, under the lexicon Z" as follows:

"%’SAeGm(t,g) = ﬁ?(cgrumpy(cbecause ISA (Cfailed ISA IVA Che (Cexam IhA Can))) (Cis IVA) CFred) _»ﬁ
—3 Because (37 (exam z) A (fail Fred 7)) (grumpy Fred) : ¢ (3.16)

Figure 3.21 on the facing page illustrates the overall architecture of the ACG encoding
of TAG with Montague semantics.

2In Appendix A, we provide ACG codes for the examples provided below, which one can run on the
ACG toolkit.
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A(E?:é)\:‘ TAG derivation trees
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\\\ —
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/ A ( ELOQ )\\ Montague

/
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\
A(ZString )/,“ TAG string language

/

Figure 3.21: The ACG architecture of TAG with Montague semantics

Remark 3.4. The ACG encoding of TAG has the following property: A lexicon interprets
a linear abstraction always as a linear one. This implies that if a term over L5 is of
pe o — [ and L7 is a lexicon, then L350 (a —o ) 1 L5 (a) —o ZL50(5). On other
other hand, as we already saw, in Kanazawa’s (2007) \-CFGs, one may interpret o —o [3
as L50(a) — L50(5). Hence, Pogodalla (2009) uses a version of ACGs that falls between
de Groote’s (2001) linear and Kanazawa’s (2007) almost-linear versions of the second-order

ACGs. Thus, the problems of parsing and generation with the ACG encoding of TAG with
Montague semantics are polynomial.
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Discourse Theories
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In this chapter, we discuss discourse theories. We focus on two paradigms in discourse
studies, known as discourse structure theories and dynamic semantic theories. Discourse
structure theories view a coherent discourse as a structured entity constructed by linking
the sub-entities to each other. Usually, a sub-entity in the discourse structure is identified
with a meaningful sub-piece (sub-part) of the original discourse. A meaningful sub-part of
a discourse is called a discourse constituent, or a discourse unit. Special relations, called
rhetorical (discourse) relations, provide connections between discourse units. In order to
interpret a discourse, discourse structure theories largely rely on pragmatic knowledge. Unlike
discourse structure theories, most dynamic theories do not pay significant attention to the
discourse structure. They make use of the notions of a dynamic meaning of a proposition
and a context in order to interpret a discourse. The dynamic meaning of a proposition is its
potential to change (update) the context where it occurs. From discourse structure theories,
we discuss Rhetorical Structure Theory (RST), which has been applied in a number of tasks
in computational linguistics. From dynamic semantic theories, we focus on SDRT. While
SDRT is a dynamic semantic theory, it incorporates the notions of a rhetorical relation

87



Chapter 4. Discourse Theories

and a discourse structure in its dynamic setting. Thus, SDRT can be seen as a bridge
between dynamic semantic theories and discourse structure theories. In addition, we provide
a brief overview of linguistic aspects of discourse connectives. In particular, we highlight
some problems of identifying the arguments of a discourse connective.

4.1 Linguistic Aspects of Discourse Connectives

A discourse connective relates two pieces of semantic content, called arguments of a
discourse connective. A piece of discourse that gives rise to an argument of a discourse
connective is referred to as discourse unit. We say that a discourse connective signals a
discourse (rhetorical) relation. Usually, a discourse relation is a binary relation, or to put
it another way, a discourse relation has two arguments.?’

In this section, we mainly focus on overt (explicit) lexical markers of discourse
connectives. They serve as basic linguistic means for expressing ideas in a coherent way.
One refers to an explicit lexical marker of a discourse connective as a cue word or a cue
phrase, depending on whether it consists of one or more lexical items (words). Besides
overt lexical markers, discourse connectives can also be expressed by other means, such
as textual adjacency. Since this section is concerned with the explicit lexical markers
of discourse connectives, we may refer to them as discourse connectives if it does not
cause a confusion.

In natural languages like English and French (the ones that we focus on within this
thesis), three main classes of discourse connectives are distinguished. These classes
consist of subordinate conjunctions, coordinate conjunctions, and adverbial connectives. For
instance, because and although in Example (17) are subordinate conjunctions, whereas
but and and in Example (18) are coordinate ones. We may use the term conjunction to
refer both subordinate and coordinate conjunctions. In Examples (17) and (18), the
conjunctions signal the discourse relations connecting two pieces of semantic content,
denoted in bold and in italics.?8

Adverbial connectives (discourse adverbials), like conjunctions, give rise to discourse
relations that have two arguments. For instance, moreover in (19)(a) and then (19)(b)
are adverbial connectives. In Example (19g), each of these two discourse adverbials
signals a discourse relation that relates the content of the first sentence (in italics) with
the content of the second one (in bold).

(17) a. Fred is grumpy because he lost his keys.
b. Although Fred is generous, /e is hard to find.

(18) a. Fred is French but his wife is Spanish.
b. Fred is French and his wife is Spanish.

?’Discourse relations vary from theory to theory. A more or less agreed assumption about a discourse
relation is that it has two arguments.
Z8Following the style of (Rashmi Prasad et al., 2008; Bonnie Webber and Rashmi Prasad, 2009).
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(19) a. Fred lost his keys. Moreover, he failed an exam.

b. Fred went to the cinema. Then, he went to the bar.

To analyze a discourse, it is necessary to identify the content related by the discourse
relations signaled by the discourse connectives in the discourse. In other words,
interpreting a discourse incorporates finding the arguments of discourse relations. For
now, we will call them arguments of discourse connectives. While in the examples
presented so far, one straightforwardly identifies the arguments of a discourse connective,
to define what are the arguments of a discourse connective is a problem in general.

Arguments of explicit connectives are not constrained to be single clauses or
single sentences: They can be associated with multiple clauses or sentences.
However, a minimality principle requires an argument to contain the minimal
amount of information needed to complete the interpretation of the relation.

Rashmi Prasad et al. (2008)

Thus, even though a text may contain various kinds of information, only certain
kinds of information can qualify as arguments of a discourse connective. For instance,
let us consider the following example from (Miltsakaki, A. Joshi, R. Prasad, and B.
Webber, 2004):

(20) Workers described “clouds of dust” that hung over parts of the factory even though
exhaust fans ventilated the air.

In (20), even though has an argument which is a relative clause (denoted in italics),
but not the entire clause — workers described “clouds of dust” that hung over parts of the
factory.

One of the main problems of identifying arguments of a discourse connective is
the mismatch between its syntactic and discourse-level (semantic) properties. In other
words, a discourse connective may exhibit different behaviors at the sentence-level and
at the discourse-level. It has been argued that the semantic arguments of a conjunction
are obtained from /locally available material (Bonnie Webber, Knott, Stone, and Aravind
Joshi, 1999). A stronger assumption about conjunctions is that the semantic arguments
of a conjunction are defined in part by syntax.? For instance, in (17)(b), although has
two arguments, the clauses written in italics and in bold. According to the assumption
about conjunctions, these clauses are syntactically bound arguments to although. One
says that a conjunction obtains its arguments structurally, or that both of the arguments
of a conjunction are structural because the arguments of a conjunction appear in the
parse tree of the discourse (B. L. Webber, 2004; B. L. Webber and A. K. Joshi, 1998;
Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003). Sometimes, we may refer to
conjunctions as structural connectives.

While for conjunctions one assumes that some syntactic rules govern the way they
obtain their arguments, some authors argue that for discourse adverbials one cannot
make such an assumption (B. L. Webber, 2004; B. L. Webber and A. K. Joshi, 1998;

»Similar to arguments of a verb, which are defined by syntax (e.g. the subcategorizing frame, or the
domain of locality in LTAG).
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Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003). They argue that only one of
two arguments is syntactically bound to an adverbial connective, that is, it has only
one structural argument. For example, in (19g)(a), the syntactically bound argument
of moreover is he failed an exam. The other argument of an adverbial connective is
called anaphoric. While the structural argument appears in the parse tree of a discourse,
the anaphoric one does not. To put it another way, an adverbial connective may have
only one argument defined by syntax. The other argument is anaphoric (inferred) since
it is not defined by syntax but has to be either anaphorically retrieved in the discourse
or inferred from the context (B. L. Webber, 2004; Bonnie Webber, Stone, Aravind Joshi,
and Knott, 2003). Various researchers develop their approaches with contrasting views
on the structural and anaphoric arguments. For instance, Danlos (2009) develops an
approach where both arguments of an adverbial connective appear in a parse tree of a
discourse, and thus there is no distinction between structural and anaphoric arguments,
or in the terminology of (B. L. Webber, 2004; Bonnie Webber, Stone, Aravind Joshi,
and Knott, 2003), both arguments are structural. Although how arguments of discourse
connectives are provided is a subject of discussions, most researchers agree that every
discourse connective has two arguments. Let us denote the arguments of a discourse
connective (relation) with ARG1 and ARGe2. In this section, ARG1 is in italics and
ARG¢2 in bold; a discourse connective is underlined.

411 Argi

As we already mentioned, according to some theories, ARG1 is the anaphoric argument
of an adverbial connective, whereas ARGe is structural (B. L. Webber, 2004; B. L.
Webber and A. K. Joshi, 1998; Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003).
If the anaphoric argument of a discourse adverbial is explicitly present in a text, it
can be retrieved in the discourse using some sort of mechanism, similar to anaphora
resolution. Otherwise, ARG1 can be inferred. The discourse adverbial obtains the
structural argument, ARG, by means of syntax. In other words, the semantic content
denoted by ARG is obtained by interpreting a piece of discourse that is syntactically
bound to the adverbial connective, whereas the semantic content denoted by ARG1
may not be an interpretation of any discourse unit in a text.

While ARG1 is a content that is accessible to adverbial connectives, it may not
be accessible to structural connectives, i.e., conjunctions. The capability of accessing
the inferred (abstract) material in a discourse is considered to be one of the main
characteristics that makes adverbials different from conjunctions. For the sake of
illustration, let us consider the coordinate conjunction or and the adverbial otherwise.
In a number of cases, one may use or and otherwise interchangeably, as it in the
following discourses:

(21) a. If the light is red, stop. Otherwise you’ll get a ticket.
b. If the light is red, stop, or you’ll get a ticket.

(21)(a) and (21)(b) express the same meaning: If you do something else than stop,
you’ll get a ticket. However, in the examples such as (22), otherwise and or behave
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differently. To illustrate that, let us replace otherwise by or in (22). One obtains the
discourse (23), whose meaning differs from the meaning of (22). The difference in their
meanings is due to the fact that ARG1 of otherwise is inferred in (22). In particular,
in (22), otherwise has an access to the interpretation of the condition, whereas in (23),
or does not have an access to that (Bonnie Webber, Stone, Aravind Joshi, and Knott,
2003).

(22) If the light is red, stop. Otherwise go straight on.

(23) If the light is red, stop, or go straight on.

According to recent studies strengthened with the evidence from corpus analy-
ses (Bonnie Webber and Rashmi Prasad, 2009), sentence-initial (S-initial) coordinate
conjunctions show some similarities to adverbial connectives. In particular, ARG1 of
an S-initial coordinate conjunction might be a non-adjacent textual unit to the S-initial
conjunction. For example, in the discourse (24), the S-initial coordinate conjunction but
has ARG1 at the distance of one sentence from the location of the S-initial conjunction.

(24) I'm mot suggesting that the producers start putting together episodes about topics like
the Catholic-Jewish dispute over the Carmelite convent at Auschwitz. That issue, like
racial tensions in New York City, will have to cool down, not heat up, before
it can simmer. But I am suggesting that they stop requiring Mr. Mason to
interrupt his classic shtik with some line about “caring for other people”
that would sound shmaltzy on the lips of Miss America.

Thus, the new evidence suggests that the difference between structural and anaphoric
discourse connectives may not lay into the locality or non-locality of arguments, contrary
to what was claimed before. At the same time, it is noteworthy that in lines with
the previous studies, the recent studies indicate that adverbials have access to the
content that is inaccessible for conjunctions. Based on the corpus studies, (Bonnie
Webber and Rashmi Prasad, 2009) claims that everything that can be an argument
of an S-initial coordination conjunction can also serve as an argument of a discourse
adverbial, whereas the reverse statement does not hold.

4.1.2 Arge

Since ARG2 of an explicit marker of a discourse connective is defined in part by syntax,
to identify ARG2 is considered to be relatively easier than to identify ARG1. Indeed,
in certain cases, the syntactic argument of an adverbial connective coincides with the
discourse unit that gives rise to ARG2, as it is in the following example from (Danlos,
2013):
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(25) Fred ira @ Dax  pour  Noél. Ensuite, il ira a
Fred ZOrUTgrNG. to Dax for Christmas. Afterwards, he OrUT;3PSNG. to
Pau.
Pau.

‘Fred will go to Dax for Christmas. Afterwards, he will go to Pau.’

However, in certain cases, it is not clear what serves as ARG2 of a discourse
connective.

4.1.2.1 Attitude Verbs

In Example (25), the adverbial ensuite (then, afterwards) gives rise to a temporal relation
between the events of Fred going to Dax and Fred going to Pau. Thus, in this case,
ARG is the content of the clause that serves as the syntactic argument to the adverbial
connective (the piece of text in bold). In some cases, however, identifying ARG2
may also depend on various factors that make it a rather difficult task. For instance,
identifying ARG2 becomes more problematic if one employs attitude verbs. Since one
uses attitude verbs to express beliefs/assertions of the agents, this may complicate the
task of determining the content that discourse connectives relate (Bernard, 2015; Danlos,
2013; Dines et al., 2005; Bonnie Webber, Egg, and Kordoni, 2012). To illustrate that,
we consider the second clause in (25), [il ira @ Pau]. By using this clause and the verb
croire (believe), we can produce the discourses (26)(a) and (26)(b).>° In both of the
cases, ensuite (then) signals a temporal relation between [Fred ira @ Dax pour Noél] and
[il ira & Pau]. Thus, in the case of discourses (25), (26)(a), and (26)(b), ARG2 of
ensuite is the same. With the same kind of reasoning, we modify (26)(a) by using the
first sentence of (26)(a) with the verb croire (believe). We obtain the discourse (27). In
this case, ARG2 is not the same as in the cases of (26)(a). In (27), ensuite establishes
the relation between [Jane a cru que Fred irait & Dax pour Noél] and [elle a cru qu’il
irait a Pau] (Jane thought that Fred would go to Dax and then she thought that he
would go to Pau). Thus, if attitude verbs are involved in a discourse, to identify the
arguments of a discourse adverbial becomes a non-trivial task, even in a case of a
discourse with two sentences.

(26)
a. Fred ira @ Dax pour  Noél. Ensuite,  [Jane croit qufil
FT€d gOFUT;gP;SNG, to Dax for C/zristmas. Afterwards, Jane thinkpl{s;(«;l’;SNu that he
ira a Pau

gOFU'l‘;gl’;SNG, to Pau.

‘Fred will go to Dax for Christmas. Afterwards, Jane thinks that he will go to
Pau’

30The boxed texts denote the parts of the text that contribute neither to arguments of discourse
connectives nor to cue phrases.

92



4-1.  Linguistic Aspects of Discourse Connectives

b. Fred ira a Dax  pour  Noél. Ensuite,  [croit Jane],

Fred ZOrUT;gENG. to Dax for Christmas. Afterward, thinkersrsve. Jane,
il ira a Pau.
he gOFUT;gp;SNG to Pau.

‘Fred will go to Dax for Christmas. Afterwards, Jane thinks, he will go to Pau.’

(27) Jane a cru que  Fred  irait @ Dax  pour
Jane haverres.ge;sve. thinkeast.parr. that Fred ZOPRES.COND.3P;SNG. to Dax for
Noél. Ensuite, elle a cru qu’il irait
Christmas. Afterwards, she haverres.ge;sve. thinkeast.parr. that he ZOPRES.COND.3P;SNG.
a Pau
to Pau.

Jane thought that Fred would go to Dax for Christmas. Afterwards, she thought
that he would go to Pau.’

In a discourse where attitude verbs are involved, to determine ARG2 becomes
problematic not only for adverbial connectives, but even for subordinate conjunctions,
which are considered as connectives whose arguments are defined by syntax. Let us
consider the following examples from (Danlos, 2012):

(28)
a. Fred et allé travailler  bien que Jane dise qu’il
Fred is gOI’AS'l‘J’ART. WOI'kINDEr, although Jane Sa}’szJJq{Es;;gP;SNG, that he
est trés malade.
is very il
‘Fred went to work even though Jane says that he is very ill. ’
b. *Fred est fatigué parce que Jane dit qu’il a

Fred is tired because Jane SaySPRES;gP;SN(}A that he haVCPREs.3P;SN(;.
mal dormi.
bad sle €Peast.PaRT..

‘Fred is tired because Mary says that he slept poorly.’

While the discourse (28)(a) is felicitous, the discourse of the similar syntactic
structure (28)(b) is infelicitous. Thus, a purely syntactic approach cannot determine
whether a given discourse is felicitous, and if it is felicitous, then what is (are) its
interpretation(s). Although Danlos (2013) proposes some principles/rules how to extract
ARGy, they apply in a limited number of cases where one imposes certain requirements
on both discourse connectives and syntactico-semantic properties of sentences.

4.1.2.2 Clause-medial Adverbials

In a case where an adverbial connective appears at an internal position in a clause,
one refers to it as a clause-medial adverbial (clause-medial connective). For instance, in
(29), ensuite is a clause-medial adverbial. Identifying ARG2 is problematic due to the
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fact that syntactic properties of the adverbial do not associate it with the clause but
rather with the VP. For instance, in TAG, the adverbial would anchor a VP-auxiliary
tree, hence it modifies the VP of the clause. However, a VP cannot be a discourse
argument, where a minimal (atomic) unit of discourse is a clause. Thus, in this case,
there is a mismatch between syntax and discourse, that is, between the sentence-level
and discourse-level analyses of a clause-medial adverbial.

(29) Fred ira @ Dax  pour  Noél. I ira ensuite a
Fred gorurgesve.  to Dax for Christmas. He  gorumgesse.  afterwards  to
Pau.

Pau.

‘Fred will go to Dax for Christmas. He will then go to Pau.’

41.3 Constraints for Identifying Arguments of a Discourse Con-
nective

Danlos (2009) studies the syntax-semantics interface for discourse by proposing a
formalism called D-STAG. In D-STAG, any connective is structural, that is, both of the
arguments of every connective in a discourse (if any) appear in the parse tree of a
discourse. In order to identify arguments of a connective, D-STAG makes use of certain
constraints.

The arguments of a discourse relation/connective are the discursive seman-
tic/syntactic representations of the same (continuous) discourse segments.
Danlos (2011)

In D-STAG, one refers to a clause where a discourse connective appears as the
host clause of the discourse connective. For instance, a subordinate conjunction always
appears in front of its host clause (at a clause-initial position of a clause). As we
already saw, an adverbial connective may either appear in front of its host clause or
within its verb phrase (at a clause-medial position). The host clause of a subordinate
conjunction is called an adverbial clause. The name adverbial clause is due to the fact
that at the sentence level, an adverbial clause functions in the same way as an adverb
as both of them modify a matrix clause. Regarding matrix clauses, D-STAG considers
the following cases:

1. The matrix clause is on the right of the adverbial clause. In this case, the

subordinate conjunction is called postposed.

2. The matrix clause is on the left of the adverbial clause, or inside the adverbial
clause (before the VP of the adverbial clause). In this case, the subordinate
conjunction is called preposed.

As we already saw, the host and matrix clauses of a discourse connective may not
be the arguments of the discourse relation signaled by the discourse connective. D-STAG
introduces terms the host segment and mate segment of a discourse connective in order to
denote the arguments of a discourse connective/relation. The host segment is obtained
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from the host clause and the mate segment from the mate clause. By comparing the
notions of the host and mate segments with ARG1 and ARG2, we can see that the host
segment is ARG2, whereas the mate segment is ARG1. Thus, below we may use these
terms interchangeably.
In order to identify the host and mate segments of a discourse connective, D-STAG
proposes the following constraints (Danlos, 2011):
Constraint 1: The host segment of a connective is identical to or starts at its host
clause (possibly crossing a sentence boundary).
Constraint 2: The mate segment of an adverbial is anywhere on the left of its host
segment (generally crossing a sentence boundary).
Constraint 3: The mate segment of a postposed conjunction is on the left of its host
segment without crossing a sentence boundary.
Constraint 4: The mate segment of a preposed conjunction is identical to or starts at
the matrix clause (possibly crossing a sentence boundary).
To illustrate the motivations behind Constraints 1-4, let us consider the following
examples:

[(17)(a), repeated] Fred is grumpy because he lost his keys.

[(19) (b), repeated] Fred went to the cinema. Then, he went to the bar.

(30) When he was in Paris, Fred went to the Eiffel Tower. Next, he visited the Louvre.

In (17)(a), the connective because is a postposed conjunction. The mate segment of
because coincides with the matrix clause of because; the host segment of because is the
host clause of because.

In (19)(b), the mate segment of then is on its left, which is the first sentence in
(19) (b) (with respect to the linear order in the surface level). The host segment of then
is identical to the host clause of then, which is the second sentence.

In the case of (30), when is a preposed conjunction. The mate segment of when starts
at the matrix clause of the first sentence in (30), but spans over the second sentence
as well, i.e., crosses the sentence boundary. In this case, when is a frame adverbial
(Charolles, 2005).

In addition to above mentioned theories, to identify arguments of discourse connec-
tives, Wellner and Pustejovsky (2007) develop an approach based on machine learning.
They train classifiers on ARG1 and ARG2. Candidates for ARG2 are selected only
among those ones that lay within the same sentence as the connective. They argue that
ARG1 and ARGg for different discourse connectives behave differently. According to
their results, the classifier trained on pairs of arguments performs significantly better
than the one that is trained on each argument independently.

Soricut and Marcu (2003) develop a system for the sentence-level discourse parsing
also based on machine learning. Their approach makes use of the lexical and syntactic
information to train the system. In particular, the training set consists of triples:
sentence, its syntactic tree(s), its discourse tree(s). The input for the discourse parser
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is a lexicalized syntactic parse tree in which the discourse boundaries are marked. A
lexicalized syntactic parse tree is associated with a set of features. A feature serves
as a representation of the syntactic and lexical information of an attachment site of
discourse units in the syntactic tree. According to the authors of the study, such features
provide sufficiently rich information to enable the derivation of felicitous discourse trees
(structures). All in all, to identify arguments of discourse connectives remains one of
the problems in (computational) linguistics that requires further studies.
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4.2 Rhetorical Structure Theory

Rhetorical Structure Theory (RST) (Mann and Thompson, 1987, 1988) is a discourse
structure theory. One of the main motivations for introducing RST was to study the
questions of text organization. Thus, the RST interpretation of a text is a structure that
describes the way the text is organized. The RST analysis applies to a certain kind of
written monologues, as the following quote indicates:

Certain text types characteristically do not have RST analyses. These include
laws, contracts, reports ‘for the record’ and various kinds of language-as-art,
including some poetry. Mann and Thompson (1987)

One of the first applications of RST was found in the text generation task. The later
developments of RST made it possible to employ RST in other tasks of computational
linguistics, such as discourse parsing and summarization (Marcu, 1997).

4.2.1 Basic Principles

Given a text, its RST analysis is a hierarchically organized structure where rhetorical
relations link sub-parts of a text, called text spans.

To analyze a text with RST, one assumes that the following hypotheses hold (Mann
and Thompson, 1987):

1. Texts are not just strings of clauses. Instead, they consist of hierarchically

organized clauses and groups of clauses that relate to one another in various ways.

2. These relations, which can be described functionally in terms of the purposes
of the writer and the writer’s assumptions about the reader, reflect the writer’s
options for organizing and presenting the concepts.

3. The most common type of text relation is a relation called the nucleus-satellite
relation, in which one part of the text is auxiliary to the other, and therefore of
less significance for the overall information conveyed by the discourse.

The first hypothesis suggests that any text is a hierarchically organized entity. The
hierarchical organization is defined by rhetorical connections. A rhetorical connection
consists of a two text spans connected by a rhetorical relation. One assumes that a
rhetorical relation connects two non-overlapping text spans.

The second assumption provides a general purpose of rhetorical relations explained
in terms of writer/reader’s intention/expectations. In RST, there are two kinds of
relations, subject matter and presentational ones.

* Subject matter relations make it easy for a reader to recognize that there is a

semantic relation between the given text spans.

* Presentational relations increase some inclination in a reader. They bear some

information that is beyond semantics, i.e., the information that can be attributed
to pragmatics.>!

31As it is noted in (Nicholas, 1994), both subject matter and presentational relations can be unified
under a property of having a perlocutionary effect. However, since subject matter relations provide semantic
information (some facts about a world), they give rise to perlocutions that are easier to perceive compared
to ones that arise in the case of presentational relations.
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The third assumption is characteristic to RST. According to it, a rhetorical relation
may relate two text spans in such a way that one of them is more central to the
writer’s intention and/or is more informative for the reader compared to the other one.
One refers to the more important text span as the nucleus of the rhetorical relation.
The less important text span is called the satellite of the relation. To illustrate the
difference between the nucleus and the satellite of a rhetorical relation, let us consider
the following example from (Mann and Thompson, 1986):

(31) [Tempting as it be], [we shouldn’t embrace every popular issue that comes along].

In Example (31), tempting as it be does not serve as the source of the main information
conveyed by the text. The central idea that a writer communicates by means of the
text (31) is expressed by [we shouldn’t embrace every popular issue that comes along].
Thus, this text span is the nucleus, whereas the other is the satellite. The rhetorical
relation between the nucleus and satellite is CONCESSION. In RST, one establishes
CONCESSION if the nucleus expresses a situation affirmed by the writer. The satellite
expresses a situation which is (apparently) inconsistent with the information expressed
by the nucleus, but nevertheless it is also affirmed by the writer. Figure 4.1 shows a
pictorial representation of the RST discourse structure for the text in Example (31).
The horizontal segments stand for the text spans, whereas the rhetorical connection
between them is depicted as the edge. The name of the rhetorical relation labels the
edge. The edge is directed from the satellite to the nucleus. The vertical line indicates
the position of the nucleus in the text.

CONCESSION

Tem;ting as We shouldn’t embrace every popular issue that comes along.

it be,
Figure 4.1: An RST structure of a discourse

It is not always straightforward to distinguish a nucleus from a satellite or vice versa.
To illustrate that, let us consider the following example from (Carlson and Marcu,
2001):

(32) [Although the earnings were fine and above expectations]ﬂifQ, [Salomon’s stock fell
$1.125 yesterday]ms>.

In Example (32), 7T§2 is the nucleus and 7T:1))2 is the satellite.32 The rhetorical relation
between the two is CONCESSION.

2We tag with 7" the k-th clause in the text of Example (m), unless otherwise stated.
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(33) [The earnings were fine and above expectations]r3>. [Nevertheless, Salomon’s
stock fell $1.125 yesterday]r;>.

The semantic content of the text in Example (33) is very similar to the one of the
text in Example (32). Indeed, the clauses 7ri1)’2 and 7Ti1)’3 have the same contents, and
at the same time, the clauses 7r§2 W%g have the same contents as well. Moreover, the
discourse units 732 and 73° are in contrast to each other due to the presence of the
cue word nevertheless. Thus, the discourses (32) and (33) are semantically very similar
to each other. In spite of that, the RST structures of the discourses (32) and (33)
are different from each other. Indeed, in the case of the text in Example (33), both
7% and 73> have the same status in the text, because both of them convey the same
kind of information of the same importance. Hence, both 733 and 73° are nuclei in
Example (33). The RST relation between them is CONTRAST. Figure 4.2 depicts the
RST structure corresponding to Example (33). Thus, while 752 plays the role of the
satellite in the discourse (32), in a semantically very similar discourse, namely, in the
discourse (33), T3> is a nucleus. This suggests that one may not be able to detect the

distinction between a satellite and a nucleus by examining only semantic contents.

CONTRAST

The earnings Nevertheless, Sa-
were fine and lomon’s stock fell
above expec- $1.125 yesterday.
tations.

Figure 4.2: A multinuclear discourse structure

One of the guidelines to identify satellites and nuclei in a text suggests that by
discarding the satellites, the remaining text (consisting of only nuclei) should convey
the most essential information provided by the original text. Another suggestion is that
replacing the satellite in the text (with something else) should not induce (significant)
changes in the intended function of the text.

We say that a relation is multinuclear if both of the discourse units it connects are
nuclei (e.g. CONTRAST). Otherwise, if only one of them is nucleus, then we say that a
relation is mononuclear (e.g. CONCESSION).

Relation name CONCESSION
Constrains on N W has positive regard for the situation presented in N.
Constrains on S W is not claiming that the situation presented in S does not hold.

Constrains on N+S | W acknowledges a potential or apparent incompatibility between N and S;
W regards the situations presented in N and S as compatible;
recognizing the compatibility between N and S increases R’s positive regard for N.

Effect R’s readiness to accept W’s right to present N is increased.

Locus of the effect | N and S.

Figure 4.3: The RST definition of the rhetorical relation CONCESSION
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In RST, a rhetorical relation is defined in terms of the constraints on the text spans
it connects. These constraints are formulated in terms of perlocutionary effects which
the reader experiences/writer intends. The complete RST recipe of defining a relation
is as follows (Mann and Thompson, 1988):

1. Constrains on the nucleus of the relation.

2. Constrains on the satellite of the relation.

3. Constrains on the combination of the nucleus and satellite of the relation.

4. Effect on the reader.

Figure 4.3 on the previous page provides an example of a definition of a rhetorical
relation. Table 4.1 provides concise descriptions of the definitions of the rhetorical
relations that we are going to use in further examples.

Relation Name Nucleus Satellite
ANTITHESIS ideas favored by the author ideas disfavored by the author
CIRCUMSTANCE text expressing the events or ideas an interpretive context of
occurring in the interpretive context situation or time
ELABORATION basic information additional information
ENABLEMENT an action information intended to aid
the reader in performing an action
EVIDENCE a claim information intended to increase
the reader’s belief in the claim
JUSTIFICATION text information supporting the writer’s
right to express the text
MOTIVATION an action information intended to increase
the reader’s desire to perform the action
NON-VOLITIONAL a situation another situation which causes that one,
CAUSE but not by anyone’s deliberate action
PURPOSE an intended situation the intent behind the situation
SOLUTIONHOOD a situation or method supporting a question, request, problem
full or partial satisfaction of the need or other expressed need

Table 4.1: Rhetorical relations

4.2.2 Schemas

In RST, while rhetorical relations are the first-level objects, the second-level objects are
schemas. A schema is defined in terms of either one or two relations. Each schema
indicates the way a text span is built out of other text spans. By recursively applying
schemas, one derives the RST analysis of a text. The simplest schema consists of a
single relation and two text spans. For instance, Figure 4.4(a) shows the Circumstance
schema, which is made up with the help of a single rhetorical relation CIRCUMSTANCE.
While horizontal lines denote the text spans, the vertical line indicates the position
of the nucleus of the relation. The edge linking the horizontal lines is labeled with
the name of the rhetorical relation. However, a schema may consist of more than one
rhetorical relation. One refers to such schemas as multi-relation schemas. Figure 4.4(b)
illustrates an example of a multi-relation schema made out of two rhetorical relations,
MOTIVATION and ENABLEMENT.
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In using schemas, RST provides one with a certain degree of freedom. Namely, one
is allowed to do the following manipulations with schemas:

Unordered Spans: The schemas do not put any restriction on the order of nuclei or
satellites in the text span in which the schema is applied.

Optional Relations: In the case of multi-relation schemas, all relations are optional, but
in the schema application at least one of the relations contained in that schema
must hold.

Repeated Relations: All the relations that are part of a given schema can be applied
any number of times in the application of that schema.

(4-34)

ENABLEMENT

CIRCUMSTANCE MOTIVATION
S

S

(a) Circumstance

(b) Motivation/Enablement

Figure 4.4: RST schemas

Despite permitting a certain degree of flexibility in schema application, according
to (Mann and Thompson, 1988), a set of schema applications qualifies as a structural
analysis of a text if the set of schema applications satisfies the following constraints:

Completedness: The set contains one schema application that contains a set of text
spans that constitute the entire text.

Connectedness: Except for the entire text as a text span, each text span in the analysis
is either a minimal unit or a constituent of another schema application of the
analysis.

Uniqueness: Each schema application consists of a different set of text spans, and,
within a multi-relation schema, each relation applies to a different set of text
spans.

Adjacency: The text spans of each schema application constitute one text span.

Completedness, Connectedness, and Uniqueness ensure that an RST analysis results
in a tree-like, hierarchically structured entity. Adjacency guarantees that the resultant
structure contains no crossing edges. For instance, Figure 4.5 shows the RST structure
of the following discourse:
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(35) [No matter how much one wants to stay a nonsmoker]wif‘t’, [the truth is that the
pressure to smoke in junior high is greater than it will be any other time of one’s
11fe]7r§’5. [We know that 3,000 teens start smoking each day]7T§5, [although it is a
fact that go% of them once thought that smoking was something that theyd never
do]m3.

JUSTIFICA’I'ION

R CONCESSION

35
ST U 7r§’5 7&5

Figure 4.5: An RST discourse structure

As Figure 4.5 indicates, one obtains the RST structure of the discourse (35) by
using the Justification schema, the Evidence schema, and the Concession schema.

4.2.3 A Formalization of RST
4.2.3.1 RST Structures as Trees

Although one may find RST structures to be close to trees, they are not trees by
definition. The asymmetry between a nucleus and a satellite makes RST structures
different from trees. Marcu (1997, 2000) proposes to transform RST structures into
binary trees. He also presents a mathematical formalization of the notion of a rhetorical
relation. In addition, he defines valid text structures. With the help of the notion of a
valid text structure, Marcu (1997) gives a formal definition of the RST parsing problem:
Parsing a text with RST amounts finding all valid text structures of that text.

Let REL be a rhetorical relation. Marcu (1997) encodes REL as a sorted predicate
rhet-rel(Rel, u;, uj), whose meaning is that the relation REL holds between the text spans
denoted by u; and u;. Here, the pair u; and u; stand either for a pair of a satellite
and a nucleus or for a pair of a nucleus and a nucleus, respectively, depending on
whether REL is a mononuclear or multinuclear relation. Once every relation is of the
form rhet-rel(Rel, u;, u;), to represent an RST discourse structure as a binary tree, one
decorates every node in a tree with the features Status, Type, and Salience or Promotion,
where:

 Status indicates whether the node stands for the nucleus or for the satellite of a

relation.

* Tjpe indicates the rhetorical relation that holds between the text spans over which

the node spans.

* Promotion is the set of units that constitute the most important part of the text

spanned by the node.
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For a leaf node, its type is leaf, and its promotion set is the textual unit that it
corresponds to. For example, one encodes the RST structure shown in Figure 4.5 with
the tree in Figure 4.6.

Status = { Nucleus, Satellite}
Tipe = {EVIDENCE}
Promotion = {7735}

Status = { Nucleus} Status = { Nucleus}
Tipe = {JUSTIFICATION } Tipe = { CONCESSION }
Promotion = {wgs} Promotion = {71'%5}
Status = {Satellite} Status = { Nucleus} Status = { Nucleus}
Type = {LEA:‘} Tipe = {LEA:‘} Tipe = {LEAF} Status = {Satellite}
Promotion = {ﬂi"’} Promotion = {ﬂg‘)} Promotion  — {ﬂ_gs Type = {LEAF}

Promotion ~ = {7!'25}

Figure 4.6: A binary tree corresponding to an RST Structure

4.2.3.2 An Extension of RST

To make use of RST in the discourse parsing task, one has to be able to distinguish well-
formed RST structures from ill-formed ones. Although RST provides some instructions
for building schemas (Completeness, Connectedness, Uniqueness, and Adjacency), RST
does not define what a wellformed structure is. Furthermore, Marcu (1997) claims that
since RST misses compositionality principles, it is impossible to formally define the
notion of parsing with RST. His point could be rephrased as follows: If one has to
continue building a partially built discourse, then what is a procedure that allows one
to decide how to proceed? Let us assume that 7, and 7, are two adjacent text spans
such that their discourse structures are already built. Assume also that some rhetorical
relation holds between two minimal units each belonging to the spans 7, and 7. Now,
a question is whether 7, and 7, are also related by a rhetorical relation. Marcu (1997)
answers this question by providing two compositionality criteria, which he proposed as
a result of analysis of a number of texts.

Proposition 4.2.1 (Weak Compositionality Criterion (Marcu, 1997)).

If a relation R holds between two nodes of the tree structure of a text, then R can be explained
in terms of a similar relation R that holds between two linguistic or nonlinguistic constructs
that pertain to the most important constituents of those nodes.
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Proposition 4.2.2 (Strong Compositionality Criterion (Marcu, 1997)).

If a rhetorical relation R holds between two textual spans of the tree structure of a text, then it
can be explained by a similar relation R that holds between at least two of the most important
textual units of the constituent spans.

The intuitive notion behind the stronger criterion is that, after all, all
the linguistic and nonlinguistic constructs that are used as arguments of
rhetorical relations can be derived from the textual units and the relations
that pertain to those units. Marcu (2000)

Although from a theoretical point of view, it is easier to satisfy the weak composi-
tionality criterion than the strong one, from a practical point of view, to use the strong
compositionality criterion could be more beneficial than the weak one. However, as
Marcu (1997) notices, in certain cases, neither of these compositionality criteria can be
applied. To illustrate that, he provides the following example:

(36) [He wanted to play squash with Janet]n3%, [but he also wanted to have dinner
with Suzanne]wg’ﬁ. [He went crazy]7r§’6.

NONVOLITIONAL CAUSE

Figure 4.7: An RST structure of a text

Figure 4.7 depicts the discourse structure of the text (36). 70 and 73 are in the
relation CONTRAST. It is hardly possible to imagine any rhetorical relation that could
hold either between W%G and 7T§6 or ﬂ%ﬁ and 7T§’6. Nevertheless, the discourse (36) is

a felicitous one. The rhetorical relation NON-VOLITIONAL CAUSE holds between 7T§6

and the text span consisting of 750 and 73°. In other words, 73° is caused neither by
7% nor 730 but by the fact that 73¢ and 3% are in CONTRAST. Since CONTRAST is

multinuclear, both 730 are w30 are of the same importance. Thus, one cannot argue

that NON-VOLITIONAL CAUSE holds between 730 and the most important one among 73°
are m50. One concludes that, in this case, not only the strong compositionality criterion
yields an incorrect analysis, but even the weak compositionality criterion cannot be

satisfied.

4.2.3.2.1 Extended Relations
Marcu (1997) argues for introducing another kind of discourse relations in addition

to rhetorical relations. He calls them extended relations. To illustrate the reasons for
introducing extended relations, let us consider a text where paragraphs are listed using
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keywords first, second, etc. In order to produce the precise analysis of such a text, one
has to give an account of the fact that these paragraphs are in the relation LisT, where
LisT is a relation that holds between paragraphs in a text rather than elementary units.
If there is no notion that could take care of such relations like LisT, then according
to the strong compositionality principle, there should be a relation (reminiscent of
LIST) between some elementary units in these paragraphs. However, while the listing
first, second, etc. may make sense for paragraphs, it could be the case that these
paragraphs do not contain such textual units that can be considered as a list: firss,
idea1; second, idea2; etc. Thus, the strong compositionality principle would fail in that
case. Hence, if one extends RST with the strong compositionality principle, one has
to allow for relations like LisT. In Marcu’s (1997) terminology, LisT is an extended
relation. LisT does not qualify as a rhetorical relation because it does not connect
elementary discourse units but paragraphs. In general, an extended relation is like a
rhetorical relation but it holds between larger portions of text rather than elementary
units.

4.2.3.2.2 Nondeterminism

In certain cases, one may associate several structures to a given discourse. This
makes discourse parsing task ambiguous. As an instance of an ambiguous discourse,
let us consider the following example from (Marcu, 1997):

(37) [John likes sweets]ﬂiw. [Most of all, John likes ice cream and chocolate]ﬂgﬁ. [In
contrast, Mary likes fruits]m3’. [Especially bananas and strawberries]r; .

The discourse (37) consists of four minimal units. The discourse connective in
contrast signals the rhetorical relation CONTRAST. However, one has to identify what
are the spans that CONTRAST connects. One may consider the several possible cases:
CONTRAST connects [71'%7—71'%7] and [7?%7—7727]; CONTRAST connects [Wi)’7—7r§7] and 7r§’7;
CONTRAST connects 7Ti)’7 and 7r§’7; CONTRAST connects 7T37 and 7T§’7, etc. In addition,
the discourse connective especially gives rise to the ELABORATION relation, which may
also hold between various text spans in the text. RST does not provide a formal
definition that one could use to justify why their choice of a particular structure is more
admissible than the other ones. In some cases, it is not even clear whether there is the
best structure among various possible ones. If we had a text that is larger than the
one in Example (37), then it is likely that it would even more ambiguous, because RST
trees for larger texts would contain more nodes. Therefore, there would be more text
spans and consequently, there would be more options for linking various text spans.
To overcome the problems that arise to due to ambiguity in the parsing task, Marcu
(1997) introduces the exclusive disjunction operator, @. It enables one to encode a
non-deterministic choice. For instance, in the case of the discourse (37), one makes
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hypothesis such the following one:

h =rhet-rel(CONTRAST, 5", 73" @ rhet-rel(CONTRAST, 75, 73" ) @

rhet-rel(CONTRAST, 73, 3" ) @ rhet-rel(CONTRAST, 73, 703" ) @

(4-38)
ELABORATION, 3, ;") €P) rhet-rel(ELABORATION, T3, 717" ) €)

rhet-rel(ELABORATION, 73", 73" ) @ rhet-rel(ELABORATION, 73", 75" )

(
(
rhet-rel(
(

Note that & only contains relations between atomic text units, because according
to the strong compositionality principle, if a relation between larger discourse units
holds, then the same relation hold between smaller discourse units. One can check that
h encodes all possible rhetorical connections that CONTRAST and ELABORATION can
provide between the discourse units in the discourse (37).

However, using the exclusive disjunction may prove to be not productive if one
relates most of the text spans with the exclusive disjunction. Given a relation, one has to
have an idea what are the possible text spans that this relation can relate. With regard
to this matter, Marcu (1997) proposes the exclusively disjunctive hypothesis. According
to this hypothesis, all the disjuncts corresponding to a rhetorical relation should be
Jfrom the same area of a text. More formally, one formulates the exclusively disjunctive
hypothesis as follows:

Definition 4.2.1 (Exclusively Disjunctive Hypothesis (Marcu, 2000)).
An exclusively disjunctive hypothesis of rhetorical relations is well formed if all textual spans
that have as boundaries the units found in each disjunct overlap.

Now, we can formulate Marcu’s (2000) definition of the text structure derivation.

Definition 4.2.2 (Text Structure Derivation (Marcu, 2000)).

The problem of text structure derivation: Given a sequence of textual units U = uy, ug,. .., up
and a set RR of simple, extended, and well-formed exclusively disjunctive rhetorical relations
that hold among these units and among contiguous textual spans that are defined over U, find
all valid text structures of the linear sequence U.

In this way, Marcu (1997) formalizes RST by adding to it compositionality principles
and extending its relations. This allows one to formally define the notion of a text
structure derivation in RST. It is noteworthy that Marcu (1997, 2000) provides both a
model-theoretic and a proof-theoretic account of valid text structures. He shows that
the proof theory is both sound and complete, that is, one derives all and only valid
text structures of RST using the proof theory.
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4.3 Segmented Discourse Representation Theory

SDRT is a theory of dynamic semantics that studies the relations between discourse,
pragmatics, and semantics (Asher and Lascarides, 2003). By formalizing pragmatic
reasoning, SDRT builds the logical representation of discourse. With the help of the
dynamic semantics, SDRT identifies formal properties of that logical form. SDRT
incorporates the discourse structure within the logical form of a discourse. In the
SDRT discourse structure, rhetorical relations provide connections between discourse
constituents (units). A rhetorical relation connects two utterances. Although under
the term utterance one may understand various kinds of information, for the sake of
simplicity, in this thesis, we assume that a rhetorical relation links propositions, unless
otherwise stated.

In order to formalize the notion of a discourse structure within a dynamic setting,
SDRT starts with atomic discourse units, that is, discourse units whose representations
do not involve rhetorical relations. To obtain the logical representation of a discourse
unit, SDRT refers to dynamic semantic theories such as DRT (Kamp and Reyle, 1993)
or DPL (Groenendijk and Stokhof, 1991). In this thesis, we will use DRT in order to
represent interpretations of atomic discourse units.

To build the logical form of a discourse, SDRT deals with various tasks, including
inference of rhetorical relations. For that, SDRT defines a logic, which is different
from the dynamic logic. The reason behind having two distinct logics is to separate
the different levels of knowledge. SDRT distinguishes the semantic information from the
pragmatic one. In order to reason about the semantic properties of a discourse, one
utilizes the dynamic logic of SDRT. That is why the dynamic logic of SDRT is also
called the logic of information content. The logic that enables one to make pragmatically
preferred decisions, i.e., that formalizes the pragmatic knowledge is referred to as the
logic of information packaging. Below, we briefly describe motivations for introducing
SDRT and its fundamental principles. Then, we discuss the language of SDRT and the
logic of information content.

4.3.1 Basic Principles of SDRT
4.3.1.1 Discourse Coherence

One of the basic principles in SDRT is discourse coherence, which can be formulated as
follows:

Definition 4.3.1 (Discourse Coherence (Asher and Lascarides, 2003)).
A discourse is coherent if:

(a) Every proposition (and question and request) that is introduced in the discourse is
rhetorically connected to another bit of information in the discourse, resulting in a single
connected structure for the whole discourse;

(b) and all anaphoric expressions can be resolved.

Thus, a coherent discourse has a single connected structure, which serves as an
interpretation of the discourse. Definition 4.3.1 does not specify what happens if several
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coherent interpretations of a discourse are simultaneously available. While a discourse
may have several coherent interpretations, one can argue that some of them are more
coherent than others. Let us illustrate this claim with the help of the following example:3?

(39) a. Max moved from Nancy to Vandceuvre.

b. The rent was less expensive.

In the sentences (39)(a) and (39)(b), the rent may refer either to the rent in Nancy
or to the rent in Vandeuvre. Thus, the following two interpretations of (39) can be
considered:

Interpretation 1 7he rent = The rent in Nancy. In this case, the discourse (39) is merely
about Max’s moving from Nancy to Vandceuvre, which is the information that
(39) (a) provides. The sentence (39)(b) only serves as the background information
to (39)(a), because its only contribution to the overall information in the discourse
is to inform a reader about the rent in Nancy compared to the rent in Vandeuvre.

Interpretation 2 The rent = The rent in Vandeuvre. In this case, the discourse (39) has
the following meaning: The reason for Max’s moving from Nancy to Vandeuvre is
the cheaper rent in Vandeuvre compared to the one in Nancy. Now, the information
provided by the sentence (39)(b) is not only the background information in the
discourse, but also explains the sentence (39)(a).

Although both of these interpretations are coherent, Interpretation 2 offers a richer
discourse structure than Interpretation 1 does. In particular, in the case of Interpretation 2,
the sentences (39)(a) and (39)(b) are linked with two rhetorical relations, BACKGROUND
and EXPLANATION, whereas in the case of Interpretation 1, only BACKGROUND links the
sentences (39)(a) and (39)(b). That is why Interpretation 2 is pragmatically more preferable
than Interpretation 1. To establish the interpretations a discourse, SDRT selects the
pragmatically most preferable interpretations. If there is only one such interpretation,
then it is declared as the interpretation of the discourse. For instance, Interpretation 2 is
the SDRT interpretation of the discourse (39). If there are several such interpretations,
then either the discourse is ambiguous or one does not have enough information to
identify the interpretation of it. To illustrate that, let us consider the following example:

(40) a. Max was released from hospital.

b. He recovered completely.

In the discourse (40), it is not clear whether Max left hospital because he recovered
completely, or Max was released from hospital and then he recovered completely. Hence, we
have two possibilities:

1. Either the sentence (40)(b) explains the sentence (40)(a),

2. or the sentence (40)(b) follows (in terms of the temporal order) the sentence

(40)(a).

In the first case, the rhetorical relation EXPLANATION is the link between two

propositions, while in the second one, the link between two propositions is NARRATION

3All the examples in this section are borrowed from (Asher and Lascarides, 2003) with slight
simplifications, unless otherwise stated.
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(from narrative). Both of these interpretations are equally possible as they are equally
coherent for us because we do not have enough information to prefer one to the other.
Now, let us consider the following two discourses, which are two possible extensions
corresponding to the two interpretations.

(41) a. Max was released from hospital.
b. He recovered completely,
c. and they needed the bed.

(42) a. Max was released from hospital.

b. He recovered completely,

c. then, he resumed training.

In the discourse (41), he recovered completely serves as an explanation why Max was
released from hospital. With the same success, in (42),% he recovered completely relates
to Max was released from hospital with NARRATION. Thus, in two different situations,
both of the interpretations are equally acceptable. In the cases such as (40), where
we cannot specify what is the interpretation of a discourse, SDRT makes use of an
underspecified representation of a discourse, which we will discuss in more details in the
further sections.

Nevertheless, in some cases (like the discourse (39)), one is able to identify what is
the interpretation of a discourse. In order to formally define what is the most coherent
interpretation, SDRT makes use of the principle called Maximise Discourse Coherence
(MDC).

Definition 4.3.2 (Maximise Discourse Coherence (Lascarides and Asher, 2007)).
The logical form of a discourse is always a logical form that is maximal in the partial order
of the possible interpretations, where the ranking of interpretations is performed according to
following principles:
o All else being equal, the more rhetorical connections there are between two items in a
discourse, the more coherent the interpretation.
o All else being equal, the more anaphoric expressions whose antecedents are resolved, the
higher the quality of coherence of the interpretation.
o All else being equal, an interpretation which maximizes the quality of its rhetorical
relations is more coherent than one that does not.

The last principle of MDC involving the notion of a guality of a rhetorical relation is
related to the fact that some relations are scalar. A relation is scalar if its quality may
vary depending on a discourse where it appears. For instance, the following discourse
relations are scalar: NARRATION, CONTRAST, and PARALLEL. The quality of each of
these relations depends on different factors.

34Example (42) is from (Prévot and L. Vieu, 2008).
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NARRATION

One links two propositions with NARRATION only if one of them temporarily precedes
the other one. For instance, in each of the discourses in (43), the first sentence
temporarily precedes the second one and therefore it makes sense to further check
whether they are linked with NARRATION.

(43) a. Yesterday, Pedro noticed a lovely donkey near his farm. He gave it some
carrots.

b. Yesterday, Pedro noticed a lovely donkey near his farm. He ate some carrots.

Actually, in both of the discourses (43)(a) and (43)(b), NARRATION connects the
first and the second propositions. Although both of these texts are coherent, the gquality
of the discourse (43)(a) is better than the quality of (43)(b). The reason is that the
quality of NARRATION gets higher as the common topic of the utterances it links gets
more specific. Indeed, the common topic of the first and second propositions in (43)(a)
includes Pedro and a donkey, while in the case of (43)(b), the common topic of the
related propositions is only Prado. That is why the quality of NARRATION in (43)(a) is
better than in (43)(b). Thus, NARRATION is a scalar relation.

CONTRAST

(44) a. John loves to collect classic cars. But his favorite car is a 2012 Ford Mondeo.

b. John loves to collect classic cars. But, he hates football.

The quality of CONTRAST depends on a degree of dissimilarity between the propo-
sitions it relates. For example, the quality of CONTRAST in the discourse (44)(a) is
better than the quality of CONTRAST in the discourse (44)(b). Since dissimilarity can
be graded in terms of more dissimilar/less dissimilar, one concludes that CONTRAST is a
scalar relation.

PARALLEL

(45) a. John has brown hair and Bill has brown eyes.

b. John has brown hair and Bill likes brown eyes.

In (45)(a), two propositions, John has brown hair and Bill has brown eyes are in the
PARALLEL relation. In the case of (45)(b), John has brown hair and Bill likes brown eyes
are also in the PARALLEL relation. However, as one may notice, the quality of PARALLEL
in (45)(a) is significantly better compared to the quality of PARALLEL in (45)(b). The
greater similarity between the contents of the propositions related by PARALLEL provides
the better quality of PARALLEL. Thus, PARALLEL is a scalar relation.
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4.3.1.2 The Right Frontier Constraint

How to increment a discourse so that one maintains its coherence is one of the problems
that SDRT studies extensively. As we saw in the definition of discourse coherence (see
Definition 4.3.1 on page 107), a new piece must add by some rhetorical relation to
the current one. However, a question is where a new piece can attach to the current
one. To put it another way, SDRT aims to identify the possible candidates amongst
the discourse constituents in a given discourse that can make a rhetorical connection
with a new piece of discourse. For the sake of illustration, let us consider the following
example:

(46) m. Max had a great evening last night.
m. He had a great meal.
m3. He ate salmon.
m4. He devoured lots of roquefort.

75. He then won a dancing competition.

Example (46) illustrates a coherent discourse. However, adding the following
proposition to (46) yields an incoherent discourse:

(47) mx. It was beautiful pink.

Adding my to (46) makes the resultant discourse infelicitous because the pronoun
it from mx does not find an antecedent in (46). At the same time, one knows that
the pronoun i¢ in mx could only refer to salmon in 73 as it is the only thing in the
discourse that is pink. We can even substitute it by the salmon in 7y, i.e., we could try
to increment (46) with the salmon was beautiful pink instead of mwy. Nevertheless, the
result would be as incoherent as in the previous case. Hence, the incoherence of the
discourse ‘(46)+mx’ is not due to a problem of ambiguity of the anaphora resolution
task (since there is no ambiguity). To identify the problem, let us build the rketorical
structure of (46).

The propositions m and 75, both elaborate w1 as each of them expresses a sub-event
(sub-part) of the event corresponding to 7;. Indeed, to have a meal (m2) and to win
a dancing competition (75) are among the events that happened at the evening last night
(m1). In such cases, SDRT links two propositions with the rhetorical relation called
ELABORATION. 7y and 75 are also related to each other. There is a temporal relation
between them: first, 2 took place and when it was over then 75 began. The cue word
then in 75 makes this temporal relation explicit. One concludes that the link between
w9 and 75 is NARRATION.

The propositions 73 and 74, both elaborate mo as they express sub-events of Aaving
a meal (m2). Thus, ELABORATION links 73 and 7o and it also links 74 and 7. Let us
check whether there is a temporal link between 73 and m4. There is no explicit (overt)
marker in 73 nor in 74 to give us a hint about the temporal order between them. As
we have no sentence-level linguistic clue for ordering the set {m3, 74}, we rely on the
discourse-level information. In particular, one assumes that the textual order of these
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clauses indicates the order of the events expressed in them. Therefore, we assume
that the event of m3 took place before the one of 74, that it, NARRATION connects the
propositions 73 and 74.

Thus, we obtain the discourse structure, which one can represent as a directed
acyclic graph (DAG). Figure 4.8 on the next page illustrates this DAG. The edges of
the DAG are labeled with the discourse relations. The nodes in the DAG stand for
discourse constituents. As one may notice, the edges corresponding to NARRATION are
displayed horizontally, while the ones for ELABORATION are vertical. This reflects the
fact that NARRATION induces coordination, while ELABORATION induces subordination in
the discourse structure (we say that NARRATION is coordinating, while ELABORATION is
subordinating). A hypothesis is that no two nodes are connected by a subordinating
relation and a coordinating relation simultaneously. As SDRT suggests, the presence
of subordinating and coordinating relations in a discourse affects the availability of
antecedents of anaphoric expressions. This relates to the notion of the right frontier (RF) of
a discourse. In the definition of an RF, the notions of subordination and coordination
play the central role. One can determine the RF of a DAG representing a rhetorical
structure of a discourse. Indeed, since SDRT puts down edges either horizontally or
vertically in a graph representing the structure of the discourse, one can visualize
the RF of such a graph. For instance, the RF of the graph illustrating the discourse
structure of (46) (see Figure 4.8) consists of m; and 75. With the help the notion of
an RF, one defines the Right Frontier Constraint (RFC), which originates from Polanyi’s
(1985) work on discourse. According to the RFC, two pieces of discourse must meet
certain requirements in order to be possible to put them together. The original version
only concerns anaphoric pronouns, but the SDRT one (whose exact formulation we
provide in Definition 4.3.12 on page 123) is more general as it deals with all anaphoric
elements. For now, we formulate the RFC without using formal notions.

Definition 4.3.3 (RFC (Asher and Lascarides, 2003)).

A new piece of discourse can add to the current one only in the case where the anaphoric
expressions occurring in this new piece have antecedents in the clauses that belong to the RF of
the current discourse.

Now, one can explain why adding the clause 7mx (see (47)) to the discourse (46)
turns a coherent discourse into an incoherent one. The RFC prohibits adding 7x to (46)
as the antecedent of the anaphoric expression it from 7y is introduced in the discourse
unit 73, which does not belong to the RF of the discourse (46) (73 ¢ {m1, 75}).

4.3.2 The Logical Form of Discourse

In SDRT, the logical form of a discourse involves representations of discourse units
and rhetorical connections, which are realized by rhetorical relations as they connect
utterances. In this way, the logical form of a discourse is a logical representation of the
information content of a discourse. The language where SDRT defines the logical form
of discourse is called the SDRS language. SDRT defines wellformed formulas of this
language and provides them with dynamic semantic interpretations.
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mi1:Max had a great evening last night

NARRATION

mo:He had a great meal » m5:He then won a dancing competition
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m3:He ate salmon » m4:He devoured lots of roquefort
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Figure 4.8: A rhetorical structure of a text

4.3-2.1 The Logical Form of Clauses

The SDRT discourse analysis starts from identifying meanings of sentences. A sentence
might be ambiguous as it can have several meanings. The question is /how to represent
the meaning of an ambiguous sentence, or what is the meaning of an ambiguous
sentence. Is that the set of possible meanings, or is that only one meaning” One may
answer these questions by declaring the pragmatically most acceptable meaning among
all the possible ones to be the meaning of the ambiguous sentence. Indeed, it would
be a solution as the goal of SDRT is to interpret discourse by formalizing pragmatics.
However, it is not always possible to select the pragmatically most preferred meaning.
That is why SDRT chooses another solution, which enables one to obtain a representation
of a sentence that does not require to select any of the particular meanings. This
representation is called the underspecified logical form of a sentence; it represents all the
possible meanings of an ambiguous sentence. To define underspecified logical forms,
SDRT employs a labeled language. The labeled language of SDRT makes possible to
encode an underspecified meaning of a sentence in a concise way. For the sake of
illustration, let us consider the following example.

(48) Every boxer loves a rock-band.

¢1 = Vz(boxer(z) — Jy(rock-band(y) Alove(z,y))) (4-49)
¢2 = Jy(rockband(y) A (Vz(boxer(z) — love(z,y))) (4.-50)
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The sentence (48) is ambiguous because the following two readings are available
for it: either for every boxer, there is a rock band that they love, or there is a rock-band
such that every boxer loves it. ¢1 and ¢9, defined in Equation (4.49) and Equation (4.50)
respectively, encode the two readings of the sentence (48). These two readings of (48)
correspond to the scope ambiguities of the quantifies for V2 and Jy. To select one
of the meanings of the sentence in (48) is to set that Vz outscopes (scopes over) dy,
or vice versa. At the same time, in both ¢; and ¢, each of the quantifiers Vz and
Jy outscopes love(z, y). An underspecified representation of the sentence (48) should
encode these facts.

In order to consider scopes of expressions and how they are related, it is useful to
name these expressions using labels. That is, we associate labels with expressions. A
given label is associated with only one expression. One can translate scoping relations
between expressions into scoping relations between their labels. For instance, if we label
Vz with l; and Jy with b, instead of saying that Vz outscopes Jy or vice versa, we can
express that by using /; and k. The original language is called the base language. One
can translate the base language expressions into the label language ones (and vice versa,
i.e., one can reconstruct the base language expressions from the label language ones).

In this thesis, we will use another approach to underspecified representations, called
Hole Semantics (Bos, 1995). With this approach, one makes use of holes in order to
represent unassigned scopes between labeled expressions. One encodes every scope
bearing expression using holes. A hole can be seen as a variable over labels. Given an
underspecified representation, by instantiating the holes in it with labels, one generates
a disambiguated representation out of the underspecified one. Scoping (domination)
constraints govern which labels can fill which holes. That is, to fill holes with labels,
one has to obey scoping constraints. No label can be plugged in two different holes
at the same time. Each hole should be filled by some label. To plug a label into a
hole is to substitute a hole by a label. Domination constraints have the following form
a < b, where a and b are formulas built with holes and labels. < is a partial order.
For instance, /; < [ encodes that the formula with label [; is a subformula of the one
with label ;. The constraint such as [ < h means that the formula with label [ is in
the scope of an operator with hole ~. This means that [ directly or indirectly is in
the scope of h of that operator. If the operator with hole % directly scopes over the
formula with label [/, then one fills 4 by /.

Formally, one defines underspecified representations for predicate logic.>> The language
where one encodes expressions with holes and labels is called Predicate Logic Unplugged
(PLU). One defines its syntax as follows:

Definition 4.3.4 (Syntax of PLU (Bos, 1995)).
1. If h is a hole, then —h is a PLU formula;
2. if hj and h; are holes, then h; — hj, h; A h;, h; V h; are PLU formulas;
3. x is a variable of Predicate Logic and h is a hole, then 3xh and NVxh are PLU formulas;
4- if R is an n-place predicate of and ty,...t, are terms, then R(ti,...,t,) is a PLU
Sformula.
5. Nothing else is a PLU formula.

