

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Discourse Modeling with Abstract
Categorial Grammars

Modélisation du Discours avec les
Grammaires Catégorielles Abstraites

THÈSE

présentée et soutenue publiquement le

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Aleksandre MASKHARASHVILI

Composition du jury

Rapporteurs : Laurent PREVOT Professeur, Université Aix-Marseille
Matthew STONE Mâıtre de conférences, Rutgers University

Examinateurs : Philippe DE GROOTE Directeur de Recherche,
INRIA Nancy – Grand Est (Directeur de thèse)

Sylvain POGODALLA Chargés de recherche,
INRIA Nancy – Grand Est (co-directeur de thèse)

Laurence DANLOS Professeur, Université Paris Diderot,
INRIA – Rocquencourt,
l’Institut Universitaire de France

Annie FORET Mâıtre de conférences, IRISA,
Université de Rennes 1

Christian RETORÉ Professeur, LIRMM, Université de Montpellier
Mathieu CONSTANT Professeur, Université de Lorraine, ATILF

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thesul.

Résumé
Ce mémoire de thèse traite de la modélisation du discours dans le cadre grammatical des
Grammaires Catégorielles Abstraites (Abstract Categorial Grammars, ACG). Les ACG o�rent un
cadre unifié pour la modélisation de la syntaxe et de la sémantique. Nous nous intéressons en
particulier aux formalismes discursifs qui utilisent une approche grammaticale pour rendre compte
des régularités des structures discursives. Nous étudions plusieurs formalismes grammaticaux
qui s’appuient sur les Grammaires d’Arbres Adjoints (Tree-Adjoining Grammars, TAG): D-LTAG,
G-TAG et D-STAG. Dans notre travail, nous proposons un encodage de G-TAG et un encodage
de D-STAG. G-TAG est un formalisme introduit pour la génération de textes en langue naturelle
à partir de représentations conceptuelles (sémantiques). D-STAG est un formalisme synchrone
pour la modélisation de l’interface syntaxe-sémantique du discours. Il a été introduit pour
l’analyse et la construction des structures discursives. L’encodage en ACG de G-TAG et de
D-STAG permet d’éclairer le problème des connecteurs discursifs médiaux que les formalismes
s’appuyant sur TAG ne traitent pas, du moins pas par un mécanisme grammatical. En e�et,
pour prendre en compte ces connecteurs, D-LTAG, G-TAG et D-STAG utilisent tous une étape
extra-grammaticale. Notre encodage o�re au contraire une approche purement grammaticale de
la prise en compte de ces connecteurs discursifs. La méthode que nous proposons est générique
et peut servir de solution à tout encodage des connecteurs médiaux de formalismes fondés sur
les TAG. Notre encodage de G-TAG et de D-STAG se fait avec des ACG de second ordre. Les
grammaires de cette classe sont réversibles. Elles recourent aux mêmes algorithmes polynômiaux
pour construire les structures d’analyse, que ce soit à partir de chaînes de caractères ou à
partir de formules logiques. Ainsi, ces grammaires peuvent être utilisées aussi bien en analyse
qu’en génération. Les problèmes d’analyse et de génération avec les encodages de G-TAG et de
D-STAG en ACG sont donc de complexité polynômiale.

Mots-clés: Grammaire Catégorielle Abstraite, discours, logique, grammaire, sémantique,
syntaxe, TAG

Abstract
This dissertation addresses the questions of discourse modeling within a grammatical

framework called Abstract Categorial Grammars (ACGs). ACGs provide a unified framework
for both syntax and semantics. We focus on the discourse formalisms that make use of a
grammatical approach to capture structural regularities of discourse. We study several TAG-based
discourse grammar formalisms, D-LTAG, G-TAG, and D-STAG. In the present work, we propose
ACG encodings of G-TAG and D-STAG. G-TAG is a formalism introduced for generating natural
language texts out of conceptual (semantic) representation inputs. D-STAG is a synchronous
formalism for modeling the syntax-semantics interface for discourse. It was introduced for
discourse analysis (parsing). The ACG encodings of G-TAG and D-STAG shed light on the
problem of clause-medial connectives that TAG-based formalisms leave out of account. To deal
with a discourse that contains clause-medial connectives, D-LTAG, G-TAG, and D-STAG, all
make use of an extra grammatical step. In contrast, the ACG encodings of G-TAG and D-STAG
o�er a purely grammatical approach to discourse connectives occupying clause-medial positions.
The method we propose is a generic one and can serve as a solution for encoding clause-medial
connectives with the formalisms based on TAGs. The ACG encodings of G-TAG and D-STAG
are second-order. Importantly, the class of second-order ACGs consists of intrinsically reversible
grammars. Grammars of this class use the same polynomial algorithm to build parse structures
both for strings and logical formulas. Thus, second-order ACGs can be used both for parsing
and generation. Therefore, the problems of parsing and generation with the ACG encodings of
G-TAG and D-STAG are of polynomial complexity.

Keywords: Abstract Categorial Grammar, discourse, logic, grammar, semantics, syntax,
TAG

Remerciements

I am deeply indebted and grateful to my supervisors, Dr. Philippe de Groote and Dr.
Silvain Pogodalla, for their inspiration and guidance as I pursued this work.

iii

iv

Je dédie cette thèse à ma mère.

v

vi

Contents

Résumé i

Abstract i

Remerciements iii

List of Tables xvii

List of Figures xix

Introduction générale xxvii

0 Le panorama 1

0.1 Introduction . 1

0.2 Grammaires Formelles . 2

0.3 Grammaires Catégorielles Abstraites 3

0.4 Formalismes Discursifs . 5

0.4.1 G-TAG . 5

0.4.2 D-STAG . 6

0.4.3 Le problèmes des connecteurs médiaux 8

0.5 G-TAG comme ACGs . 8

0.6 Chapter 7 - Clause-Medial Connectives 9

0.7 D-STAG comme ACGs . 9

0.8 Conclusion . 11

I Introduction 13

1 Introduction 15

vii

Contents

1.1 Discourse Coherence, Structure, and Interpretation 15

1.2 Discourse Processing . 17

1.2.1 Discourse Parsing . 17

1.2.2 Discourse Generation . 18

1.3 An Example of a Text Generation System 19

1.4 The Problems Considered in the Present Work 20

1.5 The Road Map of the Thesis . 22

2 Formal Grammars 25

2.1 Overview . 25

2.2 Preliminary Notions . 26

2.3 Phrase Structure Grammars . 31

2.3.1 The Chomsky Hierarchy of Grammars 32

2.3.2 Context-Free Grammars . 33

2.4 Regular Tree Grammars . 35

2.5 Mildly-Context Sensitivity . 36

2.6 Tree-Adjoining Grammars . 37

2.6.1 Basic Notions and Properties 37

2.6.2 LTAG - Lexicalized TAG . 43

2.7 Synchronous Tree Adjoining Grammar 47

3 Abstract Categorial Grammars 51

3.1 Introduction . 52

3.2 Mathematical Preliminaries . 53

3.2.1 Strings and Trees as λo-terms 55

3.2.1.1 Strings . 55

3.2.1.2 Trees . 56

3.2.2 Adjunction and Substitution as Functional Application 57

3.2.2.1 Substitution as Functional Application 57

3.2.2.2 Adjunction as Functional Application 58

3.3 Abstract Categorial Grammars . 60

3.3.1 An Example of an ACG . 62

3.3.2 ACGs with the Same Abstract Language 63

3.3.3 Composition of ACGs . 63

3.4 CFGs as ACGs . 64

viii

3.4.1 General Principles . 65

3.4.2 An Exemplifying Encoding . 65

3.4.3 General Case . 67

3.5 TAGs as ACGs . 69

3.5.1 General Principles . 69

3.5.2 An Exemplifying Encoding . 69

3.5.2.1 TAG Derivation Trees as Abstract Terms 69

3.5.2.2 Derived Trees as Object Terms 70

3.5.2.3 Interpretations as Derived Trees 71

3.5.2.4 Yields as Object Terms 72

3.5.3 General Case . 72

3.5.4 The ACG Encoding of an Exemplifying LTAG for a Fragment

of English . 72

3.6 The ACG Hierarchy of Languages . 75

3.6.1 Second-Order ACGs . 77

3.6.1.1 String Languages . 77

3.6.1.2 Tree Languages . 78

3.6.2 ACGs of Order n ≥ 3 . 79

3.7 Second-Order Almost-Linear ACGs (λ-CFGs) 79

3.8 TAG with Montague Semantics as ACGs 80

3.8.1 Montague Semantics as Object Terms 80

3.8.2 Interpretations as Montague Semantics 81

4 Discourse Theories 87

4.1 Linguistic Aspects of Discourse Connectives 88

4.1.1 Arg1 . 90

4.1.2 Arg2 . 91

4.1.2.1 Attitude Verbs . 92

4.1.2.2 Clause-medial Adverbials 93

4.1.3 Constraints for Identifying Arguments of a Discourse Connective 94

4.2 Rhetorical Structure Theory . 97

4.2.1 Basic Principles . 97

4.2.2 Schemas . 100

4.2.3 A Formalization of RST . 102

4.2.3.1 RST Structures as Trees 102

ix

Contents

4.2.3.2 An Extension of RST 103

4.2.3.2.1 Extended Relations 104

4.2.3.2.2 Nondeterminism 105

4.3 Segmented Discourse Representation Theory 107

4.3.1 Basic Principles of SDRT . 107

4.3.1.1 Discourse Coherence 107

4.3.1.2 The Right Frontier Constraint 111

4.3.2 The Logical Form of Discourse 112

4.3.2.1 The Logical Form of Clauses 113

4.3.2.2 Discourse Representation 115

4.3.2.3 DRT . 116

4.3.2.3.1 The DRS Syntax 116

4.3.2.3.2 Dynamic Semantics of DRSs 119

4.3.2.4 The SDRS Language 120

4.3.2.5 Availability . 123

4.3.2.6 Dynamic Semantics of SDRSs 125

5 Discourse Grammar Formalisms 129

5.1 D-LTAG . 131

5.1.1 D-LTAG Elementary Trees . 133

5.1.2 Structural Connectives . 133

5.1.2.1 Initial Trees . 133

5.1.2.2 Auxiliary Trees . 134

5.1.2.3 Anaphoric Connectives 135

5.1.3 Discourse Parsing with D-LTAG 135

5.1.4 Computing Discourse Semantics 139

5.1.4.1 Subordinate Conjunctions 141

5.1.4.2 Coordinate Conjunctions 142

5.1.4.3 Interaction between Subordinate and Coordinate

Conjunctions . 142

5.1.4.4 Adverbial Connectives 145

5.1.4.5 Computing Semantics of a Discourse with a Parasitic

Connective . 146

5.1.4.5.1 The Interpretation of a Parasitic Adverbial

Connective 147

x

5.1.4.5.2 D-LTAG and Hole Semantics 148

5.1.4.5.3 Computing Interpretation of a Discourse

with a Parasitic Adverbial 149

5.1.5 Discourse Structure . 151

5.2 G-TAG . 153

5.2.1 Architecture . 153

5.2.1.1 Grammatical Step . 153

5.2.1.2 Post Processing Step 153

5.2.2 Conceptual Representation Language 155

5.2.2.1 LOGIN . 155

5.2.2.2 The Language of G-TAG 156

5.2.2.3 Conceptual Representation Inputs as Trees 158

5.2.3 Lexical Databases . 159

5.2.3.1 Lexical Entries . 159

5.2.3.2 Morpho-Syntactic Realizations of a Lexical Entry . . 160

5.2.4 G-derivation and G-derived Trees 162

5.2.5 Discourse Grammar . 164

5.2.5.1 Adverbials . 165

5.2.5.2 Subordinate Conjunctions 167

5.2.5.2.1 Canonical . 167

5.2.5.2.2 Reduced . 168

5.2.6 An Example of Text Generation 168

5.3 D-STAG . 174

5.3.1 Discourse Normalized Form . 175

5.3.2 D-STAG: Synchronous Tree Adjoining Grammar for Discourse 176

5.3.2.1 Trees Anchored by Clauses 177

5.3.2.2 Adverbial Connectives and Postposed Conjunctions . 177

5.3.3 The D-STAG Discourse Update and the Right Frontier of a

Discourse . 178

5.3.4 Semantic Interpretation . 181

5.3.4.1 D-STAG Semantic Trees Encoding λ-terms 182

5.3.4.2 Two Kinds of Semantic Trees Anchoring Discourse

Relations . 182

5.3.5 Parsing Ambiguity . 183

xi

Contents

5.3.6 D-STAG Examples . 184

5.3.7 Preposed Conjunctions . 189

5.3.8 Modifiers of Discourse Connectives in D-STAG 190

II Thesis Contributions 193

1 G-TAG as ACGs 195

1.1 Motivations . 196

1.2 The ACG Architecture for G-TAG . 196

1.3 G-derivation Trees as Abstract Terms 197

1.3.1 Types . 200

1.3.2 Constants . 201

1.3.2.1 Discourse Connectives 201

1.3.2.1.1 Adverbials 201

1.3.2.1.2 Subordinate Conjunctions 202

1.3.2.2 Introducing First Order Predicates in the Abstract

Vocabulary . 206

1.3.2.2.1 A Clause Missing a Subject - Sws 206

1.3.2.2.2 Reduced (Infinitive) Clauses - Sinf 207

1.3.3 Declaring the Abstract Signature ΣGTAG and the Abstract Lan-

guage . 207

1.4 Interpretations as TAG Derivation Trees 208

1.4.1 Interpretations of Types . 209

1.4.2 Interpretations of Constants . 210

1.4.2.1 Adverbials . 210

1.4.2.2 Conjunctions . 210

1.4.2.2.1 The Canonical Conjunction 211

1.4.2.2.2 The Reduced Conjunction 211

1.4.2.3 First Order Predicates 212

1.4.2.3.1 A Reduced (Infinitive) Clause 212

1.4.2.3.2 A Clause Missing a Subject 212

1.5 Interpretations as Conceptual Representations 216

1.5.1 Encoding Conceptual Representations 216

1.5.2 Interpretations of Types . 218

xii

1.5.3 Interpretations of Constants . 219

1.5.3.1 Adverbials . 220

1.5.3.2 Conjunctions . 221

1.5.3.2.1 Canonical Conjunctions 221

1.5.3.2.2 Reduced Conjunctions 221

1.5.3.3 Reduced (Infinitive) Clauses and Clauses Missing

Subjects . 222

1.6 Parsing and Generation Using the ACG encoding of G-TAG 225

2 Encoding Clause-Medial Connectives 233

2.1 Encoding Clause-Medial Connectives 233

2.1.1 A New Analysis of Clause-Medial Connectives 234

2.1.2 Encoding Clause-medial Connectives in the Abstract Vocabulary235

2.2 Interpretations of G-derivation Trees as TAG Derivation Trees 237

2.3 A Modular Interpretation of ΣGTAG to TAG Derivation Trees 239

2.3.1 The Lexicon from ΣGTAG to Σg-der 241

2.3.1.1 Interpretations of Types 241

2.3.1.2 Interpretations of Constants 241

2.3.1.2.1 Conjunctions 241

2.3.1.2.2 First Order Predicates 242

2.3.2 The Lexicon from Σg-der to ΣDer
TAG 242

2.3.2.1 Interpretations of Types 243

2.3.2.2 Interpretations of Constants 243

2.3.2.2.1 Clause-medial Adverbials 243

2.3.2.2.2 Subordinate Conjunctions 243

2.3.2.2.3 First Order Predicates 245

3 D-STAG as ACGs 249

3.1 Motivations . 250

3.2 The ACG Architecture of D-STAG . 250

3.3 D-STAG Derivation Trees as Abstract Terms 251

3.3.1 Interpretations as TAG Derivation Trees 255

3.3.2 Connectives at the Clause-Medial & the Clause-Initial Positions255

3.3.3 Clause-Initial and Clause-Medial Connectives as Adjunctions . 258

3.3.4 A Clause-Medial Connective Between Two Adverbs 259

xiii

Contents

3.3.5 Interpretations of Types . 260

3.3.6 Interpretations of Constants . 262

3.3.6.1 Discourse Connectives 262

3.3.6.2 First Order Predicates 263

3.3.7 Interpretations of Newly Introduced Constants ΣDer
TAG as Derived

Trees . 264

3.3.8 The Examples of Deriving D-STAG Syntactic Trees 265

3.4 Encoding D-STAG Semantic Trees . 273

3.4.1 Extending the Abstract Vocabulary ΣDer
DSTAG 273

3.4.2 The Signature Σsem
DSTAG . 274

3.4.3 Interpretations of Types . 274

3.4.4 Interpretations of Constants . 276

3.4.4.1 Discourse Connectives 276

3.4.4.2 First Order Predicates 277

3.5 The Examples of Semantic Interpretations 278

3.6 Interpretation as Labeled Formulas . 286

3.6.1 A Signature Σsem
LABEL For Encoding Labeled Semantic Repre-

sentations . 287

3.6.2 Interpretations as Types and Terms Built Upon Σsem
LABEL 288

3.6.2.1 Interpretations of Types 288

3.6.2.2 Interpretations of Constants 289

3.6.2.2.1 Discourse Connectives 290

3.6.2.2.2 First Order Predicates 290

3.7 Examples of Labeled Interpretations 292

3.8 Preposed Conjunctions . 295

3.8.1 Interpretation as TAG Derivation, and TAG Derived Trees . . 295

3.8.2 Interpretation as D-STAG Semantic Trees 297

3.9 Modifiers of Discourse Connectives . 299

3.9.1 Interpretations as TAG Derivation Trees 302

3.9.2 Interpretation as D-STAG Semantic Trees 303

4 Related Work and Conclusive Remarks 307

4.1 Related Work . 307

4.2 Questions . 313

4.2.1 Paired Connectives and Nested Relations 313

xiv

4.2.2 Asymmetry of Clause-medial Connectives 313

4.2.3 Multiple Connectives within a Clause 313

4.3 Answers . 313

4.3.1 Paired Connectives and Nested Relations 313

4.3.2 Asymmetry of Clause-medial Connectives 315

4.3.3 Multiple Connectives within a Clause 317

4.4 Anaphora Resolution and Referring Expression Generation 320

5 Conclusion 323

A TAG as ACG codes 327

A.1 TAG as ACGs: Signatures and Lexicons 327

B G-TAG as ACG codes 331

B.1 Examples . 331

B.2 An Example of Generation . 331

B.3 GTAG as ACG: Signatures and Lexicons 332

C Encoding Clause-Medial Connectives 339

C.1 Examples . 339

C.2 ACG Signatures and Lexicons: Clause-Medial Connectives 339

D D-STAG as ACG codes 349

D.1 D-STAG Syntax, Semantics, Postposed & Preposed Connectives, Mod-

ifiers of Discourse . 349

D.2 Examples . 349

D.3 ACG Signatures and Lexicons: Syntax and Unlabeled Semantics . . . 351

D.4 The ACG Signatures and Lexicons for D-STAG as ACG - Labeled

Semantics . 360

D.4.1 Examples . 360

D.4.2 ACG Signatures and Lexicons for Interpreting D-STAG deriva-

tion trees into Labeled Semantics 361

E Related Work and Conclusive Remarks 365

Bibliography 367

xv

Contents

xvi

List of Tables

3.1 TAG as ACG: the L TAG
synt lexicon . 74

3.2 The ACG hierarchy of string languages 78
3.3 The ACG hierarchy of tree languages . 79
3.4 Constants in the semantic vocabulary ΣLog 81
3.5 The semantic interpretations of abstract types 81
3.6 Semantic interpretations of constants . 82
3.7 Semantic interpretations of elementary trees anchored with predicative

adjectives, verbs, adverbs, and copulas . 83
3.8 The semantic interpretation of the LTAG tree anchored with because . . . 84

4.1 Rhetorical relations . 100

5.1 G-TAG features denoting a text, a sentence, either a text or a sentence, etc.165

1.1 Constants in ΣGTAG modeling the G-TAG lexical entry of an adverbial . . 202
1.2 The abstract constants encoding après . 206
1.3 Constants encoding underspecified g-derivation trees of G-TAG 208
1.4 Semantic interpretations of the abstract types 219
1.5 Semantic interpretations of the constants encoding adverbials 221
1.6 Semantic interpretations of constants of ΣGTAG 223

2.1 Interpretations of the types S and VA into ΣDer
TAG 239

2.2 Interpretations of constants enabling to produce terms of types Sws and
Sinf . 242

2.3 Interpretations of the constants encoding conjunctions by the lexicon
Lgder−tag . 245

2.4 Interpretations of constants under the lexicon Lgder−tag 245

3.1 Constants in ΣDer
DSTAG encoding the D-STAG elementary trees anchored

with postposed conjunctions, discourse adverbial, and the empty connective253
3.2 Two constants encoding the discourse connective conn 256
3.3 two constants encoding the conn discourse connective 257
3.4 Interpretations of types . 261
3.5 The interpretations of the constants in ΣDer

DSTAG encoding discourse con-
nectives . 262

3.6 Interpretations of first order predicates from ΣDer
DSTAG into Λ(ΣDer

TAG) 263

xvii

List of Tables

3.7 Interpretations of AnchorI and AnchorS into Λ(ΣDer
TAG) 264

3.8 Interpretations of the constants introduced in ΣDer
TAG into derived trees . . 265

3.9 Constants in the signature Σsem
DSTAG . 274

3.10 Semantic interpretations of the abstract types 276
3.11 Semantic interpretations of the constants encoding discourse connectives 277
3.12 Semantic interpretations of the constants AnchorI and AnchorS 277
3.13 Constants in Σsem

LABEL . 288
3.14 Abbreviations of types . 289
3.15 Interpretations of the abstract types to the types over {e, t , `} under the

lexicon L SEM
LABEL . 289

3.16 Interpretations of the constants AnchorS and AnchorI by the lexicon L SEM
LABEL290

3.17 Semantic interpretations of the constants in ΣDer
DSTAG encoding discourse

connectives . 291
3.18 Semantic interpretations of the constants in ΣDer

DSTAG encoding nouns,
determiners, and proper names . 291

3.19 Constants in ΣDer
DSTAG encoding D-STAG trees anchored with discourse

connectives . 300
3.20 Constants in ΣDer

DSTAG encoding discourse connectives 302
3.21 Interpretations of the types and constants encoding modifiers of discourse

connectives as the types and terms in TAG derivation trees 302
3.22 Interpretations of the abstract constants encoding discourse connectives

as TAG derivation trees . 303
3.23 Interpretations of the constants and types from ΣDer

DSTAG to Λ(Σsem
DSTAG) . 304

xviii

List of Figures

0.1 L’opération de substitution . 3
0.2 L’opération d’adjonction . 3
0.3 Arbres élémentaires ancrés par un adverbe et une conjonction de subor-

dination . 6
0.4 L’arbre auxiliaire ancré par conn, où conn est soit une conjonction pré-

posée, soit un adverbe discursif, soit une conjonction postposée (DU
provient d’une unité de discours) . 7

0.5 Une analyse d’un texte contenant un connecteur adverbial adv en position
médiale . 10

0.6 L’architecture ACG pour G-TAG et D-STAG 11

1.1 An example of an input table of Easyext, borrowed from (Danlos, Frédéric
Meunier, and Combet, 2011) . 19

2.1 A pictorial representation of a labeled ordered tree 29
2.2 The operation of substitution . 29
2.3 The operation of adjunction . 30
2.4 An example of a context-free grammar . 34
2.5 A CFG parse tree . 34
2.6 The TAG operation of substitution . 39
2.7 The TAG operation of adjunction . 39
2.8 TAG elementary trees . 40
2.9 Derivation of a (completed) derived tree 41
2.10 A derivation tree . 42
2.11 TAG derived trees for {anbncn} . 43
2.12 LTAG trees anchored with like . 44
2.13 LTAG elementary trees . 45
2.14 The derived and the derivation trees . 46
2.15 STAG elementary structures . 47
2.16 An STAG derivation tree . 48
2.17 An STAG derived tree pair . 48
2.18 A grammar producing an STAG language 〈{anbncndnen f ngnhn}, {ε}〉 . 49

3.1 A syntactic tree . 57
3.2 Two trees . 58

xix

List of Figures

3.3 A tree obtained by adjoining β into γ . 59
3.4 A picture of an ACG with its abstract and object languages 61
3.5 A syntactic tree . 62
3.6 Two ACGs with the same abstract language 63
3.7 An ACG Composition . 64
3.8 Production rules of the CFG G . 65
3.9 Trees representations of production rules 65
3.10 Two parse trees . 67
3.11 Interpretations of the constants modeling the production rules 67
3.12 Elementary trees of a TAG generating {anbncn} 69
3.13 A tree-representation of a term modeling a derivation tree 71
3.14 A derivation and a derived tree . 71
3.15 The lexicon interpreting TAG derivation trees into TAG derived trees . . 71
3.16 XTAG analyses of determiners and CNs 75
3.17 Examples of terms over ΣDer

TAG modeling LTAG derivation trees 75
3.18 A derivation tree, a term modeling it, and a derived tree 76
3.19 Interpretations of terms over ΣDer

TAG under the lexicon L TAG
synt 76

3.20 A term as a tree, a TAG derivation tree, and a TAG derived tree 76
3.21 The ACG architecture of TAG with Montague semantics 85

4.1 An RST structure of a discourse . 98
4.2 A multinuclear discourse structure . 99
4.3 The RST definition of the rhetorical relation Concession 99
4.4 RST schemas . 101
4.5 An RST discourse structure . 102
4.6 A binary tree corresponding to an RST Structure 103
4.7 An RST structure of a text . 104
4.8 A rhetorical structure of a text . 113
4.9 An example of a DRS . 117
4.10 An example of the DRS merging . 118
4.11 An example of the content inaccessible from the outside the box 118
4.12 An SDRS . 121
4.13 The box-style representation of an SDRS 122
4.14 A DAG representation of an SDRS . 122
4.15 The SDRT analysis of John drives a car. It is red. 124
4.16 An SDRS . 127

5.1 A D-LTAG interpretation and its tree representation 131
5.2 The D-LTAG interpretation of discourse 132
5.3 The interpretation obtained from the D-LTAG interpretation by resolving

an anaphoric link . 132
5.4 D-LTAG elementary trees anchored with a subordinate conjunction, a

coordinate conjunction, and an adverbial 133
5.5 D-LTAG initial trees anchored with discourse connectives 134
5.6 The D-LTAG tree anchored with ε . 135

xx

5.7 A case of a discourse with a clause-initial connective 136
5.8 A case of a discourse with a clause-medial connective 137
5.9 A case of a discourse with a subordinate conjunction 138
5.10 Initial trees anchored with clauses coupled with their semantic interpreta-

tions . 140
5.11 D-LTAG semantic interpretations of discourse connectives 141
5.12 The D-LTAG derived tree, derivation tree, and the interpretation of the

discourse . 142
5.13 The derived and derivation trees, and the interpretation of the discourse 143
5.14 D-LTAG derived and derivation trees . 144
5.15 The coherent interpretation of discourse obtained by a bottom-up traversal

of the derivation tree . 144
5.16 D-LTAG derived and derivation trees . 145
5.17 D-LTAG semantic interpretations of discourse connectives 146
5.18 D-LTAG semantic interpretations of clauses 146
5.19 The D-LTAG interpretation of discourse and its tree representation . . . 147
5.20 The LTAG derivation tree and semantic recipes 148
5.21 The elementary tree set for for example and its interpretation 150
5.22 The MCTAG derivation tree . 150
5.23 Hole semantics for clauses and connectives 150
5.24 An interpretation of a discourse in Hole Semantics 151
5.25 A multi-parent DAG . 152
5.26 The G-TAG architecture . 154
5.27 An input of G-TAG . 157
5.28 The tree representation of a G-TAG conceptual representation input . . . 158
5.29 The GTAG lexical entry récompenser . 160
5.30 The lexical entries linked with REWARD . 160
5.31 The underspecified g-derivation tree récompenserdecorated with various

sets of T-features and morphological features 161
5.32 G-TAG elementary tree corresponding to the underspecified g-derivation trees of

récompenser . 162
5.33 G-derivation trees . 163
5.34 A g-derived tree . 163
5.35 Lexical entries of adverbials and conjunctions 165
5.36 A lexical entry of an adverbial and a corresponding elementary tree . . 166
5.37 Underspecified g-derivation trees for adverbials ensuite and auparavant . . 166
5.38 Elementary trees anchored with adverbials ensuite and auparavant 166
5.39 Underspecified g-derivation trees of a conjunction 167
5.40 The G-TAG analysis of a sentence with the canonical conjunction 168
5.41 The G-TAG analysis of a sentence with a reduced conjunction 168
5.42 conceptual representation input . 169
5.43 Underspecified g-derivation trees of pour 170
5.44 The lexicalization of E12. 170
5.45 The candidates of lexicalization of REWARDING 171
5.46 Underspecified g-derivation trees for passive constructions 171

xxi

List of Figures

5.47 Underspecified g-derivation-trees serving as lexicalizations of NAPPING . . 172
5.48 A g-derivation tree . 172
5.49 The final g-derivation tree . 173
5.50 A (post-processed) derived tree . 173
5.51 DAGs as discourse structures . 174
5.52 The D-STAG representation of a clause 177
5.53 D-STAG elementary trees anchored with adverbial & postposed conjunction . . 178
5.54 The derived and derivation trees for a discourse with DNF C0 Conn1 C1 179
5.55 The four possibilities of adjoining γ2 into γ[0, 1] 180
5.56 The possible D-STAG derivation trees for C0 Conn1 C1 Conn2 C2 where

x = 1, 2, 3, 4 . 180
5.57 A D-STAG derivation tree obeying Constraint 5 181
5.58 Semantic trees A and B ttt denotes (t → t)→ t 183
5.59 The D-STAG derivation tree, and the syntactic and semantic derived trees185
5.60 The D-STAG derivation tree, and the syntactic and semantic derived trees186
5.61 The D-STAG derivation tree, and the syntactic and semantic derived trees187
5.62 The D-STAG derivation tree, and the syntactic and semantic derived trees188
5.63 circumstance (narration2 F1 F2) F0 . 189
5.64 The D-STAG syntactic tree anchored by a preposed conjunction 189
5.65 The D-STAG derivation tree of a discourse, and its syntactic and semantic

derived trees . 190
5.66 An auxiliary tree anchored with a connective modifier adjoins on the DC

node into the auxiliary tree anchored by a discourse connective 191
5.67 The D-STAG tree pair of for-example . 191

1.1 The ACG architecture for G-TAG . 197
1.2 The underspecified g-derivation tree associated with the lexical entry

récompenserand the trees obtained out of it by specifying its variable
nodes . 199

1.3 The TAG derivation and derived trees for Marie a récompensé Jean 199
1.4 A g-derivation tree for the advlexical entry 200
1.5 Two underspecified g-derivation trees for conj 202
1.6 The underspecified g-derivation tree of a conjunction and its correspond-

ing elementary tree . 204
1.7 The LTAG analysis of infinitive phrases: PRO + infinitive verb form . . 204
1.8 The extended G-TAG analysis of a sentence with a reduced conjunction . 205
1.9 Interpretations of g-derivation trees as TAG derivation trees and as TAG

derived trees . 209
1.10 The G-TAG elementary tree anchored with an adverbial 211
1.11 The G-TAG elementary tree anchored with a conjunction 211
1.12 The intended meaning behind the type np((np(S)(S(S . . . 212
1.13 A g-derivation tree of a sentence with reduced conjunction 214
1.14 A g-derivation tree of a text . 214
1.15 A derived tree . 215
1.16 An ACG architecture for G-TAG . 216

xxii

1.17 The types and constants in ΣSem
GTAG . 217

1.18 An example of a conceptual input of G-TAG 217
1.19 A g-derivation tree for the adverbial adv 220
1.20 Two lexical entries, ensuiteand auparavant 220
1.21 The canonical underspecified g-derivation tree of après 221
1.22 An analysis of a case with a reduced conjunction - the shared subject . . 222
1.23 Pour with +[T-reduc.conj] . 222
1.24 Semantic translations of the abstract constants and types 224
1.25 A g-derivation tree of a text . 224
1.26 The ACG architecture for G-TAG . 225
1.27 Terms modeling g-derivation trees . 226
1.28 A derived tree obtained as the interpretation of the terms encoding

g-derivation trees . 226
1.29 A derived tree obtained as the interpretation of the terms encoding

g-derivation trees . 227
1.30 A derived tree obtained as the interpretation of a term encoding a

g-derivation tree . 227
1.31 A derived tree obtained as the interpretation of a term encoding a

g-derivation tree . 228
1.32 A derived tree obtained as the interpretation of a term encoding a

g-derivation tree . 228
1.33 A derived tree obtained as the interpretation of a term encoding a

g-derivation tree . 229
1.34 Surface realizations . 230

2.1 The G-TAG initial tree anchored with an adverbial 234
2.2 An analysis of a text containing the adverbial connective adv at a clause-

medial position . 236
2.3 The tree modeled by CConcat . 237
2.4 An ACG architecture for G-TAG . 240
2.5 An analysis of a case with an adverbial at a clause-medial position of a

sentence with a conjunction . 244
2.6 A g-derivation tree . 246
2.7 The tree obtained by interpreting the term ttagmedial under the lexicon L TAG

synt 248

3.1 D-STAG semantic interpretations of discourse 250
3.2 The ACG signatures and lexicons for encoding D-STAG 251
3.3 The auxiliary trees anchored with the conn discourse connective, where

conn is either a preposed conjunction or a discourse adverbial 252
3.4 The auxiliary tree anchored with conn, where conn is either a preposed

conjunction or a discourse adverbial . 252
3.5 The D-STAG derivation tree of C0 Conn1 C1 254
3.6 Interpretations of D-STAG trees as TAG derivations trees and derived trees255
3.7 Syntactic trees of D-STAG discourse connectives 257

xxiii

List of Figures

3.8 Analyses of the cases where connectives appear at the clause-medial and
the clause-initial positions . 258

3.9 A visualization of the initial tree anchored with saw encoded by the
constant Dsaw . 260

3.10 The illustration of a derived tree of a clause 261
3.11 The elementary tree anchored by Cconcat

., Cconcat
,, and Cconcat 265

3.12 The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree . 267

3.13 The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree . 268

3.14 The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree . 269

3.15 The ACG encoding of a discourse with a clause-medial adverbial 271
3.16 The D-STAG derivation tree, its ACG encoding, and the derived syntactic

tree . 272
3.17 D-STAG syntactic and semantic trees . 273
3.18 semantic trees A and B . 275
3.19 semantic interpretations of discourses . 278
3.20 The D-STAG derivation tree, its ACG encoding, and the derived syntactic

tree . 280
3.21 The D-STAG derivation tree, its ACG encoding, and the derived syntactic

tree . 281
3.22 The D-STAG derivation tree, its ACG encoding, and the derived syntactic

tree . 282
3.23 The abstract term encoding of a discourse with a clause-medial adverbial

and the derived syntactic tree . 284
3.24 The D-STAG derivation tree, its ACG encoding, and the derived syntactic

tree . 285
3.25 The unlabeled and labeled semantic trees 291
3.26 The ACG encodings of the D-STAG derivation trees of the examples . . 293
3.27 D-STAG syntactic elementary trees anchored by connectives 295
3.28 D-STAG derivation trees of discourses with a preposed and a postposed

conjunction . 296
3.29 The interpretation of Dconn-preposed into TAG derivation trees 296
3.30 The D-STAG semantic tree for a preposed conjunction 297
3.31 The D-STAG derivation tree, its ACG encoding, and the derived syntactic

tree . 299
3.32 The tree anchored with a modifier adjoins on the DC node into the tree

anchored with a discourse connective . 300
3.33 Both the discourse connective and its modifier at the clause-initial positions301
3.34 The discourse connective is at the clause-initial position, whereas its

modifier is at the clause-medial position 301
3.35 The D-STAG derivation tree, its ACG encoding and the derived syntactic

tree . 305

xxiv

3.36 The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree . 306

4.1 A DCCG derivation, Figure adapted from (Nakatsu and White, 2010) . . 311
4.2 The G-TAG lexical entry and the corresponding elementary tree for the

paired connectives ot1h, otoh . 314
4.3 The g-derivation tree and the syntactic tree it gives rise to 315
4.4 An analysis of a case with a connective at a clause-medial position . . . 316
4.5 Trees corresponding to constants CConcat

3 and CConcat
2 317

4.6 The tree anchored with a discourse connective adjoins on the DR node
into the tree anchored with a discourse connective 318

4.7 Trees anchored by discourse connectives 319

xxv

List of Figures

xxvi

Introduction générale

xxvii

Introduction générale

xxviii

Chapter 0

Le panorama

Contents
0.1 Introduction . 1

0.2 Grammaires Formelles . 2

0.3 Grammaires Catégorielles Abstraites 3

0.4 Formalismes Discursifs . 5

0.4.1 G-TAG . 5

0.4.2 D-STAG . 6

0.4.3 Le problèmes des connecteurs médiaux 8

0.5 G-TAG comme ACGs . 8

0.6 Chapter 7 - Clause-Medial Connectives 9

0.7 D-STAG comme ACGs . 9

0.8 Conclusion . 11

0.1 Introduction

Dans cette thèse, nous étudions le problème de la modélisation du discours à l’aide des
Grammaires Catégorielles Abstraites (ACG). Une grande variété d’objets linguistiques
peuvent se retrouver sous le terme de "discours". Ces travaux ne s’intéressent cependant
qu’à une notion limitée de discours, à savoir les monologues écrits.

L’étude du discours a permis de montrer qu’il ne s’agit pas d’un simple sac de
phrases, mais il y a encore débat sur ce dont il s’agit vraiment. Un grand nombre de
chercheurs a�rment que le discours a une structure, mais la nature de celle-ci est loin
de faire consensus et donne lieu à diverses théories. Certaines de ces théories analysent
cette structure comme des connexions rhétoriques entre divers éléments signifiants du
discours, appelés unités discursives (constituants discursifs). Deux unités discursives forment
une connexion rhétorique quand il existe une relation rhétorique entre elles. Il est alors
possible de représenter cette structure en identifiant les unités discursives à des nœuds.

1

Chapter 0. Le panorama

On peut ensuite relier deux nœuds par une arête si il y a une relation rhétorique entre
unités discursives dénotées. Il en résulte alors une structure de graphe. D’après certaines
approches, ces graphes sont toujours des arbres, tandis que d’autres prônent plutôt une
structure de graphe acyclique dirigé (DAG). Lors de cette thèse, nous accepterons que
le discours a une structure, mais nous ne trancherons pas sur la forme que prend cette
structure, di�érente selon la théorie étudiée.

Dans la tradition des approches types logiques, de Groote (2001) a défini les
Grammaires Catégorielles Abstraites (ACGs) dans le but de modéliser la syntaxe et
la sémantique de manière uniforme. Les Grammaires Catégorielles Abstraites (ACGs)
utilisent un cadre grammatical à deux niveaux : un niveau abstrait et un niveau objet.

Dans cette thèse, nous étudions la possibilité d’encoder l’interface syntaxe-sémantique
du discours à l’aide des ACGs. Un des objectifs de ces travaux est de construire des
ACGs permettant de gérer les problèmes d’analyse et de génération. En d’autres termes,
nous souhaitons encoder à l’aide des ACGs la manière dont les systèmes d’analyse et
de génération de textes traitent le discours. Dans un même temps, un autre objectif est
de produire des ACGs utilisables dans le sens où il serait possible de les implémenter
pour une application pratique.

0.2 Grammaires Formelles

Étant donné qu’un texte est composé de phrases, l’analyse de texte introduit le problème
de l’analyse de phrase. De nombreuses théories linguistiques ont été proposées dans
le but de décrire les règles syntactiques régissant cette analyse des phrases en langue
naturelle. Parmi elles, celles qui o�rent une caractérisation rigoureuse et mathématique
de l’ensemble des phrases (grammaticales, acceptables) d’une langue naturelle à l’aide
d’un nombre fini de règles sont appelées des grammaires formelles.

Un des formalismes ayant prouvé son utilité dans la description de la syntaxe de la
langue naturelle est celui des Grammaires d’Arbres Adjoints (TAGs) (A. K. Joshi, Levy,
and Takahashi, 1975). Une TAG est constituée d’un ensemble fini d’arbres élémentaires,
d’un ensemble de symboles terminaux et non-terminaux ainsi que d’un symbole non-
terminal distingué. Chaque arbre élémentaire est soit initial, soit auxiliaire. Dans ce
second cas, l’arbre a exactement une de ses feuilles qui est marquée comme étant son
nœud pied (qui a nécessairement le même label non-terminal que la racine de l’arbre).
Étant donné une grammaire TAG, on génère des arbres non-élémentaires, appelés arbres
dérivés, en combinant les arbres élémentaires entre eux, avec d’autres arbres déjà dérivés
ou en combinant des arbres dérivés. Il y a deux manières de combiner ces arbres TAG
: par substitution ou par adjonction. Substituer un arbre A (dérivé à partir d’un arbre
initial) dans un arbre B signifie remplacer une feuille non-terminale marquée pour la
substitution de B par l’arbre A (voir Figure 0.1). L’adjonction d’un arbre A (dérivé
d’un arbre auxiliaire) dans un arbre B est proche de la substitution mais peut être
exécutée sur un nœud interne de B . Plus précisément, A remplace un nœud X de B
de telle sorte que le père de X devienne le père de la racine de A et que les fils de X
deviennent les fils du pied de A (voir Figure 0.1).

Nous nous intéresserons également aux TAGs synchrones (STAG) (Shieber and

2

0.3. Grammaires Catégorielles Abstraites

γ

X ↓

α

(a) Substitution sur le
nœud d’étiquette X

X

(b)
L’arbre
résultant
de la sub-
stitution

Figure 0.1: L’opération de substitution

X

X X

(a) Adjonction sur le
nœud d’étiquette X X

X

X

(b)
L’arbre
résul-
tant de
l’adjonction

Figure 0.2: L’opération d’adjonction

Schabes, 1990). Ici, les structures élémentaires sont des paires d’arbres. Dans une paire
〈α1, α2〉, les sites de substitutions et d’adjonctions de α1 sont liés à ceux de α2. Cela
permet de définir la substitution/adjonction d’une paire d’arbres avec une autre paire
d’arbres en e�ectuant cette substitution/adjonction sur les nœuds liés.

0.3 Grammaires Catégorielles Abstraites

De Groote (2001) introduit les Grammaires Catégorielles Abstraites (ACGs) pour traiter
l’interface syntaxe-sémantique pour laquelle il est intéressant d’encoder à la fois la
syntaxe et la sémantique avec la même machinerie. Les ACGs s’inspirent à la fois
des idées de Curry, 1960 sur la distinction entre deux niveaux de grammaire et de
l’approche de Montague, 1973 de l’interface syntaxe-sémantique où il est possible de
traduire les structures syntaxiques en structures sémantiques. Une grammaire ACG
définit deux langages, un langage abstrait et un langage objet, reliés par un lexique. Un
exemple de grammaire ACG est d’avoir un langage abstrait correspondant à l’ensemble
des structures de dérivation d’une grammaire quelconque, tandis que le langage objet
correspond aux réalisations de cette grammaire. Le lexique relie alors chaque dérivation
à une réalisation, résultant de cette dérivation. Par définition, une grammaire ACG

3

Chapter 0. Le panorama

est un quadruplet composé de deux signatures linéaires d’ordre supérieur, d’un type
distingué et d’un lexique. Une de ces signatures est appelée vocabulaire abstrait et
l’autre vocabulaire objet. Le lexique est un homomorphisme de type faisant correspondre
les constantes et les types du vocabulaire abstrait à des termes construits sur ceux
du vocabulaire objet. Il est nécessaire pour ce lexique que l’image du type d’une
constante soit identique au type de l’image d’une constante. Le langage abstrait est
alors l’ensemble de tous les termes construits sur le vocabulaire abstrait et étant du
type distingué, tandis que le langage objet est l’image de ce langage abstrait par le
morphisme du lexique.

On peut encoder les TAGs à l’aide des ACGs en modélisant les arbres de dérivation
TAG dans le vocabulaire abstrait et les arbres dérivés dans le vocabulaire objet (de
Groote, 2002). Il est ensuite possible de définir une autre ACG dont le langage abstrait
est le langage objet de l’ACG précédente. Le langage objet de cette nouvelle ACG est
le langage des chaînes de terminaux (des formes de surface). Le nouveau lexique fait
correspondre les termes représentant des arbres TAG dérivés aux termes représentant
leurs frontières. Par conséquent, nous avons deux ACG : une qui modélise un langage
d’arbre TAG dérivé comme son langage objet et une autre qui modélise un langage
de chaîne de terminaux TAG comme son langage objet. Comme le langage objet
de la première ACG est le langage abstrait de la seconde, on peut s’intéresser à la
composition des deux. Son vocabulaire abstrait est celui de la première ACG, son
vocabulaire objet est celui de la seconde, son type distingué est celui de la première et
son lexique est la composition des lexiques des deux ACGs. Le lexique de cette ACG
composée traduit donc des arbres de dérivation TAG en des chaînes de terminaux.
Cette propriété de composition des ACGs est importante car elle rend possible la
construction d’une architecture modulaire et connectée.

Afin d’encoder les TAGs en ACGs, nous montrerons comment encoder les arbres et
les chaînes en λ-termes linéaires. Pour les TAGs, nous montrerons que la substitution
et l’adjonction deviennent des applications fonctionnelles sur les λ-termes linéaires.
Nous construirons ensuite un vocabulaire abstrait pour une TAG. Pour chaque arbre
élémentaire de cette TAG, nous introduisons une constante du vocabulaire abstrait
dont le type encode les substitutions et adjonctions que cet arbre peut recevoir. Plus
précisément, pour chaque symbole non-terminal labellisant un site de substitution ou
d’adjonction d’un arbre élémentaire, nous définissons un type atomique (les types les plus
simples de la hiérarchie des types) dans le vocabulaire abstrait. Ces sites correspondent
alors à des arguments de type atomique pour la constante modélisant l’arbre élémentaire.
Par conséquent, les arbres adjoints ou substitués dans un arbre donné sont encodés
comme des termes ayant un type atomique. Le lexique traduit di�éremment les types
atomiques qui encodent des substitutions et ceux qui encodent des adjonctions dans
le vocabulaire objet modélisant les arbres dérivés. Plus précisément, les types des
substitutions deviennent des types atomiques alors que ceux des adjonctions deviennent
des types fonctionnels. De cette manière, les ACGs encodant des TAGs sont du second
ordre car toutes les constantes du vocabulaire abstrait ont un type du second ordre, ce
qui signifie que les arguments des constantes abstraites ne peuvent être que de type
atomique. Les ACGs du second ordre peuvent encoder des formalismes plus expressifs
que les TAGs (de Groote and Pogodalla, 2004).

4

0.4. Formalismes Discursifs

Afin d’encoder des TAGs avec la sémantique de Montague à l’aide des ACGs
(Pogodalla, 2004, 2009), il faut relâcher la contrainte de linéarité présente dans la
définition des ACGs. Plus précisément, on autorise le lexique à faire correspondre un
terme d’un type quasi-linéaire à une constante abstraite qui est, elle, d’un type linéaire
(Kanazawa, 2007). Ceci provient de la sémantique de Montague, dont les λ-termes
sémantiques sont non-linéaires. L’architecture ACG utilisée pour les TAGs avec la
sémantique de Montague se compose de deux ACGs partageant un même vocabulaire
abstrait, qui modélise les arbres de dérivation TAG. Ces deux ACGs ont cependant des
vocabulaires objets distincts, l’un modélisant des arbres TAGs dérivés tandis que l’autre
modélise des formules de la sémantique de Montague. Le premier lexique, que nous
appelons lexique syntactique, traduit donc les arbres de dérivation TAGs en arbres TAGs
dérivés quand le second, appelé lexique sémantique, les traduit en formules logiques.
De cette manière, les arbres de dérivation TAGs deviennent des médiateurs entre la
syntaxe et la sémantique. Les ACGs que nous construisons ici sont du second ordre car
leur vocabulaire abstrait est du second ordre. Cela est important car la complexité de
l’analyse et de la génération dans le cadre des ACGs du second ordre est polynomiale
(Kanazawa, 2007; Salvati, 2005).

0.4 Formalismes Discursifs

Nous avons parlé des formalismes qui capturent les régularités de la structure du discours
à l’aide de grammaires. Comme l’encodage sous forme d’ACG des TAGs avec la séman-
tique de Montague permet de résoudre le problème de l’interface syntaxe-sémantique, les
formalismes discursifs fondés sur les TAGs nous intéressent tout particulièrement. Nous
pouvons en e�et nous attendre à pouvoir user d’une approche similaire pour encoder
ces formalismes discursifs fondés sur les TAGs dans le cadre des ACGs. Parmi ces
formalismes, nous nous concentrons sur les G-TAG (Danlos, 1998) et sur les D-STAG
(Danlos, 2011). G-TAG est un formalisme conçu pour la génération de texte alors que
D-STAG est conçu pour l’analyse du discours. G-TAG propose un structure discursive
en forme d’arbre alors que D-STAG permet d’avoir un structure de graphe acyclique
dirigé (DAG).

Les grammaires discursives dans ces formalismes incluent des arbres élémentaires
représentant des connecteurs discursifs, ces derniers étant soit des conjonctions de
subordination, soit des adverbes discursifs, soit la chaîne vide (connecteur non exprimé
lexicalement).

0.4.1 G-TAG

Les G-TAG génèrent un texte à partir d’une représentation conceptuelle modélisant
un contenu grâce à un langage formel. Elles font correspondre des concepts de cette
représentation conceptuelle à une réalisation linguistique. La structure qui en résulte est
la g-dérivation du texte. Cette g-dérivation rappelle l’arbre de dérivation TAG. Chaque
g-dérivation spécifie un unique arbre g-dérivé. Contrairement aux arbres dérivés TAG,
aucune ancre d’un arbre g-dérivé n’est fléchie, mais ils contiennent les informations

5

Chapter 0. Le panorama

nécessaires pour les fléchir. Ces informations sont utilisés par le module de post-
traitement des G-TAG, qui calcule la forme fléchie des mots avant de produire un texte.
Les G-TAG ont un traitement spécial pour les textes avec une conjonction réduite, comme
dans l’exemple suivant :

(1) Jean a passé l’aspirateur pour être récompensé par Marie.

S

S ↓ S

Adv

adverbe

S ↓

(a) Un arbre élémentaire
ancré par un adverbe

S

S ↓ PP

Prep

avant

C

que S ↓

(b) Un arbre élémen-
taire ancré par une
conjonction

Figure 0.3: Arbres élémentaires ancrés par un adverbe et une conjonction de subordina-
tion

Comme le montre (1), la clause subordonnée (être récompensé par Marie) et la
clause matrice (Jean a passé l’aspirateur) partagent leur sujet sémantique Jean qui n’est
syntaxiquement le sujet que de la première clause. On appelle ce type de relation des
conjonctions réduites. Pour générer de tels textes, les G-TAG ont une approche ad hoc.
De plus, pour générer des textes dans lesquels un connecteur est médial, les G-TAG
usent également de procédés non-grammaticaux. En e�et, comme les connecteurs sont
les ancres lexicales d’arbres élémentaires représentés sur la Figure 0.3, ils ne peuvent
apparaître qu’en position initiale. Pour générer un texte avec des connecteurs médiaux,
le module de post-traitement des G-TAG commence par générer un texte dans lequel
tous les connecteurs sont initiaux (comme dans (2)(a)) avant de déplacer certains
d’entre eux en position médiale. C’est ainsi qu’une G-TAG peut générer un texte avec
des connecteurs médiaux (comme dans (2)(b)).

(2) a. Jean a passé l’aspirateur. Ensuite, il a fait une sieste.

b. Jean a passé l’aspirateur. Il a ensuite fait une sieste.

0.4.2 D-STAG

Les D-STAG s’intéressent à l’interface syntaxe-sémantique dans le discours. Elles se
fondent sut les TAGs synchrones, ce qui signifie que les structures élémentaires des
D-STAG sont des paires d’arbres élémentaires. Un des arbres de ces paires d’arbres
élémentaires est ancré par une entrée lexicale tandis que l’autre est ancré par un λ-terme
simplement typé, correspondant à l’interprétation sémantique de l’entrée lexicale. Les

6

0.4. Formalismes Discursifs

structures dérivés sont alors également des paires d’arbres, l’un d’eux étant appelé
l’arbre syntaxique et l’autre l’arbre sémantique.

Lorsque, dans un texte, un connecteur se trouve en position médiale, les D-STAG
doivent commencer par le normaliser en le déplaçant en début de clause.

Afin que le discours soit cohérent, l’ajout d’une nouvelle clause doit être relié au
reste du discours par le biais d’une relation rhétorique. Dans le cadres des D-STAG,
l’arbre correspondant à cette nouvelle clause est substitué dans l’arbre ancré par le
connecteur qui exprime cette relation rhétorique. L’arbre dérivé qui en résulte est
ensuite adjoint au discours courant.

DU 4O

DU 3O

DU∗ Punct

,

DC

conn

DU 2O

DU ↓}

(a) conn est une conjonction post-
posée

DU 4O

DU 3O

DU∗ Punct

.

DC

conn

DU 2O

DU ↓}

(b) conn est un adverbe ou un
connecteur vide

DU 4O

DU 3O

DC

conn

DU 2O

DU ↓ }

Punct

,

DU 5O

DU∗

(c) conn est une conjonction pré-
posée

Figure 0.4: L’arbre auxiliaire ancré par conn, où conn est soit une conjonction préposée,
soit un adverbe discursif, soit une conjonction postposée (DU provient d’une unité de
discours)

Il y a trois catégories de connecteurs : les conjonctions préposées, les conjonctions
postposés et les adverbiaux. Comme on peut le voir sur la Figure 0.4, les arbres
représentant les conjonctions postposées et les adverbiaux ont la même structure alors
que ceux représentant les conjonctions préposées ont une structure di�érente. Cela est
dû au fait que les conjonctions préposées créent un �cadre de discours� (Charolles,
2005).

Si l’on s’intéresse à la forme des arbres élémentaires des D-STAG, on observe que
l’adjonction sur divers sites produit des arbres dérivés dont la frontière est identique.
En d’autres termes, leur forme de surface est la même. D’un autre côté, les arbres
sémantiques dérivés obtenus en parallèle des arbres syntaxiques produisent des formules
sémantiques distinctes. Cette propriété implique une ambiguïté inhérente à l’analyse de
texte avec les D-STAG.

7

Chapter 0. Le panorama

0.4.3 Le problèmes des connecteurs médiaux

Pour traiter les connecteurs médiaux, tous les formalismes précédemment présentés
nécessitent un traitement (externe à la grammaire) supplémentaire des textes. Ainsi,
ces formalismes utilisent une approche en deux temps pour s’occuper de la génération
et de l’analyse de discours.

0.5 G-TAG comme ACGs

Comme les G-TAG permettent de former une grammaire discursive, on pourrait supposer
qu’encoder les G-TAG à l’aide des ACGs nous permette de modéliser le discours dans
le cadre des ACGs. En e�et, G-TAG s’inspire des TAGs et l’encodage des TAGs en
ACGs serait un bon point de départ. Cependant, il y a des di�érences entre les
G-TAG et les TAGs. Par exemple, elles ont une approche di�érente des informations
lexico-syntaxiques. Tandis que les arbres dérivés TAGs ont des symboles terminaux
fléchis, les arbres dérivés G-TAG ont seulement des lemmes sur leur terminaux, leurs
informations morphologiques et leur flexions se trouvant sur leur nœud père. Ainsi,
au lieu d’encoder directement les arbres de g-dérivation et les arbres g-dérivés, nous
utiliserons la même approche que les TAGs, à savoir avoir des terminaux fléchis et non
des lemmes.

Afin d’encoder les G-TAG avec les ACGs, nous construisons un vocabulaire abstrait
modélisant les arbres de g-dérivation. Comme notre approche de la morpho-syntaxe est
celle des TAGs, nous typons nos constantes abstraites par des types du second ordre
construits à partir des sites de substitution et d’adjonction des arbres élémentaires.

Pour encoder les arbres dérivés et les représentations conceptuelles, nous utilisons
de nouveau le vocabulaire objet présenté lors de l’encodage en ACG des TAGs avec la
sémantique de Montague. En revanche, au lieu d’interpréter directement les arbres de
g-dérivation par des arbres dérivés, nous commençons par les interpréter par des arbres
de dérivation TAGs avant d’interpréter ces derniers par des arbres dérivés comme cela
est fait dans l’encodage en ACG des TAGs.

Les G-TAG génèrent des textes contenant des conjonctions réduites par le biais de
mécanismes extra-grammaticaux. Par opposition, l’approche que nous développons
pour générer ces conjonctions réduites est purement grammaticale. Notre analyse
est présentée en Figure 3. Nous séparons le sujet de la clause matrice, ce qui nous
permet en sémantique d’exprimer le partage de sujet entre la clause matrice et la
clause subordonnée. Du côté de la syntaxe, nous rendons le sujet seulement à la clause
matrice.

De même, afin de traiter les textes contenant des connecteurs médiaux, les G-TAG
ont recours à un module de post-traitement qui déplace ces connecteurs médiaux en
position initiale car les mécanismes purement grammaticaux des G-TAG ne permettent
pas d’analyser ou de générer de connecteurs médiaux. C’est pourquoi l’encodage actuel
des G-TAG par les ACGs ne permet pas de traiter ces textes.

8

0.6. Chapter 7 - Clause-Medial Connectives

0.6 Chapter 7 - Clause-Medial Connectives

Pour étendre l’encodage ACG des G-TAG de sorte qu’il puisse traiter les textes contenant
des connecteurs médiaux, commençons par regarder leur traitement par les TAGs. Dans
ce cadre, on obtient un connecteur médial en adjoignant un arbre auxiliaire de racine
VP ancré par le connecteur dans un arbre dérivé de racine S. Comme ce procédé
place le connecteur dans le VP de la clause, cela provoque un défaut sémantique. En
e�et, la relation discursive représentée par ce connecteur n’obtient qu’un seul de ses
deux arguments. Par opposition, les G-TAG représentent cette même relation discursive
par un arbre initial ancré par le connecteur et disposant de deux sites de substitution
de type S. Avec cette approche, la relation discursive reçoit bien ses deux arguments
mais le connecteur ne peut être qu’en position initiale. Pour traiter correctement cette
situation, nous combinons ces deux visions. Plus précisément, nous proposons d’encoder
les connecteurs médiaux par des constantes abstraites à deux arguments. Un de ces
arguments modélise l’arbre dérivé d’une phrase tandis que l’autre modélise un arbre
incomplet qui attend l’adjonction d’un VP (qui introduira le connecteur dans le VP) pour
être l’arbre dérivé d’une phrase. Cette contrainte pourrait être exprimée par un type
fonctionnel (cette fonction prendrait un arbre auxiliaire de racine VP et produirait un
arbre dérivé de racine S dans lequel le premier arbre a été adjoint au VP). La Figure 0.5
illustre cette analyse. Malheureusement, cela produirait une constante du troisième
ordre, et donc un vocabulaire abstrait du troisième ordre. Or, nous ne disposons pas
d’algorithme garantissant une analyse et une génération de texte en temps polynomial
dans le cadre des ACGs d’ordre supérieur à deux. Afin de contourner ce problème de
complexité, nous devons nous limiter à des ACGs du second ordre. Par conséquent,
nous attribuons un type du second ordre à nos constantes abstraites en distinguant les
deux arguments de la constante encodant le connecteur médial, chacun recevant un
type atomique di�érent. Nous interprétons alors di�éremment ces deux types lors du
passage aux arbres de dérivation TAGs. Le type de l’argument encodant l’arbre dérivé
de racine S se traduit en un type atomique tandis que l’autre se traduit par un type
fonctionnel indiquant que l’arbre TAG correspondant attend une adjonction VP pour
devenir l’arbre dérivé d’une clause.

Un connecteur a la même sémantique, qu’il se trouve en position initiale ou médiale,
c’est pourquoi nous interprétons les constantes modélisant ces deux catégories de
connecteurs avec les même termes sémantiques. Ainsi, nous obtenons à la fois une
interprétation syntaxique et une interprétation sémantique de nos constantes abstraites
encodant les connecteurs médiaux. Cette approche nous permet alors d’analyser et de
générer des textes avec ces deux catégories de connecteurs en une seule étape (sans
avoir recours à plus d’étapes de traitements).

0.7 D-STAG comme ACGs

Comme D-STAG est un formalisme discursif dont la partie grammaticale est fondée
sur les TAGs, nous cherchons à le modéliser par le biais des ACGs. Pour encoder
les D-STAG avec les ACGs, nous modélisons les arbres de dérivation D-STAG par un

9

Chapter 0. Le panorama

S

S ↓ Punct

.

S ↓

VP

VP adv

S

VP

Figure 0.5: Une analyse d’un texte contenant un connecteur adverbial adv en position
médiale

vocabulaire abstrait tandis que les arbres syntaxiques et sémantiques sont encodés par
des vocabulaires objets. En particulier, nous utilisons pour ce vocabulaire objet celui
que nous avions développé pour l’encodage des TAGs par les ACGs. Nous construisons
donc deux ACGs partageant un même langage abstrait. Pour modéliser le niveau clausal
de la grammaire, nous utilisons le niveau clausal de la grammaire obtenue en encodant
les TAGs par des ACGs. Nous couvrons donc à la fois le niveau clausal et le niveau
discursif de la grammaire.

Notre encodage ne nécessite pas d’étape de traitement supplémentaire pour nor-
maliser les textes contenant des connecteurs médiaux. Il est cependant capable de gérer
ces connecteurs, que ce soit pour générer ou pour analyser un texte, quand les D-STAG
ne peuvent faire d’analyse qu’après une étape de pré-traitement. Plus précisément,
nous développons une approche des connecteurs médiaux similaire à celle décrite
précédemment pour les G-TAG. De plus, notre approche des connecteurs discursifs est
plus uniforme dans le cadre des D-STAG que dans celui des G-TAG. En e�et, nous
encodons tous les connecteurs (à l’exception des conjonctions préposées introduisant
un �cadre de discours�) par des constantes du même type dans notre vocabulaire
abstrait. Ensuite, afin de distinguer les connecteurs médiaux des connecteurs initiaux
dans les arbres syntaxiques, nous les interprétons di�éremment. Plus précisément, alors
que nous modélisons les connecteurs médiaux à l’aide d’une adjonction sur un nœud
VP, nous modélisons les connecteurs initiaux à l’aide d’une adjonction sur un nœud S.

L’interprétation sémantique des constantes encodant les connecteurs médiaux et
initiaux est identique, puisque la seule di�érence entre eux se trouve uniquement dans
leurs emplacements syntaxiques dans le texte.

Étant donné que nous pouvons modéliser tous les arbres constructibles avec les
D-STAG, notre encodage hérite de son ambiguïté intrinsèque lors de l’analyse. De
plus, notre vocabulaire abstrait est du second ordre et notre lexique est quasi-linéaire.

10

0.8. Conclusion

Dans ce cas, les résultats de Kanazawa, 2007 nous assurent une complexité polynomiale
pour la génération et l’analyse de texte. Ainsi, notre approche permet de modéliser le
discours car les ACGs rendent possible l’analyse et la génération avec des connecteurs
à la fois médiaux et initiaux tout en restant utilisable en pratique et en ne nécessitant
qu’une seule étape.

De plus, nous interprétons les arbres de dérivation D-STAG par des formules
étiquetées. Cela nous permet de nommer explicitement les arguments de nos connecteurs
avec ces étiquettes.

0.8 Conclusion

Dans cette thèse, nous avons encodé des phénomènes discursifs à l’aide des ACGs. Nous
avons en particulier encodé deux formalismes du discours, les G-TAG et les D-STAG.
Ces encodages permettent de traiter les connecteurs médiaux de manière purement
grammaticale. Ces deux encodages sont du second ordre, or les ACGs du second ordre
disposent d’algorithmes polynomiaux de génération et d’analyse. Nous sommes donc
en mesure de générer et d’analyser des textes avec une complexité polynomiale à l’aide
de notre encodage en ACG. La Figure 0.6 illustre l’architecture ACG utilisée à la fois
pour D-STAG et pour G-TAG. Les cercles correspondent aux langages et les flêches
aux lexiques.

Arbres de Dérivation
du Discours

Sémantique

ΣDer
TAG

Dérivations TAG

ΣSynt
TAG

Arbres Dérivés

L2

L1

L TAG
synt

L3 = L TAG
synt ◦L1

Figure 0.6: L’architecture ACG pour G-TAG et D-STAG

11

Chapter 0. Le panorama

12

Part I

Introduction

13

Chapter 1

Introduction

Contents
1.1 Discourse Coherence, Structure, and Interpretation 15

1.2 Discourse Processing . 17

1.2.1 Discourse Parsing . 17

1.2.2 Discourse Generation . 18

1.3 An Example of a Text Generation System 19

1.4 The Problems Considered in the Present Work 20

1.5 The Road Map of the Thesis . 22

In this chapter we brie�y overview some basic concepts and notions that we use throughout
the thesis. We brie�y discuss the problems of discourse (text) parsing and generation.
Afterwards, we determine the questions within the discourse modeling problem that the
present work addresses.

Since 1950s a number of theories have been proposed for analyzing natural language
sentences, from both the syntactic and semantic points of view. Discourse processing
can be seen as a further step in natural language studies. Under ‘discourse’ one may
understand various kinds of natural language acts, either in written or spoken form, or
a multi-modal one. In this thesis, we will consider a restricted notion of a discourse by
focusing on only monologues. Thus, we consider ‘discourse’ and ‘monologic text’ or
just ’text’ to be synonyms (unless otherwise stated).

1.1 Discourse Coherence, Structure, and Interpretation

Let us begin with a fact: discourse has structure. Whenever we read
something closely, with even a bit of sensitivity, text structure leaps o� the
page at us. Hobbs (1985)

15

Chapter 1. Introduction

A discourse is not just a set of meaningful propositions (sentences). By listing
sentences, one does not necessarily obtain a meaningful discourse, even though each of
the sentences might be meaningful on its own. The bits of information presented by
di�erent meaningful pieces of a discourse must be related. Otherwise, a discourse would
be hardly comprehensible.

Moreover, even though a discourse may consist of several pieces and they might be
connected to each other in such ways that their conglomeration makes sense, the discourse
may still sound odd. To illustrate that, let us consider the discourses (3) and (4) from
(Asher and Lascarides, 2003).

(3) π1. A burglar broke into Mary’s apartment.

π2. Mary was asleep.

π3. He stole some silver.

(4) π1. A burglar broke into Mary’s apartment.

π′2. A police woman visited her the next day.

π3. ??He stole some silver.

Both of the discourses (3) and (4) convey messages that are fairly straightforward to
perceive. Nevertheless, the discourse (4) sounds odd, whereas the discourse (3) does
not. In (4) the anaphoric reference provided by he in π3 to a bugler in π1 makes the
discourse (4) infelicitous. One may argue that a problem with the discourse (4) is due
to the mispositioned sentence π3. Indeed, if π3 were placed right after π1 in (4), then
the resultant discourse would be felicitous. On the other hand, in the discourse (3), π3

does not come right after π1, but in spite of that, the discourse (3) is felicitous. As
Asher and Lascarides (2003) explain, in the discourse (3), π2 provides a background
information to π1. Since π2 is a background information, it cannot break the main
story line established by π1. Therefore, the discourse π1 π2 π3, where he from π3 refers
to a burglar introduced in π1 (not in π2), is felicitous. However, in the case of the
discourse (4), adding π′2 to π1 creates a narrative. In this case, π1 cannot create the
main story line of the discourse. Adding π3 after π′2 makes the resultant discourse
infelicitous because the anaphoric pronoun he from π3 cannot find its antecedent in π1

due to presence of π′2 between π1 and π3.
Various theories address the problem of defining what is a coherent (meaningful,

felicitous) discourse (e.g. (Asher and Lascarides, 2003; Hobbs, 1985; Mann and
Thompson, 1986; Marcu, 1997)). Most of the theories agree that a coherent discourse
should have a connected structure, where the structure is defined by certain relations
connecting discourse units, i.e., meaningful pieces of a discourse. These relations are
sometimes called coherence relations (Hobbs, 1985), or rhetorical relations (Mann and
Thompson, 1986), or simply discourse relations.

Some theories consider the structure to be the main subject of the discourse studies
(Hobbs, 1985; Mann and Thompson, 1987). At the same time, the notion of a
discourse structure is not universally agreed but varies from theory to theory (Asher
and Lascarides, 2003; Mann and Thompson, 1987; Bonnie Webber, Stone, Aravind Joshi,

16

1.2. Discourse Processing

and Knott, 2003). Given a discourse, one can consider discourse units (constituents)
as nodes. By placing an edge between two nodes if they are related by a discourse
relation, one obtains a graph representation of a discourse structure. While some
authors assume that a discourse structure is tree-shaped (Mann and Thompson, 1987),
some others argue against that (Danlos, 2011; Wolf and Gibson, 2004). What kind of
non-tree shaped graphs discourse structures are is also among the questions that are
still subjects to discussions. In the rest of the thesis, we will assume that a discourse has
a structure. However, what a discourse structure is will depend on a particular theory.

Apart from theories that study discourse structure, theories such as Discourse
Representation Theory (DRT) (Kamp, 1988; Kamp, van Genabith, and Reyle, 2011)
and Dynamic Predicate Logic (DPL) (Groenendijk and Stokhof, 1991), aim to interpret
a discourse as a logical form, similar to Montague’s (1973) translations of sentences
into logical forms.

Segmented Discourse Representation Theory (SDRT) (Asher and Lascarides, 2003)
has similar goals as DRT and DPL, that is, it also interprets a discourse in a logical
setting. However, SDRT makes use of the pragmatic knowledge coming from the structure
of discourse, to which DRT and DPL do not pay significant attention. For instance,
in order to explain why the discourse (4) sounds odd, the knowledge obtained from
the logical interpretation of (4) would not help much. It is the discourse structure and
its properties (derived from pragmatic knowledge) that show why the discourse (4) is
infelicitous.

1.2 Discourse Processing

In computational linguistics, the problem of discourse processing has been studied
from various points of view. Among fundamental problems of discourse processing are
discourse parsing (analysis) and generation.

1.2.1 Discourse Parsing

Given a discourse theory, the main goal of the discourse parsing (analysis) task is to
find an analysis of that discourse or show that no analysis is applicable to it. Since
discourse theories may significantly di�er from each other, some of them may parse
a given discourse, whereas others may fail to parse it. It might be also the case that
two di�erent theories, both can parse a given discourse, but they produce contrasting
analyses of that discourse. Although both an analysis and an output of the analysis of
a discourse depends on a particular approach, there are generic problems that the most
of the theories consider in their discourse parsing tasks. One of them is identification
of basic (atomic, minimal, elementary) discourse units (idea units) in a given discourse.
Then, a problem is to find how these discourse units are related to each other. Another
problem is to determine whether it is possible to group the related discourse units to
create a larger discourse unit; how larger discourse units are related to other discourse
units; when one has to stop the parsing process, etc. All in all, discourse parsing is
a nontrivial task and the output of the discourse parsing task depends on a theory.

17

Chapter 1. Introduction

Therefore, while describing a particular approach to discourse parsing, one has to take
into account the assumptions about the discourse structure of that approach.

1.2.2 Discourse Generation

The discourse generation problem is a part of a more generic problem of natural
language generation (NLG). Since we identify a discourse with a monologic text, we
focus on the part of NLG that is concerned with generating monologues.

NLG focuses on building such systems that can produce as understandable, coherent,
texts in natural languages as humans do. As a rule, the starting point of an NLG
system is some nonlinguistic representation of information. Such a representation is
an input to the NLG system. By making use of knowledge about a natural language,
NLG systems try to automatically produce natural language texts. To do that, NLG
should be equipped with a considerable amount of linguistic knowledge at the levels of
pragmatics, semantics, syntax, morphology, and phonology.

In addition to dealing with linguistic problems of text generation, NLG systems deal
with the tasks such as information management, information selection, and information
computing.

One of the first views that comes to a mind while explaining what NLG task is, is
that NLG may be viewed as the opposite to the natural language understanding (analysis,
parsing): While in natural language understanding the system needs to disambiguate
the linguistic input (text, sentence) to produce the machine understandable output, in
NLG the system needs to make decisions about how to put a concept into words, words
into sentences, sentences into paragraphs, and paragraphs into texts. According to
McKeown (1992), a text parsing system does not need to provide the reasons explaining
why a particular choice is made in a text (for instance, why an active form of a verb is
used instead of passive), whereas it is exactly what NLG systems are concerned with.

Thus, ideally, an NLG system should be able to justify why it made a certain choice,
i.e., why the chosen one is one of the best¹ possible solutions. The following problems
are the ones that NLG is particularly concerned with:

• Determining the content to be communicated;
• and representing already determined content by means of a natural language.
Dale (1995) gives a more elaborated view on the questions that NLG systems address:
1. Deciding how much to say, and what not to say:

• Maintaining brevity;
• avoiding stating the obvious.

2. Designing text structure:
• May need to add material to the basic subject matter;
• controlling the e�ects of the structure and ordering of the material;
• making the text flow smoothly.

3. Problems in carrying out a detailed text plan once built:
• Determining the sentence boundaries and the use of conjunctions;
• deciding when to use anaphora;

¹What is the best and for what it is best are in question as well.

18

1.3. An Example of a Text Generation System

• lexical selection (lexicalization);
• use of marked syntactic structures for particular rhetorical e�ects.

The tasks 1, 2, and 3 are interrelated, but for the sake of simplicity, in the most of the
cases, they are assumed to be independent and thereby are solved separately.

1.3 An Example of a Text Generation System

EasyText is a fully-operational NLG system (Danlos, Frédéric Meunier, and Combet,
2011). It was developed for providing monthly reports for bank customers about their
bank account activities. EasyText generates texts (in French) from tables that are filled
with numerical data reflecting the account activities of the bank customers. For example,
given the input shown in Figure 1.1, EasyText outputs the following text:

(5) Dans ce secteur, les investissements ont doublé (+130%) pour la variété
MULTIPROD.ORG.FINANCIERS en mai 2008 par rapport à mai 2007. Par
ailleurs, les investissements pour la variété CREDIT PERSONNEL O.F marquent
une progression de 6% pour le cumul à date étudié. Au contraire, pour la variété
MULTIPROD.ORG.FINANCIERS, ils voient leur volume diminuer (-3%) sur la même
période.

In this sector, investments have doubled (+ 130%) for the variety MULTI-
PROD.ORG.FINANCIERS in May 2008 compared to May 2007. In addition,
investments for the variety CREDIT PERSONNEL O.F shows an increase of
6% accumulated in time studied. On the contrary, for the variety MULTI-
PROD.ORG.FINANCIERS, they see decrease in their volume (-3%) over the same
period.

The EasyText generation process can be viewed as a pipeline, consisting of the
content determination, document structuring, and tactical components.

Figure 1.1: An example of an input table of Easyext, borrowed from (Danlos, Frédéric
Meunier, and Combet, 2011)

The EasyText content determination component selects within a given table the relevant
cells in terms of the information that has to be communicated. As Danlos, Frédéric

19

Chapter 1. Introduction

Meunier, and Combet (2011) note, no reasoning module is developed for this task; the
rules for determining what are the relevant cells are rather hardcoded.

The EasyText document structuring component produces conceptual representations. This
task involves building the discourse structure by relating the semantic content expressed
by the cells in the table. For example, given two cells such that one shows an increase
in the income, whereas the other one shows a significant decrease, within the same
month, one concludes that these cells contain contrasting information. The document
structuring component connects these two cells by the discourse relation Contrast. In
EasyText, the principles of the discourse structure follow SDRT (Asher and Lascarides,
2003). The output of the document structuring component is a structured representation
of concepts, where the structure is a discourse structure, and the concepts stand for
events, discourse referents, etc.

The output of the document structuring task, i.e., a conceptual representation is
then passed to the tactical component of EasyText, whose theoretical basis is G-TAG
(Danlos, 1998, 2000). G-TAG makes a number of decisions, including ordering of
the sentences, lexicalization, using syntactic constructions within sentences and for
sentences, etc. Here, we will very briefly describe the G-TAG text generation, but in
the further chapters, we will provide its detailed description.

G-TAG defines lexical entries. A lexical entry serves as a lexicalization of some
concept. Each lexical entry is associated with a set of possible syntactic constructions
with that lexical entry. The main process in G-TAG is lexicalization, that is, mapping
of concepts to lexical entries. By lexicalizing all the concepts from the conceptual
representation input, G-TAG produces a g-derivation tree. A g-derivation tree can be
viewed as a semantic dependency tree, additionally decorated with syntactic information.
It contains all the information needed for generating an output. A g-derivation tree
specifies a unique g-derived tree, which can be seen as a syntactic analysis of a text.
While a g-derived tree contains the morphological information for inflecting words, the
words in it are not inflected. It is a post processing module of G-TAG that computes
morphological information from the g-derived tree. Furthermore, it linearizes the tree
and produces a text. In fact, the post processing module can do even more. It can
produce a text and then modify it. The post processing module may issue the modified
version of the original text as the output of the generation process, instead of the
original text, which was directly obtained from the g-derived tree.

1.4 The Problems Considered in the Present Work

Discourse modeling is a complex problem, which one can study from various standpoints,
with various motivations and goals. Ideally, one should take into account all aspects
of a discourse to model it. However, it would be fair to say that this is one of the
hardest problems in computational linguistics. Therefore, in this thesis, we only focus
on the modeling of the syntax-semantics interface for discourse, which one also calls as the
syntax-discourse interface.

The main goal of the present work is to design ACGs that enable one to consider
the problem of discourse modeling. In particular, we aim at studying the ways one

20

1.4. The Problems Considered in the Present Work

can model the discourse-level phenomena in addition to sentence-level ones. Whether
it is possible to integrate the sentence-level and the discourse-level phenomena at the
same level of analysis is also a question that one has to answer. On the one hand, one
knows that the border between the sentence-level and the discourse-level analyses is
only conventional. For instance, in some cases, one can express the same meaning by a
single sentence or with several sentences, i.e., by a discourse (text). This suggests that
one already encounters discourse-level phenomena within sentences. On the other hand,
there are certain phenomena that one does not observe in a single clause (idea unit). A
clause itself does not need to be connected to something else in order to make sense.
Therefore, one may still argue for the need of separation of the discourse-level analysis
from the clause-level one. Thus, one can imagine (at least) the following scenarios of
discourse modeling:

• Develop a unified framework for encoding the discourse-level and the clause-level
phenomena.

• Develop a framework where the encodings of the discourse-level and the clause-
level phenomena are provided by the separate modules. In this case, one has to
give an account of how those modules interact with each other.

Although it seems more natural to have a unified framework for modeling both
the discourse-level and clause-level phenomena, how plausible it is to build such a
framework is yet another question that the present work has to answer.

In practical applications of computational linguistics, one aims to design tractable
implementations, i.e., the ones that can be used to perform tasks by consuming a
reasonable amount of resources. Thus, a golden mean between the linguistic adequacy
and the computational cost of an approach is something that one has to establish.

Tasks such as content determination are not part of the problem of the syntax-
semantics interface. In the present work, we do not deal with the tasks that are outside
of the scope of the syntax-semantics interface problem. In addition, we do not study
pragmatic problems, such as whether or why a given discourse is coherent/incoherent.
As we have already mentioned, ideally, one aims to model all kinds of phenomena,
and some theories even study some pragmatic phenomena within the syntax-discourse
interface (Schlenker, 2011), but to our knowledge, no theory provides a fully functioning
model that would enable one to encode pragmatic e�ects within the syntax-discourse
interface.

Thus, in this thesis, we confine ourselves by studying the possibility of encoding the
syntax-semantics interface for discourse with the help of ACGs. One of the goals of
the present work is to construct such ACGs that allows one to consider problems of
discourse parsing and generation. In other words, with the help of ACGs, we aim to
encode the way text generation and parsing systems deal with discourses. At the same
time, one of the objectives is to design tractable ACGs, i.e., such ACGs that one can
implement in practical applications.

21

Chapter 1. Introduction

1.5 The Road Map of the Thesis

Part 1: Introduction

Chapter 1: We describe the subject matter of the thesis and some basic notions.

Chapter 2: We present some notions from formal language theory. We define
notions related to formal grammars. We focus on Context-Free Grammars
(CFGs) and Tree-Adjoining Grammars (TAGs). In addition, we briefly discuss
Synchronous TAGs, which were introduced for modeling the syntax-semantics
interface based on TAG grammars.

Chapter 3: We provide the definition of Abstract Categorial Grammars (ACGs),
since ACGs serve as the main framework to the present work. As an example
of ACGs, we illustrate how one encodes CFGs and TAGs as ACGs. In
addition, we describe the ACG encoding of TAG with Montague semantics.
The ACG encoding of TAG with Montague semantics enables one to address
the problems of modeling of the syntax-semantics interface for sentences.

Chapter 4: We discuss the discourse theories. We focus on RST and SDRT. RST
is a theory that studies organizational problems of texts. SDRT is a theory of
dynamic semantics, that is, it interprets a discourse as a logical form. Unlike
other dynamic theories, SDRT makes use of the pragmatic and semantic
information encoded with the discourse structure.

Chapter 5: We present discourse formalisms that study discourse regularities with
grammars. Namely, we explore the TAG-based formalisms, D-LTAG, G-TAG,
and D-STAG. The grammars of these formalisms experience problems in
dealing with certain kinds of texts. In particular, we focus on the problem
that the grammars of these formalisms face in encoding discourses containing
clause-medial connectives. We discuss the ways these formalisms choose in
order to overcome the problem.

Part 2: Thesis Contributions

Chapter 1: We propose an encoding of G-TAG as ACGs. We show how one
encodes the G-TAG grammar and its text generation process with the help
of ACGs.

Chapter 2: We propose a method that one can make use of in TAG-based ap-
proaches to grammatically encode texts containing clause-medial connectives.
In particular, we encode clause-medial connectives by extending the ACG
encoding of G-TAG, which is proposed in the previous chapter. The resultant
ACGs enable one to encode the texts containing clause-medial connectives in
a purely grammatical manner.

Chapter 3: We encode D-STAG as ACGs. By adopting for D-STAG the method
developed in the previous chapter for modeling clause-medial connectives, we
construct the ACG encoding of D-STAG, which can model texts containing
clause-medial connectives. In addition, we define another version of the ACG
encoding of D-STAG where we define labeled semantic interpretations of
discourses.

22

1.5. The Road Map of the Thesis

Chapter 4: We briefly discuss the related work to the presented one. We also
present the questions with some solutions that one may investigate as a part
of future research.

Chapter 5: We draw some conclusions about the work presented in the thesis.

23

Chapter 1. Introduction

24

Chapter 2

Formal Grammars

Contents
2.1 Overview . 25

2.2 Preliminary Notions . 26

2.3 Phrase Structure Grammars . 31

2.3.1 The Chomsky Hierarchy of Grammars 32

2.3.2 Context-Free Grammars . 33

2.4 Regular Tree Grammars . 35

2.5 Mildly-Context Sensitivity . 36

2.6 Tree-Adjoining Grammars . 37

2.6.1 Basic Notions and Properties 37

2.6.2 LTAG - Lexicalized TAG . 43

2.7 Synchronous Tree Adjoining Grammar 47

In this chapter, we discuss formal grammars. First, we present phrase-structure grammars
(PSGs) and de�ne the Chomsky hierarchy of grammars. In the Chomsky hierarchy, context-
free grammars (CFGs) are able to capture various phenomena in natural languages. The
parsing problem for them is of polynomial complexity. CFGs, however, cannot give a
fully satisfactory account of certain phenomena in natural languages. To �nd the class of
grammars adequate to describe the syntax of natural languages, a class of mildly-context
sensitive grammar formalisms (MCSGs) was characterized. We focus on Tree-Adjoining
Grammars (TAGs) from the class of MCSGs. TAGs overcome some of the problems that
CFGs face in terms of expressive power. At the same time, the parsing problem for TAGs is
of polynomial complexity. In addition, we present synchronous TAGs (STAGs), which were
introduced with the goal of modeling the syntax-semantics interface with TAG grammars.

2.1 Overview

A formal grammar is a mathematical model that allows one to describe a set of admissible
sentences of a language; under ‘language’ one may understand both an artificial (formal,

25

Chapter 2. Formal Grammars

programming, etc.) and a natural language. In this thesis, we focus only on formal
grammars that one employs to study natural languages. We may also refer to such
formal grammars as grammatical formalisms.

A number of formal grammars have been proposed (e.g. (Ajdukiewicz, 1935; Bar-
Hillel, 1953; Chomsky, 1956; A. K. Joshi, Levy, and Takahashi, 1975; Lambek, 1958)).
One of them is known as the class of phrase-structure grammars (PSGs) (Chomsky,
1956). A phrase-structure grammar describes a set of sentences (strings) of a language.
Four sub-classes are distinguished in the class of PSGs, called the Chomsky hierarchy
of grammars. One of the sub-class of PSGs, called context-free grammars (CFGs), are
expressive enough to encode a number of natural language phenomena. At the same
time, for CFGs parsing algorithms of polynomial complexity are available.² Polynomial
complexity is considered to be feasible for practical applications.³ Although it is true that
CFGs are capable of modeling a number of syntactic phenomena in natural languages,
it has been argued that CFG cannot capture certain natural language phenomena
(Shieber, 1985). In other words, CFGs are not expressive enough to describe all natural
languages. Although the grammars from an upper class in the Chomsky hierarchy,
called context-sensitive grammars (CSGs), can model natural languages, no algorithm
of polynomial complexity can parse them.

A. K. Joshi (1985) proposed criteria to characterize grammatical formalisms that
are necessary to describe all natural languages. He called the class of such formalisms
mildly context-sensitive grammars (MCSGs). One of the criteria is that any formalism
in the class has a polynomial parsing algorithm. Another criteria is that in this class
some formalisms can describe certain kind of structures that CFGs cannot capture.
The criteria for being a member of MCSGs are generalizations of the properties of the
Tree-Adjoining Grammar (TAG) formalism (A. K. Joshi, Levy, and Takahashi, 1975).
TAGs are more expressive than CFGs, but only slightly so that for them also exist
parsing algorithms of polynomial complexity.

2.2 Preliminary Notions

We make use of standard mathematical notions⁴ such as a function, relation, partial
order, graph, Turing machine (algorithm), etc.

²A problem is polynomial (of polynomial complexity) if (1) an answer to it is either yes or no; (2) there
exists a Turing machine (an algorithm) that requires the time that is polynomial to the length of the input
in order to provide an answer to the problem (Goldreich, 2008).

³One refers to an algorithm as feasible if it is polynomial, as the following quote indicates:

In most practical cases . . . : polynomial-time algorithms are usually feasible, and non-
polynomial-time algorithms are usually not feasible.

Kreinovich, Lakeyev, Rohn, and Kahl (1998)

⁴For details, we refer readers to (Hopcroft, Motwani, and Ullman, 2006).

26

2.2. Preliminary Notions

Alphabet, Word, Language

We denote by N the set of natural numbers ({0, 1, 2, . . .}), whereas by N+, we denote
the set of positive natural numbers ({1, 2, . . .}). We fix the terminology and conventions
by providing the definitions of the following notions:

De�nition 2.2.1.
• An alphabet Σ is a �nite nonempty set of symbols.
• A string (word) is a �nite sequence (possibly empty) of symbols of an alphabet Σ.
• The empty string (empty word), denoted with ε, is the string with zero occurrences of
symbols (of any alphabet).