%]t is possible to make use of Hole Semantics for various languages, not only for predicate logic.
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In order to obtain an underspecified formula encapsulating the meaning of (48),
consider again ¢; and ¢2 defined in Equations 4.49 and Equations 4.50. We aim to
build an underspecified formula that should not specify the right hand-side of the
implication —, nor the conjunct of A, otherwise we obtain either ¢; and ¢, which are
concrete interpretations of (48). From now, we write and(a, b) instead of a A b (not
to confuse the logical connective A of PLU with the logical connective A of predicate
logic). In addition, the underspecified formula should encode what is shared by both of
the interpretations ¢; and ¢o. Otherwise we may build an underspecified formula that
is more general than the one the one that we aim to construct. Thus, the underspecified
formula should encode the following things: (a) Vz directly scopes over —; (b) boxer(z)
is directly under the scope of — (i.e., boxer(z) is the premise of —); (c) Vz directly
scopes over A; (d) and directly scopes over rock-band(y); (e) the conclusion of — scopes
over love(z,y); (f) the argument of and besides rock-band(y) scopes over love(z, y).
Finally, the underspecified formula should encode that either Vz or Jy scopes over the
rest of the operators. In order to construct the underspecified formula, we encode every
operator with holes (hg, h1, ha,...,) and attach to every expression a label (ly, /1, b, . ..,).
By hp, one denotes the hole such that the label plugged into Ay will receive widest
scope.

¢y = dhg by Fho Fhs by Ihs Fhg Il Al iz iy 5 dlg Ay
(ll Ve hy ANlb:hy— hg A3 :boxer(l‘) AN dg:3dyhg Ny and(h5, h@) N
lg : rockband(y) A l7:love(z,y) AN b <h A h <k A lz<hy A hy <hg
ANl <hg Nhg<Ils Nl <hg Nlz<he Nl <hgN Iy <hg) (4.51)

In Equation (4.51), the constraints encode the following:

e [y <h; A b <l models that — directly scopes over boxer(z);

e I3 < hyg A hp < I3 models that — directly scopes over boxer(z);

e I5s < hs N hy <5 models that Jy directly scopes over and;

* l; < hg models that the hg hole of and scopes over rock-band(y);

* l; < hg models that the conclusion of — scopes over rock-band(y);

* ) <hy A ly < hy that both Vz nor Jy are outscoped by hyg.

Thus, in every possible plugging, one has: hy = lp, ho = I3, hy = 5. The rest of holes
and labels can be plugged in two ways. Indeed, we can set iy = [;, then we obtain that
he = lz and hg = ly. In that case, ¢, (see Equation (4.51)) encodes the formula ¢; (see
Equation (4.49)). Another plugging can be obtained by setting hy = ly, then hg = I7
and hg = [;. In that case, ¢, encodes the formula ¢2 (see Equation 4.49). In this way,
two possible pluggings encode two particular meanings.

4.3.2.2 Discourse Representation

The logical form of a discourse involves the logical representation of content of
propositions together with the hierarchical structure of the discourse imposed by rhetorical
relations. In particular, if between two discourse constituents 71 and 72 holds a rhetorical
relation R, then R(my,m) is a discourse constituent that is Aigher in the hierarchy of
discourse constituents than 7; and 7. In this way, one obtains a hierarchical structure
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of discourse. While some rhetorical relations are subordinating (e.g. ELABORATION),
others (e.g. NARRATION) are not. As we already saw, one may represent such a
discourse structure as a two-dimensional directed acyclic graph as follows: A relation is
displayed vertically if it is subordinating, otherwise it is depicted as a horizontal line
(see e.g. Figure 4.14 on page 122). To encode the logical form of a discourse, SDRT
defines the SDRS language.

4.3.2.3 DRT

One represents contents of discourse units and rhetorical connections within SDRSs,
where the notion of an SDRS extends the notion of DRS of DRT (Kamp, 1981, 1988;
Kamp and Reyle, 1993; Kamp, van Genabith, and Reyle, 2011). The definition of an
SDRS incorporates the notion of a DRS.3¢ In particular, to represent atomic discourse
units, SDRT makes use of their DRS representations. Thus, at the clause-level, the
SDRS language of SDRT coincides with the DRS language of DRT.

However, only having DRSs and their semantic interpretations is not sufficient for
SDRT as DRT does not take into account the rhetorical structure of a discourse. SDRT
extends DRT by incorporating the discourse structure in the logical form of a discourse.

We provide the definitions of the syntax and semantics of the basic fragment of
DRT. Afterwards, we discuss the way one extends DRT to SDRT.

4.3.2.3.1 The DRS Syntax

One represents a DRS K as a pair (U, C), where U is a set of discourse referents
of K and C is a set of conditions in K.

Definition 4.3.5 (The Syntax of DRSs (Lascarides and Asher, 2007)).
The set of DRSs is defined recursively as follows:

K :=(U,0) | K& ()

Where:
1. U is a set of discourse referents.
2. 7y is a DRS-condition, defined as follows: If 1, ..., x, are discourse referents and R is
an n-place predicate symbol, then v = R(x1,...,z,) | - K | K1 = Ko.
3. © is an append operation’” on DRSs, defined as follows: If K1 = (U, C1) and
K = <U2, CQ), then K1 ® Ko = <U1 U Us, ChL U CQ>.

An informal way of writing a DRS is a box divided into two different sub-boxes.
One of the boxes contains discourse referents that a DRS introduces, whereas the other
one contains conditions of a DRS.

36While the notion an SDRS originates from the notion a DRS of DRT, to define an SDRS, one can
rely on some dynamic theory other than DRT. However, in this thesis, we follow the version of SDRT
where the notion of an SDRS incorporates the notion of a DRS.

%7Unlike the original DRT, the SDRT uses the operation append, which is non-commutative, and
therefore the DRS-conditions make a list rather than a set.
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Example 4.1.

Let us illustrate the notion of a DRS on the following example:

(52) John drives a car.

z,Y

john(zx), car(z), drive(z,y)

Figure 4.9: An example of a DRS

One represents the content of the sentence (52) as a DRS shown in Figure 4.9.
The variables z and y stand for the discourse referents for JoAn and a car, respectively.
Apart from the discourse referents, it contains three conditions, two of them encode
that z is a discourse referent introduced by John and y is a one introduced by a car.
The remaining one encodes that x drives y.

Example 4.2.

Let us consider the following discourse, whose DRS representation is shown in
Figure 4.10.

(53) a. Pedro owns a donkey.
b. He beats it.

K and N denote the DRSs corresponding to (53)(a) and (53)(b) respectively. By
appending N to K, one obtains the DRS R (see Figure 4.10). However, this example
of merging gives a felicitous result because we append compatible DRSs. Indeed, K and
N describe the pieces of discourse whose combination yields a coherent discourse. The
discourse referents z and u from N can resolve to the discourse referents in K, because
K is accessible to N.
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x? y? Z’ U
Y
o pedro(z)

p donkey(x)
pedro(z) =K S¥ =N = | own(z,y) =R
donkey(z) beat(z, u) beat(zju)
own(z, y) . ’

u=y

Figure 4.10: An example of the DRS merging

(54) a. John does not own a car.
b. ??It is red.

x,Z
WA
john(z) john(z)
Y _ Yy
own(z,y) own(z. 9)
=77
(a) John does not own a

(b) John does not own a
car. It is red

car

Figure 4.11: An example of the content inaccessible from the outside the box

Let us consider Example (54). The proposition (54)(b) is not compatible with
the rest of discourse, which consists of a single clause (54)(a). The problem is that
it from (54)(b) cannot resolve to a car in (54)(a). DRT gives an account of such
cases by introducing the accessibility constraints on discourse referents. To formulate the
accessibility constraints of DRT, one defines the subordination relation over DRSs.

Definition 4.3.6 (Immediate Subordination & Subordination).
We say that K| immediately subordinates Ko if one of the following conditions is met:
1. K1 contains a condition of the form —Ko;
2. there is a DRS K3 such that either K3 = Ko or Ko = K3 is contained as a condition
in Kj.
The subordination relation over DRSs is a reflexive, transitive closure of the relation of
immediate subordination, and it is denoted by <.

Definition 4.3.7 (Accessibility).
A discourse referent x introduced in Uy, is accessible to an anaphoric DRS condition in Ko if
and only if one of the following conditions holds:
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4-3. Segmented Discourse Representation Theory

1. Ky < Ky;
2. there exists such a DRS K3 that Ko < K3 and K| = Ks.

Now, we explain why in (54), a discourse referent z cannot resolve to a discourse
referent y. The DRS introducing y is subordinated to the DRS introducing z. This
means that z is accessible to y, but not vice versa. Therefore, z cannot resolve to y.

4.3.2.3.2 Dynamic Semantics of DRSs

A dynamic interpretation of a proposition is a relation between variable assignment
functions. Under a dynamic proposition, we mean a dynamic interpretation of a proposition.
The main insight of dynamic semantics is that dynamic propositions may change a
context in which they appear. Here, the notion of a context is realized as a variable
assignment function f, which is a mapping from discourse referents to domain entities in
some model M. The intuition behind viewing a dynamic proposition as a relation over
assignments is that a dynamic proposition may introduce new discourse referents in a
context. In order to evaluate the new discourse referents introduced by the dynamic
proposition, one extends the current variable assignment function. The extended variable
assignment function is defined for those discourse referents as well on which the original
one is not defined. In this way, the dynamic proposition relates the initial variable
assignment function and the new one. To put it another way, a dynamic proposition
changes (updates) the context. In a case where a dynamic proposition does not introduce
any new referent in a context, it introduces conditions that have to be fulfilled. In
that case, a dynamic proposition behaves as a test on a context. More formally, if f
is a variable assignment function and Uy is a set of discourse referents of a DRS K,
then f may be not defined on the elements of Uyx. Therefore, one extends f to g (we
write it as f C g) so that ¢ is defined on Ug as well (dom(g) = dom(f)U Ug and
Vo € dom(f) : f(z) = g(z)). However, extending a variable assignment function does
not define when a DRS is #rue in a model. In other words, the notion of truth of a DRS
cannot be defined only by interpreting variables. By interpreting conditions of a DRS,
one is able to define the notion of a true DRS in a model. Let us denote by Cx the
set of conditions of a DRS K. The DRS K is verified by a pair of variable assignment
functions f, g, where f C g, if and only if for every condition v € Ck, g satisfies v in
M (that is, the variable assignment function ¢ maps the discourse referents of Ux to
the domain elements in M/ so that the interpretation of v in M becomes true). Hence,
the DRS K is a relation on variable assignment functions such that f and g are related
via K if and only if g extends f on Ux and ¢ verifies all the conditions from Cg.

Let us formally define the semantics of a DRS K in a model M, denoted by [K],
by following (Asher and Lascarides, 2003).

Definition 4.3.8 (Model).
M is a first order model M = (A, Iyr), where:
o Ay is a set of individuals.
o Iy is an interpretation function: Iy assigns to an n-ary predicate P, a set of n-tuples
of the elements of Ay (we denote it as Iy (Py)).
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Definition 4.3.9 (Interpretation of DRSs).

7. fIXU, O ag if and only if f C g and dom(g) = dom(f)U U.

2. f[K ® (0, v)]ag if and only if there exists h such that f[K]yh and h[Y]apg. We
can write this as a relational composition f[K]ar o [Y]arg-

3 fIR(z1,...,20)]nmg if and only if f = g and (f(z1),...,f(xn)) € Iy (R).

4- f[-K]mg if and only if f = g and there is no h such that f[K]urh.

5. [IK1 = K2]arg if and only if f = g and for every h such that f[Ki]h, there exists
some function k such that h[Ks] k.

We drop the subscript M in [K]j; whenever it does not create a confusion.

4.3-2.4 The SDRS Language

In SDRT, one extends the language of DRSs in order to incorporate rhetorical connec-
tions between discourse constituents in the logical form of a discourse. For that, SDRT
defines the notion of SDRS.

Definition 4.3.10 (SDRS and Wellformed SDRS (Asher and Lascarides, 2003)).
One constructs well-formed SDRS-formulas from the following vocabulary:
o Microstructure: A set U of the DRS representations of atomic natural language clauses.
o Labels: w, 71,79, .
o A set of relational symbols for discourse relations (rhetorical relations): R, Ry, Ra, - - -.
The set of well-formed SDRS-formulas ® contains U as a subset. Besides the elements of W,
it contains formulas defined as follows:
1. If R is an n-place relational symbol and 71, ..., my, are labels, then R (my,...,m,) € O.
2. If ¢, € @, then 9 N € ® and ~¢ € O, where \ and — are interpreted dynamically,

as it is in Definition 4.3.9 (f[¢ N]g if and only if f[¢] o [¥]g).

Definition 4.3.11 (Discourse Structure (Asher and Lascarides, 2003)).
An SDRS or a discourse structure is represented by a triple (A, F, LAST), where:

o A is a set of speech act discourse referents (labels);

o LAST is a member of A (the label of the content of the last clause that was added to

the logical form);

o F is a function which assigns each member of A a well-formed SDRS-formula.
In addition, one defines a relation i_outscope on A as follows: Loutscope(w,ﬂl) holds if
there is some relation R such that either R(ﬂ'/, 7T”) or R(?T”, 7Tl) is included as a conjunct in
the formula F(m). The transitive closure of i_outscope, denoted by outscope, is a partial
order over A. The requirement upon outscope is that there exists the unique supremum mo of
outscope in A.

Example 4.3. Let us give an example of SDRSs by considering the structure of the
discourse (46), repeated below.
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4-3. Segmented Discourse Representation Theory

(46, repeated)

.
.
3.
4.

5.

Max had a great evening last night.
He had a great meal.

He ate salmon.

He devoured lots of roquefort.

He then won a dancing competition

For m;, where 1 =1,2,3,4,5, K, denotes a DRS that describes the content of the
proposition 7;. One obtains the discourse structure corresponding to (46) by defining
an SDRS (A, F, LAST) as it is shown in Figure 4.12.
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= ELABORATION(73, 74)

Figure 4.12: An SDRS

Figure 4.13 on the following page illustrates a box-style representation of SDRSs.
This representation is a visualization of what the labeling function F and ouscope

relation do:

o F assigns to every label 7; a formula F(7;).

* The visualization of ouscope is the hierarchical embedding of boxes.

In addition, one can represent the SDRS describing (46) as a graph in Figure 4.14,
which one builds as follows:

1. If i_outscope(my, m2), then m is my are connected with a vertical line, where 7y is

above 71;

2. if there exists some 7 for which F; = R(m,m2) and R is subordinating, then a
downward vertical arrow labeled with R comes from w9 to my;

3. if Fix = R(m,m2) and R is not subordinating, then a horizontal arrow connects 7
and mo, where 7 is on the left of ms.

In the cases where LAST is not necessary to specify, one omits it by writing (A, F)
as a representation of a discourse structure. By convention, for any label 7, one denotes
F(m) with K. Thus, K, is a condition with label 7, which one also may write as

o K.
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o

T, T6

71 ¢ Kz, ELABORATION(7q, 7¢)

7T27 7T57 7T7

o ¢ Ky, 5 0 Kng
NARRATION (7, 75
o ELABORATION(7r2, 77)

6 - T3, T4

7wy s Ky, ma 0 Ky
NARRATION(73, 74)

Figure 4.13: The box-style representation of an SDRS

™

ELABORATION

6

Kmk
™ —— 75
g

™ —— T4

NARRATION

ELABORATION

Figure 4.14: A DAG representation of an SDRS
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4.32.5 Availability

To update a discourse with a new piece, its content must be related to some information
in a current discourse. However, by requiring only that, one may obtain an incoherent
discourse out of a coherent one. For instance, even though the discourse (46) on page
(111) contains some information about sa/mon, incrementing (46) with a clause the
salmon was pink, which has certainly something in common with sal/mon, results in an
incoherent discourse. Hence, a new piece must attach to a current one at a point which
is available for attachment. As we saw, the accessibility constraints of DRT can be useful
only in the cases where one can establish the subordination between DRSs. In the
cases such as (46), where the accessibility constraints of DRT do not apply, the RFC
might be helpful to make a correct analysis. SDRT extends both the RFC and the DRT
accessibility constraints by defining formally what are available attachment points and
what are possible antecedents to anaphoric conditions.

In order to define what are available points for attachment, SDRT dichotomizes
discourse relations by assuming that a discourse relation is either subordinating or
coordinating. The following lists®® provide examples of subordinating and coordinating
relations:

Coordinating: NARRATION, BACKGROUND, RESULT, CONTINUATION, PARALLEL, CON-
TRAST, CORRECTION.

Subordinating: ELABORATION, EXPLANATION, PRECONDITION, Topric, COMMENTARY,
CONSEQUENCE.

Definition 4.3.12 (Available Attachment Points).
If 5 is going to attach to a constituent®® in the SDRS (A, F, LAST), then one identifies the
available attachment points where 3 can attach to as follows:
1. The label o = LAST.
2. Any label v for which:
(a) There are such 6 and R that either R(c, 0) or R(J, ) is a conjunct of the formula
labeled with F () (that is, i_outscopes(y,a) holds).
(b) There exist a subordinating relation R and a label )\ such that R(vy, «) is a
conjunct of the formula labeled with F(X\). This property is abbreviated as o < 7.
3. Any label ~y dominating o in the following sense: there exist v1,...,vn such that o < v,

71<721 S} 'Yn<'7

Besides subordinating and coordinating relations, SDRT defines structural relations.
A relation is structural if it imposes constraints on the propositional structure of its
arguments. Thus, given that R(mi,72) holds, where R is a structural relation, then
the contents labeled by 71 and w2 have certain propositional structure. For instance,
CONTRAST is a structural relation because if CONTRAST(71,m2) holds then the pieces
whose contents are labeled with 71 and m are structurally similar (and semantically
dissimilar) to each other. An example of a relation that is not structural is EXPLANATION.

3For a detailed discussion of the differences between subordinating and coordinating relations, we
refer readers to (Asher and Lascarides, 2003; Asher and Laure Vieu, 2005).
%A constituent corresponds to a node in the graph representation of an SDRS.

123



Chapter 4. Discourse Theories

- structural discourse relations differ from other relations, in that they allow
discourse referents that are introduced in embedded DRSS to be available,
subject to certain constraints. Asher and Lascarides (2003)

Since structural relations demonstrate their distinctive nature from other relations
when it comes to availability of discourse referents, the definition that concerns an-
tecedents of anaphora does not apply in a case of structural relations.

Definition 4.3.13 (Antecedents to Anaphora).
If B is the label of a DRS Kg containing an anaphoric condition ¢, then the available
antecedents for ¢ are the discourse referents that are:
7. In Kz and DRS-accessible to ¢;
2. in K., DRS-accessible to any condition in K, (in this case we say it is DRS-accessible
in K,), and there is a condition R(c,7y) in the SDRS such that either v = [ or
outscope(y, B) holds (R stands for any rhetorical relation except for structural ones).

Let us illustrate on an example how Definition 4.3.13 allows/prohibits an anaphoric
condition to resolve.

Example 4.4.

(55) 7. John drives a car.

my. It is red.

1, T2

BACKGROUND (71, 72)

xr, vy z

N T !

john(z), car(y), drive(z, y) red(z), z =7

Figure 4.15: The SDRT analysis of John drives a car. It is red.

Figure 4.15 shows the SDRS of the discourse (55). Finding an antecedent of it from
79 amounts resolving the anaphoric condition z =7, where one uses the symbol 7 to
encode that z is to be resolved to some value. Let us show that the underspecified
condition z =7 can resolve to y. Indeed, 7o attaches to m; with a discourse relation
BACKGROUND. Thus, the condition 2 of Definition 4.3.13 is fulfilled as we have
BACKGROUND (71, m2) (71 is «, w2 is 3, i.e. v = ). Since y is DRS-accessible in K, ¥
is accessible to the condition z =7 as well. Thus, z =7 can resolve to y. In the SDRS
shown in Figure 4.15, one can replace the underspecified condition z =? with z = y,
and thereby obtain a fully specified SDRS.
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4.3.2.6 Dynamic Semantics of SDRSs

Since an SDRS describing a single discourse unit is a DRS by definition, we refer to
the DRT interpretations of DRSs in order to interpret that SDRS. However, an SDRS
can describe more than an atomic discourse unit. Therefore, it becomes necessary to
define dynamic semantics for the SDRS language. In particular, since SDRT represents
the discourse (rhetorical) connections inside SDRSs, to interpret an SDRS, it becomes
necessary to provide dynamic interpretations of rhetorical connections, which involve
rhetorical relations and discourse units. For example, if an SDRS is of the form
R(m1,m2), where R is a rhetorical relation, then the problem of its interpretation goes
beyond the scopes of DRT. Although R(7i,72) is an atomic formula, its interpretation
is more complex than the interpretations of atomic formulas representing meanings
of clauses. Taking into account the distinctive properties that we encounter among
rhetorical relations, the interpretation of R(m,m2) should reflect (be in concordance
with) the properties of R. For instance, if R is EXPLANATION, then the SDRT satisfiability
conditions of the formula EXPLANATION(7q,72) is different from the one when R is
CORRECTION.# Intuitively it is clear that if EXPLANATION(71,m2) holds, then both K,
and K, hold. In contrast, if CORRECTION(7, m2) holds, then K and K, both cannot
hold, because they are incompatible. Below, we only provide interpretations of the
discourse relations that share the property that EXPLANATION has and CORRECTION does
not. We call them veridical relations. Veridical relations typically occur in narratives
and expository texts. One formulates the property that defines veridicality of a relation
as follows:

Definition 4.3.14 (Satisfaction Schema of Veridical Relations (Asher and Lascarides,

2003)).
For a veridical relation R the following holds:

fIR(m,m)lg  if and only if [ Ky N Ky A ey ) ]l9
Where
o A is the dynamic conjunction (f[¢ N\ ]g if and only if f[¢] o [¥]9)
* Or(mi,mo) €Xpresses the semantic constraints characteristic to the particular discourse relation
R(my,m2).

Veridical relations include NARRATION, EXPLANATION, ELABORATION, BACKGROUND,
CONTRAST, PARALLEL, etc. The rhetorical relation CORRECTION is not veridical because
fI[R(m1,m)]f implies that f[—Ky, g (the dynamic negation of Ky ,).

Thus, R(7,72) holds if and only if Kr,, Kr,, and ¢q(r, r,) hold, where ¢g(r )
depends on R(m,m2). As one see from the satisfaction schema for veridical rhetorical
relations, they are complex discourse updates. That is, one can view ¢p(y, r,) as a

“For example, CORRECTION is a link between the first and second utterances in the following discourse:

m1. John is a journalist.

9. No, he is a sailor.
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condition that constrains the way the dynamic proposition [R(71,72)] updates a context.
Thus, together with the satisfaction schema, one has predefined conditions, i.e., some
sort of axioms for rhetorical relations. In SDRT, one refers to these axioms as meaning
postulates. Let us illustrate meaning postulates of rhetorical relations by discussing the
meaning postulates of EXPLANATION and ELABORATION.

ELABORATION & EXPLANATION

(56) Alexis did well in school this year. She got As in every subject.

(57) Max fell. John pushed him.

In (56), she got As in every subject elaborates Alexis did well in school this year. Hence,
the rhetorical link between them is ELABORATION. In the case of (57), the second
proposition explains the first one, that is, EXPLANATION connects them. These rhetorical
relations give rise to different effects on the events of the propositions they link. Indeed,
as (56) shows, we have the temporal inclusion between the events expressed by the first
and second propositions, which is an effect of ELABORATION. In (57), the event of
the explained proposition (Max fell) takes place after the event that explains it (John
pushed him). Thus, in each of the discourse (56) and (57), the two events are linked
with temporal precedence. These observations lead to the following meaning postulates of
SDRT:

Temporal Consequence

EXPLANATION :
ngpranation(a,ﬁ) = (_'eﬁ = 604) (458)

ELABORATION :

¢Elaboration(a,5) = Part_of(eﬁu ea) (4‘59)

Where < encodes a relation on events in terms of the temporal order; Part-of is a
sub-event relation.

It is noteworthy that to determine those meaning postulate that apply in a particular
case depends not only on the involved rhetorical relation but on the propositions that
are related with that rhetorical relation.

Example 4.5. Let us illustrate the way SDRT makes use of meaning postulates and
dynamic semantics in order to establish truth conditions under which a discourse is
felicitous. We consider the following discourse:

(60) a. Max fell.
b. John pushed him.
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Figure 4.16 shows the SDRS representation of (60). 1 (resp. m2) labels the DRS K,
(resp. Kr,), which represents the logical form of the clause (60)(a) (resp. (60)(b)). We
use predicate fholds at to express that an event e, takes place at the ¢; time and write
it as holds-at(er, t;). The label 7 is the highest label as it labels EXPLANATION(7q, 72),
i.e., the rhetorical connection of K and K, provided by the rhetorical relation
EXPLANATION. Since EXPLANATION connecting 7 and 72 is veridical, to interpret the
discourse (60), that is, to interpret the SDRS in Figure 4.16, one refers to the satisfaction
schema for veridical relations. According to it (see Definition 4.3.14), one obtains the
following:

f[ExpLANATION (71, 72)] 279 if and only if f[Kr A Kr, A quXPMNATION(mm)]] MY

)
T, T2
EXPLANATION (71, 73)
€y 11,7 m, ery, tros Y, 2
o
1 1| max(x), fell(er,, ), 72 | john(y), push(er,, y,2), y =2
holds-at(er,, try), t1 <1 holds-at(ery, try), 1 < 1

Figure 4.16: An SDRS

By interpreting the right-hand side of the last statement, that is, f[Kr, A Ky A
Prspamanion(m1,m2) | M > ODE Obtains the interpretation of the discourse. To interpret that, we
refer to the interpretation of the dynamic conjunction A. According to the interpretation
of dynamic A, there are two variable assignment functions % and & such that f[Kx [P,
WKyl ark, and k[ @eamon(r1,m0) ] 19 hold. Let us consider each of them separately.

o f[Kx]ah holds if dom(h) = dom(f)U{er,x,t:,} and

(h(z)) € Iyf(max), (h(ex,), h(z)) € Ips(fall), {ex,, tr,) € Irr(holds-at).

o h[Kr]mk holds if dom(k) = dom(h)U {er,, y,2,tr,} and (h(y)) € Iy (jokn),
(k(ery) k(y), k(x)) € Ins(push), (er,, txy) € Ipr(holds-at).

* According to the meaning postulate for EXPLANATION, if K@ umon(my,mo) M9
holds, then k[—er, < er,]arg holds as well. k[—er, < er,]ag holds if and only
if k¥ C g, and (—er,, er,) € Iyf(<). Since < represents the temporal relation, we
obtain that k[¢y,.mon(ri,m) 179 holds only in the case where er, does not take
place before er,, that is, Max’s fell had not happened before John pushed him.

In this way, we have discussed the SDRS language and the dynamic logic. They
allow one to represent a discourse in a logical form and to interpret that logical form,
respectively. In the next chapter, we discuss formal grammars of discourse whose
discourse structures are inspired by SDRT.
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In this chapter, we discuss formalisms that study discourse regularities with grammars. One
refers to such formalisms as discourse grammar formalisms. We focus on D-LTAG, G-TAG,
and D-STAG. D-LTAG and D-STAG were introduced for discourse parsing, whereas G-TAG
is a formalism for discourse gemeration. Qur choice of these formalisms is determined by the
fact that each of them proposes its discourse grammar based on the TAG principles. Since
the ACG encoding of TAG coupled with Montague semantics is already available, these
formalisms are interesting for one who aims at the modeling of the syntax-discourse interface
with ACGs. Although the formalisms D-LTAG, G-TAG, and D-STAG, each proposes a
TAG grammar for discourse, each of these discourse grammars is designed under certain
assumptions. In G-TAG and D-LTAG, the assumption is that a discourse structure is
tree-shaped. D-STAG proposes a grammar that allows for a richer structure of discourse
than just tree-shaped ones. Namely, in D-STAG, the discourse structure can be a directed
acyclic graph. While the grammars of D-LTAG, G-TAG, and D-STAG prove to be capable of
encoding various phenomena, they experience some problems when one considers a discourse
where an adverbial connective occupies an internal (clause-medial) position in a clause. To
overcome the problem, each of these formalisms develops a two-step approach to discourse
processing. One of the steps is the grammatical step. During this step, one applies the
grammar of a formalism to produce the derived (parse) tree of a discourse. The other step is
an extra-grammatical step. In G-TAG, the extra-grammatical step involves moving discourse
adverbials from clause-initial to clause-medial positions so that one generates a text where a
discourse adverbial appears at a clause-medial position. In D-LTAG and in D-STAG, during
the extra-grammatical step, one moves discourse adverbials from clause-medial positions to
the clause-initial ones. This step is necessary in order to parse a discourse with either the
D-LTAG grammar or the D-STAG one.



5.1. D-LTAG

51 D-LTAG

Lexicalized Tree Adjoining Grammar for Discourse (D-LTAG) (Forbes et al., 2003;
Forbes-Riley, Bonnie Webber, and Aravind Joshi, 2006; B. L. Webber, 2004; B. L.
Webber and A. K. Joshi, 19g8; Bonnie Webber, Knott, Stone, and Aravind Joshi, 19gg)
is a formalism for discourse parsing. D-LTAG is based on the (L)TAG principles. But
while (L)TAG deals with sentence-level structures, D-LTAG focuses on discourse-level
ones. In addition to the discourse parsing, with the help of D-LTAG, one can interpret
a discourse as a formula of a labeled language. In particular, one constructs the labeled
formula out of the derivation tree of the discourse. The discourse structure*! encoded
by the obtained labeled formula is a tree-shaped one. For instance, in the case of the
sentence (61), D-LTAG produces the discourse interpretation shown in Figure 5.1(a).

(61) Sue is happy because she found a job.

5 7
Iy : because’ (I, lf), Lol
I, - happy(sue),
It : found(sue, job). (b) The
(a) The D-LTAG interpreta- tree
tion of Sue is happy because represen-
she found a job tation

Figure 5.1: A D-LTAG interpretation and its tree representation

According to the D-LTAG notations, in a labeled formula (e.g. in Figure 5.1(a)), a
comma stands for the logical conjunction A. For the sake of simplicity, one denotes a
discourse relation (rhetorical relation) signaled by a discourse connective lex.item with
lex.item’, unless otherwise stated. [, denotes a label, where v is a natural number or a
symbol of the Latin alphabet.

One can represent the formula in Figures.1(a) as the tree in Figure 5.1(b), where
nodes stand for labels, and the parent-child relation in a tree realizes a predicate-
argument relation in a formula.

As we already discussed in Section 4.1 on page 88, according to (Bonnie Webber,
Stone, Aravind Joshi, and Knott, 2003), both of the arguments of a subordinate and/or
coordinate conjunction are structural, that is, they appear in the parse tree of a
discourse. In contrast to them, only one of the arguments of an adverbial connective
is structural. The D-LTAG grammar encodes this difference between conjunctions and
adverbial connectives. Every conjunction is encoded with two arguments, whereas
every adverbial connective is encoded only one argument. The other argument of
the adverbial connective, called the anaphoric argument, can be found using an extra

#In D-LTAG, the term ‘discourse structure’ refers to a parse tree of a discourse. Nevertheless, we refer
to the interpretation of a discourse as the ‘discourse structure.’
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grammatical mechanism (e.g. anaphora resolution). By retrieving/inferring the anaphoric
arguments of the adverbial connectives in a discourse, one may obtain a non tree-shaped
interpretation of the discourse out of its D-LTAG interpretation, which is tree-shaped.
For instance, let us consider the discourse (62) containing the discourse adverbial in
this way. Figure 5.2(a) shows the D-LTAG interpretation of the discourse (62) as a
labeled formula. In the labeled formula, [¢;]% denotes the anaphoric argument; €
models the empty connective as there is no overt structural relation between the first and
second sentences.*? The value of the anaphoric argument [¢;]% is not specified in the
D-LTAG interpretation. As one can see, this labeled formula gives rise to the tree in
Figure 5.2(b). However, one can resolve [¢;]% to ;. Hence, one obtains the labeled
formula shown in Figure 5.3(a). This formula gives rise to a directed acyclic graph
(DAG) depicted in Figure 5.3(b), which is not a tree.

(62) a. The company interviewed everyone.
b. In this way, they considered all their options.

We first discuss D-LTAG elementary trees. Afterwards, we describe the D-LTAG
parsing process. We discuss the way one interprets a discourse with the help of D-LTAG.

I
\
h

i :in_this_way’ ([, [e;]%), / \
by :el(li, 11), li le [ei]ac

l; :interview(c, e),

(b) The tree representa-
tion

lc : consider(c, e)
(a) The D-LTAG interpretation

Figure 5.2: The D-LTAG interpretation of discourse

I

\
h
h :in_this_way/(l4, l3), / l
li lc

b €l h),

I3 :interview(c, e),

(b) The DAG

representation

l4 : consider(c, o)
(a) The fully specified interpreta-
tion

Figure 5.3: The interpretation obtained from the D-LTAG interpretation by resolving an
anaphoric link

“2We discuss this point in more derails in Remarks.2.
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5.1.1 D-LTAG Elementary Trees

An elementary tree in D-LTAG is either anchored with a discourse connective or with a

. . . . 0 . . . DU
clause. A clause C is an atomic unit of discourse and it anchors an initial tree |

C
(the non-terminal symbol labeling nodes in D-LTAG trees is usually denoted by DU -
discourse unit).

In D-LTAG, various discourse connectives anchor various kinds of trees. Contrasting
encodings of different elementary trees are motivated by differences between the proper-
ties of their lexical anchors. One of the main differences that D-LTAG encodes within
its grammar is the difference between structural and anaphoric discourse connectives.
Figure 5.4(a) and Figure 5.4(b) show examples of D-LTAG elementary trees anchored
with structural connectives, whereas Figure 5.4(c) shows a D-LTAG elementary tree
anchored with an adverbial connective.

DU DU DU
RN N / N\
Ul DC DU DU* DC DU

D 1 d DC DU*
because and then
(a) An DUe-initial tree (b) A D-LTAG auxiliary (c) A DU-
with two DU-substitution tree anchored with a co- auxiliary with
sites ordinate conjunction no substitution
sites

Figure 5.4: D-LTAG elementary trees anchored with a subordinate conjunction, a
coordinate conjunction, and an adverbial

5.1.2 Structural Connectives

Apart from distinguishing between structural and anaphoric connectives, D-LTAG makes
differences among structural connectives. For instance, as Figure 5.4 shows, because and
and anchor an initial tree and an auxiliary one, respectively. Contrasting encodings of
different structural connectives is motivated by their semantico-pragmatic properties.

5.1.2.1 Initial Trees

A structural connective anchoring an initial tree obtains both of its arguments via
substitution as it has two DU-substitution sites (see Figure 5.4(a)). By filling these
substitution sites with trees, the discourse relation signaled by the discourse connective
obtains its arguments.

Various lexical items may anchor D-LTAG initial trees. For instance, as Figure 5.5
shows, subordinate conjunctions, certain coordinate conjunctions, and some imperative
verbs anchor DU-initial trees with two DU-substitution sites. Besides these categories,
paired connectives (e.g. on the one hand, on the other hand), and subordinators (multi-word
subordinate conjunctions, e.g. in order to) also anchor the DU-initial two DU-substitution
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sites. All these linguistic constructions serve as discourse predicates, which define the
domain of locality at the discourse-level (B. L. Webber, 2004). Therefore, they are encoded
as initial trees.

Remark 5.1. The D-LTAG trees anchored with the above listed linguistic constructions (i.e.,
subordinate conjunctions, certain coordinate conjunctions, multi-word expressions, paired con-
nectives, etc.) differ from the LTAG trees anchored by them. Indeed, at the sentence-level, they
are not the ones that define the domain of locality, but verbs, predictive adjective, etc. Since
subordinate conjunctions, paired connectives, and other above listed constructions are beyond the
domain of locality of verbs, predictive adjective, etc., they are encoded by LTAG auxiliary trees.

DU DU DU DU
IR 1N AN VAN
bc bvu) bu} buy DC DU, DU DUJL DU} DUJL DC DU]

suppose because although in order to
DU DU DU
1N /1N N\
DU] DC DU/ DU] DC DU/ DC DU DC DU
| | |
hence S0 on the one hand  on the other hand

Figure 5.5: D-LTAG initial trees anchored with discourse connectives

5.1.2.2 Auxiliary Trees

While subordinate conjunctions and certain coordinate conjunctions anchor initial trees,
some coordinate conjunctions anchor auxiliary ones. For example, and anchors an
auxiliary tree shown in Figure 5.4(b) on the preceding page. The motivation behind
encoding coordinate conjunctions, such as and, as anchors of auxiliary trees is that
they extend the description of a situation or an entity conveyed in a discourse which
they attach to.** Hence, they provide a recursive way of extending the information in
a discourse (B. L. Webber, 2004). Therefore, they anchor D-LTAG auxiliary trees. In
these auxiliary trees, there is a single substitution site where one substitutes a discourse
unit that further elaborates the previous piece of discourse.

In addition to overt markers of discourse connectives, the lexically unexpressed
connective €, sometimes called the empty connective, anchors a D-LTAG auxiliary tree. If
two discourse units are structurally adjacent to each other, but no lexically expressed
discourse connective connects them, D-LTAG assumes that the lexically unexpressed
connective € relates these two discourse units. The empty connective ¢ anchors an
auxiliary tree with a single DU-substitution site, illustrated in Figure 5.6.

4In contrast to and, the coordinate conjunction such as so and kence do not extend the previous piece
of discourse, but rather express result.

134



5.1. D-LTAG

DU

SN

DU* DC DUJ

€

Figure 5.6: The D-LTAG tree anchored with e

5.1.2.3 Anaphoric Connectives

As we already discussed in Section 4.1 on page 88, discourse adverbials are identified
with anaphoric connectives. Unlike structural connectives, an anaphoric connective
obtains only one of the two arguments structurally. The other argument is either retrieved
anaphorically or inferred. An adverbial connective anchors a D-LTAG auxiliary tree,
such as one shown in Figure 5.4(c). By adjoining an auxiliary tree anchored with an
adverbial connective into a parse tree of a piece of discourse, the adverbial connective
obtains its structural argument. Getting the anaphoric argument is beyond the scopes
of D-LTAG.

Convention: We denote a D-LTAG initial (auxiliary) tree anchored with a lex.item by
ol ... (resp. BL .. ), where the superscript D indicates that it is a D-LTAG initial
(res. auxiliary) tree. To denote an LTAG tree anchored with a lex.item, we write aey item
or Bier.item, unless otherwise stated.

5.1.3 Discourse Parsing with D-LTAG

Having described the grammar of D-LTAG, we discuss the way such a grammar is
used to parse a text. We already mentioned that a clause C' anchors an initial tree in
D-LTAG. Actually, it is not a clause C that is the anchor of the tree, but rather the

LTAG derived (parse) tree of the clause C. That is, instead of o , one has D‘U

C Y
where 7 is the LTAG derivation tree of the clause . Thus, the clause-level grammar
underlying D-LTAG is an LTAG.

One can use the same TAG parser for both LTAG and D-LTAG (Forbes et al., 2003;

B. L. Webber, 2004), as both of grammars are TAG grammars. The general description
of the D-LTAG parsing process is the following:

1. An LTAG parser parses each sentence of the input text.

2. The Tree Extractor component extracts the following items from the parse tree of
each sentence: LTAG parse trees of clauses and LTAG elementary trees anchored
with discourse connectives.

3. The Tree Mapper component applies to the extracted LTAG elementary trees
anchored with discourse connectives. It maps them to the corresponding D-LTAG
elementary trees (an LTAG elementary tree anchored with a discourse connective
may differ from the D-LTAG elementary tree anchored by the same discourse
connective).
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4. The Discourse Input Generator component generates the discourse input: The input
text is represented as the sequence (string) of D-LTAG trees anchored by the
clauses and the connectives obtained in the previous steps.

5. Using the D-LTAG (discourse) grammar, an LTAG parser parses the sequence
produced in the previous step by constructing a derivation tree using the trees in
the sequence.

Let us consider some of these steps in more details.

Tree Extractor

At the first step of parsing, one produces the derivation trees of sentences in the text
using an LTAG grammar. The sequence of these derivation trees are the inputs of the
Tree Extractor (TE). TE outputs:

1. Elementary trees anchored with discourse connectives that appear in the sentences.

2. The derivation tree for each clause in a sentence.

Sometimes, to extract a derivation tree of a clause and identify discourse connectives
is relatively straightforward compared to some other cases. In particular, the cases
where connectives appear at clause-medial positions require special treatments. Let us
consider the following examples:

(63) a. Susan will then take dancing lessons.

b. Then, Susan will take dancing lessons.

Qtake Qtake
/ // \\\\ € / X \
’ o TRACT :
A Susan 6will Ulessons then — A Susan ﬁwill Ulessons
| |
| |
5dancmg Bdancmg ﬁtshen
(a) An LTAG derivation tree of a sentence (b) An LTAG clausal deriva- (c) An
tion tree LTAG
auxiliary
tree an-
chored
with then
then

Figure 5.7: A case of a discourse with a clause-initial connective

In the sentence (63)(a), then is a clause-medial discourse adverbial, whereas in the
case of (63)(b), then is a clause-initial one. TE extracts from the derivation trees of
the sentences (63)(a) and (63) (b), the derivation trees of clauses and elementary trees
anchored with discourse adverbials. In the case of (63)(b), the extracted trees (see
Figure 5.7) are the derivation tree of the clause Susan will take dancing lessons and the
single node tree denoting the auxiliary tree anchored with then (3}, - the superscript
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s denotes that its is an S-auxiliary tree). It is straightforward to extract these trees as
Bihen adjoins on the root node of the clausal derivation tree.

In the case of the sentence (63)(a), By adjoins into Bf,fen (Bf}fm - the superscript
vp denotes that its is a VP-auxiliary tree). The resultant tree adjoins into oy (see
Figure 5.8(a)). We cannot extract the derivation trees of the clause and an elementary
tree of the adverbial as straightforwardly as in the case of (63)(b), because if we
removed an edge connecting Sinen, and gk, then the result would not be a tree as the
node [3,;; would become disconnected from the rest of the nodes. Therefore, both the
edge connecting the node iy, with 52}}]: ., and the node Bff: ., are removed, the edge
connecting the [,,; and age has to be reintroduced in the tree. Thus, in the obtained
tree, OBy and ok are still connected, but the node Btvf ., is not there anymore. To
maintain the information about the original position of a connective,** in an extracted

tree, one leaves a trace of the connective (the node {then} of the tree in Figure 5.8(b)).

Uake Aake

/ | \ |
| / ’
EXTRACT
e

vp
Q' Susan Bthen Qlessons A Susan {then} Ulessons
| | |

! |
v
ﬁwill Bdancing ﬁwill ﬁd(mcing tf;?en

(a) An LTAG derivation tree of a sentence  (b) An LTAG clausal derivation (c) An
tree LTAG

auxiliary

tree an-
chored

with then

Figure 5.8: A case of a discourse with a clause-medial connective

The cases with subordinate and coordinate conjunctions may involve two clausal
derivation trees.*> For the sake of illustration, let us consider the sentence (61), repeated
as follows:

(61, repeated)
Sue is happy because she found a job.

The LTAG derivation tree of the sentence (61) is shown in Figure 5.9(a). One

extracts out of it three trees, two clausal derivation trees and a single node tree Specquse,
S

which denotes anchored with the subordinate conjunction because, s* s . To

T

because S,L
extract these trees is easier than in the case of clause-medial adverbials. Indeed, by

#The clause-medial position of discourse connective is considered to be important from the information
structure points of view (Steedman, 2000).

45Since we only focus on English and French, one can claim subordinate and coordinate conjunctions
can only occupy clause-initial positions.
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extracting Bpecquse, One obtains the clausal derivation trees. On one of them adjoins
Brecause; and the other one substitutes into [Bpecquse. Hence, it is not problematic to
identify these clausal derivation trees.

Xhappy
A Sye 6 s B because E?ﬂ)"f
X found X found
Ashe  Ujob Xhappy Ashe  Ajob
/8(1 A Sue ﬂis Ba 6because
(a) An LTAG derivation tree of (b) An (c) An LTAG (d) An
a sentence LTAG clausal LTAG
clausal derivation auxiliary
derivation tree tree  an-
tree chored
with  be-
cause

Figure 5.9: A case of a discourse with a subordinate conjunction

Tree Mapping

The Tree Mapping module (TM) applies to the output of TE. TM maps the LTAG

elementary trees anchored with the discourse connectives to the D-LTAG elementary

trees anchored by these discourse connective. Let us assume that TE extracts an LTAG

elementary tree anchored with a subordinate conjunction, for example, the tree anchored
S

by because, Specause denoting the auxiliary tree s*/\s . TM maps this auxiliary

because S,
DU

tree to its D-LTAG correspondent, i.e., to aﬁcause = __—T——_ . As another
DU

DU because 1
example, let us consider ﬁf,f ., €xtracted from the derivation tree shown in Figure 5.8(a).

P stands for the VPauxiliary tree /VP\ in LTAG. However, in D-LTAG, then

then
then VP*

anchors the following tree Bt%en = /DU\ . TM transforms Bt‘i?:n into Btli)wn’ that

then DU*
is, TM transforms a clause-medial adverbial into a clause-initial one. This is due to the

fact that the D-LTAG encoding of an adverbial connective is only applicable when it
appears at a clause-initial position in a discourse.

Discourse Input Generation

The component called Discourse Input Generation (DIG) produces an input to a parser
out of a sequence of lexicalized trees. Each tree in the sequence is either a D-LTAG
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elementary tree anchored with a connective (being produced by TM), or a D-LTAG
clausal elementary tree, i.e., DU-initial tree anchored with a clausal derivation tree
extracted by TE. The trees are ordered according to the surface order of their lexical
anchors, except for the clause-medial connectives. They are placed in front of their
host clauses. In such a sequence, it may occur that there is no structural discourse
connective between two clausal elementary trees. In that case, DIG places the D-LTAG
auxiliary tree with an empty lexical anchor ¢ between these clausal elementary trees.
Thus, one obtains the sequence of D-LTAG elementary trees. One uses a TAG parser
to build a derivation tree of the text out of this sequence.

While building a derivation tree out the given sequence of D-LTAG trees, one faces
derivational ambiguity issues. Indeed, there might be various possible sites in a derived
tree for a discourse where a derived tree for a new piece can attach. Thus, there
are a number of derivation trees which give rise to the same surface forms. D-LTAG
reduces the amount of possible attachment points by introducing the following heuristic
constraints:

* In an initial tree, it is only allowed to adjoin at the root node.

* In other trees, only the lowest adjunction is allowed.

Remark 5.2. It may occur that an adverbial discourse connective occurs between two clauses
but no structural ome. Despite that, DIG inserts ¢ between the two clauses. The need for
structural connective in such cases is due to the structure of an auxiliary tree anchored with an

adverbial connective. In particular, it cannot connect two discourse units. For example, consider

D DU D L .
Bihen = h/\DU* . The tree B;;,,, can adjoin into a tree anchored with a clause. However,
then

given two initial trees anchored with clauses, L is not capable to build a new tree which
would incorporate the two trees. 1o be able to combine two derived trees of discourse units, one
has to use a structural connective.

5.1.4 Computing Discourse Semantics

To interpret a discourse, one refers to its derivation tree. D-LTAG couples elementary
trees with their semantic interpretations so that one can interpret the operations over
elementary trees as operations over their interpretations. In this way, D-LTAG develops
a compositional approach to the syntax-semantics interface for discourse. We assume
that the clausal derived and derivation trees are provided by an LTAG grammar.

D-LTAG employs a labeled language to define interpretations. As we already
mentioned, one denotes with because’, and’, and ¢/, the discourse relations signaled by
because, and, and € respectively. This notation is useful because the lexically unexpressed
connective € a priori does not signal any particular discourse relation. To interpret ¢
as a particular rhetorical relation, one needs the context where € appears.

We first discuss interpretations of elementary trees (anchored with clauses, structural
connectives, and adverbials). Afterwards, we show how one composes the interpretations
of the elementary trees in order to obtain the interpretation of a tree derived from
them.

Convention: One denotes the LTAG derived tree of a clause whose main predicate is
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. . . DU
v with 7,; by 7,, we denote the derivation tree of the D-LTAG initial tree |, , unless
Yv

otherwise stated.

Elementary Trees Anchored with Clauses

Figure 5.10 shows initial trees anchored with the derived trees of the following clauses:

(64) Ci. Sue is happy.
(5. Sue found a job.
(3. Sue likes her job.

Under each tree in Figure 5.10, we depict its interpretation. The interpretation of a

tree with a clause is the interpretation of that clause. More precisely, given a clause
. . . . DU

C and its LTAG derived tree v, the interpretation of the D-LTAG tree is the

N
interpretation of C. Interpretations of clauses play roles of arguments (operands) to
discourse relations. They themselves do not have arguments. To express that, in their
interpretations, one declares arg: —. One labels formulas with [;, where ¢ is a natural
number or a letter of the Latin alphabet. We may refer to [; as a propositional label.

DU DU DU
Yhappy Vfound Viikes
I, :happy(sue) Iy :find(sue,job) l;  :like(sue,job)
arg : — arg : — arg : —
& Cy C3

Figure 5.10: Initial trees anchored with clauses coupled with their semantic interpreta-
tions

Elementary Trees Anchored with Structural Connectives

If lex.item is a structural connective, then lex.item’ obtains both of the arguments
structurally. We mark an argument of lex.item’ that corresponds to a substitution site in
afgm.item with the Gorn address of that substitution site. For instance, as Figure 5.11(a)
shows, for af) . we have the predicate because’ whose arguments are s; and s
marked with (1) and (3), respectively (the latter fact is encoded by the labeled formula
arg: (s1, (1)), {s2, (3))). Thus, because’ receives one of its arguments, denoted by s,
as a result of substitution of a tree at the Gorn address 1 into o) . because’ obtains
the other argument, denoted by s, as a result of substitution of a tree at the address 3
into o) . The semantic interpretations of the substituted trees serve as arguments
of because’.
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In the case of a structural connective anchoring an auxiliary tree, such as 557“1 (see

Figure 5.11(b)), we specify the Gorn address of only one of the arguments - the one
that comes from substitution. For example, by substituting a tree into 32 , at the Gorn
address 3, and’ obtains the value of the argument denoted by s;. The other structural
argument of and’, denoted by s3, comes from the interpretation of the derived tree into
which Bfn 4 adjoins. s;, where 7 is a natural number or a symbol of the Latin alphabet,

denotes a label variable, sometimes called a propositional label variable.

Elementary Trees Anchored with Adverbial connectives

Adverbial connectives receive only one of their arguments structurally. Figure 5.11(c)
shows a D-LTAG auxiliary tree anchored with the discourse adverbial otherwise. Its
semantic interpretation is otherwise’(ss, [¢;]%), which is encoded with two arguments,
ss and [e;]%. However, among these arguments, only s, is a structural one (obtained
via adjunction). The argument [e;]% denotes an anaphoric argument. Finding the value
of [e;]% is beyond the compositional account of discourse semantics in D-LTAG.

DU

bC DU

DU DU
LN / N\
DU* DC DU DC

DU, 1 1 DU*
because and otherwise
<a‘) athpn71<e (b) ﬂaDnd (C) Bthherwise
I, :because’(sy, s2) lo, :and'(s3, s4) ls : otherwise' (s, [e;]%)
arg : (s1, (1)), (s2, (3)) arg :s3, (s4, (3)) arg :Ss

Figure 5.11: D-LTAG semantic interpretations of discourse connectives

5.1.4.1 Subordinate Conjunctions

We consider the following example of a discourse with a single subordinate conjunction.

(61, repeated)
Sue is happy because she found a job.

Figure p5.10 and Figure 5.11 provide the D-LTAG grammar for (61). Figure 5.13(a)
shows the D-LTAG derived tree of the discourse (61).

In order to interpret the discourse (61), we refer to its D-LTAG derivation tree
depicted in Figure 5.12(b) on the following page. As it shows, Tj4y and Tiung
substitute into o) . The operations on these trees give rise to the operations on
their interpretations (shown in Figure 5.10 and Figure 5.11(a)). In particular, since
Thappy Substitutes at the address 1 into abDecaus .» in the interpretation of afecaus .» the label
of the interpretation of 7,,,, denoted by [}, substitutes the label variable s; associated
with the address 1. Analogously, /s labeling the interpretation of 7,,,4 substitutes the
label variable s, in because’ (s1, s2). Thus, one obtains the interpretation shown in

Figure 5.12(c), which indeed is a coherent interpretation of (61).
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DU
DU DC DU ol
| N
Yhappy because Yfound Thappy  Tfound
(a) The derived tree (b) The derivation
tree
Iy
. ; /\
Iy - because’ (I, ), Lol

I, : happy(sue).
It : found(sue, job).

(c) The interpretation of the discourse: the

formula and its graphical representation

Figure 5.12: The D-LTAG derived tree, derivation tree, and the interpretation of the
discourse

5.1.4.2 Coordinate Conjunctions

(65) Sue found a job and she likes it.

Figure 5.13(a) on the facing page depicts the derived tree of the two clause sentence
(65). Figure 5.13(b) on the next page shows the corresponding derivation tree. To
interpret (65), we refer to the derivation tree. It consists of three nodes, Tjyund, Tiikess
and 531& Their interpretations are provided in Figure 5.10 and Figure 5.11(b) on the
preceding page. By substituting 7., into ﬂfnd, and’ obtains one of the arguments. In
particular, the label variable s; obtains as its value the label of 7., which is ;.

By adjoining the tree 5(]3@(1 into the tree 7f,un4, the predicate and’ receives the
value for the other argument, which is s3. The value of s3 becomes the label of the
interpretation of 7,,,q4, namely, /;. Hence, we obtain the semantic interpretation shown

in Figure 5.13(c) on the next page.

5.1.4.3 Interaction between Subordinate and Coordinate Conjunctions

Let us consider the following discourse where the subordinate and coordinate conjunc-
tions interact.

(66) Sue is happy because she found a job and she likes it.
The derived tree for the discourse (66) is the one in Figure 5.14(a). Its derivation
tree is shown in Figure 5.14(b). If one builds an interpretation of the discourse according

to this derivation tree in the same way we did in the previous two examples, one obtains
the interpretation shown in Figure 5.14(c), which is an incoherent interpretation of
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DU Tfound
1N -
D
DU DC DU gD ly
‘ ‘3 K 7 / \
o ad o _ lo - and (I, 1), -
Joun thes likes l; : find(sue, job), /
(a) The derived tree (b)  The l; : like(sue, job).
derivation (c) The interpretation of the discourse:
tree the formula and its graphical represen-

tation

Figure 5.13: The derived and derivation trees, and the interpretation of the discourse

(66). Indeed, according to the derivation tree, one substitutes 7j4pp, in aﬁcause. Thus,
one of the arguments of because’ becomes the label of the interpretation of 74y, Ih-
The tree 7f,,,q4 substitutes into the other substitution site of afecause and therefore the
second argument of because’ becomes the label of the interpretation of Tfound- Hence,
we obtain because’(;, [f). By substituting 7.5 in the tree 5(3”, the second argument
of and’ becomes /. By adjoining B(QL 4 into Tioung, the first argument of and’ obtains the
value I;. The interpretation shown in Figure 5.14(a) is incoherent. One can formulate
it as follows: Sue is happy that she found a job. She likes it. This does not have the same
meaning as Sue is happy because she found a job and she like the job she found. To overcome
this problem, D-LTAG makes use of a flexible direction of composition, previously proposed
for LTAG in (Aravind Joshi, Kallmeyer, and Romero, 2007). It allows one to traverse
a derivation tree so that it can start at any node. However, one needs to restrict the
principle of flexible composition in order to equate the generative capacity with the one
of the original D-LTAG grammar.
The bottom up traversal of the derivation tree of the discourse (66) (see Figure 5.14(b)
on the following page) yields the interpretation shown in Figure 5.15, which is the
coherent interpretation of (66). Indeed, we have:
step1 Tyies substitutes into 657%1.
In result, the semantic interpretation of ﬁaDnd receives the value of its argument
denoted by s; (see Figure 5.11). The value of s; becomes the label of 7., i.e.,
.

step2 The resultant tree of stepi adjoins into the tree Tﬂund.
As a result, the semantic interpretation of [3,,; obtains a value of its other
argument, denoted by s3. Since the label of interpretation of 7y, is /;, we assign

I to s3.
stepg "(li“(lile tree produced as a result of stepz substitutes into al’  at the Gorn
address 3.

Thus, the interpretation of afemuse obtains the value of its sy argument (as sp
is marked with (3), it indicates that the label of the interpretation of a tree
substituted at address 3 becomes the value of sy, see Figure 5.11 on page 141).
The label that becomes the value of sy is [, (as it is the label of the formula with
the predicate and, see Figure 5.11).
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D
Xpecause
Thappy Tfound
\ e ‘ \ -
Yhappy ~ because DU DU BL
\ | s
Yfound and  Vikes Tlikes
(a) The derived tree (b) The derivation tree

I, - because' (I, ;) b b
b : because’ (I, If),
; L\ /lll

. /

: and (lf, L), b
Iy : happy(sue),
l; : find(sue, job),
l; : like(sue, job).
(c) An incoherent interpretation: the formula and
its graph representation

Figure 5.14: D-LTAG derived and derivation trees

step4 Thqppy Substitutes in the tree obtained in stepg.
In this way, o} . fills both of its substitution sites. Thus, the s; argument of
because obtains the value I3 as it is the label denoting the interpretation of 75,4y,

As a result of stepy4, we obtain the interpretation shown in Figure 5.15, which is the
coherent interpretation of (66).

As (Forbes-Riley, Bonnie Webber, and Aravind Joshi, 2006) indicates, only using
a bottom-up traversal of a derivation tree may turn out to be insufficient. However,
by allowing both the bottom up and top down traversals, the ambiguity of discourse
parsing increases (as the number of possible traversals increases). To avoid the ambiguity

increase, D-LTAG only allows one to consider the bottom-up traversal of a derivation
tree.

/\

Iy : because (I, I,), / \
lg : and’(lf, ),

I, : happy(sue),

It : found(sue, job),
[; : likes(sue, job).

Figure 5.15: The coherent interpretation of discourse obtained by a bottom-up traversal
of the derivation tree
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5.1.4.4 Adverbial Connectives

An adverbial connective gives rise to a discourse relation with two arguments, but only
one of them can be obtained compositionally, namely, the one that is expressed by the
structural argument of an adverbial connective. To illustrate that, let us consider the
following discourse consisting of two sentences:

(62, repeated) a. The company interviewed everyone.

b. In this way, they considered all their options.

Figure 5.16 illustrates the derived and derivation of the discourse (62). Since no
structural connective relates the first and second clauses, D-LTAG inserts the lexically
unexpressed connective € between them (see Remark 5.2 on page 139).

DU Tintrview
/ / \ e
5D

DU DU DU €

| /N 3

Yinterview € DC Du Tconfider
| €

5D
in this way Yconsider in_this_way
(a) A derived tree (b) A derivation

tree

Figure 5.16: D-LTAG derived and derivation trees

Each elementary tree is associated with a semantic recipe (see Figure 5.17 and
Figure 5.18 on the following page).*® The semantic interpretation of an adverbial
connective encodes that one of its arguments is structural (denoted by s,), whereas the
other one, denoted by [e;]%¢, has to be retrieved anaphorically. To obtain the coherent
interpretation of the discourse (62), one makes use of a bottom-up traversal of the
derivation tree. D-LTAG traverses the derivation tree in Figure 5.16(b) as follows:
step1 Bﬁ_this_way adjoins into the tree T,ynsider-
In result, the semantic interpretation of 52 way> 1€ in_this_way’(s;, [€;]%)
obtains the value of its structural argument. That is, s; becomes /., which is the
label of the interpretation of 7.ynsider-

stepe BCD adjoins into Qjpterview-
As a result, the interpretation of BGD , that is, ¢/(s2, s3) receives [; (the label of
Qinterview) as the value for the argument variable sy (see Figure 5.17).

4]t is noteworthy that D-LTAG computes the semantic interpretation of the compound adverbials
compositionally. In particular, D-LTAG derives the semantic interpretation of in this way by composing
the semantic interpretations of in, this, and way. Nevertheless, for the sake of simplicity, we assume that
the semantic interpretation of the adverbial connective in this way is already provided as an entry.
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stepg The resultant tree of stepa, i.e., the tree obtained by adjoining ﬁi?l_this_way into

Queonsider, Substitutes at the address 3 into the tree obtained as a result of stepe.
As a consequence, the vacant argument of €(I;, s3), that is, s3 receives as its value
the label of the interpretation of the tree produced in stepi, which is the label of
L :in_this_way/(lc, [e;]%), i.e., 0.

DU DU
bC  DU* DU* DC DU
in_this_way €
i : in_this_way/(sl, [ei]%) lo : 6/(82, 83)
arg : s arg : s2, (s3, (3))
(c) The adverbial connective (d) The structural con-

in this way nective e

Figure 5.17: D-LTAG semantic interpretations of discourse connectives

DU DU
Yinterview Y consider

(a) (b)
i :interview(c, e) . :consider(c, o)
arg : — arg : —

Figure 5.18: D-LTAG semantic interpretations of clauses

Thus, we obtain the labeled formula shown in Figure 5.19. The value of the
anaphoric argument of in_this_way, which is [e;]%¢, is not specified. In order to obtain
the fully specified interpretation of the discourse, one may use the anaphora resolution
to identify the label that can be value of [¢;]*. The possible values of [¢;]* can be
labels of the interpretations of discourse units belonging the piece of discourse that an
adverbial connective attaches to. However, the value of [¢;]% can also be a label of
some proposition that is inferred in the discourse. In the case of the discourse (62),
[e;]%¢ resolves to I;, which is the label of /; : interview/(c, e). Thus, one would obtain
the fully specified interpretation by instantiating [e;]* with the label /;.

5.1.4.5 Computing Semantics of a Discourse with a Parasitic Connective

As (Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003) suggests, some lexical items
that could be classified as discourse connectives do not follow the pattern of discourse
connectives. They differ from both the structural and adverbial connectives by their
semantic properties. One of such adverbials is a parasitic adverbial connective.
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Iy
/\
I [

7 1
ll : in_this_way/(lc, [ei}ac)v / \
b €l h), le leil™

li :interview(c, e),

lc : consider(c, e)

Figure 5.19: The D-LTAG interpretation of discourse and its tree representation

5.1.4.5.1 The Interpretation of a Parasitic Adverbial Connective

Let us consider the adverbial connective for example. 1t exhibits a parasitic behavior
on a structural connective. In particular, the adverbial connective for example does
not signal a discourse relation with two arguments, but rather modifies a discourse
relation signaled by a structural connective. For the sake of illustration, we consider
the following example:

(67) John just broke his arm. So, for example, he can’t cycle to work.

To interpret the discourse (67), we first discuss the behavior of for example at the
sentence-level. Let us consider the following sentence with the adverbial for example:

(68) The collection includes, for example, a piece of hematite.

In order to see the semantic contribution of for example in the sentence (68), we
remove for example from it. We obtain the following sentence:

(69) The collection includes a piece of hematite.

One interprets the sentence (6g) as includes(collection, hematite). The difference
between the sentences (68) and (69) is that in (68) for example stresses the point that
a hematite is one of the things that the collection contains. Therefore, if we represent the
things that are included in the collection as a set, we can interpret for example with two
arguments, an object and a set that are related as follows:

[ =exemplification’ (hematite, {z |include(collection, z)}) (5.70)
) (5.71)

I =exemplification’ (hematite, \z.include(collection, 1)

Note that /> defined in Equation (5.71) is a A-notational version of /; from Equa-
tion (5.70). In Equation (5.71), Az.include(collection, ) encodes the characteristic
function of the set. Since 7 is a sentence-level interpretation, but not a discourse-level
one, we cannot use [o as the interpretation of for example in the case of (67), where for
example modifies a discourse connective. Nevertheless, one assumes that the semantic
properties of the discourse-level for example are close to the properties of for example
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at the sentence-level. In other words, the discourse-level interpretation of for example
can be constructed with the help of [»r. With /5 in mind, to establish the interpretation
of an adverbial connective for example. We consider the piece of discourse that is on
the left of for example (let us denote it with D and let its interpretation be ¢), and the
clause in which for example occurs (let us denote it by S and the interpretation of S
with o). Now, let us consider again the two clause sentence (67). In (67), the fact that
he (John) can’t cycle to work (S with interpretation o) serves as one of the examples of the
results which are outcomes of jJohn just broke his arm (D with interpretation d). John just
broke his arm (o) is the first argument of the structural connective so. In general, one
interprets 51 so, S as so’ (di, d2), where d; is interpretation of S;. Thus, one proposes
the following interpretation of the (67) sentence:

I, = exemplification’ (o, A\z.s0’ (4, z)) (5.72)

Indeed, I, is similar to I; (see Equation (5.71)): o exemplifies the results of John
braking his arm, like a hematite exemplifies what is contained in the collection. Thus, we
obtain a semantic representation in a case where the adverbial connective for example is
parasitic on a structural connective.

5.1.4.5.2 D-LTAG and Hole Semantics

In order to derive a semantic interpretation such as I, in defined Equation (5.72),
D-LTAG (Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003) makes use of Hole
Semantics (Bos, 1995), discussed in Section 4.3.2.1. To illustrate the way D-LTAG makes
use of Hole Semantics, let us consider the following sentence:

(73) John often cycles home.

A eycle
Va2 lr : often(h:
/ ‘ l; : cycle(john, home) 2 (h2)
john Ohome ﬁOﬁen L<h I < 7
. s1 < h
(a) The LTAG derivation tree arg: — 1 = 2
(b) The interpretation of a arg: gl; S1
clause (c) The interpreta-

tion of the adverbial

Figure 5.20: The LTAG derivation tree and semantic recipes

We use h; for holes, and g¢; for hole variables, whereas we use [, and s; to
denote labels and label variables as before. The LTAG derivation tree for (73) is in
Figure 5.20(a). Figure 5.20(b) shows the interpretation of the clause John cycles home in
Hole Semantics.

Figure 5.20(c) illustrates the semantic recipe for 3,f.,. It introduces the label b,
the hole hp, the hole variable ¢;, and the propositional variable s;. According to
the derivation tree, (,pc, adjoins into a yces. In result, the label variable s; in the
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interpretation of [,4., obtains I as its value, which is the propositional label of the
interpretation of c.y..s. The hole variable of g; in the interpretation of 3,s., becomes
the hole hi, which is a hole of the interpretation of . yc.s;. Thus, we obtain the
following interpretation of the discourse:

’ l; : cycle(john, home), b : often(hy), I} < hi, ) < hy, b <M ‘ (5-74)

From the interpretation in (5.74), we find that hy < l» (as hy appears in the formula
labeled with /). Since I < hy and hy < b, we obtain [; < l. Since hy < [;, we conclude
that [; < hy, and thereby h; # ;. The only possible disambiguation is h; =  and
he = ;. Hence, we obtain the following interpretation out of (5.74):

’ l; : cycle(john,home), Il : often(l)) ‘ (5.75)

5.1.4.5.3 Computing Interpretation of a Discourse with a Parasitic Adverbial

In order to develop a compositional approach to the parasitic discourse connective
for example, D-LTAG makes use of an MCTAG approach.

(67, repeated) John just broke his arm. So, for example, he can’t cycle to work.

Figure 5.21(a) shows the elementary structure of for example in an MCTAG. 1t is
a set of two TAG auxiliary trees, denoted with ﬁexl and 5@52 The tree Beﬂ adjoins
in the discourse unit it modifies. In the case of (67), 552 adjoins in the initial tree
anchored with ke can’t cycle. The auxiliary tree 52, which has a single node tree,
adjoins on the root of the higher discourse unit. In the case of (67), 5 -1 adjoins on the
root node of the DU-derived tree obtained out of the initial tree anchored with so by
filling its DU-substitution sites. Figure 5.22 shows the derivation tree for (67). However,
our derivation tree indicates that it is not #ree-local, because 5@:51 and 561;2 do not adjoin
into the same tree, but in two different trees. Nonetheless, as 32, does not have any
syntactic material, one can allow 32, and 82, to adjoin into different trees without
increasing the generative power of a tree-local MCTAG (A. K. Joshi, Kallmeyer, and
Romero, 2003).

Flgure 5.21(b) and Figure 5.21(c) show mterpretatlons associated with the trees 661,1
and 32, respectively. The interpretation of 32, encodes that exemplify’ has two holes.
One of them must be filled by something that outscops 51, where 51 is a (propositional)
argument variable. s; obtains its value by adjoining of 37, into a tree. The abstracted
propositional variable s in exemplify’ (s, As.h2) should have an occurrence in the
formula labeled with a value of A, otherwise an obtained interpretation would be
incoherent.

In the 1nterpretat10n of Bezz, s is the same variable as the abstracted one in the
interpretation of 3”,. In this way, adJ01n1ng BP . and B2, gives rise to As.---s---
Furthermore, in the 1nterpretat10n of #2,, the argument variable s is outscoped by
h1, which is a hole in exemplify’. The interpretation of 37, has a constraint that gi,
which denotes a variable for holes, outscopes l». The variables sp and ¢; obtain their
values as 2, adjoins into a tree.
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D D
66371 /86152

DU* DU
/N
for-example  DU*

(a) An MCTAG tree set

b:s
L : exemplify/(h1, As.hg) ZQ <yg
2 > U1
s1 < h
1 < Mg s < g
arg: s .
5) The nterpretation of 57 L 418 52 |
(b) The interpretation of 3, (c) The inter-
pretation of

D
66902

Figure 5.21: The elementary tree set for for example and its interpretation

e

Uproke Aeycle /Bexl

Qso

€

D
ex2

Figure 5.22: The MCTAG derivation tree

I3 : s0'(s3, 84) l4 : break(john, arm) Is : ~cycle(john, work)
ls < hg Iy < hg b < hs
arg: (s3(1),54(3)) arg: — arg: —

Figure 5.23: Hole semantics for clauses and connectives

Thus, the derivation tree is traversed as follows: Bgﬂ adjoins into v yce. In result, so

becomes /5 (as it labels —cycle(john, work)), wheres ¢; obtains the value of the hole that
outscopes the label of —cycle(john, work), which is %5 (see Figure 5.23). The resultant
derived tree substitutes into o at the Gorn address 3. Hence, the variable s; from the
interpretation of so becomes ly (the label of s). At the same time, 53;1 adjoins into the
root node of «g,. Thus, the variable s; obtains the value I3 (the label of so’(s3, s4), see
Figure 5.23). In this way, one obtains an interpretation shown in Figure 5.24.

One disambiguate the holes having occurrences in the interpretation shown in
Figure 5.24 as follows: hg =13, hs =1lj, hy =I5, ha = Iy, and hs = lp. Using these
values for the holes in Figure 5.24, one obtains the following interpretation of the
discourse:

exemplify’ (—cycle’ (john, work), \s.so'(break’(john, arm), 5))
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I : exemplify’ (hy, As.hy)

12 )

13 : SO/(Z4, lg)

l : break’(john, arm)

l5 : —cycle’(john, work)

I3 <hy, b <hs, Is < hy, lg<hg, lg <hg, l5 < hs

Figure 5.24: An interpretation of a discourse in Hole Semantics

5.1.5 Discourse Structure

We are interested in the properties of discourse structures that D-LTAG semantic interpre-
tations give rise to, that it, in the properties of formulas standing for D-LTAG discourse
interpretations. As we already discussed, D-LTAG interprets a discourse as a labeled
formula that gives rise to a tree-shaped structure. If the discourse contains adverbial
connectives, then its D-LTAG interpretation does not specify the anaphoric arguments
of the adverbial connectives. By finding the anaphoric arguments of the adverbial
connectives, the D-LTAG interpretation may be turned into a DAG.

It is noteworthy that in D-LTAG, by using only the trees anchored with subordinate
and coordinate conjunctions, it is possible to produce non-tree shaped structures. In other
words, without using anaphora resolution, one can produce compositionally a non-tree
shaped structure. Indeed, let us consider (66) discourse given on page 142, repeated as
follows:

(66, repeated) Sue is happy because she found a job and she likes it.

As its derivation tree in Figure 5.14(b) on page 144 illustrates, 3,,4 adjoins in the argu-
ment of apecquse- The top-down traversal of the derivation tree yields an interpretation
of the discourse shown in Figure 5.14(c) on page 144. In this interpretation, we have two
sub-formulas /; : because’(l3, [4) and k : and’(ly, I5) sharing the label Iy, which stands for
the interpretation of she found a job. The structure that this interpretation determines is
not tree-shaped, but rather a DAG. However, this interpretation is incoherent. To avoid
argument sharing, one only allows for the bottom up traversal of a derivation tree.

On the other hand, some discourse interpretations are not possible to produce using
D-LTAG. For instance, the coherent interpretation of the following discourse is rather a
DAG than a tree:

(76) a. John loves Barolo.
b. He first tasted it in 19g2.
c. According to Hugh Johnson, it’s one of Italy’s supreme reds.
The clause (76)(a) is elaborated by the clause (76)(b). At the same time, the
clause (76)(a) is elaborated by the clause (76)(c), which is not a continuation of the
previous elaboration. Thus, the clause (76)(a) is independently elaborated by the clauses

(76)(b) and (76)(c). That is why the interpretation of the (76) discourse should be a
multi-parent DAG shown in Figure 5.25. As (Bonnie Webber, Stone, Aravind Joshi, and
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ELABORATION

ELABORATION

SN

a b C

Figure 5.25: A multi-parent DAG

Knott, 2003) notes, one cannot obtain such DAGs with the help of D-LTAG “because the
adjoining and substitution operators in TAG do not let us produce them.”
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5.2 GTAG

G-TAG is a text generating system (Danlos, 1998, 2000). G-TAG was designed with an
aim to implement it in practical applications, to generate technical, domain specific
texts (Danlos, Frédéric Meunier, and Combet, 2011; Frédéric Meunier, 1997). G-TAG
develops a grammatical approach to text generation based on (L)TAG principles. It
generates a text out of a conceptual representation input. Texts that G-TAG generates
may consist of one or more sentences and each sentence may consist of one or
more clauses. A conceptual representation input of G-TAG incorporates both sentence-
level and discourse-level information. The structure of a discourse encoded within
a conceptual representation input is tree-shaped. Hence, G-TAG generates texts of
tree-shaped discourse structures.

Below, we first overview the general architecture of G-TAG. Then, we discuss the
grammar that G-TAG offers and the way G-TAG generates a text.

5.2.1 Architecture

To discuss the G-TAG architecture, we briefly describe the notions that it involves.
G-TAG defines g-derivation and g-derived trees. One can think of a g-derivation tree
as the G-TAG counterpart of a (L)TAG derivation tree. A g-derived tree is like a
TAG derived tree but its terminal nodes are labeled by lemmas. The morphological
information for inflecting lemmas is provided by the labels of their mother nodes. A
g-derivation tree gives rise to a unique g-derived tree.

One can divide the text generation of G-TAG into two steps. The one of them is a
grammatical step. During this step, G-TAG refers to its grammar. The other one is a
post processing step. Figure 5.26 on the next page illustrates the architecture of G-TAG.

5.2.1.1 Grammatical Step

The grammatical step consists of two stages.

Stage 1 One constructs a g-derivation tree out of the conceptual representation input.
For that G-TAG has a lexical database. In the database, each concept points to
a set of lexical entries that can be used as a lexicalization of that concept. One
constructs a g-derivation tree by selecting lexicalizations of the concepts from the
conceptual input.

Stage 2 One computes the g-derived tree out of the g-derivation tree produced during
the first stage.

5.2.1.2 Post Processing Step

G-TAG employs a post processing module in order to produce a text from a g-derived
tree. The post processing module computes inflected forms of lemmas out of the
morphological information provided in a g-derived tree. Afterwards, by concatenating
the inflected words, it produces a text. The post processing module may modify the
produced text. The original text is called canonical. A text obtained by modifying the
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Input:
Conceptual Representation

lexical databases
G-derivation tree associated with concepts

~N

Output:
Semantico-syntacic representation (g-derivation tree)

lexical databases
................................................ associated with lexemes

1
1
1
N

Output:

Syntactico-morphological representation (g-derived tree)
T
1
1
1
Postprocessing Inflexion rules
Module Automatons

Figure 5.26: The G-TAG architecture

canonical one is referred to as a variant of the canonical text. One of the possible
modifications the post processing module carries out concerns discourse connectives. In
a canonical text, a discourse connective can only occupy a clause-initial position. To
support stylistic diversity, the post processing module may move an adverbial connective
from the clause-initial position to a clause-medial one. For instance, the post processing
module produces the following text as the canonical one:

154



5.2. G-TAG

(77) Jean a passé Paspirateur  pour étre récompensé  par Marie.
JOhn havegPs. SG. PRS. paSSPAST prr. VaCCUmMerne. fOor  to-bewr. rewardessr exr. by Mary.
Ensuite, il a fait une sieste.

Afterwards, he havess s. ms. makemsree. @ nap.

John vacuumed in order to be rewarded by Mary. Afterwards, he took a nap.’

Although (77) is the canonical text, the post processing module may decide not to
use it as the output of the system. It may output the following variant of (77):

(78) Jean a passé Paspirateur  pour étre récompensé  par Marie. 1l
JOhn havegPs. SG. PRS. paSSPAST mrr. VacCumerss. for  to-bews. rewardess s by Mary. He
a ensuite  fait une sieste.

havess. s. ms. afterwards makemsme. 2 mnap.

‘John vacuumed in order to be rewarded by Mary. He afterwards took a nap.’

Thus, the post processing module transforms the canonical text (77) into the text
(78) by moving an adverbial connective ensuite (afterwards) from the clause-initial
position to a clause-medial one.

5.2.2 Conceptual Representation Language

As Figure 5.26 on the facing page illustrates, the starting point in G-TAG text generation
is a conceptual representation. In order to encode conceptual representations, G-TAG
makes use of a sub-language of LOGIN (Ait-Kaci and Nasr, 1986).

5.2.2.1 LOGIN

LOGIN is an extension of the language of PROLOG. However, instead of the first-order
terms used in PROLOG (terms of the form p(t,...,1t,)), LOGIN defines a v¢-term. A
Y-term is a record-like typed structure, which can be defined as follows:

Definition 5.2.1 (Ait-Kaci and Nasr (1986)).
A )-term has:

7. A root symbol, which is a type constructor and denotes a class of objects.

2. Attribute labels, which are record field symbols, associated with )-terms. Each label
denotes a function in intenso from the root type to the type denoted by its associated
sub-)-term. Concatenation of labels denotes function composition.

3. Coreference constraints among paths of labels, which indicate that the corresponding
attribute compositions denote the same functions.

For instance, M; defined in Equation (5.79) is a ¢-term. In M;, person is the root
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symbol. The attribute labels of the term M; are id, born, and father.

M; = person (id = name;
born = date (day = integer;
month = monthname; (5.79)
year = integer);

father = person)

In a i-term, each attribute label has a i-term as a value. For instance, in the
term M, the value of born is a i-term with the root symbol date. Let us denote this
term by Mg, defined in Equation (5.80). Thus, under the label born, the term M; has a
sub-)-term, which is the term Ms.

My = date (day = integer; (5.80)
month = monthname;

year = integer)

Furthermore, in My, the attribute label year is associated with a sub-i-term integer.
Consequently, in the i)-term M; (see Equation (5.79)), one can associate the concatenation
of two attribute labels born.year with a -term integer. Thus, an attribute label [ is
a function such that for a given i-term M, it produces a 1)-term M; that is the sub-i-term
of M under the label /. By considering attribute label as functions, function composition
corresponds to label concatenation. For instance, born is a function, whose value on the
term M; is the 7)-term Mp. The label year is a function that maps the ¢-term My to the
Y-term integer. One identifies with the label concatenation born.year a function that
maps the i-term M; to the i-term integer.

My = person (id = name (first = string; (5.81)
last = X : string);
father = person(id = name (last = X)))

The t-term My (see Equation (5.81)) illustrates an example of coreference: The symbol
X occurs under id.last and father.id.last, which indicates that these two attribute
compositions denote the same functions. The possibility of coreferring enables one to
describe looping, infinite structures with the help of v-terms.

5.2.2.2 The Language of G-TAG
G-TAG does not make use of the fullfledged LOGIN language, but of its limited

fragment. G-TAG limits the symbols that one can use as labels in a ¢-term. In
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particular, only the symbols belonging to the following categories can serve as a root
symbol of a 1)-term of the G-TAG conceptual representation language: SECOND ORDER
RELATION, FIRST ORDER RELATION, and THING. The SECOND ORDER RELATION and FIRST
ORDER RELATION categories are unified under the RELATION category. Each concept from
a G-TAG input is realized as one of the symbols from these categories. A concept
represents either a clause-level or a discourse-level phenomenon. For instance, the
concept SUCCESSION is from the SECOND ORDER RELATION category and the concept
HUMAN belongs to the THING category. While HUMAN encodes a clause-level phenomenon,
SUCCESSION gives rise to a discourse-level one, namely, to a temporal relation between
two events.

A concept is associated with the set of its arguments (possible empty). To model that
in ¢-terms, one defines the set of attribute labels associated with a given symbol. A
symbol encodes a concept and the set of attribute labels associated with it encodes the
set of arguments of the concept. The requirement is that if a given symbol appears as
the root in a 7/-term, then the 1/-term must have sub-y-terms under the attribute labels
associated with the root. For example, SUCCESSION is associated with two arguments,
denoted with 15*EVENT and 2"9EVENT. As we declare 15*EVENT and 2"9EVENT to be the
arguments of SUCCESSION, every 7)-term whose root symbol is SUCCESSION must have
sub-¢)-terms under the labels 1S*EVENT and 2"9EVENT.

Attribute labels of a G-TAG concept, i.e., the arguments of a concept are conceptually
restricted. To illustrate this, let us consider VACUUMING, which is a FIRST ORDER
RELATION. It has a single argument denoted with VACUUMER. G-TAG puts the following
constraint on the concept VACUUMING and its argument VACUUMER: Any 1/-term with
VACUUMING as its root symbol should have under the label VACUUMER only a 1)-term
whose root is HUMAN.

A SECOND ORDER RELATION has two arguments each of which is a RELATION. A
FIRST ORDER RELATION has (several) arguments that are either THINGs or FIRST ORDER
RELATIONs. One encodes individual entities with the help of THING, whereas one uses a
FIRST ORDER RELATION in order to express that some individual entities are in a relation
(clause-level information). With SECOND ORDER RELATIONS, one encodes relations between
relations (discourse-level information).

Eo =: SUCCESSION[1S*EVENT => E;, 289EVENT = Ej)
Eq : GOAL[Action = Ei;, Purpose = Ejs]

E; =: NAPPING[NAPPER = H,]

Ey; =: VACUUMING[VACUUMER =5 Hy]

Eip =: REWARDING[REWARDER => Hp, REWARDEE = Hy]
Hi =: HUMAN|NAME = Jean, gender = masc]

Hy =: HUMAN|NAME = Marie, gender = fen

Figure 5.27: An input of G-TAG

Figure 5.27 illustrates an example of a G-TAG input. It consists of ¢-terms. Let us
consider one of them, for instance, a i-term Eq. Its root symbol is a SECOND ORDER
RELATION, SUCCESSION. Since SUCCESSION has two arguments, namely 15°EVENT and
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2PdEVENT, the t-term Eo has two non-empty 1-terms under the labels 1S*EVENT and
284EVENT, E; and E,, respectively. The i-terms E; and E; are also specified within the
given input. E; is a ¢-term with root symbol GOAL, which is a SECOND ORDER RELATION.
In G-TAG, the arguments associated with GOAL are Action and Purpose. The /-term
E; has NAPPING as its root symbol, which is a FIRST ORDER RELATION and which has
only one argument NAPPER from the THING category.

5.2.2.3 Conceptual Representation Inputs as Trees

As we already mentioned, the discourse structure encoded within a conceptual repre-
sentation input is tree-shaped. We show how one can represent a G-TAG input as a
tree. Our transformation is valid only for the i-terms that appear in G-TAG conceptual
representation inputs.

» Given a /-term, we use its root symbol as the label of the root of the tree that we
are building. Under the attribute labels associated with the root, we have -terms,
which we use as the daughter nodes of the root. We label the edges connecting
the root with the daughters by the attribute labels. To the i-term that are the
daughters of the root, we apply the same procedure. At the end of this recursive
process, we obtain a tree out of a given ¢-term.

e Within the input, we find the 1)-term that does not appear as a proper sub-i-term
to any other 1)-term in the conceptual representation input. In G-TAG conceptual
representation inputs, one can always find such a i-term. We transform that
Y-term into a tree. In this way, we obtain the tree representation of the discourse
structure of the G-TAG input.

For instance, to transform the input in Figure 5.27, we find the i-term Eg (it is not

a proper sub-i-term to any other ¢-term in the conceptual representation input). We
represent Ey as a tree in Figure 5.28.

SUCCESSION
fjﬁgw////// \\\\\\Qﬁng
GOAL NAPPING
A ctio/ wo se NAPPER
VACUUMING REWARDING HUMAN
VACUUMER REWARV WARDEE NAM% &ender
Jean HUMAN HUMAN Jean masc
NA%?/// \\\ander NA%?/// \\\sinder
Marie fem Jean masc

Figure 5.28: The tree representation of a G-TAG conceptual representation input
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Remark 5.3. The claim that the G-TAG conceptual representation input can be represented as
a tree concerns only representations of the discourse-level phenomena. That is, if one records
the predicate-argument relations of the SECOND ORDER RELATIONS and their augments, one
obtains a tree. Otherwise, if one considers the clause-level representations, then one obtains
a DAG rather than a tree. For instance, in the conceptual representation in Figure 5.27, Hy
is shared by two relations belonging to FIRST ORDER RELATIONS. However, FIRST ORDER
RELATIONS encode clause-level phenomena rather than discourse-level ones.

5.2.3 Lexical Databases

To generate a text out of a conceptual representation input, G-TAG makes use of
lexical databases. One of them records correspondence between concepts and their
lexicalizations, which are lexical entries of G-TAG. The other database pairs lexical
entries and their lexico-syntactic realizations with elementary trees. Thus, both databases
share lexical entries, which are mediators between concepts and elementary trees. We
first describe lexical entries of G-TAG and the way they are linked with concepts. Then,
we discuss how one associates elementary trees with a lexical entry.

5.2.3.1 Lexical Entries

To each concept, one associates a set of lexical entries. Each of these lexical entries may
serve as a lexicalization of that concept. One denotes a lexical entry by a lemma. For
example, récompenser (to reward)* is a lexical entry of G-TAG.

Concepts may have arguments, and so do lexical entries. The arguments of a
lexical entry are the thematic roles associated with the lexical entry. G-TAG records
the correspondence between the arguments of the concept and the arguments of a
lexical entry that serves as the lexicalization of that concept. For instance, let us
consider REWARD, which is a FIRST ORDER RELATION. It has two arguments from the
category THING, denoted with RewardER and RewardEE. A lexical entry récompenser
(to reward) is a lexicalization of the concept REWARD. To lexicalize the arguments of
REWARD, récompenser also has two arguments, namely, the argl and arge thematic roles.
The database records that the thematic role arg1 (resp. arg2) récompenser corresponds
to the RewardER (resp. RewardEE) argument of REWARD.

G-TAG encodes lexical entries as trees, called underspecified g-derivation trees. In an
underspecified g-derivation tree, one distinguishes between the constant node and the
variable ones. The constant node is the name of the lexical entry. The variable nodes
correspond to the lexicalizations of the arguments of the concept that is lexicalized by
the lexical entry.

For example, the underspecified g-derivation tree in Figure 5.29 on the next page
stands for a lexical entry récompenser (to reward). This underspecified g-derivation tree
has the constant node récompenser, whereas the other nodes, RewardER and RewardEE, are
variable ones. The variable nodes RewardER and RewardEE are linked with récompenser
by the thematic roles arg1 and arge, respectively. Since récompenser is a lexicalization

4By underscore, we denote lexical entries.

159



Chapter 5. Discourse Grammar Formalisms

récompenser

argl/ \3rg2

(RewardER) (RewardEE)

Figure 5.29: The GTAG lexical entry récompenser

of REWARD, the variable nodes RewardER (linked to récompenser with arg1) and RewardEE
(linked to récompenser with arge) stand for lexicalizations of RewardER and RewardEE,
respectively.

A concept may have several lexicalizations. For instance, in addition to récompenser,
REWARD has the lexicalizations shown in Figure 5.30.

récompenser donnerrécompense recevoirrécompense

argl/ \z\1rg2 argl/ \1rg2 argl/ \1rg2

(RewardER)  (RewardEE) | (RewardER)  (RewardEE) | (RewardEE)  (RewardER)

(a) A lexical entry reward (b) A lexical entry give-reward |(c) A lexical entry receive-reward

Figure 5.30: The lexical entries linked with REWARD

5.2.3.2 Morpho-Syntactic Realizations of a Lexical Entry

A lexical entry can be used in various syntactic constructions. For instance, one
can use the transitive verb récompenser (to reward) in both the passive and active
voice constructions. To distinguish the various syntactic uses of a lexical entry, G-TAG
employs T-features. For example, to denote the passive voice usage of récompenser,
one attaches +[T-passive] to récompenser. By default, no THeature means the active
voice construction with a verb and it is considered to be the canonical construction
with the verb. One can combine THeatures to define other syntactic constructions. For
instance, Figure 5.31 depicts the canonical construction with récompenser, one with the
feature +[T-passive], and one with the combination of +[T-passive] and +[Treduced-conjl. By
convention, one attaches T-features to the root node (the constant node) of the tree
representation of a lexical entry. G-TAG, being inspired by TAG, encodes syntactic
constructions with elementary trees. That is, each usage of a lexical entry is realized with
the help of an elementary tree. Hence, every combination (set) of T-features (including
the empty combination) that defines a syntactic usage of a lexical entry is associated
with an elementary tree.

However, a set of T-features only defines a syntactic construction with the lexical entry.
They do not to concern morphological information. G-TAG encodes the morphological
information in morphological features. They are also attached to the constant node of
the underspecified g-derivation tree representation of a lexical entry. For instance, as
Figure 5.31 illustrates, the feature {tense=pass.comp} decorates the constant node of the
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trees. It indicates that the lexical unit is used in the passé composé tense.*®

More formally, one associates with a lexical entry e a set of elementary trees,
{€o,...,er}. The first of the elementary trees e¢,..., e, i.e., ¢ is the canonical
representative of e. Each of the trees ¢;, for + = 1,...,k, is obtained by adding a
unique set of T-features to the canonical representative ey. Each e¢;, for ¢ =0,...,k,
apart from syntactic information encoded as THeatures, is annotated with morphological
features. For instance, trees in Figure 5.31(a), Figure 5.31(b), and Figure 5.31(c) stand
for récompenserp, récompenser;, and récompensers, respectively. They denote the
elementary trees shown in Figure 5.32. Although each of these elementary trees is
anchored with the lexical entry, which is a lemma, the mother node of the anchor bears
the morphological information that indicates what the inflected from of the anchor
is. The post processing module uses this morphological information to compute the
inflected form of the anchor.

récompenser
récompenser +[T-passive]
récompenser +[T-passive] +[T-reduced-conj]

{tense=pass.comp}

{tense=pass.comp}

tense=infinitive

argl / \argQ

(RewardER) (RewardEE)

argl / \argz

(RewardER) (RewardEE)

argl / \argz

(RewardER) (RewardEE)

(c) The
t-[T-reduced-conj]

(a) The canonical tree (b) The tree 4[T-passive] tree +[T-passive] ,

Figure 5.31: The underspecified g-derivation tree récompenser decorated with various
sets of THeatures and morphological features

As we already mentioned, a lexical entry represented as an underspecified g-
derivation tree may have variable nodes, which are connected with the constant node
with the thematic roles. Adding THeatures and/or morphological features to the constant
node affect neither variable nodes nor thematic roles. For instance, in Figure 5.31, the
correspondence between variable nodes and thematic roles is the same in all three
trees. Let e be a lexical entry, and e; be one of the trees obtained out of e¢ by adding
THeatures and/or morphological features. In the elementary tree corresponding to e;,
the variable nodes of e; (i.e., of e) correspond to the substitution sites. We mark a
substitution site corresponding to a variable node with the same thematic role that
connects that variable node to the constant node in the underspecified g-derivation tree.

Remark 5.4. Instead of a single underspecified g-derivation tree associated with a lexical entry,
we prefer to have as many underspecified g-derivation trees as the elementary trees that serve as
the possible syntactic realizations of the lexical entry. Indeed, each elementary tree is defined by
a unique set of Tfeatures, which decorates the constant node of the underspecified g-derivation

48Syntactically, the passé composé tense of French corresponds to the present perfect tense of English.
However, from the linguistic usage point of view, passé composé is rather reminiscent of the past simple
tense of English.
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S

S /R
/\ N P‘L (arge) Va {mood=Vpp} P P
V /\

N P\L (arg1)  {mood=Vpp} N P\L (arg2) P rep N P‘L (arg1)
récompenser étre récompenser par
(a) The canonical elementary tree (b) The elementary tree for +[T-passive]
S
/R
NP\L (arg2) Va {mood=Vpp} PP
€ Prep NP\L (arg1)

étre récompenser par

(c) The elementary tree for +[T-passive, T-reduced-conj]

Figure 5.32: G-TAG elementary tree corresponding to the underspecified g-derivation trees of
récompenser

tree. If we assume that by adding a set of T-features to the underspecified g-derivation tree, we
produce a new underspecified g-derivation tree, each of the elementary trees will have its own,
unique underspecified g-derivation tree. With this assumption, we do not change anything in
G-TAG, but now instead of listing T-features in order to signify an elementary tree, we have an
underspecified tree denoting that elementary tree. In this way, each of the trees in Figure 5.31 is
an underspecified g-derivation tree denoting a single elementary tree.

5.2.4 G-derivation and G-derived Trees

One constructs a g-derivation tree by lexicalizing concepts from a conceptual representa-
tion input. A lexicalization of a concept is an underspecified g-derivation tree (with
T-features and morphological features), which may have variable nodes. One instantiates
the variable nodes with the lexicalizations of the arguments of a concept. By recursively
instantiating variable nodes, one obtains a g-derivation tree whose nodes are lexical
entries decorated with T-Heatures and morphological features.

(82) Jean a été récompensé  par Marie.
John haVegr's. SG. PRS. tO‘bePAST PART. reWardPAST PART. by Ma,ry.

‘John was rewarded by Mary.’

83) I a fait une sieste.
John havegs sc. ms. makensrrer. @ nap.

‘John took a nap.’
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For instance, Figure 5.33(a) and Figure 5.33(b) show the g-derivation trees of the

sentences (82) and (83), respectively.

récompenser
+[T-passive]

{tense=passé composé}

argl / \ arge

Marie Jean

(a) Jean a été récom-
pensé par Marie.

faire-une-sieste

{tense=passé composé}
argl ‘
il

(b) II a fait la sieste pen-
dant deux heures.

Figure 5.33: G-derivation trees

As one may notice, the representation of a g-derivation tree differs from the
representation of TAG derivation trees. In particular, while in a TAG derivation tree, a
node represents an elementary tree whose anchor is inflected, in a g-derivation tree, a
node represents a lexical entry annotated with Tfeatures and morphological features. In
TAG, one uses Gorn addresses in order to represent the information where a substitution
or adjunction takes place. Instead of using Gorn addresses, G-TAG uses thematic roles.
As Danlos (1998) suggests, one can view a g-derivation tree as a semantic dependency
tree whose nodes are annotated with features encoding the morpho-syntactic information.
On the other hand, g-derivation trees and TAG derivation trees are conceptually very
close to each other. Both are trees. Both record how to combine elementary trees.
Both give rise to a unique derived tree. For instance, the g-derivation tree shown
in Figure 5.33(a) determines a g-derived tree of a passive construction with by-agent.
Figure ;.34 shows that g-derived tree.

In a g-derived tree lemmas label frontier nodes; the morphological information how
to inflect these lemmas are provided by their mother nodes. As we already mentioned,
the post processing module computes inflected forms of lemmas.

N\

{mood=ind} Vv
N {tense=pas-comp} {mood=Vpp}
{nums=sing} {pers=grd} {gender=m}
{gender=m} {nber=sing} {nber=sing} PP
N
{nums=sing}
P rep {gender=m}
Jean étre récompenser par Marie

Figure 5.34: A g-derived tree

163



Chapter 5. Discourse Grammar Formalisms

Remark 5.5. The main difference between g-derivation and TAG derivation trees is that TAG
derivation trees do not make use of variable nodes. That is, TAG derivation trees are complete,
whereas underspecified g-derivation trees are incomplete by definition.

5.2.5 Discourse Grammar

The G-TAG discourse grammar consists of entries for adverbial connectives and sub-
ordinate conjunctions. Any discourse connective, either an adverbial or a subordinate
conjunction, anchors an S-initial tree with two S-substitution sites.

The G-TAG discourse grammar enables one to generate multi-sentential texts. For
instance, one can generate the texts given in Examples (84)-(87). In each of these
examples, the texts are generated from the same conceptual representation input.

(84) a. Jean a passé Uaspirateur.  Ensuite, il a fait
John haveys. so. ms. passemst me. vacuumeroer.. Afterwards, he havess. s. ms. makersr v
une sieste.
a nap.

John vacuumed. Afterwards, he took a nap.’

b. Jean a fait une sieste. Auparavant, il avait passé
John havegs. s. ms makemsrm. @ nap. Beforehand, he haveys. so. nwew. passesr waw.
laspirateur.
vacuumeroer..

John took a nap. Beforehand, he had vacuumed.’

(85) a. Jean a passé Uaspirateur —avant que Marie fasse une
John havess. s. ms. passms mer. vacuumeros. before that Mary makeswsoserv: a
sieste.
nap

‘John vacuumed before Mary took a nap.’

b. Marie a fait une sieste aprés que fJean a passé
Mary haveys. sc. ms. makems: . @ nap after that John havess. s. ms. passes .
laspirateur.
vacuumeroer.

‘Mary took a nap after that John vacuumed.’

(86) a. Jean a passé Uaspirateur avant de faire  une sieste.
John havegs. s. ms. passmsr s Vacuumers:. before of makew. a  nap

‘John vacuumed before taking a nap.’

b. Jean a fait une sieste aprés avoir  passé Uaspirateur.
John havegs. sc. ms. makemsr . @ nap after havew. passms:me. Vacuumeroes..

‘John took a nap after vacuuming.’
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(87) a. Jean a passé Paspirateur  pour que Marie le  recompense.
JOhn havegps SG. PRS. paSSPAST mrr, Vaccumerss. for that Marie him rewardsmgmcnvg

‘John vacuumed in order to be rewarded by Mary.’

b. Jean a passé Uaspirateur  pour étre récompensé  par Marie.
JOhn havegps SG. PRS. paSSPAST prr. VaCCUMeTIve. 10T to-bewr. rewardemsr er. by Mary.

‘John vacuumed in order to be rewarded by Mary.’
To distinguish texts, sentences, and noun phrases from each other, G-TAG employs

an additional set of features to decorate nodes of g-derivation trees. Table 5.1 provides
intended meanings of these features.

Features | Intended Meanings

(+T,+S) | a text - two or more sentences
(—T,+S) | a sentence

(+S) either a sentence or a text
(-=T,-S) | an NP

(-T) either a sentence or an NP

Table 5.1: G-TAG features denoting a text, a sentence, either a text or a sentence, etc.

Figure 5.35 depicts the lexical entries of an adverbial and a subordinate conjunction.
The root of the lexical entry of the adverbial has a feature (+T,+S) to indicate that
it gives rise to a text (two or more sentences). The root of the lexical entry of the
subordinate conjunction has a feature (—T, —S) to indicate that it gives rise to a single
sentence. Since the lexical entries of adverbials and conjunctions differ, we discuss them
separately.

adv conj
(+T,+S) (=T, +S)
argl / \argQ argl / \argQ
(X—argument) (Y—argument) (X—argument) (Y—argument)
(+S) (+S) (=T, +8) (=T, +8)
(a) Adverbial (b) Conjunction

Figure 5.35: Lexical entries of adverbials and conjunctions

5.2.5.1 Adverbials

G-TAG employs lexical entries of adverbials (underspecified g-derivation trees whose
roots are adverbials) in order to generate multi-sentential texts.

As Figure 5.36(a) shows, the root of the underspecified g-derivation tree of an
adverbial has the feature (+T,+S) and its variable nodes have the feature (+S), denoting
either a text or a sentence. In the corresponding elementary tree in Figure 5.36(b), the
variable nodes are realized as S-substitution sites. For instance, Figure 5.37 illustrates the
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S
/N
S

adv S
(+T,+S) / \
argi/ N\arg) Adv S|
(X—argumenl) (Y—argumenl) ‘
(+S) (+S) adv
(a) An underspecified g- (b) An S-initial tree an-
derivation tree for adv chored with an adver-

bial

Figure 5.36: A lexical entry of an adverbial and a corresponding elementary tree

underspecified g-derivation trees of the lexical entries of the adverbials ensuite (afterward)
and auparavant (beforehand). Both of them are lexicalizations of SUCCESSION. Both have
the same feature sets. The difference between them is that their thematic roles arg1 and
arge are reversed, i.e., argl of ensuite (afterward) is arge of auparavant (beforehand);
and arge of ensuite (afterward) is argl of auparavant (beforehand). Figure 5.38 shows
the elementary trees anchored with ensuite and auparavant.

ensuite auparavant
(+T,+S) (+T,+S)
argl/ \argQ argQ/ \argl
(1st event) (2nd event) (1st event) (2nd event)
(+S) (+S) (+S) (+S)
(a) ensuite (b) auparavant

Figure 5.37: Underspecified g-derivation trees for adverbials ensuite and auparavant

S S
S| \ S| \
(arg1) S (arg2) S \
/ S / S |
Adv (arg2) Adv (arg1)

ensuite auparavant

(a) An elementary tree anchored (b) An elementary tree anchored

with ensuite with auparavant

Figure 5.38: Elementary trees anchored with adverbials ensuite and auparavant
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5.2.5.2 Subordinate Conjunctions

A lexical entry of a subordinate conjunction consists of several underspecified g-derivation
trees. These underspecified g-derivation trees define various syntactic constructions
involving a subordinate conjunction. There are two essentially different syntactic uses
of a subordinate conjunction that G-TAG offers. We call these two cases the canonical
use and the reduced one. To show the differences between them, let us consider the
sentences (85)(a) and (86)(a) on page 164, repeated as follows:

[(85)(a), repeated] Jean a passé Uaspirateur  avant que Marie
John havegps. SG. PRS. paSSPAST rart.  VACUUINETI pEr. before that Mary
fasse une sieste.

makesuchcmE a nap

‘John vacuumed before Mary took a nap.’

[(86)(a), repeated] Jean a passé Uaspirateur avant de faire  une sieste.
JOhn havegps. sG. prs. PaSSeast parr. VACUUIN €T ber. before of makenr. a nap

‘John vacuumed before taking a nap.’

Each of the sentences (85)(a) and (86)(a) consists of two clauses connected by
the subordinate conjunction avant (before). To be able to generate sentences with
the syntactic constructions similar to ones in (85)(a) and (86)(a), G-TAG uses two
underspecified g-derivation trees, shown in Figure 5.39.

avant
avant (=T, +S)
(=T, +S) +[T-reduced-conj]
argl / \argQ argl / \arg2
(15( event) (2nd event) (lst event) (2nd event)
(_Tv +S) (_T7 +S) (_7 +S) <_T7 +S)
(a) avant - canonical (b) avant - reduced

~+[T-reduced-conj]

Figure 5.39: Underspecified g-derivation trees of a conjunction

5.2.5.2.1 Canonical

Figure 5.40 on the next page presents the G-TAG canonical initial tree anchored with
avant and its usage in the sentence (85)(a). It is considered as a canonical construction
with avant as it connects two finite clauses, that is, clauses whose main predicates are
finite verb forms. In other words, in the canonical construction with the subordinate
conjunction, both the matrix clause and the subordinated one are finite clauses.
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5.2.5.2.2 Reduced

Figure 5.41 shows another initial tree anchored with avant, which one uses in order
to generate sentences such as (86)(a). In this case, the subordinate conjunction avant
connects a finite clause, which is the matrix clause, and a reduced clause, which is the
subordinate one. In French, the reduced clause is expressed as an infinitive clause.
Since an infinitive clause does not have an overt subject, it shares the subject with the
matrix clause. We call this fact argument-sharing. Thus, to generate a text with a reduced
conjunction, the conceptual representation input has to meet certain requirements. In
particular, given some t)-term RConj[l; = A, 15 = BJ, where RConj is a SECOND ORDER
RELATION, to lexicalize RConj with a reduced subordinate conjunction, A and B should
have the same argument, i.e., A and B should have the argument-sharing property.

s
/\ s/ \PP
St pp / \

(arg1) / \ Jean a passé laspirateur  Prep
Prep ‘ / \
\ avant
avant S| mood= sub]unctlve
mood=subjunctive
(arg1) Marie fasse une sieste
(a) The canonical elementary (b) The G-TAG analysis

tree of avant

Figure 5.40: The G-TAG analysis of a sentence with the canonical conjunction

s/s\

/
Si\ /\

(arg1) / \ Jean a passé laspirateur  Prep
Prep / \
\ avant
avant sy mood—mf
mood=inf A
(arge) faire une sieste
(a) A non-canonical (b) The G-TAG analysis

elementary tree of
avant,  defined by
+[T-reduced-conj]

Figure 5.41: The G-TAG analysis of a sentence with a reduced conjunction

5.2.6 An Example of Text Generation

G-TAG generates a g-derivation tree from a conceptual representation input by lexi-
calizing concepts in the following order: SECOND ORDER RELATIONSs, then the FIRST
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ORDER RELATIONS, and finally, THINGs. The hierarchal order of lexicalization from
SECOND ORDER RELATIONS to THINGS is motivated by a hypothesis that SECOND ORDER
RELATIONS define the rhetorical (discourse) structure of a text. This hypothesis relates
to an argument that by selecting a lexicalization of a SECOND ORDER RELATION, one
imposes certain restrictions on the possible lexicalizations of its arguments, which are
either SECOND ORDER RELATION and/or FIRST ORDER RELATIONs. By lexicalizing the
FIRST ORDER RELATIONS, one has fewer options for selecting lexicalizations of THINGs.*

Eo =: SUCCESSION[1SCEVENT = E;, 2*4EVENT = Ej]
E; =:GOAL[Action = Ei;, Purpose = Ejj]
E, =: NAPPING|NAPPER =5 Hy]

Ei; =: VACUUMING[VACUUMER = Hj]

Eio =: REWARDING[REWARDER = H,, REWARDEE = Hj|
Hi =: HUMAN|NAME = Jean, gender = masc]

Hy =: HUMAN|NAME = Marie, gender = fen]

Figure 5.42: conceptual representation input

Let us build a g-derivation tree from the conceptual input described in Figure 5.42.
One starts to construct the g-derivation tree by lexicalizing the 1)-term Eq since no other
y-term from the conceptual input contains Ey as a sub-y-term (see Section 5.2.2.3).
To lexicalize SUCCESSION concept, which is the root symbol of Ey, one has to choose
among several lexical entries that are linked with SUCCESSION. They are as follows:
ensuite (afterwards), auparavant (beforehand), apreés (after) and avant (before).

Let us assume that G-TAG selects ensuite (afterwards), which has only one under-
specified g-derivation tree shown in Figure 5.38(a) on page 166. One has to lexicalize
the arguments of SUCCESSION in Eo, i.e., the sub-¢-terms of Eg under the labels 13*EVENT
and 2"9EVENT. Ey has the sub-i-term E; under the label 1S*EVENT and E, under the
label 2"¢EVENT. To decide which one to lexicalize first, E; or Ey, G-TAG refers to their
order in the text that G-TAG aims to produce. E; will be lexicalized as arg1 of ensuite
and Ep as arg2. As the elementary tree anchored with ensuite indicates, arg1 precedes
arge in the surface order. Hence, G-TAG lexicalize E; before Es.

To lexicalize E; =: GOAL[Action = E;, Purpose = Ej5], G-TAG selects the lexical
entry pour (for) as a lexicalization its root symbol, which is GOAL. The lexical entry
pour has two underspecified g-derivation trees depicted in Figure 5.43 on the following
page. One in Figure 5.43(a) on the next page is the canonical tree of pour, whereas the
other one (in Figure 5.43(b)) is non-canonical, namely, the reduced one. We can assume
that G-TAG opts for the reduced underspecified g-derivation of pour. It is possible to
do so* because Ei; and Ei, share an argument (Hj).

To continue the lexicalization of E;, we should lexicalize its arguments as well. Thus,

we lexicalize E;; and Eis.

4“Until all RELATIONs are not lexicalized, G-TAG does not start lexicalizing THINGs, due to the
pronominalization issues, which we do not discuss for the sake of simplicity.

50In French, from stylistic points of view, the reduced construction (when possible) is preferred over
the canonical one (Danlos, 2000).

169



Chapter 5. Discourse Grammar Formalisms

pour
pour (-T,+S)

(-T, +S) +[T-reduced-conj]
argl / \argQ argl / \argQ
(action) (purpose) (action) (purpose)
('Ta +S) ('T7 +S> ('T7 +S) ('T7 +S>
(a) pour - canonical (b) pour - reduced

+[T-reduced-conj]

Figure 5.43: Underspecified g-derivation trees of pour

To lexicalize E11, we lexicalize its root symbol, which is VACUUMING. In G-TAG,
the VACUUMING concept is linked with the lexical entry passerl’aspirateur (to vacuum),
whose underspecified g-derivation tree is shown in Figure 5.44. Hi, which is the value
of E11 under VACUUMER, is going to be lexicalized as argl of passerl’aspirateur. In the
elementary tree of passerl’aspirateur, argl occurs at the subject position. Thus, the
lexicalization of H; will be a lexicalization of the subject of the elementary tree of
passer-l’aspirateur.

passer-l’aspirateur

argl ‘

Hy

Figure 5.44: The lexicalization of Es.

In order to lexicalize E;5 := REWARDING[REWARDER = H,, REWARDEE = H;|, we have a
constraint to obey. In particular, the lexicalization of Ej5 has to be an infinitive clause,
because we use it as the subordinate clause of the reduced construction with pour, which
requires an infinitive clause (reduced clause). G-TAG cannot lexicalize E;5 just as an
infinitive clause but under the constraint that Ei» and E;; share H;. Since Hj is the
subject of the lexicalization of E11 (of passerl’aspirateur), the thematic role of H; also
must be subject for the lexicalization of Ei5. The root symbol of Ei> is REWARDING. To
lexicalize E15, G-TAG selects lexical entries linked with REWARDING:

* récompense (reward),

* donnerrécompense (give-reward),

* recevoirrécompense (receive-reward).

Let us examine if these lexical entries, illustrated in Figure 5.45 on the facing page,
can have H; as the subject.

* In the case of donnerrécompense (see Figure 5.45(b)), REWARDEE is arge, i.e., Hy
will be lexicalized as arge. arge could have been the subject if one could use
donnerrécompense in a passive construction, but it is not possible as a passive
construction for donnerrécompense does not exist in French.
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5.2. G-TAG

» For recevoirrécompense shown in Figure f5.45(c), REWARDEE, i.e., H; is argi.
argl is the subject of the elementary canonical of recevoirrécompense. Thus,
recevoir-récompense is an option for lexicalizing Ej5.

* In the case of récompenser (see Figure 5.45(a)), the canonical elementary has
arge (corresponding to REWARDEE) as the object, but not as the subject. arge
becomes the subject in the elementary trees of récompenser corresponding to the
passive voice constructions.

récompenser donnerrécompense
argl/ \\argg argl/ \\argQ
(RewardER) (RewardEE) (RewardER)  (RewardEE)
Ho Hq Ha Hy
(a) (b)
recevoirrécompenser

argl/ \argQ
(RewardEE)  (RewardER)
Hq Ho

(c)
Figure 5.45: The candidates of lexicalization of REWARDING

récompenser
récompenser +[T-passive]
+[T-passive] + (T-reduced-conj)
{tense=pass.comp} {tense=infinitive}
argl/ \argQ argl/ \argg
(RewardEE)  (RewardER) (RewardEE)  (RewardER=¢)
(a) The passive construction (b) The passive construction for
with by-agent a reduced conjunction

Figure 5.46: Underspecified g-derivation trees for passive constructions

Thus, there are two options to choose from: (1) recevoirrécompenser and (2) a
passive construction with récompenser. For the sake of illustration of an usage of
a passive voice construction, we assume that G-TAG chooses a passive construction
with récompenser. As we already saw, there are several underspecified g-derivation
trees for passive constructions (see Figure 5.46). Among them G-TAG selects the one
with feature +[T-reduced-conj] (Figure 5.46(b)) since G-TAG has to construct a reduced
(infinitive) clause. This underspecified g-derivation tree defines the elementary tree
shown in Figure 5.32(c) on page 162.

Now, G-TAG moves to the lexicalization of E;, whose root symbol is NAPPING.
Figure 5.47 on the following page shows two underspecified g-derivation-trees serving as
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lexicalizations of NAPPING. Between the two, G-TAG selects the one with the feature
(—T,+S) (see Figure 5.47(a)) because the underspecified tree for ensuite requires its
arguments to be either a text or a sentence.

faire-la-sieste sieste
(=T, +S) (=T, -$)
‘ arg1 ‘ arg1
(NappER) (NappER)
(~T,~S) (~T, )
(a) A sentence (b) An NP

Figure 5.47: Underspecified g-derivation-trees serving as lexicalizations of NAPPING

ensuite

argl/ argd

pour
+[T-reduced-conj] faire-la-sieste

arg2\\ argl ‘

s récompenser H1

+[T-passive]
passer-l’aspirateur  +[T-reduced-conj]
argl ‘ argl/ \argQ

Ha He  Hi=¢

Figure 5.48: A g-derivation tree

Since all the concepts from the RELATION category are lexicalized, G-TAG outputs an
incomplete g-derivation tree as it misses lexicalizations of THINGs (see Figure 5.49). To
lexicalize THINGs, G-TAG employs the pronominalization module. The pronominalization
module lexicalizes concepts from THINGs either as noun phrases or as pronouns. The
exact modus operandi of the G-TAG pronominalization is not relevant for the current
purposes. We can assume that the pronominalization module lexicalizes the first (from
left to right in the g-derivation tree in Figure 5.49) occurrence of Hy as Jean, whereas
the second occurrence is lexicalized as ¢ due to the feature —i—[T—reducemnj] in the
underspecified g-derivation tree of récompenser. The third occurrence of H; is lexicalized
as il (hewom). The single occurrence of Hy is lexicalized as Marie. As a result, we obtain
the final g-derivation tree depicted in Figure 5.49 on the next page.

G-TAG maps the constructed g-derivation tree its g-derived tree. The post processing
module computes the inflected forms of the leaves of the g-derived tree. As a result,
one can transform the g-derived tree into a tree such as the one in Figure 5.50, i.e.,
into a syntactic tree whose leaves are inflected words.
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ensuite
arg/ arge
pour
+[Treduced-conj] faire-la-sieste
\VrgQ ‘ argl
e récompenser il
+[T-passive]
passer-l’aspirateur  +[T-reduced-conj]
argl ‘ argl / \argz
Jean Marie €

Figure 5.49: The final g-derivation tree

S / \ SP Adv / \ S
NP/ \VP Pre ~ \ S ;unct NP /\JP\
|

Prep

/ N\

Jean a passé laspiratuer pour ¢ étre récompensé par Marie . Ensuite |, il a fait une sieste

Punct

Punct

Figure 5.50: A (post-processed) derived tree

The post processing module outputs the following canonical surface form, which is
the linearization of the tree in Figure 5.50:

(88) Jean a passé Paspirateur  pour étre récompensé  par Marie.
John havess. s. ms. passmst . vaccumeroe. for —to-bems. rewardms:wme. by Mary.
Ensuite, il a fait une sieste.

Afterwards, he havegps. SG. PRS. makePAST pART. A nap.

‘John vacuumed in order to be rewarded by Mary. Afterwards, he took a nap.’
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5.3 D-STAG

D-STAG was proposed by Danlos (2009, 2011) in order to address the problem of
the syntax-semantic interface for discourse (the syntax-discourse interface). D-STAG
is based on the principles of Synchronous TAG (STAG) (Shieber and Schabes, 19go)
and SDRT (Asher and Lascarides, 2003). Being motivated by the SDRT discourse
analysis, D-STAG offers a discourse grammar capable of producing discourse structures
that cannot be represented as trees but directed acyclic graphs (DAGs). For example,
Figure 5.51 shows the D-STAG interpretations of the following discourses:

(89) [Fred is grumpy]p because [he lost his keys];. Moreover, [he failed his exam]s.

(9o) [Fred is grumpy]p because [he didn’t sleep well]3. [He had nightmares]s.

(91) [Fred went to the supermarket]s because [his fridge was empty]s. Then, [he went
to the movies];.

(92) [Fred is grumpyly because [his wife is away this week]s. [This shows how much he
loves her]y.

Figure 5.51(a) and Figure 5.51(d) show the trees that serve as the D-STAG inter-
pretations of the discourses (8g) and (g2), respectively. Unlike them, Figure 5.51(b)
and Figure 5.51(c) illustrate the D-STAG interpretations of the discourses (go) and (g1),
respectively. As one can see, the latter interpretations are multi-parent, i.e., non-tree
shaped DAGs.

(d) R (Ry Fo Fy) Fy

Figure 5.51: DAGs as discourse structures

We already provided terminology and constraints that D-STAG makes use of in
Section 4.1.3. For the sake of convenience, we repeat them here.

174



5.3. D-STAG

1. The clause where a discourse connective appears is called the host clause of the
discourse connective.

* A subordinate conjunction always appears in front of its host clause. The
host clause of the subordinate conjunction is called an adverbial clause.

* An adverbial connective may either appear in front of its host clause or
within its verb phrase (i.e., at a clause-medial position).

2. The matrix clause of a subordinate conjunction is on the right of the adverbial
clause. In this case, the subordinate conjunction is called postposed.

3. The matrix clause is on the left of the adverbial clause, or inside the adverbial
clause (before the VP of the adverbial clause). In this case, the subordinate
conjunction is called preposed.

The arguments of a discourse connective/relation are the syntactic/semantic repre-
sentations of the fost and the mate segments of the discourse connective/relation, which
obey the following constraints (Danlos, 2011):

Constraint 1: The host segment of a connective is identical to or starts at its host
clause (possibly crossing a sentence boundary).

Constraint 2: The mate segment of an adverbial is anywhere on the left of its host
segment (generally crossing a sentence boundary).

Constraint 3: The mate segment of a postposed conjunction is on the left of its host
segment without crossing a sentence boundary.

Constraint 4: The mate segment of a preposed conjunction is identical to or starts at
the matrix clause (possibly crossing a sentence boundary).

5.3.1 Discourse Normalized Form

D-STAG defines the notion of a Discourse Normalized Form (DNF). DNF is a sequence
of discourse words, where a discourse word is either a connective, or an identifier of a
clause (without a connective), or a punctuation sign. For instance, the DNF of (93) is
Cy because (.

(93) [Fred is grumpy]p because [he has failed an exam];.

(94) [Fred went to the movies]s. [He then went to a bar]s.

One of the main motivations for introducing DNF is to identify the host clause,
and moreover to compute the host segment of a discourse connective. As we saw
in Section 4.1, to compute the host segments of a connective is a nontrivial task if
attitude (report) verbs are involved. However, even if no attitude verb is involved in
a discourse but some clause-medial adverbial connective appears in the discourse, by
means of a pure syntactic analysis, one may not be able to identify the host segment

of the adverbial connective. For instance, in (94), the LTAG analysis of the adverbial

VP
then is _—~__ , i.e., it serves as a VP-modifier. Since at the discourse-level, an

then VP*
argument of then cannot be an VP, went to a bar cannot serve as an argument of the

discourse relation signaled by then. To declare that an argument of then is he went
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to a bar, D-STAG explicitly encodes it in the DNF. To achieve that, D-STAG moves

then in front of the clause. Thus, one obtains the following DNF: Cy. then™emel o

where the superscript internal indicates that the connective then was moved from its
original position. (3 denotes the host clause of then, which, in this case, serves as
the host segment to the discourse connective then. Moving of an adverbial connective
from a clause-medial to a clause-initial position is called normalization of a clause. By
normalizing the clauses where connectives appear at clause-medial positions, one can
construct the DNF of the text. Consequently, in a DNF, each connective appears in
front of its host clause.

In a case of a discourse where no connective heads a normalized clause C, one
places € (the lexically unexpressed connective) in the DNF in front of the clause C. For
instance, U3¢ Cy serves as the DNF of the following discourse:

(95) [Max fell]s. [Fred pushed him],.

A DNF of a discourse without a preposed conjunction, i.e., only with adverbial
connectives and/or postposed conjunctions follows the following pattern:

C (Punct Conn C')*

Where the pair Punct Conn can be either (a) fullstop Adverbial, or (b) Comma Conjunction
with Comma being optional. In general, we discard commas and fullstops and write

Cy - - - Conn,, C,.

(96) When [he was in Paris]s, [Fred went to the Eiffel Tower]s. Next, [he visited the
Louvre]y.

The DNF of a discourse with a preposed conjunction follows another pattern. For
example, let us consider the discourse (96). The preposed conjunction when in (g6) is
a framing adverbial, i.e., it sets a frame for a piece of discourse consisting of several
sentences (Charolles, 2005). The discourse starts with the preposed conjunction when
and its host clause, which also serves as the host segment of when. The mate segment
of when crosses the sentence boundary. In the case of (g6), the mate segment of when
is a piece of discourse consisting of two clauses connected by the discourse connective
next. The DNF of (96) is When C5, Cg . Next C7, which, as one cane see, does not
follow the pattern Cj - - - Conn,, Cj,.

Remark 5.6. The notion of a DNF of D-STAG is inspired by the treatment of the discourse
with clause-medial connectives in D-LTAG. Indeed, in D-LTAG, to parse a discourse, the
clause-medial connectives are mapped to the clause-initial ones. Inserting € as a connective
between two structurally adjacent clauses where no lexically expressed connective connects them
is also reminiscent of what Discourse Input Generation component of D-LTAG does.

5.3-2 D-STAG: Synchronous Tree Adjoining Grammar for Dis-
course

D-STAG is based on STAG (Shieber and Schabes, 199o).5! Thus, an elementary D-STAG

51We discussed STAG in Section 2.7 on page 47.
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structure « is a tree pair of TAG elementary trees (ai, ), where the substitution and
adjunction sites in the trees o and ay are linked. The tree o is an elementary tree
anchored by either an LTAG derived tree of a clause or a discourse connective; a9 is
an elementary tree anchored with a semantic tree, which models the interpretation of
either a clause or a discourse connective.