• Let ω1 and ω2 be two words over an alphabet Σ. Then ω1ω2 denotes the concatenation
of ω1 and ω2, i.e., ω1ω2 is the word over Σ obtained out of a copy of ω1 followed by
a copy of ω2. One can check that εω = ωε = ω for any string ω, where ε is the empty
string.

• A number of occurrences of symbols in ω is called the length of ω; we denote the
length of ω with len(ω).

• If Σ is an alphabet, Σk denotes the set of strings over Σ of length k . Thus, the set of
all strings over an alphabet Σ, denoted with Σ∗ (Kleene star of Σ), can be de�ned as
follows:

Σ∗ = Σ0 ∪Σ1 ∪Σ2 ∪ · · ·

We denote with Σ+ the set of non-empty strings of Σ∗, hence: Σ∗ = {ε} ∪Σ+.
• Given two languages L1 and L2, we de�ne the concatenation of L1 and L2, denoted by

L1L2, as follows:
L1L2 = {ω1ω2 | ω1 ∈ L1 and ω2 ∈ L2}

Convention: Lowercase letters of the Latin alphabet denote symbols; lowercase
letters of the Greek alphabet denote strings (words); and capital letters of the Latin
alphabet denote languages, unless otherwise stated.

De�nition 2.2.2 (Prefix Order).
For an alphabet Σ, one de�nes a partial order 6 over Σ∗, called the prefix order, as follows:

∀ω1, ω2 ∈ Σ∗ : ω1 6 ω2 if and only if ∃δ ∈ Σ∗ : ω1δ = ω2

If ω1 6 ω2, we say that ω1 is a pre�x of ω2.

It follows from Definition 2.2.2 that ε is a prefix for any string ω as εω = ω.

De�nition 2.2.3 (Lexicographic Order).
One de�nes the lexicographic order over N∗, denoted as ≺l . Let ω1 = a1 . . . am and
ω2 = b1 . . . bk be two strings of N∗, then ω1 ≺l ω2 holds if and only if

• either ω1 is a pre�x of ω2 or
• ai < bi , for some 1 ≤ i ≤ min{len(ω1), len(ω2)} and aj = bj for all j such that

j < i , where < is the standard linear order⁵ over N.

⁵For a, b ∈N, a < b if and only if b = a + c for some c ∈N+.

27

Chapter 2. Formal Grammars

�l denotes the re�exive closure of ≺l .

De�nition 2.2.4 (Tree Domain).
We call D a tree domain if it is a �nite subset of the set of strings over the set of positive
natural numbers N+ (i.e., D is �nite and D ⊆N∗+) satisfying the following properties:
1. For any u and v , where u, v ∈N∗+ , if uv ∈ D , then u ∈ D .
2. For any string u ∈N∗+ and a natural number i ∈N+, if ui ∈ D , then for any j ∈N+

such that j < i , uj ∈ D .
We refer to elements of a tree domain as positions.

Labeled Trees

De�nition 2.2.5 (Labeled Ordered Tree).
Let Σ be an alphabet. A labeled ordered tree is a pair γ = 〈D , l〉 where D is a tree domain
and l : D −→ Σ is a tree labeling function. Elements of Σ are called labels.

• Given a labeled ordered tree γ = 〈D , l〉 and d ∈ D , the elements of D are called nodes
in γ (or nodes of γ). Sometimes, they are also called as the (Gorn) addresses of γ. For a
node d in γ, we say that l(d) labels the node d . We call l(d) the label of the node d .

• The root node r of the tree γ = 〈D , l〉 is the empty string ε.
• A node p is a frontier node if and only if ∀j ∈ N+ : pj /∈ D . We also call frontier
nodes as leaves. If a node in a tree is not a leaf, then we call it an interior or internal
node.

• For an internal node n in the tree γ = 〈D , l〉, we say that n has k daughters (children)
in γ if max

ni∈D
i = k . We call the nodes n1, . . . , nk in γ the daughters of n ; we call the

node n their mother (parent).
If n1, . . . , nk are daughters of n , we say that γ has k branches at the node n . If k > 1,
the daughter nodes n1, . . . , nk of n are siblings.

TΣ denotes the set of all trees whose nodes are labeled with symbols from Σ.

Hence, a node in a labeled ordered tree is a position of a tree domain. The label
of a node is an element of an alphabet. Given the nodes m1, . . . ,ml in a tree γ such
that mi is the mother of mi+1 for i = 1, . . . l − 1, we say that mj is an ancestor of mh if
1 ≤ j ≤ h ≤ i . In other words, if m and n are two nodes in a tree γ such that m is a
prefix of n, then m is an ancestor of n in γ. We depict a tree as a graph where every
node is connected only to its mother node (if any) and its daughter nodes (if any). We
refer to the connection between a mother node and a daughter node as an edge. In the
labeled tree, we decorate the nodes with their labels. Figure 2.1 shows an example of a
labeled ordered tree.

De�nition 2.2.6. The yield of a labeled tree γ, denoted by yield(γ), is a string over Σ∗,
de�ned as follows:

Let the set {n1, · · · , nk} be the set of frontier nodes of γ, where n1, · · · , nk occur in the
lexicographic order, then the yield yield(γ) is the string obtained by concatenating the labels
of the frontier nodes, that is, yield(γ) = l(n1) · · · l(nl).

28

2.2. Preliminary Notions

〈ε,A〉

〈1,B〉 〈2,C〉

〈21,D〉

Figure 2.1: A pictorial representation of a labeled ordered tree

Tree Operations

We define two operations on trees, substitution and adjunction (A. K. Joshi, Levy, and
Takahashi, 1975). To define them, it is useful to define subtrees and supertrees of a tree.

De�nition 2.2.7 (Subtree and Supertree (A. K. Joshi, Levy, and Takahashi, 1975)).
For a tree γ = 〈D , l〉 and a node p, we de�ne the subtree and the supertree at p as follows:
Subtree γ/p = {〈q ,A〉|〈pq ,A〉 ∈ γ, q ∈N∗}
Supertree γ\p = {〈q ,A〉|〈q ,A〉 ∈ γ, p
 q}
The supertree of a node is the set of its ancestors, its siblings and their ancestors.

The subtree of a node is a set of nodes whose ancestor is the given node. For example,
from Definition 2.2.7 follows that if p is the root node, i.e., p = ε, then the subtree γ/ε
is γ. The root node has no supertree, i.e., γ\ε = ∅. If p is a frontier node in γ, then
the subtree at p is a tree consisting of p, i.e., γ/p = {p}.
De�nition 2.2.8 (Substitution). Let p be a frontier node in γ, and α be a tree. We de�ne
the substitution of α into γ at p, denoted by γ(p ←[α), as follows:

γ(p ←[α) , γ\p ∪ pα

where pα = {〈pk ,A〉| 〈k ,A〉 ∈ α}.

γ

p

α

(a) Substituting at the address
p

γ(p ←[α)

p

(b) The tree
obtained af-
ter substitu-
tion

Figure 2.2: The operation of substitution

Figure 2.3 illustrates the substitution of a tree α in a tree γ at a node p, which, by
definition, is a frontier node in γ.

29

Chapter 2. Formal Grammars

De�nition 2.2.9 (Adjunction). Let β be a tree whose one of the frontier nodes is marked
with the same label X as the root node. We call that frontier node the foot node of β. Let q
be the foot node of β. Let γ be a tree and p be a node in γ. One de�nes the adjunction of the
tree β into γ at p, denoted by γ[p, β], as follows:

γ[p, β] , γ\p ∪ pβ ∪ pq(γ/p)

where pβ = {〈pk ,A〉| 〈k ,A〉 ∈ β} and pq(γ/p) = {〈pqk ,A〉|〈k ,A〉 ∈ γ/p}.

Figure 2.3 illustrates the adjunction of β into γ.⁶

β

X

X
q

γ

p

(a) β adjoins on the node X into
γ

γ [p, β]

X

X

(b) The
tree ob-
tained after
adjunction

Figure 2.3: The operation of adjunction

Ranked Trees

We have defined labeled (ordered) trees by purely set-theoretic means. One can use
another definition of a tree by representing it as a term.

De�nition 2.2.10 (Ranked Alphabet).
A ranked alphabet is a pair 〈∆, ρ〉, where ∆ is a set and ρ is a function mapping each
element of ∆ to a natural number. We call ∆ an alphabet. We say that f ∈ ∆ is a symbol of
the rank (or of arity) ρ(f), or f is a ρ(f)-ary symbol.

By convention, if f is of arity n > 0, we may write fn ; if f is of arity 0, we write f .

Usually, instead of 〈∆, ρ〉, we write ∆ if it does not cause a confusion. We also
define subsets of ∆ as follows: ∆n = ρ−1(n) = {f ∈ ∆ | ρ(f) = n}, where n ≥ 0. Thus,
we may write f ∈ ∆n to express that f belongs to the alphabet ∆ and the rank of f is
n.

⁶One can consider a more generic notion of adjunction than the current one provided by Definition2.2.9.
Namely, one can lift the restriction imposed on β about having one of the frontier nodes marked with
the same label X as the root node. Nevertheless, we only consider the current version of adjunction as it
fits the formalisms that we will discuss below.

30

2.3. Phrase Structure Grammars

De�nition 2.2.11 (Ranked Tree).
Given a tree domain D and a ranked alphabet 〈∆, ρ〉, we de�ne a ranked tree as a pair
〈D , l〉 where l : D → ∆ is a labeling function so that the following holds:

For any p ∈ D , if ρ(l(p)) = m , then pm ∈ D and for any k > m , km /∈ D .

By definition, a ranked tree is a labeled ordered tree. Conversely, one can transform
a labeled ordered tree into a ranked tree. Indeed, by assigning to the labels of the
nodes in a labeled tree the ranks so that the requirement of Definition 2.2.11 is full-filled,
one obtains the ranked tree representation of that labeled tree. In particular, if p is a
node of a labeled ordered tree, then we assign to the label l(p) the rank max

pi∈D
i , i.e., the

number of branches in the tree at the node p. However, notice that to one and the same
label, we may have to assign several ranks. If a label f appears at several di�erent tree
addresses, then we may need to introduce several copies of f . For instance, assume that
f appears at m > 1 tree addresses. Let at these tree addresses, the tree has branches
k1, . . . , km such that ki 6= kj for any 1 ≤ i , j ≤ m. We introduce m copies of the label f
with the ranks k1, . . . , km . That is, we introduce the following symbols: fk1 , · · · , fkm .

It is convenient to use term representations of ranked trees. Since every node of a
ranked tree 〈D , l〉 is coupled with a symbol of a ranked alphabet, one can equivalently
define a ranked tree as a term.

De�nition 2.2.12 (Term).
The set of terms over the ranked alphabet ∆, denoted by T∆, is the smallest set satisfying the
following conditions:
1. If f is of the rank 0, then f ∈ T∆;
2. if f ∈ ∆n , where n ≥ 1, and t1, . . . , tn belong to T∆, then f (t1, · · · , tn) ∈ T∆.

Every term can be represented as a ranked tree whose frontier nodes are labeled
with symbols of arity 0; each internal node is labeled with a symbol of positive arity
that equals to the number of branches at that node. In the rest of this thesis, we
will not specify whether we discuss ranked or unranked trees if it does not cause a
confusion. We will also forget the di�erence between ranked trees and terms. While
depicting a tree 〈D , l〉, usually, we will only depict labels of nodes, i.e., we will omit d
in 〈d , l〉, unless otherwise stated.⁷

2.3 Phrase Structure Grammars

Phrase-structure grammars (PSGs) (Chomsky, 1956) is a class of formal grammars.
PSGs were inspired by Bloomfield’s (1933) linguistic notion of constituents, which allow
one to analyze natural language expressions by determining their constituent structures.⁸
Let us provide definitions of a phrase-structure grammar (PSG), a phrase-structure
derivation, and a language defined by a phrase-structure grammar.

⁷Since from a pictorial representation of a tree, one can unequivocally reconstruct the tree addresses,
one can omit them while depicting a tree.

⁸Because of this, PSGs are also known as constituency grammars.

31

Chapter 2. Formal Grammars

De�nition 2.3.1 (Phrase-Structure Grammars (Chomsky, 1956)).
A phrase-structure grammar (PSG) is a quadruple G = 〈N , Σ,P , S〉, where

• N is a �nite set of symbols called the non-terminal symbols;
• Σ is a set of symbols called the terminal symbols such that Σ ∩N = ∅;
• S ∈ N is a symbol called the start (initial, distinguished) symbol;
• P ⊆ (Σ ∪N)+ × (Σ ∪N)∗ is a �nite set of production (rewrite) rules.
By convention, for p = 〈γ, δ〉 ∈ P , we write γ → δ.

We use lower case symbols of the Latin alphabet (a, b, . . .) to denote symbols of Σ
(terminal symbols), where for non-terminals symbols, i.e., elements of N , we use capital
letter symbols (A,B, . . .). To denote a string of terminals and non-terminal symbols, i.e.,
a string over Σ ∪N , we use a lower case symbol of the Greek alphabet.

De�nition 2.3.2 (One-step Derivation). Given a PSG G = 〈N , Σ,P , S〉, the one-step
derivation =⇒G is the binary relation over (Σ ∪N)∗, de�ned as follows: α =⇒G β holds if
and only if there are δ1 ∈ (Σ ∪N)∗, δ2 ∈ (Σ ∪N)∗, and p ∈ P , where p = (µ1 → µ2), such
that

α = δ1µ1δ2 and β = δ1µ2δ2

De�nition 2.3.3 (Derivation and Generated Language). Given a PSG G = 〈N , Σ,P , S 〉,
the derivation relation =⇒∗G is the re�exive and transitive closure of =⇒G .

The language generated by G is a set L de�ned as follows:

L = {α | S =⇒∗G α}

2.3.1 The Chomsky Hierarchy of Grammars

By constraining rewriting rules of a PSG, one can define various classes of PSGs. Chom-
sky (1956) determines three proper sub-classes of PSGs, provided within Definition 2.3.4.

De�nition 2.3.4 (Four Types of Grammars).

Type-0 A PSG G = 〈N , Σ,P , S〉 is called type-0, or unrestricted, if each of its production
rules p ∈ P has the form α → β, where α ∈ (Σ ∪ N)+ and β ∈ (Σ ∪ N)∗, or
equivalently, if production rules of G are unrestricted, then G is a type-0 grammar.

Type-1 A PSG G = 〈N , Σ,P , S〉 is called type-1, or context-sensitive, if each of its
production rules p ∈ P is either of the form S → ε, or αAβ → αµβ, where α, β ∈
(Σ ∪N)∗; µ ∈ (Σ ∪N)+; and A ∈ N .

Type-2 A PSG G = 〈N , Σ,P , S〉 is called type-2, or context-free, if each of its production
rules p ∈ P has the form A→ ω, where A ∈ N and ω ∈ (Σ ∪N)∗

Type-3 A PSG G = 〈V , Σ,P , S〉 is called type-3, or regular, if each of its production rules
p ∈ P is either of the following forms A → ε, A → a , or A → aB, where A,B ∈ N ,
and a ∈ Σ.

An immediate consequence of Definition 2.3.4 are the following inclusions (Chomsky,
1956):

32

2.3. Phrase Structure Grammars

{Type-0 Grammars} ⊃ {Type-1 Grammars} ⊃ {Type-2 Grammars} ⊃ {Type-3 Grammars}
(2.1)

The inclusions in (2.1) are known as the Chomsky hierarchy. Type-0 grammars generate
exactly recursively enumerable languages (the languages that Turing machines accept).
Thus, one only knows that if a string ω belongs to a language LG generated/accepted
by a type-0 grammar G , then there is a Turing machine M that halts in a final state.
If ω /∈ LG , then M halts in a non-final state or does not halt at all, i.e., loops forever.
Thus, the question whether a ω ∈ LG holds is undecidable. That is why one does not
make use of type-0 grammars in practical applications.

The next class in the Chomsky hierarchy is Type-1, also known as the class of
context-sensitive grammars. The problem whether a given string belongs to the language
generated/accepted by a context-sensitive grammar is PSPACE-complete.⁹ The class
of CFGs is the next class in the Chomsky hierarchy. Importantly, for a context-free
language (CFL), i.e., for the language generated by a CFG, there are several polynomial
parsing algorithms.

2.3.2 Context-Free Grammars

Given a CFG G = 〈N , Σ,P , S〉, one defines a set of derivation trees associated with G .

De�nition 2.3.5 (CFG Derivation Tree).
For a CFG grammar G = 〈V , Σ,P , S〉, we de�ne a derivation tree as follows:
1. Every node of a derivation tree has a label (either a terminal or a non-terminal symbol).
2. Any interior node is labeled with a non-terminal symbol.
3. Each frontier node is labeled by either a non-terminal or a terminal symbol, or ε. If ε
labels a frontier node, then it must be the only child of its mother.

4. If nodes n1, . . . , nm (ordered according to the lexicographic order) are mutually distinct
daughters of a node n with labels A1, . . . ,Am respectively (i.e., l(ni)) = Ai for i =
1, . . . , n), and the label of n is A, then A→ A1 . . .Am is a production rule of G .

With the help of derivation trees, we define parse trees.¹⁰

De�nition 2.3.6 (Parse Tree). We refer to a derivation tree t of a CFG G as a parse tree
if each frontier node of t is labeled with either a terminal symbol or ε. We denote a set of
parse trees of G with PTR(G), whereas we denote with PTR(G ,A) the set of parse trees whose
root is labeled with A.

Theorem 2.3.1. Let a string of terminals ω belongs to the language of a CFG G , then there
is a parse tree with the root labeled by S whose yield is ω. That is, if ω ∈ LG , then there
exists t ∈ PTR(G , S) such that yield(t) = ω. Conversely, if a parse tree of a grammar G has
the root labeled by S and its yield is ω, then ω belongs to the language generated by G .

⁹If a problem can be solved by an algorithm that uses an amount of space that is polynomial to the
size of its input, the problem is said to be in the class PSPACE. A problem is PSPACE-complete if any
other problem that can be solved in polynomial space can be transformed to it in polynomial time (for
more details, we refer readers to (Goldreich, 2008)).

¹⁰While some authors do not make a distinction between derivation trees and parse trees, we follow
(Nijholt, 1980), which defines a parse tree as a derivation tree of a specific kind.

33

Chapter 2. Formal Grammars

Hence, Theorem 2.3.1 states that the set of parse trees of LG , i.e., the parse trees
whose yields are in LG coincides with the set PTR(G , S). We may refer to PTR(G , S) as
the set of parse trees generated by G .

Example 2.1.

(2) Fred is grumpy because he failed an exam.

Figure 2.4 shows a CFG generating/accepting the sentence (2). Figure 2.5 illustrates
the derivation tree of the sentence (2).

S → NP VP
S → S Conjunction S
VP → V NP
VP → Aux Adjective
NP → Propername
NP → Pronoun
NP → Det N
Propername → fred
Pronoun → he
Adjective → grumpy
Aux → is
Det → an
N → exam
V → failed
Conjunction → because

Figure 2.4: An example of a context-free grammar

S

S

NP

Propername

fred

VP

Aux

is

Adjective

grumpy

Conjunction

because

S

NP

Pronoun

he

VP

V

failed

NP

Det

an

N

exam

Figure 2.5: A CFG parse tree

34

2.4. Regular Tree Grammars

For parsing purposes, it is beneficial to simplify CFG rules without weakening its
expressive power. Given a CFG G , one aims to transform G to some G

′
so that G

′

generates the same language as G but the production rules of G
′
follow certain patterns.

Definition 2.3.7 and Definition 2.3.8 present Chomsky Normal Form (CNF) and Greibach
Normal Form (GNF), respectively.

De�nition 2.3.7 (Chomsky Normal Form). A CFG is in Chomsky Normal Form (CNF) if
its production rules have either of the following forms:

• A→ BC
• A→ a
• S→ ε

Where A,B, and C are nonterminals; S is the start symbol; a is a terminal symbol, and ε is
the empty string.

Theorem 2.3.2 (Chomsky, 1959). Any context-free language is generated by some CFG in
Chomsky Normal Form.

De�nition 2.3.8 (Greibach Normal Form). A CFG is in Greibach Normal Form (CNF) if
its production rules have either of the following forms:

• A→ aB1 · · ·Bk
• A→ a
• S→ ε

Where A and Bi , for i = 1, . . . , k (k ≥ 1), are nonterminals; S is the start symbol; a is a
terminal symbol; and ε is the empty string.

Theorem 2.3.3 (Greibach, 1965). Any context-free language is generated by some context-free
grammar in Greibach Normal Form.

If G is a CFG in CNF, then Cocke-Younger-Kasami (CYK) algorithm¹¹ parses an
input of size n in O(n3) time. A CFG in GNF has a property that each production rule
contains a terminal symbol. To parse a string of terminals with a CFG in GNF, one
only selects those production rules that contain a symbol in the string. A normalization
of a CFG has its trade-o�s, however. In particular, converting a CFG in CNF and GNF
forms may drastically increase the size of the original set of production rules.

2.4 Regular Tree Grammars

Regular Tree Grammars (RTGs) (Brainerd, 1969) is a tree generating formalism whose
production rules can be seen as production rules of CFGs. In particular, one can obtain
the set of parse trees of the language generated by a CFG as the tree language generated
by some regular tree grammar.

De�nition 2.4.1 (Regular Tree Grammar (Brainerd, 1969)).
A regular tree grammar (RTG) is a quadruple G = 〈N , Σ,P , S〉, where:

¹¹For more details, one can refer to (Jurafsky and Martin, 2000).

35

Chapter 2. Formal Grammars

• N is a �nite set of non-terminal symbols of rank 0;
• Σ is a �nite ranked alphabet;
• P is a �nite set of productions A→ t , A ∈ N and t ∈ TN∪Σ ;
• S ∈ N is a non-terminal symbol, called the distinguished symbol of the grammar.

De�nition 2.4.2. A derivation step s =⇒ s
′
with s , s

′ ∈ TN∪Σ is obtained by selecting an
occurrence of a non-terminal A (by de�nition of rank 0) in s and a production A→ t in P
and constructing s

′
from s by replacing the selected occurrence of A with t . One de�nes the

language L(G) determined by an RTG G as follows:

L(G) = {s ∈ TΣ |S =⇒∗ s}

De�nition 2.4.3. Given an RTG G with the tree language G(L), we can de�ne the string
language determined by G as follows:

yield(G) = {ω | ∃t ∈ L(G) : yield(t) = ω}

Theorem 2.4.1 (Brainerd, 1969).
• If G is a context-free grammar, then the set of parse trees of LG is a regular tree language.
• If L is a regular tree language then yield(L) is a context-free language.

De�nition 2.4.4. (Generative Capacity and Equivalence of Grammars)
• The weak generative capacity (WGC) of a grammar is the set of strings that a
grammar generates, that is, WGC is the string language de�ned by the grammar.
We say that two grammars are weakly equivalent if and only if they de�ne the same
set of strings.

• The strong generative capacity (SGC) of a grammar is the set of structural
descriptions (syntactic analyses) that the grammar generates.
We say that two grammars are strongly equivalent if and only if they de�ne the same
set of structural descriptions.

In Definition 2.4.4, under ‘structural description’, one means syntactic trees. If two
grammars are strongly equivalent, then they are weakly equivalent too because the set
of structural descriptions defined by a grammar uniquely determines the string language
defined by that grammar. In this terminology, a claim that Theorem 2.4.1 makes is that
for any RTG, there exists its weakly equivalent CFG.

2.5 Mildly-Context Sensitivity

A. K. Joshi (1985) proposed the class of mildly context-sensitive grammars (MCSGs)
with the aim to determine the class of grammars that is necessary for describing natural
languages. We refer to a language as a mildly context-sensitive language (MCSL) if it is a
language defined by an MCSG. The class of MCSGs (at least) possesses the following
properties (A. K. Joshi, 1985):

1. MCSLs contain CFLs as a proper sub-class.
2. An MCSL has a polynomial parsing algorithm.

36

2.6. Tree-Adjoining Grammars

3. MCSGs are only slightly more powerful than CFGs. Namely, an MCSG can
capture (at least) the following two kinds of dependencies:

(a) Limited nested dependencies, illustrated by the following German sentence:

(3) Hans
Hans

Peter
Peter

Marie
Marie

schwimmen
swim

lassen
make

sah.
saw

‘Hans saw Peter make Marie swim.’

(b) Limited crossing dependencies, illustrated by the following Swiss-German
sentence:¹²

(4) . . .
. . .

mer
we

d’chind
the childrenACC

em Hans
Hansdat

es huss
the houseACC

lönd
let

hälfe
help

aastriiche.
paint

‘. . . we let the children help Hans paint the house’

4. An MCSL has the constant growth property, that is, for a given MCSL L, there
is a constant c such that for each ω ∈ L, there is ω

′ ∈ L, such that len(ω
′
) <

len(ω) < len(ω
′
) + c.

2.6 Tree-Adjoining Grammars

In the tradition of phrase-structure grammars, A. K. Joshi, Levy, and Takahashi (1975)
introduced the Tree-Adjoining Grammar (TAG) formalism. Like CFGs, TAGs also make
use of rewriting in order to analyze/generate a sentence. However, while for a CFG
the object of rewriting is a string, TAGs rewrite trees into trees. TAGs are capable
of encoding both nested dependencies and Swiss-German cross-serial dependencies.
Thus, TAGs are more expressive than CFGs. However, the expressive power of TAGs is
only slightly greater than the one of CFGs so that the parsing complexity of a TAG is
O(n6) (Schabes and A. K. Joshi, 1988). String languages determined by tree languages
generated by TAGs have the constant growth property. Thus, TAGs belong the class of
MCSGs.

2.6.1 Basic Notions and Properties

Tree-Adjoining Grammar (TAG) (A. K. Joshi, Levy, and Takahashi, 1975; A. K. Joshi
and Schabes, 1997) is a tree generating formalism. It generates (derives) trees by
rewriting trees into trees. In a TAG, elementary trees serve as a starting point for deriving
a tree. Sometimes, one refers to elementary trees as grammar entries. Among elementary
trees, one distinguishes two kinds of trees, initial and auxiliary trees. TAG defines two
operations on trees, substitution and adjunction. While in a CFG derivation step, one
rewrites a non-terminal symbol with the help of a production rule, in a TAG derivation
step, one either substitutes or adjoins a tree into a tree. A resultant tree of a TAG

¹²Although CFGs can capture limited nested dependencies (A. K. Joshi, 1994), as Shieber (1985)
shows, the pattern of Swiss-German limited crossing dependencies cannot be described by CFGs.

37

Chapter 2. Formal Grammars

derivation step is called a derived tree. That is, a tree constructed by combining (either
by substitution or adjunction) two trees is a derived tree. In TAG, one defines the
notion of the derivation tree of a derived tree. The derivation tree of a given derived
tree represents (records) the information how the derived tree was built. Thus, given a
derivation tree, one can reconstruct the derived tree.

De�nition 2.6.1 (Tree-Adjoining Grammar (A. K. Joshi and Schabes, 1997)).
A TAG is a quintuple 〈N , Σ, I ,A, S〉, where
1. N is a �nite set of non-terminal symbols.
2. Σ is a �nite set of terminal symbols.
3. S is a distinguished non-terminal symbol.
4. I is a �nite set of �nite trees, called initial trees. One identi�es an initial tree by the
following properties:
• its internal nodes are labeled with non-terminal symbols;
• its frontier nodes are either labeled with terminal symbols, or non-terminal ones,
which are marked for substitution with ↓.

5. A is a �nite set of �nite trees, called auxiliary trees. One identi�es an auxiliary tree by
the following properties:
• its internal nodes are labeled by non-terminals symbols;
• its frontier nodes are labeled by terminals, or by non-terminal nodes marked for
substitution, except for exactly one non-terminal node that is labeled with the same
label as the root node; this node is marked with ∗ and referred to as the foot node
of the auxiliary tree.

We define substitution of a tree into another one as in Definition 2.2.8 on page 29
but with an additional requirement that if α substitutes into γ at the node p, then the
root of α and p should have the same label. Moreover, α must be derived from an
initial tree, that is, (1) either α is an initial tree with no substitution sites; (2) or α is
obtained from an initial tree by filling its substitution sites with some trees. Figure 2.6
illustrates the adjunction of a tree into another tree.

Adjunction is defined in the same way as in Definition 2.2.9 on page 30 but with
the following additional requirement: β can adjoin into γ at the node p, where p is
not marked for substitution, if and only if β is an auxiliary tree or derived from an
auxiliary tree and the label of the root (and therefore of the foot) node of β coincides
with label of p. Figure 2.7 illustrates the adjunction of a tree into another tree.

Convention: We call an initial (resp. auxiliary, derived) tree an X-initial (resp.
auxiliary, derived) if its root is labeled with a non-terminal X. We refer to a node
labeled with X as an X-substitution site if it is marked for substitution. If a node labeled
with X is not marked for substitution, then it is an adjunction site, which we may refer
to as X-adjunction site.

De�nition 2.6.2 (Completed Tree (A. K. Joshi and Schabes, 1997)).
A tree (either initial or derived) is considered completed if its frontier is made of nodes labeled
by terminal symbols only.

We may refer to a completed tree as a derived tree, unless we do not need to
underline that it is a completed tree but not any other derived tree.

38

2.6. Tree-Adjoining Grammars

Y

X ↓

X

(a) Substituting at the node X

Y

X

(b) The
tree ob-
tained after
substitu-
tion

Figure 2.6: The TAG operation of substitution

β

X

X

γ

Y

X

(a) β adjoins on the node X into
γ

Y

X

X

(b) The
tree ob-
tained after
adjunction

Figure 2.7: The TAG operation of adjunction

De�nition 2.6.3 (TAG Tree and String Languages (A. K. Joshi and Schabes, 1997)).
One de�nes the tree and string languages determined by a TAG G as follows:

• TG denotes the set of completed trees of G derived from S-initial trees, that is, we have:

TG = {t | t is completed tree derived from some S-initial tree}

• One de�nes the string language of G , denoted by LG , as follows:

LG = {w | ∃ t ∈ TG such that yield(t) = w}

Sometimes, we may say a derived (parse) tree of a sentence, under which we mean a
derived tree whose yield is the given sentence.

Example 2.2.

(5) Fred is grumpy because he failed an exam.

Let our TAG grammar consist of the elementary trees depicted in Figure 2.8.¹³ To
obtain the derived tree of the sentence (5), one combines these elementary trees as it

¹³The grammar follows the principles of X-TAG (XTAG-Group, 1998).

39

Chapter 2. Formal Grammars

αfailed

S

NP↓ VP

V

failed

NP↓

αgrumpy

S

NP↓ VP

V

ε

AP

grumpy

αFred

NP

Fred

αhe

NP

he

αexam

NP

exam

(a) Initial trees

βis

VP

V

is

VP∗

βan

NP

Det

an

NP∗

βbecause

S

S∗ S

A

because

S↓

(b) Auxiliary trees

Figure 2.8: TAG elementary trees

is shown in Figure 2.9(a) (we use dashed lines to illustrate adjunction, and solid lines
for substitution). In result, one constructs the derived tree depicted in Figure 2.9(b).

Adjoining Constraints

In a TAG, any non-terminal symbol that is not marked for substitution is an adjunction
site. This may cause over-generation. For instance, using the trees in Figure 2.8, one
can adjoin βan into αFred so that one obtains an NP rooted tree with the yield an Fred.
To control the derived structures of a TAG, one defines adjoining constrains. Namely,
one makes use of the following adjoining constrains:

• Selective Adjunction (SA): Only auxiliary trees from a set of auxiliary trees T ⊆ A
can adjoin on a given node in a tree. Adjunction of these auxiliary trees is not
mandatory.

• Null Adjunction (NA): No adjunction is allowed on a given node in a tree.
• Obligatory Adjunction (OA): An auxiliary tree from a set of auxiliary trees T ⊆ A
must be adjoined on a given node in a tree.

By convention, one indicates an adjunction constraint (if any) with the help of a
subscript on a node label, X(T)NA, X(T)OA, and X(T)SA. If no set T is specified for

40

2.6. Tree-Adjoining Grammars

NP

Fred

VP

V

is

VP∗

S

NP ↓ VP

V

ε

A

grumpy

S

S∗ S

Conj

because

S↓

NP

he

S

NP↓ VP

V

failed

NP↓

NP

exam

NP

Det

an

NP∗

(a) TAG elementary trees

S

S

NP

Fred

VP

V

is

VP

V

ε

AP

grumpy

S

Conj

because

S

NP

he

VP

V

failed

NP

Det

an

NP

exam

(b) A completed tree derived from S-rooted initial tree

Figure 2.9: Derivation of a (completed) derived tree

the adjunction site X, we assume that T is the set of X-auxiliary trees, unless otherwise
stated.

Derivation Trees

By using Gorn addresses, one can indicate the site where an operation (either a
substitution of adjunction) is applied in a derivation step. With this in mind, one can
construct a derivation tree of a derived tree as follows:

• Labels of the nodes in the derivation tree stand for the employed elementary
trees.

41

Chapter 2. Formal Grammars

αgrumpy

βbecause

αfailed

αhe αexam

βan

βis αFred

ε

22

1 22

ε

2 1

Figure 2.10: A derivation tree

• If γ substitutes (resp. adjoins) into δ, then in the derivation tree a node labeled
with γ is a child of a node labeled with δ. We put a solid (resp. dashed) edge in
the derivation tree between the nodes labeled with γ and δ. We label this edge
with the Gorn address in δ that serves as the substitution (resp. adjunction) site
at which γ substitutes (resp. adjoins) into δ.

For instance, the tree shown in Figure 2.10 records derivation of the derived tree
shown in Figure 2.9(b) on the preceding page.

Example 2.3. Let us consider a TAG grammar that allows one to describe (limited)
cross-serial dependencies. With the help of the adjunction constraints, it becomes
possible to generate the tree language whose yield is the string language {anbncn},
which no CGF can generate.

To generate {anbncn}, one considers the grammar consisting of one auxiliary A and
one initial tree I depicted in Figure 2.11 on the next page. The auxiliary tree A has
only one available adjunction site (at the Gorn address 2). Since A is an S-auxiliary tree,
A can adjoin into a tree with an S-adjunction site. The initial tree I has an S-adjunction
site, which at the same time serves as its root node. If we adjoin the tree A on the
S-node into the tree I, we obtain a derived tree shown in Figure 2.11(c) on the facing
page, denoted with AI. The yield of the tree AI is abεc. In order to obtain a derived
tree whose yield is aabbεcc, one adjoins A into AI. Thanks to adjunction constraints, AI
has only one adjunction site. By adjoining the auxiliary tree A at that adjunction site,
one obtains the tree shown in Figure 2.11(d) on the next page, denoted by AAI. The
yield of the tree AAI is the string aabbεcc. The tree AAI also has only one adjunction
site. Assume that we derived a tree with the yield {akbk εck}. To obtain a derived
tree with the yield {ak+1bk+1εck+1}, one adjoins the auxiliary tree A into the derived
tree with yield {akbk εck}. In this way, the TAG grammar consisting of two elementary
trees I and A generates the tree language whose yield is the string language {anbnεcn}.
Since ε stands for the empty string, the language {anbnεcn} is the same as {anbncn}.

42

2.6. Tree-Adjoining Grammars

SNA

a S

b SNA
∗ c

(a) A

S

ε

(b) I

SNA

a S

b S∗NA

ε

c

(c) AI

SNA

a SNA

a S

b S∗NA

b S∗NA

ε

c

c

(d) AAI

Figure 2.11: TAG derived trees for {anbncn}

2.6.2 LTAG - Lexicalized TAG

De�nition 2.6.4 (Lexicalized Grammar (A. K. Joshi and Schabes, 1997)).
A grammar is lexicalized if it consists of:

• A �nite set of structures each associated with a lexical item; each lexical item will be
called the anchor of the corresponding structure.

• An operation or operations for composing the structures.

One can apply the notion of lexicalized grammars to TAGs to define lexicalized
TAGs (LTAGs). It has been claimed that LTAGs are more beneficial than non-lexicalized
TAGs in terms of parsing. The advantages that the parsing with LTAGs has over
the parsing with non-lexicalized TAGs is the possibility of grammar �ltering (Schabes,
Abeillé, and A. K. Joshi, 1988; Schabes and A. K. Joshi, 1988, 1991). To parse an
input string with an LTAG, one �lters the grammar by selecting only the trees whose
anchors are present in the input string. Let us provide a definition of an LTAG.

De�nition 2.6.5 (Lexicalized TAG (A. K. Joshi and Schabes, 1997)).
We say that a TAG is a lexicalized TAG (LTAG) if at least one terminal symbol called anchor
appears at the frontier of every elementary tree. If c is an anchor of a tree γ, then we say that
c anchors γ or γ is anchored with c.

For instance, Figure 2.8 on page 40 shows elementary trees anchored by the lexical
items from the sentence (5); Fred, he, exam, failed, and grumpy, each of them anchors an
initial tree; because, is, and an anchor auxiliary trees.

While in an LTAG, each elementary tree is associated with a lexical item, one lexical
item might anchor finitely many elementary trees. For the sake of illustration, let us
consider like.

43

Chapter 2. Formal Grammars

(6) a. The boys like1 apples.

b. Apples the boys like2.

c. Apples are liked3 by the boys.

d. The boys ate apples like4 this one.

e. Nectarines look like5 apples.

(6) provides five di�erent usages of like. To cover all of the examples in (6), an
LTAG grammar contains five distinct trees¹⁴ anchored with like shown in Figure 2.12.
The initial trees in Figure 2.12(a) and Figure 2.12(b) correspond to the usages of
like as the predicate in the active (e.g. (6)(a)) and passive (e.g. (6)(c) constructions,
respectively. Figure 2.12(c) shows an initial tree anchored with like modeling like in
the topicalized constructions (e.g. (6)(b)). The auxiliary tree in Figure 2.12(d) is used
in a case where like is the prepositional head of an NP post-modifier (e.g. (6)(d)).
Figure 2.12(e) shows the auxiliary used in a case where like is a VP post-modifier (e.g.
(6)(d)).

S

NP↓ VP

V

like

NP↓

(a)

S

NP↓ VP

V

like

PP

P

by

NP↓

(b)

S

NP↓ S

NP↓ VP

like ε

(c)

NP

NP∗ PP

P

like

NP↓

(d)

VP

VP∗ PP

P

like

NP↓

(e)

Figure 2.12: LTAG trees anchored with like

Note that elementary trees of a TAG can be of any size and shape. In a TAG
(LTAG), a hypothesis is that locally occurring dependencies associated with a lexical
item can be encoded with an elementary tree anchored by the lexical item. This is
known as the property of extended domain of locality. For example, one can encode the
arguments of a predicate within an elementary tree anchored with the predicate.

The argument structure is not reduced to a list of arguments as the usual
subcategorization frames. It is the syntactic structure constructed with the
lexical value of the predicate and with all the nodes for its arguments. The
argument structure for a predicate is its maximal structure. An argument is
present in the argument structure even if it is optional and its optionality is
stated in the structure. Schabes, Abeillé, and A. K. Joshi (1988)

¹⁴The example is adapted from (B. L. Webber, 2004).

44

2.6. Tree-Adjoining Grammars

Extended domain of locality allows TAG to give an account of long-distance depen-
dencies. In particular, one expands locally occurring dependencies encoded with an
elementary tree by recursively adjoining trees into the elementary tree. In the resultant
tree, the dependents will be located at a greater distance from each other compared
to the distance between them in the original elementary tree. The fact that one can
distribute content among di�erent trees that adjoin into a given tree is known as the
property of factoring recursion.

Example 2.4.
Let us consider an example from the TAG literature that illustrates how one factors
recursion over several trees in order to model long-distance dependencies.

(7) John Bill claims Mary seems to love.

S

NP↓ S

NP↓ VP

to love

(a)

S

NP↓ VP

V

claims

S∗

(b)

VP

V

seems

VP∗

(c)

Figure 2.13: LTAG elementary trees

Figure 2.13 shows elementary trees anchored with the lexical items of the sentence
(7). The locally occurring dependencies, the subject and object of to love, are encoded
within an initial tree anchored with to love. One distributes (factors) the lexical entries
claims and seems over two di�erent auxiliary trees. Figure 2.14(a) depicts the derived of
the sentence (7). As the derivation tree of this derived tree indicates (see Figure 2.14(b)),
the auxiliary trees anchored with claims and seems adjoin into the initial tree anchored
with to love.

Convention: In an LTAG derivation tree, we identify a node denoting an elementary
tree by the lexeme lex.entry that anchors it together with the name of the tree (if there
are several trees anchored with the same lexeme). We use αlex .entry (resp. βlex .entry) to
denote an initial (resp. auxiliary) tree anchored with lex.entry. In order to denote either
an initial, or auxiliary, or derived tree, we use γ, unless otherwise stated.

Some Extensions of TAGs

The operation of adjunction in TAG can be seen as follows: β adjoins on the node n
into γ is equivalent to say that there are two trees γu and γb such that γu adjoins at
the root of β and at the same time γb substitutes at the foot of β. Indeed, one can
take as γu and γb the supertree and the subtree of γ at n, respectively. Thus, one can
consider a derivation step where one adds a set of trees to a tree. Multicomponent

45

Chapter 2. Formal Grammars

S

NP

John

S

NP

Bill

VP

V

claims

S

NP

Mary

VP

V

seems

VP

V

to love

(a) The derived tree

αto-love

αJohn αclaims

αBill

βseems αMary

1 2

1

22 21

(b) The derivation tree

Figure 2.14: The derived and the derivation trees

TAGs (MCTAGs) are based on a generalization of this idea (Vijay-Shanker, David J.
Weir, and A. K. Joshi, 1987). An MCTAG is a like a TAG, but MCTAG elementary
structures are sets of elementary trees. In a derivation step, one must use all trees from
one elementary tree set.

MCTAGs are linguistically interesting because they extend the domain of
locality since the contributions of single lexical elements are separated into
di�erent trees. Kallmeyer (2010)

One can define adjunction and substitution of one tree set into another one in
various ways. Thus, the notion of derivation in an MCTAG can be defined in various
ways, which gives rise to di�erent variants of MCTAGs. In particular, one considers
tree-local, set-local and non-local MCTAGs. An MCTAG is tree-local if, at each derivation
step, all trees from the same tree set adjoin and/or substitute only at nodes belonging to
a single elementary tree. An MCTAG is set-local if, at each derivation step, all trees from
the same tree set adjoin and/or substitute only at nodes belonging to trees from the
same elementary tree set. If an MCTAG is neither tree-local nor set-local, then it is called
non-local. Tree-local and set-local MCTAGs belong to the class of MCSGs, whereas
non-local MCTAGs do not.

Another formalism from the class of MCSGs is linear-context free rewriting system
(LCFRS) (Vijay-Shanker, David J. Weir, and A. K. Joshi, 1987). LCFRS and set-local
MCTAG are weakly equivalent formalisms (David Jeremy Weir, 1988). At the same
time, set-Local MCTAGs and LCFRSs are more expressive than TAG. In contrast to
set-local MCTAG and LCFRS, tree-local MCTAG and TAG generate the same tree
languages. Indeed, one can encode a single derivation step in a tree-local MCTAG
as a sequence of derivation steps of a corresponding TAG. However, the recognition
problem of a tree-local MCTAG (that is, to determine whether a given string is in a

46

2.7. Synchronous Tree Adjoining Grammar

given language or not) is NP-complete (Nesson, Satta, and M. Shieber, 2010).

2.7 Synchronous Tree Adjoining Grammar

Synchronous Tree Adjoining Grammar (STAG) is a synchronous variant of TAG (Shieber
and Schabes, 1990). An STAG defines derived structures with the help of elementary
structures. A structure of an STAG is a pair of TAG elementary trees. The nodes of
the two trees making a pair are linked. This makes possible to define simultaneous
substitutions/adjunctions on the linked nodes of the trees that are components of a
tree pair. At a derivation step of an STAG, one combines two tree pairs by either
simultaneously substituting or adjoining one tree pair into another one.

One of the motivations for introducing STAGs is to model the syntax-semantics
interface so that both syntactic and semantic analyses of natural language expressions
are provided with the help of TAG grammars. Since the grammar is synchronous, the
syntactic and semantic derived trees have the isomorphic derivation trees (see Remark 2.2
on page 49).

〈 S 1O

NP↓ 3O VP 2O

V

loves

NP↓ 4O

F 1O 2O

R

love

T ↓ 3O T ↓ 4O〉
(a) α

〈 NP 1O

George

T 1O

george〉
(b) β

〈 NP 1O

broccoli

T 1O

broccoli
〉

(c) γ

〈 VP 1O

Adv

really

VP∗

F 1O

R

really

F∗〉
(d) δ

Figure 2.15: STAG elementary structures

More formally, an entry of an STAG is a triple 〈γL, γR,a〉, where γL and γR are
TAG elementary trees; a is the linking relation between the nodes of the trees γL and
γR. To illustrate that two node are linked with, we annotate them with the same marker
iO, where i = 1, 2 We will call iO a link between the nodes. Thus, we represent the
non-empty linking relation a as a set of links { i1O, . . . , ikO}, where i1, . . . , ik are natural
numbers. For instance, Figure 2.15(a) shows that both the S and VP nodes are linked
with F. We denote the link between S and F with 1O, whereas the link between VP and
F is 2O.

An STAG defines the tree language by tree pair rewriting. The rewriting process
of an STAG involves adjoining/substituting in a derived tree pair another tree pair as
follows:

47

Chapter 2. Formal Grammars

1. We choose a link iO between two nodes nL and nR in a given derived tree pair
〈γL, γR,a

′〉;
2. We choose a tree pair 〈βL, βR,a

′′〉 such that βL can adjoin/substitute at nL in γL
and βR can adjoin/substitute at nR in γR.

3. We obtain a derived tree pair 〈γL
′
, γR

′
,a

′′′〉 by adjoining/substituting βL at nL in
γL and βR at nR in γR. The linking relation a

′′′
is defined as follows: All links

in a
′
and a

′′
are also in a

′′′
except that the chosen link iO.

The language defined by an STAG is a set of derived tree pairs 〈γL, γR〉. For
instance, Figure 2.15 shows the elementary structures of an STAG. If one enriches the
derivation tree of one of the trees with the information about the related nodes, it
is possible to use the derivation tree of γL as the derivation tree for γR (as they are
isomorphic). For instance, by using the grammar entries in Figure 2.15, one produces
the pair of TAG derived trees shown in Figure 2.17. One of them is the syntactic
derived tree, whose yield is George really loves broccoli, whereas the other one encodes
the formula really(love(george, broccoli)).

Remark 2.1. A tree rooted in F encodes a logical formula as follows:
• The predicate is the terminal symbol whose parent node is labeled with the non-terminal
R;

• an argument of a predicate is (a) either a terminal symbol whose parent is labeled with
a non-terminal T (b) or a sub-tree whose root is a non-terminal symbol F.

α

β γ δ

3O 4O 2O

Figure 2.16: An STAG derivation tree

〈 S

NP

George

VP

Adv

really

VP

V

loves

NP

broccoli
(c) A syntactic derived tree

F

R

really

F

R

love

T

george

T

broccoli

(d) A semantic derived tree

〉
Figure 2.17: An STAG derived tree pair

To obtain the pair of derived trees illustrated in Figure 2.17, one makes use of the
operations of substitution and adjunction on the elementary tree pairs as it is shown by
the derivation tree in Figure 2.16. In this derivation tree, one records the substitution of

48

2.7. Synchronous Tree Adjoining Grammar

β and γ into α at the nodes with the links 3O and 4O, respectively; δ adjoins into α on
the node with the link 2O (see α, β, γ and δ in Figure 2.15). In this way, one obtains
both the syntactic and semantic derived trees. Thus, the derivation tree in Figure 2.16
can serve as the derivation tree for the derived syntactic tree (Figure 2.17(c)) as well as
for the derived semantic tree (Figure 2.17(d)).

Remark 2.2. We con�ne ourselves with the above provided informal de�nition of the STAG
formalism. However, under this de�nition, in a pair L(G) = 〈LL,LR〉 of languages generated
by an STAG G , one of the languages LL or LR may not be a TAG language (Shieber, 1994).
For instance, Figure 2.18 shows a STAG grammar that gives rise to the pair of languages
〈{anbncndnen f ngnhn}, {ε}〉. No TAG can generate the language {anbncndnen f ngnhn}.
Shieber (1994) provides a solution to the problem. In particular, he rede�nes the notion of
derivation in an STAG that reduces the expressive power of STAGs. With the new de�nition,
the derivation trees of two trees in a tree pair are isomorphic. As it was already indicated
above, we assume that the latter requirement holds for the trees in a derived tree pair.

〈 S

A 1O

ε

B 2O

ε

S({β1})SA 1O 2O

ε 〉
(a) Tree tree pair α

〈 A

a A 1O

b A∗ c

d

S∗({β2})OA 1O

ε 〉
(b) Tree tree pair β1

〈 B

e B 2O

f B∗ h

g

S∗({β1})SA 2O

ε 〉
(c) Tree tree pair β2

Figure 2.18: A grammar producing an STAG language 〈{anbncndnen f ngnhn}, {ε}〉

49

Chapter 2. Formal Grammars

50

Chapter 3

Abstract Categorial Grammars

Contents
3.1 Introduction . 52

3.2 Mathematical Preliminaries . 53

3.2.1 Strings and Trees as λo-terms 55

3.2.2 Adjunction and Substitution as Functional Application . . . 57

3.3 Abstract Categorial Grammars 60

3.3.1 An Example of an ACG . 62

3.3.2 ACGs with the Same Abstract Language 63

3.3.3 Composition of ACGs . 63

3.4 CFGs as ACGs . 64

3.4.1 General Principles . 65

3.4.2 An Exemplifying Encoding 65

3.4.3 General Case . 67

3.5 TAGs as ACGs . 69

3.5.1 General Principles . 69

3.5.2 An Exemplifying Encoding 69

3.5.3 General Case . 72

3.5.4 The ACG Encoding of an Exemplifying LTAG for a Frag-
ment of English . 72

3.6 The ACG Hierarchy of Languages 75

3.6.1 Second-Order ACGs . 77

3.6.2 ACGs of Order n ≥ 3 . 79

3.7 Second-Order Almost-Linear ACGs (λ-CFGs) 79

3.8 TAG with Montague Semantics as ACGs 80

3.8.1 Montague Semantics as Object Terms 80

51

Chapter 3. Abstract Categorial Grammars

3.8.2 Interpretations as Montague Semantics 81

In this chapter, we discuss the Abstract Categorial Grammar (ACG) framework. We show
how to encode CFGs and TAGs as ACGs. Afterwards, we make a concise overview of the
ACG hierarchy. Among various classes of ACGs, we focus on second-order ones because (1)
they allow one to encode a number of formal grammars; (2) the problems of parsing and
generation for them are polynomial. In addition, we de�ne a more expressive version of
second-order ACGs, called λ-CFGs. They enable us to encode Montague semantics within
ACGs. Despite the increase in the expressive power, the parsing and generation problems for
λ-CFGs are polynomial. Finally, we show how one encodes TAG with Montague semantics
with the help of ACGs.

3.1 Introduction

In the tradition of type-logical approaches to the natural language modeling (Curry,
1960; Lambek, 1958; Montague, 1973; Moortgat, 1997; Morrill, 1994; D. Oehrle,
1995; R. T. Oehrle, 1988, 1994; Ranta, 1994), de Groote (2001) and Muskens (2001)
independently proposed two very similar formalisms. The one by de Groote (2001) is
referred to as the Abstract Categorial Grammar (ACG) framework, or sometimes as
Abstract Categorial Grammars (ACGs), and the one by Muskens (2001) is known as
Lambda Grammars. In this thesis, we follow de Groote’s (2001) ACGs.

ACGs present a grammatical framework, which can be seen as a generalization of
Categorial Grammars (Lambek, 1958). An ACG defines two levels of grammar, called
the abstract and object vocabularies. The idea of a two-level structure that an ACG
defines was inspired by Curry’s (1960) view on a language, expressed by the following
quote:

. . . we may conceive of the grammatical structure of the language as something
independent of the way it is represented in terms of expressions . . . This
gives us two levels of grammar, the study of grammatical structure in
itself, and a second level which has much the same relation to the first
that morphophonemics does to morphology. In order to have terms for
immediate use I shall call these two levels tectogrammatics and phenogrammatics
respectively . . .

Curry (1960)

Montague’s works (Montague, 1970a,b, 1973) (called Montague Grammar) addressing
the modeling of the syntax-semantics interface had served as an inspiration source for
introducing ACGs. The ideological basis of Montague’s work was his famous thesis,
quoted as follows:

There is in my opinion no important theoretical di�erence between natural
languages and the artificial languages of logicians; indeed, I consider it
possible to comprehend the syntax and semantics of both kinds of languages
within a single natural and mathematically precise theory.

Montague (1970b)

52

3.2. Mathematical Preliminaries

One of the primary goals of ACGs is to deal with the problems of the syntax-
semantics interface within a computational framework, as the following quote indicates:

The distinction between syntax and semantics is of course relevant from a
linguistic point of view. This does not mean, however, that it must be wired
into the computational model. On the contrary, a computational model based
on a small set of primitives that combine via simple composition rules will
be more flexible in practice and easier to implement. De Groote (2001)

Generalizing the idea of a functional translation from syntax to semantics proposed
in Montague Grammar, an ACG defines the notion of a lexicon. The lexicon is a
homomorphism from the abstract vocabulary to the structures built upon the object
vocabulary.

ACGs are capable of encoding various grammatical formalisms. De Groote (2001,
2002) encodes CFGs and TAGs as ACGs. De Groote and Pogodalla (2004) construct
ACGs that are (strongly) equivalent to linear¹⁵ context-free tree grammars and linear
context-free rewriting systems (LCFRSs). Since LCFRSs are weakly equivalent to set-local
MCTAGs¹⁶ and Minimalist Grammars,¹⁷ ACGs provide a framework where one encodes
a number of grammatical formalisms. Pogodalla (2004, 2009) presents a modeling of
the syntax-semantics interface where one interprets TAG derivation trees into semantic
formulas. To do so, one makes use of higher-order interpretations reminiscent of ones
introduced by Montague (1973). However, to encode Montague’s (1973) semantics
with ACGs, it is necessary to extend the original version of ACGs. Kanazawa (2007)
provides one of such extensions of ACGs, called λ-CFGs. It is noteworthy that for the
ACGs encodings of all the above-mentioned formalisms (including the one for modeling
TAG with Montague semantics), the problems of parsing and generation are polynomial
(Kanazawa, 2007; Salvati, 2005).

3.2 Mathematical Preliminaries

We provide some mathematical notions that ACGs involve (de Groote, 2001).

De�nition 3.2.1 (Linear Implicative Type).
Let A be a set of atomic types. We de�ne two sets T

(
(A) and T

→
(A), called the set of linear

implicative types built upon A and the set of implicative types built upon A respectively.
Linear implicative types

1. A ⊂ T
(

(A);
2. if α ∈ T

(
(A) and β ∈ T

(
(A), then (α(β) ∈ T

(
(A).

Implicative types
1. A ⊂ T

→
(A);

2. if α ∈ T
→

(A) and β ∈ T
→

(A), then (α→ β) ∈ T
→

(A).

¹⁵Here, linear means non-duplicating and non-deleting.
¹⁶(David Jeremy Weir, 1988).
¹⁷(Michaelis, 2001).

53

Chapter 3. Abstract Categorial Grammars

By convention, we write α1 (. . . (αn (β for (α1 ((. . . ((αn (β) . . .));
and α1 → . . .→ αn → β for (α1 → (. . .→ (αn → β) . . .)).

De�nition 3.2.2 (Order of Type).
Given a set of atomic types A, the order ord(α) of a type belonging to either T

(
(A) or T

→
(A)

is inductively de�ned as follows:
• ord(α) = 1 for any atomic α (i.e., for any α ∈ A);
• ord(α(β) = max{ord(α) + 1, ord(β)} for any α, β ∈ T

(
(A).

• ord(α→ β) = max{ord(α) + 1, ord(β)} for any α, β ∈ T
→
(A).

De�nition 3.2.3 (Higher-Order Signature and Higher-Order Linear Signature).

A higher-order linear signature (HOS) is a triple Σ = 〈A,C , τ(〉 de�ned as follows:
• A is a �nite set of atomic types;
• C is a �nite set of constants;
• τ
(

: C −→ T
(

(A) is type assignment that maps each constant from C to a linear
implicative type built upon A.

A higher-order signature is a tripe Σ = 〈A,C , τ→〉 de�ned as follows:
• A is a �nite set of atomic types;
• C is a �nite set of constants;
• τ

→
: C −→ T

→
(A) is type assignment that maps each constant from C to an

implicative type built upon A.

To express that a is of type α, i.e., that τ((a) = α or τ
→

(a) = α, we write a : α. In
τ
(and τ

→, we drop the superscripts (and → if it does not cause a confusion.

De�nition 3.2.4. We de�ne the order of a HOS Σ = 〈A,C , τ〉, denoted by ord(Σ), to be
the maximum of the orders of the types of its constants, that is, ord(Σ) = max

a∈C
ord(τ(a)).

We also make use of standard notions and notations¹⁸ from λ-calculus such as free
and bound variables of a λ-term, where one denotes with FV(t) the set of free variables
of a term t ; a closed term, i.e., a term without any free variable; a combinator, i.e., a
term with neither constants nor free variables; the notions of α-equivalence (↔ α),
a single step β-reduction (→β), a multi-step β-reduction (�β), β-equivalence (↔ β),
η-conversion, βη-equivalence (↔ βη), β-normal form, βη-normal form, etc. By assuming
these notions, we define linear lambda terms (abbreviated as λo-terms).

De�nition 3.2.5 (Linear Lambda Terms).
Let X be a countably in�nite set of variables and Σ = 〈A,C , τ〉 be a higher-order linear
signature, then Λ(Σ) the set of λo-terms built on Σ is de�ned as follows:

• X ⊂ Λ(Σ);
• C ⊂ Λ(Σ);
• if x ∈ X and t ∈ Λ(Σ) and if x has exactly one free occurrence in t , then λox .t ∈ Λ(Σ);
• if t ∈ Λ(Σ), u ∈ Λ(Σ) and t and u do not share any free variable, that is, FV(t)∩

FV(u) = ∅, then (t u) ∈ Λ(Σ).

¹⁸Following (Barendregt, 1992).

54

3.2. Mathematical Preliminaries

We follow the standard conventions:
• We write t1 . . . tn for application ((. . . (t1 t2) . . .) tn);
• we write λox1 . . . xn . t for (λox1.(λox2. . . . (λoxn . t) . . .)).
• we write λo~x .t for (λox1.(λox2. . . . (λoxn . t) . . .)), where ~x stands for the sequence

x1, x2, . . . , xn .

De�nition 3.2.6 (Typing Judgments for λo-Terms).
Let Σ = 〈A,C , τ〉 be a HOS. The typing rules are given with an inference system whose
judgments are of the form Γ `Σ t : α, where

• Γ is a �nite set of variable declarations of the form x : χ, where x ∈ X and χ ∈ T
(

(A),
so that any variable declaration can occur in Γ at most once;

• t ∈ Λ(Σ);
• α ∈ T

(
(A).

One derives typing judgments according to the following inference system:
Axioms:

(con)
`Σ c : τ(c), where c ∈ C

x : χ
(var)

`Σ x : χ , where x ∈ X

Inference Rules:

Γ, x : α `Σ t : β
(lin.abs)

Γ `Σ λox .t : α(β
Γ `Σ t : α(β ∆ `Σ u : α

(lin.app)
Γ,∆ `Σ (t u) : β

We drop the subscript Σ in `Σ t : α whenever it does not cause a confusion.

3.2.1 Strings and Trees as λo-terms

We show the standard way of encoding trees and strings as λo-terms.

3.2.1.1 Strings

De�nition 3.2.7 (String Signature).
Given a set ∆, we consider a HOS Σ

string
∆ = 〈A,C , τ〉 de�ned as follows:

1. Σ
string
∆ has a single atomic type ∗, i.e., A = {∗}.

2. C = ∆.
3. For each c ∈ C , τ(c) = ∗(∗. The type ∗(∗ is called the string type.
We call Σ

string
∆ a string signature over ∆.

Given a finite alphabet ∆, we build a HOS Σ
string
∆ according to Definition 3.2.7.

Constants of Σ∆ model symbols in ∆. We have a single atomic type ∗ in Σ∆. One
encodes a sting over ∆ with a λo-term in Λ(Σ∆) of type ∗(∗ as follows:

a1 . . . an ∈ ∆∗ is represented as a term λo z . a1 (· · · (an z) · · ·) : ∗(∗.

We encode a string concatenation with a combinator λou1 u2.λo z . u1 (u2 z). Indeed,
if t1 is a λo-term encoding a string θ1 and t2 is a λo-term encoding θ2, then λoz . t1 (t2 z)

55

Chapter 3. Abstract Categorial Grammars

encodes the concatenation of the two strings θ1θ2. To obtain the term λoz . t1 (t2 z), one
applies the combinator λox1 x2. λo z . x1 (x2 z) to t1 and t2. Let us illustrate this on an
example.

Example 3.1. One computes the concatenation of a string ab and a string c as follows:

(λou1.λou2.λo z .u1 (u2 z))︸ ︷︷ ︸
concatenation

(λo x . a (b x))︸ ︷︷ ︸
ab

(λo y . c y)︸ ︷︷ ︸
c

�β λ
o z .a (b (c z))︸ ︷︷ ︸

abc

We denote the combinator λou1 u2.λo z . u1 (u2 z) encoding the string concatenation
operation with +. With this notation, (λou1 u2.λo z . u1 (u2 z)) (t) (u) becomes +t u. We
use an infix notation t + u instead of the Polish notation +t u. The type of + is
(∗(∗)((∗(∗)(∗(∗. One can check that the string concatenation operator +
has the following properties:

1. There is a term ε that encodes the empty string, that is, for any λo-term t encoding
a string, the following holds: t + ε = ε+ t = t , where = should be understood as
↔βη. Indeed, the identity function λoz .z plays the role of ε.

2. + is associative, i.e., for any λo-terms t , u, and v that encode strings, the following
holds: (t + u) + v = t + (u + v).

Since for each a in C , the type of a is ∗(∗, the signature Σ∆ is second-order. As
∀ a ∈ C , we have τ(a) = ∗ (∗, and + is of type (∗ (∗) ((∗ (∗) (∗ (∗,
by denoting ∗ (∗ with σ, we get that ∀ a ∈ C , τ(a) = σ; the type of + becomes
σ(σ(σ. Thereafter, we use a convention that instead of Σ

string
∆ = 〈{∗},∆, τ〉, we

write Σ
string
∆ = 〈{σ},∆, τσ〉. We may call σ the type of a string signature Σ

string
∆ , though

it abbreviates a functional type ∗(∗. Whenever it does not cause a confusion, we
drop the subscript ∆ in Σ

string
∆ and the subscript σ in τσ.

Example 3.2. Let ∆ be an alphabet consisting of three symbols Fred, failed and exams.
To model strings over ∆, we introduce Σ

string
∆ , which is 〈{σ}, {Fred, failed, exams}, τσ〉

where τσ(Fred) = τσ(failed) = τσ(exams) = σ. We encode strings obtained by concate-
nating symbols of ∆ as terms of type σ over Σ

string
∆ . For example, we model a string

Fred failed exams over ∆ as a term Fred+ failed+ exams of type σ.

3.2.1.2 Trees

De�nition 3.2.8 (Tree Signature).
For a ranked alphabet 〈∆, ρ〉, we de�ne a HOS Σtree∆ = 〈A,C , τ〉 as follows:
1. Σtree∆ has a single atomic type τ , i.e., A = {τ}.
2. C = ∆.
3. For every f ∈ ∆, τ(f) = τ (. . .(τ︸ ︷︷ ︸

ρ(f) times
(τ .

We call Σtree∆ a tree signature (determined by the ranked alphabet ∆).

One models the tree set T∆ as the subset of Λ(Σ∆) whose elements are closed
terms of type τ . Whenever it does not cause a confusion, we drop the subscript ∆ in
Σtree∆ .

56

3.2. Mathematical Preliminaries

S

NP

Fred

VP

V

failed

NP

exams

Figure 3.1: A syntactic tree

Example 3.3. Let us consider a tree depicted in Figure 3.1. To model this tree as
a term over a tree signature, we follow Definition 3.2.8 and define the following tree
signature Σtree:

Σtree = 〈{τ}, {Fred, failed, exams, NP1, V1, S2, VP2}, ττ 〉

Where Fred, failed, and exams are of type τ ; NP1, and V1 are of type τ (τ ; S2 and
VP2 are of type τ (τ (τ . We model the tree in Figure 3.1 with a term u : τ over
Σtree, defined as follows:

u = S2 (NP1 Fred) (VP2 (V1 failed) (NP1 exams)) : τ (3.1)

It follows from Definition 3.2.8 that, like string signatures, tree signatures are
second-order ones.

3.2.2 Adjunction and Substitution as Functional Application

We saw how to encode trees as λo-terms of type τ . We encode the operations of
substitution and adjunction over trees as the operation of functional application over
λo-terms (de Groote, 2002).

3.2.2.1 Substitution as Functional Application

If a tree α substitutes into a tree γ, then we encode γ as an operator, and α as its
operand. The operator applies to the operand. The result of the application of the
operator to the operand encodes the tree obtained by substituting α into γ. Let a
λo-term a be the encoding of the tree α and a λo-term g be encoding of γ. We encode
the node at which α substitutes into γ with the help of a λo-variable x in g . Indeed,
the functional application of g to a will insert a in the place of x in g . For example

let us consider
NP

Fred
in the role of α, whereas we take the tree in Figure 3.2(a) in the

role of γ. The tree obtained by substituting α into γ at the node marked with ↓ is
shown in Figure 3.2(b). We already saw how to encode trees with no substitution sites

57

Chapter 3. Abstract Categorial Grammars

as λo-terms. Thus, we encode
NP

Fred
as the following λo-term of type τ :

a = NP1 Fred : τ (3.2)

An encoding of the tree in Figure 3.2(a) should be an operator with one operand of
type τ . The output of the application of the operator to the operand is also a term of
type τ . In other words, the encoding of the tree in Figure 3.2(a) transforms a term of
type τ into a term of type τ . Hence, it is a term of type τ (τ .

S

NP ↓ VP

V

failed

NP

exams

(a) A tree with a substi-
tution site

S

NP

Fred

VP

V

failed

NP

exams

(b) The obtained tree

Figure 3.2: Two trees

To encode the tree in Figure 3.2(a) as a λo-term, we denote the node marked for
substitution ↓ with x . We encode the obtained tree as a λo-term, as follows:

S2 x (VP2 (V1 failed) (NP1 exams))

However, the latter term lacks the information that x is going to be substituted by a
term of type τ (as it models a tree with no substitution sites). To do that, we bind x
by λox . Hence, one proposes the following encoding of the tree in Figure 3.2(a).

g = λox . S2 x (VP2 (V1 failed) (NP1 exams)) : τ (τ (3.3)

The following checks that the term (g a) indeed models the tree Figure 3.2(b):

g a = (λox . S2 x (VP2 (V1 failed) (NP1 exams))) (NP1 Fred)→β

S2 (NP1 exams) (VP2 (V1 failed) (NP1 exams)) (3.4)

3.2.2.2 Adjunction as Functional Application

Similar to the case of substitution, we view a tree that adjoins into another tree as an
operand, and the tree where it adjoins is an operator. However, while a substitution takes
place at a frontier node in a tree, an adjunction takes place at an internal node in a tree.
Hence, in the case of adjunction, the variable nodes, which we are going to substitute
by auxiliary trees, are internal ones. To model adjunction as functional application, we
cannot use the type τ used in the case of substitution, because adjunction is a more

58

3.2. Mathematical Preliminaries

complex operation than substitution. Indeed, when a tree β adjoins into a tree γ, β
substitutes an internal node n of γ so that (1) the mother of n becomes the mother
of the root node of β; (2) the daughters of n become daughters of the foot node of β.
Thus, we encode the tree β as an argument of the tree γ such that β itself receives an
argument (the subtree of γ at n). In other words, the auxiliary tree β is an operator
whose operand is the subtree of γ at n . Hence, we model β with a functional type. For

example, let us consider an adjunction of a tree β =
VP

almost VP∗
on the VP-adjunction

site into the tree γ in Figure 3.2(b) on the preceding page (for now, let us assume that
it is the only adjunction site in γ). The resultant tree is depicted in Figure 3.3.

S

NP

Fred

VP

almost VP

V

failed

NP

exams

Figure 3.3: A tree obtained by adjoining β into γ

We model β with a term of type τ (τ , as follows:

b = λoy . VP2 almost y : τ (τ (3.5)

The encoding of the tree γ should be able to apply to the term b. We propose the
following encoding of γ:

g = λoz . S2 (NP1 Fred) (z (VP2 (V1 failed) (NP1 exams))) : (τ (τ)(τ (3.6)

Let us check that the term (g b) indeed models the tree in Figure 3.3:

g b = λoz . S2 (NP1 Fred) (z (VP2 (V1 failed) (NP1 exams))) (λoy . VP2 almost y)→β

S2 (NP1 Fred) ((λoy . VP2 almost y) (VP2 (V1 failed) (NP1 exams)))→β

S2 (NP1 Fred) (VP2 almost (VP2 (V1 failed) (NP1 exams))) (3.7)

In this way, we model adjunction as functional application where an operator applies
to an operand of type τ (τ .

Remark 3.1. In a TAG, one can substitute α into γ, if α is derived from an initial tree.

One can assume that α does not have un�lled substitution sites, like
NP

Fred
. Indeed, if α has

some un�lled substitution sites, we �rst �ll these substitution sites and then we substitute the
obtained tree into γ. Hence, one can model α with a term of type τ . This means that we
model a substitution as a functional application where the operand is of type τ .

59

Chapter 3. Abstract Categorial Grammars

If β adjoins in γ, we assume that β, which is either an auxiliary tree or is derived from
an auxiliary tree, has no substitution sites. Indeed, if β has substitution sites, then we �rst �ll
the substitution sites and then we adjoin the obtained tree into γ. This means that we model
an adjunction as a functional application where the operand is of type τ (τ .

The two above made assumptions do not cause any restrictions on the language de�ned by
the TAG. Indeed, by de�nition, trees of the TAG derived tree language are completed ones,
that is, they do not have un�lled substitution sites. Thus, in order to derive a completed tree γ,
one has to �ll the substitution sites of the elementary trees that are involved in the derivation
of γ. The order in which one performs these substitutions does not have an impact on the
derived tree (Schabes and Shieber, 1994). Thus, one generates the same tree language under these
assumptions.

3.3 Abstract Categorial Grammars

In this section, we present the definition of ACGs (de Groote, 2001).

De�nition 3.3.1 (Lexicon (de Groote, 2001)).
A lexicon from a HOS Σ1 = 〈A1,C1, τ1〉 to a HOS Σ2 = 〈A2,C2, τ2〉 is a pair L = 〈F , G〉,
de�ned as follows:
1. F : A1 −→ T

(
(A2) maps atomic types in A1 to linear implicative types built on A2;

we also denote by the same symbol F the homomorphic extension of F over T
(

(A1), i.e.,
we write F : T

(
(A1) −→ T

(
(A2).

2. G : C1 −→ Λ(Σ2) maps constants in C1 to λo-terms built on Σ2; we also denote
by the same symbol G the homomorphic extension of G over Λ(Σ1), i.e., we write
G : Λ(Σ1) −→ Λ(Σ2).

3. F and G are such that for any c ∈ C1, it holds that `Σ2 G(c) : F (τ1(c)) is a provable
(derivable) typing judgment. The latter condition ensures that the mapping of types and
the mapping of constants are in concordance with each other, that is, L is well-de�ned.

By convention, we write L instead of F and G whenever it does not cause a confusion.
We write L : Σ1 −→ Σ2 to denote that L is a lexicon between two HOSs Σ1 and Σ2.

Given L : Σ1 −→ Σ2, one can check that if t ∈ Λ(Σ1) is of type α(β and L is a
lexicon, then L(t) is of type L(α)(L(β). That is, a lexicon interprets functional
types into functional ones.

De�nition 3.3.2 (Abstract Categorial Grammars (de Groote, 2001)).
An abstract categorial grammar (ACG) G is a quadruple 〈Σ1,Σ2,L, s〉, where
1. Σ1 and Σ2 are higher-order linear signatures, called the abstract vocabulary and the

object vocabulary, respectively;
2. L : Σ1 −→ Σ2 is a lexicon from Σ1 to Σ2;
3. s is a type of the abstract vocabulary (either atomic or built upon the atomic types in

Σ1), called the distinguished type of the grammar.

De�nition 3.3.3 (Abstract and Object Languages (de Groote, 2001)). Let G be an ACG,
where G = 〈Σ1,Σ2,L, s〉. Two sets, called the abstract language A(G) and the object
language O(G), are associated with G. They are de�ned as follows:

60

3.3. Abstract Categorial Grammars

The abstract language: A(G) = {t ∈ Λ(Σ1) | `Σ1 t : s is derivable}
The object language: O(G) = {u ∈ Λ(Σ2) | ∃t ∈ A(G) : u = L(t)}
We say that an ACG G defines (generates) the abstract and object languages A(G) and

O(G), respectively.

It may be useful of thinking of the abstract language as a set of abstract
grammatical structures, and of the object language as the set of concrete
forms generated from these abstract structures. De Groote (2001)

Hence, the abstract language is a set of closed λo-terms over the abstract vocabulary
of the distinguished type. The object language is an image of the abstract language
under the lexicon. Thus, a term over the object vocabulary u is a member of the object
language if and only if there is a closed term t over the abstract vocabulary of the
distinguished type s such that L(t) = u, where = is ↔ βη. We may write L(t) = u
also as t :=L u, or just as t := u if it does not cause a confusion. If we say that an
ACG G generates a language L, without specifying whether L is the abstract language
or the object one, then one assumes that L is the object language.

As Definition 3.3.3 indicates, the abstract and object vocabularies are the same
kind of mathematical structures as both are HOSs. Instead of the abstract and object
languages, we may rather consider only the abstract and object vocabularies, the
distinguished type, and the lexicon of an ACG, because they unequivocally determine
the abstract and object languages defined by the ACG. We also may refer to constants
and terms over the abstract (resp. object) vocabulary as abstract constants (resp. object
constants) and abstract terms (resp. object terms) whenever it does not cause a confusion.

Figure 3.4 illustrates an ACG, where the larger disks are pictorial representations of
the involved vocabularies and the smaller ones stand for languages. The arrow linking
the vocabularies, and subsequently the languages, stands for the lexicon.¹⁹

A(G)

O(G)

Λ(Σ1)

Λ(Σ2)

G

L

Figure 3.4: A picture of an ACG with its abstract and object languages

¹⁹The ellipse with the dotted borderline in Figure 3.4 indicates that this is an ACG whose building
blocks (i.e. two signatures linked with a lexicon) are in the confines of the ellipse. We do not draw a
borderline of an ACG whenever it does not create a confusion.

61

Chapter 3. Abstract Categorial Grammars

3.3.1 An Example of an ACG

As one of the examples of ACGs, we encode the correspondence between trees and their
yields. We model trees as abstract terms and yields as their images under the lexicon.
We assume that trees are ranked trees over some ranked alphabet ∆ = N ∪Σ, where
N ∩Σ = ∅. Elements of Σ are terminal symbols and elements of N are non-terminal
symbols. Terminal symbols are of rank 0, whereas the rank of a non-terminal symbol is
a positive natural number.

For a given ∆, we consider two signatures, Σtree∆ and Σ
string
Σ . Σtree∆ is the abstract

vocabulary and Σ
string
∆ is the object vocabulary of the ACG we are building. The

distinguished type of the ACG is the atomic type of Σtree∆ , i.e., τ . We define a lexicon
Lyield from Σtree∆ to the terms over Σ

string
∆ as follows:

• The image of the tree type τ of the Σtree∆ under Lyield is the string type σ, i.e.,
Lyield(τ) = σ.

• If X ∈ Σtree
∆ is of type τ (X encodes a 0-ary symbol of ∆, which means that X is

a terminal symbol), then: Lyield(X) = X.
• If Xn ∈ Σtree

∆ is of type τ (. . .(τ︸ ︷︷ ︸
n−times

(τ where n ≥ 1 (Xn encodes an n -ary

symbol of ∆), then:

Lyield(X) = λox1 . . . xn . x1 + . . .+ xn : σ(. . .(σ︸ ︷︷ ︸
n−times

(σ

Closed terms over Σtree∆ of type τ encode trees over ∆. Their images under Lyield en-
code yields of these trees. For the sake of example, let us consider the tree shown in Fig-
ure 3.5. We encode this tree as a λo-term u, where u = S2 (NP1 Fred) (VP2 (V1 failed) (NP1 exams)) :
τ . By interpreting u with Lyield, we obtain the following:

Lyield(u) =

Lyield(S2) (Lyield(NP1) Lyield(Fred)) (Lyield(VP2) (Lyield(V1) Lyield(failed))
(Lyield(NP1) Lyield(exams)))�β

�β Fred+ failed+ exams : σ

S

NP

Fred

VP

V

failed

NP

exams

Figure 3.5: A syntactic tree

62

3.3. Abstract Categorial Grammars

In the rest of the thesis, we will make use of the ACG 〈Σtree∆ ,Σ
string
∆ ,Lyield, τ〉 while

discussing encodings of ACG encodings of grammatical formalisms. We may not specify
∆ if it clear from the context. We refer to the ACG 〈Σtree∆ ,Σ

string
∆ ,Lyield, τ〉 as the yield

ACG for ∆, or simply as a yield ACG.

3.3.2 ACGs with the Same Abstract Language

The abstract language of an ACG does not depend on a lexicon; it rather depends on
the abstract signature and on the distinguished type. Thus, if several ACGs share the
same abstract vocabulary and their distinguished types are the same, then these ACGs
define the same abstract languages. In this case, we depict these ACGs with the help
of only one abstract signature and several object signatures and lexicons, for example,
as it is in Figure 3.6. This architecture is useful for modeling the syntax-semantics
interface using the ACGs encoding of TAG. With the shared abstract vocabulary we
encode TAG derivation trees. One of the lexicons maps TAG derivation trees to TAG
derived trees (one of the ACGs). The other one maps TAG derivation trees to semantic
interpretations (another ACG).

A(G)

O(G2)

G2

O(G1)

G1

L2

L1

Figure 3.6: Two ACGs with the same abstract language

3.3.3 Composition of ACGs

The abstract and object vocabularies are both higher-order signatures. A lexicon is a
function. One can compose functions. Thus, if we have two lexicons L1 : Σ1 −→ Σ2 and
L2 : Σ2 −→ Σ3, then we can consider a lexicon L3 : Σ1 −→ Σ3 that maps a constant
(resp. a type) a of Σ1 to a term (resp. type) over Σ3 as follows: L3(a) = L2(L1(a)).
One can check that L3 meets the requirements imposed on a lexicon, namely, it is a
homomorphism; and for every constant a of Σ1, if a : κ, L3(a) : L3(κ). We denote
L3 with L2 ◦L1. Relying on this property of the lexicon composition, one defines the
composition of ACGs.

63

Chapter 3. Abstract Categorial Grammars

De�nition 3.3.4 (ACG Composition).
Let G1 = 〈Σ1,Σ2,L1, s1〉 and G2 = 〈Σ2,Σ3,L2, s2〉 be two ACGs. We de�ne the ACG
G3 = 〈Σ1,Σ3,L3, s3〉 as follows:

s3 = s1 and L3 = L2 ◦L1.

Thus, we have:

A(G3) = A(G1) = {t ∈ Λ(Σ1) | `Σ1 t : s1 is derivable}
O(G3) = {t | ∃u ∈ O(G1) : L2(u) = t}

We call G3 the composition of ACGs G1 and G2 and denote with G2 ◦ G1.

Λ(Σ1)

Λ(Σ2)

O(G1)

A(G1)

Λ(Σ3)

L2(O(G1))

L1

L2

L 3
=

L 2
◦L

1

G3=G2 ◦ G1

Figure 3.7: An ACG Composition

3.4 CFGs as ACGs

In this section, we discuss de Groote’s (2001) encoding of CFGs²⁰ as ACGs. Let G be
the ACG encoding of a CFG G . G has the following properties:

• The abstract language of G is the set derivations defined by G .
• The object language of G is the language of G .

Thus, the ACG encoding of a CFG G is strongly equivalent to G .

²⁰We refer readers to See Section 2.3.2 on page 33 for the definitions and notations that we use for
CFGs.

64

3.4. CFGs as ACGs

3.4.1 General Principles

We build two ACGs, G1 and G2. G1 establishes the correspondence between derivations
of G and parse trees determined by G . That is, if the string of terminals ω is generated
by the grammar G using some rules in some order, call it a derivation of ω, then G1

corresponds to this derivation a parse tree whose yield is ω. G2 interprets a parse tree
as its yield. The composition of these two ACGs is the ACG encoding of G .

The ACG encoding of a context-free grammar relies on the following ideas:
• One identifies the atomic types of the abstract vocabulary with the non-terminal
symbols of the grammar.

• One associates the constants of the abstract vocabulary with the production rules of
the grammar.

• The type of a constant Cp associated with a production rule p is built with the
help of the non-terminal symbols occurring in the production rule p.

• The lexicon of G1 maps an abstract constant Cp to a tree associated with a rule
p.

• G2 is a yield ACG, defined in Section 3.3.1 on page 62.
• G2 ◦ G1 is the ACG encoding of G .

3.4.2 An Exemplifying Encoding

For the sake of illustration, we consider a CFG grammar G = 〈N , Σ,P , S〉 generating
the Dyck language. Figure 3.8 shows the production rules of this grammar. We construct
the ACG encoding this grammar.

p1 : S −→ ε

p2 : S −→ aSbS

Figure 3.8: Production rules of the CFG G

We can associate with each production X → ω a tree whose root node is labeled
with X. The children of the root node are the frontier nodes in the tree. The frontier
nodes in the tree are labeled with the symbols from ω. The order of nodes follows the
order of their labels in ω. For instance, the rules p1 and p2 can be represented as trees
shown in Figure 3.9.

S

ε

(a)
p1

S

a S b S

(b) p2

Figure 3.9: Trees representations of production rules

65

Chapter 3. Abstract Categorial Grammars

By definition, a string belongs to LG if one can derive it from the start symbol
S with the help of the production rules of G . Let p

′
: A

′ → ω
′
and p

′′
: A

′′ → ω
′′

be production rules such that A
′
has an occurrence in ω

′′
. Let us select one of the

occurrences of A
′
into ω

′′
. In a derivation step, we replace the selected occurrence of

A
′
in ω

′′
with ω

′
. This corresponds to the substitution of the tree associated with p

′

into the tree associated with p
′′
at the node corresponding to the selected occurrence

of A
′
in ω

′′
. For instance, let us consider a parse tree with the yield ab, shown in

Figure 3.10(a). This parse tree corresponds to the following derivation:

S =⇒G aSbS︸ ︷︷ ︸
p2

=⇒G aεbS︸ ︷︷ ︸
p1

=⇒G aεbε︸ ︷︷ ︸
p1

One can obtain the parse tree in Figure 3.10(a) by substituting the occurrences of S
in the frontier of the tree associated with p2 (see Figure 3.9(b)) by the tree associated
with p1 (see Figure 3.9(a)).

Thus, to each derivation corresponds a parse tree. We build an ACG G1 that allows
one to interpret a derivation of a string as the corresponding parse tree. The object
vocabulary is a tree signature so that terms over it model derivation trees of the CFG.
Constants of the abstract vocabulary model production rules so that abstract terms
model CFG derivations. To type a constant Cp modeling a production rule p, we
refer to its tree representation. Let the non-terminals labeling the frontier of the tree
representation of p be X1, . . . ,Xn (from left to right); and the root label be X. We
type Cp with the type X1 (. . .(Xn (X. In other words, the non-terminal symbols
X1, . . . ,Xn label substitution sites in the tree representation of p. At the node labeled
with Xi , one can only substitute a tree whose root is labeled with Xi , for i = 1, . . . , n.
We model the substitution site labeled with Xi as an argument of Cp of type Xi , for
i = 1, . . . , n. If all the substitution sites are filled, one obtains a tree with the root
labeled by X. This modeling is expressed by typing Cp with X1 (. . .(Xn (X.

Thus, to model the grammar in Figure 3.8, we introduce two constants Cp1 and
Cp2 associated with the rules p1 and p2 respectively. We type Cp1 with S, whereas we
type Cp2 with S(S(S. A rewriting of an occurrence of S by ε in p2 corresponds to
an application of Cp2 to Cp1 . In derivation trees, the application of Cp2 to Cp1 is to
substitute an occurrence of S at the frontier of the tree representation of p2 with the
tree representation of p1. For instance, we model the parse trees in Figure 3.10 by the
terms t1 and t2 respectively, defined as follows:

t1 = Cp2 Cp1 Cp1 : S (3.8)

t2 = Cp2 (Cp2 Cp1 Cp1) Cp1 : S (3.9)

Thus, we build the following abstract vocabulary:

Σ1 = {{S}, {Cp1 : S,Cp2 : S(S}}

The abstract language is a set of closed terms of type S. The abstract language
gives rise to PTR(G , S), i.e., the set of parse trees whose root is labeled with S.

66

3.4. CFGs as ACGs

S

a S

ε

b S

ε

(a) A parse tree
with the yield ab

S

a S

a S

ε

b S

ε

b S

ε

(b) A parse tree with the
yield aabb

Figure 3.10: Two parse trees

Cp1 :=LG S1 ε
Cp2 :=LG λoxy . S4 a x b y

Figure 3.11: Interpretations of the constants modeling the production rules

To construct this set, we interpret constants of Σ1 to the trees that they the give rise
to. Thus, we build a lexicon LG : Σ1 −→ ΣtreeN∪Σ . Figure 3.11 shows the interpretations
of Cp1 and Cp2 .

Where S1 : τ (τ , S4 : τ (τ (τ (τ (τ ; a, b, and ε are of type τ . For
instance, the terms t1 and t2 have the following interpretations under LG :

LG(t1)�β S4 a (S1 ε) b (S1 ε) : τ (3.10)

LG(t2)�β S4 a (S4 a (S1 ε) b (S1 ε)) b (S1 ε) : τ (3.11)

In this way, we build an ACG G1 = 〈Σ1,Σ
tree
N∪Σ ,LG , S〉. The object language of G1

is the set PTR(G , S).
Afterwards, one can interpret terms modeling parse trees as their yields with the

help of a yield ACG, in the same way as we did that in Section 3.3.1. Thus, we define
G2 = 〈ΣtreeN∪Σ ,Σ

string
Σ ,Lyield, τ〉. The composed ACG G = G2 ◦ G1 is the ACG encoding of

G . The object language of the composed ACG is the string language defined by the
original CFG G .

3.4.3 General Case

Given a CFG G = 〈N , Σ,P , S〉, we use the following notations. One defines JωKX
using a structural induction on ω (denoting a string of terminals and non-terminals) as
follows:

1. JεKX = X;
2. JYωKX = Y(JωKX if Y ∈ N ;
3. JaωKX = JωKX if a is a terminal symbol, i.e., a ∈ Σ.
By ~σ, we denote a sequence of variables and constants of some signature. We write

u, ~σ to denote a sequence u, u1, . . . , un , where ~σ denotes the sequence u1, . . . , un .