5.3.2.1 Trees Anchored by Clauses

In D-STAG, a minimal (atomic) discourse unit is a clause. One analyzes a discourse
consisting of a single clause as a pair whose first component is a DU-rooted tree
anchored with a TAG derived tree of the clause and the second component is a tree
anchored with a semantic interpretation of the clause. Figure 5.52(a) illustrates such a
tree pair, where 7; denotes the S-rooted derived tree of a clause C; and F; denotes
a t-rooted semantic tree of the clause, where ¢ is a natural number. 7T; and F; trees
stand for the sentence-level syntactic and semantic interpretations of the clause C;. In
order to obtain the tree pair in Figure 5.52(a) out of 7; and F;, D-STAG uses the
pair of initial trees shown in Figure 5.52(b).52 In the first component of the pair in
Figure 5.52(b), one substitutes 7;, and in the second component, one substitutes F;.
One denotes a derivation tree of a derived pair shown in Figure 5.52(b) by 7;.
Convention: Although a clause C does not anchor a tree in D-STAG but rather its

@ o )
derived tree 7', we may still write DL‘J instead of DL‘J . We will refer to DL‘J as
C T C
the tree anchored by the clause C.
DUOD t® DUOD t@®
T; F; S|® 1,©
(a) A D-STAG tree pair of a sin- (b) A D-STAG initial tree pair

gle clause discourse

Figure 5.52: The D-STAG representation of a clause

5.3.2.2 Adverbial Connectives and Postposed Conjunctions

Each connective (either an adverbial connective, or a postposed conjunction, or a
preposed one) anchors a DU-auxiliary tree with one DU-substitution site. At this
substitution site substitutes the tree anchored by the host clause of the connective.
Elementary trees anchored with adverbial connectives and postposed conjunctions
have the same structure. Figure 5.53 shows two auxiliary trees, anchored with an
adverbial connective and a postposed conjunction. Apart from a single DU-substitution
site (marked with ©), each of these auxiliary trees has three DU-adjunction sites
(marked with @, ©®, and @). Below, we refer to both adverbial connectives and

52We remind readers that by convention, we use @, where n is a positive natural number, to mark
adjunction sites. By ©, we mark a substitution site.
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postposed conjunctions as connectives, unless otherwise stated. A tree anchored with a

@
clause, Dl‘J , can substitute at the substitution site of a DU-auxiliary tree anchored
c

with a connective. We obtain a derived tree with four DU-adjunction sites (marked with
@, @, @, and @). Let 0 be a tree that adjoins on any of these adjunction sites. The
resultant tree would have the same yield as the one that one obtains by adjoining ¢ at
any of the rest of these adjunction sites. In other words, we could have only a single
DU-adjunction site instead of four, but we could still generate the same string language.
The reason for having different adjunction sites lays in the semantic trees. We first focus
on the syntactic part of D-STAG and after that we discuss the semantic one.

DU®@ DU®
| |
DU® DU®
/NN /NN
DU* Punct DC DU® DU* Punct DC DU®@
| | | |
) conj DU|® . adv. DU]l ®

(a) A D-STAG tree anchored with a (b) A D-STAG tree anchored with an
postposed conjunction adverbial

Figure 5.53: D-STAG elementary trees anchored with adverbial & postposed conjunction

5.3-3 The D-STAG Discourse Update and the Right Frontier of a
Discourse

A discourse where a discourse connective is ether an adverbial connective or a postposed
conjunction has a DNF of the form CjConn; ... Conn, C,. As D-STAG follows SDRT,
to update (extend) the current discourse with a new piece ()41, one must add C, 1
to the current discourse with some discourse (rhetorical) relation R, ;. One assumes
that a discourse relation is either expressed by an overt discourse connective or by the
empty discourse connective e. Hence, to update a DNF of a discourse, one adds to it
Cn+1 headed by Conn,, 1 signaling the discourse relation R,;. To update the current
discourse with DNF (j Conn; ... Conn,, C,, with a connective-clause pair Conn,1Cy1,
D-STAG substitutes SL‘@ into the auxiliary tree anchored with Conn,, 11, denoted by
.

Bconn,, +1- The resultant derived tree, denoted by 7,1, adjoins into the derived tree of
the discourse with DNF Cj Conn; ... Conn,, Cy, which we denote by Yo,n]- In this way,
we derive the tree 7| 1], i.e., the derived tree of the extended discourse with DNF
Co Conny ... Conn, C, Conn,11 Cpiq.

By substituting the tree anchored with Cj41 into the auxiliary tree anchored by
Conny,41, Rp+1 receives the host argument. The discourse relation R, ; obtains the
mate argument as a result of adjoining yn41 in 7 ,). The mate segment is on the left
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of the host segment as Constraint 2 and Constraint 3 require (formulated on page 175).
In addition, to fully satisfy Constraint 3, which allows the mate segment of an adverbial
connective to cross the sentence boundary (while it is prohibited for a conjunction),
D-STAG employs features on the foot node (i.e., the place where the mate segment
comes from) in order to distinguish the case with an adverbial connective from the case
with a conjunction.

PN

DU® DU®
| |
! DU® DU®
+ T~ / / \ / / \
DUD® DuU* DC DU@ DU DC DU® T0
| | | | O
Co Conn;  DUJD Co Conny  DUD Bconn,
| | \o
Ch 1 1
(a) Deriving Y0,1] (b) The derived tree (c) The
Y[0,1] derivation
tree of
7[0,1]

Figure 5.54: The derived and derivation trees for a discourse with DNF Cj Conn; Cy

One should note that one cannot use any DU-node as a possible adjunction site in
a derived tree of discourse. To update a discourse with DNF Cy ... Conn, C), with
a new piece Conn,;1 Cy+1, one can only adjoin the tree 7,41 on an adjunction site
in the tree 7|, that belongs to the right frontier of 7|y ). Let us illustrate that with
the example where n = 1. Figure 5.54(a) illustrates the way one derives | 1, whereas
Figure 5.54(b) and Figure 5.54(c) show the derived tree 7} and its derivation tree,
respectively. To extend the current discourse with DNF Cj Conn; €7 with a new piece
whose DNF is Conny (3, one adjoins 72 into 7|g ). The requirement for a node where
72 can adjoin is that the node must be on the right frontier of the discourse with
DNF CyConny . As Figure 5.55 on the next page shows, four sites marked with
labels @, @, @ and @, all are on the right frontier of the derived tree of the discourse
with DNF Cp Conn; (. Consequently, there are four possibilities of attaching the new
piece to the current discourse. As Figure 5.54(b) illustrates, there is also one more

DUD .
DU-node, the one that serves as the root of . However, since the latter node
Co

does not belong to the right frontier of the derived tree 7 1), it does not qualify as an
adjunction site in 7jg ;). Figure 5.56 shows the derivation tree for a discourse with DNF
Cy Conny C; Conng Cy, where @ can be either @, or @, or ®, or @. Thus, a discourse
with DNF Cp Conn; (1 Conng (3 may have four derivation trees depending on the value
of @, depending on which link o adjoins into the derived tree o) (see Figure 5.55).
These derivation trees give rise to the syntactic derived trees with the same yields,
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whereas the corresponding semantic trees encode different interpretations of a discourse.

V0,1] 2
DG@ ) ’,,_-——-*‘*—::\\DU@
| T
DU® * DU®
A N N
DU DC DU® /// DU* DC DU®
‘ ‘ ‘ K/// ‘ ‘
Co Conn; DUJO® Conny DU| @
| |
01 02

Figure 5.55: The four possibilities of adjoining 72 into [0, 1]

To
|
D
|
BConnl
y\\ @
T1 5Conn2

©

To

Figure 5.56: The possible D-STAG derivation trees for Cp Conn; C; Conng Co where
r=1,23,4

While it is not hard to determine the right frontier of the derived tree of a discourse
containing few clauses, in general, it could be a tedious job to define what is a right
frontier of a derived tree. Instead, Danlos (2011) suggest to define the right frontier of
a derivation tree. For that, one needs to order the nodes in a derivation tree, which
are intrinsically unordered. To order nodes in a derivation tree, one projects all nodes
denoting derivation trees of clauses (7;, for 7 =0,1,2,...,n) on some line, and then
orders them according to their order in the DNF. In this way, one defines an order <
on the nodes of a derivation tree. Consequently, one can identify the right frontier of
a derivation tree with respect to the order <. The nodes which appear on the right
frontier can be used as adjunction sites. We have two kinds of nodes, some of them
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denote derivation trees (7;) of clauses and the others denote auxiliary trees (8conn,)-
If 7, for some £k appears at the right frontier, one can adjoin a tree on it as it has
single adjunction site marked with @. If Sconn, appears at the right frontier, it has
three adjunction sites (marked with @, ®, and @). The above defined ordering and
the right frontier concerns trees but not nodes within the same tree. For instance,
if some tree already was adjoined on the node with the link ® into fconn,, then we
cannot adjoin a new tree on the node linked with @ in Sconn,, but on the node with
the link @, because @ is not any more on the right frontier, while @ is still on the right
frontier. To encode this way of building derivation trees, D-STAG defines Constraint 5,
formulated as follows:
Constraint 5 (Danlos, 2011)

If Bconn;, in which 7; is substituted, adjoins at the link @ of a node Bconn; (on the

DU-adjunction site marked with @ in the auxiliary tree anchored with a connective

Conn;), then Bconn,, in which 7 is substituted, can adjoin at the link @ of the

node Bconn, (on the link @ in the auxiliary of a discourse connective tree denoted

by Bconn;) if and only if the following condition holds:

7j < 7y, implies n < m, where n,m € {2,3,4}.

To illustrate the shape of the derivation trees Constraint 5 allows us to build, let
us consider the derivation tree depicted in Figure 5.57,% which is a derivation tree
of discourse whose DNF is Cj Connq () Conny (5 Conng (3. In the derivation tree of the
discourse, the derivation trees of the clauses Cy, Cj, (o, and (3 are ordered as follows:
7o < 71 < T2 < 73. As Figure 5.57 shows, the auxiliary trees Sconn, and Bconng, both
adjoin into Sconn,, on the links @ and @ respectively. Since we have that 7o < 73,
according to Constraint 5, one should have m < n.

B BConnl R
P
T0 - T1 6Conn2 BConng

Voo e
T2 T3

Figure 5.57: A D-STAG derivation tree obeying Constraint 5

5.3.4 Semantic Interpretation

Each syntactic tree is paired with a semantic one. The semantic trees encode semantic
interpretations, which are modeled by Higher Order Logic (HOL) formulas. As we
already saw, even though a syntactic tree corresponding to a connective-clause pair

53Note that the derivation tree in Figure 5.57 is not depicted in the usual way. Indeed, since 7y is the
root of the tree, one would expect that it to take the highest position among the nodes, in the pictorial
representation of the derivation tree. D-STAG uses such an illustration of a tree in order to pictorially
represent the right frontier of the tree. Below, we will use the usual representation of trees, where a
mother node gets a higher position than its daughters. Nevertheless, we will have in mind that one can
always define the right frontier of a derivation tree.
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(a tree obtained by substituting a tree anchored by a clause into an auxiliary tree
anchored with a connective) has four sites of adjunction (DU®, DU®, DU®, and DU®),
only having one of them would suffice to generate the same string language. The
reason behind introducing these adjunction sites lays in semantic trees. In particular,
D-STAG designs semantic trees in a way that adjoining on different sites gives rise to
the semantic trees encoding different interpretations.

5.3-4.1 D-STAG Semantic Trees Encoding \-terms

In D-STAG, semantic trees encode A-terms. In particular, D-STAG semantic trees serve
as tree representations of A\-terms. One represents a \-term as a tree as follows:4

o If a term v is a variable or constant, then one represents it as a tree consisting of
a single node labeled with .

o If a term u is represented as an abstraction A\z.s, then one represents it as a
ternary branching tree whose root node is u. The first child of the root node is
(the node at the Gorn address 1) labeled with \; the second child of the root
node is labeled with z (the node at the Gorn address 2); and at the Gorn address
3 is the subtree that is the tree representation of the term s.

* Given a term u where u = st, one represents it as a tree whose root node is
labeled with u and has two subtrees at the root node: the first subtree is the tree
representation of the term s and the second subtree is the tree representation tree
of t.

D-STAG uses typed A-terms. We may decorate interior nodes of the tree represen-

tation of a A-term with types as well, or sometimes, only with types, as for the trees
illustrated in Figure 5.58 on the facing page.

5.3-4.2 Two Kinds of Semantic Trees Anchoring Discourse Relations

D-STAG couples an elementary tree anchored with a discourse connective with the
semantic trees shown Figure 5.58. Each of these two trees is anchored with the relation
R signaled by the discourse connective. We refer to these trees as the semantic tree A
and the semantic tree B.

O = ARAXAY. X Nz (Y (Ay.Rzy))) : (t—t—t) — tt — ttt — ¢
(5-97)
O = ARAX.AY.AP. X Az (Y Ay (Rzy) A(Px))) : (t =t — t) — tit — ttt — ttt

(5-98)
R is of type t =t — t, and t{t is an abbreviation of (¢t — t) — ¢

® and (IDH, defined in Equation (5.97) and Equation (5.98), enable one to use a
discourse relation as an anchor of the semantic trees A and B. If a Conn,, points to a

54One can also propose the equivalent definitions (Ker, 2009).
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(a) The semantic tree A (b) The semantic tree B

Figure 5.58: Semantic trees A and B
ttt denotes (t — t) — t

di//scourse relation R, then in certain cases, R, is used as @’ R,, and in some cases as
® R,. Such possibilities together with the various sites for adjunction in trees enables
D-STAG to produce semantic trees encoding various kinds of semantic dependencies,
including non-tree shaped DAGs.

By Bconn/r> We denote an auxiliary tree pair of D-STAG where the syntactic elemen-
tary tree is anchored with Conn and the semantic tree is anchored with the relation
R. To point out that we use the semantic tree A (resp. B) paired with an elementary
tree anchored with a connective Conn, we attach the superscript A (resp. B) to a node
denoting an elementary tree pair Sconn /g, i-€., we write 6éonn/R (resp. ﬂgonn/R)‘

5.3.5 Parsing Ambiguity

To parse a discourse with a D-STAG grammar, one faces ambiguity issues. Indeed, in
a derived tree of a discourse with several clauses, there are a number of DU-adjunction
sites on which one can adjoin a tree so that the resultant derived trees will have the
same yields. Thus, one may have a number of derivation trees whose syntactic derived
trees have the same yields. However, these derivation trees may give rise to different
semantic interpretations. The problem of identifying among these derivation trees the
ones that give rise to coherent interpretations, we call the ambiguity problem of the
D-STAG parsing.

To illustrate the parsing ambiguity of D-STAG, let us compare the D-STAG parsing
with the one of D-LTAG. In D-LTAG, one interprets a discourse as a tree-shaped
structure by using compositional means only. The tree-shaped discourse interpretation
can be further expanded to a DAG by retrieving anaphoric arguments of adverbial
connectives (if any). In contrast to D-LTAG, D-STAG encodes possibility of obtaining a
DAG as a discourse structure within its grammar. In other words, D-STAG produces
DAGs compositionally. In D-LTAG, the number of the possible derivation trees for
a discourse with three or more clauses is less than the number of possible D-STAG
derivation trees for the same discourse. This is due to the fact D-LTAG trees have fewer
attachment points (adjunction sites) than D-STAG ones have. That is why the parsing
task in D-STAG is more ambiguous compared to the one in D-LTAG. One may consider
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the higher ambiguity of the D-STAG parsing compared to the D-LTAG one as the trade-
off of having various attachment points. However, the same kind of ambiguity problems
arise in D-LTAG as well if one takes into account the resolution of the anaphoric links
in the D-LTAG interpretations of discourse. Thus, the differences between the parsing
ambiguities in D-STAG and D-LTAG are due to the differences in their goals: while
D-LTAG (compositionally) interprets a discourse as a tree, D-STAG (compositionally)
interprets a discourse as a DAG. From the perspective of natural language generation,
D-STAG has an advantage over D-LTAG as the semantic interpretations already provide
information about all the arguments of discourse connectives.

5.3.6 D-STAG Examples

To illustrate the shape of D-STAG derivation trees, we provide the D-STAG derivation
trees for the discourses (89)-(92) on page 174, and the syntactic and semantic interpreta-
tions they give rise to. How to construct the right derivation tree for a given discourse
is the problem that is directly related to the D-STAG parsing ambiguity. Below, we do
not deal with the ambiguity problems but directly provide the right derivation trees for
the examples (89)-(92).

Example 5.1.

(89, repeated)
[Fred is grumpy|o because [he lost his keys|1. Moreover, |he failed an exam)s.

DNF: Cy because C moreover Co
Interpretation: EXPLANATION F(y (CONTINUATION [ F3)

To interpret (89), one identifies rhetorical relations signaled by the discourse connec-
tives because and moreover. The relation signaled by because is EXPLANATION, and the one
signaled by moreover is CONTINUATION. These relations can anchor the semantic tree A

or B. That is, for because/EXPLANATION, we have two tree pairs (: :
’ because / explanation’
A

— and
moreover | continuation’

B .
and B, Jexplanation” W€ have also two tree pairs for

B .. Thus, to build the derivation tree of the discourse, we have
moreover / continuation

the following options:

A A

1. We choose Bbecause/emplanation and Bmoreover/continuation'
B

moreover / continuation”
B A

3 We choose ﬁbecause/explanation and ﬁmoreover/continuation'
B

4- We choose Blicause/emplanation and ﬁmoreover/continuation'
Moreover, we have various adjunction sites where trees can be adjoined. To obtain
the interpretation of (8g), which is EXPLANATION F{y (CONTINUATION F Fy), one chooses
and (4 The tree 34 adjoins on the

moreover / continuation’ moreover | continuation

A
2. We choose ﬁbecause/emplanation and ﬁ

ﬂA
because / explanation’®
DUQ® adjunction site in the tree obtained by substituting 79 into Blﬁacause Jeaplanation” T8

ure 5.59(a) shows the D-STAG derivation tree of the discourse. It gives rise to the pair of
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(a) The D-STAG derivation tree (b) The syntactic derived tree

EXPLANATION Fy (CONTINUATION Fj F)

t@

— ~

ttt — t: AY.Y (Ay. EXPLANATION F y)  ttt@: X Q. Q(CONTINUATION Fyy F)
~ N 7N
(‘I)IEXPLANATION) tt®: A P. (P Fp) A~ @ t:Q(CONTINUATION Fy Fy)
/ I\ 7\
A P t Q t@:(RZ F] F2)
P t® i —1 1@
| N /1IN
Fy (® CONTINUATION) @ X Q ¢

/1IN /\

A Pt Q @
/\ |
P Fy

.

|

Fy

(c) The semantic derived tree

Figure 5.59: The D-STAG derivation tree, and the syntactic and semantic derived trees

the semantic and the syntactic trees, depicted in Figure 5.59(c) and Figure 5.59(b), respec-
tively. The semantic derived tree encodes the term EXPLANATION Fjy (CONTINUATION [} Fy).

Example 5.2.

(9o, repeated) [Fred is grumpy|o because [he didn’t sleep well|s. [He had nightmares),.

DNF: Cy because C3 ¢ Cy
Interpretation: (EXPLANATION Fjy F3) A (EXPLANATION F3 Fy)

In the case of discourse (go), the discourse marker because signals EXPLANATION.

The other discourse connective in (go) is the empty connective €, which also signals
EXPLANATION.
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(a) The D-STAG derivation tree

DU® Conny DU| @

Cs Cy
(b) The syntactic derived tree

(EXPLANATION Fyy F3) A (EXPLANATION F3 Fy)

/

ttt —t

t@

T~
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(' EXPLANATION)

PN

ttt — tit tit

2738) @
7N /IN

JIN
A Pt (® EXPLANATION) #t® X Q ¢

/N | /\t

P t@ ttt* Q tO
| /1IN |
Fo A Q ¢ Fy
/\
Q t0
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(c) The semantic derived tree

Figure 5.60: The D-STAG derivation tree, and the syntactic and semantic derived trees

Like in the previous case, one has several choices for selecting trees anchored by
connectives. To obtain (EXPLANATION [ F3) A (EXPLANATION F3 Fy) as the interpre-

tation of the discourse (9o), D-STAG selects 3; Jexplanation and f3; ' explanation” The
tree ﬂgezplamtwn adjoins on the DU® adjunction site in ﬁ;}icause Jexplanation® Tigure 5.60

shows the D-STAG derivation tree and the corresponding syntactic and semantic de-
rived trees. As we can see, the semantic tree indeed encodes (EXPLANATION Fj F3) A
(EXPLANATION F3 Fy), which is the interpretation of (o).

Example 5.3.

(91, repeated) [Fred went to the supermarket|y because [his fridge was empty|;. Then, |he

went to the movies|s.

DNF: C5 because Cg then .
Interpretation: (EXPLANATION F5 Fg) A (NARRATION F5 Fr)

In the discourse (91), because gives rise to the EXPLANATION relation, whereas then
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P
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(b) The syntactic derived tree

Figure 5.61: The D-STAG derivation tree, and the syntactic and semantic derived trees

signals NARRATION. Like in the previous cases, one has several possibilities for selecting
trees anchored by connectives. One interprets the discourse (91) by selecting the trees
A B . o .
Biecause Jeaplanation 204 Bihen narration” T igUTre 5.61 shows the derivation tree along with
the semantic and syntactic derived trees for (91). The semantic derived tree encodes
the term (EXPLANATION F5 F) A (NARRATION F5 F7), which is indeed the interpretation

of (g1).
Example 5.4.

(92, repeated)

[Fred is grumpy|o because [his wife is away this week]s. [This shows how

much he loves herlo.

DNF: Cy because Cs e Cq
Interpretation: COMMENTARY (EXPLANATION F Fy) Fy
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(c) The semantic derived tree

Figure 5.62: The D-STAG derivation tree, and the syntactic and semantic derived trees

In (92), because signals EXPLANATION. The other connective is the empty con-
nective €. In the case of (92), € is interpreted as COMMENTARY. To obtain the
interpretation of (g92), D-STAG selects the trees Bﬁmuse Jeaplanation and S4

€/ commentary”

Figure 5.62 illustrates the D-STAG derivation tree along with the corresponding syn-
tactic and semantic derived trees. As we can see, the semantic tree encodes the term
COMMENTARY (EXPLANATION Fy Fg) Fy, which is indeed the interpretation of (92).
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5.3.7 Preposed Conjunctions

In D-STAG, one considers the case where a preposed conjunction plays the role of a
framing adverbial in a discourse (Charolles, 2005). Such a preposed conjunction can
include in its scope several sentences. For the sake of illustration, let us consider
Example (96). The preposed conjunction when is a frame builder in (96). The mate
segment of when is Fred went to the Eiffel Tower. Next, he visited The Louvre. Hence,
the mate segment when crosses a sentence boundary. Figure 5.63 shows a pictorial
representation of the discourse structure of (gb).

Figure 5.63: CIRCUMSTANCE (NARRATION2 I} F) Fy

(96, repeated) When [he was in Paris|o, [Fred went to the Eiffel Tower|;. Next, [he visited
the Louvrels.

DNF: When Cj, Ci.Next Cs.
Interpretation: CIRCUMSTANCE (NARRATION F F») Fj

To give an account of a preposed conjunction such as when, D-STAG uses an auxiliary
tree, such as one in Figure 5.64. This auxiliary tree has one more DU-adjunction site
(marked with link ®) compared to one anchored with a postposed conjunction or an
adverbial connective. To obtain the interpretation CIRCUMSTANCE (NARRATION Fj Fy) Fy,
D-STAG adjoins the tree pair of the piece of discourse CjConnaCy on this additional
adjunction site, as the derivation tree in Figure 5.65(a) indicates. Figure 5.65(b) and
Figure 5.65(c) illustrate the syntactic and semantic derived trees for (g6) specified by
the derivation tree in Figure 5.65(a).

DU®

DU®

N

DC DU® Punct DU®

When DU|®© J DU*

Figure 5.64: The D-STAG syntactic tree anchored by a preposed conjunction
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(c) The semantic derived tree

Figure 5.65: The D-STAG derivation tree of a discourse, and its syntactic and semantic

derived trees

5.3.8 Modifiers of Discourse Connectives in D-STAG

As we already discussed in D-LTAG (see Section 5.1.4.5.1), some adverbials contribute
to a discourse structure by being parasitic on a discourse connective, like it is in the
sentence (9g). Following D-LTAG, D-STAG also considers the adverbial for example in

(99) as a modifier of the discourse connective because.

(99) You shouldn’t trust Jack because, for example, he never returns what he borrows.
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DU® DC
| / N\
DU® DC*  modifier

/N

DU* Punct DC® DU®

) Conj DU©

Figure 5.66: An auxiliary tree anchored with a connective modifier adjoins on the DC
node into the auxiliary tree anchored by a discourse connective

One calls a connective that modifies discourse connectives a connective modifier.
D-STAG encodes a connective modifier as an auxiliary tree pair. The syntactic tree of
the pair is a DC-rooted auxiliary tree. To modify a discourse connective, it adjoins on
the DC node of an auxiliary tree anchored with the connective. Figure 5.66 shows that
an elementary tree anchored with a modifier adjoins on an elementary tree anchored
with a preposed conjunction. To mark the new adjunction site where a tree anchored
with a modifier adjoins, one attaches the new link ©® to the DC node of the tree
anchored with a connective. Regarding the semantic tree of the pair, the exact shape of
the tree depends on a modifier itself. In the case of the modifier for example, Figure 5.67
illustrates the semantic tree (together with the syntactic one) of for example. The anchor
of the semantic tree is For-ex. D-STAG defines For-ex according to the semantic analysis
of for example provided in D-LTAG, which is as follows:

Forex = )\ Rp q. EXEMPLIFICATION ¢ (A7. Rp ) (5-100)
t—=>t—>1t
/
/DC\ t>t—>t*
DC*  for example For-ex
(a) The syntactic tree (b) The semantic tree

Figure 5.67: The D-STAG tree pair of forexample
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G-TAG as ACGs
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In this chapter, we present the ACG encoding of G-TAG. Since G-TAG is based on TAG
principles, the ACG encoding of G-TAG relies on the ACG encoding of TAG with Montague
semantics. On the other hand, while TAG is only concerned with sentence-level structures,
the objective of G-TAG is to generate a text rather than a sentence. For that, G-TAG defines
its own discourse grammar. By encoding the G-TAG grammar, we design ACGs suitable for
discourse modeling. The ACGs that we design are second-order ones. This ensures that the
tasks of parsing and generation with the ACG encoding of G-TAG are polynomial.
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1.1 Motivations

By encoding (L)TAG with Montague semantics as ACGs (Pogodalla, 2009),5 one models
the syntax-semantics interface at the sentence-level. To model the syntax-semantics
interface for discourse, one can extend the ACG encoding of TAG by encoding a
discourse-level grammar in addition to the sentence-level one. In Section 5.2 on
page 153, we discussed G-TAG (Danlos, 1998). With the help of G-TAG, one generates
a text from a conceptual representation input. As the sentence-level grammar encoded
in (Pogodalla, 2009) is a TAG grammar, and at the same time G-TAG offers a discourse
grammar based on the TAG principles, we expect the study of G-TAG to help us to
design ACGs suitable for discourse modeling.

1.2 The ACG Architecture for G-TAG

In G-TAG, the pivot for a g-derived tree is its g-derivation tree. Indeed, G-TAG first
constructs a g-derivation tree out of a conceptual representation input. Afterwards, the
g-derivation is mapped to the g-derived tree. Thus, the architecture of G-TAG is similar
to the one of the ACG encoding of TAG with Montague semantics:

* In G-TAG, one builds a g-derivation tree (output) from a conceptual representation

(input). In the ACG encoding of TAG with Montague semantics, one translates a
TAG derivation tree (input) to a semantic formula (output).

* A g-derivation tree signifies a (unique) g-derived tree. Using the ACG encoding

of TAG, we translate a TAG derivation tree to a (unique) derived tree.

Thus, in both G-TAG and the ACG encoding of TAG with Montague semantics, one
establishes the correspondence between conceptual representations (semantic interpreta-
tions) and derived trees through derivation trees. In the ACG encoding of TAG with
Montague semantics, derivation trees are abstract terms. In order to encode G-TAG
as ACGs, we develop a similar approach to the one of the ACG encoding of TAG
with Montague semantics. That is, we encode g-derivation trees as abstract terms. To
model that G-TAG builds a g-derivation tree out of a conceptual representation input,
we define a lexicon that interprets g-derivation trees to conceptual representations.

We can also define another lexicon for interpreting the abstract terms modeling
g-derivation trees as derived trees. However, we develop a more modular approach
than that by interpreting g-derivation trees as TAG derivation trees. Then, with the
help of the ACG encoding of TAG, one can interpret TAG derivation trees as TAG
derived trees. In this way, one establishes the correspondence between g-derivation trees
and TAG derived trees via TAG derivation trees. By interpreting g-derivation trees as
TAG derivation trees, one makes explicit (a) the motivations why g-derivation trees
have various kinds of features; (b) how g-derivation trees relate to TAG derivation trees.
That is why we opt for the modular interpretation of g-derivation trees as derived trees.
However, in this case, one uses TAG derived trees instead of g-derived trees. Although
g-derived trees differ from TAG derived trees, they are conceptually close to each other
so that TAG derived trees can model g-derived trees. In other words, for a g-derived

5See Section 3.8 on page 8o.
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tree, we can always find its equivalent TAG derived tree. Hence, instead of using
g-derived trees, we use TAG derived trees. Figure 1.1 depicts the ACG architecture of
G-TAG.

We aim at designing such ACG architecture for G-TAG where the abstract vocabulary
is second-order and the lexicons are almost-linear, because, in this case, the problems
of parsing and generation are polynomial (Kanazawa, 2007).

/7 Yeme
\

G-DERIVATION TREES |

/' sem -
\. / / Sem AN
L \z%) Zgem
’ EDer N D%G

GTAG __ CPTAG
gsynt B gs‘/“‘ © fGTAG_TAG [GTAG SEMANTICS |
TAG-TAG \ ‘

e
TAG

[ \ AN //
| TAG DERIVATIONS |

TAG
Syt \\A/'%syllt
TG\

| TAG syntax |

\ Y

Figure 1.1: The ACG architecture for G-TAG

1.3 G-derivation Trees as Abstract Terms

To encode G-TAG as ACGs, we construct the abstract vocabulary Ygne. Terms over
Yeme model g-derivation trees. Since the notion of a g-derivation tree is close to the
notion of a TAG derivation tree, in order to build the signature Ys;\g, one may refer to
the signature X%, which we use in order to encode TAG derivation trees of sentences
in the ACG encoding of TAG with Montague semantics.

Although TAG derivation trees and g-derivation trees are conceptually alike, they
show some differences. These differences prevent one from directly using the ACG
encoding of TAG derivation trees for the purposes of encoding g-derivation trees. In a
TAG derivation tree, a node represents an elementary tree with an inflected anchor,
whereas in a g-derivation tree, T-features and morphological features decorate nodes
standing for the lexical entries. Out of these features, one computes the structural
description of a tree and the inflected version of the lexical entry anchoring the tree.
One could try to represent g-derivation trees as abstract terms by encoding the lemmas
and morphological features of G-TAG as the terms over the abstract vocabulary. In
that case, one has to be able to build an abstract term encoding an inflected version
of a word with the help of the terms encoding the lemma and features. Furthermore,
one needs to interpret the terms encoding features and lemmas to derived (syntactic)
trees and to the surface representations. This requires to develop a compositional
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approach to computational-morphology within the ACG framework: A derived tree
with inflected anchors has to be derivable from (decomposable into) the trees standing
for the interpretations of lemmas and features. In addition, to interpret the terms
modeling g-derivation trees as semantic (conceptual) representations, one should give
a compositional account of the morphology-semantic interface problem within ACGs.
Indeed, given T-eatures and morphological features of a lexical entry, one has to
be able to obtain its semantic interpretation.’¢ However, we do not develop these
approaches in the present work, as they go beyond the scope of this thesis. We choose
another way of encoding g-derivation trees. Instead of encoding lemmas and features
in the abstract vocabulary, we encode inflected forms of words. Furthermore, instead
of encoding THeatures and their combinations, we directly encode in the abstract
vocabulary elementary trees that (sets of) THfeatures give rise to. Thus, we deal morpho-
syntactic questions in the same way as it is done in TAG (and consequently, in the
ACG encoding of TAG).%”

In Section 5.2 on page 153, we saw that one defines a g-derivation tree with the
help of an underspecified g-derivation tree. Underspecified g-derivation trees differ from
TAG derivation trees. In particular, underspecified g-derivation have variable nodes,
which is not the case of TAG derivation trees. By instantiating variable nodes of an
underspecified g-derivation tree, one obtains a g-derivation tree. Thus, the notion of
an underspecified g-derivation tree is reminiscent of the notion of an abstract term
of the ACG encoding of TAG. To illustrate that, let us consider the lexical entry
récompenser (reward) and the canonical underspecified g-derivation tree associated with
it. Figure 1.2(a) shows this underspecified g-derivation tree. This underspecified g-
derivation tree denotes an initial tree encoding an active voice construction with a
verb. To compute the anchor of the tree, the G-TAG post processing module uses
the morphological features. Namely, the G-TAG post processing module computes that
the anchor of the tree is the past participle form of récompenser (to reward), which is
récompensé. One can model this underspecified g-derivation tree by a term over %%,
that is, one can encode this tree using the ACG encoding of TAG as follows:

t, = Xargy. X’args. Crecompense 18a (Ca Lva) argq args :np —onp — S (1.1)
Where C..compense € Y2 models the TAG initial tree anchored with the past participle

récompensé. It is of type Sy —o V, —onp —onp — S.
C, € X% models a French auxiliary verb a (havessams). It is of type V, —o V,

Iy, : V4 is a constant modeling an empty adjunction.
Terms can model both partially instantiated and fully instantiated underspecified g-derivation

trees. Yor instance, Figure 1.2(b) shows a partially instantiated underspecified g-derivation
tree. One encodes this tree as follows:

t? = )\0 arQQ Crécompensé ISA (Ca IVA) Cmarie arg2 : np —0 S (1'2)

5To achieve that, one may try to use a richer type system for ACGs (Pompigne, 2013).
57For a detailed discussion about the possibilities of encoding features within ACGs, we refer readers
to (Kanazawa, 2015).
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In the term ¢,, we encode the g-derivation tree for Marie with the constant C,... €
Y. Furthermore, we encode the g-derivation tree in Figure 1.2(c) as the term ¢,
defined as follows:

t3 = Crécompensé ISA (Ca IVA) Cmarie Cjean : S (1'3)
(récompenser) (récompenser) (récompenser)
tense=passé composé tense=past simple tense=past simple
argl/ \argQ argl/ \argQ argl/ \argz
(RewardER)  (RewardEE) (marie)  (Hp) (marie)  (jean)

(a) (b) (c)

Figure 1.2: The underspecified g-derivation tree associated with the lexical entry
récompenser and the trees obtained out of it by specifying its variable nodes

/\
\ /\

Marie
Olrécompensé a
1 - f ‘ ‘
/21\ -~
Q'marie Qjean Ba récompensé Jean
(a) A TAG derivation (b) A TAG derived tree
tree

Figure 1.3: The TAG derivation and derived trees for Marie a récompensé Jean

As one can see, the term ¢, serves as the ACG encoding of the TAG derivation tree
shown in Figure 1.3(a), whose derived tree is given in Figure 1.3(b). Hence, we can
encode underspecified g-derivation trees, and consequently, g-derivation trees, with the
help of the constants of ¥57. That is why we adopt the constants and types of X5
in Xape (the vocabulary where we encode g-derivation trees). This allows us to define
the same terms over g as the ones over X27.. However, the terms over % encode
only derivation trees of sentences. In Ygmng, by only having constants and types adopted
from X7, one cannot model g-derivation trees of multi-sentential texts. In addition,
notice that the G-TAG analysis of discourse connectives differs from the TAG one
(XTAG-Group, 1998). While a discourse connective anchors an initial tree in G-TAG, it
anchors an auxiliary one in TAG. Hence, in order to encode a g-derivation tree of a
discourse, one should encode discourse connectives differently from the way they are

encoded in X%%. Thus, one cannot adopt in Ygne the constants in X253 representing
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Chapter 1. G-TAG as ACGs

TAG trees anchored with discourse connectives. Moreover, let us recall that G-TAG
offers a special treatment of reduced conjunctions, where the argument sharing between
the matrix clause and the subordinated one takes place. As we saw,>® to generate a
text with a reduced conjunction, one has to obey certain requirements. In ACGs, we do
not have the same kind of decision mechanisms as G-TAG uses in its text generation
process. What we have are only types and constants, or to put it another way, in ACGs,
everything is grammaticalized. Thus, to model g-derivation trees of discourses, we

introduce the constants and types in g, besides those ones that we adopt from ¥27.

1.3.1 Types

In GTAG, in order to distinguish the g-derivation trees of texts and sentences, one
employs the features (+7T,+S) and (—T, +S), respectively.

adv
(+T,+S)

argl / \arge

(argumentX) (argumentY)

(+5) (+5)
Figure 1.4: A g-derivation tree for the adv lexical entry

Figure 1.4 shows the lexical entry adv for the adverbial adv. It consists of an
underspecified g-derivation tree whose root has the feature (+T,+S). Both of the
daughter nodes of the root node have the feature (4S), which stands for either a text
or a sentence. Thus, there are several cases to consider:

1. Both of the daughter nodes of the root node are g-derivation trees of texts;

2. both of the daughter nodes of the root node are g-derivation trees of sentences;

3. the first daughter node (arg1) is a g-derivation tree of a sentence, while the second

one (arge) is a g-derivation tree of a text;

4. the first daughter node (arg1) is a g-derivation tree of a text, and the second one

(arg2) is a g-derivation tree of a sentence.

To define terms modeling g-derivation trees, one may encode the features (—T,+S)
and (+T,+S) in the abstract vocabulary, i.e., in Ygps. We encode the feature (—T,+S)
with the type S. To encode the feature (+T,+S), we introduce a new atomic type T
in Ygnme. Depending on whether a g-derivation tree gives rise to a sentence or a text
(which is indicated by the feature of its rootnode), we model it by a term of type S or
T, respectively.

Remark 1.1. G-TAG introduces morphological features that the post-processing module uses
in order to generate texts where clauses have to be of certain tenses, moods etc. For each
combination of morphological features, we can introduce in the abstract vocabulary a new type
and the constants that will enable us to define the terms of that type. In a sentence consisting

58See Section 5.2.6 on page 168.
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1.3. G-derivation Trees as Abstract Terms

of two clauses connected by a conjunction, one has to encode the agreement between the mood
and tense of two clauses. In order to model such constraints, one can use ACGs with richer
type systems (de Groote and Maarek, 2007; de Groote, Maarek, and Yoshinaka, 2007; Pompigne,
2013) than the version of ACGs with simple types, which we use in the present work. Although
we could also encode certain kinds of agreements using simple types, in this thesis, we do not
deal the morphological features and agreements, but leave them for future work.

1.3.2 Constants

In G-TAG, one uses THeatures in order to identify/designate the syntactic trees encoding
different uses of a lexical entry. An underspecified g-derivation tree defined by 'I-
features signifies a particular syntactic use of a lexical entry, i.e., a particular syntactic
construction with the lexical entry. We model lexical entries with the help of abstract
terms, i.e., terms over Xgng.

Convention: we denote the abstract constant modeling a tree anchored with « as
a G, constant in Ygpe (so that we do not confuse the constants used in the current
encoding of G-TAG as ACGs with the ones used in the ACG encoding of TAG, where
the abstract constants are denoted with C,).

1.3.2.1 Discourse Connectives

In G-TAG, both adverbials and conjunctions anchor initial trees, whereas in TAG,
they anchor auxiliary trees. We do not adopt in g the constants of X257 modeling
subordinate conjunctions and adverbials because otherwise the ACG encoding of G-TAG
would diverge from G-TAG. Instead, we introduce new constants in Xgpe to model
underspecified g-derivation trees of subordinate conjunctions and adverbials.

Convention: We say conjunction instead of subordinate conjunction whenever it does
not cause a confusion.

1.3.2.1.1 Adverbials

With the help of underspecified g-derivation trees for discourse adverbials, G-TAG
generates texts. For instance, one obtains the g-derivation tree of the discourse (4) by
instantiating the variable nodes of the underspecified g-derivation tree of the adverbial
ensuite (afterward).

(4) Jean a passé laspirateur. Ensuite, il a
Jean haverwss. 3vs. 6. PaSSeast rarr. vacuum-cleaneroe:.. Afterwards, he haverms. 3PS. SG.
fait une sieste.

makensr . @ DAP.

John vacuumed. Afterwards, he took a nap.

In order to encode an underspecified g-derivation tree of an adverbial adv (see
Figure 1.4 on the facing page), we encode the possible cases of the values of the features
decorating its nodes. The feature (+T, +S) decorates the constant node (the root node).
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Chapter 1. G-TAG as ACGs

The feature (+T,+S) only applies to a fext, which we encode with a term of type T.
The constant node has two daughter nodes, which are the variable nodes. Each of
the daughter nodes has the feature (+S), which can denote both a fext and a sentence.
Hence, the possible values of the daughter nodes are the following four pairs: (sentence,
sentence), (sentence, text), (text, sentence), and (text, text). To encode each of the
four cases, in >gmng, we introduce the four constants shown in Table 1.1. Each of these
four constants receives as its arguments terms of type T and/or S. The resultant term
encodes a g-derivation tree specifying a text, i.e., a term of type T.

Constants in Ygpg | Their Types
Gaave S—oS—-oT
Gaavy S—oT—-oT
Gaavs T—o8S—oT
Gaavr T—oT—oT

Table 1.1: Constants in g modeling the G-TAG lexical entry of an adverbial

1.3.2.1.2 Subordinate Conjunctions

G-TAG employs an underspecified g-derivation tree of a subordinate conjunction in
order to generate a sentence with two clauses. This is expressed using features on the
nodes of the underspecified g-derivation tree of a conjunction. Figure 1.5 illustrates
underspecified g-derivation trees of a conjunction. Each node in these trees has the
feature (—T,+S) denoting a sentence.

conj
conj +[T-reduc.conj]
argl/ \argQ argl/ \argQ
(argumentX) (argumentY) (argumentX) (argumentY)
(-T,+S) (~T.+S) (-T,+S) (~T.+S)
(a) The canonical case (b) The canonical case with
+[T-reduc.conj]

Figure 1.5: Two underspecified g-derivation trees for conj

The underspecified g-derivation trees in Figure 1.5 give rise to stylistically different
constructions. The underspecified g-derivation tree shown in Figure 1.5(a) is the
canonical one, which gives rise to the sentences such as the following one:

(5) Jean fait une sieste aprés que Marie passe laspirateur.
John makerws. s sc. @ nap after that Mary passgs. se. suy. Vacuumeroes..

John takes a nap after that Mary vacuums.
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1.3. G-derivation Trees as Abstract Terms

The underspecified g-derivation tree with the feature -+[T-reduc.conj] (see Fig-
ure 1.5(b)) gives rise to the sentences such as the following one:

(6) Jean fait une sieste aprés avoir passé Laspirateur.
John makerus 35 . @ nap after to-haverus m. passms . Vacuumerses..

John takes a nap after vacuuming.

The difference between the canonical g-derivation tree and the one with the feature
+[T-reduc.conj] is that in the canonical g-derivation tree, the variable nodes must be
instantiated with g-derivation trees of complete> clauses (see e.g. (5)), whereas in the
case of the underspecified g-derivation tree with the feature -+[IT-reduc.conj], only one
of the variable nodes must be instantiated with a g-derivation tree of a complete clause.
Namely, the matrix clause should be a complete clause, whereas the subordinated one
should be a reduced clause, i.e., an infinitive clause introduced by the subordinated
conjunction (Danlos, 2000). We discuss the canonical case and the one with reduced
conjunction separately.

The Canonical G-Derivation Tree

As we encode the feature (—T,+S) with the type S, we type an abstract constant
encoding a canonical g-derivation tree of a conjunction with the type S — S — S.
Indeed, the canonical g-derivation tree of a conjunction gives rise to the g-derived
tree of a sentence connecting two complete clauses. Since we encode a derivation
tree of a complete clause with a term of type S, we introduce the constant G of
type S — S — S in the abstract vocabulary ;s as the encoding of the canonical
g-derivation tree of the conjunction conj.

The G-Derivation Tree of a Reduced Conjunction

Since we encode the feature (—T,+S) with the type S, one could type a constant
encoding the g-derivation tree with the feature +[T-reduc.conj] (see Figure 1.5(b) on the
preceding page) with the type S — S — S. Indeed, one could claim that since the
variable nodes have only the feature (—T,+S), we should model them with the type S.

However, such an encoding is not suitable in this case. To illustrate that, let us
consider the conjunction aprés (after). Assume that one models the underspecified
g-derivation tree of the aprés in the reduced case (see Figure 1.6(a)) with the constant
Gapes of type S — S — S. With the help of the constant G,y,, we should be able to
analyze/produce sentences such as (6), where the subordinated clause is an infinitive
(reduced) clause. This implies that we model a derivation tree of an infinitive clause
by a term of type S, i.e., by a term of the same type as a term modeling a derivation
tree of a complete clause. One may claim that an infinitive clause is close to a complete
one so that we can model both with terms of the same type. Indeed, according to the
LTAG grammar for French (Abeillé, 1988), the syntactic tree shown in Figure 1.7 is a
syntactic analysis of an infinitive clause such as avoir passé Uaspirateur (havers wr. passes

5We call a clause complete if its predicate is built with the help of a finite verb form and it contains a
lexically expressed subject.
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S
+[T-reduc.conj]

VRN

S (arg2) PP
aprés Prep S
+[T-reduc.conj] \
(=T,+S) apreés S(arg1)
argl / \argQ C [mood=inf]
(2nd event) (1st event) ‘

(=T,+S) (=T,+S) 0
(a) The reduced un- (b) The elementary tree in the reduced
derspecified g-derivation case of apreés

tree for aprés

Figure 1.6: The underspecified g-derivation tree of a conjunction and its corresponding

elementary tree

mer. Vacuumern:.). As this tree indicates, the null pronoun PRO occupies the position of
the syntactic subject of the infinitive clause. Hence, we could model the derivation tree
of an infinitive clause by a term of type S. The syntactic interpretation of such a term
would be a derived tree, such as one in Figure 1.7.

NP/ \VP
v/ \NP

/N

avoir passé laspirateur

PRO

Figure 1.7: The LTAG analysis of infinitive phrases: PRO + infinitive verb form

However, apart from syntactic interpretations, we aim at defining semantic interpre-
tations of the sentences such as (6). If one encodes the constant G, with the type
S — S — S, then a complete clause and a reduced (infinitive) one, both are encoded
by terms of type S. Consequently, one has to interpret the terms encoding derivation
trees of a complete clause and a reduced one as the semantic terms of the same type.
While we can interpret a complete clause as a term of type ¢ (as a proposition), we
cannot interpret a term encoding a derivation tree of a reduced clause as a term of type
t. Indeed, the null pronoun PRO is without any phonological content (see Figure 1.7).
PRO does not serve as a lexicalization of any concept and thus PRO cannot provide an
argument for a concept (predicate) expressed by an infinitive verb form (phrase), whose
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1.3. G-derivation Trees as Abstract Terms

arguments should be concepts.®® Hence, we cannot encode the g-derivation trees of a
complete clause and a reduced one in the same way. To distinguish them, we introduce
a new type Sinf in Ysme. We model derivation trees of infinitive (reduced) clauses with
terms of type Sinf. Now, we can translate a term of type Sinf as a term that does not
contain a semantic subject, but receives it from the matrix clause, which is a complete
clause. Since we use the terms of type Sinf for modeling the derivation trees of reduced
clauses, one may propose to encode the constant G,y with the type S —o Sinf — S.
However, in that case, one has to express that the subject-sharing takes place between
the complete clause (a term of type S) and the reduced one (a term of type Sinf).
We propose our solution to this by extending the original G-TAG analysis of reduced
conjunctions. Namely, we type the constant G, with the type np — Sws — Sinf — S,
where SWS denotes a clause missing a subject obtained by removing the subject from a
matrix clause. In this way, we explicitly encode the subject np that is shared by the
matrix clause and the infinitive one. Figure 1.8 provides a pictorial representation of
this analysis. We annotate each part with the type assigned to the term encoding the
corresponding derivation tree. This new analysis can be viewed as an extension of
the G-TAG analysis of a sentence with a reduced conjunction (cf. Figure 1.6(b) on the
facing page).

S
S apres Sinf

NP

(a) np — Sws —o Sinf — S

np Sws Sinf
. . . JORT) .
Jean a fait une sieste , pros AVOIT passé Paspirateur
—~—
the shared subject clause without a subject the infinitve clause

(b) Gapres : NP — Sws —o Sinf — §

conj

Figure 1.8: The extended G-TAG analysis of a sentence with a reduced conjunction

Thus, to encode g-derivation trees of conjunctions, we introduce constants such as
the ones shown in Table 1.2, where the constants model the canonical and reduced
underspecified g-derivation trees of apres.

Remark 1.2. By the constant G, of type np — Sws —o Sinf — S, one encodes the fact
that Sws and Sinf share an argument of type np. Hence, the sharing of a subject is rather a

%OWe cannot interpret a reduced (infinite) clause as a proposition because we aim at having the
semantic interpretations that are similar to conceptual representation inputs of G-TAG. In a G-TAG
conceptual representation input, a reduced clause may correspond to an expression that contains a
concept standing for a subject.
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Constants in g | Their Types
Ga;al:r;:nical S 5 S o S
Gapros np — Sws —o Sinf — S

Table 1.2: The abstract constants encoding aprés

particular case of the argument-sharing (np-sharing). Below, one may say subject-sharing but
one has in mind a more generic argument-sharing.

1.3.2.2 Introducing First Order Predicates in the Abstract Vocabulary

Yeme contains the constants adopted from the signature >77 (from the ACG encoding
of TAG derivation trees). They enable us to build terms modeling derivation trees of
single clauses. In particular, with the help of the constants adopted from X%, one
can produce the terms over Xgne of type S, which model derivation trees of clauses.
However, the terms of type S are not the only ones that interact with the constants
modeling the discourse connectives. By introducing the abstract constants encoding
adverbials and conjunctions, we subsequently introduced types T, Sws and Sinf. In
order to make use of these constants, one should be able to produce terms over Xgnpg
of types T, Sws and Sinf.

In order to obtain terms of type T, we use the constants G,us Gaaps Gaavss Gaavy
(see Figure 1.1). With the help of these constants and the terms of type S, we are able
to produce terms of type T.

We refer as a g-derivation tree of a first order predicate, or simply as a first order predicate,
to an underspecified g-derivation tree whose variable nodes are the lexicalizations of
THINGS. In other words, we refer as a first order predicate to an underspecified g-derivation
that one uses to generate an atomic discourse unit, i.e., clause. Thus, it remains to
introduce the constants in Yge encoding g-derivation trees for the first order predicates
of G-TAG that enable producing the terms of types Sws and Sinf. We refer also to
these constants as first order predicates.

1.3.2.2.1 A Clause Missing a Subject - Sws

We introduced the type Sws in order to encode the type of an argument of a
(reduced) conjunction. The difference between the Sws and S types is that a term of
type S stands for the derivation tree of a complete clause, i.e., a clause with its own
subject and the predicate, whereas a term of type Sws models a clause that misses a
subject but contains everything else that a complete clause does. Therefore, an abstract
constant encoding an initial tree from which one derives a clause missing a subject
should have one less argument than the one that encodes an initial tree from which one
derives a complete clause. To model that, we extend Xsne by introducing new constants
such as G, of type d,, whereas the constant G, of type 7,41 encodes an initial tree
form which we derive a complete clause. The types 7,41 and &, are defined as follows:

* Yp4r1 = @y —o -+ —o @, —o ay, where 3y = S and for some 1 < i < n, the

argument a; of G, stands for the subject (thus a; = np).
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. O_é'n:al—O"-—Oaifl—Oai+1—O-"—Oak—OSWS.

In words, each argument of G, is an argument of G, and vice versa except for the
argument of G, modeling a subject. Since we encode subjects with NPs, that atomic
type is Np. For example, Ggimesiese 1S @ constant modeling an initial tree anchored by
fait une sieste! (takes a nap). The type of Gpiumesiese 18 Sa — Va4 —o NP — S. In Xgnpe,

SWs

we introduce a constant Geyumesione Of type S, —o V, —o Sws.

1.3.2.2.2 Reduced (Infinitive) Clauses - Sinf

We encode a derivation tree of a reduced (infinitive) clause by a term of type Sinf.
An infinitive clause has PRO in the syntactic position of a subject (see e.g. Figure 1.7).
Therefore, it cannot receive another syntactic subject at that position. Consequently,
in order to construct an infinitive clause, one needs to use one less NP compared to
the case of a finite, complete clause. Hence, we encode the constants that enable us to
build the terms of type Sinf similarly to what we did in the case of Sws. We extend
the abstract vocabulary Ygns by adding the new constants such as the constant G, of
type fn, whereas the constant G, of type ¥n+1 encodes an initial tree form which one
derives a complete (finite) clause; we define the type ﬁn as follows:

* Yp41 = a; —o --- —o @, —o ag, where ap = S and for some 1 < i < n, the

argument a; of G, stands for the subject (thus a; = np).

. ﬁn:al—o---—oapl—oaiﬂ —0---—Oak—08inf.

In words, the types of the constants G, and G, have the same arguments except
that G, has an argument modeling a subject, whereas G, does not. Since we encode
subjects with NPs, that argument is of type np. For instance, we introduce in g the
constant Gieuesiene Of type Sp —o V, —o Sinf.

Convention: We denote with vinf the infinitive form of u, where v can be a finite
verb, verb phrase etc. anchoring an initial tree from which one derives a derived tree
of a clause.

1.3.3 Declaring the Abstract Signature >, and the Abstract Lan-
guage

We have constructed the abstract vocabulary > where we encode g-derivation trees

of G-TAG. In Xgne, we have the constants (see Table 1.3) with the help of which one

builds terms modeling g-derivation trees.

In order to define the abstract language, it remains to specify the distinguished type.
We have two candidates, S and T. A term of type S models either a g-derivation tree
of a (complete) clause, or a g-derivation tree of a sentence built with a subordinate
conjunction. In the rest of the cases, we have terms of type T encoding g-derivation
trees of texts. We declare T as the distinguished type. We propose to transform a term
of type S into a term of type T. For that, we introduce a constant AnchorT : S — T.
If a term ¢ is of type S, then the term ¢ = (AnchorT %) is of type T. In words, we

$1Since fait une sieste (take a nap) is an idiom in French, we model it as an abstract constant Ghaituncsiet
(Kobele, 2012).
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Constants in Ygrag | Their Types

Gensuiteg S —0 S — T

Gensuite"sr S —T—T

Gensuiteg T —o S —0 T

Gensuite¥ T—oT-—oT

Gauparavantz S—oS—T

Gapréscanonical S o S 5 S

Gapres™™® np — Sws —o Sinf — S
Gavamcanonical S S S _ 5 S

Gavant™ np — Sws —o Sinf — S
Gpomcanonical S S S _ 5 S

Gpour™® np — Sws —o Sinf — S
Giait-une sieste Sp—oVa—onp—oS
Gait-une sieste” SA —o0 VA —o Sws
Giaireune-sieste ™ Sa —o V4 —o Sinf
Gpasse-l—aspirateur SA —o0 VA —onp —o Sws
Gopasse Laspirateur” Sp — Va — Sws
Gopassert-aspirateur’ Sa —o V4 —o Sws
Gremmpense Sa—oVap—onp—onp—8S
Girécompense™” Sa — Va —onp — Sws
Grempme,‘“f Sa —o Vi — np —o Sinf
AnchorT S—oT

Table 1.3: Constants encoding underspecified g-derivation trees of G-TAG

view a derivation tree of a sentence as a derivation tree of a text consisting of a single
sentence. Thus, we declare the abstract language A as follows:

A={t|t € AN(Zene) & t:T}

1.4 Interpretations as TAG Derivation Trees

G-TAG builds a g-derived tree out of a g-derivation tree. To model that in ACGs, we
interpret g-derivation trees as derived trees. As we already mentioned, in order to
interpret g-derivation trees as derived trees, we first interpret them as TAG derivation
trees. Since TAG derivation trees are already interpreted as TAG derived trees, by
composing these two interpretations, one obtains interpretations of g-derivation trees as
derived trees. One of the main motivations for this modular approach is that one can
see similarities and dissimilarities between TAG and the G-TAG grammar by comparing
their derivation trees. Moreover, due to the extended analysis that we propose for
reduced conjunctions (see Figure 1.8 on page 205), the terms encoding g-derivation
trees of sentences with reduced conjunctions have different structure from g-derivation
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trees. However, by interpreting these terms into TAG derivation trees, we obtain terms
that have more similar structure to g-derivation trees than the terms over Xgng do.
Thus, we are building a lexicon ZgTag—TAaG from Ygne to L% (the signature where
one encodes TAG derivation trees) and thereby the ACG (Xgma, Xos, -ZGTAG-TAG: 1)-
Figure 1.9 shows the part of the ACG encoding of G-TAG that we are building now.

/7 Yeme

G-DERIVATION TREES |

S igé} ~ ATAGTAG

TAG

L’ = L0 0 LGTAG-TAG

synt

| TAG DERIVATIONS |

. Y,
> /.SfTAG
N Synt synt
7 Yne ¥
/ \

[ TAG \
| DERIVED TREES |

\ Y

Figure 1.9: Interpretations of g-derivation trees as TAG derivation trees and as TAG
derived trees

1.4.1 Interpretations of Types

The type SWS of Y encodes the same idea as np —o S type over X%, both encode a
clause missing a subject. The only reason for using SWS in g instead of np —o S is that
we aim at building a second-order abstract vocabulary (because in this case the problems
of parsing and generation are polynomial (Kanazawa, 2007)). If we used np — S
instead of Sws, then the type of a constant G,y modeling a reduced conjunction would
be Nnp —o (Np — S) — Sinf — S. The type np — (Np — S) —o Sinf — S is of order
three. This would make the abstract vocabulary of order three as well.

Since Sws and Nnp — S encode the same idea, one interprets Sws form g-derivation
trees as NP — S in TAG derivation trees. By interpreting the type Sws from Ygp as
np — S, interpretations of terms encoding g-derivation trees of reduced conjunctions as
terms over Y27 approximate the structure of the original g-derivation trees more than
the terms over g do.

The types T and S, both translate to S in TAG derivation trees, because in G-TAG
at the level of derived trees, there is no difference between the features T and S (both
are represented by S in g-derived trees).

In addition, we introduced the type Sinf in ¥gp in order to type a term encoding a
g-derivation tree of an infinitive clause. An infinitive clause is a (syntactically) complete

clause whose predicate is an infinite verb form and whose subject is the null pronoun
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PRO. Thus, one can represent its derivation tree as a term of type S in TAG derivation
trees. Consequently, we interpret Sinf to S under the lexicon ZGTaG-TAG-

The rest of the types in ¥ge were adopted form 27, If X is one of the adopted
types in g, X models the same phenomenon in ¥gn as it does in X2, Thus, we

translate X from Ygne to X in X% (e.g. Np to np, N, to N, etc.).

1.4.2 Interpretations of Constants

In addition to types adopted from X2 in Xgns, we adopted constants. They enable
us to build terms modeling g-derivation trees of clauses. If a constant G, is adopted
from X%, in X% we have the constant C,. The constants G, and C, model the same
elementary trees in Ygme and X% respectively. Therefore, we interpret G, from g
as C, into X0%.

It remains to interpret the constants of Xs that enable us to encode g-derivation
trees of texts. To encode the g-derivation trees of texts, we introduced the constants
modeling the underspecified g-derivation trees of the lexical entries of adverbials and
conjunctions. In g, we also introduced constants enabling us to build terms of types

Sws (a clause missing a subject) and Sinf (an infinitive clause).

1.4.2.1 Adverbials

To interpret constants encoding adverbials from g into A(X5%1), we refer to the
interpretations of their types. Since the types T and S translate to S, we obtain that
the types of the constants G,u3, Guays Gaavs and G,y translate to S — S — S. We

advg advT
disc

introduce a new constant in X2, namely, the constant Cjy of type S — S — S. We
interpret each of the constants G,u5, Gaavry Gaas and Gap as Cu.

ZL6TA6-TAG(Gaavs) = Z6TAG-TAG(Gaary) =
= Z61AG-TAG(Gaavs) = Z6TAG-TAG(Guaanr) = Cav (1.7)

Furthermore, we have to interpret the constant Cgy of X% into TAG derived trees,
i.e., as a term over X3a. To do so, we refer to the G-TAG analysis of an adverbial (see

disc

Figure 1.10). Thus, we define the interpretation of C,4 as it is shown in Equation (1.8).

Z G (Car) = X's159.S3 51 (Puncty dot) (S2 (Adve adv(Puncty comma)) s3) : 7 —o 7 —o 7T
(1.8)

1.4.2.2 Conjunctions

A constant encoding a conjunction can be either of the following types:
1. S — S — S (the canonical conjunction);
2. Np — Sws —o Sinf — S (the reduced conjunction).
We discuss each of these cases separately.
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1.4. Interpretations as TAG Derivation Trees

S

/// ‘\\\\S
/N
ADV S|

adv,

S|

Figure 1.10: The G-TAG elementary tree anchored with an adverbial

1.4.2.2.1 The Canonical Conjunction

If a constant Goy™™ in Ygnpg is of type S — S —o S, then we introduce a constant

Canmel in Y2 of type S —o S —o S. We translate the constant Gon™™ to Cen™":

TAG conj conj

Zetac-Tac(Gan™™) = Coag™™ :§—0 85— 8

(1.9)
We interpret the new constant Cgan™ of X% to A(X3e) as the term encoding the

G-TAG elementary tree of the canonical underspecified g-derivation tree of the conj

lexical entry (see Figure 1.11). Thus, we propose the following interpretation of Cin™™
into TAG derived trees:

TAG( canonical) .
L o (Co™) =

X 81 82.52 81 (PP2 (Prep; conj) sp) : 7 —o 7 —o 1 (1.10)

S

/N
S PP
/N
PREP S

conj S|

Figure 1.11: The G-TAG elementary tree anchored with a conjunction

1.4.2.2.2 The Reduced Conjunction

The interpretation of the type np —o Sws —o Sinf —o S from Y into X052 is 3%
isnp — (Np — S) — S — S (Sws translates to Nnp — S, and Sinf to S). Figure 1.12

illustrates the intended analysis behind the type np — (np — S) — S — S. Thus,

the interpretation of a constant G of type np — Sws —o Sinf — S from Ygpe into

TAG derivation trees can be viewed as follows: It receives an NP (the argument of
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Chapter 1. G-TAG as ACGs

type np), a clause missing a subject (the argument of type np — S), and an infinitive
clause (the argument of type S). By combining the NP and the clause missing a
subject, one obtains a complete clause. This clause serves as the matrix clause of the
sentence, whereas the infinitive clause (Sinf) serves as the subordinate one. To encode

red.,

this analysis, we propose the following interpretation of the constant G.;:

LN Gemi) = X subj X 51. X s2. Co (81 subj) s2:np—o (NP —-oS) —S — S (1.11)

synt conj

NP conj S

Figure 1.12: The intended meaning behind the type np — (np —<S) S — S

In the interpretation shown in Equation (1.11), the constant Cy of type S — S — S

is a new constant in X%. We interpret C . as a term over X3¢ of type 7 —o 7 —o T
modeling the G-TAG elementary tree anchored with conj. For instance, in the case of
the conjunction aprés, to interpret the constant C,,, we refer to the elementary tree
in the reduced case (see Figure 1.6(b) on page 204). Thus, we propose the following
interpretation:

gTAG(CaPr,::') = X571 82.53 51 (PPQ (Prep1 apre‘s) (SQ (C1 6) 82)) (1.12)

synt

1.4.2.3 First Order Predicates

It remains to interpret constants of Yane that enable us to build terms of types Sinf
and Sws into TAG derivation trees.