67

Chapter 3. Abstract Categorial Grammars

We define LωM as follows:
1. LεM = (x ; x).
2. LY ωM = (y , ~σ1; y , ~σ2), where LωM = L ~σ1; ~σ2M, Y ∈ N and y is a fresh variable;
3. La ωM = (~σ1; a, ~σ2), where (~σ1; ~σ2) = LωM and a ∈ Σ.
One builds an ACG G1 = 〈Σ1,Σ

tree
N∪Σ ,LG , S〉 strongly equivalent to G = 〈N , Σ,P , S〉

as follows:

The Abstract Vocabulary Σ1 = 〈A1,C1, τ1〉
• X ∈ A1 if and only if X ∈ N , i.e., the set of the abstract atomic types of the
ACG is exactly the same as the set of non-terminal symbols of the CFG.

• To each production rule p : X→ ω corresponds a constant Cp of the abstract
vocabulary Σ1.

• If Cp is a constant of Σ1 associated with a production rule p : X→ ω, then
τ1(Cp) = JωKX.

The Object Vocabulary ΣtreeN∪Σ = 〈{τ},C2, ττ 〉
• For each a ∈ Σ, we have a ∈ C2.
• For every A ∈ N and ω = u1 . . . un such that there is a production rule
in P of the form A → ω, we have a constant An ∈ C2 (i.e., ττ (An) =
τ (. . .(τ︸ ︷︷ ︸

n -times

(τ).

The distinguished symbol is the start symbol S.

The Lexicon LG : Σ1 −→ ΣtreeC2

• LG interprets every atomic type of Σ1 as the tree type τ .
• LG interprets each constant Cp ∈ C1, where p : A→ ω, as follows:

LG(Cp) = λo ~σ1. An u1 . . . un

Where LωM = (~σ1; ~σ2) and ~σ2 denotes the sequence u1, . . . , un .

In order to obtain the string language, one defines a yield ACG G2.

The Abstract Vocabulary of G2 is ΣtreeN∪Σ = 〈{τ}, {N }, ττ 〉. That is, we declare the non-
terminal symbols of G as the constants of the abstract vocabulary.

The Object Vocabulary of G2 is Σ
string
Σ = 〈{σ}, {Σ}, τσ〉. That is, we declare the termi-

nal symbols of G as the constants of the object vocabulary.

The distinguished type of G2 is τ .

The Lexicon Lyield : ΣtreeC2
−→ Σ

string
Σ is defined according Section 3.3.1.

The object vocabulary of G1 serves as the abstract vocabulary to G2. Thus, we can
consider the composition of G1 and G2. The ACG composition of G2 ◦ G1 establishes
the correspondence between the derivations and the generated strings.

68

3.5. TAGs as ACGs

3.5 TAGs as ACGs

This section provides an encoding of a TAG as ACGs, proposed in (de Groote, 2001,
2002). Given a TAG G , the ACG encoding of G generates the object language
isomorphic to the tree language generated by G .

3.5.1 General Principles

We already discussed how to model the operations of adjunction and substitution on
trees as functional application of the λo-terms modeling trees (see Section 3.2.2). In a
TAG, a tree derived from an initial (resp. auxiliary) tree can substitute (resp. adjoin)
at a given substitution (resp. adjunction) site in a tree if its root has the same label
as the substitution (resp. adjunction) site does. However, the encoding of substitution
and adjunction that we proposed does not have this property. To model the way TAG
controls derived structures, for a substitution (resp. adjunction) site labeled with X,
we introduce a type X (resp. XA). The substitution (resp. adjunction) of a tree δ at
a node with the label X into a tree γ becomes the functional application where the
operand, which models the tree δ, is a term of type X (resp. XA). In this way, we
obtain terms modeling TAG derivation trees. To obtain TAG derived trees, we interpret
terms modeling TAG derivation trees as terms modeling derived trees, i.e., terms over a
tree signature. We interpret the types X and XA, modeling substitution and adjunction
respectively, as τ and τ (τ , respectively.

3.5.2 An Exemplifying Encoding

We consider a TAG G generating a non-context free language {anbncn} and model it
as ACGs. Elementary trees of G are illustrated in Figure 3.12.

SNA

a S

b SNA
∗ c

(a) A

S

ε

(b) I

Figure 3.12: Elementary trees of a TAG generating {anbncn}

3.5.2.1 TAG Derivation Trees as Abstract Terms

To construct the abstract vocabulary encoding derivation trees of the TAG whose
elementary trees are shown in Figure 3.12, in the abstract vocabulary we introduce
two atomic types, SA and S. The type S encodes S-substitution sites, whereas the type
SA encodes S-adjunction sites. The type S is the distinguished type of the ACG we
are building, because the non-terminal S is the distinguished symbol of the grammar.

69

Chapter 3. Abstract Categorial Grammars

As the grammar consists of two elementary trees, we introduce two constants in the
abstract vocabulary. We denote these constants by CA and CI , where we associate
CA with the auxiliary tree A (see Figure 3.12(a)) and CI with the initial tree I (see
Figure 3.12(b)). These constants do not directly encode syntactic trees, but rather
correspond to the nodes in TAG derivation trees that stand for these elementary trees. To
put it another way, for each elementary tree, we introduce its representative constant in
the abstract vocabulary, similar to a node representing that elementary tree in a TAG
derivation tree. We propose the following abstract vocabulary:

ΣDer
TAGG = {CI : SA (S, CA : SA (SA, ISA : SA}

CI is of type SA (S, which one constructs by the breadth first, left to right
traversing the initial tree I. Indeed, the type SA (S encodes the fact that the initial
tree I can receive an S-adjunction (a term of type SA). By adjoining a tree into the
initial tree I, one obtains an S-rooted completed TAG derived tree. The byproduct of
this derived tree is a TAG derivation tree, which we encode with a term of type S.

CA is of type SA (SA, which one constructs by the breadth first, left to right
traversing the auxiliary tree A. The type SA (SA encodes the fact that the auxiliary
tree A receives an adjunction on its S node and the resultant tree (a term of type SA)
can adjoin on an S-node of some tree.

Since we use simple types, if a constant models a tree with an X-adjunction site,
then this adjunction site is obligatory. For instance, CI is of type SA (S, which models
that the initial tree I has an S-adjunction site. This adjunction is not obligatory in I.
Thus, one can use I as a derived tree of the TAG language. However, as CI is of type
SA (S, it must apply to some term of type SA in order to produce a term of type
S. To be able to handle cases where no adjunction takes place at an adjunction site
modeled by the type XA, de Groote (2002) introduces a constant IXA of type XA in the
abstract vocabulary. IXA can be seen as an X-rooted empty (fake) auxiliary tree, as it
adjoins at an X-adjunction site in a tree but does not modify the tree. However, once it
adjoins in some tree, no other adjunction can be made at that adjunction site of the
tree. One can view ISA as an auxiliary tree X∗NA. Indeed, X∗NA consists of a single node,
which is its root and foot node at the same time, and it accepts no adjunction. For
instance, to model the case where I is a derived tree of the TAG tree language, we
define a term CI ISA whose type is indeed S.

Remark 3.2. Figure 3.13 shows a representation of the term CI (CA ISA) as a tree. This tree
is reminiscent of the derivation tree in Figure 3.14(a) on the facing page. The main di�erence
between the two is due to the occurrence of the empty adjunction ISA in the term. The presence
of empty adjunctions is an explicit declaration that no adjunction takes place. In the case of a
TAG derivation tree, however, it is implied that if there is no information about an adjunction
on a node into a tree, then there is no adjunction on that node.

3.5.2.2 Derived Trees as Object Terms

We encode TAG derived trees as terms over ΣtreeN∪Σ . Figure 3.12 shows the elementary
trees I and A. To encode them, in the tree signature ΣtreeN∪Σ , we have constants,

70

3.5. TAGs as ACGs

CI

CA

ISA

Figure 3.13: A tree-representation of a term modeling a derivation tree

αI

βA

0

(a) A
deriva-
tion
tree

SNA

a S

b SNA

ε

c

(b) A derived tree

Figure 3.14: A derivation and a derived tree

S1 : τ (τ , S2 : τ (τ (τ , and S3 : τ (τ (τ (τ , which model symbols of arity
1, 2, and 3, respectively.

3.5.2.3 Interpretations as Derived Trees

We map the constants CI and CA to the terms over ΣtreeG that serve as the encodings of
the elementary trees I and A. Thus, we build a lexicon L TAG

synt interpreting CI and CA

(see Figure 3.15). It remains to interpret ISA : SA. Since ISA models an empty adjunction,
it should not change a tree into which it adjoins. We interpret it as an identity function
λox .x : τ (τ .

Types and Constant of Σ1 Their interpretations under L TAG
synt

SA τ (τ
S τ
CI λo P . P (S1 ε)
CA λo P . λo x . S2 a (P (S3 b x c))
ISA λox .x

Figure 3.15: The lexicon interpreting TAG derivation trees into TAG derived trees

In order to obtain a derived tree specified by a derivation tree, one interprets the
term encoding the derivation tree by the lexicon. For instance, to obtain the term

71

Chapter 3. Abstract Categorial Grammars

modeling the derived tree depicted in Figure 3.14(b), the lexicon L TAG
synt interprets the

term CI (CA ISA) as follows:

L TAG
synt (CI (CA ISA)) = L TAG

synt (CI) (L TAG
synt (CA) L TAG

synt (ISA)) =

(λo P .P (S1 ε))((λ
o P .λox .S2 a (P (S3 b x c))) (λo x . x))�β S2 a (S3 b (S1 ε) c) : τ

3.5.2.4 Yields as Object Terms

In order to obtain yields of TAG derived trees, we build a yield ACG, defined in
Section 3.3.1. By composing the latter ACG with the former, we obtain an ACG that
provides interpretations of TAG derivation trees as yields of TAG derived trees.

3.5.3 General Case

Given a TAG G = 〈N , Σ, I ,A, S〉, we build an ACG GG = 〈Σ1,Σ
tree
Σ∪N ,L

TAG
synt , s〉. The

abstract language A(GG) models the derivation trees of G , wheres the object language
O(GG) is isomorphic to the tree language of G .

The Abstract Vocabulary ΣDer
TAG

• Σ1 has type a X (resp. XA) for every non-terminal symbol in N labeling a
substitution (resp. adjunction) site in some elementary tree of G .

• For each elementary tree γ of G , Σ1 has a constant Cγ . If γ is an X-initial
(resp. X-auxiliary) tree, the we type Cγ with the type ~α, where ~α is of the
form α1 (. . . (X (resp. α1 (. . . (XA). To construct ~α, we make
the breadth first left to right traversal of γ and record the substitution and
adjunction sites in the order they appear in the traversal.

• For every X labeling a non-obligatory adjunction site, Σ1 contains a constant
IXA : XA modeling an empty X-adjunction.

The Object Vocabulary ΣtreeΣ∪N is a tree signature over Σ ∪N .

The Lexicon L TAG
synt : Σ1 −→ ΣtreeΣ∪N interprets types and constants as follows:

• L TAG
synt (X) = τ and L TAG

synt (XA) = τ (τ .
• L TAG

synt (Cγ) = uγ , where Cγ is a constant associated with an elementary tree γ;
and uγ is a λo-term encoding γ.

• L TAG
synt (IXA) = λox .x , where XA is an abstract type modeling X-adjunction sites.

3.5.4 The ACG Encoding of an Exemplifying LTAG for a Frag-
ment of English

We provide an exemplifying LTAG to analyze the following English sentences, which we
use in further chapters as well:

72

3.5. TAGs as ACGs

(12) a. Fred is really grumpy.

b. Fred failed an important exam.

c. Fred is grumpy because he failed an exam.

d. John Mary seems to love.

As we will refer to this encoding in further chapters, we name signatures and
lexicons used in this example as follows:

• ΣDer
TAG denotes the abstract vocabulary, where we encode derivation trees;

• ΣSynt
TAG denotes the object vocabulary, where we encode derived trees.

Table 3.1 on the next page provides constants in ΣSynt
TAG modeling derivation trees

of TAG elementary trees anchored with lexical items from Example (12) and their
translations in TAG derived trees. In particular, Table 3.1 shows the encodings of initial
trees anchored with verbs, such as failed, seems, etc. To model their substitution and
adjunction sites, we use types np,S,SA,VA etc. In addition, Table 3.1 contains constants
encoding nouns, adjectives, articles and quantifiers. We use the type np to model noun
phrases. nA and nd are types encoding adjunctions on an initial tree anchored with a
common noun (CN). For the types nA and nd , as for any type encoding a non-obligatory
adjunction site, we have the abstract constants encoding empty adjunctions of these
types, InA : nA and Ind : nd , respectively. Notice that we type CCN with nd (nA (np.
That is, we have two di�erent possible adjunctions at the node of an initial tree anchored
by a common noun, which is not a standard interpretation. In other words, instead of

the initial tree anchored by a CN,
N

CN
, we interpret CCN as a tree

Nad

Na

CN

. The way we

interpret CNs is motivated by the way (XTAG-Group, 1998) encodes them, which is
expressed by the following quote:

Common nouns do not require determiners in order to form grammatical
NPs . . . Common nouns have negative(“−”) values for determiner features
in the lexicon in our analysis and can only acquire a positive(“+”) value for
those features if determiners adjoin to them. XTAG-Group (1998)

Thus, according to (XTAG-Group, 1998), a CN anchors an NP-initial tree whose
root has a feature −DET. The feature −DET of the root node becomes +DET if a
determiner adjoins on it. Figure 3.16 shows the XTAG analyses of determiners and
CNs. Since we do not use features but types, we use the type nd in order to enable
an adjunction of a determiner into an N-initial tree anchored with a CN. By adjoining
a determiner in an N-initial tree anchored with a CN, we obtain an NP-derived tree.
Hence, in our notations N is NP with the feature −DET, whereas NP is NP with the
feature +DET.
Example 3.4. We model the derivation the trees of the sentences listed in Example
(12) as the terms in Λ(ΣDer

TAG) shown in Figure 3.17.

For instance, the terms t3 : S and t4 : S model the TAG derivation trees depicted in
Figure 3.18(b) and Figure 3.20(b) on page 76, respectively.

73

Chapter 3. Abstract Categorial Grammars

Abstract constants of ΣDer
TAG Their images by L TAG

synt The corresponding TAG trees

CFred : np : τ
= NP1 Fred

γFred =
NP

Fred

Cgrumpy : SA (VA (np(S : (τ (τ)((τ (τ)(τ (τ
= λoavs. a (S2 s (v (VP2 (VP1 ε) grumpy)))

γgrumpy =

S

NP↓ VP

ε grumpy

Cfailed :
SA (VA (np
(np(S

: (τ (τ)((τ (τ)
(τ (τ (τ

= λoavso. a (S2 s (v (VP2 failed o)))
γfailed =

S

NP↓ VP

failed NP↓

C is : VA (VA
: (τ (τ)((τ (τ)
= λovx .v (VP2 is x)

γis =
VP

is VP∗

Cseems : VA (VA
: (τ (τ)((τ (τ)
= λovx .v (VP2 seems x)

γseems =
VP

seems VP∗

Cto love :
SA (VA
(np(np(S

: (τ (τ)((τ (τ)(
τ (τ (τ

= λo avso.S2 o
(a1 (S2 s (v (VP1 to love))))

γto love =

S

NP↓ S

NP↓ VP

to love

Cbecause : SA (S(SA
: (τ (τ)(τ ((τ (τ)
= λoasx . a (S2 x (S2 because s))

γbecause =

S

S∗ S

because S↓

Creally : VA (VA
: (τ (τ)((τ (τ)
= λovx .v (VP2 really x)

γreally =
VP

really VP∗

Cexam : nd (nA (np : (τ (τ)((τ (τ)(τ
= λo da.d (a (N1 exam))

γexam =
N

exam

C important : nA (nA
: (τ (τ)((τ (τ)(τ
= λo a n. a (N2 importantn)

γimportant =
N

important N∗

Can : nd
: τ (τ
= λo n. NP2 an γa =

NP

a N∗

Ceach : nd
: τ (τ
= λo n. NP2 eachn γeach =

NP

each N∗

Cevery : nd
: τ (τ
= λo n. NP2 everyn

γevery =
NP

every N∗

IX : XA λox .x : τ (τ

Table 3.1: TAG as ACG: the L TAG
synt lexicon

74

3.6. The ACG Hierarchy of Languages

NP
[−DET]

exam

(a) A tree
anchored
with an
CN

NP
[+DET]

an NP
[−DET]

(b) A tree an-
chored with an
article

Figure 3.16: XTAG analyses of determiners and CNs

t1 Cgrumpy ISA (Cis (Cvery IVA)) CFred : S
t2 Cfailed ISA IVA CFred (Cexam InA Can) : S
t3 Cgrumpy (Cbecause ISA (Cfailed ISA IVA Che (Cexam InA Can))) (Cis IVA) CFred : S
t4 Cto love ISA ISA (Cseems IVA) CJohn CMary : S

Figure 3.17: Examples of terms over ΣDer
TAG modeling LTAG derivation trees

Example 3.5.

Let us provide some examples of the terms modeling TAG derivation trees. One
obtains the corresponding TAG derived trees by interpreting those terms by the lexicon
L TAG

synt (defined in Table 3.1 on the preceding page). In particular, we consider the terms
t3 and t4 , defined in Table 3.17 . Table 3.19 shows the interpretations of the terms t3
and t4 under the lexicon L TAG

synt . As one can see, the terms L TAG
synt (t3) and L TAG

synt (t4) model
the TAG derived trees shown in Figure 3.18(c) and Figure 3.20(c), respectively.²¹

3.6 The ACG Hierarchy of Languages

One defines the order of an ACG and the order of a lexicon as follows.

De�nition 3.6.1 (Order of an ACG and a Lexicon).
• The order of an ACG is the maximum of the orders of the types of the constants in the
abstract vocabulary.

• The order of the lexicon L = 〈F ,G〉 of an ACG G = 〈Σ1,Σ2,L, s〉, where Σ1 =
〈A1,C1, τ1〉, is de�ned as follows:

ord(L) = max
α∈A1

ord(F (α))

Thus, the order of an ACG is the order of the abstract vocabulary. The order of a
lexicon is the maximum of the orders of types of images of the abstract constants. For

²¹In Appendix A, we provide ACG codes for these examples, which one can run using the ACG
development software (the ACG toolkit).

75

Chapter 3. Abstract Categorial Grammars

Cgrumpy

ISA
Cbecause

ISA
Cfailed

ISA
Che Cexam

InA
Can

Cis

IVA

CFred

(a) A term as a tree

αgrumpy

βbecause

αfailed

αhe αexam

βan

βis αFred

0

22

1 22

0

2 1

(b) A TAG derivation
tree

S

S

NP

Fred

VP

V

is

VP

V

ε

AP

grumpy

S

A

because

S

NP

he

VP

V

failed

NP

Det

an

NP

exam
(c) A TAG derived tree

Figure 3.18: A derivation tree, a term modeling it, and a derived tree

Terms over ΣDer
TAG Their interpretations under L TAG

synt

t3 S2

(S2 (NP1 Fred) (VP2 is (VP2 (VP1 ε) grumpy)))
(S2 because (S2 (N1 Fred)(VP2 failed (NP2 an (N1 exam))))) : τ

t4 S2 (NP1 Mary) (S2 (NP1 John) (VP2 seems (VP1 to-love))) : τ

Figure 3.19: Interpretations of terms over ΣDer
TAG under the lexicon L TAG

synt

Cto-love

ISA
Cseems

IVA

CJohn CMary

(a) A term as a tree

αto-love

αJohn βseems αMary

1 22 221

(b) A TAG derivation tree

S

NP

John

S

NP

Mary

VP

V

seems

VP

V

to love

(c) A TAG derived tree

Figure 3.20: A term as a tree, a TAG derivation tree, and a TAG derived tree

76

3.6. The ACG Hierarchy of Languages

instance, in de Groote’s (2002) encoding of TAGs as ACGs, the lexicon is second-order.
Indeed, an abstract type X models either an adjunction site, or a substitution site, or
the distinguished symbol of the grammar. In the case of adjunction, one maps X to
τ (τ (a type of order 2); otherwise, one maps X to τ .

De�nition 3.6.2 (Class of ACGs). By G(m, n) we denote the subclass of ACGs whose
members have the following property: G = 〈Σ1,Σ2,L, s〉 is in this class if ord(Σ1) ≤ m and
ord(L) ≤ n .

We call²² a string (resp. tree) ACG an ACG whose object vocabulary is a string (resp.
tree) signature and whose distinguished type is mapped to the type σ (resp. τ) of a
string (resp. tree) signature defined in Definition 3.2.7 (resp. Definition 3.2.8). We
denote a class of string (resp. tree) ACGs with G string (resp. G tree).

De�nition 3.6.3 (Yoshinaka, 2006).
Let G be an ACG G = 〈Σ1,Σ2,L, s〉. A constant c ∈ Σ1 is called lexical in G , if L(c)
contains a constant of Σ2. If each abstract constant of an ACG G is lexical, then G is called
lexicalized. We denote the class of lexicalized ACGs by Glex.

With the help of these notions, one can define various classes of ACGs. For instance,
G tree
lex (2, 2) denotes the class of second-order lexicalized tree ACGs whose lexicons are

second-order.

3.6.1 Second-Order ACGs

We already discussed the ACG encodings of CFGs and TAGs (de Groote, 2001, 2002).
Both of the encodings are second-order ones. It is noteworthy that second-order ACGs
can encode a number of more powerful grammatical formalisms than CFGs and TAGs
(de Groote and Pogodalla, 2003, 2004). Second-order ACGs are lexicalized by second-
order ACGs (Kanazawa and Yoshinaka, 2005). At the same time, the problems of
parsing and generation with a second-order ACG are polynomial (Kanazawa, 2007;
Salvati, 2005).

Proposition 3.6.1 (Kanazawa and Yoshinaka, 2005). For each second-order ACG G =
〈Σ1,Σ2,L, s〉, there is an RTG G such that the tree language generated by G is isomorphic to
the abstract language generated by the ACG G .

3.6.1.1 String Languages

De Groote and Pogodalla (2004) encode several formalisms as second-order ACGs.
They show that the string languages generated by context-free string grammars are
included in the class G string(2, 2). It is noteworthy that the ACGs in the class G string(2, 2)
generate only context-free string languages, that it, the class of context-free string
grammars and G string(2, 2) coincide (see Table 3.2²³). The string languages generated

²²Following the terminology of (Kanazawa, 2006; Yoshinaka, 2006).
²³We borrow Table 3.2 from (Yoshinaka, 2006).

77

Chapter 3. Abstract Categorial Grammars

by linear context-free tree grammars²⁴ are included in the class G string(2, 3). Any linear
context free rewriting system (LCFRS) can be encoded with some ACG from the class
G string(2, 4).

Theorem 3.6.1 (Salvati, 2005). Any second-order string ACG in G string(2, n) for n ≥ 1 can
be encoded with an equivalent LCFRS.

Since for each LCFRS, there exists its equivalent ACG from the class G string(2, 4),
Salvati’s (2005) theorem entails the following corollary:

Corollary 3.6.1.1 (Salvati, 2005). For every second-order string ACG from the class G string(2, n),
there is an equivalent ACG in the class G string(2, 4).

Context-Free Grammars = G string(2, 2)
Linear Context Free-Tree Grammars ⊆ G string(2, 3)

Linear Context Free Rewriting Systems = G string(2, n) for n ≥ 4

Table 3.2: The ACG hierarchy of string languages

3.6.1.2 Tree Languages

To discuss the generative power of second-order tree ACGs, it is useful to define the
sub-class of second-order ACGs, called relabeling second-order ACGs (Yoshinaka, 2006).

De�nition 3.6.4 (Yoshinaka, 2006).
We say that the lexicon L of a second-order ACG is relabeling if (1) L is �rst-order; and (2)
L maps any abstract constant to some object constant.

We de�ne the class of second-order relabeling ACGs, denoted with G(2, 1(r)), as the class
of second-order ACGs whose lexicons are relabeling.

Since the lexicon of a second-order relabeling ACG G ∈ G(2, 1(r)) is first-order,
every abstract (atomic) type is mapped to an atomic type. Thus, the abstract and
object languages defined by such an ACG are isomorphic.

The class of RTGs generate the same tree languages as G tree(2, 1(r)). Indeed, the
abstract language of a second-order ACG is a regular tree language. Since the object
language of any ACG in G tree(2, 1(r)) is isomorphic to the abstract language of that
ACG, we conclude that the class of languages generated by G tree(2, 1(r)) is a subclass
of the class of regular tree languages. On the other hand, given an RTG G , there is an
ACG in G tree(2, 1(r)) whose object language is isomorphic to the tree language of G
(Kanazawa and Yoshinaka, 2005).

The ACG encoding of TAG by de Groote (2001, 2002) (with the tree signature
as the object vocabulary) falls into the class G tree(2, 2). In addition, de Groote and

²⁴Here, linear means non-duplicating (i.e non-copying) and non-deleting, whereas usually in the context
of grammars, it means only non-duplicating. Some authors (e.g. (Maletti and Engelfriet, 2012)), instead of
linear, use simple in order to refer to non-duplicating and non-deleting context-free tree grammars.

78

3.7. Second-Order Almost-Linear ACGs (λ-CFGs)

Pogodalla (2004) show that ACGs in G tree(2, 2) generate exactly the same languages as
linear context free tree grammars. We provide the ACG hierarchy of tree languages in
Table 3.3.²⁵

Regular Tree Grammars = G tree(2, 1)
Tree Adjoining Grammars ⊆ G tree(2, 2)

Linear Context-Free Tree Grammars = G tree(2, 2)

Table 3.3: The ACG hierarchy of tree languages

3.6.2 ACGs of Order n ≥ 3

For the order of 3 or above, there is an ACG in G tree
lex (3, 1) generating an NP-complete

language (Salvati, 2005, 2010). Salvati (2005) showed that in general, the decision
problem whether a term belongs to the (object) language generated by an ACG is
equivalent to the decidability of Multiplicative-Exponential Linear Logic (MELL) (Girard,
1987a,b), which recently was shown to be decidable (Bimbó, 2015).

3.7 Second-Order Almost-Linear ACGs (λ-CFGs)

The original definition of ACGs employs the notion of linearity of λ-terms, which
sometimes is a strong requirement. In particular, the linearity condition does not allow
one to encode Montague semantics because terms encoding semantic interpretations
are not linear. For instance, a term such as λx .man(x) ∧ walk(x) is not linear (x
has two occurrences bound with the same λ-abstraction). To overcome the problem,
Kanazawa (2007) introduces almost-linear λ-terms. With almost-linear λ-terms, one
is able encode Montague semantics. At the same time, the parsing and generation
problems of second-order ACGs where object terms are almost-linear are polynomial
(Kanazawa, 2007).

De�nition 3.7.1 (Kanazawa, 2007).
Let Σ = 〈A,C , τ→〉 be a higher-order signature. One de�nes a set of almost-linear terms over Σ,
denoted by Λ

→
(Σ), and the type of a term t ∈ Λ

→
(Σ), denoted by τ→(t). The set Λ

→
(Σ) is the

smallest set satisfying the following properties:
1. If t , u ∈ Λ

→
(Σ), τ→(t) = α→ β, τ→(u) = α, and if for any x ∈ FV(t)∩ FV(u), τ→(x)

is atomic, then (t u) ∈ Λ
→
(Σ) and τ

→
(t u) = β.

2. If t ∈ Λ
→
(Σ), τ→(t) = β, and x ∈ FV(t), where τ

→
(x) = α and α is atomic, then

λx .t ∈ Λ
→
(Σ) and τ

→
(λx .t) = α→ β.

3. Λ
→
(Σ) is closed under βη-equivalence.

One obtains the definition of linearity by strengthening the requirement of the clause
2 of Definition 3.7.1 as follows: FV(t) ∩ FV(u) = ∅. Thus, any linear term is also
almost-linear. Although almost linear λ-terms generalize λo-terms, we still would like

²⁵We borrow Table 3.3 from (Yoshinaka, 2006).

79

Chapter 3. Abstract Categorial Grammars

to emphasize the fact that a given term is linear, or a given λ-abstraction is linear. In
other words, if x : α is a variable with a single occurrence in t : β ∈ Λ

→
(Σ), we write

λox .t : α(β ∈ Λ
→
(Σ).

De�nition 3.7.2 (λ-CFG (Kanazawa, 2007)).
A context-free λ-grammar (λ-CFG) G is a quadruple 〈Σ1,Σ2,L, s〉, where

• Σ1 = 〈A1,C1, τ1〉 is a linear higher-order signature and Σ2 = 〈A2,C2, τ2〉 is a higher-
order signature, called the abstract and the object vocabularies of G , respectively. Σ1 is
second-order.

• L is a lexicon between Σ1 and Σ2, which is a homomorphism between Σ1 and Σ2

de�ned in De�nition 3.3.1 with the di�erence that (a) a constant of Σ1 may translate to
an almost-linear λ-term over Σ2; (b) an abstract atomic type translates to an almost-linear
type.

• s ∈ A1 is the distinguished type of the λ-CFG.

Kanazawa (2007) named almost-linear second-order ACGs as λ-CFGs due to the
fact that they can be seen as CFGs that rewrite λ-terms instead of strings. Indeed, the
abstract language of any second-order ACG can be viewed as a regular tree language.
The yield of a regular tree language is context-free language.

Below, while discussing semantic encodings within second-order ACGs, that is, the
signatures with the help of which one encodes semantic interpretations, we will have in
mind second-order almost-linear ACGs, i.e., λ-CFGs, unless otherwise stated; in rest of
cases, we stick to de Groote’s (2001) linear version of ACGs. We will write Λ(Σ) for
denoting both the sets of almost-linear λ-terms and λo-terms over Σ, unless otherwise
stated. With HOS, we abbreviate both a linear higher-order signature and a higher-order
signature whenever it does not cause a confusion.

3.8 TAG with Montague Semantics as ACGs

As we already discussed in Section 3.5, to model a TAG as an ACG, one represents
TAG derivation trees as abstract terms and TAG derived trees as object ones.

To model the syntax-semantic interface using TAGs, Pogodalla (2004) proposes
to compute the semantic representations from TAG derivation trees by interpreting
them as underspecified semantic formulas. (Pogodalla, 2009) presents another version
of this encoding, where one defines fully specified semantic representations, instead
of underspecified ones. In both of these encodings, one makes use of higher-order
interpretations reminiscent of ones provided in (Montague, 1973). Due to this, one
refers to these encodings as the ACG encoding of TAG with Montague semantics. We
follow (Pogodalla, 2009) while discussing the encoding of TAG with Montague semantics
as ACGs.

3.8.1 Montague Semantics as Object Terms

We interpret TAG derivation trees as Montague’s (1973) logical semantic formulas.
Thus, we consider an ACG whose abstract terms encode TAG derivation trees, whereas

80

3.8. TAG with Montague Semantics as ACGs

the object ones encode semantic interpretations. To encode Montague semantics, we
introduce a signature ΣLog. We interpret constants and types of the vocabulary ΣDer

TAG as
terms and types over ΣLog. The signature ΣLog contains two types, t for propositions
and e for individuals. It has constants encoding n -place predicates, logical connectives
and quantifiers, as it is shown in Table 3.4.

fred, john,mary, he : e because : t (t (t
exam, important, grumpy : e (t fail, love : e (e (t
really : t (t seem : (e (t)(e (t
∧ : t (t (t ∨ : t (t (t
⇒ : t (t (t ¬ : t (t
∃ : (e → t)(t ∀ : (e → t)(t

Table 3.4: Constants in the semantic vocabulary ΣLog

3.8.2 Interpretations as Montague Semantics

We interpret a type np as a type (e (t) (t , which is the linear version of
Montague’s (1973) higher-order interpretation of noun phrases. The interpretation of
the distinguished type S is t . As Table 3.5 shows, one interprets SA as t (t , since the
terms of type SA model S-modifiers, i.e., the ones that modify clauses (terms of type t).
VA translates to (e (t)(e (t as a term of type VA models a modifier of a verb
phrase (i.e., a term of type e (t). Hence, by translating VA as (e (t) (e (t ,
one also makes a semantic di�erence between the types VA and SA. Nevertheless, to
interpret both VA and SA as t (t is also possible.

Types in ΣDer
TAG Their semantic interpretations

np (e (t)(t
S t
SA t (t
VA (e (t)((e (t)
nA (e → t)((e → t)
nd (e → t)((e → t)(t

Table 3.5: The semantic interpretations of abstract types

Elementary Trees Anchored with Nouns, Adjectives, and Determiners

The interpretations of constants modeling initial and auxiliary trees that we use in
order to encode noun phrases, that is, trees anchored with articles, quantifiers, and
adjectives, are shown in Table 3.6. Table 3.5 provides interpretations of atomic types
involved in the types of these constants.

Notice that in Table 3.6, the constants ∀ and ∃ used in the encodings of quantifier
words (e.g. each, every) and articles (e.g. an) are of type (e → t)(t , which is not

81

Chapter 3. Abstract Categorial Grammars

Constants of ΣDer
TAG Their interpretations by L sem

TAG

Cexam : nd (nA (np λo det adj . det (adj (λx .exam x))
Cimportant : nA (nA λo adj n . adj (λ x . (important x)∧ (n x))
Cevery ,Ceach : nd λo P Q .∀ x . (P x) ⇒ (Q x)
Ca ,Can : nd λo P Q .∃ x . (P x) ∧ (Q x)

Table 3.6: Semantic interpretations of constants

a linear type. This is due to the fact that the same variable x (of type e) has two
occurrences in the same sub-term. Therefore, one has a non-linear abstraction over that
variable. Hence, we interpret the type nd with the help of a (non-linear) implicative type
(see Table 3.5 on the previous page). Nevertheless, our semantic terms are almost-linear.
Hence, in this case, Kanazawa’s (2007) results apply, which guarantee that the parsing
and generation problems are of polynomial complexity. Moreover, we could interpret
np as (e → t)(t , which would make possible to use a variable corresponding to an
individual (that is, a variable of type e) within a sub-term more than once. Still, we
would obtain an almost-linear second-order ACG (λ-cfg). We translate the constants
modeling empty adjunctions ISA , IVA , InA to λo x . x .

Remark 3.3. In Montague Grammar (Montague, 1973), one translates neither articles nor
quanti�er words directly, but rather gives the recipes for translating noun phrases such as ‘every
CN’, ‘a CN’, etc. In contrast with Montague Grammar, in the ACG encoding of TAG with
Montague semantics, one provides interpretations of articles, quanti�ers, plural markers, and
common nouns separately. Out of these interpretations, one produces the interpretation of a
noun phrase as the composition of the interpretations of an article/quanti�er/plural marker, of
adjectives, and of a CN.

Elementary Trees Anchored with Predicative Adjectives, Verbs, Adverbs, and
Copulas

To interpret the abstract constants modeling initial and auxiliary trees anchored with
verbs, we interpret S-adjunctions and VP-adjunctions with the help of higher-order
predicates. For instance, Table 3.7 shows the interpretation of a constant modeling an
initial tree anchored by a transitive verb failed. The interpretations of adjunctions on S
and VP nodes, which are denoted with the variables sa and va , scope over (fail x y) as
they modify the content expressed by the predicate fail and its arguments. The type
of fail is e (e (t . We interpret the substitution sites of the initial tree anchored
with failed using the higher-order interpretations of noun phrases. In this way, one can
encode the predicate-argument relations expressed by a verb anchoring an initial tree.

A predicative adjective plays the role of a predicate. In TAG elementary trees,
predicative adjectives anchor initial trees. Thus, we interpret an initial tree anchored by
a predicative adjective similar to what we do in the case of verbs (see Table 3.7).

We interpret elementary trees according to the semantic properties of their anchors.
To illustrate this, let us consider auxiliary trees anchored with adverbs (e.g. really) and
ones anchored with raising verbs (such as seems). Although these trees are VP-auxiliary

82

3.8. TAG with Montague Semantics as ACGs

Constants of ΣDer
TAG Their interpretations by L sem

TAG

Cgrumpy λo sa va subje. sa (subje (va (λox . ((grumpy x))))) :
(t (t)(((e (t)(e (t)(((e (t)(t)(t

Cfailed λo sa va subje obj . sa (subje (λox . (va (obj (λoy . fail xy))))) :
(t (t)(((e (t)(e (t)(((e (t)(e (t)(
(((e (t)(t)(t

Cto love λo sa1 sa2 va obj subje. sa1 (sa2 (subje (va (λox . (obj (λoy . love xy))))))) :
(t (t)((t (t)(((e (t)(e (t)(
(((e (t)(t)(((e (t)(t)(t

Cseems λo vpa r . vpa (λo x . seem r x) :
((e (t)(e (t)((e (t)((e (t)

Creally λo vpa r . vpa (λox . really (rx)) :
((e (t)(e (t)((e (t)((e (t)

C is λo vpa r . vpa (λox . (rx)) :
((e (t)(e (t)((e (t)((e (t)

Table 3.7: Semantic interpretations of elementary trees anchored with predicative
adjectives, verbs, adverbs, and copulas

trees, we interpret them di�erently as they have contrasting semantic properties. For
example, Table 3.7 provides interpretations of the constants encoding auxiliary trees
anchored with seems and really. To illustrate that their semantic properties are di�erent,
we provide the interpretations of the sentences John Mary seems to love and Mary really
loves John in Equation (3.13) and Equation (3.14), respectively.

iseems = seem (λo x . love x john) mary : t (3.13)

ireally = really (love mary john) : t (3.14)

The di�erence between iseems and ireally reflects that one models seems as a two-place
(higher-order) predicate, whereas really is a one-place predicate.

As Table 3.7 shows, we interpret the constant Cis : VA modeling the VP-auxiliary tree
anchored with the copula is as a term without any constant, i.e., without any semantic
material.

Furthermore, let us interpret Cbecause : SA (S(SA, which models an S-auxiliary

tree

S

S∗ S

because S↓

. Let because denote the predicate signaled by because. The predicate

because relates two clauses. In other words, because is a 2-place predicate whose
arguments are propositions.

The predicate because receives one of the arguments by substituting an S-rooted
(completed) derived tree in the S-substitution site of the auxiliary tree anchored with
because. By adjoining the auxiliary anchored with because into an S-rooted derived tree,
one provides the predicate because with the other argument. To model the way because
obtains its arguments, we interpret Cbecause as it is shown in Table 3.8.

83

Chapter 3. Abstract Categorial Grammars

Constants of ΣDer
TAG LTAG trees Their interpretations under L sem

TAG

Cbecause : SA (S(SA

S

S∗ S

because S↓

λo sa s x . sa (because s x) : (t (t)(t (t

Table 3.8: The semantic interpretation of the LTAG tree anchored with because

Example 3.6. ²⁶

((12)(d), repeated) John Mary seems to love.

Figure 3.20(c) on page 76 shows the derived tree whose yield is the sentence (12)(d).
The derivation tree of this derived tree is shown in Figure 3.20(b). As one may notice,
the derivation tree does not encode the correct semantic dependencies. Indeed, αto-love

dominates (scopes over) βseems. However, from a semantic standpoint, seems scopes over
to love, as we already saw in iseems (see Equation (3.13)). We model this derivation tree
by the term t4 given in Table 3.17 on page 75. To obtain the semantic interpretation of
the sentence (12)(d), we interpret the term t4 by the lexicon L sem

TAG as follows:

L sem
TAG (t4) = L sem

TAG (Cto love ISA ISA (Cseems IVA) CJohn CMary)�β

�β seem ((λo x . love john x) mary) : t (3.15)

Thus, we obtain the term seem (λo x . love john x) mary as the semantic interpretation
of t4 . In contrast to the derivation tree, the obtained semantic interpretation encodes
the correct semantic dependencies (love is indeed under the scope of seem).

Example 3.7.

((12)(c), repeated) Fred is grumpy because he failed an exam.

In the case of the sentence (12)(c), we model the derivation tree (in Figure 3.18(b)
on page 76) with a term t3 defined in Table 3.17 on page 75. We compute the image of
t3 under the lexicon L sem

TAG as follows:

L sem
TAG (t3) = L sem

TAG (Cgrumpy(Cbecause ISA (Cfailed ISA IVA Che (Cexam InA Can))) (Cis IVA) CFred)�β

�β Because (∃ x (exam x) ∧ (fail Fred x)) (grumpy Fred) : t (3.16)

Figure 3.21 on the facing page illustrates the overall architecture of the ACG encoding
of TAG with Montague semantics.

²⁶In Appendix A, we provide ACG codes for the examples provided below, which one can run on the
ACG toolkit.

84

3.8. TAG with Montague Semantics as ACGs

L TAG
synt (A)

TAG derivation treesΛ(ΣDer
TAG)A

TAG derived treesΛ(ΣSynt
TAG)O1 =

TAG string languageΛ(ΣString)
Lyield(O1)O2 =

Montague
SemanticsΛ(ΣLog)L sem

TAG (A)

Lyield

L TAG
synt

L tag
yield = Lyield ◦L TAG

synt

L sem
TAG

Figure 3.21: The ACG architecture of TAG with Montague semantics

Remark 3.4. The ACG encoding of TAG has the following property: A lexicon interprets
a linear abstraction always as a linear one. This implies that if a term over ΣDer

TAG is of
type α (β and L sem

TAG is a lexicon, then L sem
TAG (α (β) : L sem

TAG (α) (L sem
TAG (β). On other

other hand, as we already saw, in Kanazawa’s (2007) λ-CFGs, one may interpret α (β
as L sem

TAG (α)→ L sem
TAG (β). Hence, Pogodalla (2009) uses a version of ACGs that falls between

de Groote’s (2001) linear and Kanazawa’s (2007) almost-linear versions of the second-order
ACGs. Thus, the problems of parsing and generation with the ACG encoding of TAG with
Montague semantics are polynomial.

85

Chapter 3. Abstract Categorial Grammars

86

Chapter 4

Discourse Theories

Contents
4.1 Linguistic Aspects of Discourse Connectives 88

4.1.1 Arg1 . 90

4.1.2 Arg2 . 91

4.1.3 Constraints for Identifying Arguments of a Discourse Con-
nective . 94

4.2 Rhetorical Structure Theory . 97

4.2.1 Basic Principles . 97

4.2.2 Schemas . 100

4.2.3 A Formalization of RST . 102

4.3 Segmented Discourse Representation Theory 107

4.3.1 Basic Principles of SDRT . 107

4.3.2 The Logical Form of Discourse 112

In this chapter, we discuss discourse theories. We focus on two paradigms in discourse
studies, known as discourse structure theories and dynamic semantic theories. Discourse
structure theories view a coherent discourse as a structured entity constructed by linking
the sub-entities to each other. Usually, a sub-entity in the discourse structure is identi�ed
with a meaningful sub-piece (sub-part) of the original discourse. A meaningful sub-part of
a discourse is called a discourse constituent, or a discourse unit. Special relations, called
rhetorical (discourse) relations, provide connections between discourse units. In order to
interpret a discourse, discourse structure theories largely rely on pragmatic knowledge. Unlike
discourse structure theories, most dynamic theories do not pay signi�cant attention to the
discourse structure. They make use of the notions of a dynamic meaning of a proposition
and a context in order to interpret a discourse. The dynamic meaning of a proposition is its
potential to change (update) the context where it occurs. From discourse structure theories,
we discuss Rhetorical Structure Theory (RST), which has been applied in a number of tasks
in computational linguistics. From dynamic semantic theories, we focus on SDRT. While
SDRT is a dynamic semantic theory, it incorporates the notions of a rhetorical relation

87

Chapter 4. Discourse Theories

and a discourse structure in its dynamic setting. Thus, SDRT can be seen as a bridge
between dynamic semantic theories and discourse structure theories. In addition, we provide
a brief overview of linguistic aspects of discourse connectives. In particular, we highlight
some problems of identifying the arguments of a discourse connective.

4.1 Linguistic Aspects of Discourse Connectives

A discourse connective relates two pieces of semantic content, called arguments of a
discourse connective. A piece of discourse that gives rise to an argument of a discourse
connective is referred to as discourse unit. We say that a discourse connective signals a
discourse (rhetorical) relation. Usually, a discourse relation is a binary relation, or to put
it another way, a discourse relation has two arguments.²⁷

In this section, we mainly focus on overt (explicit) lexical markers of discourse
connectives. They serve as basic linguistic means for expressing ideas in a coherent way.
One refers to an explicit lexical marker of a discourse connective as a cue word or a cue
phrase, depending on whether it consists of one or more lexical items (words). Besides
overt lexical markers, discourse connectives can also be expressed by other means, such
as textual adjacency. Since this section is concerned with the explicit lexical markers
of discourse connectives, we may refer to them as discourse connectives if it does not
cause a confusion.

In natural languages like English and French (the ones that we focus on within this
thesis), three main classes of discourse connectives are distinguished. These classes
consist of subordinate conjunctions, coordinate conjunctions, and adverbial connectives. For
instance, because and although in Example (17) are subordinate conjunctions, whereas
but and and in Example (18) are coordinate ones. We may use the term conjunction to
refer both subordinate and coordinate conjunctions. In Examples (17) and (18), the
conjunctions signal the discourse relations connecting two pieces of semantic content,
denoted in bold and in italics.²⁸

Adverbial connectives (discourse adverbials), like conjunctions, give rise to discourse
relations that have two arguments. For instance, moreover in (19)(a) and then (19)(b)
are adverbial connectives. In Example (19), each of these two discourse adverbials
signals a discourse relation that relates the content of the first sentence (in italics) with
the content of the second one (in bold).

(17) a. Fred is grumpy because he lost his keys.

b. Although Fred is generous, he is hard to �nd.

(18) a. Fred is French but his wife is Spanish.

b. Fred is French and his wife is Spanish.

²⁷Discourse relations vary from theory to theory. A more or less agreed assumption about a discourse
relation is that it has two arguments.

²⁸Following the style of (Rashmi Prasad et al., 2008; Bonnie Webber and Rashmi Prasad, 2009).

88

4.1. Linguistic Aspects of Discourse Connectives

(19) a. Fred lost his keys. Moreover, he failed an exam.

b. Fred went to the cinema. Then, he went to the bar.

To analyze a discourse, it is necessary to identify the content related by the discourse
relations signaled by the discourse connectives in the discourse. In other words,
interpreting a discourse incorporates finding the arguments of discourse relations. For
now, we will call them arguments of discourse connectives. While in the examples
presented so far, one straightforwardly identifies the arguments of a discourse connective,
to define what are the arguments of a discourse connective is a problem in general.

Arguments of explicit connectives are not constrained to be single clauses or
single sentences: They can be associated with multiple clauses or sentences.
However, a minimality principle requires an argument to contain the minimal
amount of information needed to complete the interpretation of the relation.

Rashmi Prasad et al. (2008)

Thus, even though a text may contain various kinds of information, only certain
kinds of information can qualify as arguments of a discourse connective. For instance,
let us consider the following example from (Miltsakaki, A. Joshi, R. Prasad, and B.
Webber, 2004):

(20) Workers described “clouds of dust” that hung over parts of the factory even though
exhaust fans ventilated the air.

In (20), even though has an argument which is a relative clause (denoted in italics),
but not the entire clause – workers described “clouds of dust” that hung over parts of the
factory.

One of the main problems of identifying arguments of a discourse connective is
the mismatch between its syntactic and discourse-level (semantic) properties. In other
words, a discourse connective may exhibit di�erent behaviors at the sentence-level and
at the discourse-level. It has been argued that the semantic arguments of a conjunction
are obtained from locally available material (Bonnie Webber, Knott, Stone, and Aravind
Joshi, 1999). A stronger assumption about conjunctions is that the semantic arguments
of a conjunction are defined in part by syntax.²⁹ For instance, in (17)(b), although has
two arguments, the clauses written in italics and in bold. According to the assumption
about conjunctions, these clauses are syntactically bound arguments to although. One
says that a conjunction obtains its arguments structurally, or that both of the arguments
of a conjunction are structural because the arguments of a conjunction appear in the
parse tree of the discourse (B. L. Webber, 2004; B. L. Webber and A. K. Joshi, 1998;
Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003). Sometimes, we may refer to
conjunctions as structural connectives.

While for conjunctions one assumes that some syntactic rules govern the way they
obtain their arguments, some authors argue that for discourse adverbials one cannot
make such an assumption (B. L. Webber, 2004; B. L. Webber and A. K. Joshi, 1998;

²⁹Similar to arguments of a verb, which are defined by syntax (e.g. the subcategorizing frame, or the
domain of locality in LTAG).

89

Chapter 4. Discourse Theories

Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003). They argue that only one of
two arguments is syntactically bound to an adverbial connective, that is, it has only
one structural argument. For example, in (19)(a), the syntactically bound argument
of moreover is he failed an exam. The other argument of an adverbial connective is
called anaphoric. While the structural argument appears in the parse tree of a discourse,
the anaphoric one does not. To put it another way, an adverbial connective may have
only one argument defined by syntax. The other argument is anaphoric (inferred) since
it is not defined by syntax but has to be either anaphorically retrieved in the discourse
or inferred from the context (B. L. Webber, 2004; Bonnie Webber, Stone, Aravind Joshi,
and Knott, 2003). Various researchers develop their approaches with contrasting views
on the structural and anaphoric arguments. For instance, Danlos (2009) develops an
approach where both arguments of an adverbial connective appear in a parse tree of a
discourse, and thus there is no distinction between structural and anaphoric arguments,
or in the terminology of (B. L. Webber, 2004; Bonnie Webber, Stone, Aravind Joshi,
and Knott, 2003), both arguments are structural. Although how arguments of discourse
connectives are provided is a subject of discussions, most researchers agree that every
discourse connective has two arguments. Let us denote the arguments of a discourse
connective (relation) with ARG1 and ARG2. In this section, ARG1 is in italics and
ARG2 in bold; a discourse connective is underlined.

4.1.1 Arg1

As we already mentioned, according to some theories, ARG1 is the anaphoric argument
of an adverbial connective, whereas ARG2 is structural (B. L. Webber, 2004; B. L.
Webber and A. K. Joshi, 1998; Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003).
If the anaphoric argument of a discourse adverbial is explicitly present in a text, it
can be retrieved in the discourse using some sort of mechanism, similar to anaphora
resolution. Otherwise, ARG1 can be inferred. The discourse adverbial obtains the
structural argument, ARG2, by means of syntax. In other words, the semantic content
denoted by ARG2 is obtained by interpreting a piece of discourse that is syntactically
bound to the adverbial connective, whereas the semantic content denoted by ARG1
may not be an interpretation of any discourse unit in a text.

While ARG1 is a content that is accessible to adverbial connectives, it may not
be accessible to structural connectives, i.e., conjunctions. The capability of accessing
the inferred (abstract) material in a discourse is considered to be one of the main
characteristics that makes adverbials di�erent from conjunctions. For the sake of
illustration, let us consider the coordinate conjunction or and the adverbial otherwise.
In a number of cases, one may use or and otherwise interchangeably, as it in the
following discourses:

(21) a. If the light is red, stop. Otherwise you’ll get a ticket.

b. If the light is red, stop, or you’ll get a ticket.

(21)(a) and (21)(b) express the same meaning: If you do something else than stop,
you’ll get a ticket. However, in the examples such as (22), otherwise and or behave

90

4.1. Linguistic Aspects of Discourse Connectives

di�erently. To illustrate that, let us replace otherwise by or in (22). One obtains the
discourse (23), whose meaning di�ers from the meaning of (22). The di�erence in their
meanings is due to the fact that ARG1 of otherwise is inferred in (22). In particular,
in (22), otherwise has an access to the interpretation of the condition, whereas in (23),
or does not have an access to that (Bonnie Webber, Stone, Aravind Joshi, and Knott,
2003).

(22) If the light is red, stop. Otherwise go straight on.

(23) If the light is red, stop, or go straight on.

According to recent studies strengthened with the evidence from corpus analy-
ses (Bonnie Webber and Rashmi Prasad, 2009), sentence-initial (S-initial) coordinate
conjunctions show some similarities to adverbial connectives. In particular, ARG1 of
an S-initial coordinate conjunction might be a non-adjacent textual unit to the S-initial
conjunction. For example, in the discourse (24), the S-initial coordinate conjunction but
has ARG1 at the distance of one sentence from the location of the S-initial conjunction.

(24) I’m not suggesting that the producers start putting together episodes about topics like
the Catholic-Jewish dispute over the Carmelite convent at Auschwitz. That issue, like
racial tensions in New York City, will have to cool down, not heat up, before
it can simmer. But I am suggesting that they stop requiring Mr. Mason to
interrupt his classic shtik with some line about “caring for other people”
that would sound shmaltzy on the lips of Miss America.

Thus, the new evidence suggests that the di�erence between structural and anaphoric
discourse connectives may not lay into the locality or non-locality of arguments, contrary
to what was claimed before. At the same time, it is noteworthy that in lines with
the previous studies, the recent studies indicate that adverbials have access to the
content that is inaccessible for conjunctions. Based on the corpus studies, (Bonnie
Webber and Rashmi Prasad, 2009) claims that everything that can be an argument
of an S-initial coordination conjunction can also serve as an argument of a discourse
adverbial, whereas the reverse statement does not hold.

4.1.2 Arg2

Since ARG2 of an explicit marker of a discourse connective is defined in part by syntax,
to identify ARG2 is considered to be relatively easier than to identify ARG1. Indeed,
in certain cases, the syntactic argument of an adverbial connective coincides with the
discourse unit that gives rise to ARG2, as it is in the following example from (Danlos,
2013):

91

Chapter 4. Discourse Theories

(25) Fred
Fred

ira
gofut;3p;sng.

à
to

Dax
Dax

pour
for

Noël.
Christmas.

Ensuite,
Afterwards,

il
he

ira
gofut;3p;sng.

à
to

Pau.
Pau.

‘Fred will go to Dax for Christmas. Afterwards, he will go to Pau.’

However, in certain cases, it is not clear what serves as ARG2 of a discourse
connective.

4.1.2.1 Attitude Verbs

In Example (25), the adverbial ensuite (then, afterwards) gives rise to a temporal relation
between the events of Fred going to Dax and Fred going to Pau. Thus, in this case,
ARG2 is the content of the clause that serves as the syntactic argument to the adverbial
connective (the piece of text in bold). In some cases, however, identifying ARG2
may also depend on various factors that make it a rather di�cult task. For instance,
identifying ARG2 becomes more problematic if one employs attitude verbs. Since one
uses attitude verbs to express beliefs/assertions of the agents, this may complicate the
task of determining the content that discourse connectives relate (Bernard, 2015; Danlos,
2013; Dines et al., 2005; Bonnie Webber, Egg, and Kordoni, 2012). To illustrate that,
we consider the second clause in (25), [il ira à Pau]. By using this clause and the verb
croire (believe), we can produce the discourses (26)(a) and (26)(b).³⁰ In both of the
cases, ensuite (then) signals a temporal relation between [Fred ira à Dax pour Noël] and
[il ira à Pau]. Thus, in the case of discourses (25), (26)(a), and (26)(b), ARG2 of
ensuite is the same. With the same kind of reasoning, we modify (26)(a) by using the
first sentence of (26)(a) with the verb croire (believe). We obtain the discourse (27). In
this case, ARG2 is not the same as in the cases of (26)(a). In (27), ensuite establishes
the relation between [Jane a cru que Fred irait à Dax pour Noël] and [elle a cru qu’il
irait à Pau] (Jane thought that Fred would go to Dax and then she thought that he
would go to Pau). Thus, if attitude verbs are involved in a discourse, to identify the
arguments of a discourse adverbial becomes a non-trivial task, even in a case of a
discourse with two sentences.

(26)

a. Fred
Fred

ira
gofut;3p;sng.

à
to

Dax
Dax

pour
for

Noël.
Christmas.

Ensuite,
Afterwards,

Jane croit qu ’il
Jane thinkprs;3p;sng. that he

ira
gofut;3p;sng.

à
to

Pau.
Pau.

‘Fred will go to Dax for Christmas. Afterwards, Jane thinks that he will go to
Pau.’

³⁰The boxed texts denote the parts of the text that contribute neither to arguments of discourse
connectives nor to cue phrases.

92

4.1. Linguistic Aspects of Discourse Connectives

b. Fred
Fred

ira
gofut;3p;sng.

à
to

Dax
Dax

pour
for

Noël.
Christmas.

Ensuite,
Afterward,

croit Jane ,
thinkprs;3p;sng. Jane,

il
he

ira
gofut;3p;sng

à
to

Pau.
Pau.

‘Fred will go to Dax for Christmas. Afterwards, Jane thinks, he will go to Pau.’

(27) Jane
Jane

a
havepres.3p;sng.

cru
thinkpast.part.

que
that

Fred
Fred

irait
gopres.cond.3p;sng.

à
to

Dax
Dax

pour
for

Noël.
Christmas.

Ensuite,
Afterwards,

elle
she

a
havepres.3p;sng.

cru
thinkpast.part.

qu’il
that he

irait
gopres.cond.3p;sng.

à
to

Pau.
Pau.

‘Jane thought that Fred would go to Dax for Christmas. Afterwards, she thought
that he would go to Pau.’

In a discourse where attitude verbs are involved, to determine ARG2 becomes
problematic not only for adverbial connectives, but even for subordinate conjunctions,
which are considered as connectives whose arguments are defined by syntax. Let us
consider the following examples from (Danlos, 2012):

(28)

a. Fred
Fred

est
is

allé
gopast.part.

travailler
workindef.

bien que
although

Jane
Jane

dise
saysubj.pres;3p;sng.

qu’il
that he

est
is

très
very

malade.
ill.

‘Fred went to work even though Jane says that he is very ill. ’

b. ∗Fred
Fred

est
is

fatigué
tired

parce que
because

Jane
Jane

dit
sayspres;3p;sng.

qu’il
that he

a
havepres.3p;sng.

mal
bad

dormi.
sleeppast.part..

‘Fred is tired because Mary says that he slept poorly.’

While the discourse (28)(a) is felicitous, the discourse of the similar syntactic
structure (28)(b) is infelicitous. Thus, a purely syntactic approach cannot determine
whether a given discourse is felicitous, and if it is felicitous, then what is (are) its
interpretation(s). Although Danlos (2013) proposes some principles/rules how to extract
ARG2, they apply in a limited number of cases where one imposes certain requirements
on both discourse connectives and syntactico-semantic properties of sentences.

4.1.2.2 Clause-medial Adverbials

In a case where an adverbial connective appears at an internal position in a clause,
one refers to it as a clause-medial adverbial (clause-medial connective). For instance, in
(29), ensuite is a clause-medial adverbial. Identifying ARG2 is problematic due to the

93

Chapter 4. Discourse Theories

fact that syntactic properties of the adverbial do not associate it with the clause but
rather with the VP. For instance, in TAG, the adverbial would anchor a VP-auxiliary
tree, hence it modifies the VP of the clause. However, a VP cannot be a discourse
argument, where a minimal (atomic) unit of discourse is a clause. Thus, in this case,
there is a mismatch between syntax and discourse, that is, between the sentence-level
and discourse-level analyses of a clause-medial adverbial.

(29) Fred
Fred

ira
gofut;3p;sng.

à
to

Dax
Dax

pour
for

Noël.
Christmas.

Il
He

ira
gofut;3p;sng.

ensuite
afterwards

à
to

Pau.
Pau.

‘Fred will go to Dax for Christmas. He will then go to Pau.’

4.1.3 Constraints for Identifying Arguments of a Discourse Con-
nective

Danlos (2009) studies the syntax-semantics interface for discourse by proposing a
formalism called D-STAG. In D-STAG, any connective is structural, that is, both of the
arguments of every connective in a discourse (if any) appear in the parse tree of a
discourse. In order to identify arguments of a connective, D-STAG makes use of certain
constraints.

The arguments of a discourse relation/connective are the discursive seman-
tic/syntactic representations of the same (continuous) discourse segments.

Danlos (2011)

In D-STAG, one refers to a clause where a discourse connective appears as the
host clause of the discourse connective. For instance, a subordinate conjunction always
appears in front of its host clause (at a clause-initial position of a clause). As we
already saw, an adverbial connective may either appear in front of its host clause or
within its verb phrase (at a clause-medial position). The host clause of a subordinate
conjunction is called an adverbial clause. The name adverbial clause is due to the fact
that at the sentence level, an adverbial clause functions in the same way as an adverb
as both of them modify a matrix clause. Regarding matrix clauses, D-STAG considers
the following cases:

1. The matrix clause is on the right of the adverbial clause. In this case, the
subordinate conjunction is called postposed.

2. The matrix clause is on the left of the adverbial clause, or inside the adverbial
clause (before the VP of the adverbial clause). In this case, the subordinate
conjunction is called preposed.

As we already saw, the host and matrix clauses of a discourse connective may not
be the arguments of the discourse relation signaled by the discourse connective. D-STAG
introduces terms the host segment and mate segment of a discourse connective in order to
denote the arguments of a discourse connective/relation. The host segment is obtained

94

4.1. Linguistic Aspects of Discourse Connectives

from the host clause and the mate segment from the mate clause. By comparing the
notions of the host and mate segments with ARG1 and ARG2, we can see that the host
segment is ARG2, whereas the mate segment is ARG1. Thus, below we may use these
terms interchangeably.

In order to identify the host and mate segments of a discourse connective, D-STAG
proposes the following constraints (Danlos, 2011):
Constraint 1: The host segment of a connective is identical to or starts at its host

clause (possibly crossing a sentence boundary).
Constraint 2: The mate segment of an adverbial is anywhere on the left of its host

segment (generally crossing a sentence boundary).
Constraint 3: The mate segment of a postposed conjunction is on the left of its host

segment without crossing a sentence boundary.
Constraint 4: The mate segment of a preposed conjunction is identical to or starts at

the matrix clause (possibly crossing a sentence boundary).
To illustrate the motivations behind Constraints 1-4, let us consider the following

examples:

[(17)(a), repeated] Fred is grumpy because he lost his keys.

[(19)(b), repeated] Fred went to the cinema. Then, he went to the bar.

(30) When he was in Paris, Fred went to the Ei�el Tower. Next, he visited the Louvre.

In (17)(a), the connective because is a postposed conjunction. The mate segment of
because coincides with the matrix clause of because; the host segment of because is the
host clause of because.

In (19)(b), the mate segment of then is on its left, which is the first sentence in
(19)(b) (with respect to the linear order in the surface level). The host segment of then
is identical to the host clause of then, which is the second sentence.

In the case of (30), when is a preposed conjunction. The mate segment of when starts
at the matrix clause of the first sentence in (30), but spans over the second sentence
as well, i.e., crosses the sentence boundary. In this case, when is a frame adverbial
(Charolles, 2005).

In addition to above mentioned theories, to identify arguments of discourse connec-
tives, Wellner and Pustejovsky (2007) develop an approach based on machine learning.
They train classifiers on ARG1 and ARG2. Candidates for ARG2 are selected only
among those ones that lay within the same sentence as the connective. They argue that
ARG1 and ARG2 for di�erent discourse connectives behave di�erently. According to
their results, the classifier trained on pairs of arguments performs significantly better
than the one that is trained on each argument independently.

Soricut and Marcu (2003) develop a system for the sentence-level discourse parsing
also based on machine learning. Their approach makes use of the lexical and syntactic
information to train the system. In particular, the training set consists of triples:
sentence, its syntactic tree(s), its discourse tree(s). The input for the discourse parser

95

Chapter 4. Discourse Theories

is a lexicalized syntactic parse tree in which the discourse boundaries are marked. A
lexicalized syntactic parse tree is associated with a set of features. A feature serves
as a representation of the syntactic and lexical information of an attachment site of
discourse units in the syntactic tree. According to the authors of the study, such features
provide su�ciently rich information to enable the derivation of felicitous discourse trees
(structures). All in all, to identify arguments of discourse connectives remains one of
the problems in (computational) linguistics that requires further studies.

96

4.2. Rhetorical Structure Theory

4.2 Rhetorical Structure Theory

Rhetorical Structure Theory (RST) (Mann and Thompson, 1987, 1988) is a discourse
structure theory. One of the main motivations for introducing RST was to study the
questions of text organization. Thus, the RST interpretation of a text is a structure that
describes the way the text is organized. The RST analysis applies to a certain kind of
written monologues, as the following quote indicates:

Certain text types characteristically do not have RST analyses. These include
laws, contracts, reports ‘for the record’ and various kinds of language-as-art,
including some poetry. Mann and Thompson (1987)

One of the first applications of RST was found in the text generation task. The later
developments of RST made it possible to employ RST in other tasks of computational
linguistics, such as discourse parsing and summarization (Marcu, 1997).

4.2.1 Basic Principles

Given a text, its RST analysis is a hierarchically organized structure where rhetorical
relations link sub-parts of a text, called text spans.

To analyze a text with RST, one assumes that the following hypotheses hold (Mann
and Thompson, 1987):

1. Texts are not just strings of clauses. Instead, they consist of hierarchically
organized clauses and groups of clauses that relate to one another in various ways.

2. These relations, which can be described functionally in terms of the purposes
of the writer and the writer’s assumptions about the reader, reflect the writer’s
options for organizing and presenting the concepts.

3. The most common type of text relation is a relation called the nucleus-satellite
relation, in which one part of the text is auxiliary to the other, and therefore of
less significance for the overall information conveyed by the discourse.

The first hypothesis suggests that any text is a hierarchically organized entity. The
hierarchical organization is defined by rhetorical connections. A rhetorical connection
consists of a two text spans connected by a rhetorical relation. One assumes that a
rhetorical relation connects two non-overlapping text spans.

The second assumption provides a general purpose of rhetorical relations explained
in terms of writer/reader’s intention/expectations. In RST, there are two kinds of
relations, subject matter and presentational ones.

• Subject matter relations make it easy for a reader to recognize that there is a
semantic relation between the given text spans.

• Presentational relations increase some inclination in a reader. They bear some
information that is beyond semantics, i.e., the information that can be attributed
to pragmatics.³¹

³¹As it is noted in (Nicholas, 1994), both subject matter and presentational relations can be unified
under a property of having a perlocutionary e�ect. However, since subject matter relations provide semantic
information (some facts about a world), they give rise to perlocutions that are easier to perceive compared
to ones that arise in the case of presentational relations.

97

Chapter 4. Discourse Theories

The third assumption is characteristic to RST. According to it, a rhetorical relation
may relate two text spans in such a way that one of them is more central to the
writer’s intention and/or is more informative for the reader compared to the other one.
One refers to the more important text span as the nucleus of the rhetorical relation.
The less important text span is called the satellite of the relation. To illustrate the
di�erence between the nucleus and the satellite of a rhetorical relation, let us consider
the following example from (Mann and Thompson, 1986):

(31) [Tempting as it be], [we shouldn’t embrace every popular issue that comes along].

In Example (31), tempting as it be does not serve as the source of the main information
conveyed by the text. The central idea that a writer communicates by means of the
text (31) is expressed by [we shouldn’t embrace every popular issue that comes along].
Thus, this text span is the nucleus, whereas the other is the satellite. The rhetorical
relation between the nucleus and satellite is Concession. In RST, one establishes
Concession if the nucleus expresses a situation a�rmed by the writer. The satellite
expresses a situation which is (apparently) inconsistent with the information expressed
by the nucleus, but nevertheless it is also a�rmed by the writer. Figure 4.1 shows a
pictorial representation of the RST discourse structure for the text in Example (31).
The horizontal segments stand for the text spans, whereas the rhetorical connection
between them is depicted as the edge. The name of the rhetorical relation labels the
edge. The edge is directed from the satellite to the nucleus. The vertical line indicates
the position of the nucleus in the text.

R

Concession

Tempting as
it be,

we shouldn’t embrace every popular issue that comes along.

Figure 4.1: An RST structure of a discourse

It is not always straightforward to distinguish a nucleus from a satellite or vice versa.
To illustrate that, let us consider the following example from (Carlson and Marcu,
2001):

(32) [Although the earnings were fine and above expectations]π32
1 , [Salomon’s stock fell

$1.125 yesterday]π32
2 .

In Example (32), π32
2 is the nucleus and π32

1 is the satellite.³² The rhetorical relation
between the two is Concession.

³²We tag with πm
k the k -th clause in the text of Example (m), unless otherwise stated.

98

4.2. Rhetorical Structure Theory

(33) [The earnings were fine and above expectations]π33
3 . [Nevertheless, Salomon’s

stock fell $1.125 yesterday]π33
4 .

The semantic content of the text in Example (33) is very similar to the one of the
text in Example (32). Indeed, the clauses π32

1 and π33
1 have the same contents, and

at the same time, the clauses π32
2 π33

2 have the same contents as well. Moreover, the
discourse units π32

2 and π33
2 are in contrast to each other due to the presence of the

cue word nevertheless. Thus, the discourses (32) and (33) are semantically very similar
to each other. In spite of that, the RST structures of the discourses (32) and (33)
are di�erent from each other. Indeed, in the case of the text in Example (33), both
π33

1 and π33
2 have the same status in the text, because both of them convey the same

kind of information of the same importance. Hence, both π33
1 and π33

2 are nuclei in
Example (33). The RST relation between them is Contrast. Figure 4.2 depicts the
RST structure corresponding to Example (33). Thus, while π32

1 plays the role of the
satellite in the discourse (32), in a semantically very similar discourse, namely, in the
discourse (33), π33

1 is a nucleus. This suggests that one may not be able to detect the
distinction between a satellite and a nucleus by examining only semantic contents.

Contrast

The earnings
were fine and
above expec-
tations.

Nevertheless, Sa-
lomon’s stock fell
$1.125 yesterday.

Figure 4.2: A multinuclear discourse structure

One of the guidelines to identify satellites and nuclei in a text suggests that by
discarding the satellites, the remaining text (consisting of only nuclei) should convey
the most essential information provided by the original text. Another suggestion is that
replacing the satellite in the text (with something else) should not induce (significant)
changes in the intended function of the text.

We say that a relation is multinuclear if both of the discourse units it connects are
nuclei (e.g. Contrast). Otherwise, if only one of them is nucleus, then we say that a
relation is mononuclear (e.g. Concession).

Relation name Concession
Constrains on N W has positive regard for the situation presented in N.
Constrains on S W is not claiming that the situation presented in S does not hold.
Constrains on N+S W acknowledges a potential or apparent incompatibility between N and S;

W regards the situations presented in N and S as compatible;
recognizing the compatibility between N and S increases R’s positive regard for N.

E�ect R’s readiness to accept W’s right to present N is increased.
Locus of the e�ect N and S.

Figure 4.3: The RST definition of the rhetorical relation Concession

99

Chapter 4. Discourse Theories

In RST, a rhetorical relation is defined in terms of the constraints on the text spans
it connects. These constraints are formulated in terms of perlocutionary e�ects which
the reader experiences/writer intends. The complete RST recipe of defining a relation
is as follows (Mann and Thompson, 1988):

1. Constrains on the nucleus of the relation.
2. Constrains on the satellite of the relation.
3. Constrains on the combination of the nucleus and satellite of the relation.
4. E�ect on the reader.
Figure 4.3 on the previous page provides an example of a definition of a rhetorical

relation. Table 4.1 provides concise descriptions of the definitions of the rhetorical
relations that we are going to use in further examples.

Relation Name Nucleus Satellite
Antithesis ideas favored by the author ideas disfavored by the author
Circumstance text expressing the events or ideas an interpretive context of

occurring in the interpretive context situation or time
Elaboration basic information additional information
Enablement an action information intended to aid

the reader in performing an action
Evidence a claim information intended to increase

the reader’s belief in the claim
Justification text information supporting the writer’s

right to express the text
Motivation an action information intended to increase

the reader’s desire to perform the action
Non-volitional a situation another situation which causes that one,
Cause but not by anyone’s deliberate action
Purpose an intended situation the intent behind the situation
Solutionhood a situation or method supporting a question, request, problem

full or partial satisfaction of the need or other expressed need

Table 4.1: Rhetorical relations

4.2.2 Schemas

In RST, while rhetorical relations are the first-level objects, the second-level objects are
schemas. A schema is defined in terms of either one or two relations. Each schema
indicates the way a text span is built out of other text spans. By recursively applying
schemas, one derives the RST analysis of a text. The simplest schema consists of a
single relation and two text spans. For instance, Figure 4.4(a) shows the Circumstance
schema, which is made up with the help of a single rhetorical relation Circumstance.
While horizontal lines denote the text spans, the vertical line indicates the position
of the nucleus of the relation. The edge linking the horizontal lines is labeled with
the name of the rhetorical relation. However, a schema may consist of more than one
rhetorical relation. One refers to such schemas as multi-relation schemas. Figure 4.4(b)
illustrates an example of a multi-relation schema made out of two rhetorical relations,
Motivation and Enablement.

100

4.2. Rhetorical Structure Theory

In using schemas, RST provides one with a certain degree of freedom. Namely, one
is allowed to do the following manipulations with schemas:

Unordered Spans: The schemas do not put any restriction on the order of nuclei or
satellites in the text span in which the schema is applied.

Optional Relations: In the case of multi-relation schemas, all relations are optional, but
in the schema application at least one of the relations contained in that schema
must hold.

Repeated Relations: All the relations that are part of a given schema can be applied
any number of times in the application of that schema.

(4.34)

R

Circumstance

S N

(a) Circumstance

R	

Motivation Enablement

S N S

(b) Motivation/Enablement

Figure 4.4: RST schemas

Despite permitting a certain degree of flexibility in schema application, according
to (Mann and Thompson, 1988), a set of schema applications qualifies as a structural
analysis of a text if the set of schema applications satisfies the following constraints:

Completedness: The set contains one schema application that contains a set of text
spans that constitute the entire text.

Connectedness: Except for the entire text as a text span, each text span in the analysis
is either a minimal unit or a constituent of another schema application of the
analysis.

Uniqueness: Each schema application consists of a di�erent set of text spans, and,
within a multi-relation schema, each relation applies to a di�erent set of text
spans.

Adjacency: The text spans of each schema application constitute one text span.

Completedness, Connectedness, and Uniqueness ensure that an RST analysis results
in a tree-like, hierarchically structured entity. Adjacency guarantees that the resultant
structure contains no crossing edges. For instance, Figure 4.5 shows the RST structure
of the following discourse:

101

Chapter 4. Discourse Theories

(35) [No matter how much one wants to stay a nonsmoker]π35
1 , [the truth is that the

pressure to smoke in junior high is greater than it will be any other time of one’s
life]π35

2 . [We know that 3,000 teens start smoking each day]π35
3 , [although it is a

fact that 90% of them once thought that smoking was something that they’d never
do]π35

4 .

	

Justification

	

Evidence

π35
1 π35

2

	

Concession

π35
3 π35

4

Figure 4.5: An RST discourse structure

As Figure 4.5 indicates, one obtains the RST structure of the discourse (35) by
using the Justification schema, the Evidence schema, and the Concession schema.

4.2.3 A Formalization of RST

4.2.3.1 RST Structures as Trees

Although one may find RST structures to be close to trees, they are not trees by
definition. The asymmetry between a nucleus and a satellite makes RST structures
di�erent from trees. Marcu (1997, 2000) proposes to transform RST structures into
binary trees. He also presents a mathematical formalization of the notion of a rhetorical
relation. In addition, he defines valid text structures. With the help of the notion of a
valid text structure, Marcu (1997) gives a formal definition of the RST parsing problem:
Parsing a text with RST amounts finding all valid text structures of that text.

Let Rel be a rhetorical relation. Marcu (1997) encodes Rel as a sorted predicate
rhet-rel(Rel, ui , uj), whose meaning is that the relation Rel holds between the text spans
denoted by ui and uj . Here, the pair ui and uj stand either for a pair of a satellite
and a nucleus or for a pair of a nucleus and a nucleus, respectively, depending on
whether Rel is a mononuclear or multinuclear relation. Once every relation is of the
form rhet-rel(Rel, ui , uj), to represent an RST discourse structure as a binary tree, one
decorates every node in a tree with the features Status, Type, and Salience or Promotion,
where:

• Status indicates whether the node stands for the nucleus or for the satellite of a
relation.

• Type indicates the rhetorical relation that holds between the text spans over which
the node spans.

• Promotion is the set of units that constitute the most important part of the text
spanned by the node.

102

4.2. Rhetorical Structure Theory

For a leaf node, its type is leaf, and its promotion set is the textual unit that it
corresponds to. For example, one encodes the RST structure shown in Figure 4.5 with
the tree in Figure 4.6.

[π35
1 − π35

4]

Status = {Nucleus, Satellite}
Type = {Evidence}
Promotion = {π35

2 }

[π35
1 − π35

2]

Status = {Nucleus}
Type = {Justification}
Promotion = {π35

2 }

[π35
3 − π35

4]

Status = {Nucleus}
Type = {Concession}
Promotion = {π35

3 }

π35
1

Status = {Satellite}
Type = {leaf}
Promotion = {π35

1 }

π35
2

Status = {Nucleus}
Type = {leaf}
Promotion = {π35

2 }

π35
3

Status = {Nucleus}
Type = {leaf}
Promotion = {π35

3 }

π35
4

Status = {Satellite}
Type = {leaf}
Promotion = {π35

4 }

Figure 4.6: A binary tree corresponding to an RST Structure

4.2.3.2 An Extension of RST

To make use of RST in the discourse parsing task, one has to be able to distinguish well-
formed RST structures from ill-formed ones. Although RST provides some instructions
for building schemas (Completeness, Connectedness, Uniqueness, and Adjacency), RST
does not define what a well-formed structure is. Furthermore, Marcu (1997) claims that
since RST misses compositionality principles, it is impossible to formally define the
notion of parsing with RST. His point could be rephrased as follows: If one has to
continue building a partially built discourse, then what is a procedure that allows one
to decide how to proceed? Let us assume that πa and πb are two adjacent text spans
such that their discourse structures are already built. Assume also that some rhetorical
relation holds between two minimal units each belonging to the spans πa and πb . Now,
a question is whether πa and πb are also related by a rhetorical relation. Marcu (1997)
answers this question by providing two compositionality criteria, which he proposed as
a result of analysis of a number of texts.

Proposition 4.2.1 (Weak Compositionality Criterion (Marcu, 1997)).
If a relation R holds between two nodes of the tree structure of a text, then R can be explained
in terms of a similar relation R that holds between two linguistic or nonlinguistic constructs
that pertain to the most important constituents of those nodes.

103

Chapter 4. Discourse Theories

Proposition 4.2.2 (Strong Compositionality Criterion (Marcu, 1997)).
If a rhetorical relation R holds between two textual spans of the tree structure of a text, then it
can be explained by a similar relation R that holds between at least two of the most important
textual units of the constituent spans.

The intuitive notion behind the stronger criterion is that, after all, all
the linguistic and nonlinguistic constructs that are used as arguments of
rhetorical relations can be derived from the textual units and the relations
that pertain to those units. Marcu (2000)

Although from a theoretical point of view, it is easier to satisfy the weak composi-
tionality criterion than the strong one, from a practical point of view, to use the strong
compositionality criterion could be more beneficial than the weak one. However, as
Marcu (1997) notices, in certain cases, neither of these compositionality criteria can be
applied. To illustrate that, he provides the following example:

(36) [He wanted to play squash with Janet]π36
1 , [but he also wanted to have dinner

with Suzanne]π36
2 . [He went crazy]π36

3 .

R

NonVolitional Cause

Contrast
π36

1 π36
2

π36
3

Figure 4.7: An RST structure of a text

Figure 4.7 depicts the discourse structure of the text (36). π36
1 and π36

2 are in the
relation Contrast. It is hardly possible to imagine any rhetorical relation that could
hold either between π36

1 and π36
3 or π36

2 and π36
3 . Nevertheless, the discourse (36) is

a felicitous one. The rhetorical relation Non-Volitional Cause holds between π36
3

and the text span consisting of π36
1 and π36

2 . In other words, π36
3 is caused neither by

π36
1 nor π36

2 but by the fact that π36
1 and π36

2 are in Contrast. Since Contrast is
multinuclear, both π36

1 are π36
2 are of the same importance. Thus, one cannot argue

that Non-Volitional Cause holds between π36
3 and the most important one among π36

1
are π36

2 . One concludes that, in this case, not only the strong compositionality criterion
yields an incorrect analysis, but even the weak compositionality criterion cannot be
satisfied.

4.2.3.2.1 Extended Relations

Marcu (1997) argues for introducing another kind of discourse relations in addition
to rhetorical relations. He calls them extended relations. To illustrate the reasons for
introducing extended relations, let us consider a text where paragraphs are listed using

104

4.2. Rhetorical Structure Theory

keywords �rst, second, etc. In order to produce the precise analysis of such a text, one
has to give an account of the fact that these paragraphs are in the relation List, where
List is a relation that holds between paragraphs in a text rather than elementary units.
If there is no notion that could take care of such relations like List, then according
to the strong compositionality principle, there should be a relation (reminiscent of
list) between some elementary units in these paragraphs. However, while the listing
�rst, second, etc. may make sense for paragraphs, it could be the case that these
paragraphs do not contain such textual units that can be considered as a list: �rst,
idea1; second, idea2; etc. Thus, the strong compositionality principle would fail in that
case. Hence, if one extends RST with the strong compositionality principle, one has
to allow for relations like List. In Marcu’s (1997) terminology, List is an extended
relation. List does not qualify as a rhetorical relation because it does not connect
elementary discourse units but paragraphs. In general, an extended relation is like a
rhetorical relation but it holds between larger portions of text rather than elementary
units.

4.2.3.2.2 Nondeterminism

In certain cases, one may associate several structures to a given discourse. This
makes discourse parsing task ambiguous. As an instance of an ambiguous discourse,
let us consider the following example from (Marcu, 1997):

(37) [John likes sweets]π37
1 . [Most of all, John likes ice cream and chocolate]π37

2 . [In
contrast, Mary likes fruits]π37

3 . [Especially bananas and strawberries]π37
4 .

The discourse (37) consists of four minimal units. The discourse connective in
contrast signals the rhetorical relation Contrast. However, one has to identify what
are the spans that Contrast connects. One may consider the several possible cases:
Contrast connects [π37

1 -π37
2] and [π37

3 -π37
4]; Contrast connects [π37

1 -π37
2] and π37

3 ;
Contrast connects π37

1 and π37
3 ; Contrast connects π37

2 and π37
3 , etc. In addition,

the discourse connective especially gives rise to the Elaboration relation, which may
also hold between various text spans in the text. RST does not provide a formal
definition that one could use to justify why their choice of a particular structure is more
admissible than the other ones. In some cases, it is not even clear whether there is the
best structure among various possible ones. If we had a text that is larger than the
one in Example (37), then it is likely that it would even more ambiguous, because RST
trees for larger texts would contain more nodes. Therefore, there would be more text
spans and consequently, there would be more options for linking various text spans.
To overcome the problems that arise to due to ambiguity in the parsing task, Marcu
(1997) introduces the exclusive disjunction operator,

⊕
. It enables one to encode a

non-deterministic choice. For instance, in the case of the discourse (37), one makes

105

Chapter 4. Discourse Theories

hypothesis such the following one:

h =rhet-rel(contrast, π37
1 , π

37
3)

⊕
rhet-rel(contrast, π37

1 , π
37
4)

⊕
rhet-rel(contrast, π37

2 , π
37
3)

⊕
rhet-rel(contrast, π37

2 , π
37
4)

⊕
rhet-rel(Elaboration, π37

2 , π
37
1)

⊕
rhet-rel(Elaboration, π37

4 , π
37
1)

⊕
rhet-rel(Elaboration, π37

4 , π
37
2)

⊕
rhet-rel(Elaboration, π37

4 , π
37
3)

(4.38)

Note that h only contains relations between atomic text units, because according
to the strong compositionality principle, if a relation between larger discourse units
holds, then the same relation hold between smaller discourse units. One can check that
h encodes all possible rhetorical connections that Contrast and Elaboration can
provide between the discourse units in the discourse (37).

However, using the exclusive disjunction may prove to be not productive if one
relates most of the text spans with the exclusive disjunction. Given a relation, one has to
have an idea what are the possible text spans that this relation can relate. With regard
to this matter, Marcu (1997) proposes the exclusively disjunctive hypothesis. According
to this hypothesis, all the disjuncts corresponding to a rhetorical relation should be
from the same area of a text. More formally, one formulates the exclusively disjunctive
hypothesis as follows:

De�nition 4.2.1 (Exclusively Disjunctive Hypothesis (Marcu, 2000)).
An exclusively disjunctive hypothesis of rhetorical relations is well formed if all textual spans
that have as boundaries the units found in each disjunct overlap.

Now, we can formulate Marcu’s (2000) definition of the text structure derivation.

De�nition 4.2.2 (Text Structure Derivation (Marcu, 2000)).
The problem of text structure derivation: Given a sequence of textual units U = u1, u2, . . . , un
and a set RR of simple, extended, and well-formed exclusively disjunctive rhetorical relations
that hold among these units and among contiguous textual spans that are de�ned over U, �nd
all valid text structures of the linear sequence U .

In this way, Marcu (1997) formalizes RST by adding to it compositionality principles
and extending its relations. This allows one to formally define the notion of a text
structure derivation in RST. It is noteworthy that Marcu (1997, 2000) provides both a
model-theoretic and a proof-theoretic account of valid text structures. He shows that
the proof theory is both sound and complete, that is, one derives all and only valid
text structures of RST using the proof theory.

106

4.3. Segmented Discourse Representation Theory

4.3 Segmented Discourse Representation Theory

SDRT is a theory of dynamic semantics that studies the relations between discourse,
pragmatics, and semantics (Asher and Lascarides, 2003). By formalizing pragmatic
reasoning, SDRT builds the logical representation of discourse. With the help of the
dynamic semantics, SDRT identifies formal properties of that logical form. SDRT
incorporates the discourse structure within the logical form of a discourse. In the
SDRT discourse structure, rhetorical relations provide connections between discourse
constituents (units). A rhetorical relation connects two utterances. Although under
the term utterance one may understand various kinds of information, for the sake of
simplicity, in this thesis, we assume that a rhetorical relation links propositions, unless
otherwise stated.

In order to formalize the notion of a discourse structure within a dynamic setting,
SDRT starts with atomic discourse units, that is, discourse units whose representations
do not involve rhetorical relations. To obtain the logical representation of a discourse
unit, SDRT refers to dynamic semantic theories such as DRT (Kamp and Reyle, 1993)
or DPL (Groenendijk and Stokhof, 1991). In this thesis, we will use DRT in order to
represent interpretations of atomic discourse units.

To build the logical form of a discourse, SDRT deals with various tasks, including
inference of rhetorical relations. For that, SDRT defines a logic, which is di�erent
from the dynamic logic. The reason behind having two distinct logics is to separate
the di�erent levels of knowledge. SDRT distinguishes the semantic information from the
pragmatic one. In order to reason about the semantic properties of a discourse, one
utilizes the dynamic logic of SDRT. That is why the dynamic logic of SDRT is also
called the logic of information content. The logic that enables one to make pragmatically
preferred decisions, i.e., that formalizes the pragmatic knowledge is referred to as the
logic of information packaging. Below, we briefly describe motivations for introducing
SDRT and its fundamental principles. Then, we discuss the language of SDRT and the
logic of information content.

4.3.1 Basic Principles of SDRT

4.3.1.1 Discourse Coherence

One of the basic principles in SDRT is discourse coherence, which can be formulated as
follows:

De�nition 4.3.1 (Discourse Coherence (Asher and Lascarides, 2003)).
A discourse is coherent if:
(a) Every proposition (and question and request) that is introduced in the discourse is

rhetorically connected to another bit of information in the discourse, resulting in a single
connected structure for the whole discourse;

(b) and all anaphoric expressions can be resolved.