1.4.2.3.1 A Reduced (Infinitive) Clause

The constant G,jy € Yane encodes the initial tree that gives rise to an infinitive
clause. We model the same initial tree with a constant C,; in TAG derivation trees.

inf

Thus, we interpret Gy as Ciy.

1.4.2.3.2 A Clause Missing a Subject

A term of type Sws encodes a derivation tree of a clause whose subject position
is unfilled. For instance, let us consider the abstract constant Gieompeme Of type S, —o
Vi —o np — SWS. In Xgpe, together with Gieompene> W€ have Giecompense Of type Sy —o

V. —o np —o np — S. The interpretation of G, compense il TAG derivation trees is C,compense
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1.4. Interpretations as TAG Derivation Trees

as both of them denote an initial tree anchored by récompense (rewardmsssnc). The
interpretation of G,ompense il TAG derivation trees should be the same as of the constant
Giecompense DUt With one difference: The interpretation of Gieompense Should encode that

after that every argument of Gieompense iS interpreted, there is still a slot for a subject.
To model that, we propose the following interpretation of the constant G

sSWs,
récompense *

L Grcompense) = N 8q Vg 005 . X’ subj . Cecompense Sa Va Subj 0bj (1.13)

In general, to interpret the constant G;™ of type &@,,%? we refer to the interpretation
of the constant G, of type 7,+1. The constant G, is of type aj —o --- —o @, — S
and G is of type a; — -+ — @;_1 —0 @;41 —° --- —o 8 — SWS. We propose the

Sws

interpretation of G;" as it is shown in Equation (1.14).

ZLeTac-TAG(G™) = X @y -+ @1 Tig1 -+ T N0y LeTAG-TAG(GY) 21+ 3 -+~ 2y
(1.14)

In Equation (1.14), the variable z; is of type np. It models the argument standing
for a subject. The other variables zj--- z;—1 ;41 -+ 7, model the adjunctions and
substitutions in the initial tree modeled by G;".

Finally, since there is no distinction in TAG derivation trees between features T
and S, we translate the constant AnchorT : S — T from Yspe as the identity function
Xzr.z:S —o S in X%

Example 1.1.

Let us illustrate that the terms over g encoding g-derivation trees of the reduced
conjunctions translate to the terms in A(X%.) which resemble more the original g-
derivation trees than the terms over g do. For the sake of example, we consider a
term ¢,°™° over g, defined as follows:

1ex

LS = AnchorT (G 425 123 fea) T (115

lex ‘cms educed

The term ¢,S™° encodes the g-derivation tree shown in Figure 1.13. t.; encodes the

shared subject by the clause misting a subject ({5) and the infinitive clause (f.quo)-
According to the interpretation provided in Equation (1.11) on page 212, we interpret

the term £,9™° to a term ¢, € A(X2%) as follows:

b’ = Z6eTAG-TAG(te %) = ZGTAG-TAG(ANChOrT G tab; foms treaueed) =
NP

Coi (Z6TAG-TAG (foms) ZGTAG-TAG(tats)) -ZGTAG—TAG (freaucea)  (1.16)

N J

.S 36:S

The structure of the term #¢ is closer to the g-derivation tree shown in Figure 1.13
on the next page than the structure of the term ¢,0"° because of the following reasons:

92For the definitions of the types d, En, and vy, we refer readers to Section 1.3.2.2.
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Chapter 1. G-TAG as ACGs

* The g-derivation tree of the matrix clause (denoted by g-der-matrix in Figure 1.13)
is encoded by the term t™¢ of type S (see Equation (1.16)).

* The g-derivation tree of the subordinated clause (denoted by g-dersubordinated
Figure 1.13) is represented by the term %" of type S, which stands for the
interpretation of a term of type Sinf.

conj
+[T-reduc.conj]
(T, +S)

argl / \argQ

(argumentX) (argumentY)

(T, +S) (T, +S)

g-dermatrix  g-der-subordinated

Figure 1.13: A g-derivation tree of a sentence with reduced conjunction

Example 1.2.

To illustrate how one makes use of the ACG encoding of G-TAG in order to
generate a derived tree out of a g-derivation one, let us consider a g-derivation tree
shown in Figure 1.25 on page 224. It gives rise to a g-derived tree, which can be
represented as the syntactic tree (after computing the morphological information) shown
in Figure 1.15 on the next page. We encode the g-derivation tree with the term ¢,0™¢
defined in Equation (1.17). The lexicon .ZGTaG—_TAG interprets the term %, as a term
6% € A(X2%), defined in Equation (1.18).

ensuite
argl
/ arge
pour
+[T-reduced-conj] faire-la-sieste
\arg2 ‘ argl
e récompenser il

+[T-passive]
passer-l’aspirateur  +[T-reduced-conj]

arg1 ‘ argl / \argg

Jean Marie ¢

Figure 1.14: A g-derivation tree of a text

t2g(TAG = Gensuite: (Gp::: Gjean<Gpasse»laspirat::: ISA IVA) (Getre-recomepnse-li:;fr ISA IVA Gmarie))
(Gfait—une-sieste ISA IVA Gjean) : T (1'17)
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1.4. Interpretations as TAG Derivation Trees

b’ = ZGTAG-TAG (Lo ) =
Censuc}itseC (Cp:j(Cpasse-laspirateur ISA IVA Cjean) (Cetre-recomepnse—par ISA IVA Gmarie)) (Cfait—une-sieste ISA ISA Cjean)
: T (1.18)

By interpreting the term ¢, under the lexicon Z ¢, we obtain a term of type 7
(see Equation 1.19) encoding the derived tree shown in Figure 1.15.
2L (630) =
S3
(S2
(S2 (NP1 Jean)(VP2 (AUX a)(VP2 (V1 passé)(NPo (DET; I)(Ny aspirateur)))))
(SP2
(PP2 (PREP; pour) (C €))
(S2 (NP1 PRO) (VP2 (V2 étre (V1 récompensé)) (PPy (P par) (NP1 Marie)))
)

A~ N — —

PUNCT; dot)
S

2(ADV2 Ensuite (PUNCT comma))
(S2 (NP1 Jean) (VP2 (AUX; a)(VP2 (V1 fait) (NPy (DET une) (N sieste)))))
)

(1.19)
The lexicon Zjeq interprets the term .2 ¢(4,12°) as follows:

gyield (g:yﬁ?(teﬂTAG)) =
Jean + a+ passé+ [+ aspirateur + pour+ étre + récompensé + par+ marie+ dot
+ Ensuite + comma + Jean + a + fait 4 une+ sieste (1.20)

In Appendix B.1, we provide the code that one can use in order to run this example on the
ACG toolkit.

/S\

S Punct / S
T N
S / SP ADV S
NP/ \VP Prep/ > S \ P\unct NP/ \VP
Jean  a passé laspirateur  pour PI‘{O btre récompensé par Marie .  Ensuite Jean  a fait une sieste

Figure 1.15: A derived tree
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Chapter 1. G-TAG as ACGs

1.5 Interpretations as Conceptual Representations

G-TAG builds a g-derivation tree out of a conceptual representation input. We introduce
a signature X3, to define terms modeling conceptual representation inputs. One

refers to X3 either as the semantic signature or as conceptual representations. We call
types, constants, and terms built over X5, as semantic types, semantic constants, and
semantic terms, respectively. Thus, we are building the ACG (Xamne, Lo Lome: 1)s

denoted with the dotted eclipse in Figure 1.16.

y Yeme

| G-DERIVATION TREES |

) gsem
/ GTAG o
AN y Sem O\
— EGTAG
/ GTAG SEMANTIC \

Z GTAG—TA | INTERPRETATIONS \

L0 LGTAG-TAG

synt

\. /

/ ZDer

TAG T

| TAG DERIVATIONS |

TAG T
g/
- \Synt
/ Yig

[/ TAG \
| DERIVED TREES |

\

Figure 1.16: An ACG architecture for G-TAG

1.5.1 Encoding Conceptual Representations

Since the conceptual representation language of G-TAG is a sub-language of the language
LOGIN (Ait-Kaci and Nasr, 1986), one may try to isomorphically encode v-terms of
LOGIN as terms over Y3n,. However, since the version of ACGs we use relies on
simple types, we are not able do that. Instead, we encode a conceptual representation
input of G-TAG as a term of the higher-order logic (HOL). Thus, the signature X3
is similar to the one defined in the ACG encoding of TAG with Montague Semantics
(Pogodalla, 2009g). To represent the G-TAG conceptual representations as HOL terms,
in the signature Y3 we introduce the constants and types shown in Figure 1.17.

In general, HOL terms are not isomorphic to i-terms because )-terms can encode
more information than HOL ones. One can think of the i-terms as graphs where edges
are labeled. However, recall that G-TAG makes use of only specific kinds of ¢-terms. As
we have already discussed in the section about G-TAG, the shape of a G-TAG conceptual
representation input is a tree.®> We can encode tree-shaped terms using HOL terms.

%In Section 5.2.2.3 on page 158 we described the way a conceptual representation input of G-TAG
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1.5. Interpretations as Conceptual Representations

Atomic Types : e, t

Logical constants :

= t—ot

N, =,V 1t—ot—ot
3, Vv (e—=t)—t

Non-logical Constants :
SUCCESSION,GOAL,¢ic :t—ot ot

reward, love, ¢lc. te—oe—otf
nap, vacuum, ¢.c. re—ot
john, mary, eic. e

Figure 1.17: The types and constants in X3,

To illustrate the way we encode conceptual representations as terms over X3, let us
consider the conceptual representation input of G-TAG given in Figure 1.18. We encode
it as the following term over X3.:

so) = (SUCCESSION (GOAL (vacuum john) (reward mary john)) nap) (1.21)
Eo := SUCCESSION[1S*EVENT = E;, 2"4EVENT = E,|
Eq = GOAL[ACtiOD = Ejq1, Purpose = E]_Q]
E, := NAPPING[NAPPER = H,|

Eiq1 := VACUUMING[VACUUMER = Hj]

Eio := REWARDING[REWARDER = H,, REWARDEE = Hj|
Hy := HUMAN|NAME = Jean, gender = masc]

Hy := HUMAN|NAME = Marie, gender = fen

Figure 1.18: An example of a conceptual input of G-TAG

Our way of transformation is valid for the 1)-terms used in G-TAG as they have a
specific form on which our transformation is based.

First, we transform a G-TAG input such as one in Table 1.18 by substituting
every occurrence of a label denoting a 1)-term by that ¢{-term. For instance, let us
consider H; in Table 1.18. It denotes the ¢-term HUMAN[NAME = Jean, gender = masc].
In any term where H; has occurrences, we substitute those occurrences of H; with
HUMAN|NAME = Jean, gender = masc|.

Each concept defined in G-TAG is either a SECOND ORDER RELATION, or a FIRST
ORDER RELATION, or a THING. We further process a conceptual input of G-TAG as
follows:

can be represented a tree-shaped structure, where the parent-child dependency corresponds to the
predicate-argument relation in the conceptual representation input.
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Chapter 1. G-TAG as ACGs

o If v is a 7Y-term whose root symbol belongs to THINGs (e.g. Hy in Table 1.18), we
encode v by a constant » of type e.

o If u is a 1-term whose root symbol P belongs to FIRST ORDER RELATIONs and P
has n arguments, then v has n sub-y-terms under the labels associated with the
arguments of P. Let us assume that those sub-¢-terms are u; ... u,. We encode u
by the term s; of type ¢ defined as follows:

S1=pp; ---P, 1t (1.22)

Where p, encodes the sub-i-term u; of the t)-term u, for 2 =1,... ,n. p encodes

the root symbol P of u. We type p with the type a; — ... — a,, —o ¢, where q;

is either e or ¢ depending on the type of p, in Equation (1.22), for : =1,... n.

The type of p; is either e if the root symbol of u; belongs to THING, or it is ¢ if
the root symbol of u; belongs to FIRST ORDER RELATION, for i =1,...,n.

e If u is a ¢-term whose root P is a SECOND ORDER RELATION and P has n

arguments,% then u has n sub-i-terms, denoted by uy, ..., u,. Assume that one

encodes the ¢-terms uy,...u, with the terms p,,...p, respectively. Then, we

encode u by the term so, defined as follows:

SS9 =pp;---pP, :1t (1.23)

Where p is of type { —o --- —o t —o ¢ encoding the root symbol of u, i.e., P.
n—times

In order to obtain a HOL term modeling a given conceptual representation input,
we select the term that corresponds to the root node in the tree representation of
the conceptual representation input. By transforming the selected term into a HOL
term using the above-described method, we obtain the HOL term encoding the given
conceptual representation input. For example, in the case of the G-TAG input given in
Table 1.18, we model it with the HOL term sy defined in Equation (1.21). One can
check that the HOL term sy is obtained by transforming the i-term Eo, which serves as
the root node in the tree representation of the conceptual representation input shown
in Table 1.18.

Remark 1.3. Here, we have not considered a case where conceptual representations may give
rise to noun phrases other than proper names, such as une grande maison (a big house).
Nevertheless, it is possible to encode them as HOL terms. Indeed, using the ACG encoding of
TAG with Montague semantics, we can encode semantic interpretations of various kinds of noun
phrases.

1.5.2 Interpretations of Types

In the signature g, we introduced three types T, Sws, and Sinf in addition to the
ones that we adopted from X2% (e.g. S, np, etc.). To interpret the types adopted
from %7 we refer to their semantic interpretations in the ACG encoding of TAG with

64In fact, n is 2 because a SECOND ORDER RELATION encodes a discourse relation, which has two
arguments.

218



1.5. Interpretations as Conceptual Representations

Montague semantics.®®* Thus, it only remains to interpret T, Sws, and Sinf as types
built on the set {e, ¢}.

Type T
We interpret the type S as t, following the ACG encoding of TAG.% In G-TAG, a text

(T) and a sentence (S) both may stand for a surface realization of the same conceptual
representation input. In other words, T and S are not distinguished at the semantic-level.
Thus, S and T should be interpreted in the same way. Since the interpretation of S is
t, we interpret T as ¢.

Types Sws and Sinf

The lexicon £y, interprets the types Sinf and Sws as qnp —o ¢, where gnp abbreviates
the type (e — t) —o ¢ , which is the type standing for the interpretation of np. The
type qnp —o ¢ encodes the fact that the interpretations of the terms of the Sinf and Sws
types must apply to a subject (a term of type gqnp) in order to become terms encoding
propositions (terms of type t). Table 1.4 provides the semantic interpretations of the

types T, Sinf, and Sws.

Abstract Types in Ygmne | Their translations by the lexicon Z3%,

S, T t
Sinf, Sws (e »>t) —ot)—ot
%/_/

qnp

Table 1.4: Semantic interpretations of the abstract types

Remark 1.4. We interpret np as ((e — t) —o t), where a variable of type e is non-
linearly abstracted, as we use the same variable of type e twice in the translation shown
in Equation (1.25) (to model the argument-sharing). Nevertheless, the interpretations are
almost-linear and thereby the problems of parsing and generation are polynomial (Kanazawa,

2007).

1.5.3 Interpretations of Constants

Given a concept C and a lexical entry lex.entry that serves as a lexicalization of
C, G-TAG records the correspondence between the arguments of C (if any) and the
arguments of the lexical entry lex.entry. In order to interpret the abstract constants
modeling lex.entry into semantics, we make use of the concept C and the correspondence
between the arguments of the concept C and lex.entry.

Yeme contains some constants adopted from X2%. To interpret them into semantics,
we refer to the ACG encoding of TAG with Montague semantics. Thus, it remains to
interpret the rest of the constants in Ygpg, which can be divided into two parts:

%See Table 3.5 on page 81.
6By translating S to t, the ACG encoding of TAG with Montague semantics (Pogodalla, 2009) follows
Montague’s (1973) way of identifying types of sentences and propositions.
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Chapter 1. G-TAG as ACGs

» Constants encoding the discourse connectives, i.e., the constants encoding lexical
entries of adverbials and subordinate conjunctions;

* constants enabling us to construct terms of types Sinf (an infinitive clause) and
Sws (a clause missing a subject).

1.5.3.1 Adverbials

We model underspecified g-derivation trees of an adverbial adv with the following four
abstract constants:

Guvg : S—0S —T
Gy 0 S — T —T
Gaws : T —0S — T
Gugwp : T—o T — T
The order of the arguments of an abstract constant matches the syntactic order of
the arguments of the adverbial. Indeed, the first (resp. second) argument of each of
the constants G,us, Gaavys Gaavss Gaavy models the argument of the adverbial adv under
the label arg1 (resp. arg2e) (see Figure 1.19g).

adv
(+T,+S)

argl / \argQ

(argumentX)  (argumentY)
(+5) (+5)

Figure 1.19: A g-derivation tree for the adverbial adv

For example, Table 1.5 shows the interpretations of the constants G, and G,uperevant
encoding the g-derivation trees of ensuite (afterwards) and auparavant (beforehand)
respectively (see Figure 1.20).

ensuite auparavant
(+T,+S) (+T+S)
arg1 / \argQ arg1 / \argQ
(1st event)  (2nd event) (2nd event)  (1st event)
(+S) (+S) (+S) (+S)

(a) (b)

Two lexical entries, ensuite and auparavant
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1.5. Interpretations as Conceptual Representations

Constants in Ygmng Their semantic interpretation
Gensuitei? Gensuite"sm Gensuitega Gensuite; )\0 S]. 82' SUCCESSION 81 82 . t -0 t —° t
Gauparavanti? Gauparavauti? Gauparavant’é‘? Gauparavantz )\0 S]. 82 SUCCESSION 32 51 : t —0 t —0 t

Table 1.5: Semantic interpretations of the constants encoding adverbials

1.5.3.2 Conjunctions

Yeme contains two kinds of constants encoding subordinate conjunctions:

1. The constants of type S — S — S, which we use in order to encode canonical
g-derivation trees of conjunctions.

2. The constants of type np —o Sws —o Sinf — S, which we use in order to
encode reduced conjunctions, that is, sentences with conjunctions where the
argument-sharing takes place between the matrix clause and the subordinated one.

Let us discuss these two cases separately.

1.5.3.2.1 Canonical Conjunctions
Since the type S translates to ¢, the type S —o S —o S translates to ¢t —o t —o ¢.

Gl — Xg1 9. SUCCESSION s 51 : t —o t —o t (1.24)

Thus, the types of constants modeling canonical conjunctions and adverbials translate
to the same type, i.e., to t —o ¢ —o . We build the semantic term to which a constant
encoding a canonical conjunction translates in the same way as we did in the case of
adverbials. For example, Equation (1.24) shows the way one interprets the constant
Gamelel encoding the canonical g-derivation tree of a subordinate conjunction aprés
(after). The interpretation of G;:,’:;’;"“l encodes that the argument arg1 (resp. arg2) of
aprés corresponds to the argument 2nd event (resp. 1st event) of the concept SUCCESSION.

apres

(T, +S)

argl/ \argz

(2nd event) (15( event)

I,+S) (I, +8)

Figure 1.21: The canonical underspecified g-derivation tree of aprés

1.5.3.2.2 Reduced Conjunctions
We introduced constants of type np — Sws —o Sinf —o S in Y41 to model sentences
with reduced conjunctions. They encode that the subject of a matrix clause is shared

with a subordinated clause, which is a reduced clause. For instance, in the case of the
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Chapter 1. G-TAG as ACGs

underspecified derivation tree pour with the feature +[IT-reduc.conj] (see Figure 1.23),
we use the analysis shown in Figure 1.22. The semantic interpretation of the constant
Gpewe should pass the subject (the interpretation of the term of type np) to both the
interpretation of the term of type Sws and the term of type Sinf. To model this, we

propose the interpretation of the constant G, shown in Equation (1.25).

np Sws Sinf
Jean a passé l'aspirateur pour étre recompense par Marie.
S~~~ N ~\~ d N ~\~
shared subject clause without a subject infinitve clause
Jean a passé Uaspirateur  pour étre recompensé  par Marie.

_]Ohn havegps, SG. paSSPAST rart.  VACUUINETIber. fOI‘ to_bePRES. INF. rewardPAST PART. by Mary.

John vacuumed in order to be rewarded by Mary.

Figure 1.22: An analysis of a case with a reduced conjunction - the shared subject

Lo (Gpow ™) = X subj. Xs1. Xsp. subj (Az. (GOAL (s1 (XP. P(xz))) (s2 (XP.P(x))))) :
anp —o (anp —o &) —o (qnp — ¢) —o ¢

where: qnp = (e — t) —o t
(1.25)

pour
+[T-reduc.conj]
(=T, +S)

argl/ \argQ
(scton) (rurpoe)
<_T7 +S) (_T7 +S)

Figure 1.23: Pour with +[T-reduc.conj]

The interpretation provided by Equation (1.25) shows that both s; and sy, which are
the interpretations of the arguments of type Sws and Sinf, apply to the term X P. P(z)
of type qnp, which stands for the interpretation of a term of type np.

1.5.3.3 Reduced (Infinitive) Clauses and Clauses Missing Subjects

We encode a derivation tree of an infinitive clause and a clause missing the subject with

the help of the constants G and G.i of types &, and En respectively.®’” In order to
provide their semantic interpretations, we refer to the semantic interpretation of the

’We defined dip, ﬁn, and 7, within Section 1.3.2.2.1 and Section 1.3.2.2.2 on page 207.
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1.5. Interpretations as Conceptual Representations

constant G, of type 7,41 encoding the initial tree form which one derives a complete
clause. The semantic interpretation of G, is already available to us from the ACG
encoding of TAG with Montague semantics, as its is one of the constants that we have
adopted from X%

TAG*
The interpretation of G and G, should differ from the interpretation of G, by

inf

the property that G;™ and G, obtain subjects at the last place. Thus, one interprets
the constants G,™ and G as follows:

Lina(GY") = ZLena(Guine) =
X X1 %i—1 Tjt1 - Tp+1- X Subj. fgﬁrG(Gv) 1 Ti—1 Subj Ti41 Tp41 (1.26)

For instance, let us consider the constants G we . Sp—o V, —o np — Sws and

récompense

G e 0 Sy —o V, —onp — S. We propose the following semantic translations of

récompenser

these constants:

Constants in Ygpg | Their interpretations under £330
Girecompenses Girécompeme | X 8% 0% 0bj. X subj. s*(subj (v*(Az. (0bj (Ay. (reward z y)))))) :
(t—t) —((e>t) —(e—1)) —qnp—oqnp —ot

Table 1.6: Semantic interpretations of constants of Xang

Finally, the constant AnchorT : S —o T translates to the identity function Xz.z : ¢t —o
t. Indeed, in our encoding, there is no semantic difference between texts and sentences.
Table 1.24 provides the semantic interpretations of the constants and types of Ygne.

Example 1.3.

Let us consider the g-derivation tree in Figure 1.25 on the next page. We encode®
it by the term #,°™° € A(Xane) defined in Example 1.2 on page 214 and repeated in
Equation (1.27).

tZZ(TAG - Gensuite: (Gp;flcll'.Gjean(Gpasse—laspiratz‘zls' ISA IVA ) (Getre—recomepnse—}i)r;fr ISA IVA Gmarie))
(Gfait-une-sieste ISA IVA Gjean) : T (1'27)

The lexicon £y, interprets the term ¢,5™¢

as the following term of type ¢:
Lz (1,67%6) = SUCCESSION
(GOAL
(vacuum john)
(reward mary john) (1.28)
)
(nap john)
ot

8We provide the ACG code for this example in Appendix B.1 on page 331.
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Constants & Types in Ygmac

Their interpretations under the lexicon Z$%;

np qnp

T, S t

Sws, Sinf qnp —o t

Gensuites Xs1 850. SUCCESSION s sy

Gensuiter Xs1 59. SUCCESSION s s

Ga“pamvamg X° 81 892. SUCCESSION 82 81

Geanonical Xs1 50. SUCCESSION s, 51

Gapras X subj. Xsp. Xs2. subj (Az. (SUCCESSION (53 (XP.P(z))) (s1 (X°P.P(x)))))
G ganonical Xs1 50. SUCCESSION s 59

Gt X subj. Xsp. Xso. subj (Az. (SUCCESSION (s; (XP.P(x))) (s2 (X°P.P(x)))))
Gi,aonlf,nical X° 81 892. GOAL 51 82

Gopour X subj. Xsp. Xsg. subj (Az. (GOAL (s; (X°P.P(x))) (s2 (X°P.P(x)))))

Gfait—une—sieste

.)\;).s“ v subj. s?(subj (v*(Az. (sleep 2))))

G . . Sws
fait-une-sieste

X s® p% X subj. s%(subj (v*(A\z. (sleep z))))

inf
faire-une-sieste

X s 0% X subj. s*(subj (v*(Az. (sleep x))))

Gpasse-l-aspirateur

X 5% 0% subj. s%(subj (v¢(Az. (vacuum z))))

(vacuum z))))

G passe-L-aspiratens X 5% p% X0 subj. s%(subj (v*(\x.
Az

X 5% w2 X subj. s%(subj (v*(Az. (vacuum z))))

G . sws
passer-l-aspirateur

Girécompense X 5% 0% subj. X obj. s*(subj (v®(Az. (obj (\y. (reward z y))))))
Grécompense X 5% 0% obj. X subj. s%(subj (v®(Az. (obj (Ny. (reward z y))))))
Grécompenisréfr

X s®u® obj. X subj. s%(subj (v*(Az. (0obj (\y. (reward z y))))))

Figure 1.24: Semantic translations of the abstract constants and types

ensuite

arg/ argg

pour
+[T-reduced-conj]

\arg2

récompenser il

faire-la-sieste
‘ argl
argl

+[T-passive]
+[T-reduced-conj]

argl / \ argQ

Marie ¢

passerl’aspirateur

argl ‘

Jean

Figure 1.25: A g-derivation tree of a text
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1.6 Parsing and Generation Using the ACG encoding
of G-TAG

The abstract vocabulary of the ACG architecture for G-TAG is a second-order one
and the interpretations are almost-linear. Therefore, the complexities of the problems
of the parsing and generation with the ACG encoding of G-TAG are polynomial
(Kanazawa, 2007). In order to simulate the G-TAG text generation process, for a
given semantic formula u, we compute the set 7°, of terms over Xgne such that the
lexicon Zgiv, interprets each element of 7%, as u. In order to obtain the derived trees
corresponding to the input u, one applies the Zt¢ lexicon to the elements of T),.
To obtain surface realizations, one interprets the elements of 7%, under the lexicon
Liield © L 5 © LGTAG-TAG-

synt

7 Yeme

{ G-DERIVATION TREES |

‘\\ / sem S;m
~_ qmne EGTAG N\
e

CTAG—TAG ‘:‘G—TAG SEMAN'I'ICS‘:‘

Lot = L 4 © ZLGTAG-TAG

synt synt
TAG

| TAG DERIVATIONS | N e

\ / ,""'
Sy AAG
7 XSynt synt
/T Yhe ¥ )
/ \

| TAG syNTAX f

\ Y

Figure 1.26: The ACG architecture for G-TAG

Notice that G-TAG selects only one surface form as the final output of its generation
process. In this respect, our approach differs from G-TAG. Nevertheless, it is possible
to apply a ranking strategy on the generated surface forms and select only one of them
as a final result. However, in this thesis, we do not use any ranking strategy. Thus, the
final output may consist of several surface forms.

Example 1.4.

Let us consider the following example which demonstrates the text generation process
within the ACG architecture that we propose.

Let v = SUCCESSION (vacuum j)(nap j) : t. We employ a sample ACG signatures
encoding G-TAG grammar shown in Appendix B.3. As a result of parsing v with the
lexicon 2%, we obtain the terms listed in Figure 1.27. These terms encode various
g-derivation trees that G-TAG could built out of the G-TAG conceptual representation
input modeled by wu.

We map the terms shown in Figure 1.27 using the lexicon .imy‘;(t’ 0 ZGTAG_TAG In

order to produce the terms encoding their derived trees. We obtain the terms defined in
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Equations (1.29),(1.30), (1.31), (1.32), (1.33), and (1.34). These terms encode derived
trees depicted in Figure 1.28, Figure 1.29, Figure 1.30, Figure 1.31, Figure 1.32, and
Figure 1.33, respectively. By mapping these derived trees under the lexicon %4, one

obtains the strings, i.e., surface retaliations shown in Figure 1.34 on page 230.

tl.l Gensuxteg (Gpasse laspirateur ISA G G]ean) (Gfalt -une-sieste ISA Ga Gil) : T
t1.2 | Geasuiter (ANChOrT (Gpussesaspiratenr 184 Ga Giean)) (ANChOr T (Grastunesieste Isy Ga Ga ) + T
1.3 Gensmteg (AnchorT( passélaspirateur ISA G, Gjean)) (Gfait-une-sieste ISA G, Gil) T
1.4 GensulteT (Gpasse laspirateur ISA G, Gjean) (AnchorT (Gfait»une-sieste ISA G, Gil)) T
tZ,l Gauparavant: ( fait-une-siestes ISA G Gjean) (Gpassé-laspirateur ISA Ga C;il) T
2.2 Gauparavant? (AnchorT( faitunesieste 1S G, Gjean)) (AnchorT (Gpassé-laspirateur Is, G, Gil)) . T
2.3 Ga aravantg (Gfaltunemeste Is, G, G_]ean) (AnChorT (Gpassé—laspirateur Is, G, Gil)) : T
l2.4 auparavantT (AnchorT( fait-une-sieste ISA G, Gjean)) (Gpassé-laspirateur ISA G, Gil) T
3.1 AnChorT(Gavantcammcal (Gpassé—laspirateur ISA G, Gjean) (Gfasse—une—sieste ISA IVA Gil) ) T
3.2 AnChorT<Ga\rrZ?1t Gjean (Gpassé»laspiratsl‘::r ISA Ga) (Gfaireuue-sisei:tfe ISA IVA) ) T
la.1 AnChorT(Ga:::mcal (Gfait-une»sieste ISA G, Gjean) (Gpassé-laspirateur ISA G, Gil) ) : T
tr.2 | AnchorT (Gose Giean (Graitunesioe 18a Ga) (Gpassertaspiratuor 184 Iva) ) & T
Figure 1.27: Terms modeling g-derivation trees
Lt (t11) = Ly (h2) = Lyt (h3) = Lgnt® (tra) = (1.29)

/ \ \ ADV/ \
(AN AN AN
AN VAN
| DET/ \ | / \

une  sieste

Figure 1.28: A derived tree obtained as the interpretation of the terms encoding

g-derivation trees
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Lot (l21) = LG (t.2) = Lyni®(ag) = Lyt (t2a) = (1.30)
/ AN \ \
NP VP dot ADV
/N /N / \
Jean  Aux VP  Auparavant Punct NP
-/ \ I / \
a V comma I AUX
| / \ | / \
fait  DET a V
| \ | / \
une  sieste pass¢ DET
| \
| aspirateur

Figure 1.29: A derived tree obtained as the interpretation of the terms encoding
g-derivation trees

Lo (ts1) = (1.31)

S
s/ \s
NP/ \ PP/ \
| / \ / \ / \

Jean  AUX PREP C NP
| / \ . / \
a avant que il V
\ / \ | / \
passé DET fasse DET
| \ \
I aspirateur une  sieste

Figure 1.30o: A derived tree obtained as the interpretation of a term encoding a
g-derivation tree
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Lot (t3.2) = (1.32)

S

s/\s
NP/\ /\
| /\ /\ /\

Jean  AUX PREP

| / \ | \ \ / \
a avant de PRO V
\ / \ | / \
passé DET faire DET
| \ \
| aspirateur une  sieste

Figure 1.31: A derived tree obtained as the interpretation of a term encoding a
g-derivation tree

Lane (ta1) = (1.33)

S

T

NP/\ /\
| /\ /\ /\

Jean  AUX PREP
| / \ | \ \ / \
a apres  que il AUX
\ / \ | / \
fait DET a
| \ \ / \
une  sieste pass¢ DET

| aspirateur

Figure 1.32: A derived tree obtained as the interpretation of a term encoding a
g-derivation tree
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Lot (ta2) = (1.34)

S

s/ \s
NP/ \VP PP/ \s
| /N /N S \VP

Jean  AUX VP PREP C NP
I N N VRN
a V NP apres € PRO AUX VP
/N N
fait DET N avoir  V NP
/ N\
une  sieste pass¢  DET N

l  aspirateur

Figure 1.33: A derived tree obtained as the interpretation of a term encoding a
g-derivation tree

Remark 1.5. The terms £ 1¢(11), Logni'(t2), Ly (t13) and LJi(ta) are the same
(see Equation (1.29)), that is, the syntactic interpretations of the terms t1.1, t1.2, t1.3, and t1 4
are the same (the same is true in the case of to1, tr2, to3, and ty.4). This is due to the
fact that in Y, we introduced four constants for an adverbial all of which have the same
syntactic interpretations, and at the same time, AnchorT € Y translates to the identity
Junction under the lexicon ZJi¢. Instead of having four constants for an adverbial, we
can have only one G, : T —o T —o T but we can still produce the same set of syntactic
interpretations. For example, if we have G, t, t,, where t, and t, are of type S, we
define the term G, (AnchorT t,) (AnchorT t,). The terms G,y (AnchorT t,) (AnchorT t,)
and G t, t, have the same translations under any lexicon defined by us. Thus, it is sufficient
to have instead of the four constants G5 Ganze Guangs and Guyp only one constant G, of
pe T— T —o T.

In the rest of this thesis, we assume that in Ygpne we have only one constant G4y : T —o
T —o T encoding the G-TAG lexical entry of the adverbial adv.

As the generated surface realizations illustrate (see Figure 1.34 on the next page),
the adverbials ensuite and auparavant occupy only clause-initial positions. However,
G-TAG could output a text where an adverbial appears at a clause-medial position.
G-TAG does so by first generating a text where all the adverbials are at the clause-
initial positions, and then, the post-processing module may move an adverbial from a
clause-initial position to a clause-medial one. The G-TAG way of producing texts with
clause-medial adverbials is not an option for us because we do not employ any kind of
extra processing step. In the next chapter, we provide a solution that allows one to
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Lyield(Loynt' (1)) = Lyield(Loynt” (11.2)) = Lyield(Loynt” (11.3)) = Lyield (Loynt (11.4)) =

Jean+a+passé+l+aspirateur+dot+Ensuite+comma+Il+a+fait+une+sieste

gyield( s?gﬁG(b-l)) = 'ﬁ/ﬂyield( sy(/}:t\G(tQ-Q)) = gyield( s?rﬁG(tQB)) = gyield( s;;;?G(tQA)) =

Jean+a+fait+une+sieste+dot+Auparavant+comma+Il+a+passé+l+aspirateur

GTAG
og/ﬂyield ( sygt (t3-1)) =
Jean+a+passé+l+aspirateur+avant+que+il+fasse+une-+sieste

Lyietd(Loynt (13.2)) =
Jean+a+passé+l+aspirateur+avant+de+faire+une+sieste

Lyield(Lsynt (ta1)) =

Jean+a+fait+une+sieste+aprés+que+il+a+passé+l+aspirateur

Lyield(Leynt (ta.2)) =

Jean+a+fait+une+sieste+aprés+avoir+passé+l+aspirateur

Figure 1.34: Surface realizations
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encode texts with clause-medial connectives without making use of an extra-processing
step.
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Chapter 2

Encoding Clause-Medial
Connectives
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2.1 Encoding Clause-Medial Connectives . . . . .. ... ...... 233

2.1.1 A New Analysis of Clause-Medial Connectives . . . . . . .. 234

2.1.2 Encoding Clause-medial Connectives in the Abstract Vocab-
ulary ..o 235

2.2 Interpretations of G-derivation Trees as TAG Derivation Trees 237
2.3 A Modular Interpretation of g to TAG Derivation Trees . 239
2.3.1 The Lexicon from Ygmg to Xgger -+ .« v v o v o oL 241

2.3.2 The Lexicon from Ygq to X%, . . .. .. ... L L. 242

We extend the ACG encoding of G-TAG with the aim of modeling texts containing clause-
medial connectives. In contrast to G-TAG, where one makes use of a post-processing module
in order to transform a text containing clause-initial connectives into a text containing
clause-medial connectives, we propose an encoding that makes it possible to generate the
texts containing clause-medial connectives without applying a post processing step. Our
approach to texts containing with clause-medial connectives is purely grammatical, like it is
in the case of texts containing no clause-medial but only clause-initial connectives, in the
ACG encoding of G-TAG. In particular, we introduce a constant in the abstract vocabulary
to model a clause-medial connective. This enables us to define an abstract term modeling
a g-derivation tree of a text containing the clause-medial connective. By interpreting this
abstract term, one obtains the text containing the clause-medial connective.

2.1 Encoding Clause-Medial Connectives

In G-TAG, to generate a text where a discourse connective appears at the clause-medial
position, G-TAG first generates the canonical text with the help of its discourse grammar.
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In the canonical text each connective occupies a clause-initial position. Afterwards, the
G-TAG post processing module modifies the canonical text by moving some discourse
adverbials from clause-initial positions to clause-medial ones. For example, to generate
the discourse (30), the post-processing module of G-TAG modifies the canonical text
(29) by moving the discourse adverbial ensuite (then) from the clause-initial position to
the clause-medial one.

Since we make use of no extra processing step, we aim at the modeling of texts
containing clause-medial connectives in one step.

(29) Jean a passé Uaspirateur  pour étre récompensé  par Marie.
John haveys se. passest e, vacuumerses. for  to-bemws w. rewardems ma. by Mary.
Ensuite, il a fait une sieste.

Aﬁerward, he haVe?,Ps. SG. makegps. sc. A nap.

John vaccumed in order to be rewarded by Mary. Then, he took a nap.

(30) Jean a passé Uaspirateur  pour étre récompensé  par Marie. 1l
John havess se. passest ma. Vacuumerse. for — to-berus. . rewardms me. by Mary. He
a ensuite  fait une sieste.

haveys. se. afterward makeys . a  nap.

John vacuumed in order to be rewarded by Mary. He then took a nap.

2.1.1 A New Analysis of Clause-Medial Connectives

The objective is to encode an adverbial connective at a clause-medial position without
deviating significantly from the general principles of G-TAG regarding discourse connec-
tives. In G-TAG, a connective anchors an initial tree with two substitution sites, as it
is illustrated in Figure 2.1. By filling the substitution sites in this tree, one obtains a
derived tree of a discourse. The yield of the derived tree is a discourse (text) where
the adverbial adv occupies a clause-initial position.

S

7\
S S
/ N\
ADV S

adv S|
Figure 2.1: The G-TAG initial tree anchored with an adverbial
In LTAG (Abeillé, 1988; XTAG-Group, 1998), a discourse adverbial adv at the

. e . VP
clause-medial position anchors a VProoted auxiliary tree __——_ . We cannot
adv VP*
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2.1. Encoding Clause-Medial Connectives

adopt the LTAG analysis of clause-medial adverbial connectives because (a) in G-TAG,
an elementary tree of an adverbial is an initial tree, whereas in LTAG, an adverbial
anchors an auxiliary tree; (b) the LTAG analysis of an adverbial associates it only with
one argument, whereas in G-TAG it has two arguments (obtained by substituting two
trees into the initial tree anchored with the adverbial).

We propose to combine the properties of the LTAG auxiliary tree and the G-TAG
initial tree anchored with an adverbial. In particular, a construction corresponding to
the adverbial adv should have two substitution sites (in the style of G-TAG); and the
auxiliary tree anchored with the adverbial adv should adjoin on the VP node into a
tree (in the style of LTAG) that substitutes at one of these substitution sites. Figure 2.2
on the following page illustrates our analysis: In a tree anchored with the full stop,

A . oy VP . .
there are two S-substitution sites; an auxiliary tree __——__ adjoins on the VP-node
adv VP*

of a substituted tree that gives rise to the rightmost piece of the discourse (the one that
substitutes at the address 3).

Remark 2.1. As Figure 2.2 indicates, we do not analyze a clause-medial adverbial as a tree,
but as a set of trees {cv, B}. The tree o has two substitution sites. Two trees, v and 72, fill
the substitution sites of o, at the addresses 1 and 3, respectively. The tree 3 adjoins on the
VP node into ~yo. In spite of the fact that we use sets of trees {cv, B} and {v1,72}, like it is
in a set-local MC-TAG (Vijay-Shanker, David J. Weir, and A. K. Joshi, 1987), our approach
cannot be directly expressed in a set-local MC-TAG. In particular, the notion of a derivation
step in a set-local MC-TAG only allows one to substitute/ adjoin trees from one set A into the
trees belonging to the same tree set B. The analysis proposed by us does more than that: The
trees from the set {1,72} substitute into the tree o, whereas the tree 5 adjoins into vo. To
model this analysis using a set-local MC-TAG, one would need to make use of at least two
derivation steps and some features. For instance, one can do it as follows: At the first step,
the trees from the set {~v1,7v2} substitute into . At the second step, B adjoins in the resultant
tree. In particular, 3 should adjoin on the VP node of the tree ~2. This adjunction should be
obligatory. One can model that using features on 3 and on ~o.

2.1.2 Encoding Clause-medial Connectives in the Abstract Vocab-
ulary

We extend the ACG encoding of G-TAG proposed in Chapter 1 in order to encode texts
with clause-medial connectives. To encode the case where an adverbial adv appears at
a clause-medial position, we encode the analysis illustrated in Figure 2.2 with the help
of ACGs. In particular, we introduce a new abstract constant G in the abstract
vocabulary Ygpe. In Ygpg, the constant Gi™ has the similar characteristics to the
constant G,4, encoding the adverbial adv at the clause-initial position. Indeed, like
G.avps the constant G5 has two arguments representing the derivation trees of clauses.
Let us denote them with ¢ and #,. By applying Giaw™ to ¢, and t,, one obtains a
term G ¢, t,. The syntactic interpretation of the term G.™ ¢, ¢, should be a term
encoding a derived tree of a text where adv occurs at a clause-medial position in the

syntactic interpretation of the term ¢,.
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RN

S| Punct S|

VP . -

Figure 2.2: An analysis of a text containing the adverbial connective adv at a clause-
medial position

medial

In order to obtain the syntactic interpretation of the constant G,5;"*, we first interpret
it into TAG derivation trees (A(X%:)) with the help of the lexicon ZGrag—Tag. However,

medial

before interpreting G,3"", we must type it. For that, let us consider the analysis presented
in Figure 2.2. According to it, the interpretation of the second argument of Gji™
should be able to receive an adjunction on its VP-node, because otherwise, the auxiliary

tree /VP\ would not be able to adjoin into it. By receiving a VP-adjunction, the
adv VP*
interpretation of second argument of Ga™ should become a derived tree of a sentence.
Something that is looking for a VP adjunction in order to become a sentence can be
encoded by a term of type V, —o S. Thus, the type V, — S can serve as a type of the
second argument of the constant G.™. The first argument of G could be a term
of type S, because neither adjunction nor substitution is going to be performed on the
first sentence. In fact, since no operation is performed on the the first argument of the
medial

constant G, we can model it as a text (a term of type T). Hence, we can type the
constant G with the type T —o (V, — S) — T.

Notice that the type T —o (V, — S) — T of the G5 constant is third-order (due
to (Vo — S)). This makes the abstract signature Ygpg third-order as well. In this
case, Kanazawa’s (2007) results do not apply. Consequently, one cannot guarantee
that the parsing and generation tasks would remain polynomial as it is in the case of
second-order ACGs. To maintain the second-order abstract vocabulary, we propose to

medial

type the constant G with a second-order type, namely, with T —o S — T. However,
by typing the constant G, with the type T — S —o T, one needs to express that a
term over Ygpe of type S (the second argument of an the constant Gji'™™) can receive
an adjunction, i.e., an argument of type V,. To be more precise, the interpretation of

a term over Xgng of type S should be a term over X2 of type V, — S. To achieve

236



2.2. Interpretations of G-derivation Trees as TAG Derivation Trees

that, we redefine the lexicon ZGTAG-TAG : Xeme — 2ons. Now, ZGTAG-TAG interprets
S from Ygne as V, — S into X%, Like before, .ZcTac—TaG interprets the type T from
Yeme as S into Y22, We interpret the new constant G : T —oS — T to A(X%) as
it is shown in Equation (2.31).

Z6TAG-TAG(Gaw™) = X 51. X 2. Coonear 51 (82 Cay)
S—o(Vp—8)—3S (2.31)

In Equation (2.31), the constant C., of type V, stands for the auxiliary tree

VP
_—~_ . The constant C¢,.. of type S — S —o S represents an initial tree with
adv VP*

two substitution sites anchored with the full stop, shown in Figure 2.3. Thus, the term
X 81 X 82. Cooen 1 (52 Cayy) encodes the fact that is pictorially shown in Figure 2.2 on
the facing page: sy receives a VP-adjunction (C,,) inserting adv at a clause-medial
position. The terms s; and (s2 C,4 ), which represent the derivation trees of the first
and second pieces of a text respectively, are the arguments of Cg,.... The constant
Ceonear TeCeiVes the first tree (s;) and the second one (s2 C.,) and puts the full stop
between them. In this way, one obtains a text where an adverbial adv appears at a

clause-medial position in the second sentence (sy C,y,).

TN

S| Punct S|

Figure 2.3: The tree modeled by Ccopea

2.2 Interpretations of G-derivation Trees as TAG Deriva-
tion Trees

To interpret g-derivation trees as derived trees, we first interpret g-derivation trees as
TAG derivation ones. Since TAG derivation trees are already interpreted as derived
trees, by composition of the two interpretations, one obtains the interpretation of
g-derivation trees as derived trees.

Since we extend the ACG encoding of G-TAG, the translation of the type S from
Yeme to V4 — S in X2 requires to make changes in the translations of the abstract
constants whose types involve S. There are two cases:

1. G is a first order predicate (a clause missing a subject, an infinitive clause, an

initial tree anchored with a verb, predicative adjective, etc.);
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canonical

2. G is a constant encoding an initial tree anchored with a conjunction (e.g. Gt
S—oS-—oSor G, :np— Sws —o Sinf — S).
Let us consider a constant Geompense : 92 —© V4 —0 NP —o Np — S. Since the type
S € Yane translates to S —o V, into X%, if we do not make any further changes in its
translation by the ZgTag_TAG lexicon, then the constant G would translate to a
term over A(X%:) of the following type:

récompense

ZGTAG—TAG(Grecompense) * Sa —0 Vo —o NP —o np —o (V, — §) (2.32)

Thus, the interpretation of the constant G,compense in the TAG derivation trees requires
an additional VP-adjunction in order to become a term of type S.
Let us denote with f,ompeme the following abstract term over Xgpg:

trécom}i}e:":g = Grécompense ISA IVA Gjean Gmarie : S (2'33)
The interpretation of the term fomume into A(X2%%) should be of type V, — S as

écompense

the type S form Xgne translates to the V, — S type in X0 Let us interpret the term
tecompome 100 A (X2 ). We obtain the following:

LGTAG-TAG (Lscompemse ) =

Z6TAG-TAG (Grecompense) -ZGTAG-TAG(Isn) ZeTac-TAG(Iv,) (2.34)
Z6TAG-TAG (Giean) ZGTAG-TAG(Grmarie) : Va — S

t GTAG

récompense

By computing the value of the Zgrac—TaG(
Equation (2.34), we must obtain the following:

) term in the right-hand side of

ZLGTAG—TAG (tiscompense ) =3 X" mod. t[mod] : V, — S (2.35)

Where ¢ is a term; ¢[mod] denotes the term ¢ but expresses that in ¢ the variable
mod has a free occurrence. The variable mod : V, should appear in the sub-term
encoding the VP-adjunction site (the clause-medial position). Indeed, by applying
ZGTAG-TAG (trscompme ) to the term Cg, : Vu, we should obtain a term modeling TAG
derivation tree of a clause where the adverbial adv occupies a clause-medial position.
To achieve that, we propose the following interpretation of the constant G, ompense tO

ATR):

"%GTAG*TAG (Grécompense) ==

SA—OVA—©°np—onp—oS Sa VA np np
o . . o — ~ A~ = —— e Wt
X Sq Vg subj obj. X mod. Crtcompense Sq - (vq mod) subj obj :
A7
Sp—o (Va— V) —np—onp — (V, — ) (2.36)

As Equation (2.36) indicates, we use the constant C,ompense € 2ons Of type S, —o
V, —onp —o np — S, which is a standard type of a constant encoding a transitive verb
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2.3. A Modular Interpretation of Ygne to TAG Derivation Trees

in X%7. Thus, we do not make any changes in the constants of X%¢. In the translation
shown in Equation (2.36), the sub-term (v, mod) of type V, provides a needed slot
for a VP-adjunction that one can use in order to place an adverbial at a clause-medial
position. The term (v, mod) is of type V, because we use the constant C,ompense Of
Y0 of type Sy —o V) —onp —o np — S. The variable mod is of type V,. Hence, the
variable v, is of type V, —o V,. This implies that the type V, of ¥ane translates to

V, — V, into X2

TAG*

Types in Xgne | Their translations by Zctac—TAG
S V,— S
V. V, — V,

Der

Table 2.1: Interpretations of the types S and V, into X%

Hence, the lexicon .ZgTag—TAG interprets a constant of type S, — V, —o np —o
np — S from Ygpe as a term of type S, —o (V, —o V,) —onp — np — (V, — S) into
A(EZL).

Since now ZgTac-TaG interprets V, from Ygpe as Vo, —o V, into X%%, one must
redefine ZG1ac_TaG on the constants of ¥gne whose types involve V,.

Let us recall that in the ACG encoding of G-TAG, we interpreted the type Sws (a
clause missing a subject) as Np — S into X%;. Now, a question is what should be the
interpretation of Sws in X%, should it be np — S or np — V, — S? Interpreting
Sws as np — V, — S would allow us to analyze sentences with reduced conjunction
whose matrix clause contains an adverbial at the clause-medial position.®® Consequently,
we have to make changes into the interpretations of the constants encoding reduced
conjunctions into A(X07) because (a) we changed the interpretation of the type S; (b)
we change the interpretation of the type Sws. Thus, we have to redefine the lexicon
ZGTAG-TAG on various constants simultaneously.

While it is possible to redefine interpretation of all the above mentioned types and
constants at the same time, it is also possible to do that sequentially. In the next
section, we develop an approach that offers a modular view on the relationship between
G-TAG derivation trees and TAG derivation ones.

2.3 A Modular Interpretation of >, to TAG Deriva-
tion Trees

Instead of simultaneously interpreting the types S and SWS from Ygpe as V4, — S and
np — V, — S in X% respectively, we propose to do it in a sequential order. For that,
we introduce a new object vocabulary ¥ . Figure 2.4 on the following page shows the
new ACG architecture. We define the following ACGs:

1. gl - <EGTAGv Eg-deragGaT>

“For more details, see Section 2.3.2.2.2 on page 243.
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Chapter 2. Encoding Clause-Medial Connectives

7 Yeme

e Zg,de, N | G-DERIVATION TREES |

| G-DERIVATIONS |

ggderftag \/

/ ] EDer I

ZLGTAG-TAG = Lgder—tag © -£G

TAG

| TAG DERIVATIONS |

. AAG

- Synt synt
/ Yne
/ \

| DERIVED TREES |

\. /

Figure 2.4: An ACG architecture for G-TAG

2. Gg = <Zg-der7 2$:é7 ggder—tag7 T)

We split the tasks of encoding the phenomena of reduced conjunctions and clause-
medial connectives into two. We encode reduced conjunctions with the help of the
ACG G, whereas we encode clause-medial connectives with the help of the ACG .
The composed ACG Gy 0 G; enables us to encode both clause-medial connectives and
reduced conjunctions. In this ACG architecture, we have the following lexicons:

1. The lexicon 2 : Yame — g interprets SWS from Ygme as NP — S in Xy 4 ;

2. The lexicon ZLyger—tag : Lgaer — ppe interprets S from Yy as Vo — S in X3,

Thus, one obtains the following:

ggderftag($G<SWS)) = ggderftag(np -0 S) = ggderftag(np) - gderftag(s) =
= gder—tag(np> —oV,—oS=np—oV,—-S (2.37)

As Equation (2.37) shows, the lexicon ZLyger—tag © £ of the composed ACG Gy 0 Gy

interprets Sws from Ygng as Np —o V, — S in X%,

The new object vocabulary Y ., is similar to the abstract vocabulary Xgps. In
particular, in X ., one has all the types from g except Sws and Sinf. Besides
types, in X4, we adopt constants from g so that if a constant G, is in Xgmpe, then
the constant g, is in ¥4, except from the constants such as G,™. By convention, we
denote constants of X ., by g..

Thus, it remains to define the lexicons £ : Yame — Ygger aNd Lgder—tag © Lgaer —
ZDer

TAG*
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2.3. A Modular Interpretation of Ygne to TAG Derivation Trees

2.3.1 The Lexicon from > ,; to X

g-der

2.3.1.1 Interpretations of Types

The lexicon 2 : Yame — Lgwer interprets the type SWs from Ygpg as Np — S in Xy
This is similar to what we did in the ACG encoding of G-TAG, where we interpreted
Sws from Yane as NP — S in X%, In addition, we interpret Sinf from Xgne as S in
Y gder-

The rest of the types are interpreted as themselves: For any X atomic type in g
that is different from Sws and Sinf, the lexicon .Z; translates the type X from Ygpg to
X in ¥4, For instance, the type T in g translates to T in Xy .

2.3.1.2 Interpretations of Constants

Any constant G, from ¢ translates to g, in X, provided that the type of the constant
G, contains neither Sws nor Sinf. For example, the lexicon £ translates constants
Guwp : T—oT —oTand G™ : T —S — T as the constants g1 : T — T — T and
gaetial : T —o S —o T, respectively. It remains to interpret constants encoding subordinate
conjunctions and the first order predicates (the ones that enable us to encode derivation

trees of clauses).
2.3.1.2.1 Conjunctions

Canonical Conjunctions
2 interprets the constant Ggn™ to giw as they both represent the same
elementary tree anchored by conj.

Reduced Conjunctions

Since the lexicon .Z; interprets the type SWS € ¥ge as Np — S in X4, one
encodes the subject-sharing with the help of Z;. Namely, we interpret the constants
modeling reduced conjunctions by .Z so that the interpretations encode that the subject
syntactically belongs to the clause missing a subject. That is, we interpret the constant
G of type Nnp —o Sws —o Sinf — S encoding the reduced g-derivation tree of the

conjunction conj as follows:

Z6(Gens) = X 1p 5182 By (51 1D) 82 (2.38)
Where in Equation (2.38) the constant g is of type S — S — S. As this

onj
interpretation indicates, we combine the subject and the clause missing a subject (s; np).
The constant g resembles the underspecified g-derivation tree of conj: g.w has two
variable nodes which can be instantiated with g-derivation trees of clauses (terms of

type S).7°

70This interpretation is similar to the interpretations of constants encoding reduced conjunctions from
by into A(X2%%).
GTAG TAG
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Chapter 2. Encoding Clause-Medial Connectives

2.3.1.2.2 First Order Predicates

To illustrate the way the lexicon .7 interprets the constants enabling us to produce
terms of type Sinf and Sws, we provide Table 2.2. In general, given the constants
G a, and G2 : En enabling us to produce the terms of types’! Sws and Sinf
respectively, we interpret them into A(X ) as follows:

Le(G) = XNy .. .xp. Xsubj. g, 1 ... subj ...y (2.39)
D%G(lel‘;ff) - gviir:]ff : gn (2'4'0)
Where g, denotes an initial tree anchored by v. The interpretation shown in

Equation (2.39) encodes that a clause missing the subject differs from a finite clause
only by the fact that it receives the subject (the variable subj) at the last place.”

Constants in Ygag Their translations by the lexicon .2 into A(Xg.ge)

Grecompense : Sp —0 Va —o nNp —o SWS | X°5% 0% 0bj. X 5UbJ . Srscompense S* V¢ subj 0bj :
Sa—oVp—onp—onp—S

C}récomper.\si::x€ : SA —o VA —° np —o Slnf grécoml::ensigl€ : SA —° VA —o np —° S

Table 2.2: Interpretations of constants enabling to produce terms of types Sws and Sinf

2.3.2 The Lexicon from X, to >2"

As we already mentioned, to model the clause-medial adverbials, the lexicon Zyger_taq :
Yooer — 20w interprets S as V, —o S. As we saw in Section 2.2, in addition to
interpreting S as V, — S, the modeling of clause-medial adverbials requires interpreting
of V, from X, as V, —o V, into X%. In concordance with these interpretations we
should interpret the constants whose types involve V, and/or S from X, into A(X5%).
The constants whose types involve V, and/or S are as follows:

1. Constants modeling clause-medial adverbials (i.e., g™ : T — S — T);

2. constants modeling conjunctions (i.e., g™ :S —oS — S and g4 : S — S —o

S);

3. first order predicates adopted from 0% (€.2. Srccompense)-

To interpret the rest of the constants of >, we refer to the interpretations of
g-derivation trees as TAG derivation trees in the ACG encoding of G-TAG. In particular,
if g, is a constant whose type is not built using V, and/or S, then we consider the

7In Section 1.3.2.2 on page 206, we defined the types day, B, and 7.

72The interpretations provided in Equation (2.39) and Equation (2.40) are analogous to the interpreta-
tions of the constants G:** and G into TAG derivation trees proposed in the ACG encoding of G-TAG
(see Section 1.4.2.3 on page 212 for a detailed discussion.)
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2.3. A Modular Interpretation of Ygne to TAG Derivation Trees

constant G, of Ygne in the ACG encoding of G-TAG. Since G, and g, model the same

constraint, we interpret g, into A(X%) to the same term to which we interpreted G,
into A(X%7) in the ACG encoding of G-TAG.

TAG

2.3.2.1 Interpretations of Types

In ¥, besides the types S and V,, we have types that are adopted from X%;. In
addition, we have the type T, introduced for modeling g-derivation trees of texts. We
interpret these types into X% as follows:
* For any type X in X, that differs from S, V,, and T, we have the type X in X2
modeling the same constraint. Thus, the lexicon Zqe,_tag interprets X from ¥,
as X in X0,

® Zgder—tag (T> = S.

2.3.2.2 Interpretations of Constants

2.3.2.2.1 Clause-medial Adverbials

In ¥, one has a constant g3 : T —o S — T modeling the clause-medial adverbial
adv. Section 2.1 discusses the way we interpret the constant Gjje™ : T — S —o T of g
modeling the clause-medial adverbial adv into A(X%%). We employ the constants G
and g™ to encode the same analysis, shown in Figure 2.2 on page 236. Thus, we

medial

can refer to the interpretation of G into A(X%) for interpreting g™ into A(X2),
which is as follows:

ggderftag(gargidial) - AO Sl )\o 82 CConcat 81 (82 Ca\\t/iv) :
S—o(Vy,—oS8)—S (2.41)

2.3.2.2.2 Subordinate Conjunctions

In order to encode constants modeling subordinate conjunctions, notice that an
adverbial connective may appear at the clause-medial position in a sentence built by a
subordinate conjunction. In a case of a sentence with either a canonical or a reduced
conjunction, an adverbial connective appears at the clause-medial position only in the
matrix clause of a sentence. As Examples in (43) and (44) indicate, the adverbial ensuite
occupies a clause-medial position in a matrix clause of a sentence with a conjunction.”?
Figure 2.5 illustrates the analysis of the discourses in Examples (43) and (44): The
auxiliary tree anchored with the adverbial adjoins on the VP node into the derived tree
of the matrix clause of the sentence with the conjunction.

73In a case where an adverbial connective is intersentential, it cannot appear within the subordinate
clause of a sentence, but only in the matrix clause. However, if an adverbial is intra-sentential, it may
appear within the subordinated clause, as it is in the following sentence:
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Chapter 2. Encoding Clause-Medial Connectives

(43) Jean a préparé le  petite déjeuner. Jean a ensuite
John haveys. s. mus. preparems:ma. the breakfast. John then haveys. so. rus.
passé Uaspirateur avant que Marie fasse une sieste.
vacuumes . before that Mary makeys. so. mes. sugvere @ DAp.

John prepared the breakfast. John then vacuumed before Mary took a nap.

(44) Jean a préparé le  petite déjeuner. Jean a ensuite
John haveys. s. rus. preparems: m. the breakfast. Jean then haveys. so. mus.
passé Uaspirateur avant de faire une sieste.
vacuumes: . before of makeisiiive pres. @ nap.

John prepared the breakfast. Jean then vacuumed before taking a nap.