Thus, a coherent discourse has a single connected structure, which serves as an
interpretation of the discourse. Definition 4.3.1 does not specify what happens if several

107

Chapter 4. Discourse Theories

coherent interpretations of a discourse are simultaneously available. While a discourse
may have several coherent interpretations, one can argue that some of them are more
coherent than others. Let us illustrate this claim with the help of the following example:³³

(39) a. Max moved from Nancy to Vandœuvre.

b. The rent was less expensive.

In the sentences (39)(a) and (39)(b), the rent may refer either to the rent in Nancy
or to the rent in Vandœuvre. Thus, the following two interpretations of (39) can be
considered:
Interpretation 1 The rent = The rent in Nancy. In this case, the discourse (39) is merely

about Max’s moving from Nancy to Vandœuvre, which is the information that
(39)(a) provides. The sentence (39)(b) only serves as the background information
to (39)(a), because its only contribution to the overall information in the discourse
is to inform a reader about the rent in Nancy compared to the rent in Vandœuvre.

Interpretation 2 The rent = The rent in Vandœuvre. In this case, the discourse (39) has
the following meaning: The reason for Max’s moving from Nancy to Vandœuvre is
the cheaper rent in Vandœuvre compared to the one in Nancy. Now, the information
provided by the sentence (39)(b) is not only the background information in the
discourse, but also explains the sentence (39)(a).

Although both of these interpretations are coherent, Interpretation 2 o�ers a richer
discourse structure than Interpretation 1 does. In particular, in the case of Interpretation 2,
the sentences (39)(a) and (39)(b) are linked with two rhetorical relations, Background
and Explanation, whereas in the case of Interpretation 1, only Background links the
sentences (39)(a) and (39)(b). That is why Interpretation 2 is pragmatically more preferable
than Interpretation 1. To establish the interpretations a discourse, SDRT selects the
pragmatically most preferable interpretations. If there is only one such interpretation,
then it is declared as the interpretation of the discourse. For instance, Interpretation 2 is
the SDRT interpretation of the discourse (39). If there are several such interpretations,
then either the discourse is ambiguous or one does not have enough information to
identify the interpretation of it. To illustrate that, let us consider the following example:

(40) a. Max was released from hospital.

b. He recovered completely.

In the discourse (40), it is not clear whether Max left hospital because he recovered
completely, or Max was released from hospital and then he recovered completely. Hence, we
have two possibilities:

1. Either the sentence (40)(b) explains the sentence (40)(a),
2. or the sentence (40)(b) follows (in terms of the temporal order) the sentence

(40)(a).
In the first case, the rhetorical relation Explanation is the link between two

propositions, while in the second one, the link between two propositions is Narration

³³All the examples in this section are borrowed from (Asher and Lascarides, 2003) with slight
simplifications, unless otherwise stated.

108

4.3. Segmented Discourse Representation Theory

(from narrative). Both of these interpretations are equally possible as they are equally
coherent for us because we do not have enough information to prefer one to the other.
Now, let us consider the following two discourses, which are two possible extensions
corresponding to the two interpretations.

(41) a. Max was released from hospital.

b. He recovered completely,

c. and they needed the bed.

(42) a. Max was released from hospital.

b. He recovered completely,

c. then, he resumed training.

In the discourse (41), he recovered completely serves as an explanation why Max was
released from hospital. With the same success, in (42),³⁴ he recovered completely relates
to Max was released from hospital with Narration. Thus, in two di�erent situations,
both of the interpretations are equally acceptable. In the cases such as (40), where
we cannot specify what is the interpretation of a discourse, SDRT makes use of an
underspeci�ed representation of a discourse, which we will discuss in more details in the
further sections.

Nevertheless, in some cases (like the discourse (39)), one is able to identify what is
the interpretation of a discourse. In order to formally define what is the most coherent
interpretation, SDRT makes use of the principle called Maximise Discourse Coherence
(MDC).

De�nition 4.3.2 (Maximise Discourse Coherence (Lascarides and Asher, 2007)).
The logical form of a discourse is always a logical form that is maximal in the partial order
of the possible interpretations, where the ranking of interpretations is performed according to
following principles:

• All else being equal, the more rhetorical connections there are between two items in a
discourse, the more coherent the interpretation.

• All else being equal, the more anaphoric expressions whose antecedents are resolved, the
higher the quality of coherence of the interpretation.

• All else being equal, an interpretation which maximizes the quality of its rhetorical
relations is more coherent than one that does not.

The last principle of MDC involving the notion of a quality of a rhetorical relation is
related to the fact that some relations are scalar. A relation is scalar if its quality may
vary depending on a discourse where it appears. For instance, the following discourse
relations are scalar: Narration, Contrast, and Parallel. The quality of each of
these relations depends on di�erent factors.

³⁴Example (42) is from (Prévot and L. Vieu, 2008).

109

Chapter 4. Discourse Theories

Narration

One links two propositions with Narration only if one of them temporarily precedes
the other one. For instance, in each of the discourses in (43), the first sentence
temporarily precedes the second one and therefore it makes sense to further check
whether they are linked with Narration.

(43) a. Yesterday, Pedro noticed a lovely donkey near his farm. He gave it some
carrots.

b. Yesterday, Pedro noticed a lovely donkey near his farm. He ate some carrots.

Actually, in both of the discourses (43)(a) and (43)(b), Narration connects the
first and the second propositions. Although both of these texts are coherent, the quality
of the discourse (43)(a) is better than the quality of (43)(b). The reason is that the
quality of Narration gets higher as the common topic of the utterances it links gets
more specific. Indeed, the common topic of the first and second propositions in (43)(a)
includes Pedro and a donkey, while in the case of (43)(b), the common topic of the
related propositions is only Prado. That is why the quality of Narration in (43)(a) is
better than in (43)(b). Thus, Narration is a scalar relation.

Contrast

(44) a. John loves to collect classic cars. But his favorite car is a 2012 Ford Mondeo.

b. John loves to collect classic cars. But, he hates football.

The quality of Contrast depends on a degree of dissimilarity between the propo-
sitions it relates. For example, the quality of Contrast in the discourse (44)(a) is
better than the quality of Contrast in the discourse (44)(b). Since dissimilarity can
be graded in terms of more dissimilar/less dissimilar, one concludes that Contrast is a
scalar relation.

Parallel

(45) a. John has brown hair and Bill has brown eyes.

b. John has brown hair and Bill likes brown eyes.

In (45)(a), two propositions, John has brown hair and Bill has brown eyes are in the
Parallel relation. In the case of (45)(b), John has brown hair and Bill likes brown eyes
are also in the Parallel relation. However, as one may notice, the quality of Parallel
in (45)(a) is significantly better compared to the quality of Parallel in (45)(b). The
greater similarity between the contents of the propositions related by Parallel provides
the better quality of Parallel. Thus, Parallel is a scalar relation.

110

4.3. Segmented Discourse Representation Theory

4.3.1.2 The Right Frontier Constraint

How to increment a discourse so that one maintains its coherence is one of the problems
that SDRT studies extensively. As we saw in the definition of discourse coherence (see
Definition 4.3.1 on page 107), a new piece must add by some rhetorical relation to
the current one. However, a question is where a new piece can attach to the current
one. To put it another way, SDRT aims to identify the possible candidates amongst
the discourse constituents in a given discourse that can make a rhetorical connection
with a new piece of discourse. For the sake of illustration, let us consider the following
example:

(46) π1. Max had a great evening last night.

π2. He had a great meal.

π3. He ate salmon.

π4. He devoured lots of roquefort.

π5. He then won a dancing competition.

Example (46) illustrates a coherent discourse. However, adding the following
proposition to (46) yields an incoherent discourse:

(47) πX . It was beautiful pink.

Adding πX to (46) makes the resultant discourse infelicitous because the pronoun
it from πX does not find an antecedent in (46). At the same time, one knows that
the pronoun it in πX could only refer to salmon in π3 as it is the only thing in the
discourse that is pink. We can even substitute it by the salmon in πX , i.e., we could try
to increment (46) with the salmon was beautiful pink instead of πX . Nevertheless, the
result would be as incoherent as in the previous case. Hence, the incoherence of the
discourse ‘(46)+πX ’ is not due to a problem of ambiguity of the anaphora resolution
task (since there is no ambiguity). To identify the problem, let us build the rhetorical
structure of (46).

The propositions π2 and π5, both elaborate π1 as each of them expresses a sub-event
(sub-part) of the event corresponding to π1. Indeed, to have a meal (π2) and to win
a dancing competition (π5) are among the events that happened at the evening last night
(π1). In such cases, SDRT links two propositions with the rhetorical relation called
Elaboration. π2 and π5 are also related to each other. There is a temporal relation
between them: first, π2 took place and when it was over then π5 began. The cue word
then in π5 makes this temporal relation explicit. One concludes that the link between
π2 and π5 is Narration.

The propositions π3 and π4, both elaborate π2 as they express sub-events of having
a meal (π2). Thus, Elaboration links π3 and π2 and it also links π4 and π2. Let us
check whether there is a temporal link between π3 and π4. There is no explicit (overt)
marker in π3 nor in π4 to give us a hint about the temporal order between them. As
we have no sentence-level linguistic clue for ordering the set {π3, π4}, we rely on the
discourse-level information. In particular, one assumes that the textual order of these

111

Chapter 4. Discourse Theories

clauses indicates the order of the events expressed in them. Therefore, we assume
that the event of π3 took place before the one of π4, that it, Narration connects the
propositions π3 and π4.

Thus, we obtain the discourse structure, which one can represent as a directed
acyclic graph (DAG). Figure 4.8 on the next page illustrates this DAG. The edges of
the DAG are labeled with the discourse relations. The nodes in the DAG stand for
discourse constituents. As one may notice, the edges corresponding to Narration are
displayed horizontally, while the ones for Elaboration are vertical. This reflects the
fact that Narration induces coordination, while Elaboration induces subordination in
the discourse structure (we say that Narration is coordinating, while Elaboration is
subordinating). A hypothesis is that no two nodes are connected by a subordinating
relation and a coordinating relation simultaneously. As SDRT suggests, the presence
of subordinating and coordinating relations in a discourse a�ects the availability of
antecedents of anaphoric expressions. This relates to the notion of the right frontier (RF) of
a discourse. In the definition of an RF, the notions of subordination and coordination
play the central role. One can determine the RF of a DAG representing a rhetorical
structure of a discourse. Indeed, since SDRT puts down edges either horizontally or
vertically in a graph representing the structure of the discourse, one can visualize
the RF of such a graph. For instance, the RF of the graph illustrating the discourse
structure of (46) (see Figure 4.8) consists of π1 and π5. With the help the notion of
an RF, one defines the Right Frontier Constraint (RFC), which originates from Polanyi’s
(1985) work on discourse. According to the RFC, two pieces of discourse must meet
certain requirements in order to be possible to put them together. The original version
only concerns anaphoric pronouns, but the SDRT one (whose exact formulation we
provide in Definition 4.3.12 on page 123) is more general as it deals with all anaphoric
elements. For now, we formulate the RFC without using formal notions.

De�nition 4.3.3 (RFC (Asher and Lascarides, 2003)).
A new piece of discourse can add to the current one only in the case where the anaphoric
expressions occurring in this new piece have antecedents in the clauses that belong to the RF of
the current discourse.

Now, one can explain why adding the clause πX (see (47)) to the discourse (46)
turns a coherent discourse into an incoherent one. The RFC prohibits adding πX to (46)
as the antecedent of the anaphoric expression it from πX is introduced in the discourse
unit π3, which does not belong to the RF of the discourse (46) (π3 /∈ {π1, π5}).

4.3.2 The Logical Form of Discourse

In SDRT, the logical form of a discourse involves representations of discourse units
and rhetorical connections, which are realized by rhetorical relations as they connect
utterances. In this way, the logical form of a discourse is a logical representation of the
information content of a discourse. The language where SDRT defines the logical form
of discourse is called the SDRS language. SDRT defines well-formed formulas of this
language and provides them with dynamic semantic interpretations.

112

4.3. Segmented Discourse Representation Theory

π1:Max had a great evening last night

π2:He had a great meal π5:He then won a dancing competition

π3:He ate salmon π4:He devoured lots of roquefort

El
ab
or
at
ion

Elaboration

E
la

bo
ra

ti
o
n

Elaboration

Narration

Narration

Figure 4.8: A rhetorical structure of a text

4.3.2.1 The Logical Form of Clauses

The SDRT discourse analysis starts from identifying meanings of sentences. A sentence
might be ambiguous as it can have several meanings. The question is how to represent
the meaning of an ambiguous sentence, or what is the meaning of an ambiguous
sentence. Is that the set of possible meanings, or is that only one meaning? One may
answer these questions by declaring the pragmatically most acceptable meaning among
all the possible ones to be the meaning of the ambiguous sentence. Indeed, it would
be a solution as the goal of SDRT is to interpret discourse by formalizing pragmatics.
However, it is not always possible to select the pragmatically most preferred meaning.
That is why SDRT chooses another solution, which enables one to obtain a representation
of a sentence that does not require to select any of the particular meanings. This
representation is called the underspeci�ed logical form of a sentence; it represents all the
possible meanings of an ambiguous sentence. To define underspecified logical forms,
SDRT employs a labeled language. The labeled language of SDRT makes possible to
encode an underspecified meaning of a sentence in a concise way. For the sake of
illustration, let us consider the following example.

(48) Every boxer loves a rock-band.

φ1 = ∀x (boxer(x)→ ∃y(rock-band(y)∧ love(x , y))) (4.49)

φ2 = ∃y(rock-band(y)∧ (∀x (boxer(x)→ love(x , y))) (4.50)

113

Chapter 4. Discourse Theories

The sentence (48) is ambiguous because the following two readings are available
for it: either for every boxer, there is a rock band that they love, or there is a rock-band
such that every boxer loves it. φ1 and φ2, defined in Equation (4.49) and Equation (4.50)
respectively, encode the two readings of the sentence (48). These two readings of (48)
correspond to the scope ambiguities of the quantifies for ∀x and ∃y . To select one
of the meanings of the sentence in (48) is to set that ∀x outscopes (scopes over) ∃y ,
or vice versa. At the same time, in both φ1 and φ2, each of the quantifiers ∀x and
∃y outscopes love(x , y). An underspecified representation of the sentence (48) should
encode these facts.

In order to consider scopes of expressions and how they are related, it is useful to
name these expressions using labels. That is, we associate labels with expressions. A
given label is associated with only one expression. One can translate scoping relations
between expressions into scoping relations between their labels. For instance, if we label
∀x with l1 and ∃y with l2, instead of saying that ∀x outscopes ∃y or vice versa, we can
express that by using l1 and l2. The original language is called the base language. One
can translate the base language expressions into the label language ones (and vice versa,
i.e., one can reconstruct the base language expressions from the label language ones).

In this thesis, we will use another approach to underspecified representations, called
Hole Semantics (Bos, 1995). With this approach, one makes use of holes in order to
represent unassigned scopes between labeled expressions. One encodes every scope
bearing expression using holes. A hole can be seen as a variable over labels. Given an
underspecified representation, by instantiating the holes in it with labels, one generates
a disambiguated representation out of the underspecified one. Scoping (domination)
constraints govern which labels can fill which holes. That is, to fill holes with labels,
one has to obey scoping constraints. No label can be plugged in two di�erent holes
at the same time. Each hole should be filled by some label. To plug a label into a
hole is to substitute a hole by a label. Domination constraints have the following form
a ≤ b, where a and b are formulas built with holes and labels. ≤ is a partial order.
For instance, l1 ≤ l2 encodes that the formula with label l1 is a subformula of the one
with label l2. The constraint such as l ≤ h means that the formula with label l is in
the scope of an operator with hole h. This means that l directly or indirectly is in
the scope of h of that operator. If the operator with hole h directly scopes over the
formula with label l , then one fills h by l .

Formally, one defines underspeci�ed representations for predicate logic.³⁵ The language
where one encodes expressions with holes and labels is called Predicate Logic Unplugged
(PLU). One defines its syntax as follows:

De�nition 4.3.4 (Syntax of PLU (Bos, 1995)).
1. If h is a hole, then ¬h is a PLU formula;
2. if hi and hj are holes, then hi → hj , hi ∧ hj , hi ∨ hj are PLU formulas;
3. x is a variable of Predicate Logic and h is a hole, then ∃xh and ∀xh are PLU formulas;
4. if R is an n-place predicate of and t1, . . . tn are terms, then R(t1, . . . , tn) is a PLU
formula.

5. Nothing else is a PLU formula.

³⁵It is possible to make use of Hole Semantics for various languages, not only for predicate logic.

114

4.3. Segmented Discourse Representation Theory

In order to obtain an underspecified formula encapsulating the meaning of (48),
consider again φ1 and φ2 defined in Equations 4.49 and Equations 4.50. We aim to
build an underspecified formula that should not specify the right hand-side of the
implication →, nor the conjunct of ∧, otherwise we obtain either φ1 and φ2, which are
concrete interpretations of (48). From now, we write and(a, b) instead of a ∧ b (not
to confuse the logical connective ∧ of PLU with the logical connective ∧ of predicate
logic). In addition, the underspecified formula should encode what is shared by both of
the interpretations φ1 and φ2. Otherwise we may build an underspecified formula that
is more general than the one the one that we aim to construct. Thus, the underspecified
formula should encode the following things: (a) ∀x directly scopes over →; (b) boxer(x)
is directly under the scope of → (i.e., boxer(x) is the premise of →); (c) ∀x directly
scopes over ∧; (d) and directly scopes over rock-band(y); (e) the conclusion of → scopes
over love(x , y); (f) the argument of and besides rock-band(y) scopes over love(x , y).
Finally, the underspecified formula should encode that either ∀x or ∃y scopes over the
rest of the operators. In order to construct the underspecified formula, we encode every
operator with holes (h0, h1, h2, . . . ,) and attach to every expression a label (l0, l1, l2, . . . ,).
By h0, one denotes the hole such that the label plugged into h0 will receive widest
scope.

φu = ∃h0 ∃h1 ∃h2 ∃h3 ∃h4 ∃h5 ∃h6 ∃l1 ∃l2 ∃l3 ∃l4 ∃l5 ∃l6 ∃l7
(l1 : ∀x h1 ∧ l2 : h2 → h3 ∧ l3 : boxer(x) ∧ l4 : ∃y h4 ∧ l5 : and(h5, h6) ∧

l6 : rock-band(y) ∧ l7 : love(x , y) ∧ l2 ≤ h1 ∧ h1 ≤ l2 ∧ l3 ≤ h2 ∧ h2 ≤ h3

∧ l5 ≤ h4 ∧ h4 ≤ l5 ∧ l7 ≤ h3 ∧ l7 ≤ h6 ∧ l1 ≤ h0 ∧ l4 ≤ h0) (4.51)

In Equation (4.51), the constraints encode the following:
• l2 ≤ h1 ∧ h1 ≤ l2 models that → directly scopes over boxer(x);
• l3 ≤ h2 ∧ h2 ≤ l3 models that → directly scopes over boxer(x);
• l5 ≤ h4 ∧ h4 ≤ l5 models that ∃y directly scopes over and;
• l7 ≤ h6 models that the h6 hole of and scopes over rock-band(y);
• l7 ≤ h3 models that the conclusion of → scopes over rock-band(y);
• l1 ≤ h0 ∧ l4 ≤ h0 that both ∀x nor ∃y are outscoped by h0.
Thus, in every possible plugging, one has: h1 = l2, h2 = l3, h4 = l5. The rest of holes

and labels can be plugged in two ways. Indeed, we can set h0 = l1, then we obtain that
h6 = l7 and h3 = l4. In that case, φu (see Equation (4.51)) encodes the formula φ1 (see
Equation (4.49)). Another plugging can be obtained by setting h0 = l4, then h3 = l7
and h6 = l1. In that case, φu encodes the formula φ2 (see Equation 4.49). In this way,
two possible pluggings encode two particular meanings.

4.3.2.2 Discourse Representation

The logical form of a discourse involves the logical representation of content of
propositions together with the hierarchical structure of the discourse imposed by rhetorical
relations. In particular, if between two discourse constituents π1 and π2 holds a rhetorical
relation R, then R(π1, π2) is a discourse constituent that is higher in the hierarchy of
discourse constituents than π1 and π2. In this way, one obtains a hierarchical structure

115

Chapter 4. Discourse Theories

of discourse. While some rhetorical relations are subordinating (e.g. Elaboration),
others (e.g. Narration) are not. As we already saw, one may represent such a
discourse structure as a two-dimensional directed acyclic graph as follows: A relation is
displayed vertically if it is subordinating, otherwise it is depicted as a horizontal line
(see e.g. Figure 4.14 on page 122). To encode the logical form of a discourse, SDRT
defines the SDRS language.

4.3.2.3 DRT

One represents contents of discourse units and rhetorical connections within SDRSs,
where the notion of an SDRS extends the notion of DRS of DRT (Kamp, 1981, 1988;
Kamp and Reyle, 1993; Kamp, van Genabith, and Reyle, 2011). The definition of an
SDRS incorporates the notion of a DRS.³⁶ In particular, to represent atomic discourse
units, SDRT makes use of their DRS representations. Thus, at the clause-level, the
SDRS language of SDRT coincides with the DRS language of DRT.

However, only having DRSs and their semantic interpretations is not su�cient for
SDRT as DRT does not take into account the rhetorical structure of a discourse. SDRT
extends DRT by incorporating the discourse structure in the logical form of a discourse.

We provide the definitions of the syntax and semantics of the basic fragment of
DRT. Afterwards, we discuss the way one extends DRT to SDRT.

4.3.2.3.1 The DRS Syntax

One represents a DRS K as a pair 〈U ,C 〉, where U is a set of discourse referents
of K and C is a set of conditions in K .

De�nition 4.3.5 (The Syntax of DRSs (Lascarides and Asher, 2007)).
The set of DRSs is de�ned recursively as follows:

K := 〈U , ∅〉 | K ⊕ 〈∅, γ〉

Where:
1. U is a set of discourse referents.
2. γ is a DRS-condition, de�ned as follows: If x1, . . . , xn are discourse referents and R is
an n-place predicate symbol, then γ := R(x1, . . . , xn) | ¬K | K1 ⇒ K2.

3. ⊕ is an append operation³⁷ on DRSs, de�ned as follows: If K1 = 〈U1,C1〉 and
K1 = 〈U2,C2〉, then K1 ⊕K2 = 〈U1 ∪U2,C1 ∪C2〉.

An informal way of writing a DRS is a box divided into two di�erent sub-boxes.
One of the boxes contains discourse referents that a DRS introduces, whereas the other
one contains conditions of a DRS.

³⁶While the notion an SDRS originates from the notion a DRS of DRT, to define an SDRS, one can
rely on some dynamic theory other than DRT. However, in this thesis, we follow the version of SDRT
where the notion of an SDRS incorporates the notion of a DRS.

³⁷Unlike the original DRT, the SDRT uses the operation append, which is non-commutative, and
therefore the DRS-conditions make a list rather than a set.

116

4.3. Segmented Discourse Representation Theory

Example 4.1.

Let us illustrate the notion of a DRS on the following example:

(52) John drives a car.

x , y

john(x), car(z), drive(x , y)

Figure 4.9: An example of a DRS

One represents the content of the sentence (52) as a DRS shown in Figure 4.9.
The variables x and y stand for the discourse referents for John and a car, respectively.
Apart from the discourse referents, it contains three conditions, two of them encode
that x is a discourse referent introduced by John and y is a one introduced by a car.
The remaining one encodes that x drives y .

Example 4.2.

Let us consider the following discourse, whose DRS representation is shown in
Figure 4.10.

(53) a. Pedro owns a donkey.

b. He beats it.

K and N denote the DRSs corresponding to (53)(a) and (53)(b) respectively. By
appending N to K , one obtains the DRS R (see Figure 4.10). However, this example
of merging gives a felicitous result because we append compatible DRSs. Indeed, K and
N describe the pieces of discourse whose combination yields a coherent discourse. The
discourse referents z and u from N can resolve to the discourse referents in K , because
K is accessible to N .

117

Chapter 4. Discourse Theories

x , y

pedro(x)
donkey(x)
own(x , y)

= K ⊕
z , u

beat(z , u)
= N =

x , y , z , u

pedro(x)
donkey(x)
own(x , y)
beat(z , u)
z = x
u = y

= R

Figure 4.10: An example of the DRS merging

(54) a. John does not own a car.

b. ??It is red.

x

john(x)

¬
y

own(x , y)

(a) John does not own a
car

x , z

john(x)

¬
y

own(x , y)

z =? ?

(b) John does not own a
car. It is red

Figure 4.11: An example of the content inaccessible from the outside the box

Let us consider Example (54). The proposition (54)(b) is not compatible with
the rest of discourse, which consists of a single clause (54)(a). The problem is that
it from (54)(b) cannot resolve to a car in (54)(a). DRT gives an account of such
cases by introducing the accessibility constraints on discourse referents. To formulate the
accessibility constraints of DRT, one defines the subordination relation over DRSs.

De�nition 4.3.6 (Immediate Subordination & Subordination).
We say that K1 immediately subordinates K2 if one of the following conditions is met:
1. K1 contains a condition of the form ¬K2;
2. there is a DRS K3 such that either K3 ⇒ K2 or K2 ⇒ K3 is contained as a condition
in K1.

The subordination relation over DRSs is a re�exive, transitive closure of the relation of
immediate subordination, and it is denoted by 6.

De�nition 4.3.7 (Accessibility).
A discourse referent x introduced in UK1 is accessible to an anaphoric DRS condition in K2 if
and only if one of the following conditions holds:

118

4.3. Segmented Discourse Representation Theory

1. K2 6 K1;
2. there exists such a DRS K3 that K2 6 K3 and K1 ⇒ K3.

Now, we explain why in (54), a discourse referent z cannot resolve to a discourse
referent y . The DRS introducing y is subordinated to the DRS introducing z . This
means that z is accessible to y , but not vice versa. Therefore, z cannot resolve to y .

4.3.2.3.2 Dynamic Semantics of DRSs

A dynamic interpretation of a proposition is a relation between variable assignment
functions. Under a dynamic proposition, we mean a dynamic interpretation of a proposition.
The main insight of dynamic semantics is that dynamic propositions may change a
context in which they appear. Here, the notion of a context is realized as a variable
assignment function f , which is a mapping from discourse referents to domain entities in
some model M . The intuition behind viewing a dynamic proposition as a relation over
assignments is that a dynamic proposition may introduce new discourse referents in a
context. In order to evaluate the new discourse referents introduced by the dynamic
proposition, one extends the current variable assignment function. The extended variable
assignment function is defined for those discourse referents as well on which the original
one is not defined. In this way, the dynamic proposition relates the initial variable
assignment function and the new one. To put it another way, a dynamic proposition
changes (updates) the context. In a case where a dynamic proposition does not introduce
any new referent in a context, it introduces conditions that have to be fulfilled. In
that case, a dynamic proposition behaves as a test on a context. More formally, if f
is a variable assignment function and UK is a set of discourse referents of a DRS K ,
then f may be not defined on the elements of UK . Therefore, one extends f to g (we
write it as f ⊂ g) so that g is defined on UK as well (dom(g) = dom(f) ∪UK and
∀x ∈ dom(f) : f (x) = g(x)). However, extending a variable assignment function does
not define when a DRS is true in a model. In other words, the notion of truth of a DRS
cannot be defined only by interpreting variables. By interpreting conditions of a DRS,
one is able to define the notion of a true DRS in a model. Let us denote by CK the
set of conditions of a DRS K . The DRS K is verified by a pair of variable assignment
functions f , g , where f ⊂ g , if and only if for every condition γ ∈ CK , g satisfies γ in
M (that is, the variable assignment function g maps the discourse referents of UK to
the domain elements in M so that the interpretation of γ in M becomes true). Hence,
the DRS K is a relation on variable assignment functions such that f and g are related
via K if and only if g extends f on UK and g verifies all the conditions from CK .

Let us formally define the semantics of a DRS K in a model M , denoted by JK KM ,
by following (Asher and Lascarides, 2003).

De�nition 4.3.8 (Model).
M is a �rst order model M = 〈AM , IM 〉, where:

• AM is a set of individuals.
• IM is an interpretation function: IM assigns to an n -ary predicate Pn , a set of n -tuples
of the elements of AM (we denote it as IM (Pn)).

119

Chapter 4. Discourse Theories

De�nition 4.3.9 (Interpretation of DRSs).

1. f J〈U , ∅〉KM g if and only if f ⊂ g and dom(g) = dom(f)∪U .
2. f JK ⊕ 〈∅, γ〉KM g if and only if there exists h such that f JK KM h and hJγKM g . We
can write this as a relational composition f JK KM ◦ JγKM g .

3. f JR(x1, . . . , xn)KM g if and only if f = g and 〈f (x1), . . . , f (xn)〉 ∈ IM (R).
4. f J¬K KM g if and only if f = g and there is no h such that f JK KM h .
5. f JK1 ⇒ K2KM g if and only if f = g and for every h such that f JK1KM h , there exists
some function k such that hJK2KM k .

We drop the subscript M in JK KM whenever it does not create a confusion.

4.3.2.4 The SDRS Language

In SDRT, one extends the language of DRSs in order to incorporate rhetorical connec-
tions between discourse constituents in the logical form of a discourse. For that, SDRT
defines the notion of SDRS.

De�nition 4.3.10 (SDRS and Well-formed SDRS (Asher and Lascarides, 2003)).
One constructs well-formed SDRS-formulas from the following vocabulary:

• Microstructure: A set Ψ of the DRS representations of atomic natural language clauses.
• Labels: π, π1, π2, · · ·.
• A set of relational symbols for discourse relations (rhetorical relations): R,R1,R2, · · ·.
The set of well-formed SDRS-formulas Φ contains Ψ as a subset. Besides the elements of Ψ,

it contains formulas de�ned as follows:
1. If R is an n -place relational symbol and π1, . . . , πn are labels, then R (π1, . . . , πn) ∈ Φ.
2. If φ, ψ ∈ Φ, then φ∧ ψ ∈ Φ and ¬φ ∈ Φ, where ∧ and ¬ are interpreted dynamically,
as it is in De�nition 4.3.9 (f Jφ∧ ψKg if and only if f JφK ◦ JψKg).

De�nition 4.3.11 (Discourse Structure (Asher and Lascarides, 2003)).
An SDRS or a discourse structure is represented by a triple 〈A, F , LAST 〉, where:

• A is a set of speech act discourse referents (labels);
• LAST is a member of A (the label of the content of the last clause that was added to
the logical form);

• F is a function which assigns each member of A a well-formed SDRS-formula.
In addition, one de�nes a relation i outscope on A as follows: i outscope(π, π

′
) holds if

there is some relation R such that either R(π
′
, π

′′
) or R(π

′′
, π

′
) is included as a conjunct in

the formula F(π). The transitive closure of i outscope , denoted by outscope , is a partial
order over A. The requirement upon outscope is that there exists the unique supremum π0 of
outscope in A.

Example 4.3. Let us give an example of SDRSs by considering the structure of the
discourse (46), repeated below.

120

4.3. Segmented Discourse Representation Theory

(46, repeated) π1. Max had a great evening last night.

π2. He had a great meal.

π3. He ate salmon.

π4. He devoured lots of roquefort.

π5. He then won a dancing competition

For πi , where i = 1, 2, 3, 4, 5, Kπi denotes a DRS that describes the content of the
proposition πi . One obtains the discourse structure corresponding to (46) by defining
an SDRS 〈A, F , LAST 〉 as it is shown in Figure 4.12.

F(π1) = Kπ1

F(π2) = Kπ2

F(π3) = Kπ3

F(π4) = Kπ4

F(π5) = Kπ5

F(π0) = Elaboration(π1, π6)

F(π6) = Narration(π2, π5)∧ Elaboration(π2, π7)

F(π7) = Elaboration(π3, π4)

LAST = π5

Figure 4.12: An SDRS

Figure 4.13 on the following page illustrates a box-style representation of SDRSs.
This representation is a visualization of what the labeling function F and ouscope
relation do:

• F assigns to every label πi a formula F(πi).
• The visualization of ouscope is the hierarchical embedding of boxes.
In addition, one can represent the SDRS describing (46) as a graph in Figure 4.14,

which one builds as follows:
1. If i outscope(π1, π2), then π1 is π2 are connected with a vertical line, where π2 is

above π1;
2. if there exists some π for which Fπ = R(π1, π2) and R is subordinating, then a

downward vertical arrow labeled with R comes from π2 to π1;
3. if Fπ = R(π1, π2) and R is not subordinating, then a horizontal arrow connects π1

and π2, where π1 is on the left of π2.

In the cases where LAST is not necessary to specify, one omits it by writing 〈A,F〉
as a representation of a discourse structure. By convention, for any label π, one denotes
F(π) with Kπ. Thus, Kπ is a condition with label π, which one also may write as
π : Kπ.

121

Chapter 4. Discourse Theories

π0

π0 :

π1, π6

π1 : Kπ1 ,Elaboration(π1, π6)

π6 :

π2, π5, π7

π2 : Kπ2 , π5 : Kπ5

Narration(π2, π5)
Elaboration(π2, π7)

π7 :

π3, π4

π3 : Kπ3 , π4 : Kπ4

Narration(π3, π4)

Figure 4.13: The box-style representation of an SDRS

π1

π6

π2 π5

π7

π3 π4

E
la

bo
ra

ti
o
n

Narration

E
la

bo
ra

ti
o
n

Narration

Figure 4.14: A DAG representation of an SDRS

122

4.3. Segmented Discourse Representation Theory

4.3.2.5 Availability

To update a discourse with a new piece, its content must be related to some information
in a current discourse. However, by requiring only that, one may obtain an incoherent
discourse out of a coherent one. For instance, even though the discourse (46) on page
(111) contains some information about salmon, incrementing (46) with a clause the
salmon was pink, which has certainly something in common with salmon, results in an
incoherent discourse. Hence, a new piece must attach to a current one at a point which
is available for attachment. As we saw, the accessibility constraints of DRT can be useful
only in the cases where one can establish the subordination between DRSs. In the
cases such as (46), where the accessibility constraints of DRT do not apply, the RFC
might be helpful to make a correct analysis. SDRT extends both the RFC and the DRT
accessibility constraints by defining formally what are available attachment points and
what are possible antecedents to anaphoric conditions.

In order to define what are available points for attachment, SDRT dichotomizes
discourse relations by assuming that a discourse relation is either subordinating or
coordinating. The following lists³⁸ provide examples of subordinating and coordinating
relations:
Coordinating: Narration, Background, Result, Continuation, Parallel, Con-

trast, Correction.
Subordinating: Elaboration, Explanation, Precondition, Topic, Commentary,

Consequence.

De�nition 4.3.12 (Available Attachment Points).
If β is going to attach to a constituent³⁹ in the SDRS 〈A, F , LAST 〉, then one identi�es the
available attachment points where β can attach to as follows:
1. The label α = LAST .
2. Any label γ for which:

(a) There are such δ and R that either R(α, δ) or R(δ, α) is a conjunct of the formula
labeled with F(γ) (that is, i outscopes(γ, α) holds).

(b) There exist a subordinating relation R and a label λ such that R(γ, α) is a
conjunct of the formula labeled with F(λ). This property is abbreviated as α < γ.

3. Any label γ dominating α in the following sense: there exist γ1, . . . , γn such that α < γ1,
γ1 < γ2, · · ·, γn < γ.

Besides subordinating and coordinating relations, SDRT defines structural relations.
A relation is structural if it imposes constraints on the propositional structure of its
arguments. Thus, given that R(π1, π2) holds, where R is a structural relation, then
the contents labeled by π1 and π2 have certain propositional structure. For instance,
Contrast is a structural relation because if Contrast(π1, π2) holds then the pieces
whose contents are labeled with π1 and π2 are structurally similar (and semantically
dissimilar) to each other. An example of a relation that is not structural is Explanation.

³⁸For a detailed discussion of the di�erences between subordinating and coordinating relations, we
refer readers to (Asher and Lascarides, 2003; Asher and Laure Vieu, 2005).

³⁹A constituent corresponds to a node in the graph representation of an SDRS.

123

Chapter 4. Discourse Theories

· · · structural discourse relations di�er from other relations, in that they allow
discourse referents that are introduced in embedded DRSS to be available,
subject to certain constraints. Asher and Lascarides (2003)

Since structural relations demonstrate their distinctive nature from other relations
when it comes to availability of discourse referents, the definition that concerns an-
tecedents of anaphora does not apply in a case of structural relations.

De�nition 4.3.13 (Antecedents to Anaphora).
If β is the label of a DRS Kβ containing an anaphoric condition φ, then the available
antecedents for φ are the discourse referents that are:
1. In Kβ and DRS-accessible to φ;
2. in Kα, DRS-accessible to any condition in Kα (in this case we say it is DRS-accessible
in Kα), and there is a condition R(α, γ) in the SDRS such that either γ = β or
outscope(γ, β) holds (R stands for any rhetorical relation except for structural ones).

Let us illustrate on an example how Definition 4.3.13 allows/prohibits an anaphoric
condition to resolve.

Example 4.4.

(55) π1. John drives a car.

π2. It is red.

π1, π2

Background(π1, π2)

π1 :

x , y

john(x), car(y), drive(x , y)
π2 :

z

red(z), z =?

Figure 4.15: The SDRT analysis of John drives a car. It is red.

Figure 4.15 shows the SDRS of the discourse (55). Finding an antecedent of it from
π2 amounts resolving the anaphoric condition z =?, where one uses the symbol ? to
encode that z is to be resolved to some value. Let us show that the underspecified
condition z =? can resolve to y . Indeed, π2 attaches to π1 with a discourse relation
Background. Thus, the condition 2 of Definition 4.3.13 is fulfilled as we have
Background(π1, π2) (π1 is α, π2 is β, i.e. γ = β). Since y is DRS-accessible in Kπ1 , y
is accessible to the condition z =? as well. Thus, z =? can resolve to y . In the SDRS
shown in Figure 4.15, one can replace the underspecified condition z =? with z = y ,
and thereby obtain a fully specified SDRS.

124

4.3. Segmented Discourse Representation Theory

4.3.2.6 Dynamic Semantics of SDRSs

Since an SDRS describing a single discourse unit is a DRS by definition, we refer to
the DRT interpretations of DRSs in order to interpret that SDRS. However, an SDRS
can describe more than an atomic discourse unit. Therefore, it becomes necessary to
define dynamic semantics for the SDRS language. In particular, since SDRT represents
the discourse (rhetorical) connections inside SDRSs, to interpret an SDRS, it becomes
necessary to provide dynamic interpretations of rhetorical connections, which involve
rhetorical relations and discourse units. For example, if an SDRS is of the form
R(π1, π2), where R is a rhetorical relation, then the problem of its interpretation goes
beyond the scopes of DRT. Although R(π1, π2) is an atomic formula, its interpretation
is more complex than the interpretations of atomic formulas representing meanings
of clauses. Taking into account the distinctive properties that we encounter among
rhetorical relations, the interpretation of R(π1, π2) should reflect (be in concordance
with) the properties of R. For instance, if R is Explanation, then the SDRT satisfiability
conditions of the formula Explanation(π1, π2) is di�erent from the one when R is
Correction.⁴⁰ Intuitively it is clear that if Explanation(π1, π2) holds, then both Kπ1

and Kπ2 hold. In contrast, if Correction(π1, π2) holds, then Kπ1 and Kπ2 both cannot
hold, because they are incompatible. Below, we only provide interpretations of the
discourse relations that share the property that Explanation has and Correction does
not. We call them veridical relations. Veridical relations typically occur in narratives
and expository texts. One formulates the property that defines veridicality of a relation
as follows:

De�nition 4.3.14 (Satisfaction Schema of Veridical Relations (Asher and Lascarides,
2003)).
For a veridical relation R the following holds:

f JR(π1, π2)Kg if and only if f JKπ1 ∧Kπ2 ∧ φR(π1,π2)Kg

Where
• ∧ is the dynamic conjunction (f Jφ∧ ψKg if and only if f JφK ◦ JψKg);
• φR(π1,π2) expresses the semantic constraints characteristic to the particular discourse relation

R(π1, π2).

Veridical relations include Narration, Explanation, Elaboration, Background,
Contrast, Parallel, etc. The rhetorical relation Correction is not veridical because
f JR(π1, π2)Kf implies that f J¬Kπ1Kg (the dynamic negation of Kπ1).

Thus, R(π1, π2) holds if and only if Kπ1 , Kπ2 , and φR(π1,π2) hold, where φR(π1,π2)

depends on R(π1, π2). As one see from the satisfaction schema for veridical rhetorical
relations, they are complex discourse updates. That is, one can view φR(π1,π2) as a

⁴⁰For example, Correction is a link between the first and second utterances in the following discourse:

π1. John is a journalist.

π2. No, he is a sailor.

125

Chapter 4. Discourse Theories

condition that constrains the way the dynamic proposition JR(π1, π2)K updates a context.
Thus, together with the satisfaction schema, one has predefined conditions, i.e., some
sort of axioms for rhetorical relations. In SDRT, one refers to these axioms as meaning
postulates. Let us illustrate meaning postulates of rhetorical relations by discussing the
meaning postulates of Explanation and Elaboration.

Elaboration & Explanation

(56) Alexis did well in school this year. She got As in every subject.

(57) Max fell. John pushed him.

In (56), she got As in every subject elaborates Alexis did well in school this year. Hence,
the rhetorical link between them is Elaboration. In the case of (57), the second
proposition explains the first one, that is, Explanation connects them. These rhetorical
relations give rise to di�erent e�ects on the events of the propositions they link. Indeed,
as (56) shows, we have the temporal inclusion between the events expressed by the first
and second propositions, which is an e�ect of Elaboration. In (57), the event of
the explained proposition (Max fell) takes place after the event that explains it (John
pushed him). Thus, in each of the discourse (56) and (57), the two events are linked
with temporal precedence. These observations lead to the following meaning postulates of
SDRT:

Temporal Consequence

Explanation :

φExplanation(α,β) ⇒ (¬eβ ≺ eα) (4.58)

Elaboration :

φElaboration(α,β) ⇒ Part-of (eβ, eα) (4.59)

Where ≺ encodes a relation on events in terms of the temporal order; Part-of is a
sub-event relation.

It is noteworthy that to determine those meaning postulate that apply in a particular
case depends not only on the involved rhetorical relation but on the propositions that
are related with that rhetorical relation.

Example 4.5. Let us illustrate the way SDRT makes use of meaning postulates and
dynamic semantics in order to establish truth conditions under which a discourse is
felicitous. We consider the following discourse:

(60) a. Max fell.

b. John pushed him.

126

4.3. Segmented Discourse Representation Theory

Figure 4.16 shows the SDRS representation of (60). π1 (resp. π2) labels the DRS Kπ1

(resp. Kπ2), which represents the logical form of the clause (60)(a) (resp. (60)(b)). We
use predicate holds_at to express that an event eπ takes place at the tπ time and write
it as holds-at(eπ, tπ). The label π0 is the highest label as it labels Explanation(π1, π2),
i.e., the rhetorical connection of Kπ1 and Kπ2 provided by the rhetorical relation
Explanation. Since Explanation connecting π1 and π2 is veridical, to interpret the
discourse (60), that is, to interpret the SDRS in Figure 4.16, one refers to the satisfaction
schema for veridical relations. According to it (see Definition 4.3.14), one obtains the
following:

f JExplanation(π1, π2)KM g if and only if f JKπ1 ∧Kπ2 ∧ φExplanation(π1,π2)KM g

π0

π0 :

π1, π2

Explanation(π1, π2)

π1 :

eπ1 , t1, x

max(x), fell(eπ1 , x),
holds-at(eπ1 , tπ1), t1 ≺ n

π2 :

m, eπ2 , tπ2 , y , z

john(y), push(eπ2 , y , z), y = z
holds-at(eπ2 , tπ2), t1 ≺ n

Figure 4.16: An SDRS

By interpreting the right-hand side of the last statement, that is, f JKπ1 ∧Kπ2 ∧
φExplanation(π1,π2)KM g , one obtains the interpretation of the discourse. To interpret that, we
refer to the interpretation of the dynamic conjunction ∧. According to the interpretation
of dynamic ∧, there are two variable assignment functions h and k such that f JKπ1KM h,
hJKπ2KM k , and kJφExplanation(π1,π2)KM g hold. Let us consider each of them separately.

• f JKπ1KM h holds if dom(h) = dom(f)∪ {eπ1 , x , tπ1} and
〈h(x)〉 ∈ IM (max), 〈h(eπ1), h(x)〉 ∈ IM (fall), 〈eπ1 , tπ1〉 ∈ IM (holds-at).

• hJKπ2KM k holds if dom(k) = dom(h) ∪ {eπ2 , y , z , tπ2} and 〈h(y)〉 ∈ IM (john),
〈k(eπ2), k(y), k(x)〉 ∈ IM (push), 〈eπ2 , tπ2〉 ∈ IM (holds-at).

• According to the meaning postulate for Explanation, if kJφExplanation(π1,π2)KM g
holds, then kJ¬eπ2 ≺ eπ2KM g holds as well. kJ¬eπ2 ≺ eπ2KM g holds if and only
if k ⊂ g , and 〈¬eπ2 , eπ1〉 ∈ IM (≺). Since ≺ represents the temporal relation, we
obtain that kJφExplanation(π1,π2)KM g holds only in the case where eπ1 does not take
place before eπ2 , that is, Max’s fell had not happened before John pushed him.

In this way, we have discussed the SDRS language and the dynamic logic. They
allow one to represent a discourse in a logical form and to interpret that logical form,
respectively. In the next chapter, we discuss formal grammars of discourse whose
discourse structures are inspired by SDRT.

127

Chapter 4. Discourse Theories

128

Chapter 5

Discourse Grammar Formalisms

Contents
5.1 D-LTAG . 131

5.1.1 D-LTAG Elementary Trees . 133

5.1.2 Structural Connectives . 133

5.1.3 Discourse Parsing with D-LTAG 135

5.1.4 Computing Discourse Semantics 139

5.1.5 Discourse Structure . 151

5.2 G-TAG . 153

5.2.1 Architecture . 153

5.2.2 Conceptual Representation Language 155

5.2.3 Lexical Databases . 159

5.2.4 G-derivation and G-derived Trees 162

5.2.5 Discourse Grammar . 164

5.2.6 An Example of Text Generation 168

5.3 D-STAG . 174

5.3.1 Discourse Normalized Form 175

5.3.2 D-STAG: Synchronous Tree Adjoining Grammar for Discourse176

5.3.3 The D-STAG Discourse Update and the Right Frontier of a
Discourse . 178

5.3.4 Semantic Interpretation . 181

5.3.5 Parsing Ambiguity . 183

5.3.6 D-STAG Examples . 184

5.3.7 Preposed Conjunctions . 189

5.3.8 Modifiers of Discourse Connectives in D-STAG 190

129

Chapter 5. Discourse Grammar Formalisms

In this chapter, we discuss formalisms that study discourse regularities with grammars. One
refers to such formalisms as discourse grammar formalisms. We focus on D-LTAG, G-TAG,
and D-STAG. D-LTAG and D-STAG were introduced for discourse parsing, whereas G-TAG
is a formalism for discourse generation. Our choice of these formalisms is determined by the
fact that each of them proposes its discourse grammar based on the TAG principles. Since
the ACG encoding of TAG coupled with Montague semantics is already available, these
formalisms are interesting for one who aims at the modeling of the syntax-discourse interface
with ACGs. Although the formalisms D-LTAG, G-TAG, and D-STAG, each proposes a
TAG grammar for discourse, each of these discourse grammars is designed under certain
assumptions. In G-TAG and D-LTAG, the assumption is that a discourse structure is
tree-shaped. D-STAG proposes a grammar that allows for a richer structure of discourse
than just tree-shaped ones. Namely, in D-STAG, the discourse structure can be a directed
acyclic graph. While the grammars of D-LTAG, G-TAG, and D-STAG prove to be capable of
encoding various phenomena, they experience some problems when one considers a discourse
where an adverbial connective occupies an internal (clause-medial) position in a clause. To
overcome the problem, each of these formalisms develops a two-step approach to discourse
processing. One of the steps is the grammatical step. During this step, one applies the
grammar of a formalism to produce the derived (parse) tree of a discourse. The other step is
an extra-grammatical step. In G-TAG, the extra-grammatical step involves moving discourse
adverbials from clause-initial to clause-medial positions so that one generates a text where a
discourse adverbial appears at a clause-medial position. In D-LTAG and in D-STAG, during
the extra-grammatical step, one moves discourse adverbials from clause-medial positions to
the clause-initial ones. This step is necessary in order to parse a discourse with either the
D-LTAG grammar or the D-STAG one.

130

5.1. D-LTAG

5.1 D-LTAG

Lexicalized Tree Adjoining Grammar for Discourse (D-LTAG) (Forbes et al., 2003;
Forbes-Riley, Bonnie Webber, and Aravind Joshi, 2006; B. L. Webber, 2004; B. L.
Webber and A. K. Joshi, 1998; Bonnie Webber, Knott, Stone, and Aravind Joshi, 1999)
is a formalism for discourse parsing. D-LTAG is based on the (L)TAG principles. But
while (L)TAG deals with sentence-level structures, D-LTAG focuses on discourse-level
ones. In addition to the discourse parsing, with the help of D-LTAG, one can interpret
a discourse as a formula of a labeled language. In particular, one constructs the labeled
formula out of the derivation tree of the discourse. The discourse structure⁴¹ encoded
by the obtained labeled formula is a tree-shaped one. For instance, in the case of the
sentence (61), D-LTAG produces the discourse interpretation shown in Figure 5.1(a).

(61) Sue is happy because she found a job.

lb : because′(lh , lf),
lh : happy(sue),
lf : found(sue, job).

(a) The D-LTAG interpreta-
tion of Sue is happy because
she found a job

lb

lh lf

(b) The
tree
represen-
tation

Figure 5.1: A D-LTAG interpretation and its tree representation

According to the D-LTAG notations, in a labeled formula (e.g. in Figure 5.1(a)), a
comma stands for the logical conjunction ∧. For the sake of simplicity, one denotes a
discourse relation (rhetorical relation) signaled by a discourse connective lex.item with
lex.item′, unless otherwise stated. lu denotes a label, where u is a natural number or a
symbol of the Latin alphabet.

One can represent the formula in Figure5.1(a) as the tree in Figure 5.1(b), where
nodes stand for labels, and the parent-child relation in a tree realizes a predicate-
argument relation in a formula.

As we already discussed in Section 4.1 on page 88, according to (Bonnie Webber,
Stone, Aravind Joshi, and Knott, 2003), both of the arguments of a subordinate and/or
coordinate conjunction are structural, that is, they appear in the parse tree of a
discourse. In contrast to them, only one of the arguments of an adverbial connective
is structural. The D-LTAG grammar encodes this di�erence between conjunctions and
adverbial connectives. Every conjunction is encoded with two arguments, whereas
every adverbial connective is encoded only one argument. The other argument of
the adverbial connective, called the anaphoric argument, can be found using an extra

⁴¹In D-LTAG, the term ‘discourse structure’ refers to a parse tree of a discourse. Nevertheless, we refer
to the interpretation of a discourse as the ‘discourse structure.’

131

Chapter 5. Discourse Grammar Formalisms

grammatical mechanism (e.g. anaphora resolution). By retrieving/inferring the anaphoric
arguments of the adverbial connectives in a discourse, one may obtain a non tree-shaped
interpretation of the discourse out of its D-LTAG interpretation, which is tree-shaped.
For instance, let us consider the discourse (62) containing the discourse adverbial in
this way. Figure 5.2(a) shows the D-LTAG interpretation of the discourse (62) as a
labeled formula. In the labeled formula, [ei]

ac denotes the anaphoric argument; ε′

models the empty connective as there is no overt structural relation between the first and
second sentences.⁴² The value of the anaphoric argument [ei]

ac is not specified in the
D-LTAG interpretation. As one can see, this labeled formula gives rise to the tree in
Figure 5.2(b). However, one can resolve [ei]

ac to li . Hence, one obtains the labeled
formula shown in Figure 5.3(a). This formula gives rise to a directed acyclic graph
(DAG) depicted in Figure 5.3(b), which is not a tree.

(62) a. The company interviewed everyone.

b. In this way, they considered all their options.

We first discuss D-LTAG elementary trees. Afterwards, we describe the D-LTAG
parsing process. We discuss the way one interprets a discourse with the help of D-LTAG.

l1 : in_this_way′(lc , [ei]
ac),

l2 : ε′(li , l1),
li : interview(c, e),
lc : consider(c, e)
(a) The D-LTAG interpretation

l2

li

l1

lc [ei]
ac

(b) The tree representa-
tion

Figure 5.2: The D-LTAG interpretation of discourse

l1 : in_this_way′(l4, l3),
l2 : ε′(l3, l1),
l3 : interview(c, e),
l4 : consider(c, o)

(a) The fully specified interpreta-
tion

l2

li

l1

lc
(b) The DAG
representation

Figure 5.3: The interpretation obtained from the D-LTAG interpretation by resolving an
anaphoric link

⁴²We discuss this point in more derails in Remark5.2.

132

5.1. D-LTAG

5.1.1 D-LTAG Elementary Trees

An elementary tree in D-LTAG is either anchored with a discourse connective or with a

clause. A clause C is an atomic unit of discourse and it anchors an initial tree
DU

C

(the non-terminal symbol labeling nodes in D-LTAG trees is usually denoted by DU -
discourse unit).

In D-LTAG, various discourse connectives anchor various kinds of trees. Contrasting
encodings of di�erent elementary trees are motivated by di�erences between the proper-
ties of their lexical anchors. One of the main di�erences that D-LTAG encodes within
its grammar is the di�erence between structural and anaphoric discourse connectives.
Figure 5.4(a) and Figure 5.4(b) show examples of D-LTAG elementary trees anchored
with structural connectives, whereas Figure 5.4(c) shows a D-LTAG elementary tree
anchored with an adverbial connective.

DU

DU ↓ DC

because

DU ↓

(a) An DU-initial tree
with two DU-substitution
sites

DU

DU∗ DC

and

DU ↓

(b) A D-LTAG auxiliary
tree anchored with a co-
ordinate conjunction

DU

DC

then

DU∗

(c) A DU-
auxiliary with
no substitution
sites

Figure 5.4: D-LTAG elementary trees anchored with a subordinate conjunction, a
coordinate conjunction, and an adverbial

5.1.2 Structural Connectives

Apart from distinguishing between structural and anaphoric connectives, D-LTAG makes
di�erences among structural connectives. For instance, as Figure 5.4 shows, because and
and anchor an initial tree and an auxiliary one, respectively. Contrasting encodings of
di�erent structural connectives is motivated by their semantico-pragmatic properties.

5.1.2.1 Initial Trees

A structural connective anchoring an initial tree obtains both of its arguments via
substitution as it has two DU-substitution sites (see Figure 5.4(a)). By filling these
substitution sites with trees, the discourse relation signaled by the discourse connective
obtains its arguments.

Various lexical items may anchor D-LTAG initial trees. For instance, as Figure 5.5
shows, subordinate conjunctions, certain coordinate conjunctions, and some imperative
verbs anchor DU-initial trees with two DU-substitution sites. Besides these categories,
paired connectives (e.g. on the one hand, on the other hand), and subordinators (multi-word
subordinate conjunctions, e.g. in order to) also anchor the DU-initial two DU-substitution

133

Chapter 5. Discourse Grammar Formalisms

sites. All these linguistic constructions serve as discourse predicates, which define the
domain of locality at the discourse-level (B. L. Webber, 2004). Therefore, they are encoded
as initial trees.

Remark 5.1. The D-LTAG trees anchored with the above listed linguistic constructions (i.e.,
subordinate conjunctions, certain coordinate conjunctions, multi-word expressions, paired con-
nectives, etc.) di�er from the LTAG trees anchored by them. Indeed, at the sentence-level, they
are not the ones that de�ne the domain of locality, but verbs, predictive adjective, etc. Since
subordinate conjunctions, paired connectives, and other above listed constructions are beyond the
domain of locality of verbs, predictive adjective, etc., they are encoded by LTAG auxiliary trees.

DU

DC

suppose

DU ↓ DU ↓

DU

DU ↓ DC

because

DU ↓

DU

DU

although

DU ↓ DU ↓

DU

DU ↓ DC

in order to

DU ↓

DU

DU ↓ DC

hence

DU ↓

DU

DU ↓ DC

so

DU ↓

DU

DC

on the one hand

DU ↓ DC

on the other hand

DU ↓

Figure 5.5: D-LTAG initial trees anchored with discourse connectives

5.1.2.2 Auxiliary Trees

While subordinate conjunctions and certain coordinate conjunctions anchor initial trees,
some coordinate conjunctions anchor auxiliary ones. For example, and anchors an
auxiliary tree shown in Figure 5.4(b) on the preceding page. The motivation behind
encoding coordinate conjunctions, such as and, as anchors of auxiliary trees is that
they extend the description of a situation or an entity conveyed in a discourse which
they attach to.⁴³ Hence, they provide a recursive way of extending the information in
a discourse (B. L. Webber, 2004). Therefore, they anchor D-LTAG auxiliary trees. In
these auxiliary trees, there is a single substitution site where one substitutes a discourse
unit that further elaborates the previous piece of discourse.

In addition to overt markers of discourse connectives, the lexically unexpressed
connective ε, sometimes called the empty connective, anchors a D-LTAG auxiliary tree. If
two discourse units are structurally adjacent to each other, but no lexically expressed
discourse connective connects them, D-LTAG assumes that the lexically unexpressed
connective ε relates these two discourse units. The empty connective ε anchors an
auxiliary tree with a single DU-substitution site, illustrated in Figure 5.6.

⁴³In contrast to and, the coordinate conjunction such as so and hence do not extend the previous piece
of discourse, but rather express result.

134

5.1. D-LTAG

DU

DU∗ DC

ε

DU ↓

Figure 5.6: The D-LTAG tree anchored with ε

5.1.2.3 Anaphoric Connectives

As we already discussed in Section 4.1 on page 88, discourse adverbials are identified
with anaphoric connectives. Unlike structural connectives, an anaphoric connective
obtains only one of the two arguments structurally. The other argument is either retrieved
anaphorically or inferred. An adverbial connective anchors a D-LTAG auxiliary tree,
such as one shown in Figure 5.4(c). By adjoining an auxiliary tree anchored with an
adverbial connective into a parse tree of a piece of discourse, the adverbial connective
obtains its structural argument. Getting the anaphoric argument is beyond the scopes
of D-LTAG.

Convention: We denote a D-LTAG initial (auxiliary) tree anchored with a lex.item by
αD

lex .item (resp. βD
lex .item), where the superscript D indicates that it is a D-LTAG initial

(res. auxiliary) tree. To denote an LTAG tree anchored with a lex.item, we write αlex .item
or βlex .item , unless otherwise stated.

5.1.3 Discourse Parsing with D-LTAG

Having described the grammar of D-LTAG, we discuss the way such a grammar is
used to parse a text. We already mentioned that a clause C anchors an initial tree in
D-LTAG. Actually, it is not a clause C that is the anchor of the tree, but rather the

LTAG derived (parse) tree of the clause C . That is, instead of
DU

C
, one has

DU

γ

where γ is the LTAG derivation tree of the clause C . Thus, the clause-level grammar
underlying D-LTAG is an LTAG.

One can use the same TAG parser for both LTAG and D-LTAG (Forbes et al., 2003;
B. L. Webber, 2004), as both of grammars are TAG grammars. The general description
of the D-LTAG parsing process is the following:

1. An LTAG parser parses each sentence of the input text.
2. The Tree Extractor component extracts the following items from the parse tree of

each sentence: LTAG parse trees of clauses and LTAG elementary trees anchored
with discourse connectives.

3. The Tree Mapper component applies to the extracted LTAG elementary trees
anchored with discourse connectives. It maps them to the corresponding D-LTAG
elementary trees (an LTAG elementary tree anchored with a discourse connective
may di�er from the D-LTAG elementary tree anchored by the same discourse
connective).

135

Chapter 5. Discourse Grammar Formalisms

4. The Discourse Input Generator component generates the discourse input: The input
text is represented as the sequence (string) of D-LTAG trees anchored by the
clauses and the connectives obtained in the previous steps.

5. Using the D-LTAG (discourse) grammar, an LTAG parser parses the sequence
produced in the previous step by constructing a derivation tree using the trees in
the sequence.

Let us consider some of these steps in more details.

Tree Extractor

At the first step of parsing, one produces the derivation trees of sentences in the text
using an LTAG grammar. The sequence of these derivation trees are the inputs of the
Tree Extractor (TE). TE outputs:

1. Elementary trees anchored with discourse connectives that appear in the sentences.
2. The derivation tree for each clause in a sentence.
Sometimes, to extract a derivation tree of a clause and identify discourse connectives

is relatively straightforward compared to some other cases. In particular, the cases
where connectives appear at clause-medial positions require special treatments. Let us
consider the following examples:

(63) a. Susan will then take dancing lessons.

b. Then, Susan will take dancing lessons.

αtake

αSusan βwill αlessons

βdancing

βs
then

extract−→
ε

(a) An LTAG derivation tree of a sentence

αtake

αSusan βwill αlessons

βdancing

(b) An LTAG clausal deriva-
tion tree

βs
then

(c) An
LTAG
auxiliary
tree an-
chored
with then
then

Figure 5.7: A case of a discourse with a clause-initial connective

In the sentence (63)(a), then is a clause-medial discourse adverbial, whereas in the
case of (63)(b), then is a clause-initial one. TE extracts from the derivation trees of
the sentences (63)(a) and (63)(b), the derivation trees of clauses and elementary trees
anchored with discourse adverbials. In the case of (63)(b), the extracted trees (see
Figure 5.7) are the derivation tree of the clause Susan will take dancing lessons and the
single node tree denoting the auxiliary tree anchored with then (βs

then - the superscript

136

5.1. D-LTAG

s denotes that its is an S-auxiliary tree). It is straightforward to extract these trees as
βs

then adjoins on the root node of the clausal derivation tree.
In the case of the sentence (63)(a), βwill adjoins into βvp

then (βvp
then - the superscript

vp denotes that its is a VP-auxiliary tree). The resultant tree adjoins into αtake (see
Figure 5.8(a)). We cannot extract the derivation trees of the clause and an elementary
tree of the adverbial as straightforwardly as in the case of (63)(b), because if we
removed an edge connecting βthen and αtake , then the result would not be a tree as the
node βwill would become disconnected from the rest of the nodes. Therefore, both the
edge connecting the node αtake with βvp

then and the node βvp
then are removed, the edge

connecting the βwill and αtake has to be reintroduced in the tree. Thus, in the obtained
tree, βwill and αtake are still connected, but the node βvp

then is not there anymore. To
maintain the information about the original position of a connective,⁴⁴ in an extracted
tree, one leaves a trace of the connective (the node {then} of the tree in Figure 5.8(b)).

αtake

αSusan βvp
then

βwill

αlessons

βdancing

extract−→

(a) An LTAG derivation tree of a sentence

αtake

αSusan {then}

βwill

αlessons

βdancing

(b) An LTAG clausal derivation
tree

βvp
then

(c) An
LTAG
auxiliary
tree an-
chored
with then

Figure 5.8: A case of a discourse with a clause-medial connective

The cases with subordinate and coordinate conjunctions may involve two clausal
derivation trees.⁴⁵ For the sake of illustration, let us consider the sentence (61), repeated
as follows:

(61, repeated)
Sue is happy because she found a job.

The LTAG derivation tree of the sentence (61) is shown in Figure 5.9(a). One
extracts out of it three trees, two clausal derivation trees and a single node tree βbecause ,

which denotes anchored with the subordinate conjunction because,

S

S∗ S

because S↓

. To

extract these trees is easier than in the case of clause-medial adverbials. Indeed, by

⁴⁴The clause-medial position of discourse connective is considered to be important from the information
structure points of view (Steedman, 2000).

⁴⁵Since we only focus on English and French, one can claim subordinate and coordinate conjunctions
can only occupy clause-initial positions.

137

Chapter 5. Discourse Grammar Formalisms

extracting βbecause , one obtains the clausal derivation trees. On one of them adjoins
βbecause , and the other one substitutes into βbecause . Hence, it is not problematic to
identify these clausal derivation trees.

αhappy

αSue βis βbecause

αfound

αshe αjob

βa

extract−→

(a) An LTAG derivation tree of
a sentence

αhappy

αSue βis

(b) An
LTAG
clausal
derivation
tree

αfound

αshe αjob

βa

(c) An LTAG
clausal
derivation
tree

βbecause

(d) An
LTAG
auxiliary
tree an-
chored
with be-
cause

Figure 5.9: A case of a discourse with a subordinate conjunction

Tree Mapping

The Tree Mapping module (TM) applies to the output of TE. TM maps the LTAG
elementary trees anchored with the discourse connectives to the D-LTAG elementary
trees anchored by these discourse connective. Let us assume that TE extracts an LTAG
elementary tree anchored with a subordinate conjunction, for example, the tree anchored

by because, βbecause denoting the auxiliary tree

S

S∗ S

because S↓

. TM maps this auxiliary

tree to its D-LTAG correspondent, i.e., to αD
because =

DU

DU↓ because DU↓
. As another

example, let us consider βvp
then extracted from the derivation tree shown in Figure 5.8(a).

βvp
then stands for the VP-auxiliary tree

VP

then VP∗
in LTAG. However, in D-LTAG, then

anchors the following tree βD
then =

DU

then DU∗
. TM transforms βVP

then into βD
then , that

is, TM transforms a clause-medial adverbial into a clause-initial one. This is due to the
fact that the D-LTAG encoding of an adverbial connective is only applicable when it
appears at a clause-initial position in a discourse.

Discourse Input Generation

The component called Discourse Input Generation (DIG) produces an input to a parser
out of a sequence of lexicalized trees. Each tree in the sequence is either a D-LTAG

138

5.1. D-LTAG

elementary tree anchored with a connective (being produced by TM), or a D-LTAG
clausal elementary tree, i.e., DU-initial tree anchored with a clausal derivation tree
extracted by TE. The trees are ordered according to the surface order of their lexical
anchors, except for the clause-medial connectives. They are placed in front of their
host clauses. In such a sequence, it may occur that there is no structural discourse
connective between two clausal elementary trees. In that case, DIG places the D-LTAG
auxiliary tree with an empty lexical anchor ε between these clausal elementary trees.
Thus, one obtains the sequence of D-LTAG elementary trees. One uses a TAG parser
to build a derivation tree of the text out of this sequence.

While building a derivation tree out the given sequence of D-LTAG trees, one faces
derivational ambiguity issues. Indeed, there might be various possible sites in a derived
tree for a discourse where a derived tree for a new piece can attach. Thus, there
are a number of derivation trees which give rise to the same surface forms. D-LTAG
reduces the amount of possible attachment points by introducing the following heuristic
constraints:

• In an initial tree, it is only allowed to adjoin at the root node.
• In other trees, only the lowest adjunction is allowed.

Remark 5.2. It may occur that an adverbial discourse connective occurs between two clauses
but no structural one. Despite that, DIG inserts ε between the two clauses. The need for
structural connective in such cases is due to the structure of an auxiliary tree anchored with an
adverbial connective. In particular, it cannot connect two discourse units. For example, consider

βD
then =

DU

then DU∗
. The tree βD

then can adjoin into a tree anchored with a clause. However,

given two initial trees anchored with clauses, βD
then is not capable to build a new tree which

would incorporate the two trees. To be able to combine two derived trees of discourse units, one
has to use a structural connective.

5.1.4 Computing Discourse Semantics

To interpret a discourse, one refers to its derivation tree. D-LTAG couples elementary
trees with their semantic interpretations so that one can interpret the operations over
elementary trees as operations over their interpretations. In this way, D-LTAG develops
a compositional approach to the syntax-semantics interface for discourse. We assume
that the clausal derived and derivation trees are provided by an LTAG grammar.

D-LTAG employs a labeled language to define interpretations. As we already
mentioned, one denotes with because′, and′, and ε′, the discourse relations signaled by
because, and, and ε respectively. This notation is useful because the lexically unexpressed
connective ε a priori does not signal any particular discourse relation. To interpret ε′

as a particular rhetorical relation, one needs the context where ε appears.
We first discuss interpretations of elementary trees (anchored with clauses, structural

connectives, and adverbials). Afterwards, we show how one composes the interpretations
of the elementary trees in order to obtain the interpretation of a tree derived from
them.

Convention: One denotes the LTAG derived tree of a clause whose main predicate is

139

Chapter 5. Discourse Grammar Formalisms

v with γv ; by τv , we denote the derivation tree of the D-LTAG initial tree
DU

γv

, unless

otherwise stated.

Elementary Trees Anchored with Clauses

Figure 5.10 shows initial trees anchored with the derived trees of the following clauses:

(64) C1. Sue is happy.

C2. Sue found a job.

C3. Sue likes her job.

Under each tree in Figure 5.10, we depict its interpretation. The interpretation of a
tree with a clause is the interpretation of that clause. More precisely, given a clause

C and its LTAG derived tree γ, the interpretation of the D-LTAG tree
DU

γ

is the

interpretation of C . Interpretations of clauses play roles of arguments (operands) to
discourse relations. They themselves do not have arguments. To express that, in their
interpretations, one declares arg : −. One labels formulas with li , where i is a natural
number or a letter of the Latin alphabet. We may refer to li as a propositional label.

DU

γhappy

lh : happy(sue)
arg : −

C1

DU

γfound

lf : �nd(sue, job)
arg : −

C2

DU

γlikes

ll : like(sue, job)
arg : −

C3

Figure 5.10: Initial trees anchored with clauses coupled with their semantic interpreta-
tions

Elementary Trees Anchored with Structural Connectives

If lex.item is a structural connective, then lex.item′ obtains both of the arguments
structurally. We mark an argument of lex.item′ that corresponds to a substitution site in
αD

lex .item with the Gorn address of that substitution site. For instance, as Figure 5.11(a)
shows, for αD

because , we have the predicate because′ whose arguments are s1 and s2

marked with (1) and (3), respectively (the latter fact is encoded by the labeled formula
arg : 〈s1, (1)〉, 〈s2, (3)〉). Thus, because′ receives one of its arguments, denoted by s1,
as a result of substitution of a tree at the Gorn address 1 into αD

because . because′ obtains
the other argument, denoted by s2, as a result of substitution of a tree at the address 3
into αD

because . The semantic interpretations of the substituted trees serve as arguments
of because′.

140

5.1. D-LTAG

In the case of a structural connective anchoring an auxiliary tree, such as βD
and (see

Figure 5.11(b)), we specify the Gorn address of only one of the arguments - the one
that comes from substitution. For example, by substituting a tree into βD

and at the Gorn
address 3, and′ obtains the value of the argument denoted by s4. The other structural
argument of and′, denoted by s3, comes from the interpretation of the derived tree into
which βD

and adjoins. si , where i is a natural number or a symbol of the Latin alphabet,
denotes a label variable, sometimes called a propositional label variable.

Elementary Trees Anchored with Adverbial connectives

Adverbial connectives receive only one of their arguments structurally. Figure 5.11(c)
shows a D-LTAG auxiliary tree anchored with the discourse adverbial otherwise. Its
semantic interpretation is otherwise′(ss , [ei]

ac), which is encoded with two arguments,
ss and [ei]

ac . However, among these arguments, only ss is a structural one (obtained
via adjunction). The argument [ei]

ac denotes an anaphoric argument. Finding the value
of [ei]

ac is beyond the compositional account of discourse semantics in D-LTAG.

DU

DU↓ DC

because

DU↓

(a) αD
because

DU

DU∗ DC

and

DU↓

(b) βD
and

DU

DC

otherwise

DU∗

(c) βD
otherwise

lb : because′(s1, s2)

arg : 〈s1, (1)〉, 〈s2, (3)〉
la : and′(s3, s4)

arg : s3, 〈s4, (3)〉
l6 : otherwise′(ss , [ei]

ac)

arg : ss

Figure 5.11: D-LTAG semantic interpretations of discourse connectives

5.1.4.1 Subordinate Conjunctions

We consider the following example of a discourse with a single subordinate conjunction.

(61, repeated)
Sue is happy because she found a job.

Figure 5.10 and Figure 5.11 provide the D-LTAG grammar for (61). Figure 5.13(a)
shows the D-LTAG derived tree of the discourse (61).

In order to interpret the discourse (61), we refer to its D-LTAG derivation tree
depicted in Figure 5.12(b) on the following page. As it shows, τhappy and τfound
substitute into αD

because . The operations on these trees give rise to the operations on
their interpretations (shown in Figure 5.10 and Figure 5.11(a)). In particular, since
τhappy substitutes at the address 1 into αD

because , in the interpretation of αD
because , the label

of the interpretation of τhappy , denoted by lh , substitutes the label variable s1 associated
with the address 1. Analogously, lf labeling the interpretation of τfound substitutes the
label variable s2 in because′(s1, s2). Thus, one obtains the interpretation shown in
Figure 5.12(c), which indeed is a coherent interpretation of (61).

141

Chapter 5. Discourse Grammar Formalisms

DU

DU

γhappy

DC

because

DU

γfound

(a) The derived tree

αD
because

τhappy τfound

1 3

(b) The derivation
tree

lb : because′(lh , lf),
lh : happy(sue),
lf : found(sue, job).

lb

lh lf

(c) The interpretation of the discourse: the
formula and its graphical representation

Figure 5.12: The D-LTAG derived tree, derivation tree, and the interpretation of the
discourse

5.1.4.2 Coordinate Conjunctions

(65) Sue found a job and she likes it.

Figure 5.13(a) on the facing page depicts the derived tree of the two clause sentence
(65). Figure 5.13(b) on the next page shows the corresponding derivation tree. To
interpret (65), we refer to the derivation tree. It consists of three nodes, τfound , τlikes ,
and βD

and . Their interpretations are provided in Figure 5.10 and Figure 5.11(b) on the
preceding page. By substituting τlikes into βD

and , and
′ obtains one of the arguments. In

particular, the label variable s4 obtains as its value the label of τlikes , which is ll .
By adjoining the tree βD

and into the tree τfound , the predicate and′ receives the
value for the other argument, which is s3. The value of s3 becomes the label of the
interpretation of τfound , namely, lf . Hence, we obtain the semantic interpretation shown
in Figure 5.13(c) on the next page.

5.1.4.3 Interaction between Subordinate and Coordinate Conjunctions

Let us consider the following discourse where the subordinate and coordinate conjunc-
tions interact.

(66) Sue is happy because she found a job and she likes it.

The derived tree for the discourse (66) is the one in Figure 5.14(a). Its derivation
tree is shown in Figure 5.14(b). If one builds an interpretation of the discourse according
to this derivation tree in the same way we did in the previous two examples, one obtains
the interpretation shown in Figure 5.14(c), which is an incoherent interpretation of

142

5.1. D-LTAG

DU

DU

αfound

DC

and

DU

αlikes

(a) The derived tree

τfound

βD
and

τlikes

ε

3

(b) The
derivation
tree

la : and′(lf , ll),
lf : �nd(sue, job),
ll : like(sue, job).

la

lf ll

(c) The interpretation of the discourse:
the formula and its graphical represen-
tation

Figure 5.13: The derived and derivation trees, and the interpretation of the discourse

(66). Indeed, according to the derivation tree, one substitutes τhappy in αD
because . Thus,

one of the arguments of because′ becomes the label of the interpretation of τhappy , lh .
The tree τfound substitutes into the other substitution site of αD

because and therefore the
second argument of because′ becomes the label of the interpretation of τfound . Hence,
we obtain because′(lh , lf). By substituting τlikes in the tree βD

and , the second argument
of and′ becomes ll . By adjoining βD

and into τfound , the first argument of and′ obtains the
value lf . The interpretation shown in Figure 5.14(a) is incoherent. One can formulate
it as follows: Sue is happy that she found a job. She likes it. This does not have the same
meaning as Sue is happy because she found a job and she like the job she found. To overcome
this problem, D-LTAG makes use of a �exible direction of composition, previously proposed
for LTAG in (Aravind Joshi, Kallmeyer, and Romero, 2007). It allows one to traverse
a derivation tree so that it can start at any node. However, one needs to restrict the
principle of flexible composition in order to equate the generative capacity with the one
of the original D-LTAG grammar.

The bottom up traversal of the derivation tree of the discourse (66) (see Figure 5.14(b)
on the following page) yields the interpretation shown in Figure 5.15, which is the
coherent interpretation of (66). Indeed, we have:
step1 τlikes substitutes into βD

and .
In result, the semantic interpretation of βD

and receives the value of its argument
denoted by s4 (see Figure 5.11). The value of s4 becomes the label of τlikes , i.e.,
ll .

step2 The resultant tree of step1 adjoins into the tree τD
found .

As a result, the semantic interpretation of βand obtains a value of its other
argument, denoted by s3. Since the label of interpretation of τfound is lf , we assign
ll to s3.

step3 The tree produced as a result of step2 substitutes into αD
because at the Gorn

address 3.
Thus, the interpretation of αD

because obtains the value of its s2 argument (as s2

is marked with (3), it indicates that the label of the interpretation of a tree
substituted at address 3 becomes the value of s2, see Figure 5.11 on page 141).
The label that becomes the value of s2 is la (as it is the label of the formula with
the predicate and, see Figure 5.11).

143

Chapter 5. Discourse Grammar Formalisms

DU

DU

γhappy

DC

because

DU

DU

γfound

DC

and

DU

γlikes

(a) The derived tree

αD
because

τhappy τfound

βD
and

τlikes

1 3

ε

3

(b) The derivation tree

lb : because′(lh , lf),
la : and′(lf , ll),
lh : happy(sue),
lf : �nd(sue, job),
ll : like(sue, job).

lb

lh lf

la

ll

(c) An incoherent interpretation: the formula and
its graph representation

Figure 5.14: D-LTAG derived and derivation trees

step4 τhappy substitutes in the tree obtained in step3.
In this way, αD

because fills both of its substitution sites. Thus, the s1 argument of
because obtains the value l3 as it is the label denoting the interpretation of τhappy .

As a result of step4, we obtain the interpretation shown in Figure 5.15, which is the
coherent interpretation of (66).

As (Forbes-Riley, Bonnie Webber, and Aravind Joshi, 2006) indicates, only using
a bottom-up traversal of a derivation tree may turn out to be insu�cient. However,
by allowing both the bottom up and top down traversals, the ambiguity of discourse
parsing increases (as the number of possible traversals increases). To avoid the ambiguity
increase, D-LTAG only allows one to consider the bottom-up traversal of a derivation
tree.

lb : because′(lh , la),
la : and′(lf , ll),
lh : happy(sue),
lf : found(sue, job),
ll : likes(sue, job).

lb

lh la

lf ll

Figure 5.15: The coherent interpretation of discourse obtained by a bottom-up traversal
of the derivation tree

144

5.1. D-LTAG

5.1.4.4 Adverbial Connectives

An adverbial connective gives rise to a discourse relation with two arguments, but only
one of them can be obtained compositionally, namely, the one that is expressed by the
structural argument of an adverbial connective. To illustrate that, let us consider the
following discourse consisting of two sentences:

(62, repeated) a. The company interviewed everyone.

b. In this way, they considered all their options.

Figure 5.16 illustrates the derived and derivation of the discourse (62). Since no
structural connective relates the first and second clauses, D-LTAG inserts the lexically
unexpressed connective ε between them (see Remark 5.2 on page 139).

DU

DU

γinterview

DU

ε

DU

DC

in this way

Du

γconsider

(a) A derived tree

τintrview

βD
ε

τconsider

βD
in_this_way

ε

3

ε

(b) A derivation
tree

Figure 5.16: D-LTAG derived and derivation trees

Each elementary tree is associated with a semantic recipe (see Figure 5.17 and
Figure 5.18 on the following page).⁴⁶ The semantic interpretation of an adverbial
connective encodes that one of its arguments is structural (denoted by ss), whereas the
other one, denoted by [ei]

ac , has to be retrieved anaphorically. To obtain the coherent
interpretation of the discourse (62), one makes use of a bottom-up traversal of the
derivation tree. D-LTAG traverses the derivation tree in Figure 5.16(b) as follows:
step1 βD

in_this_way adjoins into the tree τconsider .
In result, the semantic interpretation of βD

in_this_way , i.e., in_this_way′(ss , [ei]
ac)

obtains the value of its structural argument. That is, ss becomes lc , which is the
label of the interpretation of τconsider .

step2 βD
ε adjoins into αinterview .

As a result, the interpretation of βD
ε , that is, ε

′(s2, s3) receives li (the label of
αinterview) as the value for the argument variable s2 (see Figure 5.17).

⁴⁶It is noteworthy that D-LTAG computes the semantic interpretation of the compound adverbials
compositionally. In particular, D-LTAG derives the semantic interpretation of in this way by composing
the semantic interpretations of in, this, and way. Nevertheless, for the sake of simplicity, we assume that
the semantic interpretation of the adverbial connective in this way is already provided as an entry.

145

Chapter 5. Discourse Grammar Formalisms

step3 The resultant tree of step1, i.e., the tree obtained by adjoining βD
in_this_way into

αconsider , substitutes at the address 3 into the tree obtained as a result of step2.
As a consequence, the vacant argument of ε′(li , s3), that is, s3 receives as its value
the label of the interpretation of the tree produced in step1, which is the label of
l1 : in_this_way′(lc , [ei]

ac), i.e., l1.

DU

DC

in_this_way

DU∗

DU

DU∗ DC

ε

DU↓

l1 : in_this_way′(s1, [ei]
ac)

arg : s1
(c) The adverbial connective
in this way

l2 : ε′(s2, s3)

arg : s2, 〈s3, (3)〉
(d) The structural con-
nective ε

Figure 5.17: D-LTAG semantic interpretations of discourse connectives

DU

γinterview
(a)

DU

γconsider
(b)

li : interview(c, e)

arg : −
lc : consider(c, o)

arg : −

Figure 5.18: D-LTAG semantic interpretations of clauses

Thus, we obtain the labeled formula shown in Figure 5.19. The value of the
anaphoric argument of in_this_way, which is [ei]

ac , is not specified. In order to obtain
the fully specified interpretation of the discourse, one may use the anaphora resolution
to identify the label that can be value of [ei]

ac . The possible values of [ei]
ac can be

labels of the interpretations of discourse units belonging the piece of discourse that an
adverbial connective attaches to. However, the value of [ei]

ac can also be a label of
some proposition that is inferred in the discourse. In the case of the discourse (62),
[ei]

ac resolves to li , which is the label of li : interview′(c, e). Thus, one would obtain
the fully specified interpretation by instantiating [ei]

ac with the label li .

5.1.4.5 Computing Semantics of a Discourse with a Parasitic Connective

As (Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003) suggests, some lexical items
that could be classi�ed as discourse connectives do not follow the pattern of discourse
connectives. They di�er from both the structural and adverbial connectives by their
semantic properties. One of such adverbials is a parasitic adverbial connective.

146

5.1. D-LTAG

l1 : in_this_way′(lc , [ei]
ac),

l2 : ε′(li , l1),
li : interview(c, e),
lc : consider(c, e)

l2

li l1

lc [ei]ac

Figure 5.19: The D-LTAG interpretation of discourse and its tree representation

5.1.4.5.1 The Interpretation of a Parasitic Adverbial Connective

Let us consider the adverbial connective for example. It exhibits a parasitic behavior
on a structural connective. In particular, the adverbial connective for example does
not signal a discourse relation with two arguments, but rather modi�es a discourse
relation signaled by a structural connective. For the sake of illustration, we consider
the following example:

(67) John just broke his arm. So, for example, he can’t cycle to work.

To interpret the discourse (67), we first discuss the behavior of for example at the
sentence-level. Let us consider the following sentence with the adverbial for example:

(68) The collection includes, for example, a piece of hematite.

In order to see the semantic contribution of for example in the sentence (68), we
remove for example from it. We obtain the following sentence:

(69) The collection includes a piece of hematite.

One interprets the sentence (69) as includes(collection, hematite). The di�erence
between the sentences (68) and (69) is that in (68) for example stresses the point that
a hematite is one of the things that the collection contains. Therefore, if we represent the
things that are included in the collection as a set, we can interpret for example with two
arguments, an object and a set that are related as follows:

I1 =exempli�cation′ (hematite, {x | include(collection, x)}) (5.70)

I2 =exempli�cation′ (hematite, λx . include(collection, x)) (5.71)

Note that I2 defined in Equation (5.71) is a λ-notational version of I1 from Equa-
tion (5.70). In Equation (5.71), λx . include(collection, x) encodes the characteristic
function of the set. Since I2 is a sentence-level interpretation, but not a discourse-level
one, we cannot use I2 as the interpretation of for example in the case of (67), where for
example modifies a discourse connective. Nevertheless, one assumes that the semantic
properties of the discourse-level for example are close to the properties of for example

147

Chapter 5. Discourse Grammar Formalisms

at the sentence-level. In other words, the discourse-level interpretation of for example
can be constructed with the help of I2. With I2 in mind, to establish the interpretation
of an adverbial connective for example. We consider the piece of discourse that is on
the left of for example (let us denote it with D and let its interpretation be δ), and the
clause in which for example occurs (let us denote it by S and the interpretation of S
with σ). Now, let us consider again the two clause sentence (67). In (67), the fact that
he (John) can’t cycle to work (S with interpretation σ) serves as one of the examples of the
results which are outcomes of John just broke his arm (D with interpretation δ). John just
broke his arm (σ) is the first argument of the structural connective so. In general, one
interprets S1 so, S2 as so′ (d1, d2), where di is interpretation of Si . Thus, one proposes
the following interpretation of the (67) sentence:

Ip = exempli�cation′ (σ, λx .so′ (δ, x)) (5.72)

Indeed, Ip is similar to I1 (see Equation (5.71)): σ exemplifies the results of John
braking his arm, like a hematite exemplifies what is contained in the collection. Thus, we
obtain a semantic representation in a case where the adverbial connective for example is
parasitic on a structural connective.

5.1.4.5.2 D-LTAG and Hole Semantics

In order to derive a semantic interpretation such as Ip in defined Equation (5.72),
D-LTAG (Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003) makes use of Hole
Semantics (Bos, 1995), discussed in Section 4.3.2.1. To illustrate the way D-LTAG makes
use of Hole Semantics, let us consider the following sentence:

(73) John often cycles home.

αcycle

αjohn αhome βoften

1 3 2

(a) The LTAG derivation tree

l1 : cycle(john, home)
l1 ≤ h1

arg : −
(b) The interpretation of a
clause

l2 : often(h2)
l2 ≤ g1

s1 ≤ h2

arg : g1, s1
(c) The interpreta-
tion of the adverbial

Figure 5.20: The LTAG derivation tree and semantic recipes

We use hi for holes, and gi for hole variables, whereas we use li and si to
denote labels and label variables as before. The LTAG derivation tree for (73) is in
Figure 5.20(a). Figure 5.20(b) shows the interpretation of the clause John cycles home in
Hole Semantics.