S
TN
S| Punct S|

N

S

7N

S Prep S

conj

VP
AN

VP adv <. VP

Figure 2.5: An analysis of a case with an adverbial at a clause-medial position of a
sentence with a conjunction

In ¥ 4, we have two constants gin™ and giy of type S — S — S modeling

conj

the canonical and reduced g-derivation trees of a conjunction conj, respectively. Since

we interpret S as V, — S into X%, the arguments of these constants encoding the

matrix clause and the subordinate clause can receive a VP-adjunction. However, as we

(42) Jean a passé Uaspirateur  dans la matinée pour ensuite étre libre pendent toute
John haveges. sc. passessr exr. vacuumerosr. in -~ the morning for t¢hen  to bewr. free during all
le  journée.
the day.

Jean vacuumed in the morning in order to then be free during the whole day.
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2.3. A Modular Interpretation of Ygne to TAG Derivation Trees

have discussed above, only the matrix clause can host an adverbial. Thus, we should
disable adjunction on the subordinate clause. We do it with the help of the empty
VP-adjunction (Iy,). We propose the interpretations of the constants g™ and glu
shown in Table 2.3.

Constants in X, Their interpretations into A(X%%)
Gowml 1 § — 8§ —0 8 [ X s1. X 53. Xmod. Com™ (51 mod) (s2 Iv,)
gcﬁ} :S§S-—08S-—08 X s1. X sa. Xmod. Ccﬁ‘ (31 mOd) (32 IVA)

Table 2.3: Interpretations of the constants encoding conjunctions by the lexicon Zyger—tag

2.3.2.2.3 First Order Predicates

It remains to interpret constants of ¥, that originate from X2%. In Section 2.2, we
discussed the way we interpret constants of Y standing for initial trees anchoring
verbs, predictive adjectives, etc. (the ones that give rise to clauses) into TAG derivation
trees. Namely, we provided an example interpreting G,compense into TAG derivation trees
(see Equation (2.2) on page 237). We make use of the same principles in order to
interpret first order predicates of ¥4, into TAG derivation trees. Table 2.4 illustrates
the way one interprets the constants encoding initial trees anchored by finite verb forms,
infinite ones, and adverbs.

Constants in 3 g Their interpretations into A(X2%)

Srecompense X 5% v subj obj. X’ mod. Cscompense $* (v* mod) subj obj

:Sp—oVy—onp—onp—o3S :Sp—0 (Vp —o Vu) —onp—onp—oV,—oS

grécompenisnefr )\O Sa ’Ua Obj )\0 mOd' Crécompenser Sa (va mOd) Obj
:SA—OVA_Onp_OS :SA_O(VA_OVA)—Onp_OVA_OS
gvraiment : VA -0 VA )\O a mOd - a (Cvraiment mOd) : (VA —° VA) —° VA —° VA

Table 2.4: Interpretations of constants under the lexicon Zyger—tag

Finally, we interpret AnchorT : S — T as X s.s5ly, : (Vo — S) — S.

Remark 2.2. We do not modify anything in the abstract vocabulary Ygne of the ACG
encoding of TAG but add constants encoding clause-medial adverbials. Thus, in order to
define semantic interpretations of the constants and types in Y, we only need to interpret
the constants encoding clause-medial adverbials. The semantic interpretation of a constant

miat . T—o 8 —o T encoding the adverbial adv at the clause-medial position is identical to
the semantic interpretation of the constant G,y : T —o T —o T encoding the adverbial adv at
the clause-initial position. Indeed, there is only a syntactic difference between the two, otherwise,
they have the same semantic interpretations as both of them are the lexicalizations of the same
concept.
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Chapter 2. Encoding Clause-Medial Connectives

Example 2.1.

Figure 2.6 shows a g-derivation tree, which gives rise to the text (29). To obtain

the text (30), which is the variant of the text (2g9), we build the term ¢
Equation (2.45).

dial dial d.
GTnlj\eGla = (}enr;iitled (AnChOI’T (Gp(r)eur Gjean (Gpasséflaspiratzﬁi ISA IVA )

medial
TAG

defined in

(Gétre-récomepnsé-;n:r ISA IVA Gmarie))) (Gfait-une—sieste ISA Ga Gil) : T (2'4-5)

(29, repeated)

Jean a passé Uaspirateur  pour étre récompensé  par
JOhn havegm SG. paSSPAST parr. VACUUMEIber. fOT  tO-berres. . TEWaATdeast pae. by
Marie. Ensuite, il a fait une sieste.

Mary. Afterward, he haveys . makeys . @ nap.

John vaccumed in order to be rewarded by Mary. Then, he took a nap.

(30, repeated)

Jean a passé Paspirateur  pour étre récompensé  par
JOhn havegvs. sc. PaSSeast rarr. VACUUIMETver. for to-bewms nr. rewardesr mer. by
Marie. Il a ensuite  fait une sieste.

Mary. He haveys «. afterward makeys . a  nap.

John vaccumed in order to be rewarded by Mary. He then took a nap.

ensuite

arg/ arge

pour
+[T-reduced-conj] faire-la-sieste
\argQ ‘argl
récompenser il
+[T-passive]
passerl’aspirateur  +[T-reduced-conj]

argl‘ arg1 / \argQ

Jean Marie €

argl

Figure 2.6: A g-derivation tree

By interpreting the term tyfie® with the help of the lexicon £, we obtain the

following term:
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2.3. A Modular Interpretation of Ygne to TAG Derivation Trees

inf

tg:l‘zfial = ge:ﬁiitzl (AnChOI’T (gpf)i‘i (gpassé-laspirateur ISA IVA gjean> (gétre»récomepnsé-par ISA IVA gmarie)))
(gfait-une-sieste ISA ga gil) . T (2'4‘6)

The structure of the term ¢ in Equation (2.46) is closer to the g-derivation
tree shown in Figure 2.6 on the facing page compared to the structure of the term
tamg™ ™4 (defined within Equation 2.45). Indeed, g, has two arguments similar to an
underspecified g-derivation tree of the conjunction pour (for).

The interpretation of the term #5* under the lexicon Lger—tag is the term f5",
which is as follows:

tt;ngedial - Cconcat (Cp::lcx‘"'(Cpassé-laspirateur ISA IVA Cjean) (Cétre-récomepnsé-par ISA IVA Cmarie))
(Cfait-une-sieste ISA Cil) : S (2'4‘7)

. VP
In ¢tz the constant C,. (drawn within a box) stands for the tree ~__——_

ensuite VP*
Cenmie has an occurence in the sub-term of /2 encoding a derivation tree of a clause.
In particular, C,. % appears at a position where one models a VPadjunction. B
b
further interpreting the term #;;* under the lexicon 27, we obtain the tree shown

in Figure 2.7 on the next page. To obtain the yield of the tree representation, one
interprets the term f4;;* by the lexicon Zj;q 0 £ [7. We obtain the following yield:

tag

gyleld (gTAG(ttagder)) =

synt

Jean + a+ passé+ [+ aspirateur + pour+ étre+ récompensé + par+ marie+ dot-+
I+ a+ + fait + une+ sieste

As the term Zeq(ZL 0 (1)) shows, the adverbial ensuite indeed occupies a
clause-medial position.

In Appendix C on page 339, we provide the ACG codes that one can use in order to run
this example with the ACG toolkit.
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) T

Punct S

/\ /\

S dot NP VP

NP/ \ PP/ \s | |
| / \ PP/ \0 NP/ \VP /\

Jean  Aux a VP
| / \ I \ /N
a pour € PRO V Adv VP
\ / \ /\ / \ -/ \
passé  Det étre V NP V
| \ | \ | | / \
I  aspirateur récompensé  par  Marie fait  Det
\
une  sieste

Figure 2.7: The tree obtained by interpreting the term ;" under the lexicon Z'[¢
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3.8.2 Interpretation as D-STAG Semantic Trees . . . . . . ... .. 297
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In this chapter, we encode D-STAG in the ACG framework. The architecture of the
ACG encoding of D-STAG is similar to the ACG encoding of G-TAG and the encoding of
TAG. That is, the D-STAG derivation trees are encoded as abstract terms. The D-STAG
syntactic and semantic derived trees are obtained by interpreting the abstract terms under
the corresponding lexicons. In this encoding, we propose a uniform modeling of clause-initial
and clause-medial connectives. In addition, we provide semantic interpretations of terms
encoding D-STAG derivation trees as labeled formulas instead of HOL formulas used in
D-STAG.

3.1 Motivations

In Section 5.3, we discussed D-STAG (Danlos, 2011), which was proposed to address the
problem of the syntax-semantics interface for discourse. With the help of D-STAG, one
can interpret a discourse as a DAG. For instance, the DAGs depicted in Figure 3.1(a)
and Figure 3.1(b) can serve as interpretations of discourses. In Chapter 1, we encoded
GTAG as ACGs. The ACG encoding of G-TAG allows one to model the syntax-
semantics interface for discourse. Since the G-TAG grammar is designed for generating
only the texts that have the tree-shaped discourse structures, with the help of the ACG
encoding of G-TAG, one can only model texts with tree-shaped discourse structures.
To design the ACGs that enable one to model texts whose discourse structures can be
DAGs, we encode D-STAG as ACGs.

Figure 3.1: D-STAG semantic interpretations of discourse

3.2 The ACG Architecture of D-STAG

Parsing a discourse with D-STAG amounts to building its D-STAG derivation tree. Since
D-STAG is based on Synchronous TAG (STAG) (Shieber and Schabes, 1990),”* the
derivation tree gives rise to both the syntactic and semantic interpretations of the
discourse. Thus, a derivation tree is the pivot in a D-STAG analysis of a discourse.

74See Section 2.7 on page 47.
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3.3 D-STAG Derivation Trees as Abstract Terms

This is reminiscent of the ACG encoding of TAG with Montague semantics (Pogodalla,
2009)7> and to the ACG encoding of G-TAG: The abstract terms are pivots for syntactic
and semantic interpretations. Therefore, to design ACGs for D-STAG, we follow the
same principles as in the case of the ACG encoding of G-TAG. That is, we model
D-STAG derivation trees as abstract terms. One obtains the syntactic and semantic
interpretations by interpreting the abstract terms under the corresponding lexicons.

In order to obtain the syntactic interpretations (trees), we first interpret the terms
modeling D-STAG derivation trees as TAG derivation trees. Since the interpretations
of TAG derivation trees as derived trees are already available, we compose the two
interpretations. In this way, we obtain interpretations of D-STAG derivation trees as
derived syntactic trees.

We interpret D-STAG derivation trees as HOL terms in order to model the D-STAG
semantic interpretations. In addition, we define semantic interpretations of D-STAG
derivation trees as labeled formulas. That is, like SDRT (Asher and Lascarides, 2003),7¢
we encode discourse structures as labeled formulas. Figure 3.2 illustrates the ACG
architecture that we are building to encode D-STAG.

/,,,

[ D \ —
| SB§iacDSTAG |

| DERIVATION TREES | fogé"L / AN
S . ,’ \;EEGAEEL LABELED \
/ \ o / [ SEMANTICS |
oSt ~ \ |
Der ~ we I \ y
[sber TAG \ \. /
| DERIVATION TREES | ¢ QP SEM
\ / DSTAG —
B
_GPTAG
synt
som DSTAG

‘ 3

DSTAG SEMANTICS|

[ Esym SYNTACTIC)
| ©“DSTAG TREES |

Figure 3.2: The ACG signatures and lexicons for encoding D-STAG

3.3 D-STAG Derivation Trees as Abstract Terms

To encode D-STAG derivation tree as abstract terms, we introduce constants and types
in the abstract vocabulary X527, .. The elements in the set A(X2%,.) model the D-STAG

DSTAG* DSTAG
derivation trees. In D-STAG, the discourse connectives (such as discourse adverbials,

subordinate conjunctions, empty connectives) account for the discourse structure. In

75See Section 3.8 on page 8o.
76See Section 4.3 on page 107.
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contrast to G-TAG where a discourse connective anchors an initial tree, any connective
anchors an auxiliary tree in D-STAG. For now, we focus on the discourse connectives
that are either postposed conjunctions or discourse adverbials. Figure 3.3 illustrates
D-STAG elementary tree anchored with discourse connectives. An elementary tree
anchored with a discourse connective is a DU-rooted auxiliary tree with three DU-
adjunction sites (with the links @, ® and @) and a single DU-substitution site (with the
link ®@).77

Convention: For the sake of convenience, while discussing auxiliary trees anchored
with discourse connectives, we may use the tree shown in Figure 3.4. In this tree, by
pmark, we denote either the full stop, or the comma, or no punctuation mark.

DU® DU®
| |
DU® DU®
/AT /AT
DU* Punct DC DU® DU* Punct DC DU®
| |
) conn DU |® . conn DU |®
(a) conn is a postposed conjunction (b) conn is an adverbial or an empty
connective

Figure 3.3: The auxiliary trees anchored with the conn discourse connective, where conn
is either a preposed conjunction or a discourse adverbial

DU®

DU®

N TN
DU* Punct DC DU®@
| | |

pmark conn DU |®

Figure 3.4: The auxiliary tree anchored with conn, where conn is either a preposed
conjunction or a discourse adverbial

For a D-STAG auxiliary tree anchored with a conn connective, we introduce a
constant D,,,, in the abstract vocabulary >5%,.. We model a DU-adjunction (resp. DU-
substitution) site by introducing the type DU, (resp. DU) in >0%.,.. Since the D-STAG
auxiliary tree anchored with the conn connective can receive three DU-adjunctions and
one DU-substitution, we type’® the constant D,,,, with the type DU, — DU, — DU, —o
DU — DU,. We introduce the constant Ipy, modeling the DU-adjunction with no

content in order to model a case where no tree adjoins at a DU-adjunction site.

77We refer readers to Section 5.3 on page 174 for the notations used in D-STAG.
78We refer readers to Section 3.5 on page 69 for a detailed discussion about encoding adjunction and
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3.3 D-STAG Derivation Trees as Abstract Terms

Constants in X33, Their Types

Dbecause DUA —0 DUA —0 DUA — DU — DUA
Dthen DUA —© DUA —0 DUA —o DU — DUA
Dmoreover DUA —© DUA —0 DUA —o DU — DUA
Daua DU, — DU, — DU, — DU — DU,
Dhie DUA — DUA — DUA — DU —o DUA
D atterwards DUA — DUA — DUA — DU —o DUA
D, bu, — DU, — DU, — DU — DU,

Table 3.1: Constants in ¥03;,. encoding the D-STAG elementary trees anchored with
postposed conjunctions, discourse adverbial, and the empty connective

Table 3.1 shows the encoding of the D-STAG auxiliary trees anchored with postposed
conjunctions and adverbial connectives as constants of ¥23;,,. We encode the D-STAG

auxiliary tree anchored with the lexically unexpressed connective ¢ with a constant D..

In D-STAG, a clause C' anchors a DU-initial tree Dl‘@ . Thus, we encode it by

C
a term of type DU. To model the anchor of the tree, i.e., the clause C, we introduce
the first order predicates, that is, the constants that enable us to encode derivation trees
of clauses. In order to introduce the first order predicates in 5%,;, we may adopt the
abstract constants from the abstract vocabulary ¥ defined in the ACG encoding of
TAG with Montague semantics. The adopted constants from Y27, enable us to build
terms over X0%. . of types S, np, etc.

Thus, we model the derivation trees of clauses as terms in A(XD2%,.) of type S.

DUD .
However, to model the DU-rooted tree | anchored with the clause C, we need to
C

transform a term of type S encoding the derivation tree of C' clause to a term of type

DU. In addition, since the tree DL‘@ has a DU-adjunction site, we need to transform
c

a term of type S to a term of the type DU, — DU. For that, we introduce the constant

AnchorS of type S —o DU, — DU in the abstract vocabulary. If a term t. : S encodes

the derivation tree of the clause C' in A(X5%,,), then we model the tree Dl‘@ as the

following term over 53, C

AnchorSt. : DU, — DU (3-1)

®
By adjoining a tree (a term of type DU,) into the initial tree o (a term of
C

type DU, — DU), one obtains a derived tree of a discourse (a term of type DU). The
resultant derived tree can be further used in order to build the discourse. Thus, a
term of type DU does not model a completed discourse, i.e., a discourse that is not

substitution sites.
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Chapter 3. D-STAG as ACGs

going to be updated. To model the derivation tree of a discourse that is completed,
we introduce one more type T in X0%,.. Terms of type T model derivation trees of
completed discourses.

A discourse consisting of a single clause (' is analyzed as DL‘JCD . We can model

C
this tree as a term AnchorSt. Ipy, of type DU. However, our goal is to obtain a term
of type T instead of DU. To be able to do that, we introduce a constant Anchorl of
type S — DU, —o T. Thus, we model the derivation tree of the discourse consisting of
the single clause C' as a term Anchorl t, Ipy, of type T, where t. : S is the derivation
tree of the clause C.

Furthermore, with the help of the constants Anchorl and AnchorS, we can model the
larger discourses than single clause discourse. To model the first clause in a discourse,
we employ the constant Anchorl, whereas, in the rest of the cases, to model the initial
trees anchored by clauses, we employ AnchorS. For instance, let us consider a discourse
Co Conny (. The way one obtains its derived tree is illustrated in Figure 3.5. Let
te, and t., be the terms modeling the derivation trees of the clauses (Cy and Cf,

0
respectively. We encode the derivation tree of the discourse by the following term:

tCOConmCl = Anchorl tco (DConn1 IDUA IDUA IDUA (AnChOI’S tco IDUA) T (32)
DU®
DU®
N BN
DU® DuU* DC DU® 70
| | 0
Co Conn; DUJ® B
| @
1 1
(a) The deriving the derived tree of (b) The
the discourse deriva-
tion
tree

Figure 3.5: The D-STAG derivation tree of Cp Conn; Cy

In this way, we build the abstract vocabulary >2%.,.. In order to define the abstract
language, it remains to specify the distinguished type. Since we encode derivation trees

of completed discourses with terms of type T, we declare T to be the distinguished type.

Remark 3.1. In Section 5.3.5 on page 183, we discussed the ambiguity issues of D-STAG. The
ambiguity in the D-STAG parsing is due to the number of possible derivation trees that a given
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3.3 D-STAG Derivation Trees as Abstract Terms

discourse may have. Since we encode all the possible derivation trees with the abstract terms
over X.0% .-, the ACG encoding of D-STAG inherits the D-STAG ambiguity in parsing.

DSTAG?

3.3-1 Interpretations as TAG Derivation Trees

As we already mentioned, we define interpretations of D-STAG derivation trees as TAG
derivation trees. By composing these interpretations with the interpretations of TAG
derivation trees as derived trees, one obtains interpretations of D-STAG derivation
trees as derived trees. Thus, we are building the ACG (X%, X%, L %*¢ T), shown in
Figure 3.6.

\
:\\

[ SR8 TAG | £0E%, , D-STAG
| DERIVATION TREES JK GPDSTAG } DElfIT\éAGTION TREES |
! : TAG
\\\ P
e GPTAG —
synt
DSTAG __ TAG DSTAG
. gsynt - gsynt © fTAG

-Synt SYNTACTIC |
[“DSTAG TREES |

\\1 ,,/’
\\\ ///,

~ -

Figure 3.6: Interpretations of D-STAG trees as TAG derivations trees and derived trees

3.3-2 Connectives at the Clause-Medial & the Clause-Initial Posi-
tions

In D-STAG, in order to parse a discourse where an adverbial connective appears at
a clause medial position (e.g. the discourse (3)), one preprocesses it by moving the
adverbials occupying the clause-medial positions to the clause-initial ones. In that way,
one obtains the discourse where every connective appears in front of its host clause.
Thus, the D-STAG way of analyzing a discourse with clause-medial connectives consists
of two steps (preprocessing and parsing).

(3) Fred went to the supermarket. He then went to the movies.

Unlike D-STAG, we do not develop a two-step approach, but rather analyze a
discourse in a single step. We propose to encode a connective at a clause-medial
position as a constant of the abstract vocabulary >5%,;. Indeed, by only using the
constant D.,, : DU, — DU, — DU, — DU — DU,, which we introduced in order
to encode the D-STAG auxiliary tree anchored by a connective (see Figure 3.4 on
page 252), one cannot give an account of a discourse where the connective conn
occupies a clause-medial position. As the D-STAG elementary tree anchored by the
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Chapter 3. D-STAG as ACGs

connective conn illustrates, the connective conn occupies the clause-initial position since
it appears in front of the DU-substitution site. That is, the position of conn (in the
surface form) is the position where the clause starts (the clause-initial position).

Thus, together with the constant D.,, encoding a connective at a clause-initial
position, we introduce another constant D" in X527, . encoding the same connective
at a clause-medial position (inside a verb-phrase of a clause). Here, the generic method
of encoding constants modeling clause-medial connectives is the same as in the ACG
encoding of clause-medial connectives in G-TAG. Figure 3.7(a) on the next page shows
the way we analyze the clause-medial connectives in D-STAG: The auxiliary tree anchored
by the connective adjoins on the VP node in the derived tree of the host clause of the connective.
In the resultant derived tree, the comnective appears within the VP of the host clause (a
clause-medial position.)

To use the constant D", one must type it. There are several options for typing
Dmedial.

conn

Option 1: Introduce a New Type DU,

In Chapter 2 on page 233, we encoded the constants modeling the clause-medial
connectives with a different type from ones modeling the clause-initial connectives of
G-TAG. In particular, we typed the constant G,,, modeling the adverbial adv at a
clause-initial position with the type T — T —o T, whereas we typed the constant Gig™
modeling the adverbial adv at a clause-initial position with the type T — S — T.

In the case of D-STAG, we may propose a similar solution to what we did in the
case of G-TAG. That is, to distinguish the clause-medial and clause-initial usages of
a connective, we can introduce a new type DU, in the abstract vocabulary. We can
associate the terms over X0%,. of type DU, with the derivation trees of clauses that
receive an adjunction at a clause-medial position. We can associate the terms of type
DU to model the derivation trees of the clauses that do not receive any adjunction.
Thus, to encode the conn discourse connective, we can introduce two constants shown
in Table 3.2.

Constants in Y.2% Their Types

’ DSTAG
D el by, — DU, — DU, — DU, — DU,
D.onn bu, — DU, — DU, — DU — DU,

Table 3.2: Two constants encoding the discourse connective conn

The constant D" of type DU, — DU, — DU, — DU, — DU, encodes a
clause-medial usage of the conn connective.

We can translate the constant Dl to TAG derivation trees by encoding the
derivation shown in Figure 3.7(a). Indeed, as Figure 3.7(a) shows, the substituted clause
receives a VP-adjunction that inserts conn at a clause-medial position.

In order to interpret the constant D, of type DU, — DU, — DU, — DU — DU,
encoding the conn connective at the clause-initial position, we build the term encoding
the derivation shown in Figure 3.7(b).
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3.3 D-STAG Derivation Trees as Abstract Terms

To interpret the types of Dl and D,,,., we interpret DU as S and DU, as S,.
The DU, type translates to V, —o S, which encodes the fact that a term of type
DU, translates to a TAG derivation tree of a clause that can receieve a VP-adjunction
(inserting a connective inside its VP).

DU® DU®
| |
DU® DU®
RN N
DU*  Punct DU® DU* Punct DC DU®
| | | |
pmark DU ] ® pmark conn DU ] ®
DU DU

S

VP
/N T

DC VP* VP

‘ ) )

conn

(a) The clause-medial case (b) The clause-initial case

Figure 3.7: Syntactic trees of D-STAG discourse connectives

Option 2: Only One DU Type Encoding Discourse Units

Another option is to type the constants D" and D,,,, with same type, DU, — DU, —
DU, — DU —o DU,. Thus, we do not introduce a new type. In this case, the encoding
of constants modeling discourse connectives is more uniform compared to the other
one, because now all of these constants are of the same type.

D... :DbU,—-DU,—- DU, —- DU — DU,
Dt pU, — DU, — DU, — DU — DU,

Table 3.3: two constants encoding the conn discourse connective

To be able to model the connectives at the clause-medial positions, we translate DU
from X353, to V4, — S in TAG derivation trees. This makes us able to adjoin on the
host clause of ¥55,,; a VPauxiliary tree anchored with a connective. However, in a
case where one has a connective at the clause-initial position, the host clause of the
connective should not receive a VP-adjunction inserting a connective at a clause-medial
position. On the other hand, the type V, — S indicates that one has to perform a
VP-adjunction in order to obtain a term of type S. To overcome this issue, we employ
an empty VP-adjunction, i.e., the constant Iy, : V., which does not insert any content.
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Chapter 3. D-STAG as ACGs

We choose this way of encoding clause-medial connectives, because the abstract
vocabulary is more uniform and has less atomic types than in the previous case.

3-3-3 Clause-Initial and Clause-Medial Connectives as Adjunctions

We can make our approach to clause-initial and clause-medial connectives more uniform.
Since we interpret a clause-medial connective with the help a VP-adjunction into a
derived tree of clause, we propose the same kind of analysis of clause-initial connectives,
but to use an S-adjunction instead of a VP-adjunction. Figure 3.8 illustrates these
two analyses. Hence, a derived tree of a clause should be able to receive both an
S-adjunction and a VP-adjunction that can insert a connective either at the clause-initial
position (S-adjunction) or at the clause-medial one (VP-adjunction). Therefore, the
interpretation of a term of type DU from A(X3,.) into TAG derivation trees should
be able to receive both S-auxiliary and VP-auxiliary trees anchored with a connective,
depending on whether one encodes the clause-initial or clause-medial connectives. To
model that, one can interpret the type DU from 5%,, as Sy — V, — S into X%%.

S@

S®

2N

S| Punct SO®

pmark S| ©
s
57w
N
DC S*
conn

(a) The clause-initial case

Figure 3.8: Analyses of the cases where connectives appear at the clause-medial and

the clause-initial positions
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S@

S®

2N

S| Punct SO®

VP

pmark S| ©
S
VR
- AT
DC VP /-
conn

(b) The clause-medial case
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3.3-4 A Clause-Medial Connective Between Two Adverbs
Although by interpreting DU from X353, as S, —o V, — S into X%, we achieve the

TAG?
goals defined so far, we propose to slightly change the interpretation of DU. Namely,
we propose to interpret DU as S, — (V, —o V) —o S. The reason behind interpreting
DU as S, — (V, — V,) — S is to model a syntactic phenomenon where a discourse

connective appears between two VP adverbs, for instance, as it in the following example:

(4) a. Fred was desperate
b. because he was lost in the suburb of Paris for several hours.

c. Fred fortunately, then, clearly saw the Eiffel Tower.

In the clause (4)(c), the discourse connective then appears between two VP adverbs,
fortunately and clearly. However, by interpreting DU as S, — V, — S, the tree anchored
with a clause-medial connective can adjoin on the VP of the clause. The connective will
be placed either above or below the VP of the clause, the position where all the VP
adverbs are adjoined. Thus, it would be impossible for a connective to appear between
two adverbs. To overcome this problem, we explicitly encode the location inside the
VP of the clause where an auxiliary tree anchored with the connective adjoins. We do
that by encoding the adjunction sites above and below the place where a connective is
going to be inserted within a derived tree of a clause. For that, in >0%.., we encode
the constants from which one obtains terms encoding derivation trees of clauses with
two VP adjunction sites. For instance, in the case of (4)(c), we encode the initial tree
anchored with saw with two distinct VP adjunction sites, as it is shown in Figure 3.9.
Thus, we type the constant D,,, with the type S — V, —o V, —o np —o np — S, where
two V, types encode two VP-adjunction sites in the initial tree shown in Figure 3.9.
This enables us to define a term t2."° € A(X5%,,) (see Equation (3.5))”° encoding the
derivation tree of the clause (4)(c). Then, we can use it as an argument of D™

DSTAG ___
tsaw -

Va Va
N\ N\
7z N\ 7 ™\

AnChorS IDUA (Dsaw ISA (Dclearly IVA) (Dfortunately IVA) DFred Dthe-Eiffel—tower) : DU (3'5)
The term t25™¢ . DU translates to a term that encodes that it can receive an S-
adjunction (for inserting a clause-initial connective) and a VP adjunction (for inserting

a clause-initial connective). Namely, we are aiming at interpreting the term t.,"¢ into

A(X%) as follows:

G%DSTAG (tDSTAG) _ tTAG _
TAG saw - Usaw T
SA VA
Ny ~
:>\O ch )\O dC’U C.~;aw dCS (Cclearly (dC’U (Cfortunately IVA))) CFred Cthe-Eiﬂel-tower
:SA_O(VA_OVA)_OS

(3.6)

7We use the constant Diygirertower t0 model the Eiffel Tower since it does not have a compositional
meaning (Kobele, 2012).
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Chapter 3. D-STAG as ACGs

Where C,,, € X% is the constant encoding a transitive verb saw and therefore it is of
type Sp — V, —onp —o np — S. Thus, we do not change encoding of initial trees in
Y% but in X0%,,. Figure 3.10 illustrates the idea behind encoding initial trees with two
VP adjunction sites on the example of D,,,.

In the term ¢.°, by the variable dc, : V, — V,, we encode the position where a
clause-medial connective can be inserted. Using the variable dc; : S,, we encode the
position where one can insert a clause-initial connective. As Equation (3.6) shows, the

lexicon .Z%*° interprets the type DU as S, — (V, — V,) — S.

TAG

S
/ N\
NP| VP

|
V/\

‘ NP |

saw

Figure 3.9: A visualization of the initial tree anchored with saw encoded by the constant
DSB.W

Thus, in >5%,,, we modify the types of the constants that give rise to terms encoding
derivation trees of clauses (constants standing for the initial trees anchored with verbs,
predicative adjectives, etc.). In particular, we encode them with one more argument of

type Va.

Remark 3.2. By symmetry, one could also encode the same property for clause-initial connectives,
as it is in the following example:

(7) a. Fred went to Southern France for a week.
b. He planned to do nothing but sunbathe.

¢. During the week, however, every day, he was visiting either a museum or a theater.

1o do so, one could type constants encoding verbs as follows: --- — S, — S, — -+ —0 V, —o
V, ... — 8.

However, we leave it for the future work to check the linguistic adequacy of the phenomenon
of a fronted adverbial connective occupying a position between two fronted adverbs.

3.3-5 Interpretations of Types

We define the lexicon Z%5" : 30~ — 32 in order to interpret constants and types

from 0%, as terms and types built over X2 respectively.
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/S\
des S S
NP/ \VP
| NG

Fred fortunat‘elyf v
clearly VP

VP v/ \NP
/N ]

de, VP* saw  the Eiffel Tower

Figure 3.10: The illustration of a derived tree of a clause

The lexicon .Z%"° interprets the type DU, as S, since DU, is the type of a term
modeling a DU-adjunction, which corresponds to an S-adjunction (S,) in TAG derivation
trees. We interpret the type S into TAG derivation trees as S, — (V, — V,) — S.
Thus, the interpretations of the types S and DU are the same. Table 3.4 shows the
interpretations of these types together with the interpretations of the types S, and V,.
In Section 3.3.6.2 on page 263, we justify our choices for interpreting S, and V, under
the lexicon Z%7¢ as S, — S, and V, —o V,, respectively.®

The rest of the types translate to themselves as they encode noun phrases, common
nouns, adjective etc., which model the same phenomena in X33, and X3%. That is, we

interpret X € X%, as X € X% if X is not among the types shown in Table 3.4.

Types in X35, | Their interpretations by Z5°7¢ : X550, — X%
DU, S Sy — (Va—V,) — S

DU, Sa

Sa S, — S,

Va Vpy—o V,

T S

Table 3.4: Interpretations of types

80The reason for interpreting Va (resp. Sa) as Vi —o Va (resp. Sp — Sp) is the same as in the case
of modeling clause-medial connectives in G-TAG: It is done so in order to enable an additional VPadjunction
(resp. S-adjunction) on the derived tree of a clause.
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3-3.6 Interpretations of Constants
3-3.6.1  Discourse Connectives

In order to interpret the constants modeling discourse connectives into TAG derivation
trees, we refer to the analysis shown in Figure 3.8 on page 258. Table 3.5 provides
the interpretations of the constants D.,,, and Dgw® modeling the connective conn at a
clause-initial and a clause-medial position, respectively.

Constants in X5, Their translations by Z%57¢ : Y020 - — X2

Dconn (e} (o]

DUA—ODUA—ODUA—ODU—ODUA )\ d4 d3 d2 dsubst . Cconcat d4 d3 d2 (dsubst Ccosnn ()\ .I'.I'))
: SA—OSA—OSA—O(SA—O(VA—OVA)—OS)—OSA

Do 0 P

:DUA—ODUA—ODUA—ODU—ODUA P d4 d3 d2 dsubst . Cconcat d4 d3 d2 (dsubst ISA Cco\;n)

. SA—OSA—OSA—O(SA—O(VA—OVA)—OS)—OSA

Table 3.5: The interpretations of the constants in >0%,, encoding discourse connectives

In the interpretations given in Table 3.5, the variables ds, d3, and dy encode
the interpretations of the DU-adjunction sites (the arguments of type DU,). These
DU-adjunction sites are interpreted as S-adjunction in the tree anchored with pmark.
We model this tree with the help of the constant C,,., € X% of type S, —0 S, —o
S, — S — S,.81 The variable dg,;s; encodes the interpretation of the host clause (the
arguments of type DU) and therefore dgyps is of type S, —o (V4 — V,) — S. The
type Sy —o (Vo —o V,) — S encodes that dg,;s; can receive an S-adjunction (S,) and a
VP-adjunction modification (V, —o V,).

In the case of the clause-initial connective D.,,,, dsust receives the S-adjunction
inserting the connective conn, i.e., the S-auxiliary tree anchored with conn. We model

s

/\
this tree with the constant C,,,,", which is interpreted as the tree pc s« into TAG
\

conn
derived trees. Since in this case nothing adjoins on the VP node of the host clause
(dsupst), it receives the empty adjunction modification of type V, — V, as its second
argument. We model that by applying dg,ps to the identity function Xz.z : (V, —o V,).
In the case of the clause-medial connective D24 the host clause (dg,) receives
no S-adjunction but the VP-adjunction modification inserting the connective conn at
a clause-medial position. We model this fact with the help of the constants Is, (no
VP

. . . /\ . .
S-adjunction) and the constant C,,,, interpreted as pc vp+ into TAG derived

conn)
\

conn
trees.

81pmark can have three values, either the full stop, or the comma, or the empty sign. Thus, we have
tree constants Ceoncat's Ceoncat’s ad Ceoncar” modeling the trees anchored by the full stop, the comma and
the empty punctuation sign, respectively.
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3.3 D-STAG Derivation Trees as Abstract Terms

3.3.6.2 First Order Predicates

In the previous sections, we have modified types of the constants that give rise to
terms of type S (the ones modeling derivation trees of clauses). Namely, we encoded
them with one more VP adjunction site. Nevertheless, in X%, we have the same
constants with the same types as before. For instance, if the type of a constant
D, € X5 is Sy —o V4 —o V, —onp — .- —onp — §, then the type of C, € X3, is

k—;;mes
Sy —V,—onp—o--- —onp—S. We interpret the constant D, into A(X%;) as follows:
k—:f;mes
25D, =
Sa Va

N\ 7~

—
X savay vagnpy -+ npy. X des XN dey. C, (sa des) (vag (dey (vay Iy,))) npy - npy, -
(SA—OSA)—0(VA—OVA)—O(VA—OVA)—Onp—O‘“—OnQ—OSA—O(VA—OVA)—OS

~-
k—times

(3-8)

In Equation (3.8), the sub-term (sa dcs) : Sy encodes the possibility of inserting a
connective into the clause-initial position. The variable dc; is of type S, as it is going
to be substituted by a term modeling the S-auxiliary tree anchored with a connective.
Hence, the type of the variable sa must be S, —o S,. The variable sa encodes the
interpretation of the argument of type S, of D, € 30%,,. Thus, we must interpret S,
from 303, as S, — S, in X%

In Equation (3.8), the sub-term (vas (dc, (vay lv,))) : Va encodes the adjunction that
inserts a connective in the clause-medial position so that it can occupy a place between
two VP adverbs. The interpretation of the type V, from >3, . must be V, —o V,, due
to the same reason why we interpret S, from X5, as S, — S, in X%,

There are other first order predicates in 355, adopted from 2% whose types involve
the atomic types V, and/or S,. Since we interpret V, (resp. S,) from 2%, as V, — V,
(resp. S, — S,) in X%, we must interpret the constants of X33, whose types involve
V, (resp. S,) accordingly. For the sake of illustration, Table 3.6 provides interpretations

of the constants D, : V4 —0 V, and Dijugeea 1 Sa —© Sa.

: Der s s DSTAG
Constants in X35, | Their translations by Z'7%

Dieary : Va — V, X va v . Cry (va v): (Vy —oV,) —o (Vo — V,)
Diieea : Sa —© S, X 54 U . Cigeea (50 V) 1 (Sy —0 Sp) —0 (Sy — Sp)

Table 3.6: Interpretations of first order predicates from 2%, . into A(X5)

In A(X3%,), a term of type T encodes a derivation tree of a discourse derived from
an initial tree anchored by a clause. In TAG derivation trees, one encodes derivation
trees of clauses with terms of type S. Hence, we interpret T from ¥0%,., as S into X2%.

It remains to interpret the constants that enable us to build terms of type DU and
T, namely, the constants AnchorS : S — DU, — DU and Anchorl : S — DU, — T.
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Constants in X530, Their translations by £ 50¢
Anchorl : S — DU, — T Xs m.Mod (s Ig, (Xz.2)) m
AnchorS : S — DU, — DU | Xs m dcs dcyy. Mod (s des dey) m

Table 3.7: Interpretations of Anchorl and AnchorS into A(X%)

TAG

In Table 3.7, we propose the interpretations of the constants AnchorS and Anchorl.
The variable s of type S, — (V, —o V,) — S models the interpretation into A(X5)
of the D-STAG derivation tree of a clause (a term of type S in A(X3%,;)). The type
Sy — (Vo — V,) — S encodes the fact that one can insert a clause-initial (S,) or a
clause-medial connective (V, — V,) in a clause. However, we apply Anchorl to a term
modeling the first clause in a discourse. Hence, no connective has to appear inside that
clause. Thus, we have neither an S nor VP adjunction on the clause. To model that,
we apply s to Is, (the empty S-adjunction) and Xz.z (the empty V, — V, adjunction
modification). Thus, we obtain a term (s Ig, (X°z.z)) of type S. The variable m models
a tree adjoining in the initial tree anchored with the clause DL‘@ . Therefore, the type

C
of m is the interpretation of DU, into X%, i.e., Sp. One models an adjunction as a
functional application. However, one cannot apply m : S, to (s Ig, (Xz.2)) : S since
both are of atomic types. To express that a term of type S, applies to a term of type
S, we introduce a constant Mod in X5 of type S — S, — S. The interpretation of
Mod in TAG derived trees will be application of the second argument (whose type will
be 7 —o 7 as it is interpretation of S,) to the first one (whose type will be 7 as it is
interpretation of S). The resultant term will stand for the derived tree of the discourse.

We employ the constant AnchorS to model derivation trees of the clauses into which
connective may appear, either at the clause-initial or at the clause-medial position. To
encode that, we define a sub-term (s dcg dc,) (see Table 3.7). In the interpretation
of AnchorS, the variable m encodes an adjoined tree, like in the case of interpreting
Anchorl. We use Mod for the same reasons as in the case of interpreting Anchorl.

The rest of the constants in ¥5%,, are the ones whose types do not involve S, V,,
and S,. We interpret a constant D, modeling # in X5%,, (where u can be a noun,
determiner, adjective etc.) as the constant C, € X377, modeling the same u in 227 if the

type of D, is not built using any of the types DU, DU, S, V,, and S,.

3-3-7 Interpretations of Newly Introduced Constants X2 as De-
rived Trees

In Section 3.3.6.1, we introduced a constant C,,,,, : Sy — Sy —0 Sy, — S — S, in order
to interpret the constants modeling discourse connectives in TAG derivation trees (see
Table 3.5). The constant C,,,.. stands for the tree anchored with pmark. However, pmark
can have three values, the full stop, the comma, and the empty string. To model that,
one needs three constants instead of one C,,... We denote them by C, e, C and
Ceoncat- They model the elementary trees shown in Figure 3.11. To interpret them into
derived trees, we encode these elementary trees into derived trees. Table 3.8 provides

>
concat )
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3.3 D-STAG Derivation Trees as Abstract Terms

the interpretations of these constants.

To define the interpretations given in Table 3.7, we introduced the constant Mod :
S — S, — S in X%;. Mod express an adjunction of two trees. In the ACG encoding
of TAG, one models an adjunction as a functional application. Table 3.8 shows the
interpretation of Mod.

S@ S@ S@

o o o
SN TN SN

S|  Punct S@ S| Punct S©@ S| Punct S@

. S| ! S| € S|
(a) The tree anchored by (b) The tree anchored (c) The tree with the
the full stop - Ceoncat by the comma - Ceopear’ empty anchor - Copeat®

Figure 3.11: The elementary tree anchored by C_ s Ceoneat’s a0d Copen

Constants in 22 Their translations by 270 : X205 — Yf,q
Cooneat 1S4 —0 Sy —0 S, — S — S, | X’ sa4 saz saz sz. sas (saz (S3 = dot (saz s)))
Cooncat’ : Sa —0 S, —0 S, —0S — S, | X’ saq saz saz s z. say (saz (S3 © comma (sas s)))
Cooneat’ 1 Sp —0 Sy —0 Sy — S —0 S, | X’ sayq saz sag s x. say (sa3 (S3 z € (saz s)))

Mod:S — S, — S )\OS.)\om.ms:T—O(T—oT)—oT

Der

e into derived trees

Table 3.8: Interpretations of the constants introduced in X

3.3-8 The Examples of Deriving D-STAG Syntactic Trees

We show the derivation of the syntactic interpretations of the following examples:®2

(9) a. [Fred is grumpy]p because [he lost his keys];. Moreover, [he failed his exam]s.
b. [Fred is grumpy]p because [he didn’t sleep well]3. [He had nightmares],.

c. [Fred went to the supermarket]; because [his fridge was emptyls. Then, [he
went to the movies]s.

d. [Fred went to the supermarket]s because [his fridge was emptyls. [He then went
to the movies]7m.

82We discussed the way D-STAG encodes these examples in Section 5.3.

265



Chapter 3. D-STAG as ACGs

e. [Fred is grumpy]p because [his wife is away this week]g. [This shows how much
he loves her]g.

The ACG signatures and lexicons together with the examples are provided in
Appendix D.1.
The terms encoding the derivation trees of the clauses are as follows:®

to, = D Isa Iva Iva Direa (Digrumpy lagj) S (
tcl = Dlost ISA IVA IVA Dhe (Dkeys Dhis InA) : S (
tc, = Dratea Isy Iva Iva Die (Dexam Diis Iny) = S (
teoy, = Daeep Isp Iva (Daiawe Iva) Die  © S (
te, = Duaa Isy Iva Iva Dhe (Duightmare Dptar Ing) 1S (
to; = Dueatto Isa Iva v Diea (Daupermarier Dane Ing) © S (3.15)
tos = Duas Isy Iva Iva (Dgiage Dine Ing) (Dempry lagj) S (
tc7 = Dwent—to ISA IVA IVA Dfred (Dmovies Dthe InA) .S (
toe = Di Isy Iva Iva (Duie Duis Ina) (Dawey Lac (Dine (Deax In))) S (
th = Dinows ISA IVA IVA D s (Dloves Dhow-mucn IVA IVA D Dher) : S (

Example 3.1.

(9)(a) [Fred is grumpy]p because [he lost his keys];. Moreover, [he failed his exam]s.

Figure 3.12(a) illustrates the D-STAG derivation tree of (g)(a). We encode it in the
abstract language with the term t,, defined in Equation (3.20), whose tree representation
is shown in Figure 3.12(b). By interpreting the term t, under the lexicon £’ o £ 271,

we obtain the derived syntactic tree of the discourse depicted in Figure 3.12(c).

t, = (3-20)
Anchorl t¢, (Dyecause IpUs Ipus Ibua (te, (Dumorcover Ibua Ipua Ipus (AnchorS te, Ipu,)))) = T

8The term encoding the derivation tree of a clause whose boundaries are indicated using a subscript
i is denoted by t¢,.
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3.3 D-STAG Derivation Trees as Abstract Terms

Anchorl

- ty  Doecae

TN

Ipun Inus, Ibua te

ﬁbecause/explanation ‘
/ AR o D
Ty ﬁmoreover/continuation // \ \
IDUA IDUA IDUA AnchorS
0 /\
To te,  Ipua
(a) The D-STAG derivation tree (b) The ACG encoding of the D-STAG derivation

tree

/ \
NP/ \, / \

IV /\

Fred V Adj

| \/\ /\

is grumpy CONJ NP

\\/\ \/\

because  he ADV

\/\\\/\

lost Det N  Moreover, he

| \/\

his  keys failed Det N

his  exam
(c) The derived syntactic tree

Figure 3.12: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree
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Chapter 3. D-STAG as ACGs

Example 3.2.

(9)(b) [Fred is grumpy]y because [he didn’t sleep well]s. [He had nightmares],.

Figure 3.13(a) illustrates the D-STAG derivation tree of (9)(b). We encode it in the
abstract language with the term t,, defined in Equation (3.21), whose tree representation
is shown in Figure 3.13(b). By translating the term t, with the lexicon £} o 20",
we obtain the derived tree of the discourse depicted in Figure 3.13(c).

t, = Anchorl t, (3.21)
(Dbecuase IDUA IDUA (DeExPlanaﬁO" IDUA IDUA IDUA (AnchorS tc4 IDUA)>(AnChOI’S tcg IDUA) ) . T

To Anchorl

/N
ﬂ ecause; ;x anation -
b / pl t@ //E 1 / | \
/ Ipu, = Ipuy,  D.reeen AnchorSt,
2NN |

Ty Be/explanation
Ious, Ipux Ipux AnchorSte, Ipy,

Ts Ipu
(a) The D-STAG derivation (b) The ACG encoding of the D-STAG derivation tree
tree

S
S/ \S
A AN

DC/ \S NP/ \VP
/ \ V/ \NP

Fred V

/\

is Adj CONJ NP VP he
grumpy  because he V VP had N
didnt V nightmares

VP
sleep  well
(c) The derived syntactic tree

Figure 3.13: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree
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3.3 D-STAG Derivation Trees as Abstract Terms

Example 3.3.

(9)(c) [Fred went to the supermarket]s because [his fridge was emptyls. Then, [he went
to the movies];.

Figure 3.14(a) illustrates the D-STAG derivation tree of (g)(c). We encode it in the
abstract language with the term t;, defined in Equation (3.22). The tree representation
of the term t; is provided in Figure 3.14(b). The interpretation of the term t; by the
lexicon £ % o L% is the derived tree of the discourse depicted in Figure 3.14(c).

Sl'll

t; = Anchorl t¢, (Dpecusse 1DUA (3.22)
(Dthen IDUA IDUA IDUA (AnchorS tc7 IDUA>) IDUA IDUA (AnchorS tcﬁ IDUA)

76 Anchorl

/N

ﬁbecause/;xplanation //
%\\\\? IDUA IDUA IDUA AI'IChOl’Stpr

T Bthen/narration ‘

eeeeee

IDUA IDUA IDUA AnCl"IOFStC7 IDUA

T8 Ipu,
(a) The D-STAG derivation tree (b) The ACG encoding of the D-STAG derivation tree

/\ PN | /S\

S ADV NP VP
/ \ / AN /N
Fred V CONJ VP Then, he V PP
| / \ | / \ /\ VRN
went  Prep NP because Det \% Adj went  Prep NP
VRN | \ I |
to  Det N the fridge was empty to  Det N
| | I
the  supermarket the  movies

(c) The derived syntactic tree

Figure 3.14: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree
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Example 3.4.

(9)(d) [Fred went to the supermarket]s because [his fridge was emptyls. [He then went
to the movies];m.

The only difference between the discourses (g)(d) and (g)(c) (see Example 3.3) is
that the discourse adverbial then is at the clause-medial position in the case of (g)(d),
whereas then appears at the clause-initial position in the case of (g)(c). The D-STAG
derivation tree of the discourses (9)(d) and (g)(c) are the same as D-STAG turns the
(9)(d) into (g)(c) by moving the adverbial at the clause-initial position and considers
the derivation tree of the normalized discourse. We do not that but directly encode
the discourse (g)(d) by constructing the term t*, defined in Equation (3.23). The
tree representation of tj*** is shown in Figure 3.15(a). By interpreting the term t;*
with the lexicon .Z[3¢ o £33, we obtain the derived syntactic tree of the discourse
depicted in Figure 3.15(b). As the syntactic tree indicates, the adverbial then appears
inside the VP of the clause (clause-medial position).

tye = Anchorl to, (Dyecuase IDUA

. 2
(D:ﬁii‘al IDUA IDUA IDUA (AnchorS tc7 IDUA)> IDUA IDUA (AnchorS tce IDUA> (3 3)
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3.3 D-STAG Derivation Trees as Abstract Terms

Anchorl

b
7 TN

Ipus ~ Dumea™™  Ipu, Ipuy  AnchorStg,

NN |

IDUA IDUA IDUA AnchorStC7 IDUA
Ipu,
(a) The abstract term a discourse with a clause-medial ad-
verbial

/\
/\ NP/\

/\ \/\

/ \ / \ \ / \
\% DC S Adv \%
| / \ | / N / \
went  Prep NP CONJ VP then went Prep
/N / \ / N\ | / \
to D‘et I\‘I because D‘et ‘ \Y Adj to D‘et TI
|
the  supermarket the fridge was empty the  movies

(b) The derived syntactic tree

Figure 3.15: The ACG encoding of a discourse with a clause-medial adverbial

271



Chapter 3. D-STAG as ACGs

Example 3.5.

(9)(e) [Fred is grumpyly because [his wife is away this week]g. [This shows how much
he loves her]g.

Figure 3.16(a) illustrates the D-STAG derivation tree of (g)(e). We encode it in the
abstract language with the term t,, defined in Equation (3.24), whose tree representation
is shown in Figure 3.16(b). By translating the term t, with the lexicon Z["} o £ 271,

we obtain the derived tree of the discourse depicted in Figure 3.16(c).

t, = Anchorl t,
(Dbecuase (Déwmmem IDUA IDUA IDUA (AnchorS tc9 IDUA)) IDUA IDUA (AnchorS tcg IDUA)

(3-24)
To Anchorl
o / \
~ ! tc‘, Db eeeeee
/fbecause/explanation / / \ \
. N
/ N comment IDUA IDUA AnchorSt(,S
% Bucommenary // [N |
IDUA IDUA IDUA AnchorSth IDUA
Ty Ipu,
(a) D-STAG derivation tree (b) The ACG encoding of the D-STAG derivation tree
S dot S

/ \ NP/ \VP
N N A

DC This V
\ / \ | / \ | \
Fred V Adj CONJ NP shows
I | / \ / \ / \
is grumpy because Det Adj Adv
| \ \ /N | / \
his  wife is Adj NP how-much NP VP
VAR /N
away  Det N he v NP
. I
this  week loves  her

(c) The derived syntactic tree

Figure 3.16: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree
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34- Encoding D-STAG Semantic Trees

3-4 Encoding D-STAG Semantic Trees

In D-STAG, the derivation tree of a discourse specifies its semantic interpretation.
In this section, we define an ACG to encode the correspondence between D-STAG
derivation trees and their semantic interpretations.

We already encoded the D-STAG derivation trees. To obtain the D-STAG semantic
interpretations, it amounts interpreting D-STAG derivation trees as D-STAG semantic
trees.

Der
DSTAG

3-4.1 Extending the Abstract Vocabulary X

As we already saw in D-STAG,?® an elementary tree anchored by a discourse connective
conn is paired with two trees, the semantic trees A and B shown in Figure 3.17. The

anchors of the trees A and B are ® : R and ® : R defined in Equation (3.25) and
Equation (3.26) respectively, where R is a discourse relation signaled by the discourse
connective conn.

DU®

DU®

NN

DU* Punct DC DU®

pmark conn DU |®

(a) The syntactic tree an-
chored with a connective

PN

tt — t e e
RN /1IN PN
(® R):ttt — it — ¢ tH® ) tt — it o)

SR N AN
AN P ot Q Q t

t tlo (" R):ttt — ttt — it tH®
Pt ®

/\ | / N\
" R tt* Q tlo
(b) The D-STAG semantic tree A (c) The D-STAG semantic tree B

Figure 3.17: D-STAG syntactic and semantic trees

O R= AX.\Y.X(\z.(Y (\y.Ray))) @ttt — ttt — ¢ (3.25)

3" R= AXAY.AP. XAz (Y (\y. (Rey)AP()) : ttt — tt — ttt  (3.26)
ttt is an abbreviation of (t — t) — ¢t and R is of type t — t — t.

84See Section 5.3 on page 174.
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Chapter 3. D-STAG as ACGs

Thus, the constant D.,, encoding an elementary tree anchored with the conn
connective has to be paired with both the semantic tree A and semantic tree B.
However, a lexicon cannot interpret D.,,, as the semantic tree A and the same time
as the semantic tree B (since a lexicon is a function). The solution we propose is to
introduce another version of the constant D,,,, the abstract vocabulary ¥2,.. That is,
instead of D,,,., we have two constants D.,,,, and D in the abstract vocabulary >0%,..
We interpret both of them as the syntactic elementary tree anchored with the connective
conn (see Figure 3.17(a)). The difference between the constants D,,,., and D, is that
we interpret D, as the term encoding the semantic tree A (Figure 3.17(b)), whereas

we interpret D as the term encoding the semantic tree B (Figure 3.17(c)).

conn) connpB

connp

3-4.2 The Signature >3

DSTAG

We introduce the signature >33, . in order to build terms encoding D-STAG semantic
interpretations. In D-STAG, the semantic interpretations are HOL terms.

To be able to build HOL terms encoding semantic interpretations, we introduce in
Y o two atomic types, e and ¢. In order to interpret first order predicates of 5%,
i.e., the clause-level grammar, we introduce the same predicates that one uses in the
ACG encoding of TAG (see Section 3.8 on page 80).

To encode the discourse-level interpretations, we introduce in X337, constants
encoding discourse relations EXPLANATION, NARRATION, etc. of type t — ¢t — .
Table 3.9 shows the constants in X33,..

Note that the types of the constants in X3, are non-linear. The is due to the fact

that the D-STAG semantic terms are non-linear (but almost-linear). Indeed, the @ll(R)
term (see Equation (3.26) on page 273) is a non-linear one, which compels us to use
non-linear types.

Constants in 2357, Their types
fred, paris, eiffel, louvre, - -- e

grumpy, sleep, empty, nightmare, fridge, - -- e—>e—t
love, miss, fail, visit, go-to, - -- e—e—t
badly, clearly, a-lot, fortunately, --- t—t

v, 3, 3! (e —=t)—t
EXPLANATION, CONTINUATION,

NARRATION, COMMENTARY, CONTRAST, --- |t =t — ¢

Table 3.9: Constants in the signature 37,

3-4.3 Interpretations of Types

In D-STAG, an initial tree anchored by a C clause Dl‘@ is paired with the ¢-rooted

C

t@ . . .
tree | , where [F' is the semantic representation of the clause C. The root node of
F
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34- Encoding D-STAG Semantic Trees

the syntactic tree DUQD is paired with the root node of the semantic tree ¢®. Thus, one
may interpret the type DU as t. On the other hand, as the semantic trees A and B
indicate (see Figure 3.17), some DU nodes are also paired with the t¢{¢ nodes. Therefore,
one may consider as well to interpret DU as ¢{t. Since one cannot interpret DU both
as t and ttt, we have to choose to interpret DU either as ¢ or as ttt. We choose to
interpret DU as t{t. However, in the semantic tree A (see Figure 3.17(b)), we have
the rootnode t@ (and therefore the footnode ¢*) paired with a DU node. This makes
us to modify the semantic tree A. We propose the new semantic tree A illustrated in
Figure 3.18(a), where each of the nodes is ?tt.

Since the only type we use in new semantic tree A is t{f, we cannot use the original

Y any more as its type is (t — ¢t — t) — ttt — ttt — ¢. In Equation (3.27), we define
(IDIneW of type (t — t — t) — ttt — ttt — tit that we use in the new semantic tree A
T that, with the help of
@', we obtain formulas such as Rz y of type t, whereas by using CID;eW instead of @,
we obtain A P. P (Rzy) of type ttt, which is a type-raised version of Rz y.

instead of <I>/. The difference between the original P’ and ¢

new

ttt@ ttt@

N N

ittt — tit tt@ ittt — tit ttt®

tht — tit — tit twt® WL ©  ft — tit — it tH® it | ©
VAN /N
@/l R

d R ttt* ttt*

new

(a) The new semantic tree A (b) The Semantic tree B

Figure 3.18: semantic trees A and B

O . =AR.ANXYP.X(A2.Y(Ay.P(Rzy)):
(t >t —t) = tit — tit — tit (3.27)

Remark 3.3. There is one more option for encoding semantic interpretations of the terms
modeling D-STAG derivation trees. By introducing a new type DU* in Lgne, we can interpret
DU? as ttt, and DU as t. However, in that case, the constants D.m, and D.,,,, would be of
different types. The type of the constant D,,,,, would become DU, —o DU,? — DU,? — DU,
and the type of D.,,,, would become DU,?> — DU,?> — DU,> — DU,?. Since we prefer to
have a uniform modeling of the discourse connectives in the abstract vocabulary, we do not

develop this approach.

Since the interpretation of DU is t¢tt, we interpret DU, as t{t — ttt. Thus, we pair

the tree DL‘@ with ttt‘® , where the term \Q).QF of type ttt is a typed-raised

AP.PF

C
version of F'. Notice that the type-raising of ' to AP.PF is what one does in D-STAG
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Chapter 3. D-STAG as ACGs

as well. Indeed, as the original semantic tree A (see Figure 3.17(b)) and the semantic
tree B (see Figure 3.17(c)) illustrate, the substitution site undergoes the type-raising, that
is, if [’ is substituted in these trees, then it will be type-raised as A().(F. Hence, we
directly substitute in these trees a type-raised version of F, instead of first substituting
it and then type-raising it.

The D-STAG interpretation of the completed discourse is of type t. To obtain a term
of type ¢ out of a term of type ttt = (t — t) — t, we apply the term of type ¢ft to the
identity function Az.z of type ¢ — t. In the abstract language, a completed discourse
is modeled by a term of type T. Therefore, we interpret the type T to the type ¢. In
addition, we translate the type S from X2%,, to the ttt type.s

The rest of the types are the ones that we adopted from X27. They are interpreted
similar to the way they are interpreted in the ACG encoding of TAG but with the
difference that we use non-linear types. Table 3.10 illustrates interpretations of types.

Types in X532, | Their interpretations by .Z, 5o\
DU, S ttt

DU, ttt — ittt

T t

np (e—=>t)—>t

Sa t—t

V, t—t

Table 3.10: Semantic interpretations of the abstract types

3-4.4 Interpretations of Constants
3.4-4-1 Discourse Connectives

In the abstract signature >0g,,, we have two constants modeling the conn connective,
Deomny and Dgynay. They stand for the D-STAG elementary tree of anchored with the conn
discourse connective at the clause-initial position. Together with them, 0%, . contains
two constants, Dy and D g™, which model the cases where conn occupies the
clause-medial positions. Hence, the constants D,,,,, and D model the cases where
one uses the semantic tree A as a semantic tree encoding conn, while the constants
Deomng @nd D pr®™ model the cases where one uses the semantic tree B as a semantic
tree encoding conn. Thus, there is no semantic difference between D.,,,, and D
nor between D,,,,, and D,,.;**. Consequently, we translate the constant D, " (resp.
Deonnp™) to the same term to which the constant D,,,,, (resp. D...;) translates.

The type of the constants D, and D, is DU, — DU, — DU, — DU —o DU,,
where DU, translates to ¢tt — t{t and DU to t{t. In order to interpret the constants
D omny and D, we encode the semantic tree A and the semantic tree B (see Figure 3.18

on the previous page) as terms over >33,;. Table 3.11 shows the results we obtain.

medial
conn A M

85We could translate S to ¢ instead of ¢tt. However, we translate it to t{t because it does not create
any issues since one can transform a term of type t{t into a term of type ¢ by applying it to the term
Ax.x :t—t.
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Constants in Xgmne | Their translations by £330 @ 205 — Lo
DconnA7 Dconnzedial A d4 d3 d2- A dsubst')\ dfoot- d4 ((CIDneW RCONN) (d3 dfoot) (dQ dsubst))
Deonags Deonan®™ A dy ds dy. N dgupsi- X dpoor- di (2 RCONN) (d3 dpoor) (2 dsupst))

Table 3.11: Semantic interpretations of the constants encoding discourse connectives

In Table 3.12, we provide semantic interpretations of the constants AnchorS:S —o

DU, — DU and Anchorl : S — DU, — T.

Constants in X0, | Their translations by Z.35%
AnchorS Asmod. \P. mod (A Q.Q (s(Az.z))) P
Anchorl Asmod. mod (A Q. Q (s(Az.z))) (Az.x)

Table 3.12: Semantic interpretations of the constants Anchorl and AnchorS

Remark 3.4. Sometimes we may write D,,,,, but we mean two different constants D,,,,, and
D,y The point is that the difference between the D,,,, and D,,,, constants is in their
semantic interpretations. Therefore, in a case where we are not concerned with the semantic
interpretations, we write D,,,,.

3-4.4.2 First Order Predicates

For interpreting the first order predicates of ¥0%,, into semantics, i.e., the ones that we

use for modeling derivation trees of clauses, we cannot use the semantic translations
provided in the ACG encoding of TAG. Indeed, in ¥3%,., an initial tree anchored with
a verb (verb phrase, predicative adjective etc.) is modeled with two VP adjunction
sites, whereas in X2%, it has a single VP-adjunction site. Let us consider one of these
constants, D,.. It has two arguments encoding VP-adjunction sites. The semantic
interpretations of each of these two arguments should scope over the predicate expressed

by walks. In particular, we interpret D.,,,, as follows:

gSEM D —
DSTAG( walks)
A sa vaj vag subj. Amod. sa (subj (Az.vaj (mod (vag (walk x))))) :
(t—=t) = (t—=t)=>(t—t)—>agnp— (t > t) =t
ttt

Where gnp abbreviates (e — t) — t, which is the interpretation of the type np

(3-28)
In Equation (3.28), the variables va; and wvas scope over (walks z). Thus, we

interpret V, as ¢ — ¢t. In Equation (3.28), we use the abstraction over the variable
mod in order to type-raise ¢ to ttt.
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Similarly to the translation of the D,,,, constant, we translate the other abstract con-
stants of 3%, encoding the initial trees anchored with verbs, verb phrases, predicative
adjectives etc.

We interpret the rest of the first order predicates (the ones we adopted from %)
in the same way as it is done in the ACG encoding of TAG with the difference that we
use almost-linear types instead of linear ones.

Remark 3.5. The ACG encoding of D-STAG and the original D-STAG approach show some
differences. One of the main differences is that we model clause-medial connectives as part of
the grammar, whereas in D-STAG, in order to analyze a discourse containing them, one uses a
prepossessing step. Another difference is that our encoding of D-STAG makes the semantic trees
anchored with a discourse relation more similar to each other than their D-STAG counterparts
are.

3.5 The Examples of Semantic Interpretations

In order to obtain the semantic interpretation of a discourse, we translate a term over
Yoeae encoding its derivation tree under the lexicon .Zgy,. We list the ACG signatures
and commands in Appendix D.1 that are used in order to obtain the results given

below.

Rk Rs
(c) R1(Fo, Ra(F1, F2)) (d) Ro(R1(Fo, F1), F1)

Figure 3.19: semantic interpretations of discourses

We use the same examples of discourses as the ones we used before (see Section 3.3.8
on page 265).

(29) a. [Fred is grumpy]y because [he lost his keys];. Moreover, [he failed his examl]s.
b. [Fred is grumpy]y because [he didn’t sleep well]s. [He had nightmares],.

c. [Fred went to the supermarket]s because [his fridge was emptyls. Then, [he
went to the movies];.

d. [Fred went to the supermarket]s because [his fridge was emptyls. [He then went
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3.5 The Examples of Semantic Interpretations

to the movies];m.

e. [Fred is grumpy]y because [his wife is away this week]g. [This shows how much
he loves her]g.

The D-STAG discourse structures of the examples (29)(a)-(29)(e) are depicted in
Figure 3.19.

Example 3.6.

(29)(a) [Fred is grumpy]y because [he lost his keys];. Moreover, [he failed his exam]s.

Interpretation: EXPLANATION F(y (CONTINUATION F F3)

In order to interpret the discourse (29)(a), one uses two semantic trees A.
* The first semantic tree A is anchored with EXPLANATION. This tree is paired with
the syntactic tree anchored with because.

* The second semantic tree A is anchored with CONTINUATION. This tree is paired
with the syntactic tree anchored with moreover.

Figure 3.20(a) shows the D-STAG derivation tree.’¢ We encode it as the term t,
defined in Equation (3.30), whose tree representation is shown in Figure 3.20(b).

t, = Anchorl t,
(Dyecanses 10U Ipus Ipus (AnchorS to, (Daoreovers 1oua Ious Ipus (AnchorS te, Ipu,)))) = T
(3-30)

In order to obtain the semantic interpretation of the discourse, we translate the term
t, under the lexicon £ 35y,. We obtain the following semantic interpretation:

ZE (t,) = (EXPLANATION
(grumpy fred)
(CONTINUATION
(' z. (key ) A (lose fred x)) (3-31)
(F'y. (exam y) A (fail fred y))

)
oy
Example 3.7.

(29) (b) [Fred is grumpy]y because [he didn’t sleep well]s. [He had nightmares],.

Interpretation: (EXPLANATION Fyy F3) A (EXPLANATION [ Fy)

Figure 3.21(a) illustrates the derivation tree of the (29g)(b) discourse. To interpret it,
D-STAG uses one semantic tree A and one semantic tree B.

8¢The terms encoding the derivation trees of the clauses used in these examples can be found on page

266, Equations (3.10)-(3.19).
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T()

®

ﬁbecause/explanation

Anchorl

AN

becanseA

//\\

Ipun Ipux,  Ibua  te

T1 Bmoreover/continuation
IDUA IDUA IDUA AnchorS

/\

To te,  Ipua
(a) The D-STAG derivation tree (b) The ACG encoding of the D-STAG derivation
tree

/ \
/ N\ / \

N dot
/N / \
Fred V Adj

\\\/\

is grumpy CONJ NP D
/ \ |

|
ADV

because  he
\ / \ | \

C/\
/\
/\

lost Det N  Moreover, he
| \ / \
his  keys failed Det N
|
his exsz

(c) The derived syntactic tree

Figure g3.20: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

e The semantic tree A is anchored with EXPLANATION. This tree is paired with the
syntactic tree anchored with because.
* The semantic tree B is anchored with EXPLANATION. This tree is paired with the
syntactic tree anchored with the empty connective.
We encode the derivation tree of the discourse as the term t, defined in Equa-
tion (3.32), whose tree representation is provided in Figure 3.21(b).

t, = Anchorl t,
(Dbec“aseA IDUA IDUA (DEEXPMMM" IDUA IDUA IDUA (AnchorS tc4 IDUA))(AnChOI’S tcs IDUA)) . T
(3-32)

In order to obtain the semantic interpretation of (29g)(b), we translate the term t,
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Ty Anchorl

P /N
‘ toy  Dhecumsen

/gbecause/;xplanation // / \
/ s ~ (\2)\ IDUA IDUA DEEXPMM“O“ AnchorSt Cs
AT

Ty ﬂ €e/explanation

IDUA IDUA IDUA AnchorSth IDUA

© ‘

T, I

5 DUA

(a) The D-STAG derivation (b) The ACG encoding of the D-STAG derivation tree
tree

S/S\S
VA

F DC/S\M NP/S\P

Fred V S \
/\ /N N
is  Adj CONJ NP VP He V NP
| N
grumpy  because he V VP had N
| |
didnt V nightmares

|
VP
/ N\
sleep  well

(c) The derived syntactic tree

Figure 3.21: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

by the lexicon .Z,g5x,. We obtain the following interpretation:

L8 (t,) = (EXPLANATION

(grumpy fred)
(—(sleep fred))
)
A
(EXPLANATION (3-33)

(—(sleep fred))
(Plur (\z. nightmare z) (\y.have fred y))

Example 3.8.
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Chapter 3. D-STAG as ACGs

(29)(c) [Fred went to the supermarket]; because [his fridge was empty]s. Then, [he
went to the movies];.

Interpretation: (EXPLANATION F5 Fg) A (NARRATION F5 Fy)

Figure 3.22(a) illustrates the derivation tree of the (29)(c) discourse. In D-STAG, in
order to interpret it, D-STAG uses the semantic tree A and the semantic tree B.
¢ The semantic tree A is anchored with EXPLANATION, which is the semantic tree
paired with the elementary tree anchored with because.
e The semantic tree B is anchored with NARRATION, which is the semantic tree
paired with the elementary tree anchored with then.

7 Anchorl

/\

| becuase A

ﬁbecause/explanation //
/6 Ious  Dueny  Ipu, IDUA AnChOfStc

T 3’ .
7 then/narration
IDUA IDUA IDUA ANChol St(q IDUA

|

T8 IDUA
(a) The D-STAG derivation tree (b) The ACG encoding of the D-STAG derivation tree

/\

/ \ DC/ \
NF)/ \ DC/ \S | / N\,
/

ADV
| / \ | AN | \ / \
Fred V CONJ VP  Then, he
| / \ | / \ / N\ \ / \
went  Prep NP because Det Vv Adj went  Prep
-/ \ | \ | | / \
to Det the fridge was empty to Det
| \ | \
the  supermarket the  movies

(c) The derived syntactic tree

Figure 3.22: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

We encode the derivation tree of the discourse with the term t; defined in Equa-
tion (3.34), whose tree representation is shown in Figure 3.22(b).

t3 == AnChOI’| tCs (DbecuaSeA IDUA

(DthenB IDUA IDUA IDUA (AnchorS tc7 IDUA)) IDUA IDUA (AnChOI’S tcﬁ IDUA) (334)
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3.5 The Examples of Semantic Interpretations

In order to obtain the semantic interpretation of the discourse, we translate the term
t, by the lexicon .Z,3x.. We obtain the following semantic interpretation:

Ly (ts) = (EXPLANATION
(3! z. (supermarket ) A (go-to fred z))
(I z. (fridge z) A (empty )))
A

(NARRATION (3-35)
(3! z.(supermarket ) A (go-to fred z))
(3'z. (movies ) A (go-to fred z)))

ot

Example 3.9.

(29)(d) [Fred went to the supermarket]s because [his fridge was emptyls. [he then
went to the movies];m.

Interpretation: (EXPLANATION F5 Fg) A (NARRATION F5 F7)

In this case, we build the term t;™%, defined in Equation (3.36), whose tree
representation is shown in Figure 3.23(a).

t3™ % = Anchorl t ¢, (Dpecusses 1DUA

. .36
(Dthen;;ed‘al IDUA IDUA IDUA (AnchorS tc7 IDUA>> IDUA IDUA (AnchorS tca IDUA> (3 3 )

In order to obtain the semantic interpretation of the (29)(d) discourse, we translate
the term t,™ by the lexicon .Z35¥.. As a result, we obtain the interpretation (3.37),
which (as it was expected) coincides with the interpretation of the discourse (29)(c).

L5 (t,m) = (EXPLANATION
(3! z. (supermarket ) A (go-to fred z))
(3 z. (fridge ) A (empty z)))
A

(NARRATION (3-37)
(3! z.(supermarket z) A (go-to fred z))
(3'z. (movies ) A (go-to fred z)))

ot

Example 3.10.

(29)(e) [Fred is grumpy]p because [his wife is away this week]g. [This shows how
much he loves her]y.

Interpretation: COMMENTARY (EXPLANATION F{y F3) Fy

In order to interpret the (29)(e) discourse, D-STAG uses two semantic trees A.
One of them is anchored with COMMENTARY and the other one is anchored with
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Anchorl

2N

becua e A

//

IDUA ,h enp IDUA IDUA AnchorStoG
IDUA IDUA IDUA AnchorStc7 IDUA
|
Ipu,

(a) The term encoding the derivation tree of a discourse
with a clause-medial adverbial

/ \
/ \ NP/ \VP

/\ N

Fred DC VP
\ / \ / \ | /N
Fred V DC S Adv \Y PP
| / \ | / N N 4 \
went  Prep NP CONJ VP then went Prep
/N / \ /N | / \
to Det N  because Det \Y Adj to Det
the  supermarket the fridge was empty the  movies

(b) The derived syntactic tree

Figure 3.23: The abstract term encoding of a discourse with a clause-medial adverbial
and the derived syntactic tree

EXPLANATION. Figure 3.24(b) illustrates the derivation tree of (29)(e). We encode this
derivation tree as the term t, defined in Equation (3.38).

t, = Anchorl t,
(DbecuaseA (Dfiommenmy IDUA IDUA IDUA (AnchorS tcg IDUA)) IDUA IDUA (AnchorS tcg IDUA)
(3-38)
In order to obtain the semantic interpretation of the discourse, we translate the term
t, by the lexicon .Z,3-x.. We obtain the following interpretation of the discourse:

LS (t,) = COMMENTARY
(EXPLANATION
(grumpy fred)
(' z. (wife = fred) A (3! y. (week y) A (away = ¥))) (3-39)

)

(show-this (a-lot (3! z. (wife z fred) A (love fred ))))
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T Anchorl

0 / N\

! tey  Dbeousse

Bbecause/explanation / / \ \
/@ D™=t Ipy,  Ipuy  AnchorStg,
Ty ﬁs/cor\xl;nentary / / \ \ ‘
IDUA IDUA IDUA AnchorStog IDUA
|
T10 IDUA

(a) The D-STAG derivation tree

(b) The ACG encoding of the D-STAG derivation tree

L T

/\
/\ /\
a

/\
\/\

NP This V
| / \ \ \ | \
Fred V Adj CONJ NP shows
| | / \ / \ / \
is grumpy because Det Adv
| \ \ / \ | / \
his  wife is Adj NP how-much NP VP
/ \ /N
away  Det he v NP
| \ .
this  week loves  her
(c) The derived syntactic tree
Figure 3.24: The D-STAG derivation tree, its ACG encoding, and the derived syntactic

tree
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3.6 Interpretation as Labeled Formulas

In D-STAG, the semantic interpretations follow the SDRT principles. As we saw in the
Section 4.3, SDRT makes use of labels in order to encode the discourse interpretations.
We develop an approach that enables us to obtain the interpretation of a discourse
reminiscent of the SDRT interpretation of that discourse. Labeled formulas enable us
to refer to sub-formulas of a formula. By labeling the expressions that are under the
scope of the quantifiers, we can encode interaction between the scope of a discourse
relation and the existential quantifier, which is not the case for the HOL interpretations
that we defined in the previous section.

Thus, we encode the semantic interpretation of a discourse as a labeled formula,
instead of a HOL one. The labeled interpretations specify the same DAGs as the ones
specified by the (original) D-STAG interpretations. For the sake of illustratation, let us
consider the discourse (29)(e), repeated as follows:

(29) (e), repeated
[Fred is grumpy]y because [his wife is away this week]g. [This shows
how much he loves her]g.

Interpretation: COMMENTARY (EXPLANATION [ F3) Fy

The unlabeled interpretation of (29)(e) is shown in Equation (3.39) on page 284.
We define the following labeled interpretation of (29)(e):

u = E|l [ ll Zg.

[ : (grumpy fred) A

(31 .
(. ly: (wife z fred) A (32’ l3: (week 2') A I3: (away z 2'))) A
(b : (EXPLANATION [ [3) A
(37 l4. Iy : (show-this(3; l5. a-lot (J'z. I5 : (wife = fred) A I5 : (love fred z)))) A
(ll : (COMMENTARY b l4) N T)))

)

it
(3-40)
The labeled formula u defined in Equation (3.40) contains the sub-formula [ :
(EXPLANATION [ I3), which makes explicit that the expressions labeled with [
and I3 are related with the EXPLANATION relation. Another sub-formula of u
is [; : (COMMENTARY [, [;), which encodes that /; and /; are in the COMMENTARY
relation, where [l labels EXPLANATION [ /3. By contrast, in the unlabeled interpre-
tations, the scope of a discourse predicate included all the material introduced in an
interpretation of a clause. In other words, the approach with labels enables us to
explicitly refer to the material that are related by the discourse relations.
With the help of labels we can capture the argument sharing between two discourse
relations, for example as it is in the following discourse:

286



3.6. Interpretation as Labeled Formulas

(29) (b), repeated [Fred is grumpy]y because [he didn’t sleep well]s. [He had nightmares],.

Interpretation: (EXPLANATION Fjy F3) A (EXPLANATION F3 Fy)

As we already saw (see Equation 3.33), the unlabeled formula encoding the interpre-
tation of (29)(b) is as follows:

LS (t,) = (EXPLANATION

(grumpy fred)
(—(sleep fred))
)
N
(EXPLANATION

(—(sleep fred))
(Plur (A\z. nightmare z) (\y.have fred y))

) ot

Za(t,) does not explicitly encode that (—(sleep fred)) is the interpretation of one
and the same clause (he didn’t sleep well). However, with the labeled formulas, we are
able to do that. Namely, the labeled interpretation of (29)(b) is as follows:

v =
=IRANGE
(grumpy fred [) &
(F1 b L.
(I3 : —(sleep fred )) &
(3 .
(ly : PLUR(A z 5. I5 : (nightmare 2)) (A y l5. I5 : (have fred y))) &
((ly : (Explanation [y l3) & T) &  : (Explanation /3 ly))
)
)

it

As v shows, the same label I3, which labels the semantic interpretation of ke didn’t
sleep well, is used twice (in (Explanation [y l3) and in (Explanation [3 ly)).

3.6.1 A Signature > For Encoding Labeled Semantic Represen-

tations
In order to build labeled formulas, we introduce the signature 2335 . To encode labels,
we introduce an atomic type ¢ in 2% . Besides /, in X%, we introduce the types e
(for entities) and ¢ (for truth values).
In D-STAG, where one uses unlabeled semantics to represent a meaning of a
discourse, a clause is interpreted as a term of type t. The predicates in unlabeled
semantics encoding discourse relations are of type ¢t — t — .
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In the labeled language, instead of discourse units (expressions of type t), labels
serve as arguments of predicates modeling discourse (rhetorical) relations (such as
EXPLANATION). Predicates encoding discourse relations are of type ( — ( —
¢ — t. The type { =+ ¢ — ¢ — ¢ encodes that one needs two discourse units (two
arguments of type /) in order to generate a new discourse unit (the third argument
of type ¢) by connecting them with a discourse relation. For example, the formula
(EXPLANATION /i lp [3) : t can be read as follows: The content labeled by /; and b
are connected by the relation EXPLANATION. The label of the new discourse unit built
by connecting /; [ by EXPLANATION is /3. Thus, (EXPLANATION /; » l3) can be seen
as a statement (proposition) and therefore it is of type t.

In the signature >33, , we introduce the constants of the signature >337,, with the
modified types so that we can represent labeled terms. Table 3.13 shows the constants
in X% . Together with the constants of type (e — t) — t encoding quantifiers, we
introduce the constant 3; of type (/ — t) — ¢t. We use the constant 3; in order to

introduce labels denoting terms.

fred,he : e EXPLANATION : { —( —{ — t
sleep, bad-mood, exam : ¢ — { — ¢ CONTINUATION : { = { = { — 1
love, miss, fail : ¢ - ¢ — ( — ¢ NARRATION : / - { —{ — t

V,3,3:(e—=t) >t J:(l—t)—t

Table 3.13: Constants in X35,

Convention: Instead of Pky...k, [ we write [ : Pky...k,, where [ is a label. For
instance, we write /3 : NARRATION /; 5 instead of NARRATION /; /s 3.

Remark 3.6. (Asher and Pogodalla, 2011) encodes the SDRT interpretations of discourses using
a dynamic semantics approach from (de Groote, 2006). Their encoding of SDRT makes use of
contexts. A context accumulates labels. One selects labels from a context in order to build a
new discourse unit. In our case, the constant 3; is the only ‘tool’ that we use for introducing
labels in an interpretation of a discourse, because, in the present work, we do not encode a
notion of a context.

sem
LABEL

3.6.2 Interpretations as Types and Terms Built Upon X

We define the lexicon £} to interpret the abstract types and constants to the types

LABEL

and terms built over the signature X357 , respectively.

3.6.2.1 Interpretations of Types

In order to interpret the type DU into the labeled semantics, we slightly modify its
standard, unlabeled interpretation. In particular, we interpret a term of type DU to
a term AP.P F of type ({ — t) — t, where F is of type ¢ and P is of type { — t.
Therefore, we translate DU to (¢ — t) — ¢, which we abbreviate as (tt.
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(0 —t)—t =20t
(e > —t) =0 —t= qnpl

Table 3.14: Abbreviations of types

Remark 3.7. The point that we translate a term of type DU to the term A\P. P F in both,
the unlabeled and labeled semantics, is due to the fact that \P. P F is a generic type-raising
mechanism introduced by Montague (1973). In the case of D-STAG, one type-raises I' : t to the
term A\P. P F of type (t — t) — t, because an object (i.e. F') on which one operates is of type
t. In the case of the labeled semantics, we predicate over the expressions of type (, i.e., labels.
Therefore, we use the term \P. P F of type (tt as a type-raised version of F.

We interpret the type S as ¢ — ¢ (instead of ¢ as it was in the unlabeled semantics).
We will justify this choice in the next section. The interpretations both of the types S,
and V, is t — t. Table 3.15 shows the interpretations of the types from ¥53,, to the
types built over the set {e,t,(}.

np := gnpl T:=1t
Nni=e—{—1 DU := £it
Vai=t—t S=0—1t

np, := gnpl — qnpl Spi=t—t
Ni=(e—=0—t)—=(e—=Ll—1) DU, := (tt — (it

Ng:=(e—=>0—t)>(e>l—t)—>l0—>t

Table 3.15: Interpretations of the abstract types to the types over {e,¢,¢} under the
lexicon £ 35N

3.6.2.2 Interpretations of Constants

In SDRT, one starts to build a discourse structure by labeling the atomic discourse
units, i.e., clauses in the discourse. A clause anchors an initial tree in D-STAG. We
encode D-STAG initial trees anchored by clauses with the help of the constants AnchorS
and Anchorl. We interpret the constants AnchorS and Anchorl so that whenever they are
applied to a term encoding a derivation tree of a clause, they introduce a label for
that clause. In other words, the clauses by default do not have labels. However, as
clauses become introduced in a discourse (with the help of AnchorS and Anchorl), they
are assigned labels. This explains why we interpret a type S as { — ¢: A clause needs
a label in order to become a part of a discourse structure.

The only device that we have for introducing labels is the constant 3;: (¢ — t) — ¢.
We use it in the interpretations of AnchorS and Anchorl, which are listed in Table 3.16.

As Table 3.16 shows, the interpretation of AnchorS introduces a label / in order
to label a clause s (i.e. to define s [). Since [ labels s, one can further use [/ in a
discourse, i.e., it can serve as an argument to a discourse relation (() /).

We use the constant Anchorl in order to encode the first clause of the discourse.
The first clause in the discourse does not substitute in any other tree. The as it does
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not have a continuation. With this in mind, we propose the interpretation of Anchorl
in Table 3.16. Indeed, we use A\/. T in order to model the end (the stop sign) of the
discourse. Similar to the case of AnchorS, the interpretation of Anchorl also introduces
the label of a clause.

Constants in X532, | Their translations by .Z 32"
AnchorS Asmod. N P.31l.mod (ANQ.(sl) N (QI)) P
Anchorl Asmod. 3 1. mod (NQ.(sl) N (QI)) (N.T)

Table 3.16: Interpretations of the constants AnchorS and Anchorl by the lexicon .Z 3¢

3.6.2.2.1 Discourse Connectives

We saw that interpretations of terms encoding initial trees anchored by clauses
introduce labels in a discourse. Clauses are atomic discourse units. To build larger
discourse units, D-STAG makes use of auxiliary trees anchored by discourse connectives.
The larger discourse units also should be labeled. To do that, we interpret auxiliary
trees anchored by discourse connectives with the help of the constants 3;: ({ — t) — ¢

", and ® used in D-STAG
semantic trees (see Section 3.4.1), we define (P;ewl and CIDIZ/, in Equation (3.41). The

so that they can introduce labels. In particular, instead of @,

main difference between <I>:1ew and ® and their new versions, i.e., @;ewl and (I)/l/ is
that the latter ones introduce labels. Now, instead of Rz y (where R is a rhetorical
relation and z and y denote two pieces of discourse), we obtain (Rz y (), or written
alternatively, [ : (Rz y).

& = ARXYP.HJLXOz. Yy (Pz) A (Rzyl)):
(=0 =0 —t)— (it — it — (tt
(3.41)
® . = ARXYP.30LXOM\e. Yy (P(Rayl):

(6=l —10—t)— Lt — it — Cit

Figure 3.25 shows the unlabeled and labeled semantic trees of a discourse connective.
These two trees have the same structure. The difference between them is that while the
nodes in the original (unlabeled) semantic tree are t{t, in the labeled one, they are (¢
(as in the case of the labeled semantics, we interpret the type DU as (tt).

Consequently, we translate the constants D.,,., and D encoding the connective
conn in Y5, as it is shown in Table 3.17. In these interpretations, R; is a predicate of
type ¢ — ¢ — { — t modeling the discourse relation signaled by the connective conn.
Since, there is no semantic difference between the constants D, (resp. D,,.;) and
Deonni ™ (resp. Deonny ™), we translate D, ,v™ (resp. Deppan ™) to the same term to

conn A connp

which we translate the constant D, (resp. D

connp

connB) *

3.6.2.2.2 First Order Predicates
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ttt® (i@
N RN
ttt — it tt@ Ctt — Ctt 14719
/N | /N |
ttt — tit — tit tt®  ttt | © Uit — (it — (it (® (it | ©
/\ | /\ |
® R ttt* ¢ Ry 7
(a) unlabeled (b) labeled

Figure 3.25: The unlabeled and labeled semantic trees

Constants in X33, | Their translations by .Z ;-4
DconnA) Dconnxedial A d4 d3 d2- A dsubst- A dfoot- d4 (((Dnewl Rl)(d?) dfoot) (dZ dsubst))
Dconn37 Dconn;ledial A d4 d3 d2' A dsubst- A dfoot- dy ((<bl Rl) (d3 dfoot) (d2 dsubst))

Table 3.17: Semantic interpretations of the constants in ¥3g;,, encoding discourse
connectives

Constants Encoding Nouns, Determiners, Proper Names

We encode nouns in 2%, with constants of type n, —o n (the translation of the n,
and N types are given in Table 3.15). Therefore, the type of a term to which a constant
encoding a noun translates is as follows: ((e ¢ —t) = (e = { — 1)) = (e > { — t).
In 30%..., we encode determiners with the type N —o np. Therefore, the type of a term
to which a constant encoding a determiner translates is of type (e — ¢ — t) — qnpl.
We provide translations of the constants encoding nouns, determiners and proper names
in Table 3.18.

Constants in 5%, | Their interpretations under .3
Daoun Ada.d(a(Az.A\l.nounz[))

D, AP QL 3z. (Pzl) AN (Quzl)
Dipe APQLIAz (Pzl) N (Quzl)
Drrea APl P fred

Table 3.18: Semantic interpretations of the constants in ¥5%,, encoding nouns, deter-

miners, and proper names
Constants Encoding Verbs
To interpret the constants modeling initial trees for verbs, one has to take into

account that S translates to ¢ — ¢. For instance, in the case a D, constant modeling a
transitive verb, we propose the following translation:
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gL/?EEI’;AL(DV) =
A sa vay vag sub obj. Al (sa (sub (Az ly. obj (Ny k. (vag (va1 (Pvzylk))))h)l)) :
(t—=1t)— (t = t) = gnpl — gqnpl - L — t (3.42)

In Equation (3.42), Pv: e — e — ¢ — t is a labeled encoding of the predicate
signaled by the transitive verb u.

In general, the difference with the unlabeled semantic translations and labeled ones
is that we have one additional parameter for labels (i.e. variable of type ¢), which
corresponds to the fact that instead of the type ¢, we have ¢ — ¢.

3.7 Examples of Labeled Interpretations

We use the following examples of discourses:®”

(43) a. [Fred is grumpy]y because [he lost his keys];. Moreover, [he failed his examl]s.
b. [Fred is grumpy]p because [he didn’t sleep well]3. [He had nightmares],.

c. [Fred went to the supermarket]; because [his fridge was emptyls. Then, [he
went to the movies];.

d. [Fred went to the supermarket]s because [his fridge was emptyls. [He then went
to the movies];m.

e. [Fred is grumpy]y because [his wife is away this week]g. [This shows how much
he loves her]y.

In Section 3.7, we already defined terms t,, t,, t;, t,;”%, and t, that encode
derivations trees of the discourses (43)(a), (43)(b), (43)(c), (43)(d), and (43)(e),
respectively. Figure 3.26 illustrates tree representations of these terms.

The lexicon Z Y translates the terms t,, t,, ts, t;", and t, to the terms shown

in Equations (3.44), (3.-45), (3.46), (3.47), and (3.48), respectively. As one can
see, the terms defined in Equation (3.46) and (3.47) are the same as they represent

8In Appendix D.4.1, we provide the codes that can use in order to run these examples with the ACG
toolkit.
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3.7. Examples of Labeled Interpretations

Anchorl

/N
tCO DbecauseA
NN
Ipu, Mou, Ibu, ta
|

Dmol‘eoverA

/N T
IDUA IDUA IDUA A?ths
te;  Ipu,
(a) t;
Anchorl

/N

t Cs Dbecuase A

N T—

IDUA DthenB IDUA IDUA AnchorSt Cs

AnchorSt ¢, IDUA
|
Ipy,
(c) t3
Anchorl

/ N\

t Co Dbecuase

— /N T

IDUA IDUA AnchorStCS

AN |
IDUA IDUA IDUA AnChOI’StC9 IDUA
|
Ipu,
(e) ts

D comment
€

Anchorl

/N

t Co Dbecuase A

/T~

IDUA IDUA Degxplanation AnchorSt Cs
/N T |
IDUA IDUA IDUA Ar‘IChOI’Stc4 IDUA
|
Ipy,
(b) to
Anchorl
tCs DbecuaseA
N T—
IDUA DthenBedml IDUA IDUA AnchorStCG
/N T |
IDUA IDUA IDU AnchorStc7 IDUA
|
Ipu,

(d) t3medial

Figure 3.26: The ACG encodings of the D-STAG derivation trees of the examples

interpretations of the discourses (43)(c) and (43)(d), respectively.

Lo (b) =
31l b
(lp : grumpy fred) &
(F1 b 5.

ANz lp: (keys z) & by : (lose fred 7)) &

(3-44)

Il (A z ly: (exam z) & Iy : (fail fred z)) &

(
(
(I3 : (Continuation ly Iy ) & (/; : (Explanation |y I3) & T))
)

)it
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L (ts) =
Il by
(grumpy fred [) &
(F1 b 5.
(I3 : —(sleep fred )) &
(F b (3-45)
(ly : PLUR(A 2 I5. I5 : (nightmare z)) (A y 5. 5 : (have fred y))) &
((l1 : (Explanation |y [3) & T) & b : (Explanation I3 Iy))

)
)
ot
L (ts) =
bl b
(' z. lp : (supermarket ) A ly: (go_to fred x)) A
(3 bs.
(32 .l3: (movies z) A I3: (go_to fred z)) A
((3; ly. (Az. Iy - (fridge z) A Iy : (empty z)) A (I : (Explanation [y 1) T)) A
Al (Narration A 13))
)it
(3-46)
L (t™) =
bbbk
(F'z. lp: (supermarket z) A ly: (go_to fred x)) A
(3 5.
(F'z I3 : (movies z) A l3: (go_to fred z)) A
(31 ly. 3. Iy : (fridge ) A Iy : (empty z)) A (I1 : (Explanation [y [1)T)) A
A lp : (Narration [y 3))
)it
(3-47)
Lo (ba) =
414 b.
[ : (grumpy fred) A
(31 .

(. ly: (wife z fred) A (32’ l3: (week 2') A I3: (away z 2’))) A

(L : (EXPLANATION [ l3) A

(37 l4. Iy : (show-this(3; [1. a-lot (Fz .l; : (wife = fred) A [j : (love fred z)))) A
(I : (COMMENTARY b ly) A T)))

)

it
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3.6.  Preposed Conjunctions

3.8 Preposed Conjunctions

In D-STAG besides postposed conjunctions, one considers preposed conjunctions such
as when in Example (49).

(49)
When [Fred was in Paris]y, [he went to the Eiffel Tower];. Next, [he visited the Louvre]s.

Interpretation: CIRCUMSTANCE (NARRATION F3 Fy) I}

DU® DU®
DU® DU®
DC DU® Punct DU® DU* Punct DC DU®
When DU |l® ; DU* pmark  Conn DU | ®
(a) The tree anchored with a preposed (b) The tree of a postposed connec-
conjunction tive/discourse adverbial

Figure 3.27: D-STAG syntactic elementary trees anchored by connectives

Figure 3.27(a) depicts an elementary tree anchored with a preposed discourse
connective. It has four DU-adjunction sites DU®, DU®, DU®, and DU®, whereas
elementary trees anchored by postposed conjunctions have three DU-adjunction sites
(cf. Figure 3.27(b)). The DU® node has a special usage in D-STAG. In particular,
in a case where a preposed conjunction that plays the role of a framing adverbial,
one uses adjunction on the DU® node. For instance, in (49), when is a framing
adverbial. Figure 3.28(a) on the following page illustrates the derivation tree of the
discourse (49). The tree obtained by substituting 7o into Spexymarration @djoins on the
DU® node of the elementary tree anchored with when. The DU® is the mother node
of the foot node (i.e. DU"). For instance, the interpretation of the discourse (49) is
CIRCUMSTANCE (NARRATION F» F'1) Fyy. In a case where a preposed conjunction is not a
framing adverbial, the adjunction is not performed on the DU node with link ®, but
on the other DU-adjunction sites (marked with @, ®, and @).

In order to encode a preposed conjunction, we introduce two constant D ,unpreposed;,
and D.ounpreposea, Of type DU, — DU, — DU, — DU, — DU — DU, in the abstract
vocabulary 5,

3.8.1 Interpretation as TAG Derivation, and TAG Derived Trees

Figure 3.29 shows the way we analyze a discourse with a preposed connective. By
encoding this analysis, we interpret the D, peposea COnstant modeling the conn-preposed
preposed connective to TAG derivation trees. Equation (3.50) shows this interpretation.
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T To
| |
D D
| |
ﬁwhen/circumstance BConnl
® . O y NNe
To 6next/narration T1 5Conn2
© ©
To To
(a) DSTAG derivation:  pre- (b) The DSTAG deriva-
posed case tion tree in the postposed

case (X =1,2,3,4)

Figure 3.28: D-STAG derivation trees of discourses with a preposed and a postposed
conjunction

DU®

DU®

YA

DU® Punct DU®

DU} , DU*

S
DC/ \ S

conn-preposed

Figure 3.29: The interpretation of D,uupreposea iNto TAG derivation trees

L0 (Deonnpreposea) = X ds dy ds dy dgypst - Chibor® di dy d3 do (dsypst Ceonnpreposea (X°T.7))
where ChLat € X0 js of type Sy — Sy — S5, -5, — S — §,
(3-50)
The constant CZio? € Y2 the DU-rooted tree anchored with a comma shown in
Figure 3.29. (jmm_},,elr,osedS is a constant of type S, modeling the S-rooted auxiliary tree
anchored with conn-preposed. By adjoining this auxiliary tree on the S-adjunction site of
the host clause, one inserts conn-preposed into the clause-initial position of the clause.
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3.6.  Preposed Conjunctions

TAG r d
Lo (CL) =

synt

A sa5 Sa4 Sa3 $a2 Ssypst T- Saq (Sas (S3 (sa2 Ssupst) (Puncty comma) (sas z))) (3.51)

3.8.2 Interpretation as D-STAG Semantic Trees

In order to interpret the constant D, peposea €ncoding a preposed conjunction to a
semantic term, we refer to the D-STAG semantic interpretation of a discourse with a

preposed conjunction, discussed in Section 5.3.7 on page 189.

PN

ittt — ¢ ttt@
N / I\
(® CIRCUMSTANCE) 1@ X @ ¢
/1IN /\
APt Q@ t®
/\
P t® Fy
Fy

Figure 3.30: The D-STAG semantic tree for a preposed conjunction

For example, Figure 3.30 shows the semantic interpretation of a discourse with a
preposed conjunction when. By encoding this tree, we obtain the following semantic
interpretation of the constant D,.,:

< Dziﬂe (DWhenA) =

Ads dy d3 dy N dgypst- A dpoot- da ((Prewy CONTINUATION) (d3 (ds dpoot)) (d2 dgypst))
(ttt — tit) — (ttt — ttt) — (ttt — tit) — (tt — tit) — tit — (ttt — tit) (3.52)

In general, we interpret the constants D.oupreposea, @0d Deonnpreposea, s follows:

SEM
‘gDSTAG (Dconn-preposedA) =

A d5 d4 d3 d2 A dsubst- A dfoot- d4 (((I)/new RCONN) (dg (d5 dfoot)) (dQ dsubst)) :
(3-53)

(ttt — ) — (ttt — ttt) — (tt — tit) — (tt — tit) — ttt — (ttt — ttt)

SEM
"gDSTAG (Dconn—preposedB> =
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Chapter 3. D-STAG as ACGs

A ds dy d3 dy A dsubst- A dfoot- dy (((I) RCONN) (d?) (d5 dfoot)) (d2 dsubst)) : (354)
(ttt — ) — (ttt — ttt) — (bt — tit) — (tt — tit) — ttt — (ttt — ttt)

where: RCONN is the relation signaled by the conn-preposed connective

Example 3.11.
Let us consider the following example®® of a discourse with a preposed conjunction:

(49), repeated
When [Fred was in Paris]y, [he went to the Eiffel Tower];. Next, [he visited the Louvre]s.

Interpretation: CIRCUMSTANCE (NARRATION [ F) F

As Figure 3.30 indicates, in order to derive the semantic interpretation of the
discourse (49), D-STAG uses two semantic trees A, where one of them is anchored
with CIRCUMSTANCE, and the other one is anchored with NARRATION. We encode the
derivation tree of the discourse (49) and this choice of semantic trees by the term
t,P*d) defined in Equation (3.55).

tlpreposed —

Anchorl teo, (thenA (DnextA IDUA IDUA IDUA (AnchorS te, IDUA)) IDUA IDUA IDUA tco) T
(3-55)

where:

tCo - Dwas-iu ISA IVA IVA Dfmd Dparis : S
tcl — Dwento—to ISA IVA IVA Dhe Dtheeiﬂ'el—tower . S
t02 = Diisitea ISA IVA IVA Direa Dinetowrre S

In the term t,”*>*, the terms t.,, to,, and t,, encode the derivation trees of the
clauses Cp, C; and (5. Figure 3.31(b) illustrates the tree representation of the term
tlpreposed.

In order to obtain the syntactic interpretation of the discourse (49), we translate the
term t,”**! by the lexicon £ o Z ¢, Figure 3.31(c) shows the produced derived
(syntactic) tree.

By interpreting the term 75" o 2”0 under the lexicon .Z g5, we obtain the
following semantic interpretation:

CIRCUMSTANCE
(NARRATION (go-to fred eiffel) (go-to fred louvre)) (3.56)
(be-in fred paris) 35
ot

88We list the ACG signatures, lexicons and commands in Appendix D.1 that we use in these examples.
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3.9- Modifiers of Discourse Connectives

Tl Anchorl

/N

| when A

Bbecause/explanation //
/6 Duees  Ibua IDUA Ipus  te
) N T

To /Be/commentary IDUA IDUA IDUA AnChOrStcz
® ‘
To Ipu,
(a) The D-STAG derivation tree ) The ACG encoding of the D-STAG derivation tree
DC dot
| / \ / \ / \
ADV NP DC
| \ / \ | / \ | / \
When Fred V he ADV NP
| / \ \ / \ | / \
was Prep NP  went Prep NP  Next, Fred V
. VRN | \
in  Paris to Det N visited  Det
/N /\
the NNP NNP the NNP
| |
Eiffel ~ Tower Louvre

(c) The derived syntactic tree

Figure 3.31: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

3.9 Modifiers of Discourse Connectives

In D-STAG, one analyzes a discourse where a connective is modified. For instance, in
the discourse (57), for example modifies the subordinate conjunction because. Figure 3.32
shows the D-STAG analysis of the discourse (57). The modifier of the discourse
connective for example anchors an auxiliary tree rooted in DC. This auxiliary tree
adjoins into the auxiliary tree anchored by because. The DC-node in the tree anchored

by because serves as an adjunction site. The link associated with the DC-adjunction site
is ©.

(57) Fred is grumpy because, for example, he failed an exam.

To model a DC-adjunction site, we introduce a new type DC, in the abstract
vocabulary 2%, .. We also introduce the constants of type DC, in 33%,. to encode
modifiers of discourse connectives. For instance, the constant Dy, cxampe : DG, encodes

the discourse modifier for-example.
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Chapter 3. D-STAG as ACGs

Thus, now an elementary tree anchored by a discourse connective has the DC-
adjunction site. Therefore, we slightly change the types of the constants in 0%,
encoding trees anchored with discourse connectives. In particular, we add one more
argument of type DC, to a constant encoding a discourse connective. Table 3.19 shows
the modified types of the constants D, and D uupreposca modeling a postposed and
preposed discourse connective, respectively.

D
D

: bu, — DU, — DU, — DC, — DU — DU,
: bU, — DU, — DU, — DU, — DC, — DU — DU,

conn

conn-preposed

Table 3.19: Constants in >0g,, encoding D-STAG trees anchored with discourse connec-
tives

e DC
| /N
DU® DC*  for example

NI

DU* Punct DC® DU®

A Conn DU ]o

Figure 3.32: The tree anchored with a modifier adjoins on the DC node into the tree
anchored with a discourse connective

In D-STAG, a modifier of a discourse connective appears at the clause-initial position,
as it is in discourse (57). However, one can also consider a case where a discourse
connective is at a clause-initial position, but its modifier appears at a clause-medial
position, as it is in the following example:

(58) Fred is grumpy because he, for example, failed an exam.

In the discourse (58), the connective because occupies the clause-initial position,
whereas for example occupies a clause-medial one.

Thus, we consider two different cases:

1. Both a discourse connective and its modifier appear at the clause-initial positions.

2. A discourse connective appears at the clause-initial position, but its modifier

appears at the clause-medial position.

Figure 3.33 illustrates our analysis in the case where both a discourse connective
and its modifier occupy the clause-initial positions. The DC-auxiliary tree adjoins into
the S-auxiliary tree anchored by the connective. The resultant tree adjoins on the
S-adjunction site (clause-initial position) into the derived tree of the clause.

Figure 3.34 depicts our analysis of a discourse where the discourse connective is
at the clause-initial position but its modifier occupies the clause-medial position. The
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3.9- Modifiers of Discourse Connectives

S-auxiliary tree anchored by the connective adjoins on the S-adjunction site (clause-initial
position) into the derived tree of the clause. The DC-auxiliary tree adjoins on the
VP-adjunction site (clause-medial position) into the derived tree of the clause.

To model these cases, in addition to DC,, we introduce a new type DC, in the
abstract vocabulary Y5%. . The difference between DC, and DC; is that we interpret

DSTAG*®
them as a DC-adjunction and a VP-adjunction, respectively, into TAG derivation trees.

DU®

DU®

SN

DU* Punct DU®

AN

, DU |
|
DC s S
mod DC*-»-_, . DC S* . '
conn

Figure 3.33: Both the discourse connective and its modifier at the clause-initial positions

DU®

DU®

IR

DU* Punct DU®

: DU |
5 e s v

DC &S NPt mod _VP*

‘ o T
conn
Figure 3.34: The discourse connective is at the clause-initial position, whereas its

modifier is at the clause-medial position

Thus, to model the discourse modifier mod, we introduce together with the constant
Dioa : DCa, another constant D, : DC,. We use the constant D,,,™** in a case

modipitial
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Chapter 3. D-STAG as ACGs

where an auxiliary tree anchored with mod adjoins on the VP node into the derived
tree of a clause (see Figure 3.34).

Table 3.20 shows the constants that encode discourse connectives in ¥5g;,,. The
constant D_,, models the case where the discourse connective and its modifier, both
appear at the clause-initial positions (see Figure 3.33). In the case where the discourse
connective conn appears at the clause-initial position and its modifier occupies the

clause-medial position (see Figure 3.34), we use the constant D, of type DU, —o

connmedial
DU, —o DU, —o DC! —o DU —o DU,.

Constants in X35, | Their types
D.onn bu, — DU, — DU, — DC, — DU — DU,
D onnriit DU, — DU, — DU, — DC, — DU — DU,

connmedial

Table 3.20: Constants in ¥5%,, encoding discourse connectives

Remark 3.8. One could also consider a case where both the discourse adverbial and its modifier
occupy clause-medial positions, as it is in the following example:

(59) Fred is grumpy. He failed an exam. He moreover, for example, lost his keys.

While we can encode such cases, we leave it for the future work to check the linguistic adequacy
of a phenomenon of a modifier of a discourse adverbial.

3.9.1 Interpretations as TAG Derivation Trees

Thus, as Figure 3.33 indicates, we translate D,,, : DC, into A(X%) as the DC-rooted
auxiliary tree anchored with mod.

Since we use the D,,,™* : DC, constant in order to encode the analysis shown in
Figure 3.34, we translate D, 0+ into A(X5%) as the VProoted auxiliary tree anchored
with mod. Table 3.21 shows the translations of the types and constants encoding

discourse modifiers to A(X5%).

Types and constants 0%, | Their translations by the Z°°™*¢ lexicon
DC, DC,

DCX Vy, —V,

Dmod : DCA Cmud : DCA

DmOdEft[iliTl : DCX Caoa " 1 Va — V,

Table 3.21: Interpretations of the types and constants encoding modifiers of discourse
connectives as the types and terms in TAG derivation trees

Figure 3.33 on the preceding page shows our analyses of the case where a discourse
connective and its modifier occupy the clause-initial positions. We interpret the constant
D.onn modeling this case as it is shown in Table 3.22. We encode the adjunction of a
modifier (dm) into the S-auxiliary tree anchored by the discourse connective (C,.).
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3.9- Modifiers of Discourse Connectives

The resultant tree adjoins in a substituted tree (dg,pst). Since we have no VP-adjunction,
we use N’z.7.

Figure 3.34 on page 301 shows our analyses of the case where a discourse connective
occupies the clause-initial position, whereas its modifier occupies a clause-medial one.
We interpret the constant D, modeling this case as it is shown in Table 3.22.
We encode the adjunction of a modifier (dm) into the S-auxiliary tree anchored by
the discourse connective (C.,. ). Since we have no adjunction in the S-auxiliary tree
anchored by the discourse connective (C,,, ), we use the constant modeling the empty
DC,-adjunction Ipc,.% In addition, we encode the adjunction of a modifier (dm) on

the VP node into the substituted tree (dgyps).

Constants | Their translations by the 2% lexicon
Dconn i AO d4 d3 d2 dm dSUbSt' Cconcat, d4 d3 d2 (dSUbSt (Cconns dm) (AOII))
D, medi Xody d3 do dm dgypsi. Ceonear da d3 do (dsubst (Cmnns IDCA) dm)

connjpitjal

Table 3.22: Interpretations of the abstract constants encoding discourse connectives as
TAG derivation trees

3.9.2 Interpretation as D-STAG Semantic Trees

In D-STAG, the tree anchored by a modifier of a discourse connective adjoins on
the tree anchored by a discourse relation. Since one encodes discourse relations as
constants of type ¢ — ¢ — ¢, the semantic interpretation of a modifier of a discourse
connective is of type (t -t — t) — (t — t — t). In order to interpret an abstract
constant modeling a tree anchored by a modifier, we refer to the D-STAG semantic
analysis of that modifier. For instance, in the case of the modifier for example, we obtain
the following interpretation of D

for-example .

ZLoeins Drorexampe) = Loams (Drorexamper) = A R p q. Exemplification ¢ (A 7. R 1 ¢q) :
(3.60)

(t—=t—t)=>t—t—t
where: Exemplification is of type t — (t — t) — ¢

The constants D, and D™ encode the elementary trees anchored by the
discourse connective conn. Both of them are interpreted as the same semantic term
since the difference between them is only syntactic. Table 3.23 shows the semantic
interpretations of the constants representing discourse connectives, where mod encodes

a modifier of the discourse relation RCONN signaled by the connective conn.

Example 3.12.

We consider the following examples:

8The interpretations in Table 3.22 use the constant Ceoncar’, Which was already defined in Section 3.3.6.1
on page 262.
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Constants and Types in3g%,, | Their translations by the .Z -V, lexicon

D D initial )\ d4 d3 d2)\ mOd. )\ dsubst. )\ dfoot-

connmedial-A
d4 ((Dnew (mOd RCONN)) (d?) dfoot) <d2 dsubst))

connA )

Dionng; D initial A dy d3 do. X mod. N dgypst. A dfoot~

connmedial-B
1

d4 (CD (mOd RCONN) (d3 dfoot)) (dQ dsubst))

DC,, DC; (t—t—=t)—=t—t—t

Table 3.23: Interpretations of the constants and types from X0%.. to A(X30,.)

(61) a. Fred is grumpy because, for example, he failed an exam.

b. Fred is grumpy because, he, for example, failed an exam.

In each of them, the discourse connective appears at the clause-initial position. In
(61) (a), the modifier of the connective occupies the clause-initial position, whereas in
(61) (b), it occupies the clause-medial position.

The D-STAG derivation tree in the case of the (61)(a) is shown in Figure 3.35(a)
on the next page. We encode it with the term t,™, defined in Equation (3.62).
Figure 3.35(b) illustrates the tree representation of t,™. By interpreting the term t,™*
by the lexicon .Z¢ 0 £ %°7¢ as a TAG derived tree, we obtain the derived tree depicted

synt TAG

in Figure 3.35(c).

tlmod —

AnChorI tCo (DbecauseA IDUA IDUA IDUA Dfor—example (AnChorS IDUA tCQ)) : T (3'62)

In the case of the discourse (61)(b), we build the term t,% = given in Equation (3.63),

init-me

whose tree representation is shown in Figure 3.36(a) on page 306. The lexicon
Lo LS interprets t,7o! | as the derived tree shown in Figure 3.36(b).

synt init-med

tl:?j‘med -
Anchorl tg, (Dyecauses I0Us IDUs I0UA Diorevmmpie (AnchorS Ipy, te,)) = T (3.63)

In order to obtain the semantic representations of the discourses (61)(a) and (61) (b),
we translate the terms t,™* and t,¢  under the lexicon .Z35\.. In both of the cases,

Linit-med
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Anchorl

/\

|
|
: @ becauseA

/Bbecause/ ;xplanation // / \\

/ © Ipue Ipue Ibue  Drrexample An/chirs

Ty [))for-example Ipya ¢ Cy
(a) The D-STAG derivation (b) The ACG encoding of the D-STAG derivation tree
tree

s/s\s
\S
/ F/A AN

comma ADV  comma

/\ \ | \/\

F red \Y Adj CONJ for-example he

I \/\

is grumpy  because failed Det N

his  exam
(c) The derived syntactic tree
Figure 3.35: The D-STAG derivation tree, its ACG encoding and the derived syntactic
tree

we obtain the following interpretation:

ngEXAG(tlmOd) = 30252/'@ (tlﬁfmd) =
Exemplification (3.64)
(I'z. (exam ) A (fail fred z)) 3-04

(A r. EXPLANATION (bad-mood fred) r) : ¢
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Anchorl
/ \
initial
md al-A
Ipue  Ipue IpUa  Derexsmpe™™  AnchorS
/\
Ipua  te,

(a) ACG encoding of the D-STAG derivation tree

S/S\
! /\
/ T /\

CONJ NP
/ \ | // \\
Fred Vv Adj because he comma ADV  comma VP
. | / \
is  grumpy for-example \Y,
| / \
failed  Det

his  exam
(b) The derived syntactic tree

Figure 3.36: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree
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In this chapter we discuss Discourse Combinatory Categorial Grammar (DCCG) as a related
work to the one presented in this thesis. We will consider some questions regarding the
discourse formalisms, G-TAG and D-STAG. The same questions one may pose to the ACG
encodings of these formalisms, which we presented in this thesis. We provide our views on
these problems by suggesting ways of solving them. Furthermore, we outline some directions
for the future work.

4.1 Related Work

As for related work to the current one, we single out the work by Nakatsu and
White (2010). Their approach follows the D-LTAG discourse structure principles (B. L.
Webber, 2004; Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003).°° They develop

20See Section 5.1 on page 131.
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a grammar for discourse based on Combinatory Categorial Grammar (CCG) (Steedman,
1987). CCG can be seen as an extension of Lambek Grammars (Lambek, 1958), where
one has the typeraising and type-changing mechanisms together with the rules of
composition and a functional application.

Nakatsu and White (2010) refer to their grammar for discourse as Discourse
Combinatory Categorial Grammar (DCCG). With the help of DCCG, one can generate
multi-sentential texts. The conceptual representations from which one generates texts
are formulas of Hybrid Logic Dependency Semantics (HLDS) (Kruijff, 2001). HLDS
is based on Hybrid Logics (Blackburn, 2000). One can see Hybrid Logics as an
extension of Modal Logics such that Hybrid Logics enable one to explicitly name
the states (worlds) within a formula. Formulas of HLDS may specify graphs that are
not tree-shaped. DCCG follows the D-LTAG principles, DCCG allows for only those
graphs that one obtains in D-LTAG. In D-LTAG interpretation of a discourse, anaphoric
arguments of discourse adverbials are not specified. The same is true in the case
of a DCCG interpretation of a discourse. However, in text generation, Nakatsu and
White (2010) assume that anaphoric arguments are known in advance (that is, they are
encoded in conceptual representations).

Following D-LTAG, DCCG classifies discourse connectives either as structural or
anaphoric. Arguments of a structural connective are pieces of discourse (text segments).
These text segments are adjacent to each other.°! For example, the paired connectives
on the one hand, on the other hand may have text segments consisting of several clauses
(sentences) as their arguments, as it is in the discourse (65). The paired connectives
relates the text segments (65)(a)-(65)(b) and (65) (c)-(65)(d).

On the one hand, Bienvenue is a mediocre restaurant.

(65)

a.
b. However, it has excellent service.

o

On the other hand, Sonia Rose is a good restaurant.

d. However, it has poor decor.

Thus, the paired connectives on the one hand, on the other hand relate text segments
that are beyond the boundaries of the sentences they appear in. Indeed, the interpreta-
tions of the sentences (65)(b) and (65)(d) are parts of the text segments related by on
the one hand, on the other hand, but the paired connectives on the one hand, on the other
hand appear neither in (65)(b) nor in (65)(d).

In DCCG, some structural connectives may also appear at clause-medial positions.
Namely, the adverbial Aowever is considered as a structural connective in D-LTAG?®?
and therefore DCCG also treats however as a structural one. The following examples
illustrate the cases where however occupies the clause-initial and clause-medial positions.

ADCCG does not deal with attributed texts, i.e., texts with attitude verbs, which are in general
problematic in terms of identifying arguments of discourse connectives, even for subordinate conjunctions
(see Section 4.1).

“2Based on the corpus study, (Forbes et al., 2003) claims that kowever exhibits behavior of a structural
connective rather than of an anaphoric one.
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(66) Mary smiled. However, John frowned.

(67) Mary smiled. John, however, frowned.

Like for paired connectives, at the discourse-level, the semantic scope of however
should be extended so that its argument can be a sentence in which Aowever does not
appear. For instance, one has to encode that in the case of (66) and (67), one of the
arguments of the structural connective however is Mary smiled, which is beyond the
sentence boundaries where fowever occurs. In order to extend the scope of a structural
connective, (Nakatsu and White, 2010) develops the cue threading technique within
DCCG.

While one of two arguments of however is derived from the sentence that is adjacent
to the one where however appears, the other argument (called the Aost argument) of
however is obtained from the sentence where /however appears. As we saw, in the case
where a connective appears at the clause-initial position, it is rather straightforward
to identify the host argument compared to the case where the connective appears at
the clause-medial position.”> With the cue threading technique, one overcomes the
problem of identifying the host argument of a connective in the case it appears at the
clause-medial position.

Moreover, since cue threading was introduced in order to extend the scope of a
connective, it enables one to encode a clause-medial structural connective to have
text segments as its arguments. For instance, in the case of (67), the clause-medial
connective however can get the text segments as its arguments.

Remark 4.1. In the cases of subordinate conjunctions, D-LTAG assumes that they obtain their
arguments locally. In particular, both of the arguments of a subordinate conjunction are provided
within the sentence where the subordinate conjunction appears (due to that (Nakatsu and White,
2070) refers to them as intrasentential comjunctions). Thus, to encode the arguments of a
subordinate conjunction is not problematic. That is why to encode subordinate conjunctions,
DCCG does not make use of the cue threading technique.

Cues can be seen as features decorating categories of DCCG. These features indicate
whether a discourse connective appears in a text segment or not.

... the cue feature is used to mark a clause as containing the structural
connective in question. The cue feature is then threaded through the
derivation until the point at which the semantic relation for the connective
is introduced. Nakatsu and White (2010)

Thus, if a connective Conn appears in a text segment and the expression encoding
that text segment has a feature cue :=conp, it signals that one has to discharge the cue.
To do that, one derives an expression encoding a text segment that can discharge
cue 1= Conn- Since cue threading is used only for structural connectives, the text segment
discharging the cue introduced by a structural connective is adjacent to the text segment

9See Section 4.1.
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where the structural connective appears. The semantic interpretations of these two
text segments are declared as the arguments of the discourse relation signaled by the
structural connective. In this way, DCCG extends the scope of a connective beyond the
single sentence where it appears.

In the case of structural connectives like however, i.e., ones that can occupy clause-
medial positions, the cue threading solves the problem of the syntax-semantics interface.
Indeed, for a connective occupying either a clause-medial position or a clause-initial
one within a clause, the cue denoting the connective becomes the cue value of the
entire clause. Moreover, this cue value can be further thread (if the argument of the
connective is a larger text segment than just the clause where it appears). In this way,
the connective can get text segments as its arguments.

The cue threading is also useful to model the cases where two structural connectives
appear in the same sentence, as it is in the following discourse:

(68) Elixir has no significant side effects. But since the medicine is for you, never give
Elixir to other patients.

In (68), two structural connectives, but and since, appear in the same clause (the
medicine is for you). According to DCCG, the cue value of a clause cannot be two
connectives at the same time, but only one of them. That is, only one structural
connective can be active during each step of a derivation. In (68), at first the connective
since is activated, that is, DCCG assigns since as a value of the cue of the clause.
This clause becomes one of the argument of the connective since. By finding the other
argument of the connective since, one discharges the value of the cue of the clause. The
other argument of the connective since is the clause never give Elixir to other patients.
In this way, the cue value of the clause where structural connective since appears is
discharged. Now, one can activate the connective but. The cue value of the clause
where but appears becomes but. One threads this cue value so that the cue value of
the entire sentence where but appears (since the medicine is for you, never give Elixir to
other patients) becomes but. This sentence becomes an argument of but. DCCG finds
that the other argument of but is the clause Elixir has no significant side effects. In this
way, one obtains the interpretation of the discourse (68).

One can use cues for modeling paired connectives such as on the one hand, on the
other hand. A linguistic assumption of DCCG is that in a discourse if one finds a
text segment involving on the one hand, then one should be able find an adjacent text
segment to that one involving on the other hand. DCCG models that by introducing two
cues otlh and otoh. To discharge otlh, one needs to derive a text segment with the
cue equal to otoh. DCCG encodes this fact by defining a rule involving these cues.

With the help of the cue threading, one can deal with a discourse such as (65),
which gives rise to nested contrast relations. Namely, the interpretation of the discourse
(65) is the following formula:

CONTRAST (CONTRAST(A, B), CONTRAST(C, D))
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(65), repeated a. On the one hand, [Bienvenue is a mediocre restaurant] 4.
b. However, [it has excellent service]pg.
c. On the other hand, [Sonia Rose is a good restaurant].

d. However, [it has poor decor]p.

otlh, A. however, B. otoh, C. however, D.

tSat1h tshow&vevr:[‘ c -_tsotoh - tshmﬂre_r:[‘
tscue\. tscue tscue\. tscue
< <
tSot1h tSotoh
TC

LSnil ,f- tSotoh

>
tsnil

Figure 4.1: A DCCG derivation, Figure adapted from (Nakatsu and White, 2010)

To analyze the discourse (65), DCCG produces the derivation shown in Figure 4.1.
Without getting into details of DCCG, we describe this derivation and the rules (denoted
by TC) that DCCG defines in order to produce such a derivation. In Figure 4.1, ot7A
and otoh stand for the shorthands for on the one hand and on the other hand, respectively.
ot7h introduces the cue otlh in the text segment of7h, A. In the text segment however, B,
the connective however introduces the cue however. One cannot combine these two text
segments directly (none of them is a functor). That is why DCCG introduces a rule that
enables one to convert the text segment containing /however into a functor whose cue
value is not specified. It takes a text segment as an argument and produces a new text
segment that has the same cue value as the argument has. Thus, this functor applied
to the text segment ot74, A produces a new text segment with the cue value equal to
otlh. On the semantic side, by applying this functor (which is derived from the text
segment however, B) to ot1h, A, the semantic interpretation of however, i.e., CONTRAST
receives the interpretation of 4 as an argument. The other argument of CONTRAST
is the interpretation of B (from however, B). The case with the text segment otoh, C.
however, D is analogous. Thus, for otoh, C. however, D, one produces a text segment with
the cue value otoh. On the semantic side, one obtains CONTRAST(C, D). Now, we have
two expressions encoding the text segments with the cues otlh and otoh. DCCG has a
rule for combining such two expressions. Namely, the rule allows one to transform the
text segment with the cue otlh into a functor that takes a text segment with the cue
otoh as an argument. The resultant text segment has a discharged cue (cue := nil). On
the semantic side, the relation CONTRAST signaled by the paired connectives ot7h, otoh
obtains its arguments: the interpretations of the text segments with the cues otlh and
otoh. The interpretations of these arguments are CONTRAST(A, B) (the interpretation
of the text segment with the cue otlh) and CONTRAST(C, D) (the interpretation of the
text segment with the cue otoh). Thus, the interpretation of the discourse (65) is as
follows:

CONTRAST (CONTRAST(A, B), CONTRAST(C, D))
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Remark 4.2. Since DCCG follows D-LTAG, an adverbial connective is considered to have
an anaphoric argument. That is, a DCCG interpretation of an adverbial connective specifies
only one of the arguments of the adverbial connective. The specified argument is the structural
argument of the adverbial connective. The structural argument is the interpretation of the host
clause (one where the connective appears). Thus, to find the structural argument, DCCG does
not need to use cue threading.

As Nakatsu and White (2010) note, one can also develop a purely lexicalized
approach to discourse connectives using DCCG, without making use of cue threading.
Cue treading is only used for structural connective, i.e., for the ones that obtain their
arguments out of the adjacent text segments. Thus, encoding these arguments within
the syntactic descriptions of connectives could be also possible. In that case,** for
each connective, one has to have a number of entries for every syntactic position that
connective may occupy (e.g. the clause-medial and clause-initial positions).