Figure 5.20(c) illustrates the semantic recipe for βoften . It introduces the label l2,
the hole h2, the hole variable g1, and the propositional variable s1. According to
the derivation tree, βoften adjoins into αcycles . In result, the label variable s1 in the

148

5.1. D-LTAG

interpretation of βoften obtains l1 as its value, which is the propositional label of the
interpretation of αcycles . The hole variable of g1 in the interpretation of βoften becomes
the hole h1, which is a hole of the interpretation of αcycles . Thus, we obtain the
following interpretation of the discourse:

l1 : cycle(john, home), l2 : often(h2), l1 ≤ h1, l1 ≤ h2, l2 ≤ h1 (5.74)

From the interpretation in (5.74), we find that h2 < l2 (as h2 appears in the formula
labeled with l2). Since l1 ≤ h2 and h2 < l2, we obtain l1 < l2. Since h2 ≤ l1, we conclude
that l1 < h1, and thereby h1 6= l1. The only possible disambiguation is h1 = l2 and
h2 = l1. Hence, we obtain the following interpretation out of (5.74):

l1 : cycle(john, home), l2 : often(l1) (5.75)

5.1.4.5.3 Computing Interpretation of a Discourse with a Parasitic Adverbial

In order to develop a compositional approach to the parasitic discourse connective
for example, D-LTAG makes use of an MCTAG approach.

(67, repeated) John just broke his arm. So, for example, he can’t cycle to work.

Figure 5.21(a) shows the elementary structure of for example in an MCTAG. It is
a set of two TAG auxiliary trees, denoted with βD

ex1 and βD
ex2. The tree βD

ex2 adjoins
in the discourse unit it modifies. In the case of (67), βD

ex2 adjoins in the initial tree
anchored with he can’t cycle. The auxiliary tree βD

ex1, which has a single node tree,
adjoins on the root of the higher discourse unit. In the case of (67), βD

ex1 adjoins on the
root node of the DU-derived tree obtained out of the initial tree anchored with so by
filling its DU-substitution sites. Figure 5.22 shows the derivation tree for (67). However,
our derivation tree indicates that it is not tree-local, because βD

ex1 and βD
ex2 do not adjoin

into the same tree, but in two di�erent trees. Nonetheless, as βD
ex1 does not have any

syntactic material, one can allow βD
ex1 and βD

ex2 to adjoin into di�erent trees without
increasing the generative power of a tree-local MCTAG (A. K. Joshi, Kallmeyer, and
Romero, 2003).

Figure 5.21(b) and Figure 5.21(c) show interpretations associated with the trees βD
ex1

and βD
ex2 respectively. The interpretation of βD

ex1 encodes that exemplify′ has two holes.
One of them must be filled by something that outscops s1, where s1 is a (propositional)
argument variable. s1 obtains its value by adjoining of βD

ex1 into a tree. The abstracted
propositional variable s in exemplify′(h1, λs .h2) should have an occurrence in the
formula labeled with a value of h2, otherwise an obtained interpretation would be
incoherent.

In the interpretation of βD
ex2, s is the same variable as the abstracted one in the

interpretation of βD
ex1. In this way, adjoining βD

ex1 and βD
ex2 gives rise to λs . · · · s · · ·.

Furthermore, in the interpretation of βD
ex2, the argument variable s2 is outscoped by

h1, which is a hole in exemplify′. The interpretation of βD
ex2 has a constraint that g1,

which denotes a variable for holes, outscopes l2. The variables s2 and g1 obtain their
values as βD

ex2 adjoins into a tree.

149

Chapter 5. Discourse Grammar Formalisms



βD
ex1

DU∗

βD
ex2

DU

for-example DU∗


(a) An MC-TAG tree set

l1 : exemplify′(h1, λs .h2)
s1 ≤ h2

arg : s1

(b) The interpretation of βD
ex1

l2 : s
l2 ≤ g1

s2 ≤ h1

arg : s2
(c) The inter-
pretation of
βD
ex2

Figure 5.21: The elementary tree set for for example and its interpretation

αso

αbroke αcycle

βD
ex2

βD
ex1

ε

ε

Figure 5.22: The MCTAG derivation tree

l3 : so′(s3, s4)
l3 ≤ h3

arg : 〈s3(1), s4(3)〉

l4 : break(john, arm)
l4 ≤ h4

arg : −

l5 : ¬cycle(john,work)
l5 ≤ h5

arg : −

Figure 5.23: Hole semantics for clauses and connectives

Thus, the derivation tree is traversed as follows: βD
ex2 adjoins into αcycle . In result, s2

becomes l5 (as it labels ¬cycle(john,work)), wheres g1 obtains the value of the hole that
outscopes the label of ¬cycle(john,work), which is h5 (see Figure 5.23). The resultant
derived tree substitutes into αD

so at the Gorn address 3. Hence, the variable s4 from the
interpretation of so becomes l2 (the label of s). At the same time, βD

ex1 adjoins into the
root node of αso . Thus, the variable s1 obtains the value l3 (the label of so′(s3, s4), see
Figure 5.23). In this way, one obtains an interpretation shown in Figure 5.24.

One disambiguate the holes having occurrences in the interpretation shown in
Figure 5.24 as follows: h2 = l3, h3 = l1, h1 = l5, h4 = l4, and h5 = l2. Using these
values for the holes in Figure 5.24, one obtains the following interpretation of the
discourse:

exemplify′(¬cycle′(john,work), λs .so′(break′(john, arm), s))

150

5.1. D-LTAG

l1 : exemplify′(h1, λs.h2)
l2 : s
l3 : so′(l4, l2)
l4 : break′(john, arm)
l5 : ¬cycle′(john,work)
l3 ≤ h2, l2 ≤ h5, l5 ≤ h1, l3 ≤ h3, l4 ≤ h4, l5 ≤ h5

Figure 5.24: An interpretation of a discourse in Hole Semantics

5.1.5 Discourse Structure

We are interested in the properties of discourse structures that D-LTAG semantic interpre-
tations give rise to, that it, in the properties of formulas standing for D-LTAG discourse
interpretations. As we already discussed, D-LTAG interprets a discourse as a labeled
formula that gives rise to a tree-shaped structure. If the discourse contains adverbial
connectives, then its D-LTAG interpretation does not specify the anaphoric arguments
of the adverbial connectives. By finding the anaphoric arguments of the adverbial
connectives, the D-LTAG interpretation may be turned into a DAG.

It is noteworthy that in D-LTAG, by using only the trees anchored with subordinate
and coordinate conjunctions, it is possible to produce non-tree shaped structures. In other
words, without using anaphora resolution, one can produce compositionally a non-tree
shaped structure. Indeed, let us consider (66) discourse given on page 142, repeated as
follows:

(66, repeated) Sue is happy because she found a job and she likes it.

As its derivation tree in Figure 5.14(b) on page 144 illustrates, βand adjoins in the argu-
ment of αbecause . The top-down traversal of the derivation tree yields an interpretation
of the discourse shown in Figure 5.14(c) on page 144. In this interpretation, we have two
sub-formulas l1 : because′(l3, l4) and l2 : and′(l4, l5) sharing the label l4, which stands for
the interpretation of she found a job. The structure that this interpretation determines is
not tree-shaped, but rather a DAG. However, this interpretation is incoherent. To avoid
argument sharing, one only allows for the bottom up traversal of a derivation tree.

On the other hand, some discourse interpretations are not possible to produce using
D-LTAG. For instance, the coherent interpretation of the following discourse is rather a
DAG than a tree:

(76) a. John loves Barolo.

b. He first tasted it in 1992.

c. According to Hugh Johnson, it’s one of Italy’s supreme reds.

The clause (76)(a) is elaborated by the clause (76)(b). At the same time, the
clause (76)(a) is elaborated by the clause (76)(c), which is not a continuation of the
previous elaboration. Thus, the clause (76)(a) is independently elaborated by the clauses
(76)(b) and (76)(c). That is why the interpretation of the (76) discourse should be a
multi-parent DAG shown in Figure 5.25. As (Bonnie Webber, Stone, Aravind Joshi, and

151

Chapter 5. Discourse Grammar Formalisms

Elaboration

Elaboration

a b c

Figure 5.25: A multi-parent DAG

Knott, 2003) notes, one cannot obtain such DAGs with the help of D-LTAG “because the
adjoining and substitution operators in TAG do not let us produce them.”

152

5.2. G-TAG

5.2 G-TAG

G-TAG is a text generating system (Danlos, 1998, 2000). G-TAG was designed with an
aim to implement it in practical applications, to generate technical, domain specific
texts (Danlos, Frédéric Meunier, and Combet, 2011; Frédéric Meunier, 1997). G-TAG
develops a grammatical approach to text generation based on (L)TAG principles. It
generates a text out of a conceptual representation input. Texts that G-TAG generates
may consist of one or more sentences and each sentence may consist of one or
more clauses. A conceptual representation input of G-TAG incorporates both sentence-
level and discourse-level information. The structure of a discourse encoded within
a conceptual representation input is tree-shaped. Hence, G-TAG generates texts of
tree-shaped discourse structures.

Below, we first overview the general architecture of G-TAG. Then, we discuss the
grammar that G-TAG o�ers and the way G-TAG generates a text.

5.2.1 Architecture

To discuss the G-TAG architecture, we briefly describe the notions that it involves.
G-TAG defines g-derivation and g-derived trees. One can think of a g-derivation tree
as the G-TAG counterpart of a (L)TAG derivation tree. A g-derived tree is like a
TAG derived tree but its terminal nodes are labeled by lemmas. The morphological
information for inflecting lemmas is provided by the labels of their mother nodes. A
g-derivation tree gives rise to a unique g-derived tree.

One can divide the text generation of G-TAG into two steps. The one of them is a
grammatical step. During this step, G-TAG refers to its grammar. The other one is a
post processing step. Figure 5.26 on the next page illustrates the architecture of G-TAG.

5.2.1.1 Grammatical Step

The grammatical step consists of two stages.
Stage 1 One constructs a g-derivation tree out of the conceptual representation input.

For that G-TAG has a lexical database. In the database, each concept points to
a set of lexical entries that can be used as a lexicalization of that concept. One
constructs a g-derivation tree by selecting lexicalizations of the concepts from the
conceptual input.

Stage 2 One computes the g-derived tree out of the g-derivation tree produced during
the first stage.

5.2.1.2 Post Processing Step

G-TAG employs a post processing module in order to produce a text from a g-derived
tree. The post processing module computes inflected forms of lemmas out of the
morphological information provided in a g-derived tree. Afterwards, by concatenating
the inflected words, it produces a text. The post processing module may modify the
produced text. The original text is called canonical. A text obtained by modifying the

153

Chapter 5. Discourse Grammar Formalisms

Input:
Conceptual Representation

computing

G-derivation tree
lexical databases

associated with concepts

Output:
Semantico-syntacic representation (g-derivation tree)

computing

G-derived tree

lexical databases
associated with lexemes

(a TAG)

Output:
Syntactico-morphological representation (g-derived tree)

Postprocessing
Module

Inflexion rules
Automatons

Text
Canonical

Text
Variants

Figure 5.26: The G-TAG architecture

canonical one is referred to as a variant of the canonical text. One of the possible
modifications the post processing module carries out concerns discourse connectives. In
a canonical text, a discourse connective can only occupy a clause-initial position. To
support stylistic diversity, the post processing module may move an adverbial connective
from the clause-initial position to a clause-medial one. For instance, the post processing
module produces the following text as the canonical one:

154

5.2. G-TAG

(77) Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur
vaccumerdef.

pour
for

être
to-beinf.

récompensé
rewardpast part.

par
by

Marie.
Mary.

Ensuite,
Afterwards,

il
he

a
have3ps. sg. prs.

fait
makepast part.

une
a

sieste.
nap.

‘John vacuumed in order to be rewarded by Mary. Afterwards, he took a nap.’

Although (77) is the canonical text, the post processing module may decide not to
use it as the output of the system. It may output the following variant of (77):

(78) Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur
vaccumerdef.

pour
for

être
to-beinf.

récompensé
rewardpast part.

par
by

Marie.
Mary.

Il
He

a
have3ps. sg. prs.

ensuite
afterwards

fait
makepast part.

une
a

sieste.
nap.

‘John vacuumed in order to be rewarded by Mary. He afterwards took a nap.’

Thus, the post processing module transforms the canonical text (77) into the text
(78) by moving an adverbial connective ensuite (afterwards) from the clause-initial
position to a clause-medial one.

5.2.2 Conceptual Representation Language

As Figure 5.26 on the facing page illustrates, the starting point in G-TAG text generation
is a conceptual representation. In order to encode conceptual representations, G-TAG
makes use of a sub-language of LOGIN (Aït-Kaci and Nasr, 1986).

5.2.2.1 LOGIN

LOGIN is an extension of the language of PROLOG. However, instead of the first-order
terms used in PROLOG (terms of the form p(t1, . . . , tn)), LOGIN defines a ψ-term. A
ψ-term is a record-like typed structure, which can be defined as follows:

De�nition 5.2.1 (Aït-Kaci and Nasr (1986)).
A ψ-term has:
1. A root symbol, which is a type constructor and denotes a class of objects.
2. Attribute labels, which are record �eld symbols, associated with ψ-terms. Each label
denotes a function in intenso from the root type to the type denoted by its associated
sub-ψ-term. Concatenation of labels denotes function composition.

3. Coreference constraints among paths of labels, which indicate that the corresponding
attribute compositions denote the same functions.

For instance, M1 defined in Equation (5.79) is a ψ-term. In M1, person is the root

155

Chapter 5. Discourse Grammar Formalisms

symbol. The attribute labels of the term M1 are id, born, and father.

M1 = person (id ⇒ name;

born ⇒ date (day ⇒ integer;

month ⇒ monthname;

year ⇒ integer);

father ⇒ person)

(5.79)

In a ψ-term, each attribute label has a ψ-term as a value. For instance, in the
term M1, the value of born is a ψ-term with the root symbol date. Let us denote this
term by M2, defined in Equation (5.80). Thus, under the label born, the term M1 has a
sub-ψ-term, which is the term M2.

M2 = date (day ⇒ integer; (5.80)

month ⇒ monthname;

year ⇒ integer)

Furthermore, in M2, the attribute label year is associated with a sub-ψ-term integer.
Consequently, in the ψ-term M1 (see Equation (5.79)), one can associate the concatenation
of two attribute labels born.year with a ψ-term integer. Thus, an attribute label l is
a function such that for a given ψ-term M, it produces a ψ-term Ml that is the sub-ψ-term
of M under the label l . By considering attribute label as functions, function composition
corresponds to label concatenation. For instance, born is a function, whose value on the
term M1 is the ψ-term M2. The label year is a function that maps the ψ-term M2 to the
ψ-term integer. One identifies with the label concatenation born.year a function that
maps the ψ-term M1 to the ψ-term integer.

M4 = person (id ⇒ name (first⇒ string; (5.81)

last⇒ X : string);

father⇒ person (id ⇒ name (last ⇒ X)))

The ψ-term M4 (see Equation (5.81)) illustrates an example of coreference: The symbol
X occurs under id.last and father.id.last, which indicates that these two attribute
compositions denote the same functions. The possibility of coreferring enables one to
describe looping, infinite structures with the help of ψ-terms.

5.2.2.2 The Language of G-TAG

G-TAG does not make use of the full-fledged LOGIN language, but of its limited
fragment. G-TAG limits the symbols that one can use as labels in a ψ-term. In

156

5.2. G-TAG

particular, only the symbols belonging to the following categories can serve as a root
symbol of a ψ-term of the G-TAG conceptual representation language: second order
relation, first order relation, and thing. The second order relation and first
order relation categories are unified under the relation category. Each concept from
a G-TAG input is realized as one of the symbols from these categories. A concept
represents either a clause-level or a discourse-level phenomenon. For instance, the
concept SUCCESSION is from the second order relation category and the concept
HUMAN belongs to the thing category. While HUMAN encodes a clause-level phenomenon,
SUCCESSION gives rise to a discourse-level one, namely, to a temporal relation between
two events.

A concept is associated with the set of its arguments (possible empty). To model that
in ψ-terms, one defines the set of attribute labels associated with a given symbol. A
symbol encodes a concept and the set of attribute labels associated with it encodes the
set of arguments of the concept. The requirement is that if a given symbol appears as
the root in a ψ-term, then the ψ-term must have sub-ψ-terms under the attribute labels
associated with the root. For example, SUCCESSION is associated with two arguments,
denoted with 1stEVENT and 2ndEVENT. As we declare 1stEVENT and 2ndEVENT to be the
arguments of SUCCESSION, every ψ-term whose root symbol is SUCCESSION must have
sub-ψ-terms under the labels 1stEVENT and 2ndEVENT.

Attribute labels of a G-TAG concept, i.e., the arguments of a concept are conceptually
restricted. To illustrate this, let us consider VACUUMING, which is a first order
relation. It has a single argument denoted with VACUUMER. G-TAG puts the following
constraint on the concept VACUUMING and its argument VACUUMER: Any ψ-term with
VACUUMING as its root symbol should have under the label VACUUMER only a ψ-term
whose root is HUMAN.

A second order relation has two arguments each of which is a relation. A
first order relation has (several) arguments that are either things or first order
relations. One encodes individual entities with the help of thing, whereas one uses a
first order relation in order to express that some individual entities are in a relation
(clause-level information). With second order relations, one encodes relations between
relations (discourse-level information).

E0 =: SUCCESSION[1stEVENT⇒ E1, 2ndEVENT⇒ E2]
E1 =: GOAL[Action⇒ E11, Purpose⇒ E12]
E2 =: NAPPING[NAPPER⇒ H1]
E11 =: VACUUMING[VACUUMER⇒ H1]
E12 =: REWARDING[REWARDER⇒ H2, REWARDEE⇒ H1]
H1 =: HUMAN[NAME⇒ Jean, gender⇒ masc]
H2 =: HUMAN[NAME⇒ Marie, gender⇒ fem]

Figure 5.27: An input of G-TAG

Figure 5.27 illustrates an example of a G-TAG input. It consists of ψ-terms. Let us
consider one of them, for instance, a ψ-term E0. Its root symbol is a second order
relation, SUCCESSION. Since SUCCESSION has two arguments, namely 1stEVENT and

157

Chapter 5. Discourse Grammar Formalisms

2ndEVENT, the ψ-term E0 has two non-empty ψ-terms under the labels 1stEVENT and
2ndEVENT, E1 and E2, respectively. The ψ-terms E1 and E2 are also specified within the
given input. E1 is a ψ-term with root symbol GOAL, which is a second order relation.
In G-TAG, the arguments associated with GOAL are Action and Purpose. The ψ-term
E2 has NAPPING as its root symbol, which is a first order relation and which has
only one argument NAPPER from the thing category.

5.2.2.3 Conceptual Representation Inputs as Trees

As we already mentioned, the discourse structure encoded within a conceptual repre-
sentation input is tree-shaped. We show how one can represent a G-TAG input as a
tree. Our transformation is valid only for the ψ-terms that appear in G-TAG conceptual
representation inputs.

• Given a ψ-term, we use its root symbol as the label of the root of the tree that we
are building. Under the attribute labels associated with the root, we have ψ-terms,
which we use as the daughter nodes of the root. We label the edges connecting
the root with the daughters by the attribute labels. To the ψ-term that are the
daughters of the root, we apply the same procedure. At the end of this recursive
process, we obtain a tree out of a given ψ-term.

• Within the input, we find the ψ-term that does not appear as a proper sub-ψ-term
to any other ψ-term in the conceptual representation input. In G-TAG conceptual
representation inputs, one can always find such a ψ-term. We transform that
ψ-term into a tree. In this way, we obtain the tree representation of the discourse
structure of the G-TAG input.

For instance, to transform the input in Figure 5.27, we find the ψ-term E0 (it is not
a proper sub-ψ-term to any other ψ-term in the conceptual representation input). We
represent E0 as a tree in Figure 5.28.

SUCCESSION

GOAL

VACUUMING

Jean

REWARDING

HUMAN

Marie fem

HUMAN

Jean masc

NAPPING

HUMAN

Jean masc

1stEVENT

Action

VACUUMER

Purpose

REWARDER

NAME gender

REWARDEE

NAME gender

2ndEVENT

NAPPER

NAME gender

Figure 5.28: The tree representation of a G-TAG conceptual representation input

158

5.2. G-TAG

Remark 5.3. The claim that the G-TAG conceptual representation input can be represented as
a tree concerns only representations of the discourse-level phenomena. That is, if one records
the predicate-argument relations of the second order relations and their augments, one
obtains a tree. Otherwise, if one considers the clause-level representations, then one obtains
a DAG rather than a tree. For instance, in the conceptual representation in Figure 5.27, H1
is shared by two relations belonging to first order relations. However, first order
relations encode clause-level phenomena rather than discourse-level ones.

5.2.3 Lexical Databases

To generate a text out of a conceptual representation input, G-TAG makes use of
lexical databases. One of them records correspondence between concepts and their
lexicalizations, which are lexical entries of G-TAG. The other database pairs lexical
entries and their lexico-syntactic realizations with elementary trees. Thus, both databases
share lexical entries, which are mediators between concepts and elementary trees. We
first describe lexical entries of G-TAG and the way they are linked with concepts. Then,
we discuss how one associates elementary trees with a lexical entry.

5.2.3.1 Lexical Entries

To each concept, one associates a set of lexical entries. Each of these lexical entries may
serve as a lexicalization of that concept. One denotes a lexical entry by a lemma. For
example, récompenser (to reward)⁴⁷ is a lexical entry of G-TAG.

Concepts may have arguments, and so do lexical entries. The arguments of a
lexical entry are the thematic roles associated with the lexical entry. G-TAG records
the correspondence between the arguments of the concept and the arguments of a
lexical entry that serves as the lexicalization of that concept. For instance, let us
consider REWARD, which is a first order relation. It has two arguments from the
category thing, denoted with RewardER and RewardEE. A lexical entry récompenser
(to reward) is a lexicalization of the concept REWARD. To lexicalize the arguments of
REWARD, récompenser also has two arguments, namely, the arg1 and arg2 thematic roles.
The database records that the thematic role arg1 (resp. arg2) récompenser corresponds
to the RewardER (resp. RewardEE) argument of REWARD.

G-TAG encodes lexical entries as trees, called underspeci�ed g-derivation trees. In an
underspecified g-derivation tree, one distinguishes between the constant node and the
variable ones. The constant node is the name of the lexical entry. The variable nodes
correspond to the lexicalizations of the arguments of the concept that is lexicalized by
the lexical entry.

For example, the underspecified g-derivation tree in Figure 5.29 on the next page
stands for a lexical entry récompenser (to reward). This underspecified g-derivation tree
has the constant node récompenser, whereas the other nodes, RewardER and RewardEE, are
variable ones. The variable nodes RewardER and RewardEE are linked with récompenser
by the thematic roles arg1 and arg2, respectively. Since récompenser is a lexicalization

⁴⁷By underscore, we denote lexical entries.

159

Chapter 5. Discourse Grammar Formalisms

récompenser

(RewardER) (RewardEE)

arg1 arg2

Figure 5.29: The GTAG lexical entry récompenser

of REWARD, the variable nodes RewardER (linked to récompenser with arg1) and RewardEE
(linked to récompenser with arg2) stand for lexicalizations of RewardER and RewardEE,
respectively.

A concept may have several lexicalizations. For instance, in addition to récompenser,
REWARD has the lexicalizations shown in Figure 5.30.

récompenser

(RewardER) (RewardEE)

arg1 arg2

(a) A lexical entry reward

donner-récompense

(RewardER) (RewardEE)

arg1 arg2

(b) A lexical entry give-reward

recevoir-récompense

(RewardEE) (RewardER)

arg1 arg2

(c) A lexical entry receive-reward

Figure 5.30: The lexical entries linked with REWARD

5.2.3.2 Morpho-Syntactic Realizations of a Lexical Entry

A lexical entry can be used in various syntactic constructions. For instance, one
can use the transitive verb récompenser (to reward) in both the passive and active
voice constructions. To distinguish the various syntactic uses of a lexical entry, G-TAG
employs T-features. For example, to denote the passive voice usage of récompenser,
one attaches +[T-passive] to récompenser. By default, no T-feature means the active
voice construction with a verb and it is considered to be the canonical construction
with the verb. One can combine T-features to define other syntactic constructions. For
instance, Figure 5.31 depicts the canonical construction with récompenser, one with the
feature +[T-passive], and one with the combination of +[T-passive] and +[T-reduced-conj]. By
convention, one attaches T-features to the root node (the constant node) of the tree
representation of a lexical entry. G-TAG, being inspired by TAG, encodes syntactic
constructions with elementary trees. That is, each usage of a lexical entry is realized with
the help of an elementary tree. Hence, every combination (set) of T-features (including
the empty combination) that defines a syntactic usage of a lexical entry is associated
with an elementary tree.

However, a set of T-features only defines a syntactic construction with the lexical entry.
They do not to concern morphological information. G-TAG encodes the morphological
information in morphological features. They are also attached to the constant node of
the underspecified g-derivation tree representation of a lexical entry. For instance, as
Figure 5.31 illustrates, the feature {tense=pass.comp} decorates the constant node of the

160

5.2. G-TAG

trees. It indicates that the lexical unit is used in the passé composé tense.⁴⁸
More formally, one associates with a lexical entry e a set of elementary trees,

{e0, . . . , ek}. The first of the elementary trees e0, . . . , ek , i.e., e0 is the canonical
representative of e. Each of the trees ei , for i = 1, . . . , k , is obtained by adding a
unique set of T-features to the canonical representative e0. Each ei , for i = 0, . . . , k ,
apart from syntactic information encoded as T-features, is annotated with morphological
features. For instance, trees in Figure 5.31(a), Figure 5.31(b), and Figure 5.31(c) stand
for récompenser0, récompenser1, and récompenser2, respectively. They denote the
elementary trees shown in Figure 5.32. Although each of these elementary trees is
anchored with the lexical entry, which is a lemma, the mother node of the anchor bears
the morphological information that indicates what the inflected from of the anchor
is. The post processing module uses this morphological information to compute the
inflected form of the anchor.

récompenser
{tense=pass.comp}

(RewardER) (RewardEE)

arg1 arg2

(a) The canonical tree

récompenser
+[T-passive]

{tense=pass.comp}

(RewardER) (RewardEE)

arg1 arg2

(b) The tree +[T-passive]

récompenser
+[T-passive]

+[T-reduced-conj]

tense=infinitive

(RewardER) (RewardEE)

arg1 arg2

(c) The tree +[T-passive] ,

+[T-reduced-conj]

Figure 5.31: The underspecified g-derivation tree récompenser decorated with various
sets of T-features and morphological features

As we already mentioned, a lexical entry represented as an underspecified g-
derivation tree may have variable nodes, which are connected with the constant node
with the thematic roles. Adding T-features and/or morphological features to the constant
node a�ect neither variable nodes nor thematic roles. For instance, in Figure 5.31, the
correspondence between variable nodes and thematic roles is the same in all three
trees. Let e be a lexical entry, and ei be one of the trees obtained out of e by adding
T-features and/or morphological features. In the elementary tree corresponding to ei ,
the variable nodes of ei (i.e., of e) correspond to the substitution sites. We mark a
substitution site corresponding to a variable node with the same thematic role that
connects that variable node to the constant node in the underspecified g-derivation tree.

Remark 5.4. Instead of a single underspeci�ed g-derivation tree associated with a lexical entry,
we prefer to have as many underspeci�ed g-derivation trees as the elementary trees that serve as
the possible syntactic realizations of the lexical entry. Indeed, each elementary tree is de�ned by
a unique set of T-features, which decorates the constant node of the underspeci�ed g-derivation

⁴⁸Syntactically, the passé composé tense of French corresponds to the present perfect tense of English.
However, from the linguistic usage point of view, passé composé is rather reminiscent of the past simple
tense of English.

161

Chapter 5. Discourse Grammar Formalisms

S

NP↓ (arg1)

V
{mood=Vpp}

récompenser

NP↓ (arg2)

(a) The canonical elementary tree

S

NP↓ (arg2) Va

être

V
{mood=Vpp}

récompenser

PP

Prep

par

NP↓(arg1)

(b) The elementary tree for +[T-passive]

S

NP↓ (arg2)

ε

Va

être

V
{mood=Vpp}

récompenser

PP

Prep

par

NP↓ (arg1)

(c) The elementary tree for +[T-passive, T-reduced-conj]

Figure 5.32: G-TAG elementary tree corresponding to the underspecified g-derivation trees of
récompenser

tree. If we assume that by adding a set of T-features to the underspeci�ed g-derivation tree, we
produce a new underspeci�ed g-derivation tree, each of the elementary trees will have its own,
unique underspeci�ed g-derivation tree. With this assumption, we do not change anything in
G-TAG, but now instead of listing T-features in order to signify an elementary tree, we have an
underspeci�ed tree denoting that elementary tree. In this way, each of the trees in Figure 5.31 is
an underspeci�ed g-derivation tree denoting a single elementary tree.

5.2.4 G-derivation and G-derived Trees

One constructs a g-derivation tree by lexicalizing concepts from a conceptual representa-
tion input. A lexicalization of a concept is an underspecified g-derivation tree (with
T-features and morphological features), which may have variable nodes. One instantiates
the variable nodes with the lexicalizations of the arguments of a concept. By recursively
instantiating variable nodes, one obtains a g-derivation tree whose nodes are lexical
entries decorated with T-features and morphological features.

(82) Jean
John

a
have3ps. sg. prs.

été
to-bepast part.

récompensé
rewardpast part.

par
by

Marie.
Mary.

‘John was rewarded by Mary.’

(83) Il
John

a
have3ps. sg. prs.

fait
makepast part.

une
a

sieste.
nap.

‘John took a nap.’

162

5.2. G-TAG

For instance, Figure 5.33(a) and Figure 5.33(b) show the g-derivation trees of the
sentences (82) and (83), respectively.

récompenser
+[T-passive]

{tense=passé composé}

Marie Jean

arg1 arg2

(a) Jean a été récom-
pensé par Marie.

faire-une-sieste
{tense=passé composé}

il

arg1

(b) Il a fait la sieste pen-
dant deux heures.

Figure 5.33: G-derivation trees

As one may notice, the representation of a g-derivation tree di�ers from the
representation of TAG derivation trees. In particular, while in a TAG derivation tree, a
node represents an elementary tree whose anchor is inflected, in a g-derivation tree, a
node represents a lexical entry annotated with T-features and morphological features. In
TAG, one uses Gorn addresses in order to represent the information where a substitution
or adjunction takes place. Instead of using Gorn addresses, G-TAG uses thematic roles.
As Danlos (1998) suggests, one can view a g-derivation tree as a semantic dependency
tree whose nodes are annotated with features encoding the morpho-syntactic information.
On the other hand, g-derivation trees and TAG derivation trees are conceptually very
close to each other. Both are trees. Both record how to combine elementary trees.
Both give rise to a unique derived tree. For instance, the g-derivation tree shown
in Figure 5.33(a) determines a g-derived tree of a passive construction with by-agent.
Figure 5.34 shows that g-derived tree.

In a g-derived tree lemmas label frontier nodes; the morphological information how
to inflect these lemmas are provided by their mother nodes. As we already mentioned,
the post processing module computes inflected forms of lemmas.

S

N
{num=sing}

{gender=m}

Jean

Va
{mood=ind}

{tense=pas-comp}

{pers=3rd}

{nber=sing}

être

V
{mood=Vpp}

{gender=m}

{nber=sing}

récompenser

PP

Prep

par

N
{num=sing}

{gender=m}

Marie

Figure 5.34: A g-derived tree

163

Chapter 5. Discourse Grammar Formalisms

Remark 5.5. The main di�erence between g-derivation and TAG derivation trees is that TAG
derivation trees do not make use of variable nodes. That is, TAG derivation trees are complete,
whereas underspeci�ed g-derivation trees are incomplete by de�nition.

5.2.5 Discourse Grammar

The G-TAG discourse grammar consists of entries for adverbial connectives and sub-
ordinate conjunctions. Any discourse connective, either an adverbial or a subordinate
conjunction, anchors an S-initial tree with two S-substitution sites.

The G-TAG discourse grammar enables one to generate multi-sentential texts. For
instance, one can generate the texts given in Examples (84)-(87). In each of these
examples, the texts are generated from the same conceptual representation input.

(84) a. Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur.
vacuumerdef..

Ensuite,
Afterwards,

il
he
a
have3ps. sg. prs.

fait
makepast part.

une
a

sieste.
nap.

‘John vacuumed. Afterwards, he took a nap.’

b. Jean
John

a
have3ps. sg. prs.

fait
makepast part.

une
a

sieste.
nap.

Auparavant,
Beforehand,

il
he

avait
have3ps. sg. imperf.

passé
passpast part.

l’aspirateur.
vacuumerdef..

‘John took a nap. Beforehand, he had vacuumed.’

(85) a. Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur
vacuumerdef.

avant
before

que
that

Marie
Mary

fasse
makesubjunctive

une
a

sieste.
nap

‘John vacuumed before Mary took a nap.’

b. Marie
Mary

a
have3ps. sg. prs.

fait
makepast part.

une
a

sieste
nap

après
after

que
that

Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur.
vacuumerdef.

‘Mary took a nap after that John vacuumed.’

(86) a. Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur
vacuumerdef.

avant
before

de
of
faire
makeinf.

une
a

sieste.
nap

‘John vacuumed before taking a nap.’

b. Jean
John

a
have3ps. sg. prs.

fait
makepast part.

une
a

sieste
nap

après
after

avoir
haveinf.

passé
passpast part.

l’aspirateur.
vacuumerdef..

‘John took a nap after vacuuming.’

164

5.2. G-TAG

(87) a. Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur
vaccumerdef.

pour
for

que
that

Marie
Marie

le
him

recompense.
rewardsubjunctive

‘John vacuumed in order to be rewarded by Mary.’

b. Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur
vaccumerdef.

pour
for

être
to-beinf.

récompensé
rewardpast part.

par
by

Marie.
Mary.

‘John vacuumed in order to be rewarded by Mary.’

To distinguish texts, sentences, and noun phrases from each other, G-TAG employs
an additional set of features to decorate nodes of g-derivation trees. Table 5.1 provides
intended meanings of these features.

Features Intended Meanings
(+T,+S) a text - two or more sentences
(−T,+S) a sentence
(+S) either a sentence or a text
(−T,−S) an NP
(−T) either a sentence or an NP

Table 5.1: G-TAG features denoting a text, a sentence, either a text or a sentence, etc.

Figure 5.35 depicts the lexical entries of an adverbial and a subordinate conjunction.
The root of the lexical entry of the adverbial has a feature (+T,+S) to indicate that
it gives rise to a text (two or more sentences). The root of the lexical entry of the
subordinate conjunction has a feature (−T,−S) to indicate that it gives rise to a single
sentence. Since the lexical entries of adverbials and conjunctions di�er, we discuss them
separately.

adv
(+T,+S)

(X-argument)
(+S)

(Y-argument)
(+S)

arg1 arg2

(a) Adverbial

conj
(−T,+S)

(X-argument)
(−T,+S)

(Y-argument)
(−T,+S)

arg1 arg2

(b) Conjunction

Figure 5.35: Lexical entries of adverbials and conjunctions

5.2.5.1 Adverbials

G-TAG employs lexical entries of adverbials (underspecified g-derivation trees whose
roots are adverbials) in order to generate multi-sentential texts.

As Figure 5.36(a) shows, the root of the underspecified g-derivation tree of an
adverbial has the feature (+T,+S) and its variable nodes have the feature (+S), denoting
either a text or a sentence. In the corresponding elementary tree in Figure 5.36(b), the
variable nodes are realized as S-substitution sites. For instance, Figure 5.37 illustrates the

165

Chapter 5. Discourse Grammar Formalisms

adv
(+T,+S)

(X-argument)
(+S)

(Y-argument)
(+S)

argi argj

(a) An underspecified g-
derivation tree for adv

S

S ↓ S

Adv

adv

S ↓

(b) An S-initial tree an-
chored with an adver-
bial

Figure 5.36: A lexical entry of an adverbial and a corresponding elementary tree

underspecified g-derivation trees of the lexical entries of the adverbials ensuite (afterward)
and auparavant (beforehand). Both of them are lexicalizations of SUCCESSION. Both have
the same feature sets. The di�erence between them is that their thematic roles arg1 and
arg2 are reversed, i.e., arg1 of ensuite (afterward) is arg2 of auparavant (beforehand);
and arg2 of ensuite (afterward) is arg1 of auparavant (beforehand). Figure 5.38 shows
the elementary trees anchored with ensuite and auparavant.

ensuite
(+T,+S)

(1st event)
(+S)

(2nd event)
(+S)

arg1 arg2

(a) ensuite

auparavant
(+T,+S)

(1st event)
(+S)

(2nd event)
(+S)

arg2 arg1

(b) auparavant

Figure 5.37: Underspecified g-derivation trees for adverbials ensuite and auparavant

S

S ↓
(arg1) S

Adv

ensuite

S ↓
(arg2)

(a) An elementary tree anchored
with ensuite

S

S ↓
(arg2) S

Adv

auparavant

S ↓
(arg1)

(b) An elementary tree anchored
with auparavant

Figure 5.38: Elementary trees anchored with adverbials ensuite and auparavant

166

5.2. G-TAG

5.2.5.2 Subordinate Conjunctions

A lexical entry of a subordinate conjunction consists of several underspecified g-derivation
trees. These underspecified g-derivation trees define various syntactic constructions
involving a subordinate conjunction. There are two essentially di�erent syntactic uses
of a subordinate conjunction that G-TAG o�ers. We call these two cases the canonical
use and the reduced one. To show the di�erences between them, let us consider the
sentences (85)(a) and (86)(a) on page 164, repeated as follows:

[(85)(a), repeated] Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur
vacuumerdef.

avant
before

que
that

Marie
Mary

fasse
makesubjunctive

une
a

sieste.
nap

‘John vacuumed before Mary took a nap.’

[(86)(a), repeated] Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur
vacuumerdef.

avant
before

de
of
faire
makeinf.

une
a

sieste.
nap

‘John vacuumed before taking a nap.’

Each of the sentences (85)(a) and (86)(a) consists of two clauses connected by
the subordinate conjunction avant (before). To be able to generate sentences with
the syntactic constructions similar to ones in (85)(a) and (86)(a), G-TAG uses two
underspecified g-derivation trees, shown in Figure 5.39.

avant
(−T,+S)

(1st event)
(−T,+S)

(2nd event)
(−T,+S)

arg1 arg2

(a) avant - canonical

avant
(−T,+S)

+[T-reduced-conj]

(1st event)
(−,+S)

(2nd event)
(−T,+S)

arg1 arg2

(b) avant - reduced
+[T-reduced-conj]

Figure 5.39: Underspecified g-derivation trees of a conjunction

5.2.5.2.1 Canonical

Figure 5.40 on the next page presents the G-TAG canonical initial tree anchored with
avant and its usage in the sentence (85)(a). It is considered as a canonical construction
with avant as it connects two �nite clauses, that is, clauses whose main predicates are
finite verb forms. In other words, in the canonical construction with the subordinate
conjunction, both the matrix clause and the subordinated one are finite clauses.

167

Chapter 5. Discourse Grammar Formalisms

5.2.5.2.2 Reduced

Figure 5.41 shows another initial tree anchored with avant, which one uses in order
to generate sentences such as (86)(a). In this case, the subordinate conjunction avant
connects a �nite clause, which is the matrix clause, and a reduced clause, which is the
subordinate one. In French, the reduced clause is expressed as an infinitive clause.
Since an infinitive clause does not have an overt subject, it shares the subject with the
matrix clause. We call this fact argument-sharing. Thus, to generate a text with a reduced
conjunction, the conceptual representation input has to meet certain requirements. In
particular, given some ψ-term RConj[l1 ⇒ A, l2 ⇒ B], where RConj is a second order
relation, to lexicalize RConj with a reduced subordinate conjunction, A and B should
have the same argument, i.e., A and B should have the argument-sharing property.

S

S ↓
(arg1) PP

Prep

avant

C

que
S ↓

mood=subjunctive
(arg1)

(a) The canonical elementary
tree of avant

S

S

Jean a passé l’aspirateur

PP

Prep

avant

C

que S
mood=subjunctive

Marie fasse une sieste

(b) The G-TAG analysis

Figure 5.40: The G-TAG analysis of a sentence with the canonical conjunction

S

S ↓
(arg1) PP

Prep

avant

C

de
S ↓

mood=inf
(arg2)

(a) A non-canonical
elementary tree of
avant, defined by
+[T-reduced-conj]

S

S

Jean a passé l’aspirateur

PP

Prep

avant

C

de
S

mood=inf

faire une sieste

(b) The G-TAG analysis

Figure 5.41: The G-TAG analysis of a sentence with a reduced conjunction

5.2.6 An Example of Text Generation

G-TAG generates a g-derivation tree from a conceptual representation input by lexi-
calizing concepts in the following order: second order relations, then the first

168

5.2. G-TAG

order relations, and finally, things. The hierarchal order of lexicalization from
second order relations to things is motivated by a hypothesis that second order
relations define the rhetorical (discourse) structure of a text. This hypothesis relates
to an argument that by selecting a lexicalization of a second order relation, one
imposes certain restrictions on the possible lexicalizations of its arguments, which are
either second order relation and/or first order relations. By lexicalizing the
first order relations, one has fewer options for selecting lexicalizations of things.⁴⁹

E0 =: SUCCESSION[1stEVENT⇒ E1, 2ndEVENT⇒ E2]
E1 =: GOAL[Action⇒ E11, Purpose⇒ E12]
E2 =: NAPPING[NAPPER⇒ H1]
E11 =: VACUUMING[VACUUMER⇒ H1]
E12 =: REWARDING[REWARDER⇒ H2, REWARDEE⇒ H1]
H1 =: HUMAN[NAME⇒ Jean, gender⇒ masc]
H2 =: HUMAN[NAME⇒ Marie, gender⇒ fem]

Figure 5.42: conceptual representation input

Let us build a g-derivation tree from the conceptual input described in Figure 5.42.
One starts to construct the g-derivation tree by lexicalizing the ψ-term E0 since no other
ψ-term from the conceptual input contains E0 as a sub-ψ-term (see Section 5.2.2.3).
To lexicalize SUCCESSION concept, which is the root symbol of E0, one has to choose
among several lexical entries that are linked with SUCCESSION. They are as follows:
ensuite (afterwards), auparavant (beforehand), après (after) and avant (before).

Let us assume that G-TAG selects ensuite (afterwards), which has only one under-
specified g-derivation tree shown in Figure 5.38(a) on page 166. One has to lexicalize
the arguments of SUCCESSION in E0, i.e., the sub-ψ-terms of E0 under the labels 1stEVENT
and 2ndEVENT. E0 has the sub-ψ-term E1 under the label 1stEVENT and E2 under the
label 2ndEVENT. To decide which one to lexicalize first, E1 or E2, G-TAG refers to their
order in the text that G-TAG aims to produce. E1 will be lexicalized as arg1 of ensuite
and E2 as arg2. As the elementary tree anchored with ensuite indicates, arg1 precedes
arg2 in the surface order. Hence, G-TAG lexicalize E1 before E2.

To lexicalize E1 =: GOAL[Action⇒ E11, Purpose⇒ E12], G-TAG selects the lexical
entry pour (for) as a lexicalization its root symbol, which is GOAL. The lexical entry
pour has two underspecified g-derivation trees depicted in Figure 5.43 on the following
page. One in Figure 5.43(a) on the next page is the canonical tree of pour, whereas the
other one (in Figure 5.43(b)) is non-canonical, namely, the reduced one. We can assume
that G-TAG opts for the reduced underspecified g-derivation of pour. It is possible to
do so⁵⁰ because E11 and E12 share an argument (H1).

To continue the lexicalization of E1, we should lexicalize its arguments as well. Thus,
we lexicalize E11 and E12.

⁴⁹Until all relations are not lexicalized, G-TAG does not start lexicalizing things, due to the
pronominalization issues, which we do not discuss for the sake of simplicity.

⁵⁰In French, from stylistic points of view, the reduced construction (when possible) is preferred over
the canonical one (Danlos, 2000).

169

Chapter 5. Discourse Grammar Formalisms

pour
(-T,+S)

(action)
(-T,+S)

(purpose)
(-T,+S)

arg1 arg2

(a) pour - canonical

pour
(-T,+S)

+[T-reduced-conj]

(action)
(-T,+S)

(purpose)
(-T,+S)

arg1 arg2

(b) pour - reduced
+[T-reduced-conj]

Figure 5.43: Underspecified g-derivation trees of pour

To lexicalize E11, we lexicalize its root symbol, which is VACUUMING. In G-TAG,
the VACUUMING concept is linked with the lexical entry passer-l’aspirateur (to vacuum),
whose underspecified g-derivation tree is shown in Figure 5.44. H1, which is the value
of E11 under VACUUMER, is going to be lexicalized as arg1 of passer-l’aspirateur. In the
elementary tree of passer-l’aspirateur, arg1 occurs at the subject position. Thus, the
lexicalization of H1 will be a lexicalization of the subject of the elementary tree of
passer-l’aspirateur.

passer-l’aspirateur

H1

arg1

Figure 5.44: The lexicalization of E12.

In order to lexicalize E12 := REWARDING[REWARDER⇒ H2, REWARDEE⇒ H1], we have a
constraint to obey. In particular, the lexicalization of E12 has to be an infinitive clause,
because we use it as the subordinate clause of the reduced construction with pour, which
requires an infinitive clause (reduced clause). G-TAG cannot lexicalize E12 just as an
infinitive clause but under the constraint that E12 and E11 share H1. Since H1 is the
subject of the lexicalization of E11 (of passer-l’aspirateur), the thematic role of H1 also
must be subject for the lexicalization of E12. The root symbol of E12 is REWARDING. To
lexicalize E12, G-TAG selects lexical entries linked with REWARDING:

• récompense (reward),
• donner-récompense (give-reward),
• recevoir-récompense (receive-reward).
Let us examine if these lexical entries, illustrated in Figure 5.45 on the facing page,

can have H1 as the subject.
• In the case of donner-récompense (see Figure 5.45(b)), REWARDEE is arg2, i.e., H1
will be lexicalized as arg2. arg2 could have been the subject if one could use
donner-récompense in a passive construction, but it is not possible as a passive
construction for donner-récompense does not exist in French.

170

5.2. G-TAG

• For recevoir-récompense shown in Figure 5.45(c), REWARDEE, i.e., H1 is arg1.
arg1 is the subject of the elementary canonical of recevoir-récompense. Thus,
recevoir-récompense is an option for lexicalizing E12.

• In the case of récompenser (see Figure 5.45(a)), the canonical elementary has
arg2 (corresponding to REWARDEE) as the object, but not as the subject. arg2
becomes the subject in the elementary trees of récompenser corresponding to the
passive voice constructions.

récompenser

(RewardER)
H2

(RewardEE)
H1

arg1 arg2

(a)

donner-récompense

(RewardER)
H2

(RewardEE)
H1

arg1 arg2

(b)

recevoir-récompenser

(RewardEE)
H1

(RewardER)
H2

arg1 arg2

(c)

Figure 5.45: The candidates of lexicalization of REWARDING

récompenser
+[T-passive]

{tense=pass.comp}

(RewardEE) (RewardER)

arg1 arg2

(a) The passive construction
with by-agent

récompenser
+[T-passive]

+(T-reduced-conj)
{tense=infinitive}

(RewardEE) (RewardER=ε)

arg1 arg2

(b) The passive construction for
a reduced conjunction

Figure 5.46: Underspecified g-derivation trees for passive constructions

Thus, there are two options to choose from: (1) recevoir-récompenser and (2) a
passive construction with récompenser. For the sake of illustration of an usage of
a passive voice construction, we assume that G-TAG chooses a passive construction
with récompenser. As we already saw, there are several underspecified g-derivation
trees for passive constructions (see Figure 5.46). Among them G-TAG selects the one
with feature +[T-reduced-conj] (Figure 5.46(b)) since G-TAG has to construct a reduced
(infinitive) clause. This underspecified g-derivation tree defines the elementary tree
shown in Figure 5.32(c) on page 162.

Now, G-TAG moves to the lexicalization of E2, whose root symbol is NAPPING.
Figure 5.47 on the following page shows two underspecified g-derivation-trees serving as

171

Chapter 5. Discourse Grammar Formalisms

lexicalizations of NAPPING. Between the two, G-TAG selects the one with the feature
(−T,+S) (see Figure 5.47(a)) because the underspecified tree for ensuite requires its
arguments to be either a text or a sentence.

faire-la-sieste
(−T,+S)

(NappER)
(−T,−S)

arg1

(a) A sentence

sieste
(−T,−S)

(NappER)
(−T,−S)

arg1

(b) An NP

Figure 5.47: Underspecified g-derivation-trees serving as lexicalizations of NAPPING

ensuite

pour
+[T-reduced-conj]

passer-l’aspirateur

H1

récompenser
+[T-passive]

+[T-reduced-conj]

H2 H1=ε

faire-la-sieste

H1

arg1

arg1

arg1

arg2

arg1 arg2

arg2

arg1

Figure 5.48: A g-derivation tree

Since all the concepts from the relation category are lexicalized, G-TAG outputs an
incomplete g-derivation tree as it misses lexicalizations of things (see Figure 5.49). To
lexicalize things, G-TAG employs the pronominalization module. The pronominalization
module lexicalizes concepts from things either as noun phrases or as pronouns. The
exact modus operandi of the G-TAG pronominalization is not relevant for the current
purposes. We can assume that the pronominalization module lexicalizes the first (from
left to right in the g-derivation tree in Figure 5.49) occurrence of H1 as Jean, whereas
the second occurrence is lexicalized as ε due to the feature +[T-reduced-conj] in the
underspecified g-derivation tree of récompenser. The third occurrence of H1 is lexicalized
as il (heNOM). The single occurrence of H2 is lexicalized as Marie. As a result, we obtain
the final g-derivation tree depicted in Figure 5.49 on the next page.

G-TAG maps the constructed g-derivation tree its g-derived tree. The post processing
module computes the inflected forms of the leaves of the g-derived tree. As a result,
one can transform the g-derived tree into a tree such as the one in Figure 5.50, i.e.,
into a syntactic tree whose leaves are inflected words.

172

5.2. G-TAG

ensuite

pour
+[T-reduced-conj]

passer-l’aspirateur

Jean

récompenser
+[T-passive]

+[T-reduced-conj]

Marie ε

faire-la-sieste

il

arg1

arg1

arg1

arg2

arg1 arg2

arg2

arg1

Figure 5.49: The final g-derivation tree

S

S

S

NP

Jean

VP

a passé l’aspiratuer

SP

Prep

pour

S

NP

ε

VP

être récompensé

PP

Prep

par Marie

Punct

.

S

Adv

Ensuite

Punct

,

S

NP

il

VP

a fait une sieste

Punct

.

Figure 5.50: A (post-processed) derived tree

The post processing module outputs the following canonical surface form, which is
the linearization of the tree in Figure 5.50:

(88) Jean
John

a
have3ps. sg. prs.

passé
passpast part.

l’aspirateur
vaccumerdef.

pour
for

être
to-beinf.

récompensé
rewardpast part.

par
by

Marie.
Mary.

Ensuite,
Afterwards,

il
he

a
have3ps. sg. prs.

fait
makepast part.

une
a

sieste.
nap.

‘John vacuumed in order to be rewarded by Mary. Afterwards, he took a nap.’

173

Chapter 5. Discourse Grammar Formalisms

5.3 D-STAG

D-STAG was proposed by Danlos (2009, 2011) in order to address the problem of
the syntax-semantic interface for discourse (the syntax-discourse interface). D-STAG
is based on the principles of Synchronous TAG (STAG) (Shieber and Schabes, 1990)
and SDRT (Asher and Lascarides, 2003). Being motivated by the SDRT discourse
analysis, D-STAG o�ers a discourse grammar capable of producing discourse structures
that cannot be represented as trees but directed acyclic graphs (DAGs). For example,
Figure 5.51 shows the D-STAG interpretations of the following discourses:

(89) [Fred is grumpy]0 because [he lost his keys]1. Moreover, [he failed his exam]2.

(90) [Fred is grumpy]0 because [he didn’t sleep well]3. [He had nightmares]4.

(91) [Fred went to the supermarket]5 because [his fridge was empty]6. Then, [he went
to the movies]7.

(92) [Fred is grumpy]0 because [his wife is away this week]8. [This shows how much he
loves her]9.

Figure 5.51(a) and Figure 5.51(d) show the trees that serve as the D-STAG inter-
pretations of the discourses (89) and (92), respectively. Unlike them, Figure 5.51(b)
and Figure 5.51(c) illustrate the D-STAG interpretations of the discourses (90) and (91),
respectively. As one can see, the latter interpretations are multi-parent, i.e., non-tree
shaped DAGs.

R1 R2

F0 F1 F2
(a) R1 F0 (R2 F1 F2)

R1 R2

F0 F3 F4
(b) (R1 F0,F3)∧ (R2 F3 F4)

R1 R2

F5 F6 F7
(c) (R1 F5 F6)∧ (R2 F5 F7)

R1 R2

F0 F8 F9
(d) R2 (R1 F0 F8) F9

Figure 5.51: DAGs as discourse structures

We already provided terminology and constraints that D-STAG makes use of in
Section 4.1.3. For the sake of convenience, we repeat them here.

174

5.3. D-STAG

1. The clause where a discourse connective appears is called the host clause of the
discourse connective.

• A subordinate conjunction always appears in front of its host clause. The
host clause of the subordinate conjunction is called an adverbial clause.

• An adverbial connective may either appear in front of its host clause or
within its verb phrase (i.e., at a clause-medial position).

2. The matrix clause of a subordinate conjunction is on the right of the adverbial
clause. In this case, the subordinate conjunction is called postposed.

3. The matrix clause is on the left of the adverbial clause, or inside the adverbial
clause (before the VP of the adverbial clause). In this case, the subordinate
conjunction is called preposed.

The arguments of a discourse connective/relation are the syntactic/semantic repre-
sentations of the host and the mate segments of the discourse connective/relation, which
obey the following constraints (Danlos, 2011):
Constraint 1: The host segment of a connective is identical to or starts at its host

clause (possibly crossing a sentence boundary).
Constraint 2: The mate segment of an adverbial is anywhere on the left of its host

segment (generally crossing a sentence boundary).
Constraint 3: The mate segment of a postposed conjunction is on the left of its host

segment without crossing a sentence boundary.
Constraint 4: The mate segment of a preposed conjunction is identical to or starts at

the matrix clause (possibly crossing a sentence boundary).

5.3.1 Discourse Normalized Form

D-STAG defines the notion of a Discourse Normalized Form (DNF). DNF is a sequence
of discourse words, where a discourse word is either a connective, or an identifier of a
clause (without a connective), or a punctuation sign. For instance, the DNF of (93) is
C0 becauseC1.

(93) [Fred is grumpy]0 because [he has failed an exam]1.

(94) [Fred went to the movies]2. [He then went to a bar]3.

One of the main motivations for introducing DNF is to identify the host clause,
and moreover to compute the host segment of a discourse connective. As we saw
in Section 4.1, to compute the host segments of a connective is a nontrivial task if
attitude (report) verbs are involved. However, even if no attitude verb is involved in
a discourse but some clause-medial adverbial connective appears in the discourse, by
means of a pure syntactic analysis, one may not be able to identify the host segment
of the adverbial connective. For instance, in (94), the LTAG analysis of the adverbial

then is
VP

then VP∗
, i.e., it serves as a VP-modifier. Since at the discourse-level, an

argument of then cannot be an VP, went to a bar cannot serve as an argument of the
discourse relation signaled by then. To declare that an argument of then is he went

175

Chapter 5. Discourse Grammar Formalisms

to a bar, D-STAG explicitly encodes it in the DNF. To achieve that, D-STAG moves
then in front of the clause. Thus, one obtains the following DNF: C2. theninternal C3,
where the superscript internal indicates that the connective then was moved from its
original position. C3 denotes the host clause of then, which, in this case, serves as
the host segment to the discourse connective then. Moving of an adverbial connective
from a clause-medial to a clause-initial position is called normalization of a clause. By
normalizing the clauses where connectives appear at clause-medial positions, one can
construct the DNF of the text. Consequently, in a DNF, each connective appears in
front of its host clause.

In a case of a discourse where no connective heads a normalized clause C , one
places ε (the lexically unexpressed connective) in the DNF in front of the clause C . For
instance, C3 εC4 serves as the DNF of the following discourse:

(95) [Max fell]3. [Fred pushed him]4.

A DNF of a discourse without a preposed conjunction, i.e., only with adverbial
connectives and/or postposed conjunctions follows the following pattern:

C (Punct ConnC)∗

Where the pair Punct Conn can be either (a) fullstop Adverbial, or (b) Comma Conjunction
with Comma being optional. In general, we discard commas and fullstops and write
C0 · · ·Connn Cn .

(96) When [he was in Paris]5, [Fred went to the Ei�el Tower]6. Next, [he visited the
Louvre]7.

The DNF of a discourse with a preposed conjunction follows another pattern. For
example, let us consider the discourse (96). The preposed conjunction when in (96) is
a framing adverbial, i.e., it sets a frame for a piece of discourse consisting of several
sentences (Charolles, 2005). The discourse starts with the preposed conjunction when
and its host clause, which also serves as the host segment of when. The mate segment
of when crosses the sentence boundary. In the case of (96), the mate segment of when
is a piece of discourse consisting of two clauses connected by the discourse connective
next. The DNF of (96) is WhenC5 , C 6 . NextC 7, which, as one cane see, does not
follow the pattern C0 · · ·Connn Cn .

Remark 5.6. The notion of a DNF of D-STAG is inspired by the treatment of the discourse
with clause-medial connectives in D-LTAG. Indeed, in D-LTAG, to parse a discourse, the
clause-medial connectives are mapped to the clause-initial ones. Inserting ε as a connective
between two structurally adjacent clauses where no lexically expressed connective connects them
is also reminiscent of what Discourse Input Generation component of D-LTAG does.

5.3.2 D-STAG: Synchronous Tree Adjoining Grammar for Dis-
course

D-STAG is based on STAG (Shieber and Schabes, 1990).⁵¹ Thus, an elementary D-STAG

⁵¹We discussed STAG in Section 2.7 on page 47.

176

5.3. D-STAG

structure α is a tree pair of TAG elementary trees 〈α1, α2〉, where the substitution and
adjunction sites in the trees α1 and α2 are linked. The tree α1 is an elementary tree
anchored by either an LTAG derived tree of a clause or a discourse connective; α2 is
an elementary tree anchored with a semantic tree, which models the interpretation of
either a clause or a discourse connective.

5.3.2.1 Trees Anchored by Clauses

In D-STAG, a minimal (atomic) discourse unit is a clause. One analyzes a discourse
consisting of a single clause as a pair whose first component is a DU-rooted tree
anchored with a TAG derived tree of the clause and the second component is a tree
anchored with a semantic interpretation of the clause. Figure 5.52(a) illustrates such a
tree pair, where Ti denotes the S-rooted derived tree of a clause Ci and Fi denotes
a t -rooted semantic tree of the clause, where i is a natural number. Ti and Fi trees
stand for the sentence-level syntactic and semantic interpretations of the clause Ci . In
order to obtain the tree pair in Figure 5.52(a) out of Ti and Fi , D-STAG uses the
pair of initial trees shown in Figure 5.52(b).⁵² In the first component of the pair in
Figure 5.52(b), one substitutes Ti , and in the second component, one substitutes Fi .
One denotes a derivation tree of a derived pair shown in Figure 5.52(b) by τi .

Convention: Although a clause C does not anchor a tree in D-STAG but rather its

derived tree T , we may still write
DU1O

C

instead of
DU1O

T

. We will refer to
DU1O

C

as

the tree anchored by the clause C .

〈 DU 1O

Ti

t 1O

Fi
〉

(a) A D-STAG tree pair of a sin-
gle clause discourse

〈 DU 1O

S↓}

t 1O

t↓}
〉

(b) A D-STAG initial tree pair

Figure 5.52: The D-STAG representation of a clause

5.3.2.2 Adverbial Connectives and Postposed Conjunctions

Each connective (either an adverbial connective, or a postposed conjunction, or a
preposed one) anchors a DU-auxiliary tree with one DU-substitution site. At this
substitution site substitutes the tree anchored by the host clause of the connective.

Elementary trees anchored with adverbial connectives and postposed conjunctions
have the same structure. Figure 5.53 shows two auxiliary trees, anchored with an
adverbial connective and a postposed conjunction. Apart from a single DU-substitution
site (marked with }), each of these auxiliary trees has three DU-adjunction sites
(marked with 2O, 3O, and 4O). Below, we refer to both adverbial connectives and

⁵²We remind readers that by convention, we use nO, where n is a positive natural number, to mark
adjunction sites. By }, we mark a substitution site.

177

Chapter 5. Discourse Grammar Formalisms

postposed conjunctions as connectives, unless otherwise stated. A tree anchored with a

clause,
DU1O

C

, can substitute at the substitution site of a DU-auxiliary tree anchored

with a connective. We obtain a derived tree with four DU-adjunction sites (marked with
1O, 2O, 3O, and 4O). Let θ be a tree that adjoins on any of these adjunction sites. The
resultant tree would have the same yield as the one that one obtains by adjoining θ at
any of the rest of these adjunction sites. In other words, we could have only a single
DU-adjunction site instead of four, but we could still generate the same string language.
The reason for having di�erent adjunction sites lays in the semantic trees. We first focus
on the syntactic part of D-STAG and after that we discuss the semantic one.

DU 4O

DU 3O

DU∗ Punct

,

DC

conj

DU 2O

DU ↓ }

(a) A D-STAG tree anchored with a
postposed conjunction

DU 4O

DU 3O

DU∗ Punct

.

DC

adv

DU 2O

DU ↓ }

(b) A D-STAG tree anchored with an
adverbial

Figure 5.53: D-STAG elementary trees anchored with adverbial & postposed conjunction

5.3.3 The D-STAG Discourse Update and the Right Frontier of a
Discourse

A discourse where a discourse connective is ether an adverbial connective or a postposed
conjunction has a DNF of the form C0 Conn1 . . .Connn Cn . As D-STAG follows SDRT,
to update (extend) the current discourse with a new piece Cn+1, one must add Cn+1

to the current discourse with some discourse (rhetorical) relation Rn+1. One assumes
that a discourse relation is either expressed by an overt discourse connective or by the
empty discourse connective ε. Hence, to update a DNF of a discourse, one adds to it
Cn+1 headed by Connn+1 signaling the discourse relation Rn+1. To update the current
discourse with DNF C0 Conn1 . . .Connn Cn with a connective-clause pair Connn+1Cn+1,

D-STAG substitutes
DU1O

Cn+1

into the auxiliary tree anchored with Connn+1, denoted by

βConnn+1
. The resultant derived tree, denoted by γn+1, adjoins into the derived tree of

the discourse with DNF C0 Conn1 . . .Connn Cn , which we denote by γ[0,n]. In this way,
we derive the tree γ[0,n+1], i.e., the derived tree of the extended discourse with DNF
C0 Conn1 . . .Connn Cn Connn+1 Cn+1.

By substituting the tree anchored with Cn+1 into the auxiliary tree anchored by
Connn+1, Rn+1 receives the host argument. The discourse relation Rn+1 obtains the
mate argument as a result of adjoining γn+1 in γ[0,n]. The mate segment is on the left

178

5.3. D-STAG

of the host segment as Constraint 2 and Constraint 3 require (formulated on page 175).
In addition, to fully satisfy Constraint 3, which allows the mate segment of an adverbial
connective to cross the sentence boundary (while it is prohibited for a conjunction),
D-STAG employs features on the foot node (i.e., the place where the mate segment
comes from) in order to distinguish the case with an adverbial connective from the case
with a conjunction.

DU 1O

C0

DU 4O

DU 3O

DU∗ DC

Conn1

DU 2O

DU↓ 1O

C1

(a) Deriving γ[0,1]

DU 4O

DU 3O

DU

C0

DC

Conn1

DU 2O

DU 1O

C1

(b) The derived tree
γ[0,1]

τ0

βConn1

τ1

1O

}

(c) The
derivation
tree of
γ[0,1]

Figure 5.54: The derived and derivation trees for a discourse with DNF C0 Conn1 C1

One should note that one cannot use any DU-node as a possible adjunction site in
a derived tree of discourse. To update a discourse with DNF C0 . . . Connn Cn with
a new piece Connn+1 Cn+1, one can only adjoin the tree γn+1 on an adjunction site
in the tree γ[0,n] that belongs to the right frontier of γ[0,n]. Let us illustrate that with
the example where n = 1. Figure 5.54(a) illustrates the way one derives γ[0,1], whereas
Figure 5.54(b) and Figure 5.54(c) show the derived tree γ[0,1] and its derivation tree,
respectively. To extend the current discourse with DNF C0 Conn1 C1 with a new piece
whose DNF is Conn2 C2, one adjoins γ2 into γ[0,1]. The requirement for a node where
γ2 can adjoin is that the node must be on the right frontier of the discourse with
DNF C0 Conn1 C1. As Figure 5.55 on the next page shows, four sites marked with
labels 1O, 2O, 3O and 4O, all are on the right frontier of the derived tree of the discourse
with DNF C0 Conn1 C1. Consequently, there are four possibilities of attaching the new
piece to the current discourse. As Figure 5.54(b) illustrates, there is also one more

DU-node, the one that serves as the root of
DU1O

C0

. However, since the latter node

does not belong to the right frontier of the derived tree γ[0,1], it does not qualify as an
adjunction site in γ[0,1]. Figure 5.56 shows the derivation tree for a discourse with DNF
C0 Conn1 C1 Conn2 C2, where xO can be either 1O, or 2O, or 3O, or 4O. Thus, a discourse
with DNF C0 Conn1 C1 Conn2 C2 may have four derivation trees depending on the value
of xO, depending on which link γ2 adjoins into the derived tree γ[0,1] (see Figure 5.55).
These derivation trees give rise to the syntactic derived trees with the same yields,

179

Chapter 5. Discourse Grammar Formalisms

whereas the corresponding semantic trees encode di�erent interpretations of a discourse.

γ[0,1]

DU 4O

DU 3O

DU

C0

DC

Conn1

DU 2O

DU↓ 1O

C1

γ2

DU 4O

DU 3O

DU∗ DC

Conn2

DU 2O

DU↓ 1O

C2

Figure 5.55: The four possibilities of adjoining γ2 into γ[0, 1]

τ0

βConn1

βConn2

τ2

}

τ1

} xO

1O

Figure 5.56: The possible D-STAG derivation trees for C0 Conn1 C1 Conn2 C2 where
x = 1, 2, 3, 4

While it is not hard to determine the right frontier of the derived tree of a discourse
containing few clauses, in general, it could be a tedious job to define what is a right
frontier of a derived tree. Instead, Danlos (2011) suggest to define the right frontier of
a derivation tree. For that, one needs to order the nodes in a derivation tree, which
are intrinsically unordered. To order nodes in a derivation tree, one projects all nodes
denoting derivation trees of clauses (τi , for i = 0, 1, 2, . . . , n) on some line, and then
orders them according to their order in the DNF. In this way, one defines an order ≺
on the nodes of a derivation tree. Consequently, one can identify the right frontier of
a derivation tree with respect to the order ≺. The nodes which appear on the right
frontier can be used as adjunction sites. We have two kinds of nodes, some of them

180

5.3. D-STAG

denote derivation trees (τi) of clauses and the others denote auxiliary trees (βConni).
If τk for some k appears at the right frontier, one can adjoin a tree on it as it has
single adjunction site marked with 1O. If βConnk appears at the right frontier, it has
three adjunction sites (marked with 2O, 3O, and 4O). The above defined ordering and
the right frontier concerns trees but not nodes within the same tree. For instance,
if some tree already was adjoined on the node with the link 3O into βConnk , then we
cannot adjoin a new tree on the node linked with 2O in βConnk , but on the node with
the link 4O, because 2O is not any more on the right frontier, while 4O is still on the right
frontier. To encode this way of building derivation trees, D-STAG defines Constraint 5,
formulated as follows:
Constraint 5 (Danlos, 2011)

If βConnj , in which τj is substituted, adjoins at the link nO of a node βConni (on the
DU-adjunction site marked with nO in the auxiliary tree anchored with a connective
Conni), then βConnk , in which τk is substituted, can adjoin at the link mO of the
node βConni (on the link mO in the auxiliary of a discourse connective tree denoted
by βConni) if and only if the following condition holds:
τj ≺ τk implies n < m, where n,m ∈ {2, 3, 4}.

To illustrate the shape of the derivation trees Constraint 5 allows us to build, let
us consider the derivation tree depicted in Figure 5.57,⁵³ which is a derivation tree
of discourse whose DNF is C0 Conn1C1 Conn2C2 Conn3C3. In the derivation tree of the
discourse, the derivation trees of the clauses C0, C1, C2, and C3 are ordered as follows:
τ0 ≺ τ1 ≺ τ2 ≺ τ3. As Figure 5.57 shows, the auxiliary trees βConn2 and βConn3 , both
adjoin into βConn1 , on the links mO and nO respectively. Since we have that τ2 ≺ τ3,
according to Constraint 5, one should have m < n.

βConn1

τ0 τ1 βConn2

τ2

βConn3

τ3

1O } mO

}

nO

}

Figure 5.57: A D-STAG derivation tree obeying Constraint 5

5.3.4 Semantic Interpretation

Each syntactic tree is paired with a semantic one. The semantic trees encode semantic
interpretations, which are modeled by Higher Order Logic (HOL) formulas. As we
already saw, even though a syntactic tree corresponding to a connective-clause pair

⁵³Note that the derivation tree in Figure 5.57 is not depicted in the usual way. Indeed, since τ0 is the
root of the tree, one would expect that it to take the highest position among the nodes, in the pictorial
representation of the derivation tree. D-STAG uses such an illustration of a tree in order to pictorially
represent the right frontier of the tree. Below, we will use the usual representation of trees, where a
mother node gets a higher position than its daughters. Nevertheless, we will have in mind that one can
always define the right frontier of a derivation tree.

181

Chapter 5. Discourse Grammar Formalisms

(a tree obtained by substituting a tree anchored by a clause into an auxiliary tree
anchored with a connective) has four sites of adjunction (DU 1O, DU 2O, DU 3O, and DU 4O),
only having one of them would su�ce to generate the same string language. The
reason behind introducing these adjunction sites lays in semantic trees. In particular,
D-STAG designs semantic trees in a way that adjoining on di�erent sites gives rise to
the semantic trees encoding di�erent interpretations.

5.3.4.1 D-STAG Semantic Trees Encoding λ-terms

In D-STAG, semantic trees encode λ-terms. In particular, D-STAG semantic trees serve
as tree representations of λ-terms. One represents a λ-term as a tree as follows:⁵⁴

• If a term u is a variable or constant, then one represents it as a tree consisting of
a single node labeled with u.

• If a term u is represented as an abstraction λx .s , then one represents it as a
ternary branching tree whose root node is u. The first child of the root node is
(the node at the Gorn address 1) labeled with λ; the second child of the root
node is labeled with x (the node at the Gorn address 2); and at the Gorn address
3 is the subtree that is the tree representation of the term s .

• Given a term u where u = st , one represents it as a tree whose root node is
labeled with u and has two subtrees at the root node: the first subtree is the tree
representation of the term s and the second subtree is the tree representation tree
of t .

D-STAG uses typed λ-terms. We may decorate interior nodes of the tree represen-
tation of a λ-term with types as well, or sometimes, only with types, as for the trees
illustrated in Figure 5.58 on the facing page.

5.3.4.2 Two Kinds of Semantic Trees Anchoring Discourse Relations

D-STAG couples an elementary tree anchored with a discourse connective with the
semantic trees shown Figure 5.58. Each of these two trees is anchored with the relation
R signaled by the discourse connective. We refer to these trees as the semantic tree A
and the semantic tree B.

Φ
′

= λR.λX .λY .X (λ x . (Y (λ y .R x y))) : (t → t → t)→ ttt → ttt → t
(5.97)

Φ
′′

= λR.λX .λY .λP .X (λ x . (Y (λ y . (R x y)∧ (P x)))) : (t → t → t)→ ttt → ttt → ttt
(5.98)

R is of type t → t → t , and ttt is an abbreviation of (t → t)→ t

Φ
′
and Φ

′′
, defined in Equation (5.97) and Equation (5.98), enable one to use a

discourse relation as an anchor of the semantic trees A and B. If a Connα points to a

⁵⁴One can also propose the equivalent definitions (Ker, 2009).

182

5.3. D-STAG

t 4O

ttt → t

(Φ
′
R):ttt → ttt → t

Φ
′′ R

ttt 3O

λ P t

P t∗

ttt 2O

λ Q t

Q t ↓ }

(a) The semantic tree A

ttt 4O

ttt → ttt

(Φ
′′
R):ttt → ttt → ttt

Φ
′′ R

ttt 3O

ttt∗

ttt 2O

λ Q t

Q t ↓ }

(b) The semantic tree B

Figure 5.58: Semantic trees A and B
ttt denotes (t → t)→ t

discourse relation Rα, then in certain cases, Rα is used as Φ
′
Rα, and in some cases as

Φ
′′
Rα. Such possibilities together with the various sites for adjunction in trees enables

D-STAG to produce semantic trees encoding various kinds of semantic dependencies,
including non-tree shaped DAGs.

By βConn/R, we denote an auxiliary tree pair of D-STAG where the syntactic elemen-
tary tree is anchored with Conn and the semantic tree is anchored with the relation
R. To point out that we use the semantic tree A (resp. B) paired with an elementary
tree anchored with a connective Conn, we attach the superscript A (resp. B) to a node
denoting an elementary tree pair βConn/R, i.e., we write βA

Conn/R (resp. βB
Conn/R).

5.3.5 Parsing Ambiguity

To parse a discourse with a D-STAG grammar, one faces ambiguity issues. Indeed, in
a derived tree of a discourse with several clauses, there are a number of DU-adjunction
sites on which one can adjoin a tree so that the resultant derived trees will have the
same yields. Thus, one may have a number of derivation trees whose syntactic derived
trees have the same yields. However, these derivation trees may give rise to di�erent
semantic interpretations. The problem of identifying among these derivation trees the
ones that give rise to coherent interpretations, we call the ambiguity problem of the
D-STAG parsing.

To illustrate the parsing ambiguity of D-STAG, let us compare the D-STAG parsing
with the one of D-LTAG. In D-LTAG, one interprets a discourse as a tree-shaped
structure by using compositional means only. The tree-shaped discourse interpretation
can be further expanded to a DAG by retrieving anaphoric arguments of adverbial
connectives (if any). In contrast to D-LTAG, D-STAG encodes possibility of obtaining a
DAG as a discourse structure within its grammar. In other words, D-STAG produces
DAGs compositionally. In D-LTAG, the number of the possible derivation trees for
a discourse with three or more clauses is less than the number of possible D-STAG
derivation trees for the same discourse. This is due to the fact D-LTAG trees have fewer
attachment points (adjunction sites) than D-STAG ones have. That is why the parsing
task in D-STAG is more ambiguous compared to the one in D-LTAG. One may consider

183

Chapter 5. Discourse Grammar Formalisms

the higher ambiguity of the D-STAG parsing compared to the D-LTAG one as the trade-
o� of having various attachment points. However, the same kind of ambiguity problems
arise in D-LTAG as well if one takes into account the resolution of the anaphoric links
in the D-LTAG interpretations of discourse. Thus, the di�erences between the parsing
ambiguities in D-STAG and D-LTAG are due to the di�erences in their goals: while
D-LTAG (compositionally) interprets a discourse as a tree, D-STAG (compositionally)
interprets a discourse as a DAG. From the perspective of natural language generation,
D-STAG has an advantage over D-LTAG as the semantic interpretations already provide
information about all the arguments of discourse connectives.

5.3.6 D-STAG Examples

To illustrate the shape of D-STAG derivation trees, we provide the D-STAG derivation
trees for the discourses (89)-(92) on page 174, and the syntactic and semantic interpreta-
tions they give rise to. How to construct the right derivation tree for a given discourse
is the problem that is directly related to the D-STAG parsing ambiguity. Below, we do
not deal with the ambiguity problems but directly provide the right derivation trees for
the examples (89)-(92).

Example 5.1.

(89, repeated)
[Fred is grumpy]0 because [he lost his keys]1. Moreover, [he failed an exam]2.

DNF: C0 becauseC1moreoverC2

Interpretation: ExplanationF0 (ContinuationF1 F2)

To interpret (89), one identifies rhetorical relations signaled by the discourse connec-
tives because and moreover. The relation signaled by because is Explanation, and the one
signaled by moreover is Continuation. These relations can anchor the semantic tree A
or B. That is, for because/Explanation, we have two tree pairs βA

because/explanation ,

and βB
because/explanation . We have also two tree pairs for βA

moreover/continuation , and

βB
moreover/continuation . Thus, to build the derivation tree of the discourse, we have

the following options:
1. We choose βA

because/explanation and βA
moreover/continuation .

2. We choose βA
because/explanation and βB

moreover/continuation .

3. We choose βB
because/explanation and βA

moreover/continuation .

4. We choose βB
because/explanation and βB

moreover/continuation .
Moreover, we have various adjunction sites where trees can be adjoined. To obtain
the interpretation of (89), which is ExplanationF0 (ContinuationF1 F2), one chooses
βA

because/explanation , and βA
moreover/continuation . The tree βA

moreover/continuation adjoins on the

DU 1O adjunction site in the tree obtained by substituting τ0 into βA
because/explanation . Fig-

ure 5.59(a) shows the D-STAG derivation tree of the discourse. It gives rise to the pair of

184

5.3. D-STAG

τ0

βA
because/explanation

βA
moreover/continuation

τ2

}

τ1

} 1O

1O

(a) The D-STAG derivation tree

DU 4O

DU 3O

DU 1O

C0

DC

Conn1

DU 2O

DU 4O

DU 3O

DU

C1

DC

Conn2

DU 2O

DU↓ 1O

C2
(b) The syntactic derived tree

ExplanationF0 (ContinuationF1 F2)
t 4O

ttt → t : λY .Y (λy .ExplanationF0 y)

(Φ
′
Explanation) ttt 3O: λP . (P F0)

λ P t

P t 1O

F0

ttt 2O: λQ .Q(ContinuationF0 F2)

λ Q t :Q(ContinuationF0 F2)

Q t 4O:(R2 F1 F2)

ttt → t

(Φ
′
Continuation) ttt 3O

λ P t

P t

t 1O

F1

ttt 2O

λ Q t

Q t 1O

F2

(c) The semantic derived tree

Figure 5.59: The D-STAG derivation tree, and the syntactic and semantic derived trees

the semantic and the syntactic trees, depicted in Figure 5.59(c) and Figure 5.59(b), respec-
tively. The semantic derived tree encodes the term ExplanationF0 (ContinuationF1 F2).

Example 5.2.

(90, repeated) [Fred is grumpy]0 because [he didn’t sleep well]3. [He had nightmares]4.

DNF: C0 becauseC3 εC4

Interpretation: (ExplanationF0 F3) ∧ (ExplanationF3 F4)

In the case of discourse (90), the discourse marker because signals Explanation.
The other discourse connective in (90) is the empty connective ε, which also signals
Explanation.

185

Chapter 5. Discourse Grammar Formalisms

τ0

βA
because/explanation

βB
ε/explanation

τ4

}

τ3

} 2O

1O

(a) The D-STAG derivation tree

DU 4O

DU 3O

DU 1O

C0

DC

Conn1

DU 4O

DU 3O

DU 2O

DU 1O

C3

DC

Conn2

DU 2O

DU↓ 1O

C4
(b) The syntactic derived tree

(ExplanationF0 F3)∧ (ExplanationF3 F4)
t 4O

ttt → t

(Φ
′
Explanation) ttt 3O

λ P t

P t 1O

F0

ttt 4O

ttt → ttt

(Φ
′′
Explanation) ttt 3O

ttt∗

λ Q t

Q t 1O

F3

ttt 2O

λ Q t

Q t 1O

F4

(c) The semantic derived tree

Figure 5.60: The D-STAG derivation tree, and the syntactic and semantic derived trees

Like in the previous case, one has several choices for selecting trees anchored by
connectives. To obtain (ExplanationF0 F3) ∧ (ExplanationF3 F4) as the interpre-
tation of the discourse (90), D-STAG selects βA

because/explanation and βB
ε/explanation . The

tree βB
ε/explanation adjoins on the DU 2O adjunction site in βA

because/explanation . Figure 5.60
shows the D-STAG derivation tree and the corresponding syntactic and semantic de-
rived trees. As we can see, the semantic tree indeed encodes (ExplanationF0 F3) ∧
(ExplanationF3 F4), which is the interpretation of (90).

Example 5.3.

(91, repeated) [Fred went to the supermarket]0 because [his fridge was empty]1. Then, [he
went to the movies]2.

DNF: C5 becauseC6 thenC7.
Interpretation: (ExplanationF5 F6) ∧ (NarrationF5 F7)

In the discourse (91), because gives rise to the Explanation relation, whereas then

186

5.3. D-STAG

τ5

βA
because/explanation

βB
then/narration

τ7

}

τ6

} 3O

1O

(a) The D-STAG derivation tree

DU 4O

DU 4O

DU 3O

DU 3O

DU 1O

C5

DC

Conn1

DU 2O

DU 1O

C6

DC

Conn2

DU 2O

DU↓ 1O

C7

(b) The syntactic derived tree

(ExplanationF5 F6)∧ (NarrationF5 F7)
t 4O

ttt → t

(Φ
′
Explanation) ttt 4O

ttt → ttt

(Φ
′′
Narration) ttt 3O

ttt∗

λ P t

P t 1O

F5

ttt 2O

λ Q t

Q t 1O

F7

ttt 2O

λ Q t

Q t 1O

F6

(c) A semantic tree

Figure 5.61: The D-STAG derivation tree, and the syntactic and semantic derived trees

signals Narration. Like in the previous cases, one has several possibilities for selecting
trees anchored by connectives. One interprets the discourse (91) by selecting the trees
βA

because/explanation and βB
then/narration . Figure 5.61 shows the derivation tree along with

the semantic and syntactic derived trees for (91). The semantic derived tree encodes
the term (ExplanationF5 F6) ∧ (NarrationF5 F7), which is indeed the interpretation
of (91).

Example 5.4.

(92, repeated)
[Fred is grumpy]0 because [his wife is away this week]8. [This shows how
much he loves her]9.

DNF: C0 becauseC8 εC9

Interpretation: Commentary (ExplanationF0 F8) F9

187

Chapter 5. Discourse Grammar Formalisms

τ0

βA
because/explanation

βA
ε/commentary

τ9

}

τ8

} 4O

1O

(a) The D-STAG derivation tree

DU 4O

DU 3O

DU 4O

DU 3O

DU 1O

C0

DC

Conn1

DU 2O

DU 1O

C8

DC

Conn2

DU 2O

DU↓ 1O

C9

(b) The derived tree

Commentary (ExplanationF0 F8) F9

t 4O

ttt → t

(Φ
′
Commentary) ttt 3O

λ P t

P t∗

ttt → t

(Φ
′
Explanation) ttt 3O

λ P t

P t 1O

F0

ttt 2O

λ Q t

Q F8 1O

ttt 2O

λ Q t

Q t 1O

F9

(c) The semantic derived tree

Figure 5.62: The D-STAG derivation tree, and the syntactic and semantic derived trees

In (92), because signals Explanation. The other connective is the empty con-
nective ε. In the case of (92), ε is interpreted as Commentary. To obtain the
interpretation of (92), D-STAG selects the trees βA

because/explanation and βA
ε/commentary .

Figure 5.62 illustrates the D-STAG derivation tree along with the corresponding syn-
tactic and semantic derived trees. As we can see, the semantic tree encodes the term
Commentary (ExplanationF0 F8) F9, which is indeed the interpretation of (92).

188

5.3. D-STAG

5.3.7 Preposed Conjunctions

In D-STAG, one considers the case where a preposed conjunction plays the role of a
framing adverbial in a discourse (Charolles, 2005). Such a preposed conjunction can
include in its scope several sentences. For the sake of illustration, let us consider
Example (96). The preposed conjunction when is a frame builder in (96). The mate
segment of when is Fred went to the Ei�el Tower. Next, he visited The Louvre. Hence,
the mate segment when crosses a sentence boundary. Figure 5.63 shows a pictorial
representation of the discourse structure of (96).

R1

R2

F0F1 F2

Figure 5.63: circumstance (narration2 F1 F2) F0

(96, repeated) When [he was in Paris]0, [Fred went to the Ei�el Tower]1. Next, [he visited
the Louvre]2.

DNF: WhenC0, C1. NextC2.
Interpretation: circumstance (narrationF1 F2) F0

To give an account of a preposed conjunction such as when, D-STAG uses an auxiliary
tree, such as one in Figure 5.64. This auxiliary tree has one more DU-adjunction site
(marked with link 5O) compared to one anchored with a postposed conjunction or an
adverbial connective. To obtain the interpretation circumstance (narrationF1 F2) F0,
D-STAG adjoins the tree pair of the piece of discourse C1Conn2C2 on this additional
adjunction site, as the derivation tree in Figure 5.65(a) indicates. Figure 5.65(b) and
Figure 5.65(c) illustrate the syntactic and semantic derived trees for (96) specified by
the derivation tree in Figure 5.65(a).

DU 4O

DU 3O

DC

When

DU 2O

DU ↓ }

Punct

,

DU 5O

DU∗

Figure 5.64: The D-STAG syntactic tree anchored by a preposed conjunction

189

Chapter 5. Discourse Grammar Formalisms

τ1

βA
when/circumstance

βA
next/narration

τ2

}

τ0

} 5O

1O

(a) The derivation tree

DU 4O

DU 3O

DC

When

DU 2O

DU 1O

C0

Punct

,

DU 4O

DU 3O

DU 5O

DU 1O

C1

Punct

.

DC

Next

DU 2O

DU 1O

C2
(b) The syntactic derived tree D-STAG derivation tree

circumstance (narrationF1 F2) F0

t

ttt → t

(Φ
′
circumstance) ttt 3O

λ P t

P
narrationF1 F2

t

ttt → t

(Φ
′
narration) ttt 3O

λ P t

P t 1O

F1

ttt 2O

λ Q t

Q t 1O

F2

ttt 2O

λ Q t

Q t 1O

F0

(c) The semantic derived tree

Figure 5.65: The D-STAG derivation tree of a discourse, and its syntactic and semantic
derived trees

5.3.8 Modi�ers of Discourse Connectives in D-STAG

As we already discussed in D-LTAG (see Section 5.1.4.5.1), some adverbials contribute
to a discourse structure by being parasitic on a discourse connective, like it is in the
sentence (99). Following D-LTAG, D-STAG also considers the adverbial for example in
(99) as a modifier of the discourse connective because.

(99) You shouldn’t trust Jack because, for example, he never returns what he borrows.