There are certain phenomena that DCCG does not give an account of. In particular,
in the case where two structural connectives share an argument, the cue threading yields
an incorrect semantic analysis. This is due to the fact that DCCG assumes that in each
clause, only one structural connective is active and thereby a clause can be an argument
of only one structural connective. Recall that neither D-LTAG nor G-TAG deal with this
kind of phenomena. The only discourse grammar formalism discussed in the present
work that gives a grammatical account of the phenomenon of the argument sharing
between connectives is D-STAG. Therefore, the ACG encoding of G-TAG cannot deal
with such structures, whereas the ACG encoding of D-STAG can.

On the other hand, for DCCQG, it is not a problem to encode a discourse where a
structural connective shares one argument with a discourse adverbial, whereas their
other arguments are different. To illustrate that, let us consider the following discourse:

(69) [John ordered three cases of Barolo]y. [But he had to cancel the order]; [because
then he discovered he was brokels.

In (69), the structural connective because and the adverbial connective then share the
argument he discovered he was broke. The other argument of because is he had to cancel
the order. Since DCCG follows D-LTAG, it only finds one argument of the adverbial
connective then, obtained from the clause where then appears (which is ke discovered he
was broke). The other argument is left underspecified.

The (fully specified) interpretation of (69g) is (CONTRASTFyF1) A (EXPLANATION F} F) A
(NARRATION Fp F). That is, while because and then share the argument he discovered he
was broke, their other arguments are ke had to cancel the order (the other argument of
because) and John ordered three cases of Barolo (the other argument of then).

Contrary to D-LTAG and DCCG, D-STAG interpretation of a discourse specifies
both arguments of a discourse connective. In D-STAG, to model the cases such as (6g),
one makes use of the DNF of a discourse. In particular for (6g), one constructs a DNF
Cp but Cj because Cy then Cy. That is, one assumes that because has a copy of (s as its
host clause.

%We here only consider grammatical approaches to discourse, such as DCCG, D-LTAG, G-TAG,
D-STAG etc.

312



4.2.  Questions

4.2 Questions

We discuss some questions that one may pose towards formalisms G-TAG and D-STAG,
and subsequently to their ACG encodings presented in this thesis.

4.2.1 Paired Connectives and Nested Relations

Nakatsu and White (2010) pose a question regarding G-TAG. Their question is whether
G-TAG can analyze paired connectives whose arguments can span multiple sentences,
such as the discourse (65) on page 308. One can ask the same question to the ACG
encoding of G-TAG. Below, we provide an answer to this question.

4.2.2 Asymmetry of Clause-medial Connectives

Both arguments of a discourse connective can be text segments according to DCCG,
which is also the case in G-TAG. Indeed, a constant modeling a tree anchored by a
discourse connective is of type T —o T —o T, where T stands for a text segment. However,
notice that we encode clause-medial connectives by constants of type T — S — T,
where S stands for sentences. Thus, in this case, one of the arguments (the host
segment) of the clause-medial connective can be only a sentence but not a text. This
makes our encoding of clause-medial connectives asymmetric. Below, in Section 4.3.2,
we provide a solution that enables a clause-medial connective to have both of the
arguments texts.

4.2.3 Multiple Connectives within a Clause

In this thesis, we indeed develop a lexicalized approach, which does not make use of
cue threading. However, we have not presented encoding of a case where an adverbial
connective and a structural one appear in the same clause. In G-TAG this case is not
studied. While D-STAG deals with such cases, it makes use of a preprocessing step in
order to interpret discourses such as (6g). Below, we will discuss how one can deal
with this case without using a preprocessing step. We provide a possible solution for
this problem by extending the ACG encoding of D-STAG.

(69), repeated
[John ordered three cases of Barolo]p. [But he had to cancel the order];
[because then he discovered he was brokels.
Interpretation: (CONTRASTFF;) A (EXPLANATIONF; F>) A (NARRATION Fy )

4.3 Answers

4.3-1 Paired Connectives and Nested Relations

As a formalism, G-TAG can encode the paired connectives in the same way as it is
done by D-LTAG. Indeed, every connective in G-TAG is structural and this true for
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the paired connectives as well. The underspecified g-derivation tree in Figure 4.2(a)
illustrates the lexical entry for the paired connectives ot7h, otoh, whereas Figure 4.2(b)
depicts its corresponding initial tree anchored by the paired connectives ot7A, otoh. The
feature (+S) indicates that arguments of the lexical entry of the paired connectives can
be either sentences or texts.

otihotoh
(+T,+S)
argr /) \ arge / \\
Prop1  Prope S ¢ S|
(+S) (+S) on the one hand  (arg1)  on the other hand  (arge)
(a) The lexical en- (b) The initial tree for a paired connective

try otihotoh

Figure 4.2: The G-TAG lexical entry and the corresponding elementary tree for the
paired connectives ot7h, otoh

The concept whose lexicalization is the lexical entry (represented as the tree) in in
Figure 4.2(a) is CONTRAST(p1, p2), where p; and ps are the conceptual representations
of Prop1 and Propg, respectively.®> For instance, one can encode the discourse (65)
with the help of G-TAG by constructing the g-derivation tree shown in Figure 4.3(a). A,
B, C, and D denote g-derivation trees of the clauses A, B, C, and D respectively. The
conceptual representation corresponding to the g-derivation tree is the interpretation of
the discourse (65).

(65), repeated a. On the one hand, [Bienvenue is a mediocre restaurant] 4.
b. However, [it has excellent service]pg.
On the other hand, [Sonia Rose is a good restaurant]..

d. However, [it has poor decor]p.

Thus, the answer to the question whether G-TAG can encode discourses such as (65)
is positive. The same is true for the ACG encoding of G-TAG (see Chapter 1). Indeed,
we encode the g-derivation tree and shown in Figure 4.3(b) on the facing page as a
term over the abstract vocabulary Ygme. Then we can interpret the term into derived
tree in order to obtain the parse (syntactic) tree of the discourse. By interpreting the
term with the semantic lexicon, we obtains the semantic interpretation of the discourse.
Moreover, the ACG encoding of G-TAG can deal with the paired connectives in the
cases where they appear at clause-medial positions, which is also possible to do with
the help of DCCG.

%Here, for the sake of simplicity of explanation, we do not use LOGIN but HOL for G-TAG conceptual
representations.
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otihotoh
(+T,+S)

argl/ VrgQ

however however

argl/ \argz argl/ \argQ
A B C D

(a) A g-derivation tree

on the one hand S on the other hand

\S S/S\S

/\ /\

Sonia Rose is a good restaurant however S  Sonia Rose is a good restaurant however S

S

it has excellent service it has poor decor

(b) The derived tree with a paired connectives

Figure 4.3: The g-derivation tree and the syntactic tree it gives rise to

4.3-2 Asymmetry of Clause-medial Connectives

In the ACG encoding of G-TAG, a constant G, is of type T — T — T. Thus, a
discourse connective adv has text segments as its arguments.
However, in the case of clause-medial adverbials, we type the constant Gly™ with
T — S — T. In this case, the first argument is a text (of type T), whereas the other
one is a sentence (of type S). Hence, in such cases, our analysis is not capable
of relating two text segments, but rather a text segment and a sentence. We can
extend our approach to include this case as well. Namely, we introduce a constant
medil . T — T' — T, where T’ stands for a text segment where adv appears at a
clause-medial position. Thus, we should be able to express that in the text segment
represented by a term of type T, the first clause can receive a VP adjunction that
inserts a connective in a clause-medial position in that clause. In G-TAG, a text segment
can only be obtained with the help of some discourse connective conn that relates two
text segments. Let us assume that these text segments are a sentence (a term of type
S) and a text (a term of type T). Figure 4.4 on the next page shows the analysis that
we propose. The first piece is a text. The second one is also a text where we single
out the first clause. The tree anchored by the connective adjoins on the VP adjunction
site (clause-medial position) in the derived tree of this clause.
We encode the analysis illustrated in Figure 4.4 by introducing a constant AcnhorT’
of type S —o DC — T —o T', where DC models the type of underspecified g-derivation
trees of a discourse connective conn.%

9%We could type AcnhorT’ with (8§ T —oT)—S — T — T/, but, if we did so, then the abstract
vocabulary would become third-order.
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PN

Tl Punct Tl

\T
1N

S conn T

VP
/NN

Figure 4.4: An analysis of a case with a connective at a clause-medial position

Now, we can define the semantic and syntactic interpretations of AcnhorT’. We
interpret AcnhorT’ into semantics as the term X’ s; R so. R 51 so. Indeed, the arguments
of AcnhorT’ are the clause (s;), the discourse connective (R), and the text segment (s2).
The discourse connective relates these two discourse units (R s1 $2).

To define a syntactic interpretation of the constant AcnhorT’, we interpret it into
TAG derivation trees. Its interpretation gets three arguments, a clause, a connective,
and a text and produces out of them their concatenation. Thus, we define the following
interpretation of AcnhorT’:

Zetac—TAG(AcnhorT') = X s ¢ t mod. Cegnet (8 mod) c t (4.70)

Where Ceoe: Stands for the tree shown in Figure 4.5(a).
We interpret Go." as follows: It takes two arguments that stand for derived trees
of texts such that the one of them can receive an adjunction. Thus, we propose the

following interpretation of Gn.":

advy

LGTAG-TAG(Ga™) = Xty t2. Coopeat 11 (12 Ciar ) (4.71)

VP

Where C,,.. stands for a tree shown in Figure 4.5(b), and C,;’ denotes the
VP-auxiliary tree anchored by adv.

Thus, one can model a derivation tree of a discourse where a clause-medial connective
adv relates two text segments. Let this discourse consist of 7} segment related to 7.
The first clause in 7" is s;. Let some discourse connective conn relates the clause s; to
the rest of the discourse in 7”, denoted by 7. To model such a discourse, we define
the following term over the abstract vocabulary modeling G-TAG derivation trees:

" = Grdt ¢ (AcnhorT' 8, GooS tr,) = T

advg
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RN

/ S \ S, Punct S|
S, DC, S| ,

(a) The tree corre- (b) The tree corre-
sponding to Cconcat sponding to Ceconcat

Figure 4.5: Trees corresponding to constants Cg,,ai and Cegpear

Where ¢, and ¢, encodes the derivation tree of the text segments 77 and 7%. The
term ¢, encodes the derivation tree of the sentence sj. The constant G, encodes the
connective conn. By interpreting the term ¢,” into TAG derivation trees, we obtain the

following:

ZLeTac-TAG(L") =
Ceoneat ZGTAG-TAG(t1,) (Coonear (ZGTAG=TAG(t:,) Caav) Ceomn ZGeTAG-TAG(I1,)) (4.72)

As Equation (4.72) shows, the tree anchored by the connective adv indeed adjoins
on the derived tree of the clause in the second text segment (ZcTac_TaG(t:,) Caav)-

Our encoding of clause-medial connectives is still second-order. However, the quite
different modeling of the clause-medial connectives from the clause-initial ones can be
considered as a drawback of this encoding. Moreover, we have assumed that one can
always split a text into a sentence and a text that are related by a discourse relation.
This obviously is not the case in general. Thus, in order to give an account of a more
generic case, one has to develop a different approach from the one presented here.
At the same time, it would be also interesting to check the linguistic adequacy of the
phenomenon of a clause-medial connective whose discursive scope goes beyond the

clause where it appears.

4.3-3 Multiple Connectives within a Clause

D-STAG encodes discourses such as (6g) with the help of an extra-grammatical process-
ing, involving a duplication of a clause in the DNF of the discourse. To be able to
encode the discourses such as (6g) with a purely grammatical approach, i.e., without
making use of DNF, one has to analyze the behavior of two connectives appearing in
the same clause. The connectives because and then, each signals a discourse relation
with two arguments. Thus, neither because nor then is a parasitic modifier of the other
one, as it is in certain cases (see Section 5.3.8). Recall that D-STAG encodes modifiers
of discourse connectives with the help of adjunction (since D-STAG is a TAG-based
formalism).

Although in (69) then is a discourse connective, we offer an analysis according to
which then syntactically behaves as a modifier of the discourse connective because. Thus,
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we propose to model then by an auxiliary tree anchored with then that adjoins into
tree with because (see Figure 4.6). We introduce a new adjunction site DR in the tree
anchored by because. To encode this adjunction site, we introduce a new type DR, in
the abstract vocabulary of the ACG encoding of D-STAG, where we encode D-STAG
derivation trees.

(69), repeated
[John ordered three cases of Barolo]p. [But he had to cancel the order];
[because then he discovered he was brokels.
Interpretation: (CONTRASTFF;) A (EXPLANATIONF; F,) A (NARRATION Fy )

DUD® DR
| /\
DU® DR*  then

N

DU* Punct DR® DU®@

J. because DU ]©@

Figure 4.6: The tree anchored with a discourse connective adjoins on the DR node into
the tree anchored with a discourse connective

The challenge is to interpret such an analysis into semantics. We have two trees
anchored by discourse connectives, one of them is adjoined into the other. The resultant
tree has one substitution site where the host clause of these connectives substitutes. In
the semantic interpretation, the host clause is shared by these two connectives, but their
other arguments are different from each other. Thus, one may define a composition
of two discourse relations so that the result of the composition has three arguments:
One of these arguments is shared by these relations, whereas the other two arguments,
each serves as the other argument of each of these relations. We propose the semantic
interpretation of the tree anchored by then modifying the tree anchored by because so
that one obtains the following:

Ao fi fo- (EXPLANATION fi o) A (NARRATION fy fo) : (t =t —t) >t >t —t—t

Indeed, as one can see NARRATION and EXPLANATION share the argument fo. The
argument f» is the interpretation of the host clause for because. The interpretations of
because and then also take the arguments that differ from each other, denoted by f, and
fi. These arguments (fy and f;) come from the piece of discourse: John ordered three
cases of Barolo. But he had to cancel the order. in (69), fo and f; are also related to each
other through the discourse relation CONTRAST, signaled by the connective but.

For now, let us forget about adjunction sites of a tree anchored by a discourse
connective because. In the abstract vocabulary, where we encode D-STAG derivation
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trees,” we introduce two constants Dyue and Dy, to model the trees anchored by
because and then. We propose the following interpretations of Dy.ue and Dipenr:

Diecase = ADRadj. A\ F3 Q Fy F1. A D.
D((Q F2 F1 ()\ x. x)) A\ (F3 ()\fg (FQ ()\fg (Fl ()\fl DRad] EXPLANATIONf3f2 fl))))))) .
(tt — ttt — tit) — ttt — tit — tt (4.73)

Daeny, = AR N1 1o (szfg) A (NARRATIONflfg) : (t —t— t) —t—=t—=t—t
(4.74)
DU'VL
DU®
DU" DU®
DU"x Punct DR DUl® DU* Punct DC DU®
J.  because J. but DU J®
(a) The tree anchored with be- (b) The tree anchored with bu¢

cause

Figure 4.7: Trees anchored by discourse connectives

As one can see the type of the semantic interpretation of Dy, is not the same
as the interpretation of a constant encoding a tree anchored by a connective, in the
case of ACG encoding of D-STAG (cf. Chapter 3). Therefore, we need to introduce
a new type DU," to type the constant Dy.,... Thus, the constant D,.... is of type
DR, — DU — DU,". It corresponds to a tree shown in Figure 4.7(a). Thus, instead
of DU-adjunction, we make use of DU" adjunction. Therefore, to be able to adjoin
the tree anchored by because into the tree anchored by but, the latter should have a
DU"-adjunction site. Figure 4.7(b) depicts the tree anchored by butz. Thus, we encode
the constant D, with the type DU," — DU, — DU, — DU, — DU — DU,.

Now, to encode the derivation tree of discourse (6g), we define the following term:%8

AnChorl CO (Dbut (Dbecause Dthen;n CQ) IDUA IDUA IDUA Cl) (4"75)

By interpreting this term with the help of the above defined interpretations, one
indeed obtains (CONTRASTF(F1) A (EXPLANATION I} F5) A (NARRATION Fjy Fy).

However, as one may notice, the interpretation of type DR, is (t =t — ) >t —
t — t — t, which is not exactly the semantic interpretation of an adjunction (modifier),

%7See Chapter 3.
%In Appendix E, we provide the ACG codes that one can run on the ACG toolkit for this example.
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which would rather be (t -t — t) — (t - ¢t — t). At the same time, one can argue
that then is not a modifier of because either, and thereby, its interpretation is not an
interpretation of a modifier. One can view the interpretation the type DR, to indicate
that: Instead of (t — ¢t — t) - t — t — t, the semantic interpretation of DR, is
(t—=t—=t)=>(t—>t—1t) >t

4-4 Anaphora Resolution and Referring Expression Gen-
eration

The tasks of anaphora resolution and referring expression generation can be considered
beyond the problems of the syntax-semantics interface. One can argue that referring
expression generation is even domain (genre) related. Nevertheless, there are certain
tasks that one can try to solve within the syntax-semantic interface. For example, one
may try to encode a set of possible antecedents to a given anaphoric pronoun. For
that, one can make use of the approach developed in (de Groote, 2006). It presents
a dynamic logic approach to discourse modeling in the spirit of Montague, called
Type Theoretic Dynamic Logic (TTDL). According to the main principles of TTDL, the
meaning, i.e., the interpretation of a sentence must be computed with respect to its
left and right contexts: A meaning of a sentence is a function of its left and right contexts.
In TTDL, the type of a sentence is v — (v — 0) — o, where 7 is the type of a left
context, (7 — o) is the type of a right context, and o is the type of propositions. Thus,
the interpretation of the sentence is a function of its left and right contexts.

One of the main reasons why introducing dynamic frameworks becomes necessary
is a problem of anaphoric accessibility that Montague Grammar faces. Therefore, it is
interesting to see how TTDL deals with this problem. However, before doing so, let us
provide the TTDL operation of discourse updating.

[D.S] = Ai.Ar. [D]i (M. [S]i'r) (4.76)
iy riy—t
£ D.S~ > (4.77)
AL[S]V riy—t

The Equation (4.76) (pictorially illustrated in (4.77)) presents a formula for computing
the result of appending/updating a new sentence S to a given piece of discourse D. If
D is represented by a single sentence, then Equation (4.76) shows a formula for
computing the conjunction of two sentences. Note that in order for the right-hand side
of Equation (4.76) be well-typed, the type of [D] has to be v — (y — 0) — o that
is the same as the type of [S], which means that the #ype of a piece of discourse is the
same as the type of a sentence. Indeed, the resulting piece of discourse [D.S] has its left
(denoted as i) and right (denoted as r) contexts. The left context of [D.S] coincides
with the left context of [D]; the right context of [D.S] is the right context of [S]. That
is why in Equation (4.76), in order to compute [D.S], [D] is applied to the left context
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of [D.S], and [S] is applied to the right context of [D.S]. Such architecture of TTDL
allows it to encode DRT (Kamp, 1988) in a straightforward way:*

ADRS K ={z,...,2,}{C1,...,Cyp} is translated as follows:

MAT. 3z, o, 3. CLA N O A r(xg ooz i) (4.78)
Where (2 ::...: @y, 1) is the result of updating a (left) context i with the discourse
referents z;,...,z, (:: is a list update operator).

For the sake of illustration, let us consider an example of a discourse (79). TTDL
provides the compositional means for interpreting the discourse (79) as u defined in
Equation (4.80). As u indicates, snoring does not apply to z (the discourse referent
introduced by a man) but sel(z ::1). The expression sel(z :: i) stands for an entity that
can be selected in the context (z ::1). The context (z :: i) is a result of updating the left
context of the discourse (79) with z, which comes from the first sentence in (79) and
thus, it is part of the left context for ke is snoring. The tasks of computing the value of
sel(z ::1) is beyond the compositional approach to the problem of the syntax-semantics
interface. Nevertheless, the value of sel(z :: i) cannot be an arbitrary entity but only
from the context (z ::i). In the case of (79), the value of sel(z :: i) should be z.

(79) A man is sleeping. He is snoring.

u = Air.(3z.(man z) A (sleeping ) A (snoringsel(z :: 1)) A (r(z :: 1))) (4.80)

It would be useful to employ the TTDL notions for dealing with anaphora resolution
in the discourse parsing task and also for the referring expression generation in the
discourse generation task. Since one deems these tasks to be outside of the scope
of a compositional approach, one can avoid dealing with anaphora resolution (resp.
referring expression generation) but still parse or interpret a discourse (resp. generate a
discourse). In the interpretation of a discourse, there will not be solved anaphoric links.
In the case of generation, in the generated discourse, the reference expressions would
not be generated. Nevertheless, in both of the cases, one would have a restriction on
the context from where a discourse referent comes from. According to that, one would
have to resolve an anaphoric link in the parsing task, or generate a reference expression
in the generation task.

Asher and Pogodalla (2011) propose an encoding of SDRT in the style of TTDL.
However, one needs to define a richer notion of a left context than just a list of entities.
Indeed, since SDRSs incorporate labels of discourse units and also information about
the attachment points, where new discourse units can be added, one should encode
all these. To adjust the notion of a left context to SDRT, a context is interpreted as a
record with the following fields:

e A field for labels;

*“Besides DRT (Kamp, 1988), DPL (Groenendijk and Stokhof, 19g1) is also encoded in TTDL, because
the notions of left and right contexts defined in TTDL generalize the notions of states, assignments, etc.
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e a field for accessible labels;

e a field for accessible discourse referents;

* a field for a proposition.

The richer left context enables one to select more than just an entity from the
context. Also, one can update a discourse not just with an entity but with a new
content coming from the new piece that attaches to the current discourse. To model
that, Asher and Pogodalla (2011) define the following selector and update functions:

e sel; : v — [ selects an accessible label from the left context;

e selg : v — ¢ selects an accessible discourse referent from the left context;

esel,:v—{¢—{— (—t selects a discourse relation, i.e., a relation that holds
between three labels, and in result produces a proposition;

* v:v— { — v updates a context with the label coming from the new piece by
establishing the links (via rhetorical relations) between the label of the new piece
and the labels contained in the current context.

Developing a similar approach to the one of Asher and Pogodalla’s (2011) may
help to overcome the problems of anaphora resolution/referring expression generation.
In particular, one can model the syntax-semantics interface without explicitly naming
discourse referents but only the contexts from which they can be selected. Furthermore,
by developing an approach following the TTDL style, one can also think of encoding
D-LTAG where certain connectives have anaphoric arguments. Indeed, D-LTAG considers
finding one of the arguments of an adverbial connective to be beyond a compositional
account of the syntax-discourse interface. Therefore, to develop a TTDL style approach
for encoding anaphoric arguments of adverbial connectives of D-LTAG would allow one
to encode D-LTAG within a type-logical framework.
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Conclusion

In this thesis, we took the first steps in the ACG modeling of discourse by encoding
the discourse grammar formalisms, G-TAG and D-STAG, as ACGs. This enabled us to
develop an approach to the syntax-semantics interface for discourse with ACGs.

De Groote (2001) introduced ACGs to address the problems of the syntax-semantics
interface so that both syntax and semantics are encoded in a uniform way. ACGs
proved to be useful for encoding a number of formal grammars, including Tree-Adjoining
Grammars (TAGs). In the ACG encoding of TAG, derivation trees of TAG are modeled
as the pivots to TAG derived trees. In particular, TAG derivation trees were presented as
abstract terms and derived trees as object ones. In addition, by computing out of TAG
derivation trees the Montague style semantic interpretations, the ACG encoding of TAG
proved to be useful for modeling the syntax-semantics interface for sentences (Pogodalla,
2004). The main objective of this thesis was to provide modeling of discourse-level
phenomena with ACGs. In the present work, we have studied the formalisms that offer
solutions to the problem of discourse modeling based on formal grammars. Since the
ACG encoding of TAG with Montague semantics proved to be successful, the formalisms
that offered discourse grammars based on the TAG principles were good candidates
for being encoded as ACGs. We have selected among such formalisms G-TAG (Danlos,
1998) and D-STAG (Danlos, 2009).

G-TAG was introduced for text generation, with an aim to implement it in practical
applications, whereas D-STAG was introduced for discourse parsing. Although both
G-TAG and D-STAG are based on TAG, they were designed under different assumptions
about the discourse structure. While in G-TAG discourse structures are trees, in D-STAG
they can be non-tree shaped directed acyclic graphs (DAGs). That is why G-TAG and
D-STAG grammars are also different from each other. Consequently, the ACGs that
we have constructed to encode G-TAG and D-STAG also differ. Nevertheless, the
same generic architecture serves to both of these ACG encodings. We have modeled
derivation trees (either of G-TAG or of D-STAG) as abstract terms. In each of these
ACG encodings, we have defined two lexicons. One lexicon interprets the abstract terms
encoding derivation trees into derived trees. The other one interprets the same abstract
terms as logical formulas. Within a logical formula, in addition to the interpretations of
clauses in a discourse, one encodes the structure of the discourse.
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The notable difference between G-TAG and D-STAG and their corresponding ACG
encodings is that in order to deal with a certain kind of texts, both G-TAG and D-STAG
make use of an extra-grammatical step, whereas their encodings do not. Namely, in order
to model a text where a discourse connective occupies a clause-medial position, both
G-TAG and D-STAG perform an additional, non-grammatical processing of a discourse.
G-TAG does that after the grammatical processing step. The grammatical processing step
gives rise to a discourse where a discourse connective can only occupy a clause-initial
position. In order to generate a discourse where a connective appears at the clause-
medial position, the G-TAG post processing module moves some connectives (if any)
from clause-initial positions to clause-medial ones. In D-STAG, it is the preprocessing
step that takes care of clause-medial connectives. During the preprocessing step, one
normalizes clauses in a discourse containing connectives at clause-medial positions by
moving those connective to clause-initial positions. Afterwards, one applies the D-STAG
grammar in order to obtain the syntactic and semantic interpretations of the discourse.
Thus, each of the G-TAG and D-STAG grammars encodes discourse connectives only
at clause-initial positions.

In contrast to G-TAG and D-STAG, in their ACG encodings, we have modeled
discourse connectives at clause-medial positions as grammar entries. Namely, in each of
these ACG encodings, we have introduced a constant in the abstract vocabulary for
modeling a connective at a clause-medial position. This constant is different from the
one that represents the same connective at a clause-initial position. Having different
constants for modeling a connective in the clause-initial and clause-medial positions
enabled us to define different syntactic interpretations of these constants. At the same
time, we have defined the same semantic interpretations of these constants. In this way,
one obtains the correct semantic and syntactic interpretations of a discourse containing
connectives at clause-medial positions. For each of the formalisms G-TAG or D-STAG,
in its ACG encoding, we have encoded clause-medial connectives without deviating from
the general principles of that formalism regarding discourse connectives and discourse
structure. Although the grammar entries of G-TAG and D-STAG significantly differ from
each other, in their ACG encodings, we propose modelings of clause-medial connectives
based on the same principles. The method we have developed for encoding clause-
medial connectives within the ACG encodings of G-TAG and D-STAG can be applied
for TAG-based approaches in general. Indeed, both of the abstract vocabularies where
we encode derivation trees of G-TAG and D-STAG are second-order, which is also the
case for the ACG encoding of TAG. In other words, to encode clause-medial connectives,
we do not make use of a more expressive abstract vocabulary than the one that one
designs for encoding TAG derivation trees. While in the abstract vocabulary (either of
the ACG encoding of G-TAG or of D-STAG), we do not encode the constraints needed
for modeling clause-medial connectives, we define rich syntactic interpretations where
we express those constraints. That is, in the syntactic interpretations we encode the
different behaviors of clause-medial and clause-initial connectives. Hence, for TAG-based
approaches, which one can encode with the help of second-order ACGs, one can make
use of the method of encoding clause-medial connectives proposed within the present
work.

The encodings of clause-medial and clause-initial connectives in the abstract vo-
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cabulary are uniform. For pinpointing where the difference between clause-medial and
clause-initial connectives should be encoded, one may search for an answer within
the cognitive aspects of linguistics. We encoded the difference between them in their
syntactic interpretations. One may see it as a technical point of our encodings. Never-
theless, one may consider it as a suggestion that in the derivation-level (in the abstract
vocabulary), the clause-medial and clause-initial connectives have the same properties.
On the other hand, it has been argued that clause-medial connectives have different
pragmatic effects from clause-initial ones (Forbes et al., 2003). However, the grammars
we encoded as ACGs, (a) they do not provide encodings of clause-medial connectives;
(b) they do not consider other aspects of meaning but only discourse semantics. Due to
that neither our encodings of these formalisms takes into account pragmatic phenomena.

The class of second-order ACGs consists of intrinsically reversible grammars. For
grammars of this class, one uses the same polynomial algorithm to build parse structures
both for strings and logical formulas (Kanazawa, 2007; Salvati, 2005). Since the ACG
encodings we have proposed are second-order, the problems of discourse parsing
and generation with the ACG encodings of G-TAG and D-STAG are of polynomial
complexity.

As for future work, we have identified several problems. For some of them, we have
suggested solutions that could be further refined. Among them is a problem of an
interaction of two connectives appearing in the same clause. While that clause serves
as an argument to both of the connectives, the other arguments of the two connectives
differ. Although such cases are studied in D-STAG, to encode them, D-STAG makes use
of an extra-grammatical processing. By contrast, we have provided a purely grammatical
modeling of the phenomenon of two connectives appearing in the same clause. Our
encoding of the complex interaction of two discourse connectives is in the boundaries of
second-order ACGs. However, it would be interesting to examine whether our encoding
of this phenomenon is linguistically sound.

In addition, we have also pointed out that to deal with the referring expression
generation and anaphora resolution tasks within a compositional framework, one may
develop an approach based on the TTDL principles (de Groote, 2006). TTDL does
not provide a tool for generating referring expressions or resolving anaphora; it rather
allows one to develop a compositional approach to modeling of anaphoric expressions
without specifying their antecedents but the contexts from where they can be selected.
Such an approach could be useful for modeling discourse formalisms such as D-LTAG,
where certain connectives have anaphoric arguments and thereby their values are not
specified in a D-LTAG interpretation of a discourse.

To sum up, our work makes explicit the ACGs that one can use for discourse
modeling. In particular, we have provided the ACG encodings of two discourse
grammar formalisms, G-TAG and D-STAG. In this way, we have given an answer to the
main inquiry of this thesis. Since the ACG encodings of both G-TAG and D-STAG are
second-order, our results suggest that the second-order ACGs are suitable for expressing
constraints that one needs in the case of modeling the discourse-level phenomena.
Therefore, the results of the current thesis motivate to further investigate the problems
related to discourse with second-order ACGs and/or identify the limits of second-order
ACGs in terms of discourse modeling.
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Appendix A
TAG as ACG codes

ACG signatures and lexicons that we use in the examples are listed in Section A.1.
It has In order to obtain syntactic and semantic analyses for TAG with Montague
semantics, we use lexicon tag_syntax and tag_semantics , as the following commands
show:

tag_syntax tag_semantics realize
C_grumpy (C_because I_s (C_failed I_s I_vp C_john (C_exam C_an I_n))) (C_is I_vp) C_john:S;

tag_syntax tag_semantics realize
C_grumpy (C_because I_s (C_failed I_s I_vp C_john (C_exam C_an I_n))) C_is C_john:S;

A.1 TAG as ACGs: Signatures and Lexicons

signature derivation_trees =

(» types with as Xa with an "a" index indicate they are meant
for adjunction. See https://hal.inria.fr/inria-00141913 for further
explanation of the TAG into ACG encoding x*)

Sa,Na, Na_d, N, VPa, S,WH : type;

(» Declatiation of abstract constants together with their
types. -> stands for the linear implication and => (not used in this
signature) stands for the intuituinnistic implication x)

C_dog,C_cat,C_exam:Na_d -> Na-> N;
C_sleeps:Sa —> VPa —-> N —> S;

C_chases, C_loves, C_to_love, C_failed:Sa -> VPa -> N -> N -> S;
C_every,C_a,C_an:Na_d;
C_slowly,C_seems : VPa —> VPa ;
C_new,C_big,C_black : Na —> Na;
C_claims,C_said : Sa -> VPa -> N -> Sa ;
C_john,C_paul,C_mary,C_bill : N ;
C_who : WH;

C_liked : Sa —> VPa => WH -> N -> S ;
C_does_think : Sa -=> VPa -=> N -> Sa ;
C_grumpy : Sa -> VPa —> N -> S;

C_is : VPa;

C_because : Sa -> S ->Sa;

(» Dummy element to specify the end of adjunctions x)
I_vp : VPa;

I_n : Na;
I_s : Sa;
end

(» Now we specify the signature for derived trees x)
signature derived_trees =
(x It uses ony one type : tye type of tree x)

tree:type;
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(» Here are the non terminal symbol we find in the trees, with
an index indicating their arity «)

WH1,N1,VP1l : tree —> tree;

N2,S2,VP2:tree —> tree —> tree;

(* Here are the terminal symbols x)

every,dog, chases, a,cat,sleeps,slowly,new,big,black, seems, john,mary,bill, paul,
claims, loves, to_love, who, said, liked, does, think, grumpy, is, epsilon, failed, exam, an, because:tree;

(*» We define feww constants that will make the lexicon definitions easier. =)

n = lambda n . lambda d a.d (a(N1l n)) : tree -> (tree —> tree) -> (tree —-> tree) —-> tree;

iv = lambda v . lambda s a np0 .s (S2 np0 (a (VP1 v))) : tree —-> (tree -> tree) -> (tree -> tree) -> tree -> tree ;

tv = lambda v . lambda s a np0 npl .s (S2 np0 (a (VP2 v npl))) : tree —> (tree -> tree) -> (tree -> tree) —-> tree —> tree —-> tree ;

ph_arg_v = lambda v . lambda s_root a np0 s_foot .s_root (S2 np0 (a (VP2 v s_foot))) : tree -> (tree -> tree) -> (tree -> tree) —-> tree -> tree -> tree;

det = lambda d . lambda n . N2 dn : tree -> (tree —> tree) ;
adv = lambda adv . lambda a v . a (VP2 v adv) : tree —> (tree —-> tree) -> (tree -> tree) ;

1_adj = lambda adj. lambda a n . a (N2 adj n) : tree —> (tree —> tree) —> (tree —> tree) ;

r_adj = lambda adj. lambda an . a (N2 n adj) : tree —> (tree -> tree) —> (tree -> tree) ;

ctrl_v = lambda v. lambda v_root v_foot .v_root (VP2 v v_foot) : tree —> (tree —> tree) -> (tree -> tree) ;

np = lambda proper_name . N1 proper_name : tree —-> tree;

inf_tv = lambda v . lambda s a np0 npl .S2 npl (s (S2 np0 (a (VP1v)))) : tree -> (tree -> tree) —> (tree -> tree) -> tree -> tree —> tree ;
wh_extract_tv = lambda v . lambda s adv wh subj . S2 wh (s (S2 subj (adv (VP1Vv)))) : tree —> (tree —> tree) —> (tree -> tree) —> tree -> tree —> tree;
padj = lambda adj. lambda s a np0. s (S2 np0 (a (VP2 (VP1l epsilon) adj))) : tree -> (tree -> tree) -> (tree —-> tree) -> tree -> tree ;

end

(» Then a signature for the strings x)
signature strings =

string: type;
(» we can define infix and prefix symbols. Note that as for now, the length of symbols can only be 1 *)
infix + : string -> string -> string;

every,dog, chases, a, cat,sleeps,slowly,new,big,black, seems, john,mary,bill, paul,
claims, loves, to, love,who, said, liked, does, think, grumpy, is, epsilon, failed, exam, an, because:string;
end

(» Ok. Now is our first lexicon. It translates derived trees into strings x)
lexicon tag_strings(derived_trees) : strings =

(*» So every tree result in a string x)
tree := string;

every := every;
dog := dog;
chases := chases;
exam := exam;
failed := failed;
a:=a;
an := an;
cat := cat;
sleeps := sleeps;

slowly slowly;
new := new;

big :=Dbig;

black black;
seems seems;
john john;
mary := mary;
bill :=bill;
paul := paul;
claims := claims;
loves := loves;
to_love :=to + love;
who := who;

said := said;
liked := liked;
does := does;

think:=think;

grumpy : =grumpy;
epsilon:=epsilon;
is := is;

because:=because;

WH1,N1,VP1l lambda f.f;
N2,S52,VP2:=lambda f g . £ + g;
end

(» We also provide a signature for the semantics x)
signature semantics =

(x We define the usual types x*)
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e,t:type;

(* Then few non logical-constants *)
dog, cat, sleep, grumpy, exam : e->t;
love, chase, like, fail:e -> e -> t;

j,m,b,p:e;
slowly : t -> t;
seem : (e —>t) —>e —> t;

new,big,black:e ->t;
claim,say,think : e => t -> t;
PresTense: (e ->t) ->e ->t;
Because: t->t->t;
WHO : (e —> t) -> t;
(» And finally, here are the logical constants x)
infix & : t >t -—> t;
infix > : t >t —> t;
binder All : (e=>t) —> t;

binder Ex : (e=>t) -> t;

end

(*» We now define the semantics associated to each derivation tree *)

lexicon tag_semantics (derivation_trees) : semantics =
S :=t;
N:= (e —>t) —>t;

t ->t;
(e =>t) —> (e =>t);
(e =>t) —> (e —> t);

Na_d (e =>t) —> (e —>t) —>t;
WH := (e —>t) —> t;

C_because := lambda a. lambda s x. a (Because s x);
C_every := lambda n.lambda P.All x. (n x) > (P x) ;

C_a, C_an := lambda n.lambda P.Ex x. (n x) & (P x);
C_dog := lambda d a . d (a (Lambda x.dog x)) ;
C_cat := lambda d a . d (a (Lambda x.cat x)) ;
C_exam := lambda d a . d (a (Lambda x.exam X)) ;

C_sleeps := lambda s a S.s(S(a(lambda x. (sleep x))));

C_grumpy := lambda s a S.s(S(a(lambda x. (grumpy x))));

C_is := lambda x. PresTense x;
C_chases := lambda s a S O.s (S (a(lambda x.0(lambda y. (chase x y)))));
C_loves := lambda s a S O.s(S(a(lambda x.0(lambda y. (love x y)))));
C_failed := lambda s a S O.s(S(a(lambda x.0(lambda y. (fail xy)))));
C_to_love := lambda s a O S.s(S(a(lambda x.0(lambda y. (love x y)))));
C_slowly := lambda vp r. vp (lambda x. slowly (r x));
C_seems := lambda vp r. vp (lambda x. seem r x);
C_new := lambda a n . a (Lambda X. (new x) & (n x));
C_big := lambda a n . a (Lambda x. (big x)&(n x));

C_black lambda a n . a (Lambda x. (black x)&(n x));

C_claims := lambda sa a S comp. sa (S(a(lambda x.claim x comp)));
C_said lambda sa a S comp. sa (S(a(lambda x.say x comp)));

C_john := lambda P.P j;

C_mary lambda P.P m;

C_paul := lambda P.P p;

C_bill := lambda P.P b;

C_who := lambda P.WHO P;

C_liked := lambda sa a w S.w(lambda y.sa(S(a(lambda x. (like x y)))));
C_does_think := lambda sa a S comp. sa(S(a(lambda x. (think x comp))));
I_vp := lambda x.x;

I_n:
I_s :
end

lambda x.x;
lambda x.x;

(* And a lexicon from derivation trees to derived trees x)

lexicon tag_syntax (derivation_trees) : derived_trees =
N, S, WH := tree;

Sa,Na,VPa,Na_d := tree -> tree ;

C_john := np john;

C_mary np mary;
C_bill :=np bill;
C_paul := np paul;
C_dog := n dog;

C_cat :=n cat;

C_exam := n exam;
C_chases := tv chases;

C_loves tv loves ;
C_failed :=tv failed ;

C_to_love := inf_tv to_love ;
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C_sleeps := iv sleeps;
C_seems := ctrl_v seems;
C_claims := ph_arg_v claims;
C_every := det every;

C_a := det a;

C_an := det an;
C_slowly := adv slowly;
C_new := 1_ad]j new;

C_big :=1_adj big;
C_black :=1_adj black;

C_who := WH1 who ;
C_liked := wh_extract_tv liked;
C_said := ph_arg_v said;

C_does_think := lambda s_root a subj s_foot . s_root (S2 does (S2 subj (a (VP2 think s_foot))));

C_grumpy := padj grumpy;
C_is := lambda x. VP2 is x;

C_because := lambda a s. lambda x. a (S2 x (S2 because s));

I_n,I_vp,I_s := lambda x.x;
end
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The ACG signature and lexicons that we use in the examples are listed in Section B.3
on the next page.

B.1 Examples

In order to obtain an interpretation of g-derivation trees into:
e TAG derivation trees, we use the GTAGtoTAG lexicon;
* syntactic trees, we use the lexsyntax lexicon;
* logical semantics trees, we use the lexsemantics lexicon.

For example, the ACG code of the term %,°"¢, which encodes the g-derivation tree
in Example 1.2 on page 214, is the following:

G_ensuiteSS
(G_pour_r G_jean (G_passe_laspirateur_sws I_s G_a) (G_etre_recomepnse_par I_s I_vp G_marie))
(G_fait_une_sieste I_s G_a G_jean)

GTAG
ex

To interpret the term #,°™¢ under the lexicon lexsyntax, we use the following code:

lexsyntax analyse

G_ensuiteSS
(G_pour_r G_jean (G_passe_laspirateur_sws I_s I_vp) (G_etre_recomepnse_par I_s I_vp G_marie))
(G_fait_sieste I_s I_vp G_jean)

:T;

In order to obtain the semantic interpretation provided in Example 1.3 on page 223,
we interpret the same term with the help of the lexicon lexsemantics. We obtain the
following semantic representation

SUCC (GOAL (VACUUM j) (REWARD m j)) (NAP j) : t

B.2 An Example of Generation

We parse a term as follows:

lexsemantics parse SUCC (VACUUM j) (NAP j) : T;

We generate the set of terms over signature Gderivation (see below):
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G_ensuiteSS (G_passe_laspirateur I_s G_a G_jean) (G_fait_une_sieste I_s G_a G_jean):T;

(
G_ensuiteST (G_passe_laspirateur I_s G_a G_jean) (AnchorT (G_fait_une_sieste I_s G_a G_jean)) :T;
G_ensuiteTS (AnchorT (G_passe_laspirateur I_s G_a G_jean)) (G_fait_une_sieste I_s G_a G_jean) :T;
G_ensuiteTT (AnchorT (G_passe_laspirateur I_s G_a G_jean)) (AnchorT (G_fait_une_sieste I_s G_a G_jean)) :T;

G_auparavantsSs
G_auparavantST
G_auparavantTS
G_auparavantTT

G_fait_une_sieste I_s G_a G_jean) (G_passe_laspirateur I_s G_a G_jean):T;

G_fait_une_sieste I_s G_a G_jean) (AnchorT (G_passe_laspirateur I_s G_a G_jean)):T;

AnchorT (G_fait_une_sieste I_s G_a G_jean)) (G_passe_laspirateur I_s G_a G_jean):T;

AnchorT (G_fait_une_sieste I_s G_a G_jean)) (AnchorT (G_passe_laspirateur I_s G_a G_jean)):T;

(
(
(
(

AnchorT (G_apres_c (G_fait_une_sieste I_s G_a G_jean) (G_passe_laspirateur I_s G_a G_jean)) :T;
AnchorT (G_apres_r G_jean (G_fait_une_sieste_sws I_s G_a) (G_avoir_passe_laspirateur I_s I_vp)) :T;

AnchorT (G_avant_c (G_passe_laspirateur I_s G_a G_jean) (G_fasse_une_sieste_subjunctive I_s I_vp G_jean)) :T;
AnchorT (G_avant_r G_jean (G_passe_laspirateur_sws I_s G_a) (G_faire_ une_sieste I_s I_vp)) :T;

We translate them using the lexicon lexyield to strings.
For instance, we translate one of the obtained term as follows:

lexyield analyse
G_ensuiteTS (AnchorT (G_passe_laspirateur I_s G_a G_jean)) (G_fait_une_sieste I_s G_a G_jean) :T;

B.3 GTAG as ACG: Signatures and Lexicons

signature Gderivation = (* The Abstract Vocabulary for Encoding G-derivation Trees x)
Sa, N, Na_d, Na, VPa, S, T, Sws, Sinf: type;
I_vp : VPa;
I_s : Sa;
I_n : Na;

G_jean, G_marie :N;
G_petit_dejeuner: Na_d -> Na -> N;
G_le:Na_d;

G_delicieux : Na -> Na;

G_ensuiteST : S -> T -> T; (» constant encoding adverbial :ensuite x)
G_ensuiteTS : T -> S -> T; (» constant encoding adverbial :ensuite x)
G_ensuiteTT : T -> T -> T; (» constant encoding adverbial :ensuite x)
G_ensuiteSS : S -> S -> T; (» constant encoding adverbial :ensuite x)
G_auparavantST : S -> T ->T; (% constant encoding adverbial :auparavant x)
G_auparavantTS : T -> S —> T; (» constant encoding adverbial :auparavant x)
G_auparavantTT : T -> T —> T; (» constant encoding adverbial :auparavant x)
G_auparavantSS : S -> S —> T; (» constant encoding adverbial :auparavant x)

G_avant_c: S -> S ->S; (» canonical g-derivation tree avant x)

G_avant_r: N -> Sws -> Sinf ->S; (x reduced conjunction g-derivation tree avant x)
G_pour_c: S => S ->S§; (*» canonical g-derivation tree pour x)

G_pour_r: N -> Sws -> Sinf ->S; (» reduced conjunction g-derivation tree pour x)
G_apres_c: S —=> S ->§; (* canonical g-derivation tree apres *)

G_apres_r: N -> Sws -> Sinf ->S; (* reduced conjunction g-derivation tree apres *)

G_recomepnse: Sa —> VPa -> N -> N —> §;
G_recomepnse_subjunctive: Sa -> VPa -> N -> N -> S;

G_etre_recomepnse_par: Sa —> VPa —> N -> Sinf; (* reduced clause - infinitive clause x)

G_passe_laspirateur: Sa —-> VPa —> N->5;

G_passe_laspirateur_subjunctive: Sa -> VPa -> N->§5;

G_passe_laspirateur_sws: Sa -> VPa -> Sws; (* clause lacking a subjectx)
G_passer_laspirateur_inf: Sa -> VPa -> Sinf; (» reduced clause - infinitive clause *)
G_avoir_passe_laspirateur: Sa —> VPa -> Sinf; (* reduced clause - infinitive clause *)

G_fait_une_sieste: Sa -> VPa -> N->S;

G_fasse_une_sieste_subjunctive: Sa -> VPa -> N->5;

G_fait_une_sieste_sws: Sa -> VPa ->Sws; (x clause lacking a subjectx)
G_faire_une_sieste: Sa -> VPa -> Sinf; (% reduced clause - infinitive clause x)
G_avoir_fait_une_sieste: Sa —> VPa -> Sinf; (* reduced clause — infinitive clause =*)

G_fait: Sa —-> VPa —> N->N->S;

G_fait_sws: Sa —> VPa -> N ->Sws; (» clause lacking a subjectx)

G_faire: Sa -> VPa -> N ->Sinf; (» reduced clause - infinitive clause x)
G_fasse_subjunctive: Sa -> VPa —> N —-> N->S;

G_avoir_fait: Sa —-> VPa -> N->Sinf; (* reduced clause — infinitive clause x)

G_vraiment : VPa -> VPa;
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G_a : VPa;
AnchorT: S->T;

end

signature TAGDER = (* The Object Vocabulary for TAG derivation Trees =)

Sa, N, Na_d, Na, VPa, S: type;

c_jean, c_marie : N;
c_petit_dejeuner : Na_d->Na->N;
c_le:Na_d;
c_delicieux:Na->Na;

c_fait_une_sieste, c_fasse_une_sieste, c_etre_recomepnse_par, c_passe_laspirateur :Sa -> VPa -> N -> S;

c_recomepnse :Sa —> VPa -> N -> N —-> S;

Concat : S -> S -> S;
c_avantque : S -> S -> S;
c_avantde : S ->S -> S;

c_pourque : S -> S -> §;
c_pour : S ->S —->S;

c_apres, c_apresque: S -> S -> S;

c_disc_ensuite : S -> S -> S;
c_disc_auparavant : S -> S -> S;

c_ensuite_s: Sa;

c_ensuite_v: VPa;

(» Dummy element to specify the end of adjunctions x)
I_vp : VPa;

I_s : Sa;
I_n : Na;

c_fait: Sa —> VPa —> N->N->S;
c_faire: Sa —> VPa —> N->S;
c_fasse_subjunctive: Sa -> VPa -> N —> N->S;

c_faire_une_sieste: Sa -> VPa —->S;

c_fasse_une_sieste_subjunctive: Sa -> VPa -> N->5;

c_recomepnse_subjunctive: Sa -> VPa -> N -> N -> S;

c_avoir_passe_laspirateur: Sa -> VPa -> S;
c_avoir_fait_une_sieste: Sa -> VPa —> S;
c_avoir_fait: Sa —-> VPa -> N->S;
c_passe_laspirateur_subjunctive : Sa —-> VPa -> N->5;
c_passer_laspirateur_inf : Sa -> VPa ->S;
c_vraiment : VPa -> VPa;

c_a : VPa;

lexicon GTAGtoTAG (Gderivation) : TAGDER = (x Interpreting g-derivation trees to TAG derivation Trees «)

T :=S;

S, Sinf, Sinf, S :=
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N:=N;
Na_d:=Na_d;
Na:=Na;

Sws:= N->S;

Sa:=Sa; VPa := VPa;

G_marie:=c_marie;

G_jean:=c_jean;

G_petit_dejeuner:= c_petit_dejeuner;
G_le:=c_le;

G_delicieux := c_delicieux;

G_ensuiteSsS :
G_ensuiteST :
G_ensuiteTS
G_ensuiteTT :

lambda sl s2. c_disc_ensuite sl s2;
lambda sl s2. c_disc_ensuite sl s2;
lambda sl s2. c_disc_ensuite sl s2;
lambda sl s2. c_disc_ensuite sl s2 ;

G_auparavantSS, G_auparavantTT, G_auparavantTS, G_auparavantST :=lambda sl s2. c_disc_auparavant sl s2 ;

G_avant_c := lambda sl s2. c_avantque sl s2 ;
G_avant_r := lambda np sl s2. c_avantde (sl np) s2;
G_pour_c := lambda sl s2. c_pourque sl s2 ;

G_pour_r := lambda np sl s2. c_pour (sl np) s2;

G_apres_r := lambda np sl s2. c_apres (sl np) s2;
G_apres_c := lambda sl s2. c_apresque sl s2 ;
G_recomepnse := c_recomepnse ;
G_recomepnse_subjunctive := c_recomepnse_subjunctive;
G_etre_recomepnse_par := c_etre_recomepnse_par ;
G_passe_laspirateur_sws := c_passe_laspirateur ;

G_fasse_une_sieste_subjunctive:= c_fasse_une_sieste;

G_fait_une_sieste := c_fait_une_sieste;

AnchorT := lambda S. S ;

G_avoir_fait_une_sieste := c_avoir_fait_une_sieste;
G_avoir_passe_laspirateur := c_avoir_passe_laspirateur;
G_fasse_subjunctive := c_fasse_subjunctive;

G_faire := c_faire;

G_fait_sws := c_fait;

G_faire_une_sieste c_faire_une_sieste;

G_fait := c_fait;

G_fait_une_sieste_sws := c_fait_une_sieste;
G_avoir_fait := c_avoir_fait;

G_passe_laspirateur :

c_passe_laspirateur;

G_passer_laspirateur_inf := c_passer_laspirateur_inf;
G_passe_laspirateur_subjunctive := c_passe_laspirateur_subjunctive;
G_vraiment := c_vraiment;

G_a := c_a;

end

signature DerivedTrees = (» The Object Vocabulary for Derived Trees x)

tree :type;

NP1, N1, VP1, V1, Advl, P1l, C, Detl, Punctl : tree —> tree;
NP2, N2, S2, VP2, V2, PP2, Adv2, D2 :tree -> tree —-> tree;
S3: tree —> tree —>tree -> tree;

laspirateur, 1, le, aspirateur, passe, etre, recomepnse, avant, de, que, ensuite, auparavant,

Ensuite, Auparavant, jean, marie, fred, paul, par, une, sieste, fait, faire, fasse, avoir,
apres, pour, petit_dejeuner, delicieux, COMMA, DOT, PRO, epsilon, a, vraiment : tree;
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end

lexicon Syntax (TAGDER) : DerivedTrees =
S, N := tree;

Sa, VPa, Na_d, Na := tree —-> tree;

I_vp,I_s, I_n := lambda x.x;

c_avantque := lambda sl. lambda s2. S2 sl (S2 (PP2 (Advl avant)
c_avantde := lambda sl. lambda s2. S2 sl (S2 (PP2 (Advl avant)
c_pourque := lambda sl. lambda s2. S2 sl (S2 (PP2 (Advl pour)
c_pour := lambda sl. lambda s2. S2 sl (S2 (PP2 (Advl pour)
c_apresque:= lambda sl. lambda s2. S2 sl (S2 (PP2 (Advl apres)
c_apres := lambda sl. lambda s2. S2 sl (S2 (PP2 (Advl apres)
c_jean := NP1 jean;

c_marie := NP1 marie;

c_le := lambda n . N2 le n ;

c_petit_dejeuner := lambda d a.d (a (N1 petit_dejeuner));

c_delicieux := lambda a n . a (N2 delicieux n);

(C que))
(C epsilon)) s2);

(x Translating TAG derivation trees to derived trees x)

(C que)) s2);
(Cde)) s2);
(C que)) s2);

(C epsilon)) s2);

s2);

Concat := lambda sl. lambda s2. S2 sl (S2 (Punctl DOT) s2);

c_disc_ensuite := lambda sl. lambda s2. S3 sl (Punctl DOT) (S2 (Adv2 Ensuite (Punctl COMMA) ) s2);
c_disc_auparavant := lambda sl. lambda s2. S3 sl (Punctl DOT) (S2 (Adv2 Auparavant (Punctl COMMA) ) s2);
c_ensuite_s:= lambda x. S2 (Adv2 Ensuite COMMA) x;

c_ensuite_v:= lambda x. S2 x (Adv2 Ensuite COMMA) ;

(* Dummy element to specify the end of adjunctions =)

I_s, I_vp :=lambda x.x;

c_fait:= lambda sa va np0 npl .sa (S2 np0 (va (VP2 fait npl)));

c_faire:= lambda sa va npl .sa (S2 (NP1 PRO) (va (VP2 faire npl)));

c_fasse_subjunctive:=lambda sa va np0 npl .sa (S2 np0 (va (VP2 fasse npl)));

c_passe_laspirateur := lambda s a np0. s (S2 np0 (a (VP2 (V1 passe) (NP2 (Detl 1) (N1 aspirateur)) )));
c_passe_laspirateur_subjunctive := lambda s a np0. s (S2 np0 (a (VP2 (V1 passe) (NP2 (Detl 1) (N1 aspirateur)) )));
c_passer_laspirateur_inf :=lambda s a. s (S2 (NP1 PRO) (a (VP2 (V1 faire) (NP2 (Detl 1) (N1 aspirateur) ) )));

c_recomepnse := lambda s a npl np0
c_recomepnse_subjunctive:=

c_etre_recomepnse_par := lambda s a npl .s (S2 (NP1 PRO)

(a (VP2 (V2 etre (V1 recomepnse))

.s (S2 np0 (a (VP2 recomepnse npl)));
lambda s a npl np0 .s (S2 np0 (a (VP2 recomepnse npl)));

(PP2 (P1 par) npl))));

c_fasse_une_sieste := lambda s a np0. s (S2 np0 (a (VP2 (V1 fasse) (NP2 (Detl une) (N1 sieste) ) )));
c_fait_une_sieste := lambda s a np0. s (S2 np0 (a (VP2 (V1 fait) (NP2 (Detl une) (N1 sieste) ) )));
c_faire_une_sieste:= lambda s a. s (S2 (NP1 PRO) (a (VP2 (V1 faire) (NP2 (Detl une) (N1 sieste) ) )));
c_fasse_une_sieste_subjunctive:= lambda s a np0. s (S2 np0 (a (VP2 (V1 fasse) (NP2 (Detl une) (N1 sieste) ) )));
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c_avoir_passe_laspirateur:=lambda s a. s (S2 (NP1 PRO) (a (VP2 (VP2 (V1 avoir) (V1 passe)) (NP2 (Detl 1) (N1 aspirateur)

c_avoir_fait_une_sieste:=lambda s a. s (S2 (NP1 PRO) (a (VP2 (VP2 (V1 avoir) (V1 fait)) (NP2 (Detl une) (N1 sieste) ) )));

c_avoir_fait:=lambda s a npl. s (S2 (NP1 PRO) (a (VP2 (VP2 (V1 avoir) (V1 fait)) npl)));

c_vraiment := lambda va x. va (VP2 vraiment x);

c_a := lambda x. VP2 a x;

end

signature strings = (% The Object Vocabulary for Encoding Surface Realizations =)

string: type;
(* we can define infix and prefix symbols. Note that as for now, the length of symbols can only be 1 x)
infix + : string -> string -> string;

laspirateur, 1, le, aspirateur, passe, etre, recomepnse, avant, de, que, ensuite,
auparavant, Ensuite, Auparavant, Jean, Marie, Fred, Paul, par, une, sieste, fait,

faire, fasse, avoir, apres, pour, petit, dejeuner, delicieux, COMMA, DOT, PRO, epsilon, a, vraiment :

lexicon Yield (DerivedTrees) : strings = (» Interpreting derived trees as surface strings =)

(» So every tree result in a string *)
tree := string;

NP1, N1, VP1, V1, Advl, P1, C, Detl, Punctl := lambda f.f;
NP2, N2, S2, VP2, V2, PP2, Adv2, D2 :=lambda f g . f + g;
S3 := lambda f g h. £ + g +h;
faire := faire;
Ensuite := Ensuite ;
1:=1;
le := le;
epsilon := epsilon ;
fait := fait ;
auparavant := auparavant ;
PRO := epsilon ;
sieste sieste ;
ensuite := ensuite ;
DOT := DOT ;
une := une ;
que := que ;
COMMA := COMMA ;
par :=par ;
de := de ;
petit_dejeuner := petit+dejeuner ;

recomepnse := recomepnse ;

apres := apres ;

marie := Marie ;

etre := etre;

avoir avoir ;

jean := Jean ;

passe := passe ;

fasse := fasse ;

Auparavant := Auparavant ;

aspirateur := aspirateur ;

laspirateur : l+aspirateur ;
delicieux := delicieux;
a:=a;
vraiment:=vraiment;

end

signature semantics =

(» We define the usual types )
e,t:type;

qnp = (e => t) —> t : type;

(» Then few non logical-constants *)

SUCC, GOAL, CAUSE : t—>t->t;
sleep, breakfast : e->t;
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REWARD, LOVE, MAKE : e —> e —> t;

J, m:e;
KINDLY, really: t —> t;
seem : (e —> t) —>e —> t;

new,big,black, delicious: e —>t;
claim, say,think : e => t -> t;
NAP, VACUUM : e—>t;

(» And finally, here are the logical constants x)

infix & : t ->t -> t;
infix > : t —>t —>t;
binder All : (e=>t) ->t;
binder Ex : (e=>t) ->t;
end

lexicon lexsemantics (Gderivation) : semantics =

S, T:=¢t;
Sinf, Sws :=gnp -> t;
N :=qnp;

N

(e =>t) > t;

(e=>t) > (e=>1t) —>t;
e =>t) -> (e =>t);

= (e =>t) -> (e =>1t);

Sa =t —>t;

I_vp,I_s,I_n := lambda x.x;

G_jean := lambda P.P j;
G_marie := lambda P.P m;
G_petit_dejeuner := lambda d a . d (a (Lambda x. breakfast x)
G_le:=lambda n.lambda P.Ex x. (n x) & (P x);

G_delicieux := lambda a n .

)i

a (Lambda x. (delicious x)&(n x));

G_ensuiteSS, G_ensuiteTT, G_ensuiteTS, G_ensuiteST := lambda sl s2. SUCC sl s2;

G_auparavantSS, G_auparavantTT, G_auparavantTS, G_auparavantST

G_avant_c := lambda sl. lambda s2. SUCC sl s2;

G_avant_r := lambda S. lambda sl. lambda s2. S(Lambda x. (SUCC (sl (lambda P. P(x)))) (s2 (lambda P. P(x))));
G_apres_c := lambda sl. lambda s2. SUCC s2 sl;

G_apres_r := lambda S. lambda sl. lambda s2. S(Lambda x. (SUCC (s2 (lambda P. P(x)))) (sl (lambda P. P(x))));
G_pour_c := lambda sl. lambda s2. GOAL sl s2;

G_pour_r := lambda S. lambda sl. lambda s2. S(Lambda x. (GOAL (sl (lambda P. P(x)))) (s2 (lambda P. P(x))));
G_recomepnse, G_recomepnse_subjunctive := lambda s a S O . s(S(a(Lambda x.0 (Lambda y. (REWARD x y)))));
G_etre_recomepnse_par := lambda s a S O. s (S(a(Lambda x.0(Lambda y. (REWARD x y)))));
G_passe_laspirateur_sws, G_passer_laspirateur_inf, G_avoir_passe_laspirateur := lambda s a S.s(S(a(Lambda x. (VACUUM x))));
G_passe_laspirateur := lambda s a S.s(S(a(Lambda x. (VACUUM x))));

G_passe_laspirateur_subjunctive:= lambda s a S.s (S (a(Lambda x. (VACUUM x))));

G_fait_une_sieste_sws, G_avoir_fait_une_sieste, G_faire_une_sie

G_fait_une_sieste, G_fasse_une_sieste_subjunctive := lambda s a

G_fasse_subjunctive := lambda s a S O. s(S(a(Lambda x.0(Lambda y

ste := lambda s a S.s(S(a(Lambda x. (NAP x))));

(* The semantic translations of the abstract