190

5.3. D-STAG

DU 4O

DU 3O

DU∗ Punct

,

DC 6O

Conj

DU 2O

DU↓}

DC

DC∗ modifier

Figure 5.66: An auxiliary tree anchored with a connective modifier adjoins on the DC
node into the auxiliary tree anchored by a discourse connective

One calls a connective that modifies discourse connectives a connective modi�er.
D-STAG encodes a connective modifier as an auxiliary tree pair. The syntactic tree of
the pair is a DC-rooted auxiliary tree. To modify a discourse connective, it adjoins on
the DC node of an auxiliary tree anchored with the connective. Figure 5.66 shows that
an elementary tree anchored with a modifier adjoins on an elementary tree anchored
with a preposed conjunction. To mark the new adjunction site where a tree anchored
with a modifier adjoins, one attaches the new link 6O to the DC node of the tree
anchored with a connective. Regarding the semantic tree of the pair, the exact shape of
the tree depends on a modifier itself. In the case of the modifier for example, Figure 5.67
illustrates the semantic tree (together with the syntactic one) of for example. The anchor
of the semantic tree is For-ex. D-STAG defines For-ex according to the semantic analysis
of for example provided in D-LTAG, which is as follows:

For-ex , λR p q .Exemplification q (λ r .R p r) (5.100)

DC

DC∗ for example

(a) The syntactic tree

t → t → t

· · ·

For-ex

t → t → t∗

(b) The semantic tree

Figure 5.67: The D-STAG tree pair of for-example

191

Chapter 5. Discourse Grammar Formalisms

192

Part II

Thesis Contributions

193

Chapter 1

G-TAG as ACGs

Contents
1.1 Motivations . 196

1.2 The ACG Architecture for G-TAG 196

1.3 G-derivation Trees as Abstract Terms 197

1.3.1 Types . 200

1.3.2 Constants . 201

1.3.3 Declaring the Abstract Signature ΣGTAG and the Abstract
Language . 207

1.4 Interpretations as TAG Derivation Trees 208

1.4.1 Interpretations of Types . 209

1.4.2 Interpretations of Constants 210

1.5 Interpretations as Conceptual Representations 216

1.5.1 Encoding Conceptual Representations 216

1.5.2 Interpretations of Types . 218

1.5.3 Interpretations of Constants 219

1.6 Parsing and Generation Using the ACG encoding of G-TAG . 225

In this chapter, we present the ACG encoding of G-TAG. Since G-TAG is based on TAG
principles, the ACG encoding of G-TAG relies on the ACG encoding of TAG with Montague
semantics. On the other hand, while TAG is only concerned with sentence-level structures,
the objective of G-TAG is to generate a text rather than a sentence. For that, G-TAG de�nes
its own discourse grammar. By encoding the G-TAG grammar, we design ACGs suitable for
discourse modeling. The ACGs that we design are second-order ones. This ensures that the
tasks of parsing and generation with the ACG encoding of G-TAG are polynomial.

195

Chapter 1. G-TAG as ACGs

1.1 Motivations

By encoding (L)TAG with Montague semantics as ACGs (Pogodalla, 2009),⁵⁵ one models
the syntax-semantics interface at the sentence-level. To model the syntax-semantics
interface for discourse, one can extend the ACG encoding of TAG by encoding a
discourse-level grammar in addition to the sentence-level one. In Section 5.2 on
page 153, we discussed G-TAG (Danlos, 1998). With the help of G-TAG, one generates
a text from a conceptual representation input. As the sentence-level grammar encoded
in (Pogodalla, 2009) is a TAG grammar, and at the same time G-TAG o�ers a discourse
grammar based on the TAG principles, we expect the study of G-TAG to help us to
design ACGs suitable for discourse modeling.

1.2 The ACG Architecture for G-TAG

In G-TAG, the pivot for a g-derived tree is its g-derivation tree. Indeed, G-TAG first
constructs a g-derivation tree out of a conceptual representation input. Afterwards, the
g-derivation is mapped to the g-derived tree. Thus, the architecture of G-TAG is similar
to the one of the ACG encoding of TAG with Montague semantics:

• In G-TAG, one builds a g-derivation tree (output) from a conceptual representation
(input). In the ACG encoding of TAG with Montague semantics, one translates a
TAG derivation tree (input) to a semantic formula (output).

• A g-derivation tree signifies a (unique) g-derived tree. Using the ACG encoding
of TAG, we translate a TAG derivation tree to a (unique) derived tree.

Thus, in both G-TAG and the ACG encoding of TAG with Montague semantics, one
establishes the correspondence between conceptual representations (semantic interpreta-
tions) and derived trees through derivation trees. In the ACG encoding of TAG with
Montague semantics, derivation trees are abstract terms. In order to encode G-TAG
as ACGs, we develop a similar approach to the one of the ACG encoding of TAG
with Montague semantics. That is, we encode g-derivation trees as abstract terms. To
model that G-TAG builds a g-derivation tree out of a conceptual representation input,
we define a lexicon that interprets g-derivation trees to conceptual representations.

We can also define another lexicon for interpreting the abstract terms modeling
g-derivation trees as derived trees. However, we develop a more modular approach
than that by interpreting g-derivation trees as TAG derivation trees. Then, with the
help of the ACG encoding of TAG, one can interpret TAG derivation trees as TAG
derived trees. In this way, one establishes the correspondence between g-derivation trees
and TAG derived trees via TAG derivation trees. By interpreting g-derivation trees as
TAG derivation trees, one makes explicit (a) the motivations why g-derivation trees
have various kinds of features; (b) how g-derivation trees relate to TAG derivation trees.
That is why we opt for the modular interpretation of g-derivation trees as derived trees.
However, in this case, one uses TAG derived trees instead of g-derived trees. Although
g-derived trees di�er from TAG derived trees, they are conceptually close to each other
so that TAG derived trees can model g-derived trees. In other words, for a g-derived

⁵⁵See Section 3.8 on page 80.

196

1.3. G-derivation Trees as Abstract Terms

tree, we can always find its equivalent TAG derived tree. Hence, instead of using
g-derived trees, we use TAG derived trees. Figure 1.1 depicts the ACG architecture of
G-TAG.

We aim at designing such ACG architecture for G-TAG where the abstract vocabulary
is second-order and the lexicons are almost-linear, because, in this case, the problems
of parsing and generation are polynomial (Kanazawa, 2007).

G-derivation Trees

ΣGTAG

G-TAG Semantics

ΣSem
GTAG

ΣDer
TAG

TAG Derivations

ΣSynt
TAG

TAG syntax

L sem
GTAG

LGTAG−TAG

L TAG
synt

L GTAG
synt = L TAG

synt ◦LGTAG−TAG

Figure 1.1: The ACG architecture for G-TAG

1.3 G-derivation Trees as Abstract Terms

To encode G-TAG as ACGs, we construct the abstract vocabulary ΣGTAG. Terms over
ΣGTAG model g-derivation trees. Since the notion of a g-derivation tree is close to the
notion of a TAG derivation tree, in order to build the signature ΣGTAG, one may refer to
the signature ΣDer

TAG, which we use in order to encode TAG derivation trees of sentences
in the ACG encoding of TAG with Montague semantics.

Although TAG derivation trees and g-derivation trees are conceptually alike, they
show some di�erences. These di�erences prevent one from directly using the ACG
encoding of TAG derivation trees for the purposes of encoding g-derivation trees. In a
TAG derivation tree, a node represents an elementary tree with an inflected anchor,
whereas in a g-derivation tree, T-features and morphological features decorate nodes
standing for the lexical entries. Out of these features, one computes the structural
description of a tree and the inflected version of the lexical entry anchoring the tree.
One could try to represent g-derivation trees as abstract terms by encoding the lemmas
and morphological features of G-TAG as the terms over the abstract vocabulary. In
that case, one has to be able to build an abstract term encoding an inflected version
of a word with the help of the terms encoding the lemma and features. Furthermore,
one needs to interpret the terms encoding features and lemmas to derived (syntactic)
trees and to the surface representations. This requires to develop a compositional

197

Chapter 1. G-TAG as ACGs

approach to computational-morphology within the ACG framework: A derived tree
with inflected anchors has to be derivable from (decomposable into) the trees standing
for the interpretations of lemmas and features. In addition, to interpret the terms
modeling g-derivation trees as semantic (conceptual) representations, one should give
a compositional account of the morphology-semantic interface problem within ACGs.
Indeed, given T-features and morphological features of a lexical entry, one has to
be able to obtain its semantic interpretation.⁵⁶ However, we do not develop these
approaches in the present work, as they go beyond the scope of this thesis. We choose
another way of encoding g-derivation trees. Instead of encoding lemmas and features
in the abstract vocabulary, we encode inflected forms of words. Furthermore, instead
of encoding T-features and their combinations, we directly encode in the abstract
vocabulary elementary trees that (sets of) T-features give rise to. Thus, we deal morpho-
syntactic questions in the same way as it is done in TAG (and consequently, in the
ACG encoding of TAG).⁵⁷

In Section 5.2 on page 153, we saw that one defines a g-derivation tree with the
help of an underspeci�ed g-derivation tree. Underspecified g-derivation trees di�er from
TAG derivation trees. In particular, underspecified g-derivation have variable nodes,
which is not the case of TAG derivation trees. By instantiating variable nodes of an
underspecified g-derivation tree, one obtains a g-derivation tree. Thus, the notion of
an underspecified g-derivation tree is reminiscent of the notion of an abstract term
of the ACG encoding of TAG. To illustrate that, let us consider the lexical entry
récompenser (reward) and the canonical underspecified g-derivation tree associated with
it. Figure 1.2(a) shows this underspecified g-derivation tree. This underspecified g-
derivation tree denotes an initial tree encoding an active voice construction with a
verb. To compute the anchor of the tree, the G-TAG post processing module uses
the morphological features. Namely, the G-TAG post processing module computes that
the anchor of the tree is the past participle form of récompenser (to reward), which is
récompensé. One can model this underspecified g-derivation tree by a term over ΣDer

TAG,
that is, one can encode this tree using the ACG encoding of TAG as follows:

t1 = λoarg1. λ
oarg2. Crécompensé ISA (Ca IVA) arg1 arg2 : np(np(S (1.1)

Where Crécompensé ∈ ΣDer
TAG models the TAG initial tree anchored with the past participle

récompensé . It is of type SA (VA (np(np(S.
Ca ∈ ΣDer

TAG models a French auxiliary verb a (have3p.sgl.prs.). It is of type VA (VA

IVA : VA is a constant modeling an empty adjunction.

Terms can model both partially instantiated and fully instantiated underspeci�ed g-derivation
trees. For instance, Figure 1.2(b) shows a partially instantiated underspecified g-derivation
tree. One encodes this tree as follows:

t2 = λoarg2. Crécompensé ISA (Ca IVA) Cmarie arg2 : np(S (1.2)

⁵⁶To achieve that, one may try to use a richer type system for ACGs (Pompigne, 2013).
⁵⁷For a detailed discussion about the possibilities of encoding features within ACGs, we refer readers

to (Kanazawa, 2015).

198

1.3. G-derivation Trees as Abstract Terms

In the term t2 , we encode the g-derivation tree for Marie with the constant Cmarie ∈
ΣDer

TAG. Furthermore, we encode the g-derivation tree in Figure 1.2(c) as the term t3
defined as follows:

t3 = Crécompensé ISA (Ca IVA) Cmarie Cjean : S (1.3)

(récompenser)
tense=passé composé

(RewardER) (RewardEE)

arg1 arg2

(a)

(récompenser)
tense=past simple

(marie) (H2)

arg1 arg2

(b)

(récompenser)
tense=past simple

(marie) (jean)

arg1 arg2

(c)

Figure 1.2: The underspecified g-derivation tree associated with the lexical entry
récompenser and the trees obtained out of it by specifying its variable nodes

αrécompensé

βaαjeanαmarie

1

21

2

(a) A TAG derivation
tree

S

NP

Marie

VP

VP

a

VP

V

récompensé

NP

Jean

(b) A TAG derived tree

Figure 1.3: The TAG derivation and derived trees for Marie a récompensé Jean

As one can see, the term t3 serves as the ACG encoding of the TAG derivation tree
shown in Figure 1.3(a), whose derived tree is given in Figure 1.3(b). Hence, we can
encode underspecified g-derivation trees, and consequently, g-derivation trees, with the
help of the constants of ΣDer

TAG. That is why we adopt the constants and types of ΣDer
TAG

in ΣGTAG (the vocabulary where we encode g-derivation trees). This allows us to define
the same terms over ΣGTAG as the ones over ΣDer

TAG. However, the terms over ΣDer
TAG encode

only derivation trees of sentences. In ΣGTAG, by only having constants and types adopted
from ΣDer

TAG, one cannot model g-derivation trees of multi-sentential texts. In addition,
notice that the G-TAG analysis of discourse connectives di�ers from the TAG one
(XTAG-Group, 1998). While a discourse connective anchors an initial tree in G-TAG, it
anchors an auxiliary one in TAG. Hence, in order to encode a g-derivation tree of a
discourse, one should encode discourse connectives di�erently from the way they are
encoded in ΣDer

TAG. Thus, one cannot adopt in ΣGTAG the constants in ΣDer
TAG representing

199

Chapter 1. G-TAG as ACGs

TAG trees anchored with discourse connectives. Moreover, let us recall that G-TAG
o�ers a special treatment of reduced conjunctions, where the argument sharing between
the matrix clause and the subordinated one takes place. As we saw,⁵⁸ to generate a
text with a reduced conjunction, one has to obey certain requirements. In ACGs, we do
not have the same kind of decision mechanisms as G-TAG uses in its text generation
process. What we have are only types and constants, or to put it another way, in ACGs,
everything is grammaticalized. Thus, to model g-derivation trees of discourses, we
introduce the constants and types in ΣGTAG, besides those ones that we adopt from ΣDer

TAG.

1.3.1 Types

In G-TAG, in order to distinguish the g-derivation trees of texts and sentences, one
employs the features (+T,+S) and (−T,+S), respectively.

adv
(+T,+S)

(argumentX)
(+S)

(argumentY)
(+S)

arg1 arg2

Figure 1.4: A g-derivation tree for the adv lexical entry

Figure 1.4 shows the lexical entry adv for the adverbial adv. It consists of an
underspecified g-derivation tree whose root has the feature (+T,+S). Both of the
daughter nodes of the root node have the feature (+S), which stands for either a text
or a sentence. Thus, there are several cases to consider:

1. Both of the daughter nodes of the root node are g-derivation trees of texts;
2. both of the daughter nodes of the root node are g-derivation trees of sentences;
3. the first daughter node (arg1) is a g-derivation tree of a sentence, while the second

one (arg2) is a g-derivation tree of a text;
4. the first daughter node (arg1) is a g-derivation tree of a text, and the second one

(arg2) is a g-derivation tree of a sentence.
To define terms modeling g-derivation trees, one may encode the features (−T,+S)

and (+T,+S) in the abstract vocabulary, i.e., in ΣGTAG. We encode the feature (−T,+S)
with the type S. To encode the feature (+T,+S), we introduce a new atomic type T
in ΣGTAG. Depending on whether a g-derivation tree gives rise to a sentence or a text
(which is indicated by the feature of its rootnode), we model it by a term of type S or
T, respectively.

Remark 1.1. G-TAG introduces morphological features that the post-processing module uses
in order to generate texts where clauses have to be of certain tenses, moods etc. For each
combination of morphological features, we can introduce in the abstract vocabulary a new type
and the constants that will enable us to de�ne the terms of that type. In a sentence consisting

⁵⁸See Section 5.2.6 on page 168.

200

1.3. G-derivation Trees as Abstract Terms

of two clauses connected by a conjunction, one has to encode the agreement between the mood
and tense of two clauses. In order to model such constraints, one can use ACGs with richer
type systems (de Groote and Maarek, 2007; de Groote, Maarek, and Yoshinaka, 2007; Pompigne,
2013) than the version of ACGs with simple types, which we use in the present work. Although
we could also encode certain kinds of agreements using simple types, in this thesis, we do not
deal the morphological features and agreements, but leave them for future work.

1.3.2 Constants

In G-TAG, one uses T-features in order to identify/designate the syntactic trees encoding
di�erent uses of a lexical entry. An underspecified g-derivation tree defined by T-
features signifies a particular syntactic use of a lexical entry, i.e., a particular syntactic
construction with the lexical entry. We model lexical entries with the help of abstract
terms, i.e., terms over ΣGTAG.

Convention: we denote the abstract constant modeling a tree anchored with α as
a Gα constant in ΣGTAG (so that we do not confuse the constants used in the current
encoding of G-TAG as ACGs with the ones used in the ACG encoding of TAG, where
the abstract constants are denoted with Cα).

1.3.2.1 Discourse Connectives

In G-TAG, both adverbials and conjunctions anchor initial trees, whereas in TAG,
they anchor auxiliary trees. We do not adopt in ΣGTAG the constants of ΣDer

TAG modeling
subordinate conjunctions and adverbials because otherwise the ACG encoding of G-TAG
would diverge from G-TAG. Instead, we introduce new constants in ΣGTAG to model
underspecified g-derivation trees of subordinate conjunctions and adverbials.

Convention: We say conjunction instead of subordinate conjunction whenever it does
not cause a confusion.

1.3.2.1.1 Adverbials

With the help of underspecified g-derivation trees for discourse adverbials, G-TAG
generates texts. For instance, one obtains the g-derivation tree of the discourse (4) by
instantiating the variable nodes of the underspecified g-derivation tree of the adverbial
ensuite (afterward).

(4) Jean
Jean

a
havepres. 3ps. sg.

passé
passpast part.

l’aspirateur.
vacuum-cleanerdef..

Ensuite,
Afterwards,

il
he

a
havepres. 3ps. sg.

fait
makepast part.

une
a

sieste.
nap.

John vacuumed. Afterwards, he took a nap.

In order to encode an underspecified g-derivation tree of an adverbial adv (see
Figure 1.4 on the facing page), we encode the possible cases of the values of the features
decorating its nodes. The feature (+T,+S) decorates the constant node (the root node).

201

Chapter 1. G-TAG as ACGs

The feature (+T,+S) only applies to a text, which we encode with a term of type T.
The constant node has two daughter nodes, which are the variable nodes. Each of
the daughter nodes has the feature (+S), which can denote both a text and a sentence.
Hence, the possible values of the daughter nodes are the following four pairs: (sentence,
sentence), (sentence, text), (text, sentence), and (text, text). To encode each of the
four cases, in ΣGTAG, we introduce the four constants shown in Table 1.1. Each of these
four constants receives as its arguments terms of type T and/or S. The resultant term
encodes a g-derivation tree specifying a text, i.e., a term of type T.

Constants in ΣGTAG Their Types
Gadv

S
S S(S(T

Gadv
S
T S(T(T

Gadv
T
S T(S(T

Gadv
T
T T(T(T

Table 1.1: Constants in ΣGTAG modeling the G-TAG lexical entry of an adverbial

1.3.2.1.2 Subordinate Conjunctions

G-TAG employs an underspecified g-derivation tree of a subordinate conjunction in
order to generate a sentence with two clauses. This is expressed using features on the
nodes of the underspecified g-derivation tree of a conjunction. Figure 1.5 illustrates
underspecified g-derivation trees of a conjunction. Each node in these trees has the
feature (−T,+S) denoting a sentence.

conj
(−T,+S)

(argumentX)
(−T,+S)

(argumentY)
(−T,+S)

arg1 arg2

(a) The canonical case

conj
+[T-reduc.conj]

(−T,+S)

(argumentX)
(−T,+S)

(argumentY)
(−T,+S)

arg1 arg2

(b) The canonical case with
+[T-reduc.conj]

Figure 1.5: Two underspecified g-derivation trees for conj

The underspecified g-derivation trees in Figure 1.5 give rise to stylistically di�erent
constructions. The underspecified g-derivation tree shown in Figure 1.5(a) is the
canonical one, which gives rise to the sentences such as the following one:

(5) Jean
John

fait
makepres. 3ps. sg.

une
a

sieste
nap

après
after

que
that

Marie
Mary

passe
pass3ps. sg. subj.

l’aspirateur.
vacuumerdef..

John takes a nap after that Mary vacuums.

202

1.3. G-derivation Trees as Abstract Terms

The underspecified g-derivation tree with the feature +[T-reduc.conj] (see Fig-
ure 1.5(b)) gives rise to the sentences such as the following one:

(6) Jean
John

fait
makepres. 3ps. sg.

une
a

sieste
nap

après
after

avoir
to-havepres. inf.

passé
passpast part.

l’aspirateur.
vacuumerdef..

John takes a nap after vacuuming.

The di�erence between the canonical g-derivation tree and the one with the feature
+[T-reduc.conj] is that in the canonical g-derivation tree, the variable nodes must be
instantiated with g-derivation trees of complete⁵⁹ clauses (see e.g. (5)), whereas in the
case of the underspecified g-derivation tree with the feature +[T-reduc.conj], only one
of the variable nodes must be instantiated with a g-derivation tree of a complete clause.
Namely, the matrix clause should be a complete clause, whereas the subordinated one
should be a reduced clause, i.e., an in�nitive clause introduced by the subordinated
conjunction (Danlos, 2000). We discuss the canonical case and the one with reduced
conjunction separately.

The Canonical G-Derivation Tree
As we encode the feature (−T,+S) with the type S, we type an abstract constant

encoding a canonical g-derivation tree of a conjunction with the type S (S (S.
Indeed, the canonical g-derivation tree of a conjunction gives rise to the g-derived
tree of a sentence connecting two complete clauses. Since we encode a derivation
tree of a complete clause with a term of type S, we introduce the constant Gconj

canonical of
type S (S (S in the abstract vocabulary ΣGTAG as the encoding of the canonical
g-derivation tree of the conjunction conj.

The G-Derivation Tree of a Reduced Conjunction
Since we encode the feature (−T,+S) with the type S, one could type a constant

encoding the g-derivation tree with the feature +[T-reduc.conj] (see Figure 1.5(b) on the
preceding page) with the type S(S(S. Indeed, one could claim that since the
variable nodes have only the feature (−T,+S), we should model them with the type S.

However, such an encoding is not suitable in this case. To illustrate that, let us
consider the conjunction après (after). Assume that one models the underspecified
g-derivation tree of the après in the reduced case (see Figure 1.6(a)) with the constant
Gaprès

red. of type S(S(S. With the help of the constant Gaprès
red. , we should be able to

analyze/produce sentences such as (6), where the subordinated clause is an infinitive
(reduced) clause. This implies that we model a derivation tree of an infinitive clause
by a term of type S, i.e., by a term of the same type as a term modeling a derivation
tree of a complete clause. One may claim that an infinitive clause is close to a complete
one so that we can model both with terms of the same type. Indeed, according to the
LTAG grammar for French (Abeillé, 1988), the syntactic tree shown in Figure 1.7 is a
syntactic analysis of an infinitive clause such as avoir passé l’aspirateur (havepres. inf. passpast

⁵⁹We call a clause complete if its predicate is built with the help of a finite verb form and it contains a
lexically expressed subject.

203

Chapter 1. G-TAG as ACGs

après
+[T-reduc.conj]

(−T,+S)

(2nd event)
(−T,+S)

(1st event)
(−T,+S)

arg1 arg2

(a) The reduced un-
derspecified g-derivation
tree for après

S
+[T-reduc.conj]

S (arg2) PP

Prep

après

S

C

∅

S(arg1)
[mood=inf]

(b) The elementary tree in the reduced
case of après

Figure 1.6: The underspecified g-derivation tree of a conjunction and its corresponding
elementary tree

part. vacuumerdef.). As this tree indicates, the null pronoun PRO occupies the position of
the syntactic subject of the infinitive clause. Hence, we could model the derivation tree
of an infinitive clause by a term of type S. The syntactic interpretation of such a term
would be a derived tree, such as one in Figure 1.7.

S

NP

PRO

VP

V

avoir passé

NP

l’aspirateur

Figure 1.7: The LTAG analysis of infinitive phrases: PRO + infinitive verb form

However, apart from syntactic interpretations, we aim at defining semantic interpre-
tations of the sentences such as (6). If one encodes the constant Gaprès

red. with the type
S(S(S, then a complete clause and a reduced (infinitive) one, both are encoded
by terms of type S. Consequently, one has to interpret the terms encoding derivation
trees of a complete clause and a reduced one as the semantic terms of the same type.
While we can interpret a complete clause as a term of type t (as a proposition), we
cannot interpret a term encoding a derivation tree of a reduced clause as a term of type
t . Indeed, the null pronoun PRO is without any phonological content (see Figure 1.7).
PRO does not serve as a lexicalization of any concept and thus PRO cannot provide an
argument for a concept (predicate) expressed by an infinitive verb form (phrase), whose

204

1.3. G-derivation Trees as Abstract Terms

arguments should be concepts.⁶⁰ Hence, we cannot encode the g-derivation trees of a
complete clause and a reduced one in the same way. To distinguish them, we introduce
a new type Sinf in ΣGTAG. We model derivation trees of infinitive (reduced) clauses with
terms of type Sinf. Now, we can translate a term of type Sinf as a term that does not
contain a semantic subject, but receives it from the matrix clause, which is a complete
clause. Since we use the terms of type Sinf for modeling the derivation trees of reduced
clauses, one may propose to encode the constant Gaprès

red. with the type S(Sinf(S.
However, in that case, one has to express that the subject-sharing takes place between
the complete clause (a term of type S) and the reduced one (a term of type Sinf).
We propose our solution to this by extending the original G-TAG analysis of reduced
conjunctions. Namely, we type the constant Gaprès

red. with the type np(Sws(Sinf(S,
where Sws denotes a clause missing a subject obtained by removing the subject from a
matrix clause. In this way, we explicitly encode the subject np that is shared by the
matrix clause and the infinitive one. Figure 1.8 provides a pictorial representation of
this analysis. We annotate each part with the type assigned to the term encoding the
corresponding derivation tree. This new analysis can be viewed as an extension of
the G-TAG analysis of a sentence with a reduced conjunction (cf. Figure 1.6(b) on the
facing page).

S

S

NP

après Sinf

(a) np(Sws(Sinf(S

np
Jean︸︷︷︸

the shared subject

Sws
a fait une sieste︸ ︷︷ ︸
clause without a subject

après
Sinf

avoir passé l’aspirateur︸ ︷︷ ︸
the infinitve clause

(b) Gaprès
red
conj

: np(Sws(Sinf(S

Figure 1.8: The extended G-TAG analysis of a sentence with a reduced conjunction

Thus, to encode g-derivation trees of conjunctions, we introduce constants such as
the ones shown in Table 1.2, where the constants model the canonical and reduced
underspecified g-derivation trees of après.

Remark 1.2. By the constant Gconj
red. of type np (Sws (Sinf (S, one encodes the fact

that Sws and Sinf share an argument of type np. Hence, the sharing of a subject is rather a

⁶⁰We cannot interpret a reduced (infinite) clause as a proposition because we aim at having the
semantic interpretations that are similar to conceptual representation inputs of G-TAG. In a G-TAG
conceptual representation input, a reduced clause may correspond to an expression that contains a
concept standing for a subject.

205

Chapter 1. G-TAG as ACGs

Constants in ΣGTAG Their Types
Gaprès

canonical S(S(S
Gaprès

red. np(Sws(Sinf(S

Table 1.2: The abstract constants encoding après

particular case of the argument-sharing (np-sharing). Below, one may say subject-sharing but
one has in mind a more generic argument-sharing.

1.3.2.2 Introducing First Order Predicates in the Abstract Vocabulary

ΣGTAG contains the constants adopted from the signature ΣDer
TAG (from the ACG encoding

of TAG derivation trees). They enable us to build terms modeling derivation trees of
single clauses. In particular, with the help of the constants adopted from ΣDer

TAG, one
can produce the terms over ΣGTAG of type S, which model derivation trees of clauses.
However, the terms of type S are not the only ones that interact with the constants
modeling the discourse connectives. By introducing the abstract constants encoding
adverbials and conjunctions, we subsequently introduced types T, Sws and Sinf. In
order to make use of these constants, one should be able to produce terms over ΣGTAG

of types T, Sws and Sinf.
In order to obtain terms of type T, we use the constants Gadv

S
S, Gadv

S
T, Gadv

T
S , Gadv

S
T

(see Figure 1.1). With the help of these constants and the terms of type S, we are able
to produce terms of type T.

We refer as a g-derivation tree of a �rst order predicate, or simply as a �rst order predicate,
to an underspecified g-derivation tree whose variable nodes are the lexicalizations of
things. In other words, we refer as a �rst order predicate to an underspecified g-derivation
that one uses to generate an atomic discourse unit, i.e., clause. Thus, it remains to
introduce the constants in ΣGTAG encoding g-derivation trees for the first order predicates
of G-TAG that enable producing the terms of types Sws and Sinf. We refer also to
these constants as �rst order predicates.

1.3.2.2.1 A Clause Missing a Subject - Sws

We introduced the type Sws in order to encode the type of an argument of a
(reduced) conjunction. The di�erence between the Sws and S types is that a term of
type S stands for the derivation tree of a complete clause, i.e., a clause with its own
subject and the predicate, whereas a term of type Sws models a clause that misses a
subject but contains everything else that a complete clause does. Therefore, an abstract
constant encoding an initial tree from which one derives a clause missing a subject
should have one less argument than the one that encodes an initial tree from which one
derives a complete clause. To model that, we extend ΣGTAG by introducing new constants
such as Gv

sws of type ~αn , whereas the constant Gv of type ~γn+1 encodes an initial tree
form which we derive a complete clause. The types ~γn+1 and ~αn are defined as follows:

• ~γn+1 = a1 (· · · (ak (a0, where a0 = S and for some 1 ≤ i ≤ n, the
argument ai of Gv stands for the subject (thus ai = np).

206

1.3. G-derivation Trees as Abstract Terms

• ~αn = a1 (· · ·(ai−1 (ai+1 (· · ·(ak (Sws.
In words, each argument of Gv is an argument of Gv

sws and vice versa except for the
argument of Gv modeling a subject. Since we encode subjects with NPs, that atomic
type is np. For example, Gfait-une-sieste is a constant modeling an initial tree anchored by
fait une sieste⁶¹ (takes a nap). The type of Gfait-une-sieste is SA (VA (np(S. In ΣGTAG,
we introduce a constant Gfait-une-sieste

sws of type SA (VA (Sws.

1.3.2.2.2 Reduced (In�nitive) Clauses - Sinf

We encode a derivation tree of a reduced (infinitive) clause by a term of type Sinf.
An infinitive clause has PRO in the syntactic position of a subject (see e.g. Figure 1.7).
Therefore, it cannot receive another syntactic subject at that position. Consequently,
in order to construct an infinitive clause, one needs to use one less NP compared to
the case of a finite, complete clause. Hence, we encode the constants that enable us to
build the terms of type Sinf similarly to what we did in the case of Sws. We extend
the abstract vocabulary ΣGTAG by adding the new constants such as the constant Gvinf

inf of
type ~βn , whereas the constant Gv of type ~γn+1 encodes an initial tree form which one
derives a complete (finite) clause; we define the type ~βn as follows:

• ~γn+1 = a1 (· · · (ak (a0, where a0 = S and for some 1 ≤ i ≤ n, the
argument ai of Gv stands for the subject (thus ai = np).

• ~βn = a1 (· · ·(ai−1 (ai+1 (· · ·(ak (Sinf.
In words, the types of the constants Gv and Gvinf

inf have the same arguments except
that Gv has an argument modeling a subject, whereas Gvinf

inf does not. Since we encode
subjects with NPs, that argument is of type np. For instance, we introduce in ΣGTAG the
constant Gfaire-une-sieste

inf of type SA (VA (Sinf.
Convention: We denote with vinf the infinitive form of v, where v can be a finite

verb, verb phrase etc. anchoring an initial tree from which one derives a derived tree
of a clause.

1.3.3 Declaring the Abstract Signature ΣGTAG and the Abstract Lan-
guage

We have constructed the abstract vocabulary ΣGTAG where we encode g-derivation trees
of G-TAG. In ΣGTAG, we have the constants (see Table 1.3) with the help of which one
builds terms modeling g-derivation trees.

In order to define the abstract language, it remains to specify the distinguished type.
We have two candidates, S and T. A term of type S models either a g-derivation tree
of a (complete) clause, or a g-derivation tree of a sentence built with a subordinate
conjunction. In the rest of the cases, we have terms of type T encoding g-derivation
trees of texts. We declare T as the distinguished type. We propose to transform a term
of type S into a term of type T. For that, we introduce a constant AnchorT : S(T.
If a term tS is of type S, then the term tT = (AnchorT tS) is of type T. In words, we

⁶¹Since fait une sieste (take a nap) is an idiom in French, we model it as an abstract constant Gfait-une-sieste
inf

(Kobele, 2012).

207

Chapter 1. G-TAG as ACGs

Constants in ΣGTAG Their Types
Gensuite

S
S S(S(T

Gensuite
S
T S(T(T

Gensuite
T
S T(S(T

Gensuite
T
T T(T(T

Gauparavant
S
S

S(S(T
...

...
Gaprès

canonical S(S(S
Gaprès

red. np(Sws(Sinf(S
Gavant

canonical S(S(S
Gavant

red. np(Sws(Sinf(S
Gpour

canonical S(S(S
Gpour

red. np(Sws(Sinf(S
.
Gfait-une-sieste SA (VA (np(S
Gfait-une-sieste

sws SA (VA (Sws
Gfaire-une-sieste

inf SA (VA (Sinf
.
Gpasse-l-aspirateur SA (VA (np(Sws
Gpasse-l-aspirateur

sws SA (VA (Sws
Gpasser-l-aspirateur

sws SA (VA (Sws
.
Grécompense SA (VA (np(np(S
Grécompense

sws SA (VA (np(Sws
Grécompenser

inf SA (VA (np(Sinf
...

...
AnchorT S(T

Table 1.3: Constants encoding underspecified g-derivation trees of G-TAG

view a derivation tree of a sentence as a derivation tree of a text consisting of a single
sentence. Thus, we declare the abstract language A as follows:

A = {t | t ∈ Λ(ΣGTAG) & t : T}

1.4 Interpretations as TAG Derivation Trees

G-TAG builds a g-derived tree out of a g-derivation tree. To model that in ACGs, we
interpret g-derivation trees as derived trees. As we already mentioned, in order to
interpret g-derivation trees as derived trees, we first interpret them as TAG derivation
trees. Since TAG derivation trees are already interpreted as TAG derived trees, by
composing these two interpretations, one obtains interpretations of g-derivation trees as
derived trees. One of the main motivations for this modular approach is that one can
see similarities and dissimilarities between TAG and the G-TAG grammar by comparing
their derivation trees. Moreover, due to the extended analysis that we propose for
reduced conjunctions (see Figure 1.8 on page 205), the terms encoding g-derivation
trees of sentences with reduced conjunctions have di�erent structure from g-derivation

208

1.4. Interpretations as TAG Derivation Trees

trees. However, by interpreting these terms into TAG derivation trees, we obtain terms
that have more similar structure to g-derivation trees than the terms over ΣGTAG do.

Thus, we are building a lexicon LGTAG−TAG from ΣGTAG to ΣDer
TAG (the signature where

one encodes TAG derivation trees) and thereby the ACG 〈ΣGTAG,Σ
Der
TAG,LGTAG−TAG,T〉.

Figure 1.9 shows the part of the ACG encoding of G-TAG that we are building now.

G-derivation Trees

ΣGTAG

ΣDer
TAG

TAG Derivations

ΣSynt
TAG

TAG
derived trees

LGTAG−TAG

L TAG
synt

L GTAG
synt = L TAG

synt ◦LGTAG−TAG

Figure 1.9: Interpretations of g-derivation trees as TAG derivation trees and as TAG
derived trees

1.4.1 Interpretations of Types

The type Sws of ΣGTAG encodes the same idea as np(S type over ΣDer
TAG, both encode a

clause missing a subject. The only reason for using Sws in ΣGTAG instead of np(S is that
we aim at building a second-order abstract vocabulary (because in this case the problems
of parsing and generation are polynomial (Kanazawa, 2007)). If we used np (S
instead of Sws, then the type of a constant Gconj

red. modeling a reduced conjunction would
be np((np(S)(Sinf(S. The type np((np(S)(Sinf(S is of order
three. This would make the abstract vocabulary of order three as well.

Since Sws and np(S encode the same idea, one interprets Sws form g-derivation
trees as np(S in TAG derivation trees. By interpreting the type Sws from ΣGTAG as
np(S, interpretations of terms encoding g-derivation trees of reduced conjunctions as
terms over ΣDer

TAG approximate the structure of the original g-derivation trees more than
the terms over ΣGTAG do.

The types T and S, both translate to S in TAG derivation trees, because in G-TAG
at the level of derived trees, there is no di�erence between the features T and S (both
are represented by S in g-derived trees).

In addition, we introduced the type Sinf in ΣGTAG in order to type a term encoding a
g-derivation tree of an infinitive clause. An infinitive clause is a (syntactically) complete
clause whose predicate is an infinite verb form and whose subject is the null pronoun

209

Chapter 1. G-TAG as ACGs

PRO. Thus, one can represent its derivation tree as a term of type S in TAG derivation
trees. Consequently, we interpret Sinf to S under the lexicon LGTAG−TAG.

The rest of the types in ΣGTAG were adopted form ΣDer
TAG. If X is one of the adopted

types in ΣGTAG, X models the same phenomenon in ΣGTAG as it does in ΣDer
TAG. Thus, we

translate X from ΣGTAG to X in ΣDer
TAG (e.g. np to np, nA to nA etc.).

1.4.2 Interpretations of Constants

In addition to types adopted from ΣDer
TAG in ΣGTAG, we adopted constants. They enable

us to build terms modeling g-derivation trees of clauses. If a constant Gx is adopted
from ΣDer

TAG, in ΣDer
TAG we have the constant Cx . The constants Gx and Cx model the same

elementary trees in ΣGTAG and ΣDer
TAG respectively. Therefore, we interpret Gx from ΣGTAG

as Cx into ΣDer
TAG.

It remains to interpret the constants of ΣGTAG that enable us to encode g-derivation
trees of texts. To encode the g-derivation trees of texts, we introduced the constants
modeling the underspecified g-derivation trees of the lexical entries of adverbials and
conjunctions. In ΣGTAG, we also introduced constants enabling us to build terms of types
Sws (a clause missing a subject) and Sinf (an infinitive clause).

1.4.2.1 Adverbials

To interpret constants encoding adverbials from ΣGTAG into Λ(ΣDer
TAG), we refer to the

interpretations of their types. Since the types T and S translate to S, we obtain that
the types of the constants Gadv

S
S, Gadv

S
T, Gadv

T
S and Gadv

T
T translate to S(S(S. We

introduce a new constant in ΣDer
TAG, namely, the constant Cadv

disc of type S(S(S. We
interpret each of the constants Gadv

S
S, Gadv

S
T, Gadv

T
S and Gadv

T
T as Cadv

disc.

LGTAG−TAG(Gadv
S
S) = LGTAG−TAG(Gadv

S
T) =

= LGTAG−TAG(Gadv
T
S) = LGTAG−TAG(Gadv

T
T) = Cadv

disc (1.7)

Furthermore, we have to interpret the constant Cadv
disc of ΣDer

TAG into TAG derived trees,
i.e., as a term over ΣSynt

TAG . To do so, we refer to the G-TAG analysis of an adverbial (see
Figure 1.10). Thus, we define the interpretation of Cadv

disc as it is shown in Equation (1.8).

L TAG
synt (Cadv

disc) = λos1 s2. S3 s1 (Punct1 dot) (S2 (Adv2 adv (Punct1 comma)) s2) : τ (τ (τ
(1.8)

1.4.2.2 Conjunctions

A constant encoding a conjunction can be either of the following types:
1. S(S(S (the canonical conjunction);
2. np(Sws(Sinf(S (the reduced conjunction).
We discuss each of these cases separately.

210

1.4. Interpretations as TAG Derivation Trees

S

S↓ . S

ADV

adv,

S↓

Figure 1.10: The G-TAG elementary tree anchored with an adverbial

1.4.2.2.1 The Canonical Conjunction

If a constant Gconj
canonical in ΣGTAG is of type S(S(S, then we introduce a constant

Cconj
canonical in ΣDer

TAG of type S(S(S. We translate the constant Gconj
canonical to Cconj

canonical:

LGTAG−TAG(Gconj
canonical) = Cconj

canonical : S(S(S (1.9)

We interpret the new constant Cconj
canonical of ΣDer

TAG to Λ(ΣSynt
TAG) as the term encoding the

G-TAG elementary tree of the canonical underspecified g-derivation tree of the conj
lexical entry (see Figure 1.11). Thus, we propose the following interpretation of Cconj

canonical

into TAG derived trees:

L TAG
synt (Cconj

canonical) = λo s1 s2. S2 s1 (PP2 (Prep1 conj) s2) : τ (τ (τ (1.10)

S

S↓ PP

PREP

conj

S

S↓

Figure 1.11: The G-TAG elementary tree anchored with a conjunction

1.4.2.2.2 The Reduced Conjunction

The interpretation of the type np(Sws(Sinf(S from ΣGTAG into ΣDer
TAG is ΣDer

TAG

is np((np(S)(S(S (Sws translates to np(S, and Sinf to S). Figure 1.12
illustrates the intended analysis behind the type np ((np (S) (S (S. Thus,
the interpretation of a constant Gconj

red. of type np(Sws(Sinf(S from ΣGTAG into
TAG derivation trees can be viewed as follows: It receives an NP (the argument of

211

Chapter 1. G-TAG as ACGs

type np), a clause missing a subject (the argument of type np(S), and an infinitive
clause (the argument of type S). By combining the NP and the clause missing a
subject, one obtains a complete clause. This clause serves as the matrix clause of the
sentence, whereas the infinitive clause (Sinf) serves as the subordinate one. To encode
this analysis, we propose the following interpretation of the constant Gconj

red.:

L TAG
synt (Gconj

red.) = λo subj .λo s1. λo s2. Cconj
red. (s1 subj) s2 : np((np(S)(S(S (1.11)

S

S

NP conj S

Figure 1.12: The intended meaning behind the type np((np(S)(S(S

In the interpretation shown in Equation (1.11), the constant Cconj
red. of type S(S(S

is a new constant in ΣDer
TAG. We interpret Cconj

red. as a term over ΣSynt
TAG of type τ (τ (τ

modeling the G-TAG elementary tree anchored with conj. For instance, in the case of
the conjunction après, to interpret the constant Caprès

red., we refer to the elementary tree
in the reduced case (see Figure 1.6(b) on page 204). Thus, we propose the following
interpretation:

L TAG
synt (Caprès

red.) = λo s1 s2 . S3 s1 (PP2 (Prep1 après) (S2 (C1 ε) s2)) (1.12)

1.4.2.3 First Order Predicates

It remains to interpret constants of ΣGTAG that enable us to build terms of types Sinf
and Sws into TAG derivation trees.

1.4.2.3.1 A Reduced (In�nitive) Clause

The constant Gvinf
inf ∈ ΣGTAG encodes the initial tree that gives rise to an infinitive

clause. We model the same initial tree with a constant Cvinf in TAG derivation trees.
Thus, we interpret Gvinf

inf as Cvinf .

1.4.2.3.2 A Clause Missing a Subject

A term of type Sws encodes a derivation tree of a clause whose subject position
is unfilled. For instance, let us consider the abstract constant Grécompense

sws of type SA (
VA (np (Sws. In ΣGTAG, together with Grécompense

sws, we have Grécompense of type SA (
VA (np(np(S. The interpretation of Grécompense in TAG derivation trees is Crécompense

212

1.4. Interpretations as TAG Derivation Trees

as both of them denote an initial tree anchored by récompense (rewardpres.3p.sing.). The
interpretation of Grécompense

sws in TAG derivation trees should be the same as of the constant
Grécompense but with one di�erence: The interpretation of Grécompense

sws should encode that
after that every argument of Grécompense

sws is interpreted, there is still a slot for a subject.
To model that, we propose the following interpretation of the constant Grécompense

sws:

L(Grécompense
sws) = λo sa va obj .λosubj . Crécompense sa va subj obj (1.13)

In general, to interpret the constant Gv
sws of type ~αn ,⁶² we refer to the interpretation

of the constant Gv of type ~γn+1. The constant Gv is of type a1 (· · · (ak (S
and Gv

sws is of type a1 (· · ·(ai−1 (ai+1 (· · ·(ak (Sws. We propose the
interpretation of Gv

sws as it is shown in Equation (1.14).

LGTAG−TAG(Gv
sws) = λo x1 · · · xi−1 xi+1 · · · xn . λoxi . LGTAG−TAG(Gv) x1 · · · xi · · · xn

(1.14)
In Equation (1.14), the variable xi is of type np. It models the argument standing

for a subject. The other variables x1 · · · xi−1 xi+1 · · · xn model the adjunctions and
substitutions in the initial tree modeled by Gv

sws.
Finally, since there is no distinction in TAG derivation trees between features T

and S, we translate the constant AnchorT : S(T from ΣGTAG as the identity function
λox .x : S(S in ΣDer

TAG.

Example 1.1.

Let us illustrate that the terms over ΣGTAG encoding g-derivation trees of the reduced
conjunctions translate to the terms in Λ(ΣDer

TAG) which resemble more the original g-
derivation trees than the terms over ΣGTAG do. For the sake of example, we consider a
term t1GTAGex over ΣGTAG, defined as follows:

t1GTAGex = AnchorT(Gconj
red. tsubjNP tcms

sws treducedsinf) : T (1.15)

The term t1GTAGex encodes the g-derivation tree shown in Figure 1.13. tsubjNP encodes the
shared subject by the clause misting a subject (tcms

sws) and the infinitive clause (treducedsinf).
According to the interpretation provided in Equation (1.11) on page 212, we interpret
the term t1GTAGex to a term t1TAGex ∈ Λ(ΣDer

TAG) as follows:

t1TAGex = LGTAG−TAG(t1GTAGex) = LGTAG−TAG(AnchorT Gconj
red. tsubjNP tcms

sws treducedsinf) =

Cconj
red. (LGTAG−TAG(tcms

sws) LGTAG−TAG(tsubjNP))︸ ︷︷ ︸
t1TAG:S

LGTAG−TAG(treducedsinf)︸ ︷︷ ︸
t2TAG:S

(1.16)

The structure of the term t1TAGex is closer to the g-derivation tree shown in Figure 1.13
on the next page than the structure of the term t1GTAGex because of the following reasons:

⁶²For the definitions of the types ~αn , ~βn , and ~γn , we refer readers to Section 1.3.2.2.

213

Chapter 1. G-TAG as ACGs

• The g-derivation tree of the matrix clause (denoted by g-der-matrix in Figure 1.13)
is encoded by the term t1TAG of type S (see Equation (1.16)).

• The g-derivation tree of the subordinated clause (denoted by g-der-subordinated
Figure 1.13) is represented by the term t2TAG of type S, which stands for the
interpretation of a term of type Sinf.

conj
+[T-reduc.conj]

(-T, +S)

(argumentX)

(-T, +S)

g-der-matrix

(argumentY)

(-T, +S)

g-der-subordinated

arg1 arg2

Figure 1.13: A g-derivation tree of a sentence with reduced conjunction

Example 1.2.
To illustrate how one makes use of the ACG encoding of G-TAG in order to

generate a derived tree out of a g-derivation one, let us consider a g-derivation tree
shown in Figure 1.25 on page 224. It gives rise to a g-derived tree, which can be
represented as the syntactic tree (after computing the morphological information) shown
in Figure 1.15 on the next page. We encode the g-derivation tree with the term t2GTAGex

defined in Equation (1.17). The lexicon LGTAG−TAG interprets the term t2GTAGex as a term
t2TAGex ∈ Λ(ΣDer

TAG), defined in Equation (1.18).

ensuite

pour
+[T-reduced-conj]

passer-l’aspirateur

Jean

récompenser
+[T-passive]

+[T-reduced-conj]

Marie ε

faire-la-sieste

il

arg1

arg1

arg1

arg2

arg1 arg2

arg2

arg1

Figure 1.14: A g-derivation tree of a text

t2GTAGex = Gensuite
s
s (Gpour

red. Gjean(Gpasse-laspirateur
sws ISA IVA) (Getre-recomepnse-par

inf ISA IVA Gmarie))

(Gfait-une-sieste ISA IVA Gjean) : T (1.17)

214

1.4. Interpretations as TAG Derivation Trees

t2TAGex = LGTAG−TAG(t2GTAGex) =

Censuite
disc (Cpour

red.(Cpasse-laspirateur ISA IVA Cjean) (Cetre-recomepnse-par ISA IVA Gmarie)) (Cfait-une-sieste ISA ISA Cjean)

: T (1.18)

By interpreting the term t2TAGex under the lexicon L TAG
synt , we obtain a term of type τ

(see Equation 1.19) encoding the derived tree shown in Figure 1.15.

L TAG
synt (t2TAGex) =

S3

(S2

(S2 (NP1 Jean)(VP2 (AUX a)(VP2 (V1 passé)(NP2 (DET1 l)(N1 aspirateur)))))
(SP2

(PP2 (PREP1 pour) (C ε))
(S2 (NP1 PRO) (VP2 (V2 être (V1 récompensé)) (PP2 (P1 par) (NP1 Marie)))

)
)
)
(PUNCT1 dot)
(S2

(ADV2 Ensuite (PUNCT1 comma))
(S2 (NP1 Jean) (VP2 (AUX1 a)(VP2 (V1 fait) (NP2 (DET1 une) (N1 sieste)))))

)
(1.19)

The lexicon Lyield interprets the term L TAG
synt (t2TAGex) as follows:

Lyield(L TAG
synt (tex2

TAG)) =

Jean+ a+ passé+ l+ aspirateur+ pour+ être+ récompensé+ par+marie+ dot

+ Ensuite+ comma+ Jean+ a+ fait+ une+ sieste (1.20)

In Appendix B.1, we provide the code that one can use in order to run this example on the
ACG toolkit.

S

S

S

NP

Jean

VP

a passé l’aspirateur

SP

Prep

pour

S

NP

PRO

VP

être récompensé par Marie

Punct

.

S

ADV

Ensuite

Punct

,

S

NP

Jean

VP

a fait une sieste

Figure 1.15: A derived tree

215

Chapter 1. G-TAG as ACGs

1.5 Interpretations as Conceptual Representations

G-TAG builds a g-derivation tree out of a conceptual representation input. We introduce
a signature ΣSem

GTAG to define terms modeling conceptual representation inputs. One
refers to ΣSem

GTAG either as the semantic signature or as conceptual representations. We call
types, constants, and terms built over ΣSem

GTAG as semantic types, semantic constants, and
semantic terms, respectively. Thus, we are building the ACG 〈ΣGTAG,Σ

Sem
GTAG,L

sem
GTAG,T〉,

denoted with the dotted eclipse in Figure 1.16.

G

G-derivation Trees

ΣGTAG

G-TAG Semantic
Interpretations

ΣSem
GTAG

ΣDer
TAG

TAG Derivations

ΣSynt
TAG

TAG
Derived Trees

L sem
GTAG

LGTAG−TAG

L TAG
synt

L TAG
synt ◦LGTAG−TAG

Figure 1.16: An ACG architecture for G-TAG

1.5.1 Encoding Conceptual Representations

Since the conceptual representation language of G-TAG is a sub-language of the language
LOGIN (Aït-Kaci and Nasr, 1986), one may try to isomorphically encode ψ-terms of
LOGIN as terms over ΣSem

GTAG. However, since the version of ACGs we use relies on
simple types, we are not able do that. Instead, we encode a conceptual representation
input of G-TAG as a term of the higher-order logic (HOL). Thus, the signature ΣSem

GTAG

is similar to the one defined in the ACG encoding of TAG with Montague Semantics
(Pogodalla, 2009). To represent the G-TAG conceptual representations as HOL terms,
in the signature ΣSem

GTAG, we introduce the constants and types shown in Figure 1.17.
In general, HOL terms are not isomorphic to ψ-terms because ψ-terms can encode

more information than HOL ones. One can think of the ψ-terms as graphs where edges
are labeled. However, recall that G-TAG makes use of only specific kinds of ψ-terms. As
we have already discussed in the section about G-TAG, the shape of a G-TAG conceptual
representation input is a tree.⁶³ We can encode tree-shaped terms using HOL terms.

⁶³In Section 5.2.2.3 on page 158 we described the way a conceptual representation input of G-TAG

216

1.5. Interpretations as Conceptual Representations

Atomic Types : e, t

Logical constants :
¬ : t (t
∧, ⇒, ∨ : t (t (t
∃, ∀ : (e → t)(t

Non-logical Constants :
SUCCESSION,GOAL, etc : t (t (t
reward, love, etc. : e (e (t
nap, vacuum, etc. : e (t
john,mary, etc. : e

Figure 1.17: The types and constants in ΣSem
GTAG

To illustrate the way we encode conceptual representations as terms over ΣSem
GTAG, let us

consider the conceptual representation input of G-TAG given in Figure 1.18. We encode
it as the following term over ΣSem

GTAG:

s0 = (SUCCESSION (GOAL (vacuum john) (reward mary john)) nap) (1.21)

E0 := SUCCESSION[1stEVENT⇒ E1, 2ndEVENT⇒ E2]
E1 := GOAL[Action⇒ E11, Purpose⇒ E12]
E2 := NAPPING[NAPPER⇒ H1]
E11 := VACUUMING[VACUUMER⇒ H1]
E12 := REWARDING[REWARDER⇒ H2, REWARDEE⇒ H1]
H1 := HUMAN[NAME⇒ Jean, gender⇒ masc]
H2 := HUMAN[NAME⇒ Marie, gender⇒ fem]

Figure 1.18: An example of a conceptual input of G-TAG

Our way of transformation is valid for the ψ-terms used in G-TAG as they have a
specific form on which our transformation is based.

First, we transform a G-TAG input such as one in Table 1.18 by substituting
every occurrence of a label denoting a ψ-term by that ψ-term. For instance, let us
consider H1 in Table 1.18. It denotes the ψ-term HUMAN[NAME⇒ Jean, gender⇒ masc].
In any term where H1 has occurrences, we substitute those occurrences of H1 with
HUMAN[NAME⇒ Jean, gender⇒ masc].

Each concept defined in G-TAG is either a second order relation, or a first
order relation, or a thing. We further process a conceptual input of G-TAG as
follows:

can be represented a tree-shaped structure, where the parent-child dependency corresponds to the
predicate-argument relation in the conceptual representation input.

217

Chapter 1. G-TAG as ACGs

• If u is a ψ-term whose root symbol belongs to things (e.g. H1 in Table 1.18), we
encode u by a constant h of type e.

• If u is a ψ-term whose root symbol P belongs to first order relations and P
has n arguments, then u has n sub-ψ-terms under the labels associated with the
arguments of P. Let us assume that those sub-ψ-terms are u1 . . . un . We encode u
by the term s1 of type t defined as follows:

s1 = p p1 . . . pn : t (1.22)

Where pi encodes the sub-ψ-term ui of the ψ-term u, for i = 1, . . . , n. p encodes
the root symbol P of u. We type p with the type a1 (. . .(an (t , where ai
is either e or t depending on the type of pi in Equation (1.22), for i = 1, . . . , n.
The type of pi is either e if the root symbol of ui belongs to thing, or it is t if
the root symbol of ui belongs to first order relation, for i = 1, . . . , n.

• If u is a ψ-term whose root P is a second order relation and P has n
arguments,⁶⁴ then u has n sub-ψ-terms, denoted by u1, . . . , un . Assume that one
encodes the ψ-terms u1, . . . un with the terms p1, . . . pn respectively. Then, we
encode u by the term s2, defined as follows:

s2 = p p1 . . . pn : t (1.23)

Where p is of type t (· · ·(t︸ ︷︷ ︸
n−times

(t encoding the root symbol of u, i.e., P.

In order to obtain a HOL term modeling a given conceptual representation input,
we select the term that corresponds to the root node in the tree representation of
the conceptual representation input. By transforming the selected term into a HOL
term using the above-described method, we obtain the HOL term encoding the given
conceptual representation input. For example, in the case of the G-TAG input given in
Table 1.18, we model it with the HOL term s0 defined in Equation (1.21). One can
check that the HOL term s0 is obtained by transforming the ψ-term E0, which serves as
the root node in the tree representation of the conceptual representation input shown
in Table 1.18.

Remark 1.3. Here, we have not considered a case where conceptual representations may give
rise to noun phrases other than proper names, such as une grande maison (a big house).
Nevertheless, it is possible to encode them as HOL terms. Indeed, using the ACG encoding of
TAG with Montague semantics, we can encode semantic interpretations of various kinds of noun
phrases.

1.5.2 Interpretations of Types

In the signature ΣGTAG, we introduced three types T, Sws, and Sinf in addition to the
ones that we adopted from ΣDer

TAG (e.g. S, np, etc.). To interpret the types adopted
from ΣDer

TAG, we refer to their semantic interpretations in the ACG encoding of TAG with

⁶⁴In fact, n is 2 because a second order relation encodes a discourse relation, which has two
arguments.

218

1.5. Interpretations as Conceptual Representations

Montague semantics.⁶⁵ Thus, it only remains to interpret T, Sws, and Sinf as types
built on the set {e, t}.

Type T

We interpret the type S as t , following the ACG encoding of TAG.⁶⁶ In G-TAG, a text
(T) and a sentence (S) both may stand for a surface realization of the same conceptual
representation input. In other words, T and S are not distinguished at the semantic-level.
Thus, S and T should be interpreted in the same way. Since the interpretation of S is
t , we interpret T as t .

Types Sws and Sinf

The lexicon L sem
GTAG interprets the types Sinf and Sws as qnp(t , where qnp abbreviates

the type (e → t)(t , which is the type standing for the interpretation of np. The
type qnp(t encodes the fact that the interpretations of the terms of the Sinf and Sws
types must apply to a subject (a term of type qnp) in order to become terms encoding
propositions (terms of type t). Table 1.4 provides the semantic interpretations of the
types T, Sinf, and Sws.

Abstract Types in ΣGTAG Their translations by the lexicon L sem
GTAG

S, T t
Sinf, Sws ((e → t)(t)︸ ︷︷ ︸

qnp

(t

Table 1.4: Semantic interpretations of the abstract types

Remark 1.4. We interpret np as ((e → t) (t), where a variable of type e is non-
linearly abstracted, as we use the same variable of type e twice in the translation shown
in Equation (1.25) (to model the argument-sharing). Nevertheless, the interpretations are
almost-linear and thereby the problems of parsing and generation are polynomial (Kanazawa,
2007).

1.5.3 Interpretations of Constants

Given a concept C and a lexical entry lex.entry that serves as a lexicalization of
C, G-TAG records the correspondence between the arguments of C (if any) and the
arguments of the lexical entry lex.entry. In order to interpret the abstract constants
modeling lex.entry into semantics, we make use of the concept C and the correspondence
between the arguments of the concept C and lex.entry.

ΣGTAG contains some constants adopted from ΣDer
TAG. To interpret them into semantics,

we refer to the ACG encoding of TAG with Montague semantics. Thus, it remains to
interpret the rest of the constants in ΣGTAG, which can be divided into two parts:

⁶⁵See Table 3.5 on page 81.
⁶⁶By translating S to t , the ACG encoding of TAG with Montague semantics (Pogodalla, 2009) follows

Montague’s (1973) way of identifying types of sentences and propositions.

219

Chapter 1. G-TAG as ACGs

• Constants encoding the discourse connectives, i.e., the constants encoding lexical
entries of adverbials and subordinate conjunctions;

• constants enabling us to construct terms of types Sinf (an infinitive clause) and
Sws (a clause missing a subject).

1.5.3.1 Adverbials

We model underspecified g-derivation trees of an adverbial adv with the following four
abstract constants:

Gadv
S
S : S(S(T

Gadv
S
T : S(T(T

Gadv
T
S : T(S(T

Gadv
T
T : T(T(T

The order of the arguments of an abstract constant matches the syntactic order of
the arguments of the adverbial. Indeed, the first (resp. second) argument of each of
the constants Gadv

S
S, Gadv

S
T, Gadv

T
S , Gadv

T
T models the argument of the adverbial adv under

the label arg1 (resp. arg2) (see Figure 1.19).

adv
(+T,+S)

(argumentX)
(+S)

(argumentY)
(+S)

arg1 arg2

Figure 1.19: A g-derivation tree for the adverbial adv

For example, Table 1.5 shows the interpretations of the constants Gensuite and Gauparavant

encoding the g-derivation trees of ensuite (afterwards) and auparavant (beforehand)
respectively (see Figure 1.20).

ensuite
(+T,+S)

(1st event)
(+S)

(2nd event)
(+S)

arg1 arg2

(a)

auparavant
(+T,+S)

(2nd event)
(+S)

(1st event)
(+S)

arg1 arg2

(b)

Two lexical entries, ensuite and auparavant

220

1.5. Interpretations as Conceptual Representations

Constants in ΣGTAG Their semantic interpretation
Gensuite

S
S,Gensuite

S
T,Gensuite

T
S ,Gensuite

T
T λos1 s2. SUCCESSION s1 s2 : t (t (t

Gauparavant
S

S
,Gauparavant

S

T
,Gauparavant

T

S
,Gauparavant

T

T
λos1 s2. SUCCESSION s2 s1 : t (t (t

Table 1.5: Semantic interpretations of the constants encoding adverbials

1.5.3.2 Conjunctions

ΣGTAG contains two kinds of constants encoding subordinate conjunctions:
1. The constants of type S(S(S, which we use in order to encode canonical

g-derivation trees of conjunctions.
2. The constants of type np (Sws (Sinf (S, which we use in order to

encode reduced conjunctions, that is, sentences with conjunctions where the
argument-sharing takes place between the matrix clause and the subordinated one.

Let us discuss these two cases separately.

1.5.3.2.1 Canonical Conjunctions

Since the type S translates to t , the type S(S(S translates to t (t (t .

Gaprés
canonical = λos1 s2. SUCCESSION s2 s1 : t (t (t (1.24)

Thus, the types of constants modeling canonical conjunctions and adverbials translate
to the same type, i.e., to t (t (t . We build the semantic term to which a constant
encoding a canonical conjunction translates in the same way as we did in the case of
adverbials. For example, Equation (1.24) shows the way one interprets the constant
Gaprés

canonical encoding the canonical g-derivation tree of a subordinate conjunction aprés
(after). The interpretation of Gaprés

canonical encodes that the argument arg1 (resp. arg2) of
aprés corresponds to the argument 2nd event (resp. 1st event) of the concept SUCCESSION.

après
(-T,+S)

(2nd event)
(-T,+S)

(1st event)
(-T,+S)

arg1 arg2

Figure 1.21: The canonical underspecified g-derivation tree of après

1.5.3.2.2 Reduced Conjunctions

We introduced constants of type np(Sws(Sinf(S in ΣGTAG to model sentences
with reduced conjunctions. They encode that the subject of a matrix clause is shared
with a subordinated clause, which is a reduced clause. For instance, in the case of the

221

Chapter 1. G-TAG as ACGs

underspecified derivation tree pour with the feature +[T-reduc.conj] (see Figure 1.23),
we use the analysis shown in Figure 1.22. The semantic interpretation of the constant
Gpour

red. should pass the subject (the interpretation of the term of type np) to both the
interpretation of the term of type Sws and the term of type Sinf. To model this, we
propose the interpretation of the constant Gpour

red. shown in Equation (1.25).

np
Jean︸︷︷︸

shared subject

Sws
a passé l’aspirateur︸ ︷︷ ︸
clause without a subject

pour
Sinf

être recompense par Marie.︸ ︷︷ ︸
infinitve clause

Jean
John

a
have3ps. sg.

passé
passpast part.

l’aspirateur
vacuumerdef.

pour
for

être
to-bepres. inf.

recompensé
rewardpast part.

par
by

Marie.
Mary.

John vacuumed in order to be rewarded by Mary.

Figure 1.22: An analysis of a case with a reduced conjunction - the shared subject

L sem
GTAG(Gpour

red.) = λo subj . λos1. λos2. subj (λx . (GOAL (s1 (λoP .P(x))) (s2 (λoP .P(x))))) :
qnp((qnp(t)((qnp(t)(t

where: qnp , (e → t)(t
(1.25)

pour
+[T-reduc.conj]

(−T,+S)

(Action)
(−T,+S)

(Purpose)
(−T,+S)

arg1 arg2

Figure 1.23: Pour with +[T-reduc.conj]

The interpretation provided by Equation (1.25) shows that both s1 and s2, which are
the interpretations of the arguments of type Sws and Sinf, apply to the term λoP .P(x)
of type qnp, which stands for the interpretation of a term of type np.

1.5.3.3 Reduced (In�nitive) Clauses and Clauses Missing Subjects

We encode a derivation tree of an infinitive clause and a clause missing the subject with
the help of the constants Gv

sws and Gvinf
inf of types ~αn and ~βn respectively.⁶⁷ In order to

provide their semantic interpretations, we refer to the semantic interpretation of the

⁶⁷We defined ~αn , ~βn , and ~γn within Section 1.3.2.2.1 and Section 1.3.2.2.2 on page 207.

222

1.5. Interpretations as Conceptual Representations

constant Gv of type ~γn+1 encoding the initial tree form which one derives a complete
clause. The semantic interpretation of Gv is already available to us from the ACG
encoding of TAG with Montague semantics, as its is one of the constants that we have
adopted from ΣDer

TAG.
The interpretation of Gv

sws and Gvinf
inf should di�er from the interpretation of Gv by

the property that Gv
sws and Gvinf

inf obtain subjects at the last place. Thus, one interprets
the constants Gv

sws and Gvinf
inf as follows:

L sem
GTAG(Gv

sws) = L sem
GTAG(Gvinf

inf) =

λo x1 · · · xi−1 xi+1 · · · xn+1. λo subj . L sem
GTAG(Gv) x1 · · · xi−1 subj xi+1 · · · xn+1 (1.26)

For instance, let us consider the constants Grécompense
sws : SA (VA (np(Sws and

Grécompenser
inf : SA (VA (np (S. We propose the following semantic translations of

these constants:

Constants in ΣGTAG Their interpretations under L sem
GTAG

Grécompense
sws, Grécompense

inf λo sa va obj . λo subj . sa(subj (va(λ x . (obj (λ y . (reward x y)))))) :
(t (t)(((e → t)((e → t))(qnp(qnp(t

Table 1.6: Semantic interpretations of constants of ΣGTAG

Finally, the constant AnchorT : S(T translates to the identity function λox . x : t (
t . Indeed, in our encoding, there is no semantic di�erence between texts and sentences.

Table 1.24 provides the semantic interpretations of the constants and types of ΣGTAG.

Example 1.3.
Let us consider the g-derivation tree in Figure 1.25 on the next page. We encode⁶⁸

it by the term t2GTAGex ∈ Λ(ΣGTAG) defined in Example 1.2 on page 214 and repeated in
Equation (1.27).

t2GTAGex = Gensuite
s
s (Gpour

red.Gjean(Gpasse-laspirateur
sws ISA IVA) (Getre-recomepnse-par

inf ISA IVA Gmarie))

(Gfait-une-sieste ISA IVA Gjean) : T (1.27)

The lexicon L sem
GTAG interprets the term t2GTAGex as the following term of type t :

L sem
GTAG(t2GTAGex) = SUCCESSION

(GOAL
(vacuum john)
(reward mary john)

)
(nap john)

: t

(1.28)

⁶⁸We provide the ACG code for this example in Appendix B.1 on page 331.

223

Chapter 1. G-TAG as ACGs

Constants & Types in ΣGTAG Their interpretations under the lexicon L sem
GTAG

np qnp
T, S t
Sws, Sinf qnp(t
Gensuite

S
S λos1 s2.SUCCESSION s1 s2

.
Gensuite

T
T λos1 s2.SUCCESSION s1 s2

Gauparavant
S
S

λos1 s2.SUCCESSION s2 s1

.

...
...

Gaprès
canonical λos1 s2.SUCCESSION s2 s1

Gaprès
red. λo subj . λos1. λos2. subj (λx . (SUCCESSION (s2 (λoP .P(x))) (s1 (λoP .P(x)))))

Gavant
canonical λos1 s2.SUCCESSION s1 s2

Gavant
red. λo subj . λos1. λos2. subj (λx . (SUCCESSION (s1 (λoP .P(x))) (s2 (λoP .P(x)))))

Gpour
canonical λos1 s2.GOAL s1 s2

Gpour
red. λo subj . λos1. λos2. subj (λx . (GOAL (s1 (λoP .P(x))) (s2 (λoP .P(x)))))

.
Gfait-une-sieste λo sa va subj . sa(subj (va(λ x . (sleep x))))
Gfait-une-sieste

sws λo sa va . λo subj . sa(subj (va(λ x . (sleep x))))
Gfaire-une-sieste

inf λo sa va . λo subj . sa(subj (va(λ x . (sleep x))))
.
Gpasse-l-aspirateur λo sa va subj . sa(subj (va(λ x . (vacuum x))))
Gpasse-l-aspirateur

sws λo sa va . λo subj . sa(subj (va(λ x . (vacuum x))))
Gpasser-l-aspirateur

sws λo sa va . λo subj . sa(subj (va(λ x . (vacuum x))))
.
Grécompense λo sa va subj . λo obj . sa(subj (va(λ x . (obj (λ y . (reward x y))))))
Grécompense

sws λo sa va obj . λo subj . sa(subj (va(λ x . (obj (λ y . (reward x y))))))
Grécompenser

inf λo sa va obj . λo subj . sa(subj (va(λ x . (obj (λ y . (reward x y))))))
...

...

Figure 1.24: Semantic translations of the abstract constants and types

ensuite

pour
+[T-reduced-conj]

passer-l’aspirateur

Jean

récompenser
+[T-passive]

+[T-reduced-conj]

Marie ε

faire-la-sieste

il

arg1

arg1

arg1

arg2

arg1 arg2

arg2

arg1

Figure 1.25: A g-derivation tree of a text

224

1.6. Parsing and Generation Using the ACG encoding of G-TAG

1.6 Parsing and Generation Using the ACG encoding
of G-TAG

The abstract vocabulary of the ACG architecture for G-TAG is a second-order one
and the interpretations are almost-linear. Therefore, the complexities of the problems
of the parsing and generation with the ACG encoding of G-TAG are polynomial
(Kanazawa, 2007). In order to simulate the G-TAG text generation process, for a
given semantic formula u, we compute the set Tu of terms over ΣGTAG such that the
lexicon L sem

GTAG interprets each element of Tu as u. In order to obtain the derived trees
corresponding to the input u, one applies the L GTAG

synt lexicon to the elements of Tu .
To obtain surface realizations, one interprets the elements of Tu under the lexicon
Lyield ◦L TAG

synt ◦LGTAG−TAG.

G-derivation Trees

ΣGTAG

G-TAG Semantics

ΣSem
GTAG

ΣDer
TAG

TAG Derivations

ΣSynt
TAG

TAG syntax

L sem
GTAG

LGTAG−TAG

L TAG
synt

L GTAG
synt = L TAG

synt ◦LGTAG−TAG

Figure 1.26: The ACG architecture for G-TAG

Notice that G-TAG selects only one surface form as the final output of its generation
process. In this respect, our approach di�ers from G-TAG. Nevertheless, it is possible
to apply a ranking strategy on the generated surface forms and select only one of them
as a final result. However, in this thesis, we do not use any ranking strategy. Thus, the
final output may consist of several surface forms.

Example 1.4.
Let us consider the following example which demonstrates the text generation process

within the ACG architecture that we propose.
Let u = SUCCESSION (vacuum j)(nap j) : t . We employ a sample ACG signatures

encoding G-TAG grammar shown in Appendix B.3. As a result of parsing u with the
lexicon L sem

GTAG, we obtain the terms listed in Figure 1.27. These terms encode various
g-derivation trees that G-TAG could built out of the G-TAG conceptual representation
input modeled by u.

We map the terms shown in Figure 1.27 using the lexicon L TAG
synt ◦LGTAG−TAG in

order to produce the terms encoding their derived trees. We obtain the terms defined in

225

Chapter 1. G-TAG as ACGs

Equations (1.29),(1.30), (1.31), (1.32), (1.33), and (1.34). These terms encode derived
trees depicted in Figure 1.28, Figure 1.29, Figure 1.30, Figure 1.31, Figure 1.32, and
Figure 1.33, respectively. By mapping these derived trees under the lexicon Lyield, one
obtains the strings, i.e., surface retaliations shown in Figure 1.34 on page 230.

t1.1 Gensuite
S
S (Gpassé-laspirateur ISA Ga Gjean) (Gfait-une-sieste ISA Ga Gil) : T

t1.2 Gensuite
T
T (AnchorT(Gpassé-laspirateur ISA Ga Gjean)) (AnchorT(Gfait-une-sieste ISA Ga Gil)) : T

t1.3 Gensuite
T
S (AnchorT (Gpassé-laspirateur ISA Ga Gjean)) (Gfait-une-sieste ISA Ga Gil) : T

t1.4 Gensuite
S
T (Gpassé-laspirateur ISA Ga Gjean) (AnchorT (Gfait-une-sieste ISA Ga Gil)) : T

t2.1 Gauparavant
S

S
(Gfait-une-siesteS ISA Ga Gjean) (Gpassé-laspirateur ISA Ga Gil) : T

t2.2 Gauparavant
T

T
(AnchorT (Gfait-une-sieste ISA Ga Gjean)) (AnchorT (Gpassé-laspirateur ISA Ga Gil)) : T

t2.3 Gauparavant
T

S
(Gfait-une-sieste ISA Ga Gjean) (AnchorT (Gpassé-laspirateur ISA Ga Gil)) : T

t2.4 Gauparavant
S

T
(AnchorT (Gfait-une-sieste ISA Ga Gjean)) (Gpassé-laspirateur ISA Ga Gil) : T

t3.1 AnchorT(Gavant
canonical (Gpassé-laspirateur ISA Ga Gjean) (Gfasse-une-sieste ISA IVA Gil)) : T

t3.2 AnchorT(Gavant
red. Gjean (Gpassé-laspiratuer

sws ISA Ga) (Gfaire-une-sieste
sinf ISA IVA)) : T

t4.1 AnchorT(Gaprès
canonical (Gfait-une-sieste ISA Ga Gjean) (Gpassé-laspirateur ISA Ga Gil)) : T

t4.2 AnchorT (Gaprès
red. Gjean (Gfait-une-sieste

sws ISA Ga) (Gpasser-laspiratuer
sinf ISA IVA)) : T

Figure 1.27: Terms modeling g-derivation trees

L GTAG
synt (t1.1) = L GTAG

synt (t1.2) = L GTAG
synt (t1.3) = L GTAG

synt (t1.4) = (1.29)

S

S

NP

Jean

VP

AUX

a

VP

V

passé

NP

DET

l

N

aspirateur

Punct

dot

S

ADV

Ensuite Punct

comma

S

NP

Il

VP

Aux

a

VP

V

fait

NP

DET

une

N

sieste

Figure 1.28: A derived tree obtained as the interpretation of the terms encoding
g-derivation trees

226

1.6. Parsing and Generation Using the ACG encoding of G-TAG

L GTAG
synt (t2.1) = L GTAG

synt (t2.2) = L GTAG
synt (t2.3) = L GTAG

synt (t2.4) = (1.30)

S

S

NP

Jean

VP

Aux

a

VP

V

fait

NP

DET

une

N

sieste

Punct

dot

S

ADV

Auparavant Punct

comma

S

NP

Il

VP

AUX

a

VP

V

passé

NP

DET

l

N

aspirateur

Figure 1.29: A derived tree obtained as the interpretation of the terms encoding
g-derivation trees

L GTAG
synt (t3.1) = (1.31)

S

S

NP

Jean

VP

AUX

a

VP

V

passé

NP

DET

l

N

aspirateur

S

PP

PREP

avant

C

que

S

NP

il

VP

V

fasse

NP

DET

une

N

sieste

Figure 1.30: A derived tree obtained as the interpretation of a term encoding a
g-derivation tree

227

Chapter 1. G-TAG as ACGs

L GTAG
synt (t3.2) = (1.32)

S

S

NP

Jean

VP

AUX

a

VP

V

passé

NP

DET

l

N

aspirateur

S

PP

PREP

avant

C

de

S

NP

PRO

VP

V

faire

NP

DET

une

N

sieste

Figure 1.31: A derived tree obtained as the interpretation of a term encoding a
g-derivation tree

L GTAG
synt (t4.1) = (1.33)

S

S

NP

Jean

VP

AUX

a

VP

V

fait

NP

DET

une

N

sieste

S

PP

PREP

après

C

que

S

NP

il

VP

AUX

a

VP

V

passé

NP

DET

l

N

aspirateur

Figure 1.32: A derived tree obtained as the interpretation of a term encoding a
g-derivation tree

228

1.6. Parsing and Generation Using the ACG encoding of G-TAG

L GTAG
synt (t4.2) = (1.34)

S

S

NP

Jean

VP

AUX

a

VP

V

fait

NP

DET

une

N

sieste

S

PP

PREP

après

C

ε

S

NP

PRO

VP

AUX

avoir

VP

V

passé

NP

DET

l

N

aspirateur

Figure 1.33: A derived tree obtained as the interpretation of a term encoding a
g-derivation tree

Remark 1.5. The terms L GTAG
synt (t1.1), L GTAG

synt (t1.2), L GTAG
synt (t1.3) and L GTAG

synt (t1.4) are the same
(see Equation (1.29)), that is, the syntactic interpretations of the terms t1.1, t1.2, t1.3, and t1.4
are the same (the same is true in the case of t2.1, t2.2, t2.3, and t2.4). This is due to the
fact that in ΣGTAG, we introduced four constants for an adverbial all of which have the same
syntactic interpretations, and at the same time, AnchorT ∈ ΣGTAG translates to the identity
function under the lexicon L GTAG

synt . Instead of having four constants for an adverbial, we
can have only one Gadv

T
T : T (T (T but we can still produce the same set of syntactic

interpretations. For example, if we have Gadv
S
S t1 t2 , where t1 and t2 are of type S, we

de�ne the term Gadv
T
T (AnchorT t1) (AnchorT t2). The terms Gadv

T
T (AnchorT t1) (AnchorT t2)

and Gadv
S
S t1 t2 have the same translations under any lexicon de�ned by us. Thus, it is su�cient

to have instead of the four constants Gadv
S
S, Gadv

S
T, Gadv

T
S , and Gadv

T
T, only one constant Gadv

T
T of

type T(T(T.
In the rest of this thesis, we assume that in ΣGTAG we have only one constant Gadv

T
T : T(

T(T encoding the G-TAG lexical entry of the adverbial adv.

As the generated surface realizations illustrate (see Figure 1.34 on the next page),
the adverbials ensuite and auparavant occupy only clause-initial positions. However,
G-TAG could output a text where an adverbial appears at a clause-medial position.
G-TAG does so by first generating a text where all the adverbials are at the clause-
initial positions, and then, the post-processing module may move an adverbial from a
clause-initial position to a clause-medial one. The G-TAG way of producing texts with
clause-medial adverbials is not an option for us because we do not employ any kind of
extra processing step. In the next chapter, we provide a solution that allows one to

229

Chapter 1. G-TAG as ACGs

Lyield(L GTAG
synt (t1.1)) = Lyield(L GTAG

synt (t1.2)) = Lyield(L GTAG
synt (t1.3)) = Lyield(L GTAG

synt (t1.4)) =

Jean+a+passé+l+aspirateur+dot+Ensuite+comma+Il+a+fait+une+sieste

Lyield(L GTAG
synt (t2.1)) = Lyield(L GTAG

synt (t2.2)) = Lyield(L GTAG
synt (t2.3)) = Lyield(L GTAG

synt (t2.4)) =

Jean+a+fait+une+sieste+dot+Auparavant+comma+Il+a+passé+l+aspirateur

Lyield(L GTAG
synt (t3.1)) =

Jean+a+passé+l+aspirateur+avant+que+il+fasse+une+sieste

Lyield(L GTAG
synt (t3.2)) =

Jean+a+passé+l+aspirateur+avant+de+faire+une+sieste

Lyield(L GTAG
synt (t4.1)) =

Jean+a+fait+une+sieste+après+que+il+a+passé+l+aspirateur

Lyield(L GTAG
synt (t4.2)) =

Jean+a+fait+une+sieste+après+avoir+passé+l+aspirateur

Figure 1.34: Surface realizations

230

1.6. Parsing and Generation Using the ACG encoding of G-TAG

encode texts with clause-medial connectives without making use of an extra-processing
step.

231

Chapter 1. G-TAG as ACGs

232

Chapter 2

Encoding Clause-Medial
Connectives

Contents
2.1 Encoding Clause-Medial Connectives 233

2.1.1 A New Analysis of Clause-Medial Connectives 234

2.1.2 Encoding Clause-medial Connectives in the Abstract Vocab-
ulary . 235

2.2 Interpretations of G-derivation Trees as TAG Derivation Trees 237

2.3 A Modular Interpretation of ΣGTAG to TAG Derivation Trees . 239

2.3.1 The Lexicon from ΣGTAG to Σg-der 241

2.3.2 The Lexicon from Σg-der to ΣDer
TAG 242

We extend the ACG encoding of G-TAG with the aim of modeling texts containing clause-
medial connectives. In contrast to G-TAG, where one makes use of a post-processing module
in order to transform a text containing clause-initial connectives into a text containing
clause-medial connectives, we propose an encoding that makes it possible to generate the
texts containing clause-medial connectives without applying a post processing step. Our
approach to texts containing with clause-medial connectives is purely grammatical, like it is
in the case of texts containing no clause-medial but only clause-initial connectives, in the
ACG encoding of G-TAG. In particular, we introduce a constant in the abstract vocabulary
to model a clause-medial connective. This enables us to de�ne an abstract term modeling
a g-derivation tree of a text containing the clause-medial connective. By interpreting this
abstract term, one obtains the text containing the clause-medial connective.

2.1 Encoding Clause-Medial Connectives

In G-TAG, to generate a text where a discourse connective appears at the clause-medial
position, G-TAG first generates the canonical text with the help of its discourse grammar.

233

Chapter 2. Encoding Clause-Medial Connectives

In the canonical text each connective occupies a clause-initial position. Afterwards, the
G-TAG post processing module modifies the canonical text by moving some discourse
adverbials from clause-initial positions to clause-medial ones. For example, to generate
the discourse (30), the post-processing module of G-TAG modifies the canonical text
(29) by moving the discourse adverbial ensuite (then) from the clause-initial position to
the clause-medial one.

Since we make use of no extra processing step, we aim at the modeling of texts
containing clause-medial connectives in one step.

(29) Jean
John

a
have3ps. sg.

passé
passpast part.

l’aspirateur
vacuumerdef.

pour
for

être
to-bepres. inf.

récompensé
rewardpast part.

par
by

Marie.
Mary.

Ensuite,
Afterward,

il
he

a
have3ps. sg.

fait
make3ps. sg.

une
a

sieste.
nap.

John vaccumed in order to be rewarded by Mary. Then, he took a nap.

(30) Jean
John

a
have3ps. sg.

passé
passpast part.

l’aspirateur
vacuumerdef.

pour
for

être
to-bepres. inf.

récompensé
rewardpast part.

par
by

Marie.
Mary.

Il
He

a
have3ps. sg.

ensuite
afterward

fait
make3ps. sg.

une
a

sieste.
nap.

John vacuumed in order to be rewarded by Mary. He then took a nap.

2.1.1 A New Analysis of Clause-Medial Connectives

The objective is to encode an adverbial connective at a clause-medial position without
deviating significantly from the general principles of G-TAG regarding discourse connec-
tives. In G-TAG, a connective anchors an initial tree with two substitution sites, as it
is illustrated in Figure 2.1. By filling the substitution sites in this tree, one obtains a
derived tree of a discourse. The yield of the derived tree is a discourse (text) where
the adverbial adv occupies a clause-initial position.

S

S ↓ S

ADV

adv

S

S ↓

Figure 2.1: The G-TAG initial tree anchored with an adverbial

In LTAG (Abeillé, 1988; XTAG-Group, 1998), a discourse adverbial adv at the

clause-medial position anchors a VP-rooted auxiliary tree
VP

adv VP∗
. We cannot

234

2.1. Encoding Clause-Medial Connectives

adopt the LTAG analysis of clause-medial adverbial connectives because (a) in G-TAG,
an elementary tree of an adverbial is an initial tree, whereas in LTAG, an adverbial
anchors an auxiliary tree; (b) the LTAG analysis of an adverbial associates it only with
one argument, whereas in G-TAG it has two arguments (obtained by substituting two
trees into the initial tree anchored with the adverbial).

We propose to combine the properties of the LTAG auxiliary tree and the G-TAG
initial tree anchored with an adverbial. In particular, a construction corresponding to
the adverbial adv should have two substitution sites (in the style of G-TAG); and the
auxiliary tree anchored with the adverbial adv should adjoin on the VP node into a
tree (in the style of LTAG) that substitutes at one of these substitution sites. Figure 2.2
on the following page illustrates our analysis: In a tree anchored with the full stop,

there are two S-substitution sites; an auxiliary tree
VP

adv VP∗
adjoins on the VP-node

of a substituted tree that gives rise to the rightmost piece of the discourse (the one that
substitutes at the address 3).

Remark 2.1. As Figure 2.2 indicates, we do not analyze a clause-medial adverbial as a tree,
but as a set of trees {α, β}. The tree α has two substitution sites. Two trees, γ1 and γ2, �ll
the substitution sites of α, at the addresses 1 and 3, respectively. The tree β adjoins on the
VP node into γ2. In spite of the fact that we use sets of trees {α, β} and {γ1, γ2}, like it is
in a set-local MC-TAG (Vijay-Shanker, David J. Weir, and A. K. Joshi, 1987), our approach
cannot be directly expressed in a set-local MC-TAG. In particular, the notion of a derivation
step in a set-local MC-TAG only allows one to substitute/adjoin trees from one set A into the
trees belonging to the same tree set B . The analysis proposed by us does more than that: The
trees from the set {γ1, γ2} substitute into the tree α, whereas the tree β adjoins into γ2. To
model this analysis using a set-local MC-TAG, one would need to make use of at least two
derivation steps and some features. For instance, one can do it as follows: At the �rst step,
the trees from the set {γ1, γ2} substitute into α. At the second step, β adjoins in the resultant
tree. In particular, β should adjoin on the VP node of the tree γ2. This adjunction should be
obligatory. One can model that using features on β and on γ2.

2.1.2 Encoding Clause-medial Connectives in the Abstract Vocab-
ulary

We extend the ACG encoding of G-TAG proposed in Chapter 1 in order to encode texts
with clause-medial connectives. To encode the case where an adverbial adv appears at
a clause-medial position, we encode the analysis illustrated in Figure 2.2 with the help
of ACGs. In particular, we introduce a new abstract constant Gadv

medial in the abstract
vocabulary ΣGTAG. In ΣGTAG, the constant Gadv

medial has the similar characteristics to the
constant Gadv

T
T encoding the adverbial adv at the clause-initial position. Indeed, like

Gadv
T
T, the constant Gadv

medial has two arguments representing the derivation trees of clauses.
Let us denote them with t1 and t2 . By applying Gadv

medial to t1 and t2 , one obtains a
term Gadv

medial t1 t2 . The syntactic interpretation of the term Gadv
medial t1 t2 should be a term

encoding a derived tree of a text where adv occurs at a clause-medial position in the
syntactic interpretation of the term t2 .

235

Chapter 2. Encoding Clause-Medial Connectives

S

S ↓ Punct

.

S ↓

VP

VP adv

S

VP

Figure 2.2: An analysis of a text containing the adverbial connective adv at a clause-
medial position

In order to obtain the syntactic interpretation of the constant Gadv
medial, we first interpret

it into TAG derivation trees (Λ(ΣDer
TAG)) with the help of the lexicon LGTAG−TAG. However,

before interpreting Gadv
medial, we must type it. For that, let us consider the analysis presented

in Figure 2.2. According to it, the interpretation of the second argument of Gadv
medial

should be able to receive an adjunction on its VP-node, because otherwise, the auxiliary

tree
VP

adv VP∗
would not be able to adjoin into it. By receiving a VP-adjunction, the

interpretation of second argument of Gadv
medial should become a derived tree of a sentence.

Something that is looking for a VP adjunction in order to become a sentence can be
encoded by a term of type VA (S. Thus, the type VA (S can serve as a type of the
second argument of the constant Gadv

medial. The first argument of Gadv
medial could be a term

of type S, because neither adjunction nor substitution is going to be performed on the
first sentence. In fact, since no operation is performed on the the first argument of the
constant Gadv

medial, we can model it as a text (a term of type T). Hence, we can type the
constant Gadv

medial with the type T((VA (S)(T.
Notice that the type T((VA (S)(T of the Gadv

medial constant is third-order (due
to (VA (S)). This makes the abstract signature ΣGTAG third-order as well. In this
case, Kanazawa’s (2007) results do not apply. Consequently, one cannot guarantee
that the parsing and generation tasks would remain polynomial as it is in the case of
second-order ACGs. To maintain the second-order abstract vocabulary, we propose to
type the constant Gadv

medial with a second-order type, namely, with T(S(T. However,
by typing the constant Gadv

medial with the type T(S(T, one needs to express that a
term over ΣGTAG of type S (the second argument of an the constant Gadv

medial) can receive
an adjunction, i.e., an argument of type VA. To be more precise, the interpretation of
a term over ΣGTAG of type S should be a term over ΣDer

TAG of type VA (S. To achieve

236

2.2. Interpretations of G-derivation Trees as TAG Derivation Trees

that, we redefine the lexicon LGTAG−TAG : ΣGTAG −→ ΣDer
TAG. Now, LGTAG−TAG interprets

S from ΣGTAG as VA (S into ΣDer
TAG. Like before, LGTAG−TAG interprets the type T from

ΣGTAG as S into ΣDer
TAG. We interpret the new constant Gadv

medial : T(S(T to Λ(ΣDer
TAG) as

it is shown in Equation (2.31).

LGTAG−TAG(Gadv
medial) = λo s1. λo s2. CConcat s1 (s2 Cadv

V) :

S((VA (S)(S (2.31)

In Equation (2.31), the constant Cadv
V of type VA stands for the auxiliary tree

VP

adv VP∗
. The constant CConcat of type S(S(S represents an initial tree with

two substitution sites anchored with the full stop, shown in Figure 2.3. Thus, the term
λo s1.λo s2. CConcat s1 (s2 Cadv

V) encodes the fact that is pictorially shown in Figure 2.2 on
the facing page: s2 receives a VP-adjunction (Cadv

V) inserting adv at a clause-medial
position. The terms s1 and (s2 Cadv

V), which represent the derivation trees of the first
and second pieces of a text respectively, are the arguments of CConcat . The constant
CConcat receives the first tree (s1) and the second one (s2 Cadv

V) and puts the full stop
between them. In this way, one obtains a text where an adverbial adv appears at a
clause-medial position in the second sentence (s2 Cadv

V).

S

S ↓ Punct

.

S ↓

Figure 2.3: The tree modeled by CConcat

2.2 Interpretations of G-derivation Trees as TAG Deriva-
tion Trees

To interpret g-derivation trees as derived trees, we first interpret g-derivation trees as
TAG derivation ones. Since TAG derivation trees are already interpreted as derived
trees, by composition of the two interpretations, one obtains the interpretation of
g-derivation trees as derived trees.

Since we extend the ACG encoding of G-TAG, the translation of the type S from
ΣGTAG to VA (S in ΣDer

TAG requires to make changes in the translations of the abstract
constants whose types involve S. There are two cases:

1. G is a first order predicate (a clause missing a subject, an infinitive clause, an
initial tree anchored with a verb, predicative adjective, etc.);

237

Chapter 2. Encoding Clause-Medial Connectives

2. G is a constant encoding an initial tree anchored with a conjunction (e.g. Gavant
canonical :

S(S(S or Gavant
red. : np(Sws(Sinf(S).

Let us consider a constant Grécompense : SA (VA (np(np(S. Since the type
S ∈ ΣGTAG translates to S(VA into ΣDer

TAG, if we do not make any further changes in its
translation by the LGTAG−TAG lexicon, then the constant Grécompense would translate to a
term over Λ(ΣDer

TAG) of the following type:

LGTAG−TAG(Grécompense) : SA (VA (np(np((VA (S) (2.32)

Thus, the interpretation of the constant Grécompense in the TAG derivation trees requires
an additional VP-adjunction in order to become a term of type S.

Let us denote with trécompense
GTAG the following abstract term over ΣGTAG:

trécompense
GTAG = Grécompense ISA IVA Gjean Gmarie : S (2.33)

The interpretation of the term trécompense
GTAG into Λ(ΣDer

TAG) should be of type VA (S as
the type S form ΣGTAG translates to the VA (S type in ΣDer

TAG. Let us interpret the term
trécompense

GTAG into Λ(ΣDer
TAG). We obtain the following:

LGTAG−TAG(trécompense
GTAG) =

LGTAG−TAG(Grécompense) LGTAG−TAG(ISA) LGTAG−TAG(IVA)

LGTAG−TAG(Gjean) LGTAG−TAG(Gmarie) : VA (S
(2.34)

By computing the value of the LGTAG−TAG(trécompense
GTAG) term in the right-hand side of

Equation (2.34), we must obtain the following:

LGTAG−TAG(trécompense
GTAG)�β λ

o mod . t [mod] : VA (S (2.35)

Where t is a term; t [mod] denotes the term t but expresses that in t the variable
mod has a free occurrence. The variable mod : VA should appear in the sub-term
encoding the VP-adjunction site (the clause-medial position). Indeed, by applying
LGTAG−TAG(trécompense

GTAG) to the term Cadv
V : VA, we should obtain a term modeling TAG

derivation tree of a clause where the adverbial adv occupies a clause-medial position.
To achieve that, we propose the following interpretation of the constant Grécompense to
Λ(ΣDer

TAG):

LGTAG−TAG(Grécompense) =

λo sa va subj obj . λo mod .
SA(VA(np(np(S︷ ︸︸ ︷

Crécompense

SA︷︸︸︷
sa

VA︷ ︸︸ ︷
(va mod︸︷︷︸

VA

)

np︷︸︸︷
subj

np︷︸︸︷
obj :

SA ((VA (VA)(np(np((VA (S) (2.36)

As Equation (2.36) indicates, we use the constant Crécompense ∈ ΣDer
TAG of type SA (

VA (np(np(S, which is a standard type of a constant encoding a transitive verb

238

2.3. A Modular Interpretation of ΣGTAG to TAG Derivation Trees

in ΣDer
TAG. Thus, we do not make any changes in the constants of ΣDer

TAG. In the translation
shown in Equation (2.36), the sub-term (va mod) of type VA provides a needed slot
for a VP-adjunction that one can use in order to place an adverbial at a clause-medial
position. The term (va mod) is of type VA because we use the constant Crécompense of
ΣDer

TAG of type SA (VA (np(np(S. The variable mod is of type VA. Hence, the
variable va is of type VA (VA. This implies that the type VA of ΣGTAG translates to
VA (VA into ΣDer

TAG.

Types in ΣGTAG Their translations by LGTAG−TAG
S VA (S

VA VA (VA

Table 2.1: Interpretations of the types S and VA into ΣDer
TAG

Hence, the lexicon LGTAG−TAG interprets a constant of type SA (VA (np (
np(S from ΣGTAG as a term of type SA ((VA (VA)(np(np((VA (S) into
Λ(ΣDer

TAG).
Since now LGTAG−TAG interprets VA from ΣGTAG as VA (VA into ΣDer

TAG, one must
redefine LGTAG−TAG on the constants of ΣGTAG whose types involve VA.

Let us recall that in the ACG encoding of G-TAG, we interpreted the type Sws (a
clause missing a subject) as np(S into ΣDer

TAG. Now, a question is what should be the
interpretation of Sws in ΣDer

TAG, should it be np (S or np (VA (S? Interpreting
Sws as np(VA (S would allow us to analyze sentences with reduced conjunction
whose matrix clause contains an adverbial at the clause-medial position.⁶⁹ Consequently,
we have to make changes into the interpretations of the constants encoding reduced
conjunctions into Λ(ΣDer

TAG) because (a) we changed the interpretation of the type S; (b)
we change the interpretation of the type Sws. Thus, we have to redefine the lexicon
LGTAG−TAG on various constants simultaneously.

While it is possible to redefine interpretation of all the above mentioned types and
constants at the same time, it is also possible to do that sequentially. In the next
section, we develop an approach that o�ers a modular view on the relationship between
G-TAG derivation trees and TAG derivation ones.

2.3 A Modular Interpretation of ΣGTAG to TAG Deriva-
tion Trees

Instead of simultaneously interpreting the types S and Sws from ΣGTAG as VA (S and
np(VA (S in ΣDer

TAG respectively, we propose to do it in a sequential order. For that,
we introduce a new object vocabulary Σg-der. Figure 2.4 on the following page shows the
new ACG architecture. We define the following ACGs:

1. G1 = 〈ΣGTAG,Σg-der,LG,T〉

⁶⁹For more details, see Section 2.3.2.2.2 on page 243.

239

Chapter 2. Encoding Clause-Medial Connectives

G-derivation Trees

ΣGTAG

G-derivations

Σg-der

ΣDer
TAG

TAG Derivations

ΣSynt
TAG

derived trees

LGTAG−TAG = Lgder−tag ◦LG

L TAG
synt

LG

Lgder−tag

Figure 2.4: An ACG architecture for G-TAG

2. G2 = 〈Σg-der,Σ
Der
TAG,Lgder−tag,T〉

We split the tasks of encoding the phenomena of reduced conjunctions and clause-
medial connectives into two. We encode reduced conjunctions with the help of the
ACG G1, whereas we encode clause-medial connectives with the help of the ACG G2.
The composed ACG G2 ◦ G1 enables us to encode both clause-medial connectives and
reduced conjunctions. In this ACG architecture, we have the following lexicons:

1. The lexicon LG : ΣGTAG −→ Σg-der interprets Sws from ΣGTAG as np(S in Σg-der;
2. The lexicon Lgder−tag : Σg-der −→ ΣDer

TAG interprets S from Σg-der as VA (S in ΣDer
TAG.

Thus, one obtains the following:

Lgder−tag(LG(Sws)) = Lgder−tag(np(S) = Lgder−tag(np)(Lgder−tag(S) =

= Lgder−tag(np)(VA (S = np(VA (S (2.37)

As Equation (2.37) shows, the lexicon Lgder−tag ◦LG of the composed ACG G2 ◦ G1

interprets Sws from ΣGTAG as np(VA (S in ΣDer
TAG.

The new object vocabulary Σg-der is similar to the abstract vocabulary ΣGTAG. In
particular, in Σg-der, one has all the types from ΣGTAG except Sws and Sinf. Besides
types, in Σg-der, we adopt constants from ΣGTAG so that if a constant Gα is in ΣGTAG, then
the constant gα is in Σg-der, except from the constants such as Gv

sws. By convention, we
denote constants of Σg-der by gα .

Thus, it remains to define the lexicons LG : ΣGTAG −→ Σg-der and Lgder−tag : Σg-der −→
ΣDer

TAG.

240

2.3. A Modular Interpretation of ΣGTAG to TAG Derivation Trees

2.3.1 The Lexicon from ΣGTAG to Σg-der

2.3.1.1 Interpretations of Types

The lexicon LG : ΣGTAG −→ Σg-der interprets the type Sws from ΣGTAG as np(S in Σg-der.
This is similar to what we did in the ACG encoding of G-TAG, where we interpreted
Sws from ΣGTAG as np(S in ΣDer

TAG. In addition, we interpret Sinf from ΣGTAG as S in
Σg-der.

The rest of the types are interpreted as themselves: For any X atomic type in ΣGTAG

that is di�erent from Sws and Sinf, the lexicon LG translates the type X from ΣGTAG to
X in Σg-der. For instance, the type T in ΣGTAG translates to T in Σg-der.

2.3.1.2 Interpretations of Constants

Any constant Ga from ΣGTAG translates to ga in Σg-der provided that the type of the constant
Ga contains neither Sws nor Sinf. For example, the lexicon LG translates constants
Gadv

T
T : T(T(T and Gadv

medial : T(S(T as the constants gadv
T
T : T(T(T and

gadv
medial : T(S(T, respectively. It remains to interpret constants encoding subordinate

conjunctions and the first order predicates (the ones that enable us to encode derivation
trees of clauses).

2.3.1.2.1 Conjunctions

Canonical Conjunctions

LG interprets the constant Gconj
canonical to gconj

canonical, as they both represent the same
elementary tree anchored by conj.

Reduced Conjunctions

Since the lexicon LG interprets the type Sws ∈ ΣGTAG as np (S in Σg-der, one
encodes the subject-sharing with the help of LG. Namely, we interpret the constants
modeling reduced conjunctions by LG so that the interpretations encode that the subject
syntactically belongs to the clause missing a subject. That is, we interpret the constant
Gconj

red. of type np (Sws (Sinf (S encoding the reduced g-derivation tree of the
conjunction conj as follows:

LG(Gconj
red.) = λo np s1 s2. gconj

red. (s1 np) s2 (2.38)

Where in Equation (2.38) the constant gconj
red. is of type S (S (S. As this

interpretation indicates, we combine the subject and the clause missing a subject (s1 np).
The constant gconj

red. resembles the underspecified g-derivation tree of conj: gconj
red. has two

variable nodes which can be instantiated with g-derivation trees of clauses (terms of
type S).⁷⁰

⁷⁰This interpretation is similar to the interpretations of constants encoding reduced conjunctions from
ΣGTAG into Λ(ΣDer

TAG).

241

Chapter 2. Encoding Clause-Medial Connectives

2.3.1.2.2 First Order Predicates

To illustrate the way the lexicon LG interprets the constants enabling us to produce
terms of type Sinf and Sws, we provide Table 2.2. In general, given the constants
Gv

sws : ~αn and Gvinf
inf : ~βn enabling us to produce the terms of types⁷¹ Sws and Sinf

respectively, we interpret them into Λ(Σg-der) as follows:

LG(Gv
sws) = λox1 . . . xn .λosubj . gv x1 . . . subj . . . xn (2.39)

LG(Gvinf
inf) = gvinf

inf : ~δn (2.40)

Where gv denotes an initial tree anchored by v . The interpretation shown in
Equation (2.39) encodes that a clause missing the subject di�ers from a finite clause
only by the fact that it receives the subject (the variable subj) at the last place.⁷²

Constants in ΣGTAG Their translations by the lexicon LG into Λ(Σg-der)

Grécompense
sws : SA (VA (np(Sws λosa va obj .λosubj .grécompense sa va subj obj :

SA (VA (np(np(S

Grécompenser
inf : SA (VA (np(Sinf grécompenser

inf : SA (VA (np(S

Table 2.2: Interpretations of constants enabling to produce terms of types Sws and Sinf

2.3.2 The Lexicon from Σg-der to ΣDer
TAG

As we already mentioned, to model the clause-medial adverbials, the lexicon Lgder−tag :
Σg-der −→ ΣDer

TAG interprets S as VA (S. As we saw in Section 2.2, in addition to
interpreting S as VA (S, the modeling of clause-medial adverbials requires interpreting
of VA from Σg-der as VA (VA into ΣDer

TAG. In concordance with these interpretations we
should interpret the constants whose types involve VA and/or S from Σg-der into Λ(ΣDer

TAG).
The constants whose types involve VA and/or S are as follows:

1. Constants modeling clause-medial adverbials (i.e., gadv
medial : T(S(T);

2. constants modeling conjunctions (i.e., gconj
canonical : S(S(S and gconj

red. : S(S(
S);

3. first order predicates adopted from ΣDer
TAG (e.g. grécompense).

To interpret the rest of the constants of Σg-der, we refer to the interpretations of
g-derivation trees as TAG derivation trees in the ACG encoding of G-TAG. In particular,
if gα is a constant whose type is not built using VA and/or S, then we consider the

⁷¹In Section 1.3.2.2 on page 206, we defined the types ~αn , ~βn , and ~γn .
⁷²The interpretations provided in Equation (2.39) and Equation (2.40) are analogous to the interpreta-

tions of the constants Gv
sws and Gvinf

inf into TAG derivation trees proposed in the ACG encoding of G-TAG
(see Section 1.4.2.3 on page 212 for a detailed discussion.)

242

2.3. A Modular Interpretation of ΣGTAG to TAG Derivation Trees

constant Gα of ΣGTAG in the ACG encoding of G-TAG. Since Gα and gα model the same
constraint, we interpret gα into Λ(ΣDer

TAG) to the same term to which we interpreted Gα

into Λ(ΣDer
TAG) in the ACG encoding of G-TAG.

2.3.2.1 Interpretations of Types

In Σg-der, besides the types S and VA, we have types that are adopted from ΣDer
TAG. In

addition, we have the type T, introduced for modeling g-derivation trees of texts. We
interpret these types into ΣDer

TAG as follows:
• For any type X in Σg-der that di�ers from S, VA, and T, we have the type X in ΣDer

TAG

modeling the same constraint. Thus, the lexicon Lgder−tag interprets X from Σg-der

as X in ΣDer
TAG.

• Lgder−tag(T) = S.

2.3.2.2 Interpretations of Constants

2.3.2.2.1 Clause-medial Adverbials

In Σg-der, one has a constant gadv
medial : T(S(T modeling the clause-medial adverbial

adv. Section 2.1 discusses the way we interpret the constant Gadv
medial : T(S(T of ΣGTAG

modeling the clause-medial adverbial adv into Λ(ΣDer
TAG). We employ the constants Gadv

medial

and gadv
medial to encode the same analysis, shown in Figure 2.2 on page 236. Thus, we

can refer to the interpretation of Gadv
medial into Λ(ΣDer

TAG) for interpreting gadv
medial into Λ(ΣDer

TAG),
which is as follows:

Lgder−tag(gadv
medial) = λo s1. λo s2. CConcat s1 (s2 Cadv

V) :

S((VA (S)(S (2.41)

2.3.2.2.2 Subordinate Conjunctions

In order to encode constants modeling subordinate conjunctions, notice that an
adverbial connective may appear at the clause-medial position in a sentence built by a
subordinate conjunction. In a case of a sentence with either a canonical or a reduced
conjunction, an adverbial connective appears at the clause-medial position only in the
matrix clause of a sentence. As Examples in (43) and (44) indicate, the adverbial ensuite
occupies a clause-medial position in a matrix clause of a sentence with a conjunction.⁷³
Figure 2.5 illustrates the analysis of the discourses in Examples (43) and (44): The
auxiliary tree anchored with the adverbial adjoins on the VP node into the derived tree
of the matrix clause of the sentence with the conjunction.

⁷³In a case where an adverbial connective is inter-sentential, it cannot appear within the subordinate
clause of a sentence, but only in the matrix clause. However, if an adverbial is intra-sentential, it may
appear within the subordinated clause, as it is in the following sentence:

243

Chapter 2. Encoding Clause-Medial Connectives

(43) Jean
John

a
have3ps. sg. pres.

préparé
preparepast part.

le
the

petite déjeuner.
breakfast.

Jean
John

a
then

ensuite
have3ps. sg. pres.

passé l’aspirateur
vacuumpast part.

avant
before

que
that

Marie
Mary

fasse
make3ps. sg. pres. subjunctive

une
a

sieste.
nap.

John prepared the breakfast. John then vacuumed before Mary took a nap.

(44) Jean
John

a
have3ps. sg. pres.

préparé
preparepast part.

le
the

petite déjeuner.
breakfast.

Jean
Jean

a
then

ensuite
have3ps. sg. pres.

passé l’aspirateur
vacuumpast part.

avant
before

de
of
faire
makeinfinitive pres.

une
a

sieste.
nap.

John prepared the breakfast. Jean then vacuumed before taking a nap.

S

S ↓ Punct

.

S ↓

VP

VP adv

S

S

VP

Prep

conj

S

Figure 2.5: An analysis of a case with an adverbial at a clause-medial position of a
sentence with a conjunction

In Σg-der, we have two constants gconj
canonical and gconj

red. of type S (S (S modeling
the canonical and reduced g-derivation trees of a conjunction conj, respectively. Since
we interpret S as VA (S into ΣDer

TAG, the arguments of these constants encoding the
matrix clause and the subordinate clause can receive a VP-adjunction. However, as we

(42) Jean
John

a
have3ps. sg.

passé
passpast part.

l’aspirateur
vacuumerdef.

dans
in

la
the

matinée
morning

pour
for

ensuite
then

être
to beinf.

libre
free

pendent
during

toute
all

le
the

journée.
day.

Jean vacuumed in the morning in order to then be free during the whole day.

244

2.3. A Modular Interpretation of ΣGTAG to TAG Derivation Trees

have discussed above, only the matrix clause can host an adverbial. Thus, we should
disable adjunction on the subordinate clause. We do it with the help of the empty
VP-adjunction (IVA). We propose the interpretations of the constants gconj

canonical and gconj
red.

shown in Table 2.3.

Constants in Σg-der Their interpretations into Λ(ΣDer
TAG)

gconj
canonical : S(S(S λo s1. λo s2. λomod . Cconj

canonical (s1 mod) (s2 IVA)
gconj

red. : S(S(S λo s1. λo s2. λomod . Cconj
red. (s1 mod) (s2 IVA)

Table 2.3: Interpretations of the constants encoding conjunctions by the lexicon Lgder−tag

2.3.2.2.3 First Order Predicates

It remains to interpret constants of Σg-der that originate from ΣDer
TAG. In Section 2.2, we

discussed the way we interpret constants of ΣGTAG standing for initial trees anchoring
verbs, predictive adjectives, etc. (the ones that give rise to clauses) into TAG derivation
trees. Namely, we provided an example interpreting Grécompense into TAG derivation trees
(see Equation (2.2) on page 237). We make use of the same principles in order to
interpret first order predicates of Σg-der into TAG derivation trees. Table 2.4 illustrates
the way one interprets the constants encoding initial trees anchored by finite verb forms,
infinite ones, and adverbs.

Constants in Σg-der Their interpretations into Λ(ΣDer
TAG)

grécompense

: SA (VA (np(np(S
λo sa va subj obj . λo mod . Crécompense sa (va mod) subj obj
: SA ((VA (VA)(np(np(VA (S

grécompenser
inf

: SA (VA (np(S
λo sa va obj . λo mod . Crécompenser sa (va mod) obj
: SA ((VA (VA)(np(VA (S

gvraiment : VA (VA λo a mod . a (Cvraiment mod) : (VA (VA)(VA (VA

Table 2.4: Interpretations of constants under the lexicon Lgder−tag

Finally, we interpret AnchorT : S(T as λo s . s IVA : (VA (S)(S.

Remark 2.2. We do not modify anything in the abstract vocabulary ΣGTAG of the ACG
encoding of TAG but add constants encoding clause-medial adverbials. Thus, in order to
de�ne semantic interpretations of the constants and types in ΣGTAG, we only need to interpret
the constants encoding clause-medial adverbials. The semantic interpretation of a constant
Gadv

medial : T(S(T encoding the adverbial adv at the clause-medial position is identical to
the semantic interpretation of the constant Gadv

T
T : T(T(T encoding the adverbial adv at

the clause-initial position. Indeed, there is only a syntactic di�erence between the two, otherwise,
they have the same semantic interpretations as both of them are the lexicalizations of the same
concept.

245

Chapter 2. Encoding Clause-Medial Connectives

Example 2.1.

Figure 2.6 shows a g-derivation tree, which gives rise to the text (29). To obtain
the text (30), which is the variant of the text (29), we build the term tGTAG

medial defined in
Equation (2.45).

tGTAG
medial = Gensuite

medial (AnchorT (Gpour
red. Gjean (Gpassé-laspirateur

sws ISA IVA)

(Gêtre-récomepnsé-par
inf ISA IVA Gmarie))) (Gfait-une-sieste ISA Ga Gil) : T (2.45)

(29, repeated)
Jean
John

a
have3ps. sg.

passé
passpast part.

l’aspirateur
vacuumerdef.

pour
for

être
to-bepres. inf.

récompensé
rewardpast part.

par
by

Marie.
Mary.

Ensuite,
Afterward,

il
he

a
have3ps. sg.

fait
make3ps. sg.

une
a

sieste.
nap.

John vaccumed in order to be rewarded by Mary. Then, he took a nap.

(30, repeated)
Jean
John

a
have3ps. sg.

passé
passpast part.

l’aspirateur
vacuumerdef.

pour
for

être
to-bepres. inf.

récompensé
rewardpast part.

par
by

Marie.
Mary.

Il
He

a
have3ps. sg.

ensuite
afterward

fait
make3ps. sg.

une
a

sieste.
nap.

John vaccumed in order to be rewarded by Mary. He then took a nap.

ensuite

pour
+[T-reduced-conj]

passer-l’aspirateur

Jean

récompenser
+[T-passive]

+[T-reduced-conj]

Marie ε

faire-la-sieste

il

arg1

arg1

arg1

arg2

arg1 arg2

arg2

arg1

Figure 2.6: A g-derivation tree

By interpreting the term tGTAG
medial with the help of the lexicon LG, we obtain the

following term:

246

2.3. A Modular Interpretation of ΣGTAG to TAG Derivation Trees

tg-dermedial = gensuite
medial (AnchorT (gpour

red. (gpassé-laspirateur ISA IVA gjean) (gêtre-récomepnsé-par
inf ISA IVA gmarie)))

(gfait-une-sieste ISA ga gil) : T (2.46)

The structure of the term tg-dermedial in Equation (2.46) is closer to the g-derivation
tree shown in Figure 2.6 on the facing page compared to the structure of the term
tGtag

medial medial (defined within Equation 2.45). Indeed, gpour
red. has two arguments similar to an

underspecified g-derivation tree of the conjunction pour (for).
The interpretation of the term tg-dermedial under the lexicon Lgder−tag is the term ttagmedial,

which is as follows:

ttagmedial = Cconcat (Cpour
red.(Cpassé-laspirateur ISA IVA Cjean) (Cêtre-récomepnsé-par ISA IVA Cmarie))

(Cfait-une-sieste ISA Censuite
V Cil) : S (2.47)

In ttagmedial, the constant Censuite
V (drawn within a box) stands for the tree

VP

ensuite VP∗
.

Censuite
V has an occurence in the sub-term of ttagmedial encoding a derivation tree of a clause.

In particular, Censuite
V appears at a position where one models a VP-adjunction. By

further interpreting the term ttagmedial under the lexicon L TAG
synt , we obtain the tree shown

in Figure 2.7 on the next page. To obtain the yield of the tree representation, one
interprets the term ttagmedial by the lexicon Lyield ◦L TAG

synt . We obtain the following yield:

Lyield(L TAG
synt (ttag

der)) =

Jean+ a+ passé+ l+ aspirateur+ pour+ être+ récompensé+ par+marie+ dot+

Il+ a+ ensuite + fait+ une+ sieste

As the term Lyield(L TAG
synt (ttagmedial)) shows, the adverbial ensuite indeed occupies a

clause-medial position.
In Appendix C on page 339, we provide the ACG codes that one can use in order to run

this example with the ACG toolkit.

247

Chapter 2. Encoding Clause-Medial Connectives

S

S

S

NP

Jean

VP

Aux

a

VP

V

passé

NP

Det

l

N

aspirateur

S

PP

PP

pour

C

ε

S

NP

PRO

VP

V

être V

récompensé

PP

P

par

NP

Marie

Punct

dot

S

NP

Il

VP

Aux

a VP

Adv

ensuite

VP

V

fait

NP

Det

une

N

sieste

Figure 2.7: The tree obtained by interpreting the term ttagmedial under the lexicon L TAG
synt

248

Chapter 3

D-STAG as ACGs

Contents
3.1 Motivations . 250

3.2 The ACG Architecture of D-STAG 250

3.3 D-STAG Derivation Trees as Abstract Terms 251

3.3.1 Interpretations as TAG Derivation Trees 255

3.3.2 Connectives at the Clause-Medial & the Clause-Initial Positions255

3.3.3 Clause-Initial and Clause-Medial Connectives as Adjunctions 258

3.3.4 A Clause-Medial Connective Between Two Adverbs 259

3.3.5 Interpretations of Types . 260

3.3.6 Interpretations of Constants 262

3.3.7 Interpretations of Newly Introduced Constants ΣDer
TAG as De-

rived Trees . 264

3.3.8 The Examples of Deriving D-STAG Syntactic Trees 265

3.4 Encoding D-STAG Semantic Trees 273

3.4.1 Extending the Abstract Vocabulary ΣDer
DSTAG 273

3.4.2 The Signature Σsem
DSTAG . 274

3.4.3 Interpretations of Types . 274

3.4.4 Interpretations of Constants 276

3.5 The Examples of Semantic Interpretations 278

3.6 Interpretation as Labeled Formulas 286

3.6.1 A Signature Σsem
LABEL For Encoding Labeled Semantic Repre-

sentations . 287

3.6.2 Interpretations as Types and Terms Built Upon Σsem
LABEL . . . 288

3.7 Examples of Labeled Interpretations 292

3.8 Preposed Conjunctions . 295

3.8.1 Interpretation as TAG Derivation, and TAG Derived Trees . 295

249

Chapter 3. D-STAG as ACGs

3.8.2 Interpretation as D-STAG Semantic Trees 297

3.9 Modi�ers of Discourse Connectives 299

3.9.1 Interpretations as TAG Derivation Trees 302

3.9.2 Interpretation as D-STAG Semantic Trees 303

In this chapter, we encode D-STAG in the ACG framework. The architecture of the
ACG encoding of D-STAG is similar to the ACG encoding of G-TAG and the encoding of
TAG. That is, the D-STAG derivation trees are encoded as abstract terms. The D-STAG
syntactic and semantic derived trees are obtained by interpreting the abstract terms under
the corresponding lexicons. In this encoding, we propose a uniform modeling of clause-initial
and clause-medial connectives. In addition, we provide semantic interpretations of terms
encoding D-STAG derivation trees as labeled formulas instead of HOL formulas used in
D-STAG.

3.1 Motivations

In Section 5.3, we discussed D-STAG (Danlos, 2011), which was proposed to address the
problem of the syntax-semantics interface for discourse. With the help of D-STAG, one
can interpret a discourse as a DAG. For instance, the DAGs depicted in Figure 3.1(a)
and Figure 3.1(b) can serve as interpretations of discourses. In Chapter 1, we encoded
G-TAG as ACGs. The ACG encoding of G-TAG allows one to model the syntax-
semantics interface for discourse. Since the G-TAG grammar is designed for generating
only the texts that have the tree-shaped discourse structures, with the help of the ACG
encoding of G-TAG, one can only model texts with tree-shaped discourse structures.
To design the ACGs that enable one to model texts whose discourse structures can be
DAGs, we encode D-STAG as ACGs.

R1 R2

F0 F1 F2
(a) R1(F1,F2)∧R2(F2,F3)

R1 R2

F0 F1 F2
(b) R1(F0,F1)∧R2(F0,F2)

Figure 3.1: D-STAG semantic interpretations of discourse

3.2 The ACG Architecture of D-STAG

Parsing a discourse with D-STAG amounts to building its D-STAG derivation tree. Since
D-STAG is based on Synchronous TAG (STAG) (Shieber and Schabes, 1990),⁷⁴ the
derivation tree gives rise to both the syntactic and semantic interpretations of the
discourse. Thus, a derivation tree is the pivot in a D-STAG analysis of a discourse.

⁷⁴See Section 2.7 on page 47.

250

3.3. D-STAG Derivation Trees as Abstract Terms

This is reminiscent of the ACG encoding of TAG with Montague semantics (Pogodalla,
2009)⁷⁵ and to the ACG encoding of G-TAG: The abstract terms are pivots for syntactic
and semantic interpretations. Therefore, to design ACGs for D-STAG, we follow the
same principles as in the case of the ACG encoding of G-TAG. That is, we model
D-STAG derivation trees as abstract terms. One obtains the syntactic and semantic
interpretations by interpreting the abstract terms under the corresponding lexicons.

In order to obtain the syntactic interpretations (trees), we first interpret the terms
modeling D-STAG derivation trees as TAG derivation trees. Since the interpretations
of TAG derivation trees as derived trees are already available, we compose the two
interpretations. In this way, we obtain interpretations of D-STAG derivation trees as
derived syntactic trees.

We interpret D-STAG derivation trees as HOL terms in order to model the D-STAG
semantic interpretations. In addition, we define semantic interpretations of D-STAG
derivation trees as labeled formulas. That is, like SDRT (Asher and Lascarides, 2003),⁷⁶
we encode discourse structures as labeled formulas. Figure 3.2 illustrates the ACG
architecture that we are building to encode D-STAG.

ΣDER
DSTAGD-STAG

Derivation Trees

Σsem
DSTAG

D-STAG
Semantics

Σsem
LABEL

Labeled
Semantics

ΣDer
TAG TAG

Derivation trees

Σ
Synt
DSTAG

Syntactic
Trees

L SEM
DSTAG

L SEM
LABEL

L
DST

AG
sy

nt
=

L
DST

AG
TA

G
◦L

TA
G

sy
nt

L
DSTAG

TAG

L TAG
synt

Figure 3.2: The ACG signatures and lexicons for encoding D-STAG

3.3 D-STAG Derivation Trees as Abstract Terms

To encode D-STAG derivation tree as abstract terms, we introduce constants and types
in the abstract vocabulary ΣDer

DSTAG. The elements in the set Λ(ΣDer
DSTAG) model the D-STAG

derivation trees. In D-STAG, the discourse connectives (such as discourse adverbials,
subordinate conjunctions, empty connectives) account for the discourse structure. In

⁷⁵See Section 3.8 on page 80.
⁷⁶See Section 4.3 on page 107.

251

Chapter 3. D-STAG as ACGs

contrast to G-TAG where a discourse connective anchors an initial tree, any connective
anchors an auxiliary tree in D-STAG. For now, we focus on the discourse connectives
that are either postposed conjunctions or discourse adverbials. Figure 3.3 illustrates
D-STAG elementary tree anchored with discourse connectives. An elementary tree
anchored with a discourse connective is a DU-rooted auxiliary tree with three DU-
adjunction sites (with the links 2O, 3O and 4O) and a single DU-substitution site (with the
link }).⁷⁷

Convention: For the sake of convenience, while discussing auxiliary trees anchored
with discourse connectives, we may use the tree shown in Figure 3.4. In this tree, by
pmark, we denote either the full stop, or the comma, or no punctuation mark.

DU 4O

DU 3O

DU∗ Punct

,

DC

conn

DU 2O

DU ↓}

(a) conn is a postposed conjunction

DU 4O

DU 3O

DU∗ Punct

.

DC

conn

DU 2O

DU ↓}

(b) conn is an adverbial or an empty
connective

Figure 3.3: The auxiliary trees anchored with the conn discourse connective, where conn
is either a preposed conjunction or a discourse adverbial

DU 4O

DU 3O

DU∗ Punct

pmark

DC

conn

DU 2O

DU ↓}

Figure 3.4: The auxiliary tree anchored with conn, where conn is either a preposed
conjunction or a discourse adverbial

For a D-STAG auxiliary tree anchored with a conn connective, we introduce a
constant Dconn in the abstract vocabulary ΣDer

DSTAG. We model a DU-adjunction (resp. DU-
substitution) site by introducing the type DUA (resp. DU) in ΣDer

DSTAG. Since the D-STAG
auxiliary tree anchored with the conn connective can receive three DU-adjunctions and
one DU-substitution, we type⁷⁸ the constant Dconn with the type DUA (DUA (DUA (
DU (DUA. We introduce the constant IDUA modeling the DU-adjunction with no
content in order to model a case where no tree adjoins at a DU-adjunction site.

⁷⁷We refer readers to Section 5.3 on page 174 for the notations used in D-STAG.
⁷⁸We refer readers to Section 3.5 on page 69 for a detailed discussion about encoding adjunction and

252

3.3. D-STAG Derivation Trees as Abstract Terms

Constants in ΣDer
DSTAG Their Types

Dbecause DUA (DUA (DUA (DU(DUA

Dthen DUA (DUA (DUA (DU(DUA

Dmoreover DUA (DUA (DUA (DU(DUA

Dand DUA (DUA (DUA (DU(DUA

Dwhile DUA (DUA (DUA (DU(DUA

Dafterwards DUA (DUA (DUA (DU(DUA

Dε DUA (DUA (DUA (DU(DUA

. .

Table 3.1: Constants in ΣDer
DSTAG encoding the D-STAG elementary trees anchored with

postposed conjunctions, discourse adverbial, and the empty connective

Table 3.1 shows the encoding of the D-STAG auxiliary trees anchored with postposed
conjunctions and adverbial connectives as constants of ΣDer

DSTAG. We encode the D-STAG
auxiliary tree anchored with the lexically unexpressed connective ε with a constant Dε .

In D-STAG, a clause C anchors a DU-initial tree
DU1O

C

. Thus, we encode it by

a term of type DU. To model the anchor of the tree, i.e., the clause C , we introduce
the �rst order predicates, that is, the constants that enable us to encode derivation trees
of clauses. In order to introduce the first order predicates in ΣDer

DSTAG, we may adopt the
abstract constants from the abstract vocabulary ΣDer

TAG defined in the ACG encoding of
TAG with Montague semantics. The adopted constants from ΣDer

TAG enable us to build
terms over ΣDer

DSTAG of types S, np, etc.
Thus, we model the derivation trees of clauses as terms in Λ(ΣDer

DSTAG) of type S.

However, to model the DU-rooted tree
DU1O

C

anchored with the clause C , we need to

transform a term of type S encoding the derivation tree of C clause to a term of type

DU. In addition, since the tree
DU1O

C

has a DU-adjunction site, we need to transform

a term of type S to a term of the type DUA (DU. For that, we introduce the constant
AnchorS of type S(DUA (DU in the abstract vocabulary. If a term tC : S encodes

the derivation tree of the clause C in Λ(ΣDer
DSTAG), then we model the tree

DU1O

C

as the

following term over ΣDer
DSTAG:

AnchorS tC : DUA (DU (3.1)

By adjoining a tree (a term of type DUA) into the initial tree
DU1O

C

(a term of

type DUA (DU), one obtains a derived tree of a discourse (a term of type DU). The
resultant derived tree can be further used in order to build the discourse. Thus, a
term of type DU does not model a completed discourse, i.e., a discourse that is not

substitution sites.

253

Chapter 3. D-STAG as ACGs

going to be updated. To model the derivation tree of a discourse that is completed,
we introduce one more type T in ΣDer

DSTAG. Terms of type T model derivation trees of
completed discourses.

A discourse consisting of a single clause C is analyzed as
DU1O

C

. We can model

this tree as a term AnchorS tC IDUA of type DU. However, our goal is to obtain a term
of type T instead of DU. To be able to do that, we introduce a constant AnchorI of
type S(DUA (T. Thus, we model the derivation tree of the discourse consisting of
the single clause C as a term AnchorI tC IDUA of type T, where tC : S is the derivation
tree of the clause C .

Furthermore, with the help of the constants AnchorI and AnchorS, we can model the
larger discourses than single clause discourse. To model the first clause in a discourse,
we employ the constant AnchorI, whereas, in the rest of the cases, to model the initial
trees anchored by clauses, we employ AnchorS. For instance, let us consider a discourse
C0 Conn1 C1. The way one obtains its derived tree is illustrated in Figure 3.5. Let
tC0

and tC1
be the terms modeling the derivation trees of the clauses C0 and C1,

respectively. We encode the derivation tree of the discourse by the following term:

tC0Conn1C1
= AnchorI tC0

(DConn1 IDUA IDUA IDUA (AnchorS tC0
IDUA) : T (3.2)

DU 0O

C0

DU 4O

DU 3O

DU∗ DC

Conn1

DU 2O

DU↓ 1O

C1

(a) The deriving the derived tree of
the discourse

τ0

β1

τ1

0O

}

(b) The
deriva-
tion
tree

Figure 3.5: The D-STAG derivation tree of C0 Conn1 C1

In this way, we build the abstract vocabulary ΣDer
DSTAG. In order to define the abstract

language, it remains to specify the distinguished type. Since we encode derivation trees
of completed discourses with terms of type T, we declare T to be the distinguished type.

Remark 3.1. In Section 5.3.5 on page 183, we discussed the ambiguity issues of D-STAG. The
ambiguity in the D-STAG parsing is due to the number of possible derivation trees that a given

254

3.3. D-STAG Derivation Trees as Abstract Terms

discourse may have. Since we encode all the possible derivation trees with the abstract terms
over ΣDer

DSTAG, the ACG encoding of D-STAG inherits the D-STAG ambiguity in parsing.

3.3.1 Interpretations as TAG Derivation Trees

As we already mentioned, we define interpretations of D-STAG derivation trees as TAG
derivation trees. By composing these interpretations with the interpretations of TAG
derivation trees as derived trees, one obtains interpretations of D-STAG derivation
trees as derived trees. Thus, we are building the ACG 〈ΣDer

DSTAG,Σ
Der
TAG,L

DSTAG
TAG ,T〉, shown in

Figure 3.6.

ΣDER
DSTAG D-STAG

Derivation Trees

ΣDER
TAG TAG

Derivation Trees

Σ
Synt
DSTAG

Syntactic
Trees

L DSTAG
synt = L TAG

synt ◦L DSTAG
TAG

L DSTAG
TAG

L TAG
synt

Figure 3.6: Interpretations of D-STAG trees as TAG derivations trees and derived trees

3.3.2 Connectives at the Clause-Medial & the Clause-Initial Posi-
tions

In D-STAG, in order to parse a discourse where an adverbial connective appears at
a clause medial position (e.g. the discourse (3)), one preprocesses it by moving the
adverbials occupying the clause-medial positions to the clause-initial ones. In that way,
one obtains the discourse where every connective appears in front of its host clause.
Thus, the D-STAG way of analyzing a discourse with clause-medial connectives consists
of two steps (preprocessing and parsing).

(3) Fred went to the supermarket. He then went to the movies.

Unlike D-STAG, we do not develop a two-step approach, but rather analyze a
discourse in a single step. We propose to encode a connective at a clause-medial
position as a constant of the abstract vocabulary ΣDer

DSTAG. Indeed, by only using the
constant Dconn : DUA (DUA (DUA (DU (DUA, which we introduced in order
to encode the D-STAG auxiliary tree anchored by a connective (see Figure 3.4 on
page 252), one cannot give an account of a discourse where the connective conn
occupies a clause-medial position. As the D-STAG elementary tree anchored by the

255

Chapter 3. D-STAG as ACGs

connective conn illustrates, the connective conn occupies the clause-initial position since
it appears in front of the DU-substitution site. That is, the position of conn (in the
surface form) is the position where the clause starts (the clause-initial position).

Thus, together with the constant Dconn encoding a connective at a clause-initial
position, we introduce another constant Dconn

medial in ΣDer
DSTAG encoding the same connective

at a clause-medial position (inside a verb-phrase of a clause). Here, the generic method
of encoding constants modeling clause-medial connectives is the same as in the ACG
encoding of clause-medial connectives in G-TAG. Figure 3.7(a) on the next page shows
the way we analyze the clause-medial connectives in D-STAG: The auxiliary tree anchored
by the connective adjoins on the VP node in the derived tree of the host clause of the connective.
In the resultant derived tree, the connective appears within the VP of the host clause (a
clause-medial position.)

To use the constant Dconn
medial, one must type it. There are several options for typing

Dconn
medial.

Option 1: Introduce a New Type DUv

In Chapter 2 on page 233, we encoded the constants modeling the clause-medial
connectives with a di�erent type from ones modeling the clause-initial connectives of
G-TAG. In particular, we typed the constant Gadv modeling the adverbial adv at a
clause-initial position with the type T(T(T, whereas we typed the constant Gadv

medial

modeling the adverbial adv at a clause-initial position with the type T(S(T.
In the case of D-STAG, we may propose a similar solution to what we did in the

case of G-TAG. That is, to distinguish the clause-medial and clause-initial usages of
a connective, we can introduce a new type DUv in the abstract vocabulary. We can
associate the terms over ΣDer

DSTAG of type DUv with the derivation trees of clauses that
receive an adjunction at a clause-medial position. We can associate the terms of type
DU to model the derivation trees of the clauses that do not receive any adjunction.
Thus, to encode the conn discourse connective, we can introduce two constants shown
in Table 3.2.

Constants in ΣDer
DSTAG Their Types

Dconn
medial DUA (DUA (DUA (DUv (DUA

Dconn DUA (DUA (DUA (DU(DUA

Table 3.2: Two constants encoding the discourse connective conn

The constant Dconn
medial of type DUA (DUA (DUA (DUv (DUA encodes a

clause-medial usage of the conn connective.
We can translate the constant Dconn

medial to TAG derivation trees by encoding the
derivation shown in Figure 3.7(a). Indeed, as Figure 3.7(a) shows, the substituted clause
receives a VP-adjunction that inserts conn at a clause-medial position.

In order to interpret the constant Dconn of type DUA (DUA (DUA (DU(DUA

encoding the conn connective at the clause-initial position, we build the term encoding
the derivation shown in Figure 3.7(b).

256

3.3. D-STAG Derivation Trees as Abstract Terms

To interpret the types of Dconn
medial and Dconn , we interpret DU as S and DUA as SA.

The DUv type translates to VA (S, which encodes the fact that a term of type
DUv translates to a TAG derivation tree of a clause that can receieve a VP-adjunction
(inserting a connective inside its VP).

DU 4O

DU 3O

DU∗ Punct

pmark

DU 2O

DU ↓ }

VP

DC

conn

VP∗

DU

S

VP

(a) The clause-medial case

DU 4O

DU 3O

DU∗ Punct

pmark

DC

conn

DU 2O

DU ↓ }

DU

(b) The clause-initial case

Figure 3.7: Syntactic trees of D-STAG discourse connectives

Option 2: Only One DU Type Encoding Discourse Units

Another option is to type the constants Dconn
medial and Dconn with same type, DUA (DUA (

DUA (DU(DUA. Thus, we do not introduce a new type. In this case, the encoding
of constants modeling discourse connectives is more uniform compared to the other
one, because now all of these constants are of the same type.

Dconn : DUA (DUA (DUA (DU(DUA

Dconn
medial : DUA (DUA (DUA (DU(DUA

Table 3.3: two constants encoding the conn discourse connective

To be able to model the connectives at the clause-medial positions, we translate DU
from ΣDer

DSTAG to VA (S in TAG derivation trees. This makes us able to adjoin on the
host clause of ΣDer

DSTAG a VP-auxiliary tree anchored with a connective. However, in a
case where one has a connective at the clause-initial position, the host clause of the
connective should not receive a VP-adjunction inserting a connective at a clause-medial
position. On the other hand, the type VA (S indicates that one has to perform a
VP-adjunction in order to obtain a term of type S. To overcome this issue, we employ
an empty VP-adjunction, i.e., the constant IVA : VA, which does not insert any content.

257

Chapter 3. D-STAG as ACGs

We choose this way of encoding clause-medial connectives, because the abstract
vocabulary is more uniform and has less atomic types than in the previous case.

3.3.3 Clause-Initial and Clause-Medial Connectives as Adjunctions

We can make our approach to clause-initial and clause-medial connectives more uniform.
Since we interpret a clause-medial connective with the help a VP-adjunction into a
derived tree of clause, we propose the same kind of analysis of clause-initial connectives,
but to use an S-adjunction instead of a VP-adjunction. Figure 3.8 illustrates these
two analyses. Hence, a derived tree of a clause should be able to receive both an
S-adjunction and a VP-adjunction that can insert a connective either at the clause-initial
position (S-adjunction) or at the clause-medial one (VP-adjunction). Therefore, the
interpretation of a term of type DU from Λ(ΣDer

DSTAG) into TAG derivation trees should
be able to receive both S-auxiliary and VP-auxiliary trees anchored with a connective,
depending on whether one encodes the clause-initial or clause-medial connectives. To
model that, one can interpret the type DU from ΣDer

DSTAG as SA (VA (S into ΣDer
TAG.

S 4O

S 3O

S ↓ Punct

pmark

S 2O

S ↓ }

S

DC

conn

S∗

S

VP

(a) The clause-initial case

S 4O

S 3O

S ↓ Punct

pmark

S 2O

S ↓ }

VP

DC

conn

VP∗

S

VP

(b) The clause-medial case

Figure 3.8: Analyses of the cases where connectives appear at the clause-medial and
the clause-initial positions

258

3.3. D-STAG Derivation Trees as Abstract Terms

3.3.4 A Clause-Medial Connective Between Two Adverbs

Although by interpreting DU from ΣDer
DSTAG as SA (VA (S into ΣDer

TAG, we achieve the
goals defined so far, we propose to slightly change the interpretation of DU. Namely,
we propose to interpret DU as SA ((VA (VA)(S. The reason behind interpreting
DU as SA ((VA (VA)(S is to model a syntactic phenomenon where a discourse
connective appears between two VP adverbs, for instance, as it in the following example:

(4) a. Fred was desperate

b. because he was lost in the suburb of Paris for several hours.

c. Fred fortunately, then, clearly saw the Ei�el Tower.

In the clause (4)(c), the discourse connective then appears between two VP adverbs,
fortunately and clearly. However, by interpreting DU as SA (VA (S, the tree anchored
with a clause-medial connective can adjoin on the VP of the clause. The connective will
be placed either above or below the VP of the clause, the position where all the VP
adverbs are adjoined. Thus, it would be impossible for a connective to appear between
two adverbs. To overcome this problem, we explicitly encode the location inside the
VP of the clause where an auxiliary tree anchored with the connective adjoins. We do
that by encoding the adjunction sites above and below the place where a connective is
going to be inserted within a derived tree of a clause. For that, in ΣDer

DSTAG, we encode
the constants from which one obtains terms encoding derivation trees of clauses with
two VP adjunction sites. For instance, in the case of (4)(c), we encode the initial tree
anchored with saw with two distinct VP adjunction sites, as it is shown in Figure 3.9.
Thus, we type the constant Dsaw with the type S(VA (VA (np(np(S, where
two VA types encode two VP-adjunction sites in the initial tree shown in Figure 3.9.
This enables us to define a term tsaw

DSTAG ∈ Λ(ΣDer
DSTAG) (see Equation (3.5))⁷⁹ encoding the

derivation tree of the clause (4)(c). Then, we can use it as an argument of Dthen
medial.

tsaw
DSTAG =

AnchorS IDUA (Dsaw ISA

VA︷ ︸︸ ︷
(Dclearly IVA)

VA︷ ︸︸ ︷
(Dfortunately IVA) DFred Dthe-Ei�el-tower) : DU (3.5)

The term tsaw
DSTAG : DU translates to a term that encodes that it can receive an S-

adjunction (for inserting a clause-initial connective) and a VP adjunction (for inserting
a clause-initial connective). Namely, we are aiming at interpreting the term tsaw

DSTAG into
Λ(ΣDer

TAG) as follows:

L DSTAG
TAG (tsaw

DSTAG) = tsawTAG =

=λo dcs .λo dcv . Csaw

SA︷︸︸︷
dcs

VA︷ ︸︸ ︷
(Cclearly (dcv (Cfortunately IVA))) CFred Cthe-Ei�el-tower

: SA ((VA (VA)(S

(3.6)

⁷⁹We use the constant Dthe-Ei�el-tower to model the Ei�el Tower since it does not have a compositional
meaning (Kobele, 2012).

259

Chapter 3. D-STAG as ACGs

Where Csaw ∈ ΣDer
TAG is the constant encoding a transitive verb saw and therefore it is of

type SA (VA (np(np(S. Thus, we do not change encoding of initial trees in
ΣDer

TAG but in ΣDer
DSTAG. Figure 3.10 illustrates the idea behind encoding initial trees with two

VP adjunction sites on the example of Dsaw .
In the term tsawTAG, by the variable dcv : VA (VA, we encode the position where a

clause-medial connective can be inserted. Using the variable dcs : SA, we encode the
position where one can insert a clause-initial connective. As Equation (3.6) shows, the
lexicon L DSTAG

TAG interprets the type DU as SA ((VA (VA)(S.

S

NP ↓ VP

VP

V

saw

NP ↓

Figure 3.9: A visualization of the initial tree anchored with saw encoded by the constant
Dsaw

Thus, in ΣDer
DSTAG, we modify the types of the constants that give rise to terms encoding

derivation trees of clauses (constants standing for the initial trees anchored with verbs,
predicative adjectives, etc.). In particular, we encode them with one more argument of
type VA.

Remark 3.2. By symmetry, one could also encode the same property for clause-initial connectives,
as it is in the following example:

(7) a. Fred went to Southern France for a week.

b. He planned to do nothing but sunbathe.

c. During the week, however, every day, he was visiting either a museum or a theater.

To do so, one could type constants encoding verbs as follows: · · ·(SA (SA (· · ·(VA (
VA (· · ·(S.

However, we leave it for the future work to check the linguistic adequacy of the phenomenon
of a fronted adverbial connective occupying a position between two fronted adverbs.

3.3.5 Interpretations of Types

We define the lexicon L DSTAG
TAG : ΣDer

DSTAG −→ ΣDer
TAG in order to interpret constants and types

from ΣDer
DSTAG as terms and types built over ΣDer

TAG respectively.

260

3.3. D-STAG Derivation Trees as Abstract Terms

S

dcs S∗ S

NP

Fred

VP

VP

dcv VP∗

fortunately VP

clearly VP

V

saw

NP

the Eiffel Tower

Figure 3.10: The illustration of a derived tree of a clause

The lexicon L DSTAG
TAG interprets the type DUA as SA since DUA is the type of a term

modeling a DU-adjunction, which corresponds to an S-adjunction (SA) in TAG derivation
trees. We interpret the type S into TAG derivation trees as SA ((VA (VA) (S.
Thus, the interpretations of the types S and DU are the same. Table 3.4 shows the
interpretations of these types together with the interpretations of the types SA and VA.
In Section 3.3.6.2 on page 263, we justify our choices for interpreting SA and VA under
the lexicon L DSTAG

TAG as SA (SA and VA (VA, respectively.⁸⁰
The rest of the types translate to themselves as they encode noun phrases, common

nouns, adjective etc., which model the same phenomena in ΣDer
DSTAG and ΣDer

TAG. That is, we
interpret X ∈ ΣDer

DSTAG as X ∈ ΣDer
TAG if X is not among the types shown in Table 3.4.

Types in ΣDer
DSTAG Their interpretations by L DSTAG

TAG : ΣDer
DSTAG −→ ΣDer

TAG

DU, S SA ((VA (VA)(S
DUA SA

SA SA (SA

VA VA (VA

T S

Table 3.4: Interpretations of types

⁸⁰The reason for interpreting VA (resp. SA) as VA (VA (resp. SA (SA) is the same as in the case
of modeling clause-medial connectives in G-TAG: It is done so in order to enable an additional VP-adjunction
(resp. S-adjunction) on the derived tree of a clause.

261

Chapter 3. D-STAG as ACGs

3.3.6 Interpretations of Constants

3.3.6.1 Discourse Connectives

In order to interpret the constants modeling discourse connectives into TAG derivation
trees, we refer to the analysis shown in Figure 3.8 on page 258. Table 3.5 provides
the interpretations of the constants Dconn and Dconn

medial modeling the connective conn at a
clause-initial and a clause-medial position, respectively.

Constants in ΣDer
DSTAG Their translations by L DSTAG

TAG : ΣDer
DSTAG −→ ΣDer

TAG

Dconn

:DUA(DUA(DUA(DU(DUA
λo d4 d3 d2 dsubst . Cconcat d4 d3 d2 (dsubst Cconn

S (λox .x))

: SA(SA(SA((SA((VA(VA)(S)(SA

Dconn
medial

:DUA(DUA(DUA(DU(DUA
λo d4 d3 d2 dsubst . Cconcat d4 d3 d2 (dsubst ISA Cconn

VP)

: SA(SA(SA((SA((VA(VA)(S)(SA

Table 3.5: The interpretations of the constants in ΣDer
DSTAG encoding discourse connectives

In the interpretations given in Table 3.5, the variables d4, d3, and d2 encode
the interpretations of the DU-adjunction sites (the arguments of type DUA). These
DU-adjunction sites are interpreted as S-adjunction in the tree anchored with pmark.
We model this tree with the help of the constant Cconcat ∈ ΣDer

TAG of type SA (SA (
SA (S(SA.⁸¹ The variable dsubst encodes the interpretation of the host clause (the
arguments of type DU) and therefore dsubst is of type SA ((VA (VA) (S. The
type SA ((VA (VA)(S encodes that dsubst can receive an S-adjunction (SA) and a
VP-adjunction modification (VA (VA).

In the case of the clause-initial connective Dconn , dsubst receives the S-adjunction
inserting the connective conn, i.e., the S-auxiliary tree anchored with conn. We model

this tree with the constant Cconn
S, which is interpreted as the tree

S

DC

conn

S∗ into TAG

derived trees. Since in this case nothing adjoins on the VP node of the host clause
(dsubst), it receives the empty adjunction modification of type VA (VA as its second
argument. We model that by applying dsubst to the identity function λox .x : (VA (VA).

In the case of the clause-medial connective Dconn
medial, the host clause (dsubst) receives

no S-adjunction but the VP-adjunction modification inserting the connective conn at
a clause-medial position. We model this fact with the help of the constants ISA (no

S-adjunction) and the constant Cconn
VP , interpreted as

VP

DC

conn

VP∗ into TAG derived

trees.

⁸¹pmark can have three values, either the full stop, or the comma, or the empty sign. Thus, we have
tree constants Cconcat

., Cconcat
,, and Cconcat

ε modeling the trees anchored by the full stop, the comma and
the empty punctuation sign, respectively.

262

3.3. D-STAG Derivation Trees as Abstract Terms

3.3.6.2 First Order Predicates

In the previous sections, we have modified types of the constants that give rise to
terms of type S (the ones modeling derivation trees of clauses). Namely, we encoded
them with one more VP adjunction site. Nevertheless, in ΣDer

TAG, we have the same
constants with the same types as before. For instance, if the type of a constant
Dv ∈ ΣDer

DSTAG is SA (VA (VA (np(· · ·(np︸ ︷︷ ︸
k−times

(S, then the type of Cv ∈ ΣDer
TAG is

SA (VA (np(· · ·(np︸ ︷︷ ︸
k−times

(S. We interpret the constant Dv into Λ(ΣDer
TAG) as follows:

L DSTAG
TAG (Dv) =

λo sa va1 va2 np1 · · · npk . λo dcs .λo dcv . Cv

SA︷ ︸︸ ︷
(sa dcs)

VA︷ ︸︸ ︷
(va2 (dcv (va1 IVA))) np1 · · · npk :

(SA (SA)((VA (VA)((VA (VA)(np(· · ·(np︸ ︷︷ ︸
k−times

(SA ((VA (VA)(S

(3.8)
In Equation (3.8), the sub-term (sa dcs) : SA encodes the possibility of inserting a

connective into the clause-initial position. The variable dcs is of type SA as it is going
to be substituted by a term modeling the S-auxiliary tree anchored with a connective.
Hence, the type of the variable sa must be SA (SA. The variable sa encodes the
interpretation of the argument of type SA of Dv ∈ ΣDer

DSTAG. Thus, we must interpret SA

from ΣDer
DSTAG as SA (SA in ΣDer

TAG.
In Equation (3.8), the sub-term (va2 (dcv (va1 IVA))) : VA encodes the adjunction that

inserts a connective in the clause-medial position so that it can occupy a place between
two VP adverbs. The interpretation of the type VA from ΣDer

DSTAG must be VA (VA, due
to the same reason why we interpret SA from ΣDer

DSTAG as SA (SA in ΣDer
TAG.

There are other first order predicates in ΣDer
DSTAG adopted from ΣDer

TAG whose types involve
the atomic types VA and/or SA. Since we interpret VA (resp. SA) from ΣDer

DSTAG as VA (VA

(resp. SA (SA) in ΣDer
TAG, we must interpret the constants of ΣDer

DSTAG whose types involve
VA (resp. SA) accordingly. For the sake of illustration, Table 3.6 provides interpretations
of the constants Dreally : VA (VA and Dindeed : SA (SA.

Constants in ΣDer
DSTAG Their translations by L DSTAG

TAG

Dreally : VA (VA λo va v . Creally (va v) : (VA (VA)((VA (VA)
Dindeed : SA (SA λo sa v . Cindeed (sa v) : (SA (SA)((SA (SA)

Table 3.6: Interpretations of first order predicates from ΣDer
DSTAG into Λ(ΣDer

TAG)

In Λ(ΣDer
DSTAG), a term of type T encodes a derivation tree of a discourse derived from

an initial tree anchored by a clause. In TAG derivation trees, one encodes derivation
trees of clauses with terms of type S. Hence, we interpret T from ΣDer

DSTAG as S into ΣDer
TAG.

It remains to interpret the constants that enable us to build terms of type DU and
T, namely, the constants AnchorS : S(DUA (DU and AnchorI : S(DUA (T.

263

Chapter 3. D-STAG as ACGs

Constants in ΣDer
DSTAG Their translations by L DSTAG

TAG

AnchorI : S(DUA (T λos m. Mod (s ISA (λox .x)) m
AnchorS : S(DUA (DU λos m dcs dcv . Mod (s dcs dcv) m

Table 3.7: Interpretations of AnchorI and AnchorS into Λ(ΣDer
TAG)

In Table 3.7, we propose the interpretations of the constants AnchorS and AnchorI.
The variable s of type SA ((VA (VA) (S models the interpretation into Λ(ΣDer

TAG)
of the D-STAG derivation tree of a clause (a term of type S in Λ(ΣDer

DSTAG)). The type
SA ((VA (VA)(S encodes the fact that one can insert a clause-initial (SA) or a
clause-medial connective (VA (VA) in a clause. However, we apply AnchorI to a term
modeling the first clause in a discourse. Hence, no connective has to appear inside that
clause. Thus, we have neither an S nor VP adjunction on the clause. To model that,
we apply s to ISA (the empty S-adjunction) and λox .x (the empty VA (VA adjunction
modification). Thus, we obtain a term (s ISA (λox .x)) of type S. The variable m models

a tree adjoining in the initial tree anchored with the clause
DU1O

C

. Therefore, the type

of m is the interpretation of DUA into ΣDer
TAG, i.e., SA. One models an adjunction as a

functional application. However, one cannot apply m : SA to (s ISA (λox .x)) : S since
both are of atomic types. To express that a term of type SA applies to a term of type
S, we introduce a constant Mod in ΣDer

TAG of type S(SA (S. The interpretation of
Mod in TAG derived trees will be application of the second argument (whose type will
be τ (τ as it is interpretation of SA) to the first one (whose type will be τ as it is
interpretation of S). The resultant term will stand for the derived tree of the discourse.

We employ the constant AnchorS to model derivation trees of the clauses into which
connective may appear, either at the clause-initial or at the clause-medial position. To
encode that, we define a sub-term (s dcs dcv) (see Table 3.7). In the interpretation
of AnchorS, the variable m encodes an adjoined tree, like in the case of interpreting
AnchorI. We use Mod for the same reasons as in the case of interpreting AnchorI.

The rest of the constants in ΣDer
DSTAG are the ones whose types do not involve S, VA,

and SA. We interpret a constant Du modeling u in ΣDer
DSTAG (where u can be a noun,

determiner, adjective etc.) as the constant Cu ∈ ΣDer
TAG modeling the same u in ΣDer

TAG if the
type of Du is not built using any of the types DU, DUA S, VA, and SA.

3.3.7 Interpretations of Newly Introduced Constants ΣDer
TAG as De-

rived Trees

In Section 3.3.6.1, we introduced a constant Cconcat : SA (SA (SA (S(SA in order
to interpret the constants modeling discourse connectives in TAG derivation trees (see
Table 3.5). The constant Cconcat stands for the tree anchored with pmark. However, pmark
can have three values, the full stop, the comma, and the empty string. To model that,
one needs three constants instead of one Cconcat . We denote them by Cconcat

., Cconcat
,, and

Cconcat
ε. They model the elementary trees shown in Figure 3.11. To interpret them into

derived trees, we encode these elementary trees into derived trees. Table 3.8 provides

264

3.3. D-STAG Derivation Trees as Abstract Terms

the interpretations of these constants.
To define the interpretations given in Table 3.7, we introduced the constant Mod :

S(SA (S in ΣDer
TAG. Mod express an adjunction of two trees. In the ACG encoding

of TAG, one models an adjunction as a functional application. Table 3.8 shows the
interpretation of Mod.

S 4O

S 3O

S↓ Punct

.

S 2O

S↓

(a) The tree anchored by
the full stop - Cconcat

.

S 4O

S 3O

S↓ Punct

,

S 2O

S↓

(b) The tree anchored
by the comma - Cconcat

,

S 4O

S 3O

S↓ Punct

ε

S 2O

S↓

(c) The tree with the
empty anchor - Cconcat

ε

Figure 3.11: The elementary tree anchored by Cconcat
., Cconcat

,, and Cconcat

Constants in ΣDer
TAG Their translations by L TAG

synt : ΣDer
TAG −→ ΣSynt

DSTAG

Cconcat
. : SA (SA (SA (S(SA λo sa4 sa3 sa2 s x . sa4 (sa3 (S3 x dot (sa2 s)))

Cconcat
, : SA (SA (SA (S(SA λo sa4 sa3 sa2 s x . sa4 (sa3 (S3 x comma (sa2 s)))

Cconcat
ε : SA (SA (SA (S(SA λo sa4 sa3 sa2 s x . sa4 (sa3 (S3 x ε (sa2 s)))

Mod : S(SA (S λo s .λo m. m s : τ ((τ (τ)(τ

Table 3.8: Interpretations of the constants introduced in ΣDer
TAG into derived trees

3.3.8 The Examples of Deriving D-STAG Syntactic Trees

We show the derivation of the syntactic interpretations of the following examples:⁸²

(9) a. [Fred is grumpy]0 because [he lost his keys]1. Moreover, [he failed his exam]2.

b. [Fred is grumpy]0 because [he didn’t sleep well]3. [He had nightmares]4.

c. [Fred went to the supermarket]5 because [his fridge was empty]6. Then, [he
went to the movies]7.

d. [Fred went to the supermarket]5 because [his fridge was empty]6. [He then went
to the movies]7m .

⁸²We discussed the way D-STAG encodes these examples in Section 5.3.

265

Chapter 3. D-STAG as ACGs

e. [Fred is grumpy]0 because [his wife is away this week]8. [This shows how much
he loves her]9.

The ACG signatures and lexicons together with the examples are provided in
Appendix D.1.

The terms encoding the derivation trees of the clauses are as follows:⁸³

tC0
= Dis ISA IVA IVA Dfred (Dgrumpy Iadj) : S (3.10)

tC1
= Dlost ISA IVA IVA Dhe (Dkeys Dhis InA) : S (3.11)

tC2
= Dfailed ISA IVA IVA Dhe (Dexam Dhis InA) : S (3.12)

tC3
= Dsleep ISA IVA (Ddidn’t IVA) Dhe : S (3.13)

tC4
= Dhad ISA IVA IVA Dhe (Dnightmare Dplur InA) : S (3.14)

tC5
= Dwent-to ISA IVA IVA Dfred (Dsupermarket Dthe InA) : S (3.15)

tC6
= Dwas ISA IVA IVA (Dfridge Dthe InA) (Dempty Iadj) : S (3.16)

tC7
= Dwent-to ISA IVA IVA Dfred (Dmovies Dthe InA) : S (3.17)

tC8
= Dis ISA IVA IVA (Dwife Dhis InA)(Daway Iadj (Dthe (Dweek InA))) : S (3.18)

tC9
= Dshows ISA IVA IVA Dthis (Dloves Dhow-much IVA IVA Dhe Dher) : S (3.19)

Example 3.1.

(9)(a) [Fred is grumpy]0 because [he lost his keys]1. Moreover, [he failed his exam]2.

Figure 3.12(a) illustrates the D-STAG derivation tree of (9)(a). We encode it in the
abstract language with the term t1 , defined in Equation (3.20), whose tree representation
is shown in Figure 3.12(b). By interpreting the term tC0

under the lexicon L TAG
synt ◦L DSTAG

TAG ,
we obtain the derived syntactic tree of the discourse depicted in Figure 3.12(c).

t1 = (3.20)

AnchorI tC0
(Dbecause IDUA IDUA IDUA (tC1

(Dmoreover IDUA IDUA IDUA (AnchorS tC2
IDUA)))) : T

⁸³The term encoding the derivation tree of a clause whose boundaries are indicated using a subscript
i is denoted by tCi .

266

3.3. D-STAG Derivation Trees as Abstract Terms

τ0

βbecause/explanation

βmoreover/continuation

τ2

}

τ1

} 1O

1O

(a) The D-STAG derivation tree

AnchorI

tC0
Dbecause

IDUA IDUA IDUA tC1

Dmoreover

IDUA IDUA IDUA AnchorS

tC2
IDUA

(b) The ACG encoding of the D-STAG derivation
tree

S

S

NP

Fred

VP

V

is

Adj

grumpy

S

S

DC

CONJ

because

S

NP

he

VP

V

lost

NP

Det

his

N

keys

dot S

S

DC

ADV

Moreover,

S

NP

he

VP

V

failed

NP

Det

his

N

exam
(c) The derived syntactic tree

Figure 3.12: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

267

Chapter 3. D-STAG as ACGs

Example 3.2.

(9)(b) [Fred is grumpy]0 because [he didn’t sleep well]3. [He had nightmares]4.

Figure 3.13(a) illustrates the D-STAG derivation tree of (9)(b). We encode it in the
abstract language with the term t2 , defined in Equation (3.21), whose tree representation
is shown in Figure 3.13(b). By translating the term t2 with the lexicon L TAG

synt ◦L DSTAG
TAG ,

we obtain the derived tree of the discourse depicted in Figure 3.13(c).

t2 = AnchorI tC0
(3.21)

(Dbecuase IDUA IDUA (Dε
Explanation IDUA IDUA IDUA (AnchorS tC4

IDUA))(AnchorS tC3
IDUA)) : T

τ0

βbecause/explanation

βε/explanation

τ5

}

τ4

} 2O

1O

(a) The D-STAG derivation
tree

AnchorI

tC0
Dbecuase

IDUA IDUA Dε
Explanation

IDUA IDUA IDUA AnchorStC4

IDUA

AnchorStC3

IDUA

(b) The ACG encoding of the D-STAG derivation tree

S

S

NP

Fred

VP

V

is Adj

grumpy

S

S

DC

CONJ

because

S

NP

he

VP

V

didn’t

VP

V

VP

sleep well

dot S

NP

he

VP

V

had

NP

N

nightmares

(c) The derived syntactic tree

Figure 3.13: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

268

3.3. D-STAG Derivation Trees as Abstract Terms

Example 3.3.

(9)(c) [Fred went to the supermarket]5 because [his fridge was empty]6. Then, [he went
to the movies]7.

Figure 3.14(a) illustrates the D-STAG derivation tree of (9)(c). We encode it in the
abstract language with the term t3 , defined in Equation (3.22). The tree representation
of the term t3 is provided in Figure 3.14(b). The interpretation of the term t3 by the
lexicon L TAG

synt ◦L DSTAG
TAG is the derived tree of the discourse depicted in Figure 3.14(c).

t3 = AnchorI tC5
(Dbecuase IDUA (3.22)

(Dthen IDUA IDUA IDUA (AnchorS tC7
IDUA)) IDUA IDUA (AnchorS tC6

IDUA)

τ6

βbecause/explanation

βthen/narration

τ8

}

τ7

} 3O

1O

(a) The D-STAG derivation tree

AnchorI

tC5
Dbecuase

IDUA Dthen

IDUA IDUA IDUA AnchorStC7

IDUA

IDUA IDUA AnchorStC6

IDUA

(b) The ACG encoding of the D-STAG derivation tree

S

S

S

NP

Fred

VP

V

went

PP

Prep

to

NP

Det

the

N

supermarket

S

DC

CONJ

because

S

NP

Det

the

N

fridge

VP

V

was

Adj

empty

dot S

DC

ADV

Then,

S

NP

he

VP

V

went

PP

Prep

to

NP

Det

the

N

movies
(c) The derived syntactic tree

Figure 3.14: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

269

Chapter 3. D-STAG as ACGs

Example 3.4.

(9)(d) [Fred went to the supermarket]5 because [his fridge was empty]6. [He then went
to the movies]7m .

The only di�erence between the discourses (9)(d) and (9)(c) (see Example 3.3) is
that the discourse adverbial then is at the clause-medial position in the case of (9)(d),
whereas then appears at the clause-initial position in the case of (9)(c). The D-STAG
derivation tree of the discourses (9)(d) and (9)(c) are the same as D-STAG turns the
(9)(d) into (9)(c) by moving the adverbial at the clause-initial position and considers
the derivation tree of the normalized discourse. We do not that but directly encode
the discourse (9)(d) by constructing the term t3

medial, defined in Equation (3.23). The
tree representation of t3

medial is shown in Figure 3.15(a). By interpreting the term t3
medial

with the lexicon L TAG
synt ◦L DSTAG

TAG , we obtain the derived syntactic tree of the discourse
depicted in Figure 3.15(b). As the syntactic tree indicates, the adverbial then appears
inside the VP of the clause (clause-medial position).

t3
medial = AnchorI tC5

(Dbecuase IDUA

(Dthen
medial IDUA IDUA IDUA (AnchorS tC7

IDUA)) IDUA IDUA (AnchorS tC6
IDUA)

(3.23)

270

3.3. D-STAG Derivation Trees as Abstract Terms

AnchorI

tC5
Dbecuase

IDUA Dthen
medial

IDUA IDUA IDUA AnchorStC7

IDUA

IDUA IDUA AnchorStC6

IDUA

(a) The abstract term a discourse with a clause-medial ad-
verbial

S

S

S

NP

Fred

VP

V

went

PP

Prep

to

NP

Det

the

N

supermarket

S

S

DC

CONJ

because

S

NP

Det

the

N

fridge

VP

V

was

Adj

empty

dot S

NP

He

VP

DC

Adv

then

VP

V

went

PP

Prep

to

NP

Det

the

N

movies
(b) The derived syntactic tree

Figure 3.15: The ACG encoding of a discourse with a clause-medial adverbial

271

Chapter 3. D-STAG as ACGs

Example 3.5.

(9)(e) [Fred is grumpy]0 because [his wife is away this week]8. [This shows how much
he loves her]9.

Figure 3.16(a) illustrates the D-STAG derivation tree of (9)(e). We encode it in the
abstract language with the term t4 , defined in Equation (3.24), whose tree representation
is shown in Figure 3.16(b). By translating the term t4 with the lexicon L TAG

synt ◦L DSTAG
TAG ,

we obtain the derived tree of the discourse depicted in Figure 3.16(c).

t4 = AnchorI tC0

(Dbecuase (Dε
comment IDUA IDUA IDUA (AnchorS tC9

IDUA)) IDUA IDUA (AnchorS tC8
IDUA)

(3.24)

τ0

βbecause/explanation

βε/commentary

τ9

}

τ8

} 4O

1O

(a) D-STAG derivation tree

AnchorI

tC0
Dbecuase

Dε
comment

IDUA IDUA IDUA AnchorStC9

IDUA

IDUA IDUA AnchorStC8

IDUA

(b) The ACG encoding of the D-STAG derivation tree

S

S

S

NP

Fred

VP

V

is

Adj

grumpy

S

DC

CONJ

because

S

NP

Det

his

N

wife

VP

V

is

Adj

Adj

away

NP

Det

this

N

week

dot S

NP

This

VP

V

shows

S

S

Adv

how-much

S

NP

he

VP

v

loves

NP

her
(c) The derived syntactic tree

Figure 3.16: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

272

3.4. Encoding D-STAG Semantic Trees

3.4 Encoding D-STAG Semantic Trees

In D-STAG, the derivation tree of a discourse specifies its semantic interpretation.
In this section, we define an ACG to encode the correspondence between D-STAG
derivation trees and their semantic interpretations.

We already encoded the D-STAG derivation trees. To obtain the D-STAG semantic
interpretations, it amounts interpreting D-STAG derivation trees as D-STAG semantic
trees.

3.4.1 Extending the Abstract Vocabulary ΣDer
DSTAG

As we already saw in D-STAG,⁸⁴ an elementary tree anchored by a discourse connective
conn is paired with two trees, the semantic trees A and B shown in Figure 3.17. The
anchors of the trees A and B are Φ

′
: R and Φ

′′
: R defined in Equation (3.25) and

Equation (3.26) respectively, where R is a discourse relation signaled by the discourse
connective conn.

DU 4O

DU 3O

DU∗ Punct

pmark

DC

conn

DU 2O

DU ↓}

(a) The syntactic tree an-
chored with a connective

t 4O

ttt → t

(Φ
′
R):ttt → ttt → t ttt 3O

λ P t

P t∗

ttt 2O

λ Q t

Q t ↓ }

(b) The D-STAG semantic tree A

ttt 4O

ttt → ttt

(Φ
′′
R):ttt → ttt → ttt

Φ
′′ R

ttt 3O

ttt∗

ttt 2O

λ Q t

Q t ↓ }

(c) The D-STAG semantic tree B

Figure 3.17: D-STAG syntactic and semantic trees

Φ
′
R = λX .λY .X (λ x . (Y (λ y .R x y))) : ttt → ttt → t (3.25)

Φ
′′

R = λX .λY .λP .X (λ x . (Y (λ y . (R x y)∧P(x)))) : ttt → ttt → ttt (3.26)

ttt is an abbreviation of (t → t)→ t and R is of type t → t → t .

⁸⁴See Section 5.3 on page 174.

273

Chapter 3. D-STAG as ACGs

Thus, the constant Dconn encoding an elementary tree anchored with the conn
connective has to be paired with both the semantic tree A and semantic tree B.
However, a lexicon cannot interpret Dconn as the semantic tree A and the same time
as the semantic tree B (since a lexicon is a function). The solution we propose is to
introduce another version of the constant Dconn the abstract vocabulary ΣDer

DSTAG. That is,
instead of Dconn , we have two constants DconnA and DconnB in the abstract vocabulary ΣDer

DSTAG.
We interpret both of them as the syntactic elementary tree anchored with the connective
conn (see Figure 3.17(a)). The di�erence between the constants DconnA and DconnB is that
we interpret DconnA as the term encoding the semantic tree A (Figure 3.17(b)), whereas
we interpret DconnB as the term encoding the semantic tree B (Figure 3.17(c)).

3.4.2 The Signature Σsem
DSTAG

We introduce the signature Σsem
DSTAG in order to build terms encoding D-STAG semantic

interpretations. In D-STAG, the semantic interpretations are HOL terms.
To be able to build HOL terms encoding semantic interpretations, we introduce in

Σsem
DSTAG two atomic types, e and t . In order to interpret first order predicates of ΣDer

DSTAG,
i.e., the clause-level grammar, we introduce the same predicates that one uses in the
ACG encoding of TAG (see Section 3.8 on page 80).

To encode the discourse-level interpretations, we introduce in Σsem
DSTAG constants

encoding discourse relations EXPLANATION, NARRATION, etc. of type t → t → t .
Table 3.9 shows the constants in Σsem

DSTAG.
Note that the types of the constants in Σsem

DSTAG are non-linear. The is due to the fact
that the D-STAG semantic terms are non-linear (but almost-linear). Indeed, the Φ

′′
(R)

term (see Equation (3.26) on page 273) is a non-linear one, which compels us to use
non-linear types.

Constants in Σsem
DSTAG Their types

fred, paris, ei�el, louvre, · · · e
grumpy, sleep, empty, nightmare, fridge, · · · e → e → t
love, miss, fail, visit, go-to, · · · e → e → t
badly, clearly, a-lot, fortunately, · · · t → t
∀, ∃, ∃! (e → t)→ t
EXPLANATION, CONTINUATION,
NARRATION, COMMENTARY, CONTRAST, · · · t → t → t

Table 3.9: Constants in the signature Σsem
DSTAG

3.4.3 Interpretations of Types

In D-STAG, an initial tree anchored by a C clause
DU1O

C

is paired with the t -rooted

tree
t 1O

F

, where F is the semantic representation of the clause C . The root node of

274

3.4. Encoding D-STAG Semantic Trees

the syntactic tree DU 1O is paired with the root node of the semantic tree t 1O. Thus, one
may interpret the type DU as t . On the other hand, as the semantic trees A and B
indicate (see Figure 3.17), some DU nodes are also paired with the ttt nodes. Therefore,
one may consider as well to interpret DU as ttt . Since one cannot interpret DU both
as t and ttt , we have to choose to interpret DU either as t or as ttt . We choose to
interpret DU as ttt . However, in the semantic tree A (see Figure 3.17(b)), we have
the rootnode t 4O (and therefore the footnode t∗) paired with a DU node. This makes
us to modify the semantic tree A. We propose the new semantic tree A illustrated in
Figure 3.18(a), where each of the nodes is ttt .

Since the only type we use in new semantic tree A is ttt , we cannot use the original
Φ

′
any more as its type is (t → t → t)→ ttt → ttt → t . In Equation (3.27), we define

Φ
′
new of type (t → t → t) → ttt → ttt → ttt that we use in the new semantic tree A

instead of Φ
′
. The di�erence between the original Φ

′
and Φ

′
new is that, with the help of

Φ
′
, we obtain formulas such as R x y of type t , whereas by using Φ

′
new instead of Φ

′
,

we obtain λP .P (R x y) of type ttt , which is a type-raised version of R x y .

ttt 4O

ttt → ttt

ttt → ttt → ttt

Φ
′
new R

ttt 3O

ttt∗

ttt 2O

ttt ↓ }

(a) The new semantic tree A

ttt 4O

ttt → ttt

ttt → ttt → ttt

Φ
′′ R

ttt 3O

ttt∗

ttt 2O

ttt ↓ }

(b) The Semantic tree B

Figure 3.18: semantic trees A and B

Φ
′
new = λ R . λ X Y P . X (λ x .Y (λ y . P (R x y))) :

(t → t → t)→ ttt → ttt → ttt (3.27)

Remark 3.3. There is one more option for encoding semantic interpretations of the terms
modeling D-STAG derivation trees. By introducing a new type DU2 in ΣGTAG, we can interpret
DU2 as ttt , and DU as t . However, in that case, the constants DconnA and DconnB would be of
di�erent types. The type of the constant DconnA would become DUA (DUA

2 (DUA
2 (DUA

and the type of DconnB would become DUA
2 (DUA

2 (DUA
2 (DUA

2. Since we prefer to
have a uniform modeling of the discourse connectives in the abstract vocabulary, we do not
develop this approach.

Since the interpretation of DU is ttt , we interpret DUA as ttt → ttt . Thus, we pair

the tree
DU1O

C

with
ttt 1O

λP.PF

, where the term λQ .QF of type ttt is a typed-raised

version of F . Notice that the type-raising of F to λP .PF is what one does in D-STAG

275

Chapter 3. D-STAG as ACGs

as well. Indeed, as the original semantic tree A (see Figure 3.17(b)) and the semantic
tree B (see Figure 3.17(c)) illustrate, the substitution site undergoes the type-raising, that
is, if F is substituted in these trees, then it will be type-raised as λQ .QF . Hence, we
directly substitute in these trees a type-raised version of F , instead of first substituting
it and then type-raising it.

The D-STAG interpretation of the completed discourse is of type t . To obtain a term
of type t out of a term of type ttt = (t → t)→ t , we apply the term of type ttt to the
identity function λx .x of type t → t . In the abstract language, a completed discourse
is modeled by a term of type T. Therefore, we interpret the type T to the type t . In
addition, we translate the type S from ΣDer

DSTAG to the ttt type.⁸⁵
The rest of the types are the ones that we adopted from ΣDer

TAG. They are interpreted
similar to the way they are interpreted in the ACG encoding of TAG but with the
di�erence that we use non-linear types. Table 3.10 illustrates interpretations of types.

Types in ΣDer
DSTAG Their interpretations by L SEM

DSTAG

DU,S ttt
DUA ttt → ttt
T t
np (e → t)→ t
SA t → t
VA t → t

Table 3.10: Semantic interpretations of the abstract types

3.4.4 Interpretations of Constants

3.4.4.1 Discourse Connectives

In the abstract signature ΣDer
DSTAG, we have two constants modeling the conn connective,

DconnA and DconnB. They stand for the D-STAG elementary tree of anchored with the conn
discourse connective at the clause-initial position. Together with them, ΣDer

DSTAG contains
two constants, Dconn

medial
A and Dconn

medial
B , which model the cases where conn occupies the

clause-medial positions. Hence, the constants DconnA and Dconn
medial

A model the cases where
one uses the semantic tree A as a semantic tree encoding conn, while the constants
DconnB and Dconn

medial
B model the cases where one uses the semantic tree B as a semantic

tree encoding conn. Thus, there is no semantic di�erence between DconnA and Dconn
medial
A ,

nor between DconnB and Dconn
medial
B . Consequently, we translate the constant Dconn

medial
A (resp.

Dconn
medial
B) to the same term to which the constant DconnA (resp. DconnB) translates.
The type of the constants DconnA and DconnB is DUA (DUA (DUA (DU(DUA,

where DUA translates to ttt → ttt and DU to ttt . In order to interpret the constants
DconnA and DconnB, we encode the semantic tree A and the semantic tree B (see Figure 3.18
on the previous page) as terms over Σsem

DSTAG. Table 3.11 shows the results we obtain.

⁸⁵We could translate S to t instead of ttt . However, we translate it to ttt because it does not create
any issues since one can transform a term of type ttt into a term of type t by applying it to the term
λx .x : t → t .

276

3.4. Encoding D-STAG Semantic Trees

Constants in ΣGTAG Their translations by L SEM
DSTAG : ΣDer

DSTAG −→ Σsem
DSTAG

DconnA,Dconn
medial
A λ d4 d3 d2.λ dsubst .λ dfoot . d4 ((Φ

′
new Rconn) (d3 dfoot) (d2 dsubst))

DconnB,Dconn
medial
B λ d4 d3 d2.λ dsubst .λ dfoot . d4 ((Φ

′′
Rconn) (d3 dfoot) (d2 dsubst))

Table 3.11: Semantic interpretations of the constants encoding discourse connectives

In Table 3.12, we provide semantic interpretations of the constants AnchorS : S(
DUA (DU and AnchorI : S(DUA (T.

Constants in ΣDer
DSTAG Their translations by L SEM

DSTAG

AnchorS λ s mod .λP . mod (λQ .Q (s (λ x . x))) P
AnchorI λ s mod . mod (λQ .Q (s(λ x .x))) (λ x .x)

Table 3.12: Semantic interpretations of the constants AnchorI and AnchorS

Remark 3.4. Sometimes we may write Dconn , but we mean two di�erent constants DconnA and
DconnB. The point is that the di�erence between the DconnA and DconnB constants is in their
semantic interpretations. Therefore, in a case where we are not concerned with the semantic
interpretations, we write Dconn .

3.4.4.2 First Order Predicates

For interpreting the first order predicates of ΣDer
DSTAG into semantics, i.e., the ones that we

use for modeling derivation trees of clauses, we cannot use the semantic translations
provided in the ACG encoding of TAG. Indeed, in ΣDer

DSTAG, an initial tree anchored with
a verb (verb phrase, predicative adjective etc.) is modeled with two VP adjunction
sites, whereas in ΣDer

TAG, it has a single VP-adjunction site. Let us consider one of these
constants, Dwalks . It has two arguments encoding VP-adjunction sites. The semantic
interpretations of each of these two arguments should scope over the predicate expressed
by walks. In particular, we interpret Dwalks as follows:

L SEM
DSTAG(Dwalks) =

λ sa va1 va2 subj .λmod . sa (subj (λx . va1 (mod (va2 (walk x))))) :
(t → t)→ (t → t)→ (t → t)→ qnp→ (t → t)→ t︸ ︷︷ ︸

ttt

Where qnp abbreviates (e → t)→ t , which is the interpretation of the type np
(3.28)

In Equation (3.28), the variables va1 and va2 scope over (walks x). Thus, we
interpret VA as t → t . In Equation (3.28), we use the abstraction over the variable
mod in order to type-raise t to ttt .

277

Chapter 3. D-STAG as ACGs

Similarly to the translation of the Dwalks constant, we translate the other abstract con-
stants of ΣDer

DSTAG encoding the initial trees anchored with verbs, verb phrases, predicative
adjectives etc.

We interpret the rest of the first order predicates (the ones we adopted from ΣDer
TAG)

in the same way as it is done in the ACG encoding of TAG with the di�erence that we
use almost-linear types instead of linear ones.

Remark 3.5. The ACG encoding of D-STAG and the original D-STAG approach show some
di�erences. One of the main di�erences is that we model clause-medial connectives as part of
the grammar, whereas in D-STAG, in order to analyze a discourse containing them, one uses a
prepossessing step. Another di�erence is that our encoding of D-STAG makes the semantic trees
anchored with a discourse relation more similar to each other than their D-STAG counterparts
are.

3.5 The Examples of Semantic Interpretations

In order to obtain the semantic interpretation of a discourse, we translate a term over
ΣDer

DSTAG encoding its derivation tree under the lexicon L SEM
DSTAG. We list the ACG signatures

and commands in Appendix D.1 that are used in order to obtain the results given
below.

R1 R2

F0 F0 F1
(a) R1(F0,F1)∧R2(F1,F2)

R1 R2

F0 F0 F1
(b) R1(F0,F1)∧R2(F0,F2)

R1 R2

F0 F0 F1
(c) R1(F0,R2(F1,F2))

R1 R2

F0 F0 F1
(d) R2(R1(F0,F1),F1)

Figure 3.19: semantic interpretations of discourses

We use the same examples of discourses as the ones we used before (see Section 3.3.8
on page 265).

(29) a. [Fred is grumpy]0 because [he lost his keys]1. Moreover, [he failed his exam]2.

b. [Fred is grumpy]0 because [he didn’t sleep well]3. [He had nightmares]4.

c. [Fred went to the supermarket]5 because [his fridge was empty]6. Then, [he
went to the movies]7.

d. [Fred went to the supermarket]5 because [his fridge was empty]6. [He then went

278

3.5. The Examples of Semantic Interpretations

to the movies]7m .

e. [Fred is grumpy]0 because [his wife is away this week]8. [This shows how much
he loves her]9.

The D-STAG discourse structures of the examples (29)(a)-(29)(e) are depicted in
Figure 3.19.

Example 3.6.

(29)(a) [Fred is grumpy]0 because [he lost his keys]1. Moreover, [he failed his exam]2.

Interpretation: ExplanationF0 (ContinuationF1 F2)

In order to interpret the discourse (29)(a), one uses two semantic trees A.
• The first semantic tree A is anchored with Explanation. This tree is paired with
the syntactic tree anchored with because.

• The second semantic tree A is anchored with Continuation. This tree is paired
with the syntactic tree anchored with moreover.

Figure 3.20(a) shows the D-STAG derivation tree.⁸⁶ We encode it as the term t1

defined in Equation (3.30), whose tree representation is shown in Figure 3.20(b).

t1 = AnchorI tC0

(DbecauseA IDUA IDUA IDUA (AnchorS tC0
(DmoreoverA IDUA IDUA IDUA (AnchorS tC1

IDUA)))) : T
(3.30)

In order to obtain the semantic interpretation of the discourse, we translate the term
t1 under the lexicon L SEM

DSTAG. We obtain the following semantic interpretation:

L SEM
DSTAG(t1) = (EXPLANATION

(grumpy fred)
(CONTINUATION

(∃! x . (key x) ∧ (lose fred x))
(∃! y . (exam y) ∧ (fail fred y))

)
: t

(3.31)

Example 3.7.

(29)(b) [Fred is grumpy]0 because [he didn’t sleep well]3. [He had nightmares]4.

Interpretation: (ExplanationF0 F3) ∧ (ExplanationF3 F4)

Figure 3.21(a) illustrates the derivation tree of the (29)(b) discourse. To interpret it,
D-STAG uses one semantic tree A and one semantic tree B.

⁸⁶The terms encoding the derivation trees of the clauses used in these examples can be found on page
266, Equations (3.10)-(3.19).

279

Chapter 3. D-STAG as ACGs

τ0

βbecause/explanation

βmoreover/continuation

τ2

}

τ1

} 1O

1O

(a) The D-STAG derivation tree

AnchorI

tC0
DbecauseA

IDUA IDUA IDUA tC1

DmoreoverA

IDUA IDUA IDUA AnchorS

tC2
IDUA

(b) The ACG encoding of the D-STAG derivation
tree

S

S

NP

Fred

VP

V

is

Adj

grumpy

S

S

DC

CONJ

because

S

NP

he

VP

V

lost

NP

Det

his

N

keys

dot S

S

DC

ADV

Moreover,

S

NP

he

VP

V

failed

NP

Det

his

N

exam
(c) The derived syntactic tree

Figure 3.20: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

• The semantic tree A is anchored with Explanation. This tree is paired with the
syntactic tree anchored with because.

• The semantic tree B is anchored with Explanation. This tree is paired with the
syntactic tree anchored with the empty connective.

We encode the derivation tree of the discourse as the term t2 defined in Equa-
tion (3.32), whose tree representation is provided in Figure 3.21(b).

t2 = AnchorI tC0

(DbecuaseA IDUA IDUA (Dε
Explanation
B IDUA IDUA IDUA (AnchorS tC4

IDUA))(AnchorS tC3
IDUA)) : T

(3.32)
In order to obtain the semantic interpretation of (29)(b), we translate the term t2

280

3.5. The Examples of Semantic Interpretations

τ0

βbecause/explanation

βε/explanation

τ5

}

τ4

} 2O

1O

(a) The D-STAG derivation
tree

AnchorI

tC0
DbecuaseA

IDUA IDUA Dε
Explanation
B

IDUA IDUA IDUA AnchorStC4

IDUA

AnchorStC3

IDUA

(b) The ACG encoding of the D-STAG derivation tree

S

S

NP

Fred

VP

V

is Adj

grumpy

S

S

DC

CONJ

because

S

NP

he

VP

V

didn’t

VP

V

VP

sleep well

dot S

NP

He

VP

V

had

NP

N

nightmares

(c) The derived syntactic tree

Figure 3.21: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

by the lexicon L SEM
DSTAG. We obtain the following interpretation:

L SEM
DSTAG(t2) = (EXPLANATION

(grumpy fred)
(¬(sleep fred))

)
∧
(EXPLANATION

(¬(sleep fred))
(Plur (λx . nightmare x) (λy .have fred y))

)
: t

(3.33)

Example 3.8.

281

Chapter 3. D-STAG as ACGs

(29)(c) [Fred went to the supermarket]5 because [his fridge was empty]6. Then, [he
went to the movies]7.

Interpretation: (ExplanationF5 F6)∧ (NarrationF5 F7)

Figure 3.22(a) illustrates the derivation tree of the (29)(c) discourse. In D-STAG, in
order to interpret it, D-STAG uses the semantic tree A and the semantic tree B.

• The semantic tree A is anchored with Explanation, which is the semantic tree
paired with the elementary tree anchored with because.

• The semantic tree B is anchored with Narration, which is the semantic tree
paired with the elementary tree anchored with then.

τ6

βbecause/explanation

βthen/narration

τ8

}

τ7

} 3O

1O

(a) The D-STAG derivation tree

AnchorI

tC5
DbecuaseA

IDUA DthenB

IDUA IDUA IDUA AnchorStC7

IDUA

IDUA IDUA AnchorStC6

IDUA

(b) The ACG encoding of the D-STAG derivation tree

S

S

S

NP

Fred

VP

V

went

PP

Prep

to

NP

Det

the

N

supermarket

S

DC

CONJ

because

S

NP

Det

the

N

fridge

VP

V

was

Adj

empty

dot S

DC

ADV

Then,

S

NP

he

VP

V

went

PP

Prep

to

NP

Det

the

N

movies
(c) The derived syntactic tree

Figure 3.22: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

We encode the derivation tree of the discourse with the term t3 defined in Equa-
tion (3.34), whose tree representation is shown in Figure 3.22(b).

t3 = AnchorI tC5
(DbecuaseA IDUA

(DthenB IDUA IDUA IDUA (AnchorS tC7
IDUA)) IDUA IDUA (AnchorS tC6

IDUA)
(3.34)

282

3.5. The Examples of Semantic Interpretations

In order to obtain the semantic interpretation of the discourse, we translate the term
t3 by the lexicon L SEM

DSTAG. We obtain the following semantic interpretation:

L SEM
DSTAG(t3) = (EXPLANATION

(∃! x . (supermarket x) ∧ (go-to fred x))
(∃! x . (fridge x) ∧ (empty x)))

∧
(NARRATION

(∃! x .(supermarket x) ∧ (go-to fred x))
(∃! x . (movies x) ∧ (go-to fred x)))

: t

(3.35)

Example 3.9.

(29)(d) [Fred went to the supermarket]5 because [his fridge was empty]6. [he then
went to the movies]7m .

Interpretation: (ExplanationF5 F6)∧ (NarrationF5 F7)

In this case, we build the term t3
medial, defined in Equation (3.36), whose tree

representation is shown in Figure 3.23(a).

t3
medial = AnchorI tC5

(DbecuaseA IDUA

(Dthen
medial
B IDUA IDUA IDUA (AnchorS tC7

IDUA)) IDUA IDUA (AnchorS tC6
IDUA)

(3.36)

In order to obtain the semantic interpretation of the (29)(d) discourse, we translate
the term t3

medial by the lexicon L SEM
DSTAG. As a result, we obtain the interpretation (3.37),

which (as it was expected) coincides with the interpretation of the discourse (29)(c).

L SEM
DSTAG(t3

medial) = (EXPLANATION
(∃! x . (supermarket x) ∧ (go-to fred x))
(∃! x . (fridge x) ∧ (empty x)))

∧
(NARRATION

(∃! x .(supermarket x) ∧ (go-to fred x))
(∃! x . (movies x) ∧ (go-to fred x)))

: t

(3.37)

Example 3.10.

(29)(e) [Fred is grumpy]0 because [his wife is away this week]8. [This shows how
much he loves her]9.

Interpretation: Commentary (ExplanationF0 F8) F9

In order to interpret the (29)(e) discourse, D-STAG uses two semantic trees A.
One of them is anchored with Commentary and the other one is anchored with

283

Chapter 3. D-STAG as ACGs

AnchorI

tC5
DbecuaseA

IDUA DthenB

IDUA IDUA IDUA AnchorStC7

IDUA

IDUA IDUA AnchorStC6

IDUA

(a) The term encoding the derivation tree of a discourse
with a clause-medial adverbial

S

S

S

NP

Fred

VP

V

went

PP

Prep

to

NP

Det

the

N

supermarket

S

S

DC

CONJ

because

S

NP

Det

the

N

fridge

VP

V

was

Adj

empty

dot S

NP

Fred

VP

DC

Adv

then

VP

V

went

PP

Prep

to

NP

Det

the

N

movies
(b) The derived syntactic tree

Figure 3.23: The abstract term encoding of a discourse with a clause-medial adverbial
and the derived syntactic tree

Explanation. Figure 3.24(b) illustrates the derivation tree of (29)(e). We encode this
derivation tree as the term t4 defined in Equation (3.38).

t4 = AnchorI tC0

(DbecuaseA (Dε
commentary
A IDUA IDUA IDUA (AnchorS tC9

IDUA)) IDUA IDUA (AnchorS tC8
IDUA)
(3.38)

In order to obtain the semantic interpretation of the discourse, we translate the term
t4 by the lexicon L SEM

DSTAG. We obtain the following interpretation of the discourse:

L SEM
DSTAG(t4) = COMMENTARY

(EXPLANATION
(grumpy fred)
(∃! x . (wife x fred)∧ (∃! y . (week y)∧ (away x y)))

)
(show-this (a-lot (∃! x . (wife x fred)∧ (love fred x))))

: t

(3.39)

284

3.5. The Examples of Semantic Interpretations

τ0

βbecause/explanation

βε/commentary

τ10

}

τ9

} 4O

1O

(a) The D-STAG derivation tree

AnchorI

tC0
Dbecuase

Dε
comment

IDUA IDUA IDUA AnchorStC9

IDUA

IDUA IDUA AnchorStC8

IDUA

(b) The ACG encoding of the D-STAG derivation tree

S

S

S

NP

Fred

VP

V

is

Adj

grumpy

S

DC

CONJ

because

S

NP

Det

his

N

wife

VP

V

is

Adj

Adj

away

NP

Det

this

N

week

dot S

NP

This

VP

V

shows

S

S

Adv

how-much

S

NP

he

VP

v

loves

NP

her
(c) The derived syntactic tree

Figure 3.24: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

285

Chapter 3. D-STAG as ACGs

3.6 Interpretation as Labeled Formulas

In D-STAG, the semantic interpretations follow the SDRT principles. As we saw in the
Section 4.3, SDRT makes use of labels in order to encode the discourse interpretations.
We develop an approach that enables us to obtain the interpretation of a discourse
reminiscent of the SDRT interpretation of that discourse. Labeled formulas enable us
to refer to sub-formulas of a formula. By labeling the expressions that are under the
scope of the quantifiers, we can encode interaction between the scope of a discourse
relation and the existential quantifier, which is not the case for the HOL interpretations
that we defined in the previous section.

Thus, we encode the semantic interpretation of a discourse as a labeled formula,
instead of a HOL one. The labeled interpretations specify the same DAGs as the ones
specified by the (original) D-STAG interpretations. For the sake of illustratation, let us
consider the discourse (29)(e), repeated as follows:

(29)(e), repeated
[Fred is grumpy]0 because [his wife is away this week]8. [This shows
how much he loves her]9.

Interpretation: Commentary (ExplanationF0 F8) F9

The unlabeled interpretation of (29)(e) is shown in Equation (3.39) on page 284.
We define the following labeled interpretation of (29)(e):

u = ∃l l l1 l2.
l : (grumpy fred) ∧
(∃l l3.

(∃! x . l3 : (wife x fred) ∧ (∃! x ′. l3 : (week x ′) ∧ l3 : (away x x ′))) ∧
(l2 : (EXPLANATION l l3) ∧
(∃l l4. l4 : (show-this(∃l l5. a-lot (∃!x . l5 : (wife x fred) ∧ l5 : (love fred x)))) ∧
(l1 : (COMMENTARY l2 l4) ∧ >)))

)
: t

(3.40)
The labeled formula u defined in Equation (3.40) contains the sub-formula l2 :

(EXPLANATION l l3), which makes explicit that the expressions labeled with l
and l3 are related with the EXPLANATION relation. Another sub-formula of u
is l1 : (COMMENTARY l2 l4), which encodes that l2 and l4 are in the COMMENTARY
relation, where l2 labels EXPLANATION l l3. By contrast, in the unlabeled interpre-
tations, the scope of a discourse predicate included all the material introduced in an
interpretation of a clause. In other words, the approach with labels enables us to
explicitly refer to the material that are related by the discourse relations.

With the help of labels we can capture the argument sharing between two discourse
relations, for example as it is in the following discourse:

286

3.6. Interpretation as Labeled Formulas

(29)(b), repeated [Fred is grumpy]0 because [he didn’t sleep well]3. [He had nightmares]4.

Interpretation: (ExplanationF0 F3) ∧ (ExplanationF3 F4)

As we already saw (see Equation 3.33), the unlabeled formula encoding the interpre-
tation of (29)(b) is as follows:

L SEM
DSTAG(t2) = (EXPLANATION

(grumpy fred)
(¬(sleep fred))

)
∧
(EXPLANATION

(¬(sleep fred))
(Plur (λx . nightmare x) (λy .have fred y))

) : t

L SEM
DSTAG(t2) does not explicitly encode that (¬(sleep fred)) is the interpretation of one

and the same clause (he didn’t sleep well). However, with the labeled formulas, we are
able to do that. Namely, the labeled interpretation of (29)(b) is as follows:

v =
∃l l0 l1.

(grumpy fred l) &
(∃l l2 l3.

(l3 : ¬(sleep fred)) &
(∃l l4.

(l4 : PLUR(λ x l5. l5 : (nightmare x)) (λ y l5. l5 : (have fred y))) &
((l1 : (Explanation l0 l3) & >) & l2 : (Explanation l3 l4))

)
)

: t

As v shows, the same label l3, which labels the semantic interpretation of he didn’t
sleep well, is used twice (in (Explanation l0 l3) and in (Explanation l3 l4)).

3.6.1 A Signature Σsem
LABEL For Encoding Labeled Semantic Represen-

tations

In order to build labeled formulas, we introduce the signature Σsem
LABEL. To encode labels,

we introduce an atomic type ` in Σsem
LABEL. Besides `, in Σsem

LABEL we introduce the types e
(for entities) and t (for truth values).

In D-STAG, where one uses unlabeled semantics to represent a meaning of a
discourse, a clause is interpreted as a term of type t . The predicates in unlabeled
semantics encoding discourse relations are of type t → t → t .

287

Chapter 3. D-STAG as ACGs

In the labeled language, instead of discourse units (expressions of type t), labels
serve as arguments of predicates modeling discourse (rhetorical) relations (such as
EXPLANATION). Predicates encoding discourse relations are of type ` → ` →
` → t . The type ` → ` → ` → t encodes that one needs two discourse units (two
arguments of type `) in order to generate a new discourse unit (the third argument
of type `) by connecting them with a discourse relation. For example, the formula
(EXPLANATION l1 l2 l3) : t can be read as follows: The content labeled by l1 and l2
are connected by the relation Explanation. The label of the new discourse unit built
by connecting l1 l2 by Explanation is l3. Thus, (EXPLANATION l1 l2 l3) can be seen
as a statement (proposition) and therefore it is of type t .

In the signature Σsem
LABEL, we introduce the constants of the signature Σsem

DSTAG with the
modified types so that we can represent labeled terms. Table 3.13 shows the constants
in Σsem

LABEL. Together with the constants of type (e → t) → t encoding quantifiers, we
introduce the constant ∃l of type (` → t) → t . We use the constant ∃l in order to
introduce labels denoting terms.

fred, he : e EXPLANATION : `→ `→ `→ t
sleep, bad-mood, exam : e → `→ t CONTINUATION : `→ `→ `→ t
love,miss, fail : e → e → `→ t NARRATION : `→ `→ `→ t
∀,∃,∃! : (e → t)→ t ∃l : (`→ t)→ t
· · · · · ·

Table 3.13: Constants in Σsem
LABEL

Convention: Instead of P k1 . . . kn l we write l : P k1 . . . kn , where l is a label. For
instance, we write l3 : NARRATION l1 l2 instead of NARRATION l1 l2 l3.

Remark 3.6. (Asher and Pogodalla, 2011) encodes the SDRT interpretations of discourses using
a dynamic semantics approach from (de Groote, 2006). Their encoding of SDRT makes use of
contexts. A context accumulates labels. One selects labels from a context in order to build a
new discourse unit. In our case, the constant ∃l is the only ‘tool’ that we use for introducing
labels in an interpretation of a discourse, because, in the present work, we do not encode a
notion of a context.

3.6.2 Interpretations as Types and Terms Built Upon Σsem
LABEL

We define the lexicon L SEM
LABEL to interpret the abstract types and constants to the types

and terms built over the signature Σsem
LABEL, respectively.

3.6.2.1 Interpretations of Types

In order to interpret the type DU into the labeled semantics, we slightly modify its
standard, unlabeled interpretation. In particular, we interpret a term of type DU to
a term λP .P F of type (` → t) → t , where F is of type ` and P is of type ` → t .
Therefore, we translate DU to (`→ t)→ t , which we abbreviate as `tt .

288

3.6. Interpretation as Labeled Formulas

(`→ t)→ t , `tt
(e → `→ t)→ `→ t , qnpl

Table 3.14: Abbreviations of types

Remark 3.7. The point that we translate a term of type DU to the term λP .P F in both,
the unlabeled and labeled semantics, is due to the fact that λP .P F is a generic type-raising
mechanism introduced by Montague (1973). In the case of D-STAG, one type-raises F : t to the
term λP .P F of type (t → t)→ t , because an object (i.e. F) on which one operates is of type
t . In the case of the labeled semantics, we predicate over the expressions of type `, i.e., labels.
Therefore, we use the term λP .P F of type `tt as a type-raised version of F .

We interpret the type S as `→ t (instead of t as it was in the unlabeled semantics).
We will justify this choice in the next section. The interpretations both of the types SA

and VA is t → t . Table 3.15 shows the interpretations of the types from ΣDer
DSTAG to the

types built over the set {e, t , `}.

np := qnpl T := t
n := e → `→ t DU := `tt
VA := t → t S := `→ t
npA := qnpl → qnpl SA := t → t
nA := (e → `→ t)→ (e → `→ t) DUA := `tt → `tt
nd := (e → `→ t)→ (e → `→ t)→ `→ t

Table 3.15: Interpretations of the abstract types to the types over {e, t , `} under the
lexicon L SEM

LABEL

3.6.2.2 Interpretations of Constants

In SDRT, one starts to build a discourse structure by labeling the atomic discourse
units, i.e., clauses in the discourse. A clause anchors an initial tree in D-STAG. We
encode D-STAG initial trees anchored by clauses with the help of the constants AnchorS
and AnchorI. We interpret the constants AnchorS and AnchorI so that whenever they are
applied to a term encoding a derivation tree of a clause, they introduce a label for
that clause. In other words, the clauses by default do not have labels. However, as
clauses become introduced in a discourse (with the help of AnchorS and AnchorI), they
are assigned labels. This explains why we interpret a type S as `→ t : A clause needs
a label in order to become a part of a discourse structure.

The only device that we have for introducing labels is the constant ∃l : (`→ t)→ t .
We use it in the interpretations of AnchorS and AnchorI, which are listed in Table 3.16.

As Table 3.16 shows, the interpretation of AnchorS introduces a label l in order
to label a clause s (i.e. to define s l). Since l labels s , one can further use l in a
discourse, i.e., it can serve as an argument to a discourse relation (Q l).

We use the constant AnchorI in order to encode the first clause of the discourse.
The first clause in the discourse does not substitute in any other tree. The as it does

289

Chapter 3. D-STAG as ACGs

not have a continuation. With this in mind, we propose the interpretation of AnchorI
in Table 3.16. Indeed, we use λ l .> in order to model the end (the stop sign) of the
discourse. Similar to the case of AnchorS, the interpretation of AnchorI also introduces
the label of a clause.

Constants in ΣDer
DSTAG Their translations by L SEM

LABEL

AnchorS λ s mod . λ P .∃ l . mod (λ Q . (s l) ∧ (Q l)) P
AnchorI λ s mod . ∃ l . mod (λ Q . (s l) ∧ (Q l)) (λ l . >)

Table 3.16: Interpretations of the constants AnchorS and AnchorI by the lexicon L SEM
LABEL

3.6.2.2.1 Discourse Connectives

We saw that interpretations of terms encoding initial trees anchored by clauses
introduce labels in a discourse. Clauses are atomic discourse units. To build larger
discourse units, D-STAG makes use of auxiliary trees anchored by discourse connectives.
The larger discourse units also should be labeled. To do that, we interpret auxiliary
trees anchored by discourse connectives with the help of the constants ∃l : (`→ t)→ t
so that they can introduce labels. In particular, instead of Φ

′
new and Φ

′′
used in D-STAG

semantic trees (see Section 3.4.1), we define Φ
′
newl and Φ

′′
l , in Equation (3.41). The

main di�erence between Φ
′
new and Φ

′′
and their new versions, i.e., Φ

′
newl and Φ

′′
l is

that the latter ones introduce labels. Now, instead of R x y (where R is a rhetorical
relation and x and y denote two pieces of discourse), we obtain (R x y l), or written
alternatively, l : (R x y).

Φ
′′
l = λ R X Y P . ∃l l . X (λ x . Y (λ y . (P x) ∧ (R x y l))) :

(`→ `→ `→ t)→ `tt → `tt → `tt

Φ
′
newl = λ R X Y P . ∃l l . X (λ x . Y (λ y . (P (R x y l)))) :

(`→ `→ `→ t)→ `tt → `tt → `tt

(3.41)

Figure 3.25 shows the unlabeled and labeled semantic trees of a discourse connective.
These two trees have the same structure. The di�erence between them is that while the
nodes in the original (unlabeled) semantic tree are ttt , in the labeled one, they are `tt
(as in the case of the labeled semantics, we interpret the type DU as `tt).

Consequently, we translate the constants DconnA and DconnB encoding the connective
conn in ΣDer

DSTAG as it is shown in Table 3.17. In these interpretations, Rl is a predicate of
type ` → ` → ` → t modeling the discourse relation signaled by the connective conn.
Since, there is no semantic di�erence between the constants DconnA (resp. DconnB) and
Dconn

medial
A (resp. Dconn

medial
B), we translate Dconn

medial
A (resp. Dconn

medial
B) to the same term to

which we translate the constant DconnA (resp. DconnB).

3.6.2.2.2 First Order Predicates

290

3.6. Interpretation as Labeled Formulas

ttt 4O

ttt → ttt

ttt → ttt → ttt

Φ R

ttt 3O

ttt∗

ttt 2O

ttt ↓ }

(a) unlabeled

`tt 4O

`tt → `tt

`tt → `tt → `tt

Φl Rl

`tt 3O

`tt∗

`tt 2O

`tt ↓ }

(b) labeled

Figure 3.25: The unlabeled and labeled semantic trees

Constants in ΣDer
DSTAG Their translations by L SEM

LABEL

DconnA, Dconn
medial
A λ d4 d3 d2.λ dsubst .λ dfoot . d4 ((Φ

′
newl Rl)(d3 dfoot) (d2 dsubst))

DconnB, Dconn
medial
B λ d4 d3 d2.λ dsubst .λ dfoot . d4 ((Φ

′′
l Rl) (d3 dfoot) (d2 dsubst))

Table 3.17: Semantic interpretations of the constants in ΣDer
DSTAG encoding discourse

connectives

Constants Encoding Nouns, Determiners, Proper Names

We encode nouns in ΣDer
DSTAG with constants of type nA (n (the translation of the nA

and n types are given in Table 3.15). Therefore, the type of a term to which a constant
encoding a noun translates is as follows: ((e → `→ t)→ (e → `→ t))→ (e → `→ t).
In ΣDer

DSTAG, we encode determiners with the type n(np. Therefore, the type of a term
to which a constant encoding a determiner translates is of type (e → ` → t) → qnpl .
We provide translations of the constants encoding nouns, determiners and proper names
in Table 3.18.

Constants in ΣDer
DSTAG Their interpretations under L SEM

LABEL

Dnoun λ d a. d (a (λ x .λl .noun x l))
Da λ P Q l . ∃ x . (P x l) ∧ (Q x l)
Dthe λ P Q l . ∃! x . (P x l) ∧ (Q x l)
Dfred λ P l . P fred

Table 3.18: Semantic interpretations of the constants in ΣDer
DSTAG encoding nouns, deter-

miners, and proper names

Constants Encoding Verbs

To interpret the constants modeling initial trees for verbs, one has to take into
account that S translates to `→ t . For instance, in the case a Dv constant modeling a
transitive verb, we propose the following translation:

291

Chapter 3. D-STAG as ACGs

L SEM
LABEL(Dv) =

λ sa va1 va2 sub obj .λ l . (sa (sub (λ x l1. obj (λ y l2. (va2 (va1 (Pv x y l2))))l1)l)) :

(t → t)→ (t → t)→ qnpl → qnpl → `→ t (3.42)

In Equation (3.42), Pv : e → e → ` → t is a labeled encoding of the predicate
signaled by the transitive verb v.

In general, the di�erence with the unlabeled semantic translations and labeled ones
is that we have one additional parameter for labels (i.e. variable of type `), which
corresponds to the fact that instead of the type t , we have `→ t .

3.7 Examples of Labeled Interpretations

We use the following examples of discourses:⁸⁷

(43) a. [Fred is grumpy]0 because [he lost his keys]1. Moreover, [he failed his exam]2.

b. [Fred is grumpy]0 because [he didn’t sleep well]3. [He had nightmares]4.

c. [Fred went to the supermarket]5 because [his fridge was empty]6. Then, [he
went to the movies]7.

d. [Fred went to the supermarket]5 because [his fridge was empty]6. [He then went
to the movies]7m .

e. [Fred is grumpy]0 because [his wife is away this week]8. [This shows how much
he loves her]9.

In Section 3.7, we already defined terms t1 , t2 , t3 , t3
medial, and t4 that encode

derivations trees of the discourses (43)(a), (43)(b), (43)(c), (43)(d), and (43)(e),
respectively. Figure 3.26 illustrates tree representations of these terms.

The lexicon L SEM
LABEL translates the terms t1 , t2 , t3 , t3

medial, and t4 to the terms shown
in Equations (3.44), (3.45), (3.46), (3.47), and (3.48), respectively. As one can
see, the terms defined in Equation (3.46) and (3.47) are the same as they represent

⁸⁷In Appendix D.4.1, we provide the codes that can use in order to run these examples with the ACG
toolkit.

292

3.7. Examples of Labeled Interpretations

AnchorI

tC0 DbecauseA

IDUA
IDUA

IDUA
tC1

DmoreoverA

IDUA
IDUA

IDUA
AnchorS

tC2 IDUA

(a) t1

AnchorI

tC0 DbecuaseA

IDUA
IDUA

Dε
Explanation
B

IDUA
IDUA

IDUA
AnchorStC4

IDUA

AnchorStC3

IDUA

(b) t2
AnchorI

tC5 DbecuaseA

IDUA
DthenB

IDUA
IDUA

IDUA
AnchorStC7

IDUA

IDUA
IDUA

AnchorStC6

IDUA

(c) t3

AnchorI

tC5 DbecuaseA

IDUA
Dthen

medial
B

IDUA
IDUA

IDUA
AnchorStC7

IDUA

IDUA
IDUA

AnchorStC6

IDUA

(d) t3
medial

AnchorI

tC0 Dbecuase

Dεcomment

IDUA
IDUA

IDUA
AnchorStC9

IDUA

IDUA
IDUA

AnchorStC8

IDUA

(e) t4

Figure 3.26: The ACG encodings of the D-STAG derivation trees of the examples

interpretations of the discourses (43)(c) and (43)(d), respectively.

L SEM
LABEL(t1) =
∃l l0 l1.

(l0 : grumpy fred) &
(∃l l2 l3.

(∃! x . l2 : (keys x) & l2 : (lose fred x)) &
(∃l l4.(∃! x . l4 : (exam x) & l4 : (fail fred x)) &
(l3 : (Continuation l2 l4) & (l1 : (Explanation l0 l3) & >))
)

) : t

(3.44)

293

Chapter 3. D-STAG as ACGs

L SEM
LABEL(t2) =
∃l l0 l1.

(grumpy fred l) &
(∃l l2 l3.

(l3 : ¬(sleep fred)) &
(∃l l4.

(l4 : PLUR(λ x l5. l5 : (nightmare x)) (λ y l5. l5 : (have fred y))) &
((l1 : (Explanation l0 l3) & >) & l2 : (Explanation l3 l4))

)
)

: t

(3.45)

L SEM
LABEL(t3) =
∃l l0 l1 l2.

(∃! x . l0 : (supermarket x) ∧ l0 : (go_to fred x)) ∧
(∃l l3.

(∃! x .l3 : (movies x) ∧ l3 : (go_to fred x)) ∧
((∃l l4. (∃!x . l4 : (fridge x) ∧ l4 : (empty x)) ∧ (l1 : (Explanation l0 l4)>)) ∧
∧ l2 : (Narration l0 l3))

) : t
(3.46)

L SEM
LABEL(t3

medial) =
∃l l0 l1 l2.

(∃! x . l0 : (supermarket x) ∧ l0 : (go_to fred x)) ∧
(∃l l3.

(∃! x .l3 : (movies x) ∧ l3 : (go_to fred x)) ∧
((∃l l4. (∃!x . l4 : (fridge x) ∧ l4 : (empty x)) ∧ (l1 : (Explanation l0 l4)>)) ∧
∧ l2 : (Narration l0 l3))

) : t
(3.47)

L SEM
LABEL(t4) =
∃l l l1 l2.

l : (grumpy fred) ∧
(∃l l3.

(∃! x . l3 : (wife x fred) ∧ (∃! x ′. l3 : (week x ′) ∧ l3 : (away x x ′))) ∧
(l2 : (EXPLANATION l l3) ∧
(∃l l4. l4 : (show-this(∃l l1. a-lot (∃!x .l1 : (wife x fred) ∧ l1 : (love fred x)))) ∧
(l1 : (COMMENTARY l2 l4) ∧ >)))

)
: t

(3.48)

294

3.8. Preposed Conjunctions

3.8 Preposed Conjunctions

In D-STAG besides postposed conjunctions, one considers preposed conjunctions such
as when in Example (49).

(49)
When [Fred was in Paris]0, [he went to the Ei�el Tower]1. Next, [he visited the Louvre]2.

Interpretation: circumstance (narrationF3 F2) F1

DU 4O

DU 3O

DC

When

DU 2O

DU ↓}

Punct

,

DU 5O

DU∗

(a) The tree anchored with a preposed
conjunction

DU 4O

DU 3O

DU∗ Punct

pmark

DC

Conn

DU 2O

DU ↓ }

(b) The tree of a postposed connec-
tive/discourse adverbial

Figure 3.27: D-STAG syntactic elementary trees anchored by connectives

Figure 3.27(a) depicts an elementary tree anchored with a preposed discourse
connective. It has four DU-adjunction sites DU 2O, DU 3O, DU 4O, and DU 4O, whereas
elementary trees anchored by postposed conjunctions have three DU-adjunction sites
(cf. Figure 3.27(b)). The DU 5O node has a special usage in D-STAG. In particular,
in a case where a preposed conjunction that plays the role of a framing adverbial,
one uses adjunction on the DU 5O node. For instance, in (49), when is a framing
adverbial. Figure 3.28(a) on the following page illustrates the derivation tree of the
discourse (49). The tree obtained by substituting τ2 into βnext/narration adjoins on the
DU 5O node of the elementary tree anchored with when. The DU 5O is the mother node
of the foot node (i.e. DU∗). For instance, the interpretation of the discourse (49) is
circumstance (narrationF2 F1) F0. In a case where a preposed conjunction is not a
framing adverbial, the adjunction is not performed on the DU node with link 5O, but
on the other DU-adjunction sites (marked with 2O, 3O, and 4O).

In order to encode a preposed conjunction, we introduce two constant Dconn-preposedA

and Dconn-preposedB
of type DUA (DUA (DUA (DUA (DU (DUA in the abstract

vocabulary ΣDer
DSTAG.

3.8.1 Interpretation as TAG Derivation, and TAG Derived Trees

Figure 3.29 shows the way we analyze a discourse with a preposed connective. By
encoding this analysis, we interpret the Dconn-preposed constant modeling the conn-preposed
preposed connective to TAG derivation trees. Equation (3.50) shows this interpretation.

295

Chapter 3. D-STAG as ACGs

τ1

βwhen/circumstance

βnext/narration

τ2

}

τ0

} 5O

1O

(a) DSTAG derivation: pre-
posed case

τ0

βConn1

βConn2

τ2

}

τ1

} xO

1O

(b) The DSTAG deriva-
tion tree in the postposed
case (X = 1, 2, 3, 4)

Figure 3.28: D-STAG derivation trees of discourses with a preposed and a postposed
conjunction

DU 4O

DU 3O

DU 2O

DU↓

S

DC

conn-preposed

S

Punct

,

DU 5O

DU∗

Figure 3.29: The interpretation of Dconn-preposed into TAG derivation trees

L DSTAG
TAG (Dconn-preposed) = λo d5 d4 d3 d2 dsubst . Cconcat

preposed d5 d4 d3 d2 (dsubst Cconn-preposed
S (λox .x))

where Cconcat
preposed ∈ ΣDer

TAG is of type SA (SA (SA (SA (S(SA

(3.50)
The constant Cconcat

preposed ∈ ΣDer
TAG the DU-rooted tree anchored with a comma shown in

Figure 3.29. Cconn-preposed
S is a constant of type SA modeling the S-rooted auxiliary tree

anchored with conn-preposed. By adjoining this auxiliary tree on the S-adjunction site of
the host clause, one inserts conn-preposed into the clause-initial position of the clause.

296

3.8. Preposed Conjunctions

L TAG
synt (Cconcat

preposed) =

λ sa5 sa4 sa3 sa2 ssubst x . sa4 (sa3 (S3 (sa2 ssubst) (Punct1 comma) (sa5 x))) (3.51)

3.8.2 Interpretation as D-STAG Semantic Trees

In order to interpret the constant Dconn-preposed encoding a preposed conjunction to a
semantic term, we refer to the D-STAG semantic interpretation of a discourse with a
preposed conjunction, discussed in Section 5.3.7 on page 189.

t 4O

ttt → t

(Φ
′
circumstance) ttt 3O

λ P t

P t 5O

F1

ttt 2O

λ Q t

Q t 1O

F0

Figure 3.30: The D-STAG semantic tree for a preposed conjunction

For example, Figure 3.30 shows the semantic interpretation of a discourse with a
preposed conjunction when. By encoding this tree, we obtain the following semantic
interpretation of the constant Dwhen :

L SEM
DSTAG(DwhenA) =

λ d5 d4 d3 d2 .λ dsubst . λ dfoot . d4 ((Φ
′
new continuation) (d3 (d5 dfoot)) (d2 dsubst)) :

(ttt → ttt)→ (ttt → ttt)→ (ttt → ttt)→ (ttt → ttt)→ ttt → (ttt → ttt) (3.52)

In general, we interpret the constants Dconn-preposedA
and Dconn-preposedB

as follows:

L SEM
DSTAG(Dconn-preposedA

) =

λ d5 d4 d3 d2 .λ dsubst . λ dfoot . d4 ((Φ
′
new Rconn) (d3 (d5 dfoot)) (d2 dsubst)) :

(3.53)

(ttt → ttt)→ (ttt → ttt)→ (ttt → ttt)→ (ttt → ttt)→ ttt → (ttt → ttt)

L SEM
DSTAG(Dconn-preposedB

) =

297

Chapter 3. D-STAG as ACGs

λ d5 d4 d3 d2 .λ dsubst . λ dfoot . d4 ((Φ
′′
Rconn) (d3 (d5 dfoot)) (d2 dsubst)) : (3.54)

(ttt → ttt)→ (ttt → ttt)→ (ttt → ttt)→ (ttt → ttt)→ ttt → (ttt → ttt)
where: Rconn is the relation signaled by the conn-preposed connective

Example 3.11.
Let us consider the following example⁸⁸ of a discourse with a preposed conjunction:

(49), repeated
When [Fred was in Paris]0, [he went to the Ei�el Tower]1. Next, [he visited the Louvre]2.

Interpretation: circumstance (narrationF2 F1) F0

As Figure 3.30 indicates, in order to derive the semantic interpretation of the
discourse (49), D-STAG uses two semantic trees A, where one of them is anchored
with circumstance, and the other one is anchored with narration. We encode the
derivation tree of the discourse (49) and this choice of semantic trees by the term
t1

preposed, defined in Equation (3.55).

t1
preposed =

AnchorI tC1
(DwhenA (DnextA IDUA IDUA IDUA (AnchorS tC2

IDUA)) IDUA IDUA IDUA tC0
) : T
(3.55)

where:
tC0

= Dwas-in ISA IVA IVA Dfred Dparis : S
tC1

= Dwento-to ISA IVA IVA Dhe Dthe-ei�el-tower : S
tC2

= Dvisited ISA IVA IVA Dfred Dthe-louvre : S

In the term t1
preposed, the terms tC0

, tC1
, and tC2

encode the derivation trees of the
clauses C0, C1 and C2. Figure 3.31(b) illustrates the tree representation of the term
t1

preposed.
In order to obtain the syntactic interpretation of the discourse (49), we translate the

term t1
preposed by the lexicon L DSTAG

TAG ◦L TAG
synt . Figure 3.31(c) shows the produced derived

(syntactic) tree.
By interpreting the term L DSTAG

TAG ◦L TAG
synt under the lexicon L SEM

DSTAG, we obtain the
following semantic interpretation:

CIRCUMSTANCE
(NARRATION (go-to fred ei�el) (go-to fred louvre))
(be-in fred paris)

: t

(3.56)

⁸⁸We list the ACG signatures, lexicons and commands in Appendix D.1 that we use in these examples.

298

3.9. Modi�ers of Discourse Connectives

τ1

βbecause/explanation

βε/commentary

τ2

}

τ0

} 5O

1O

(a) The D-STAG derivation tree

AnchorI

tC1
DwhenA

DnextA

IDUA IDUA IDUA AnchorStC2

IDUA

IDUA IDUA IDUA tC0

(b) The ACG encoding of the D-STAG derivation tree
S

S

DC

ADV

When

S

NP

Fred

VP

V

was

PP

Prep

in

NP

Paris

comma S

S

NP

he

VP

V

went

PP

Prep

to

NP

Det

the

N

NNP

Eiffel

NNP

Tower

dot S

DC

ADV

Next,

S

NP

Fred

VP

V

visited

NP

Det

the NNP

Louvre
(c) The derived syntactic tree

Figure 3.31: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

3.9 Modi�ers of Discourse Connectives

In D-STAG, one analyzes a discourse where a connective is modi�ed. For instance, in
the discourse (57), for example modifies the subordinate conjunction because. Figure 3.32
shows the D-STAG analysis of the discourse (57). The modifier of the discourse
connective for example anchors an auxiliary tree rooted in DC. This auxiliary tree
adjoins into the auxiliary tree anchored by because. The DC-node in the tree anchored
by because serves as an adjunction site. The link associated with the DC-adjunction site
is 6O.

(57) Fred is grumpy because, for example, he failed an exam.

To model a DC-adjunction site, we introduce a new type DCA in the abstract
vocabulary ΣDer

DSTAG. We also introduce the constants of type DCA in ΣDer
DSTAG to encode

modifiers of discourse connectives. For instance, the constant Dfor-example : DCA encodes
the discourse modifier for-example.

299

Chapter 3. D-STAG as ACGs

Thus, now an elementary tree anchored by a discourse connective has the DC-
adjunction site. Therefore, we slightly change the types of the constants in ΣDer

DSTAG

encoding trees anchored with discourse connectives. In particular, we add one more
argument of type DCA to a constant encoding a discourse connective. Table 3.19 shows
the modified types of the constants Dconn and Dconn-preposed modeling a postposed and
preposed discourse connective, respectively.

Dconn : DUA (DUA (DUA (DCA (DU(DUA

Dconn-preposed : DUA (DUA (DUA (DUA (DCA (DU(DUA

Table 3.19: Constants in ΣDer
DSTAG encoding D-STAG trees anchored with discourse connec-

tives

DU 4O

DU 3O

DU∗ Punct

,/.

DC 6O

Conn

DU 2O

DU ↓}

DC

DC∗ for example

Figure 3.32: The tree anchored with a modifier adjoins on the DC node into the tree
anchored with a discourse connective

In D-STAG, a modifier of a discourse connective appears at the clause-initial position,
as it is in discourse (57). However, one can also consider a case where a discourse
connective is at a clause-initial position, but its modifier appears at a clause-medial
position, as it is in the following example:

(58) Fred is grumpy because he, for example, failed an exam.

In the discourse (58), the connective because occupies the clause-initial position,
whereas for example occupies a clause-medial one.

Thus, we consider two di�erent cases:
1. Both a discourse connective and its modifier appear at the clause-initial positions.
2. A discourse connective appears at the clause-initial position, but its modifier

appears at the clause-medial position.
Figure 3.33 illustrates our analysis in the case where both a discourse connective

and its modifier occupy the clause-initial positions. The DC-auxiliary tree adjoins into
the S-auxiliary tree anchored by the connective. The resultant tree adjoins on the
S-adjunction site (clause-initial position) into the derived tree of the clause.

Figure 3.34 depicts our analysis of a discourse where the discourse connective is
at the clause-initial position but its modifier occupies the clause-medial position. The

300

3.9. Modi�ers of Discourse Connectives

S-auxiliary tree anchored by the connective adjoins on the S-adjunction site (clause-initial
position) into the derived tree of the clause. The DC-auxiliary tree adjoins on the
VP-adjunction site (clause-medial position) into the derived tree of the clause.

To model these cases, in addition to DCA, we introduce a new type DCV
A in the

abstract vocabulary ΣDer
DSTAG. The di�erence between DCA and DCV

A is that we interpret
them as a DC-adjunction and a VP-adjunction, respectively, into TAG derivation trees.

DC

mod DC∗

DU 4O

DU 3O

DU∗ Punct

,

DU 2O

S

DC

conn

S∗

DU ↓

S

Figure 3.33: Both the discourse connective and its modifier at the clause-initial positions

S

DC

conn

S∗

DU 4O

DU 3O

DU∗ Punct

,

DU 2O

DU ↓

S

VP

VP

mod VP∗

Figure 3.34: The discourse connective is at the clause-initial position, whereas its
modifier is at the clause-medial position

Thus, to model the discourse modifier mod, we introduce together with the constant
Dmod : DCA, another constant Dmod

medial
initial : DCV

A. We use the constant Dmod
medial
initial in a case

301

Chapter 3. D-STAG as ACGs

where an auxiliary tree anchored with mod adjoins on the VP node into the derived
tree of a clause (see Figure 3.34).

Table 3.20 shows the constants that encode discourse connectives in ΣDer
DSTAG. The

constant Dconn models the case where the discourse connective and its modifier, both
appear at the clause-initial positions (see Figure 3.33). In the case where the discourse
connective conn appears at the clause-initial position and its modifier occupies the
clause-medial position (see Figure 3.34), we use the constant Dconn

initial
medial of type DUA (

DUA (DUA (DCV
A (DU(DUA.

Constants in ΣDer
DSTAG Their types

Dconn DUA (DUA (DUA (DCA (DU(DUA

Dconn
initial
medial DUA (DUA (DUA (DCV

A (DU(DUA

Table 3.20: Constants in ΣDer
DSTAG encoding discourse connectives

Remark 3.8. One could also consider a case where both the discourse adverbial and its modi�er
occupy clause-medial positions, as it is in the following example:

(59) Fred is grumpy. He failed an exam. He moreover, for example, lost his keys.

While we can encode such cases, we leave it for the future work to check the linguistic adequacy
of a phenomenon of a modi�er of a discourse adverbial.

3.9.1 Interpretations as TAG Derivation Trees

Thus, as Figure 3.33 indicates, we translate Dmod : DCA into Λ(ΣDer
TAG) as the DC-rooted

auxiliary tree anchored with mod.
Since we use the Dmod

medial
initial : DCV

A constant in order to encode the analysis shown in
Figure 3.34, we translate Dmod

medial
initial into Λ(ΣDer

TAG) as the VP-rooted auxiliary tree anchored
with mod. Table 3.21 shows the translations of the types and constants encoding
discourse modifiers to Λ(ΣDer

TAG).

Types and constants ΣDer
DSTAG Their translations by the L DSTAG

TAG lexicon
DCA DCA

DCV
A VA (VA

Dmod : DCA Cmod : DCA

Dmod
medial
initial : DCV

A Cmod
VP : VA (VA

Table 3.21: Interpretations of the types and constants encoding modifiers of discourse
connectives as the types and terms in TAG derivation trees

Figure 3.33 on the preceding page shows our analyses of the case where a discourse
connective and its modifier occupy the clause-initial positions. We interpret the constant
Dconn modeling this case as it is shown in Table 3.22. We encode the adjunction of a
modifier (dm) into the S-auxiliary tree anchored by the discourse connective (Cconn

S).

302

3.9. Modi�ers of Discourse Connectives

The resultant tree adjoins in a substituted tree (dsubst). Since we have no VP-adjunction,
we use λox .x .

Figure 3.34 on page 301 shows our analyses of the case where a discourse connective
occupies the clause-initial position, whereas its modifier occupies a clause-medial one.
We interpret the constant Dconn

medial
initial modeling this case as it is shown in Table 3.22.

We encode the adjunction of a modifier (dm) into the S-auxiliary tree anchored by
the discourse connective (Cconn

S). Since we have no adjunction in the S-auxiliary tree
anchored by the discourse connective (Cconn

S), we use the constant modeling the empty
DCA-adjunction IDCA .⁸⁹ In addition, we encode the adjunction of a modifier (dm) on
the VP node into the substituted tree (dsubst).

Constants Their translations by the L DSTAG
TAG lexicon

Dconn λo d4 d3 d2 dm dsubst . Cconcat
, d4 d3 d2 (dsubst (Cconn

S dm) (λox .x))
Dconn

medial
initial λo d4 d3 d2 dm dsubst . Cconcat

, d4 d3 d2 (dsubst (Cconn
S IDCA) dm)

Table 3.22: Interpretations of the abstract constants encoding discourse connectives as
TAG derivation trees

3.9.2 Interpretation as D-STAG Semantic Trees

In D-STAG, the tree anchored by a modifier of a discourse connective adjoins on
the tree anchored by a discourse relation. Since one encodes discourse relations as
constants of type t → t → t , the semantic interpretation of a modifier of a discourse
connective is of type (t → t → t) → (t → t → t). In order to interpret an abstract
constant modeling a tree anchored by a modifier, we refer to the D-STAG semantic
analysis of that modifier. For instance, in the case of the modifier for example, we obtain
the following interpretation of Dfor-example :

L SEM
DSTAG(Dfor-example) = L SEM

DSTAG(Dfor-example
medial

initial
) = λ R p q . Exempli�cation q (λ r . R r q) :

(3.60)

(t → t → t)→ t → t → t
where: Exempli�cation is of type t → (t → t)→ t

The constants Dconn and Dconn
initial
medial encode the elementary trees anchored by the

discourse connective conn. Both of them are interpreted as the same semantic term
since the di�erence between them is only syntactic. Table 3.23 shows the semantic
interpretations of the constants representing discourse connectives, where mod encodes
a modifier of the discourse relation Rconn signaled by the connective conn.

Example 3.12.

We consider the following examples:

⁸⁹The interpretations in Table 3.22 use the constant Cconcat
,, which was already defined in Section 3.3.6.1

on page 262.

303

Chapter 3. D-STAG as ACGs

Constants and Types inΣDer
DSTAG Their translations by the L SEM

DSTAG lexicon

DconnA, Dconn
initial
medial-A λ d4 d3 d2.λ mod . λ dsubst . λ dfoot .

d4 (Φ
′
new (mod Rconn)) (d3 dfoot) (d2 dsubst))

DconnB, Dconn
initial
medial-B λ d4 d3 d2.λ mod . λ dsubst . λ dfoot .

d4 (Φ
′′

(mod Rconn) (d3 dfoot)) (d2 dsubst))

DCA, DCV
A (t → t → t)→ t → t → t

Table 3.23: Interpretations of the constants and types from ΣDer
DSTAG to Λ(Σsem

DSTAG)

(61) a. Fred is grumpy because, for example, he failed an exam.

b. Fred is grumpy because, he, for example, failed an exam.

In each of them, the discourse connective appears at the clause-initial position. In
(61)(a), the modifier of the connective occupies the clause-initial position, whereas in
(61)(b), it occupies the clause-medial position.

The D-STAG derivation tree in the case of the (61)(a) is shown in Figure 3.35(a)
on the next page. We encode it with the term t1

mod, defined in Equation (3.62).
Figure 3.35(b) illustrates the tree representation of t1

mod. By interpreting the term t1
mod

by the lexicon L TAG
synt ◦L DSTAG

TAG as a TAG derived tree, we obtain the derived tree depicted
in Figure 3.35(c).

t1
mod =

AnchorI tC0
(DbecauseA IDUA IDUA IDUA Dfor-example (AnchorS IDUA tC2

)) : T (3.62)

In the case of the discourse (61)(b), we build the term t1
mod
init-med given in Equation (3.63),

whose tree representation is shown in Figure 3.36(a) on page 306. The lexicon
L TAG

synt ◦L DSTAG
TAG interprets t1

mod
init-med as the derived tree shown in Figure 3.36(b).

t1
mod
init-med =

AnchorI tC0
(DbecauseA IDUA IDUA IDUA Dfor-example

medial (AnchorS IDUA tC2
)) : T (3.63)

In order to obtain the semantic representations of the discourses (61)(a) and (61)(b),
we translate the terms t1

mod and t1
mod
init-med under the lexicon L SEM

DSTAG. In both of the cases,

304

3.9. Modi�ers of Discourse Connectives

τ0

βbecause/explanation

βfor-exampleτ1

} 6O

1O

(a) The D-STAG derivation
tree

AnchorI

tC0
DbecauseA

IDUa IDUa IDUa Dfor-example AnchorS

IDUa tC2

(b) The ACG encoding of the D-STAG derivation tree

S

S

NP

Fred

VP

V

is

Adj

grumpy

S

DC

DC

CONJ

because

comma ADV

for-example

comma

S

NP

he

VP

V

failed

NP

Det

his

N

exam
(c) The derived syntactic tree

Figure 3.35: The D-STAG derivation tree, its ACG encoding and the derived syntactic
tree

we obtain the following interpretation:

L SEM
DSTAG(t1

mod) = L SEM
DSTAG(t1

mod
init-med) =

Exempli�cation
(∃! x . (exam x) ∧ (fail fred x))
(λ r . EXPLANATION (bad-mood fred) r) : t

(3.64)

305

Chapter 3. D-STAG as ACGs

AnchorI

tC0
Dbecause

initial
medial-A

IDUa IDUa IDUa Dfor-example
medial AnchorS

IDUa tC2

(a) ACG encoding of the D-STAG derivation tree

S

S

NP

Fred

VP

V

is

Adj

grumpy

S

DC

CONJ

because

S

NP

he

VP

comma ADV

for-example

comma VP

V

failed

NP

Det

his

N

exam
(b) The derived syntactic tree

Figure 3.36: The D-STAG derivation tree, its ACG encoding, and the derived syntactic
tree

306

Chapter 4

Related Work and Conclusive
Remarks

Contents
4.1 Related Work . 307

4.2 Questions . 313

4.2.1 Paired Connectives and Nested Relations 313

4.2.2 Asymmetry of Clause-medial Connectives 313

4.2.3 Multiple Connectives within a Clause 313

4.3 Answers . 313

4.3.1 Paired Connectives and Nested Relations 313

4.3.2 Asymmetry of Clause-medial Connectives 315

4.3.3 Multiple Connectives within a Clause 317

4.4 Anaphora Resolution and Referring Expression Generation . 320

In this chapter we discuss Discourse Combinatory Categorial Grammar (DCCG) as a related
work to the one presented in this thesis. We will consider some questions regarding the
discourse formalisms, G-TAG and D-STAG. The same questions one may pose to the ACG
encodings of these formalisms, which we presented in this thesis. We provide our views on
these problems by suggesting ways of solving them. Furthermore, we outline some directions
for the future work.

4.1 Related Work

As for related work to the current one, we single out the work by Nakatsu and
White (2010). Their approach follows the D-LTAG discourse structure principles (B. L.
Webber, 2004; Bonnie Webber, Stone, Aravind Joshi, and Knott, 2003).⁹⁰ They develop

⁹⁰See Section 5.1 on page 131.

307

Chapter 4. Related Work and Conclusive Remarks

a grammar for discourse based on Combinatory Categorial Grammar (CCG) (Steedman,
1987). CCG can be seen as an extension of Lambek Grammars (Lambek, 1958), where
one has the type-raising and type-changing mechanisms together with the rules of
composition and a functional application.

Nakatsu and White (2010) refer to their grammar for discourse as Discourse
Combinatory Categorial Grammar (DCCG). With the help of DCCG, one can generate
multi-sentential texts. The conceptual representations from which one generates texts
are formulas of Hybrid Logic Dependency Semantics (HLDS) (Kruij�, 2001). HLDS
is based on Hybrid Logics (Blackburn, 2000). One can see Hybrid Logics as an
extension of Modal Logics such that Hybrid Logics enable one to explicitly name
the states (worlds) within a formula. Formulas of HLDS may specify graphs that are
not tree-shaped. DCCG follows the D-LTAG principles, DCCG allows for only those
graphs that one obtains in D-LTAG. In D-LTAG interpretation of a discourse, anaphoric
arguments of discourse adverbials are not specified. The same is true in the case
of a DCCG interpretation of a discourse. However, in text generation, Nakatsu and
White (2010) assume that anaphoric arguments are known in advance (that is, they are
encoded in conceptual representations).

Following D-LTAG, DCCG classifies discourse connectives either as structural or
anaphoric. Arguments of a structural connective are pieces of discourse (text segments).
These text segments are adjacent to each other.⁹¹ For example, the paired connectives
on the one hand, on the other hand may have text segments consisting of several clauses
(sentences) as their arguments, as it is in the discourse (65). The paired connectives
relates the text segments (65)(a)-(65)(b) and (65)(c)-(65)(d).

(65) a. On the one hand, Bienvenue is a mediocre restaurant.

b. However, it has excellent service.

c. On the other hand, Sonia Rose is a good restaurant.

d. However, it has poor decor.

Thus, the paired connectives on the one hand, on the other hand relate text segments
that are beyond the boundaries of the sentences they appear in. Indeed, the interpreta-
tions of the sentences (65)(b) and (65)(d) are parts of the text segments related by on
the one hand, on the other hand, but the paired connectives on the one hand, on the other
hand appear neither in (65)(b) nor in (65)(d).

In DCCG, some structural connectives may also appear at clause-medial positions.
Namely, the adverbial however is considered as a structural connective in D-LTAG⁹²
and therefore DCCG also treats however as a structural one. The following examples
illustrate the cases where however occupies the clause-initial and clause-medial positions.

⁹¹DCCG does not deal with attributed texts, i.e., texts with attitude verbs, which are in general
problematic in terms of identifying arguments of discourse connectives, even for subordinate conjunctions
(see Section 4.1).

⁹²Based on the corpus study, (Forbes et al., 2003) claims that however exhibits behavior of a structural
connective rather than of an anaphoric one.

308

4.1. Related Work

(66) Mary smiled. However, John frowned.

(67) Mary smiled. John, however, frowned.

Like for paired connectives, at the discourse-level, the semantic scope of however
should be extended so that its argument can be a sentence in which however does not
appear. For instance, one has to encode that in the case of (66) and (67), one of the
arguments of the structural connective however is Mary smiled, which is beyond the
sentence boundaries where however occurs. In order to extend the scope of a structural
connective, (Nakatsu and White, 2010) develops the cue threading technique within
DCCG.

While one of two arguments of however is derived from the sentence that is adjacent
to the one where however appears, the other argument (called the host argument) of
however is obtained from the sentence where however appears. As we saw, in the case
where a connective appears at the clause-initial position, it is rather straightforward
to identify the host argument compared to the case where the connective appears at
the clause-medial position.⁹³ With the cue threading technique, one overcomes the
problem of identifying the host argument of a connective in the case it appears at the
clause-medial position.

Moreover, since cue threading was introduced in order to extend the scope of a
connective, it enables one to encode a clause-medial structural connective to have
text segments as its arguments. For instance, in the case of (67), the clause-medial
connective however can get the text segments as its arguments.

Remark 4.1. In the cases of subordinate conjunctions, D-LTAG assumes that they obtain their
arguments locally. In particular, both of the arguments of a subordinate conjunction are provided
within the sentence where the subordinate conjunction appears (due to that (Nakatsu and White,
2010) refers to them as intrasentential conjunctions). Thus, to encode the arguments of a
subordinate conjunction is not problematic. That is why to encode subordinate conjunctions,
DCCG does not make use of the cue threading technique.

Cues can be seen as features decorating categories of DCCG. These features indicate
whether a discourse connective appears in a text segment or not.

. . . the cue feature is used to mark a clause as containing the structural
connective in question. The cue feature is then threaded through the
derivation until the point at which the semantic relation for the connective
is introduced. Nakatsu and White (2010)

Thus, if a connective Conn appears in a text segment and the expression encoding
that text segment has a feature cue :=Conn, it signals that one has to discharge the cue.
To do that, one derives an expression encoding a text segment that can discharge
cue := Conn. Since cue threading is used only for structural connectives, the text segment
discharging the cue introduced by a structural connective is adjacent to the text segment

⁹³See Section 4.1.

309

Chapter 4. Related Work and Conclusive Remarks

where the structural connective appears. The semantic interpretations of these two
text segments are declared as the arguments of the discourse relation signaled by the
structural connective. In this way, DCCG extends the scope of a connective beyond the
single sentence where it appears.

In the case of structural connectives like however, i.e., ones that can occupy clause-
medial positions, the cue threading solves the problem of the syntax-semantics interface.
Indeed, for a connective occupying either a clause-medial position or a clause-initial
one within a clause, the cue denoting the connective becomes the cue value of the
entire clause. Moreover, this cue value can be further thread (if the argument of the
connective is a larger text segment than just the clause where it appears). In this way,
the connective can get text segments as its arguments.

The cue threading is also useful to model the cases where two structural connectives
appear in the same sentence, as it is in the following discourse:

(68) Elixir has no significant side e�ects. But since the medicine is for you, never give
Elixir to other patients.

In (68), two structural connectives, but and since, appear in the same clause (the
medicine is for you). According to DCCG, the cue value of a clause cannot be two
connectives at the same time, but only one of them. That is, only one structural
connective can be active during each step of a derivation. In (68), at first the connective
since is activated, that is, DCCG assigns since as a value of the cue of the clause.
This clause becomes one of the argument of the connective since. By finding the other
argument of the connective since, one discharges the value of the cue of the clause. The
other argument of the connective since is the clause never give Elixir to other patients.
In this way, the cue value of the clause where structural connective since appears is
discharged. Now, one can activate the connective but. The cue value of the clause
where but appears becomes but. One threads this cue value so that the cue value of
the entire sentence where but appears (since the medicine is for you, never give Elixir to
other patients) becomes but. This sentence becomes an argument of but. DCCG finds
that the other argument of but is the clause Elixir has no signi�cant side e�ects. In this
way, one obtains the interpretation of the discourse (68).

One can use cues for modeling paired connectives such as on the one hand, on the
other hand. A linguistic assumption of DCCG is that in a discourse if one finds a
text segment involving on the one hand, then one should be able find an adjacent text
segment to that one involving on the other hand. DCCG models that by introducing two
cues ot1h and otoh. To discharge ot1h, one needs to derive a text segment with the
cue equal to otoh. DCCG encodes this fact by defining a rule involving these cues.

With the help of the cue threading, one can deal with a discourse such as (65),
which gives rise to nested contrast relations. Namely, the interpretation of the discourse
(65) is the following formula:

Contrast (Contrast(A,B), Contrast(C ,D))

310

4.1. Related Work

(65), repeated a. On the one hand, [Bienvenue is a mediocre restaurant]A.

b. However, [it has excellent service]B .

c. On the other hand, [Sonia Rose is a good restaurant]C .

d. However, [it has poor decor]D .

Figure 4.1: A DCCG derivation, Figure adapted from (Nakatsu and White, 2010)

To analyze the discourse (65), DCCG produces the derivation shown in Figure 4.1.
Without getting into details of DCCG, we describe this derivation and the rules (denoted
by TC) that DCCG defines in order to produce such a derivation. In Figure 4.1, ot1h
and otoh stand for the shorthands for on the one hand and on the other hand, respectively.
ot1h introduces the cue ot1h in the text segment ot1h, A. In the text segment however, B,
the connective however introduces the cue however. One cannot combine these two text
segments directly (none of them is a functor). That is why DCCG introduces a rule that
enables one to convert the text segment containing however into a functor whose cue
value is not specified. It takes a text segment as an argument and produces a new text
segment that has the same cue value as the argument has. Thus, this functor applied
to the text segment ot1h, A produces a new text segment with the cue value equal to
ot1h. On the semantic side, by applying this functor (which is derived from the text
segment however, B) to ot1h, A, the semantic interpretation of however, i.e., Contrast
receives the interpretation of A as an argument. The other argument of Contrast
is the interpretation of B (from however, B). The case with the text segment otoh, C.
however, D is analogous. Thus, for otoh, C. however, D, one produces a text segment with
the cue value otoh. On the semantic side, one obtains Contrast(C ,D). Now, we have
two expressions encoding the text segments with the cues ot1h and otoh. DCCG has a
rule for combining such two expressions. Namely, the rule allows one to transform the
text segment with the cue ot1h into a functor that takes a text segment with the cue
otoh as an argument. The resultant text segment has a discharged cue (cue := nil). On
the semantic side, the relation Contrast signaled by the paired connectives ot1h, otoh
obtains its arguments: the interpretations of the text segments with the cues ot1h and
otoh. The interpretations of these arguments are Contrast(A,B) (the interpretation
of the text segment with the cue ot1h) and Contrast(C ,D) (the interpretation of the
text segment with the cue otoh). Thus, the interpretation of the discourse (65) is as
follows:

Contrast (Contrast(A,B), Contrast(C ,D))

311

Chapter 4. Related Work and Conclusive Remarks

Remark 4.2. Since DCCG follows D-LTAG, an adverbial connective is considered to have
an anaphoric argument. That is, a DCCG interpretation of an adverbial connective speci�es
only one of the arguments of the adverbial connective. The speci�ed argument is the structural
argument of the adverbial connective. The structural argument is the interpretation of the host
clause (one where the connective appears). Thus, to �nd the structural argument, DCCG does
not need to use cue threading.

As Nakatsu and White (2010) note, one can also develop a purely lexicalized
approach to discourse connectives using DCCG, without making use of cue threading.
Cue treading is only used for structural connective, i.e., for the ones that obtain their
arguments out of the adjacent text segments. Thus, encoding these arguments within
the syntactic descriptions of connectives could be also possible. In that case,⁹⁴ for
each connective, one has to have a number of entries for every syntactic position that
connective may occupy (e.g. the clause-medial and clause-initial positions).

There are certain phenomena that DCCG does not give an account of. In particular,
in the case where two structural connectives share an argument, the cue threading yields
an incorrect semantic analysis. This is due to the fact that DCCG assumes that in each
clause, only one structural connective is active and thereby a clause can be an argument
of only one structural connective. Recall that neither D-LTAG nor G-TAG deal with this
kind of phenomena. The only discourse grammar formalism discussed in the present
work that gives a grammatical account of the phenomenon of the argument sharing
between connectives is D-STAG. Therefore, the ACG encoding of G-TAG cannot deal
with such structures, whereas the ACG encoding of D-STAG can.

On the other hand, for DCCG, it is not a problem to encode a discourse where a
structural connective shares one argument with a discourse adverbial, whereas their
other arguments are di�erent. To illustrate that, let us consider the following discourse:

(69) [John ordered three cases of Barolo]0. [But he had to cancel the order]1 [because
then he discovered he was broke]2.

In (69), the structural connective because and the adverbial connective then share the
argument he discovered he was broke. The other argument of because is he had to cancel
the order. Since DCCG follows D-LTAG, it only finds one argument of the adverbial
connective then, obtained from the clause where then appears (which is he discovered he
was broke). The other argument is left underspecified.

The (fully specified) interpretation of (69) is (ContrastF0F1)∧ (ExplanationF1F2)∧
(NarrationF0F2). That is, while because and then share the argument he discovered he
was broke, their other arguments are he had to cancel the order (the other argument of
because) and John ordered three cases of Barolo (the other argument of then).

Contrary to D-LTAG and DCCG, D-STAG interpretation of a discourse specifies
both arguments of a discourse connective. In D-STAG, to model the cases such as (69),
one makes use of the DNF of a discourse. In particular for (69), one constructs a DNF
C0 butC1 becauseC2 thenC2. That is, one assumes that because has a copy of C2 as its
host clause.

⁹⁴We here only consider grammatical approaches to discourse, such as DCCG, D-LTAG, G-TAG,
D-STAG etc.

312

4.2. Questions

4.2 Questions

We discuss some questions that one may pose towards formalisms G-TAG and D-STAG,
and subsequently to their ACG encodings presented in this thesis.

4.2.1 Paired Connectives and Nested Relations

Nakatsu and White (2010) pose a question regarding G-TAG. Their question is whether
G-TAG can analyze paired connectives whose arguments can span multiple sentences,
such as the discourse (65) on page 308. One can ask the same question to the ACG
encoding of G-TAG. Below, we provide an answer to this question.

4.2.2 Asymmetry of Clause-medial Connectives

Both arguments of a discourse connective can be text segments according to DCCG,
which is also the case in G-TAG. Indeed, a constant modeling a tree anchored by a
discourse connective is of type T(T(T, where T stands for a text segment. However,
notice that we encode clause-medial connectives by constants of type T (S (T,
where S stands for sentences. Thus, in this case, one of the arguments (the host
segment) of the clause-medial connective can be only a sentence but not a text. This
makes our encoding of clause-medial connectives asymmetric. Below, in Section 4.3.2,
we provide a solution that enables a clause-medial connective to have both of the
arguments texts.

4.2.3 Multiple Connectives within a Clause

In this thesis, we indeed develop a lexicalized approach, which does not make use of
cue threading. However, we have not presented encoding of a case where an adverbial
connective and a structural one appear in the same clause. In G-TAG this case is not
studied. While D-STAG deals with such cases, it makes use of a preprocessing step in
order to interpret discourses such as (69). Below, we will discuss how one can deal
with this case without using a preprocessing step. We provide a possible solution for
this problem by extending the ACG encoding of D-STAG.

(69), repeated
[John ordered three cases of Barolo]0. [But he had to cancel the order]1
[because then he discovered he was broke]2.
Interpretation: (ContrastF0F1) ∧ (ExplanationF1F2) ∧ (NarrationF0F2)

4.3 Answers

4.3.1 Paired Connectives and Nested Relations

As a formalism, G-TAG can encode the paired connectives in the same way as it is
done by D-LTAG. Indeed, every connective in G-TAG is structural and this true for

313

Chapter 4. Related Work and Conclusive Remarks

the paired connectives as well. The underspecified g-derivation tree in Figure 4.2(a)
illustrates the lexical entry for the paired connectives ot1h, otoh, whereas Figure 4.2(b)
depicts its corresponding initial tree anchored by the paired connectives ot1h, otoh. The
feature (+S) indicates that arguments of the lexical entry of the paired connectives can
be either sentences or texts.

ot1hotoh
(+T,+S)

Prop1
(+S)

Prop2
(+S)

arg1 arg2

(a) The lexical en-
try ot1hotoh

S

on the one hand
S ↓
(arg1) on the other hand

S ↓
(arg2)

(b) The initial tree for a paired connective

Figure 4.2: The G-TAG lexical entry and the corresponding elementary tree for the
paired connectives ot1h, otoh

The concept whose lexicalization is the lexical entry (represented as the tree) in in
Figure 4.2(a) is Contrast(p1, p2), where p1 and p2 are the conceptual representations
of Prop1 and Prop2, respectively.⁹⁵ For instance, one can encode the discourse (65)
with the help of G-TAG by constructing the g-derivation tree shown in Figure 4.3(a). A,
B, C, and D denote g-derivation trees of the clauses A, B , C , and D respectively. The
conceptual representation corresponding to the g-derivation tree is the interpretation of
the discourse (65).

(65), repeated a. On the one hand, [Bienvenue is a mediocre restaurant]A.

b. However, [it has excellent service]B .

c. On the other hand, [Sonia Rose is a good restaurant]C .

d. However, [it has poor decor]D .

Thus, the answer to the question whether G-TAG can encode discourses such as (65)
is positive. The same is true for the ACG encoding of G-TAG (see Chapter 1). Indeed,
we encode the g-derivation tree and shown in Figure 4.3(b) on the facing page as a
term over the abstract vocabulary ΣGTAG. Then we can interpret the term into derived
tree in order to obtain the parse (syntactic) tree of the discourse. By interpreting the
term with the semantic lexicon, we obtains the semantic interpretation of the discourse.
Moreover, the ACG encoding of G-TAG can deal with the paired connectives in the
cases where they appear at clause-medial positions, which is also possible to do with
the help of DCCG.

⁹⁵Here, for the sake of simplicity of explanation, we do not use LOGIN but HOL for G-TAG conceptual
representations.

314

4.3. Answers

ot1hotoh
(+T,+S)

however

A B

however

C D

arg1

arg1 arg2

arg2

arg1 arg2

(a) A g-derivation tree
S

on the one hand S

S

Sonia Rose is a good restaurant

S

however S

it has excellent service

on the other hand S

S

Sonia Rose is a good restaurant

S

however S

it has poor decor

(b) The derived tree with a paired connectives

Figure 4.3: The g-derivation tree and the syntactic tree it gives rise to

4.3.2 Asymmetry of Clause-medial Connectives

In the ACG encoding of G-TAG, a constant Gadv
T
T is of type T (T (T. Thus, a

discourse connective adv has text segments as its arguments.
However, in the case of clause-medial adverbials, we type the constant Gadv

medial with
T(S(T. In this case, the first argument is a text (of type T), whereas the other
one is a sentence (of type S). Hence, in such cases, our analysis is not capable
of relating two text segments, but rather a text segment and a sentence. We can
extend our approach to include this case as well. Namely, we introduce a constant
Gadv

medial
2 : T (T′ (T, where T′ stands for a text segment where adv appears at a

clause-medial position. Thus, we should be able to express that in the text segment
represented by a term of type T′, the first clause can receive a VP adjunction that
inserts a connective in a clause-medial position in that clause. In G-TAG, a text segment
can only be obtained with the help of some discourse connective conn that relates two
text segments. Let us assume that these text segments are a sentence (a term of type
S) and a text (a term of type T). Figure 4.4 on the next page shows the analysis that
we propose. The first piece is a text. The second one is also a text where we single
out the first clause. The tree anchored by the connective adjoins on the VP adjunction
site (clause-medial position) in the derived tree of this clause.

We encode the analysis illustrated in Figure 4.4 by introducing a constant AcnhorT′

of type S(DC(T(T′, where DC models the type of underspecified g-derivation
trees of a discourse connective conn.⁹⁶

⁹⁶We could type AcnhorT′ with (S(T(T)(S(T(T′, but, if we did so, then the abstract
vocabulary would become third-order.

315

Chapter 4. Related Work and Conclusive Remarks

T

T ↓ Punct

.

T ↓

VP

VP adv

T

S

VP

conn T

Figure 4.4: An analysis of a case with a connective at a clause-medial position

Now, we can define the semantic and syntactic interpretations of AcnhorT′. We
interpret AcnhorT′ into semantics as the term λo s1 R s2. R s1 s2. Indeed, the arguments
of AcnhorT′ are the clause (s1), the discourse connective (R), and the text segment (s2).
The discourse connective relates these two discourse units (R s1 s2).

To define a syntactic interpretation of the constant AcnhorT′, we interpret it into
TAG derivation trees. Its interpretation gets three arguments, a clause, a connective,
and a text and produces out of them their concatenation. Thus, we define the following
interpretation of AcnhorT′:

LGTAG−TAG(AcnhorT′) = λo s c t mod . CConcat
3 (s mod) c t (4.70)

Where CConcat
3 stands for the tree shown in Figure 4.5(a).

We interpret Gadv
medial

2 as follows: It takes two arguments that stand for derived trees
of texts such that the one of them can receive an adjunction. Thus, we propose the
following interpretation of Gadv

medial
2 :

LGTAG−TAG(Gadv
medial

2) = λot1 t2. Cconcat
2 t1 (t2 Cadv

VP) (4.71)

Where Cconcat
2 stands for a tree shown in Figure 4.5(b), and Cadv

VP denotes the
VP-auxiliary tree anchored by adv.

Thus, one can model a derivation tree of a discourse where a clause-medial connective
adv relates two text segments. Let this discourse consist of T1 segment related to T ′.
The first clause in T ′ is s1. Let some discourse connective conn relates the clause s1 to
the rest of the discourse in T ′, denoted by T2. To model such a discourse, we define
the following term over the abstract vocabulary modeling G-TAG derivation trees:

t2m = Gadv
medial

2 tT1
(AcnhorT′ ts1 Gconn

DC tT2
) : T

316

4.3. Answers

S

S↓ DC↓ S↓

(a) The tree corre-
sponding to CConcat

3

S

S↓ Punct

.

S↓

(b) The tree corre-
sponding to CConcat

2

Figure 4.5: Trees corresponding to constants CConcat
3 and CConcat

2

Where tT1
and tT2

encodes the derivation tree of the text segments T1 and T2. The
term ts1 encodes the derivation tree of the sentence s1. The constant Gconn

DC encodes the
connective conn. By interpreting the term t2m into TAG derivation trees, we obtain the
following:

LGTAG−TAG(t2m) =

Cconcat
2 LGTAG−TAG(tT1

) (Cconcat
3 (LGTAG−TAG(ts1) Cadv

VP) Cconn
DC LGTAG−TAG(tT2

)) (4.72)

As Equation (4.72) shows, the tree anchored by the connective adv indeed adjoins
on the derived tree of the clause in the second text segment (LGTAG−TAG(ts1) Cadv

VP).
Our encoding of clause-medial connectives is still second-order. However, the quite

di�erent modeling of the clause-medial connectives from the clause-initial ones can be
considered as a drawback of this encoding. Moreover, we have assumed that one can
always split a text into a sentence and a text that are related by a discourse relation.
This obviously is not the case in general. Thus, in order to give an account of a more
generic case, one has to develop a di�erent approach from the one presented here.
At the same time, it would be also interesting to check the linguistic adequacy of the
phenomenon of a clause-medial connective whose discursive scope goes beyond the
clause where it appears.

4.3.3 Multiple Connectives within a Clause

D-STAG encodes discourses such as (69) with the help of an extra-grammatical process-
ing, involving a duplication of a clause in the DNF of the discourse. To be able to
encode the discourses such as (69) with a purely grammatical approach, i.e., without
making use of DNF, one has to analyze the behavior of two connectives appearing in
the same clause. The connectives because and then, each signals a discourse relation
with two arguments. Thus, neither because nor then is a parasitic modifier of the other
one, as it is in certain cases (see Section 5.3.8). Recall that D-STAG encodes modifiers
of discourse connectives with the help of adjunction (since D-STAG is a TAG-based
formalism).

Although in (69) then is a discourse connective, we o�er an analysis according to
which then syntactically behaves as a modifier of the discourse connective because. Thus,

317

Chapter 4. Related Work and Conclusive Remarks

we propose to model then by an auxiliary tree anchored with then that adjoins into
tree with because (see Figure 4.6). We introduce a new adjunction site DR in the tree
anchored by because. To encode this adjunction site, we introduce a new type DRA in
the abstract vocabulary of the ACG encoding of D-STAG, where we encode D-STAG
derivation trees.

(69), repeated
[John ordered three cases of Barolo]0. [But he had to cancel the order]1
[because then he discovered he was broke]2.
Interpretation: (ContrastF0F1) ∧ (ExplanationF1F2) ∧ (NarrationF0F2)

DU 4O

DU 3O

DU∗ Punct

,/.

DR 7O

because

DU 2O

DU ↓}

DR

DR∗ then

Figure 4.6: The tree anchored with a discourse connective adjoins on the DR node into
the tree anchored with a discourse connective

The challenge is to interpret such an analysis into semantics. We have two trees
anchored by discourse connectives, one of them is adjoined into the other. The resultant
tree has one substitution site where the host clause of these connectives substitutes. In
the semantic interpretation, the host clause is shared by these two connectives, but their
other arguments are di�erent from each other. Thus, one may define a composition
of two discourse relations so that the result of the composition has three arguments:
One of these arguments is shared by these relations, whereas the other two arguments,
each serves as the other argument of each of these relations. We propose the semantic
interpretation of the tree anchored by then modifying the tree anchored by because so
that one obtains the following:

λ f2 f1 f0. (Explanation f1 f2) ∧ (Narration f0 f2) : (t → t → t)→ t → t → t → t

Indeed, as one can see Narration and Explanation share the argument f2. The
argument f2 is the interpretation of the host clause for because. The interpretations of
because and then also take the arguments that di�er from each other, denoted by f0 and
f1. These arguments (f0 and f1) come from the piece of discourse: John ordered three
cases of Barolo. But he had to cancel the order. in (69), f0 and f1 are also related to each
other through the discourse relation Contrast, signaled by the connective but.

For now, let us forget about adjunction sites of a tree anchored by a discourse
connective because. In the abstract vocabulary, where we encode D-STAG derivation

318

4.3. Answers

trees,⁹⁷ we introduce two constants Dbecause and Dthen
m
2 to model the trees anchored by

because and then. We propose the following interpretations of Dbecause and Dthen
m
2 :

Dbecause = λDRadj .λF3 Q F2 F1.λD .
D((Q F2 F1 (λ x . x)) ∧ (F3 (λ f3. (F2 (λ f2. (F1 (λ f1.DRadj Explanation f3 f2 f1))))))) :

(ttt → ttt → ttt)→ ttt → ttt → ttt (4.73)

Dthen
m
2 = λR f3 f1 f2. (R f2 f3) ∧ (Narration f1 f3) : (t → t → t)→ t → t → t → t

(4.74)

DUn

DUn∗ Punct

,/.

DR

because

DU ↓}

(a) The tree anchored with be-
cause

DUn

DU 4O

DU 3O

DU∗ Punct

,/.

DC

but

DU 2O

DU ↓}

(b) The tree anchored with but

Figure 4.7: Trees anchored by discourse connectives

As one can see the type of the semantic interpretation of Dbecause is not the same
as the interpretation of a constant encoding a tree anchored by a connective, in the
case of ACG encoding of D-STAG (cf. Chapter 3). Therefore, we need to introduce
a new type DUA

n to type the constant Dbecause . Thus, the constant Dbecause is of type
DRA (DU(DUA

n . It corresponds to a tree shown in Figure 4.7(a). Thus, instead
of DU-adjunction, we make use of DUn adjunction. Therefore, to be able to adjoin
the tree anchored by because into the tree anchored by but, the latter should have a
DUn -adjunction site. Figure 4.7(b) depicts the tree anchored by but. Thus, we encode
the constant Dbut with the type DUA

n (DUA (DUA (DUA (DU(DUA.
Now, to encode the derivation tree of discourse (69), we define the following term:⁹⁸

AnchorIC0 (Dbut (Dbecause Dthen
m
2 C2) IDUA IDUA IDUA C1) (4.75)

By interpreting this term with the help of the above defined interpretations, one
indeed obtains (ContrastF0F1)∧ (ExplanationF1F2)∧ (NarrationF0F2).

However, as one may notice, the interpretation of type DRA is (t → t → t)→ t →
t → t → t , which is not exactly the semantic interpretation of an adjunction (modifier),

⁹⁷See Chapter 3.
⁹⁸In Appendix E, we provide the ACG codes that one can run on the ACG toolkit for this example.

319

Chapter 4. Related Work and Conclusive Remarks

which would rather be (t → t → t)→ (t → t → t). At the same time, one can argue
that then is not a modifier of because either, and thereby, its interpretation is not an
interpretation of a modifier. One can view the interpretation the type DRA to indicate
that: Instead of (t → t → t) → t → t → t , the semantic interpretation of DRA is
(t → t → t)→ (t → t → t)→ t .

4.4 Anaphora Resolution and Referring Expression Gen-
eration

The tasks of anaphora resolution and referring expression generation can be considered
beyond the problems of the syntax-semantics interface. One can argue that referring
expression generation is even domain (genre) related. Nevertheless, there are certain
tasks that one can try to solve within the syntax-semantic interface. For example, one
may try to encode a set of possible antecedents to a given anaphoric pronoun. For
that, one can make use of the approach developed in (de Groote, 2006). It presents
a dynamic logic approach to discourse modeling in the spirit of Montague, called
Type Theoretic Dynamic Logic (TTDL). According to the main principles of TTDL, the
meaning, i.e., the interpretation of a sentence must be computed with respect to its
left and right contexts: A meaning of a sentence is a function of its left and right contexts.
In TTDL, the type of a sentence is γ → (γ → o) → o, where γ is the type of a left
context, (γ → o) is the type of a right context, and o is the type of propositions. Thus,
the interpretation of the sentence is a function of its left and right contexts.

One of the main reasons why introducing dynamic frameworks becomes necessary
is a problem of anaphoric accessibility that Montague Grammar faces. Therefore, it is
interesting to see how TTDL deals with this problem. However, before doing so, let us
provide the TTDL operation of discourse updating.

JD.SK = λi.λr. JDK i (λi′. JSKi′ r) (4.76)

i:γ︷ ︸︸ ︷
D. S

r:γ→t︷ ︸︸ ︷︸ ︷︷ ︸
λi′.JSK i′ r :γ→t

(4.77)

The Equation (4.76) (pictorially illustrated in (4.77)) presents a formula for computing
the result of appending/updating a new sentence S to a given piece of discourse D. If
D is represented by a single sentence, then Equation (4.76) shows a formula for
computing the conjunction of two sentences. Note that in order for the right-hand side
of Equation (4.76) be well-typed, the type of JDK has to be γ → (γ → o) → o that
is the same as the type of JSK, which means that the type of a piece of discourse is the
same as the type of a sentence. Indeed, the resulting piece of discourse JD.SK has its left
(denoted as i) and right (denoted as r) contexts. The left context of JD.SK coincides
with the left context of JDK; the right context of JD.SK is the right context of JSK. That
is why in Equation (4.76), in order to compute JD.SK, JDK is applied to the left context

320

4.4. Anaphora Resolution and Referring Expression Generation

of JD.SK, and JSK is applied to the right context of JD.SK. Such architecture of TTDL
allows it to encode DRT (Kamp, 1988) in a straightforward way:⁹⁹

A DRS K = {x1, . . . , xn}{C1, . . . ,Cm} is translated as follows:

λi.λr .∃x1, . . . ,∃xn .C1 ∧ . . .∧ Cm ∧ r(x1 :: . . . :: xn :: i) (4.78)

Where (x1 :: . . . :: xn :: i) is the result of updating a (left) context i with the discourse
referents x1, . . . , xn (:: is a list update operator).

For the sake of illustration, let us consider an example of a discourse (79). TTDL
provides the compositional means for interpreting the discourse (79) as u defined in
Equation (4.80). As u indicates, snoring does not apply to x (the discourse referent
introduced by a man) but sel(x :: i). The expression sel(x :: i) stands for an entity that
can be selected in the context (x :: i). The context (x :: i) is a result of updating the left
context of the discourse (79) with x , which comes from the first sentence in (79) and
thus, it is part of the left context for he is snoring. The tasks of computing the value of
sel(x :: i) is beyond the compositional approach to the problem of the syntax-semantics
interface. Nevertheless, the value of sel(x :: i) cannot be an arbitrary entity but only
from the context (x :: i). In the case of (79), the value of sel(x :: i) should be x .

(79) A man is sleeping. He is snoring.

u = λir.(∃x .(man x)∧ (sleeping x)∧ (snoring sel(x :: i))∧ (r(x :: i))) (4.80)

It would be useful to employ the TTDL notions for dealing with anaphora resolution
in the discourse parsing task and also for the referring expression generation in the
discourse generation task. Since one deems these tasks to be outside of the scope
of a compositional approach, one can avoid dealing with anaphora resolution (resp.
referring expression generation) but still parse or interpret a discourse (resp. generate a
discourse). In the interpretation of a discourse, there will not be solved anaphoric links.
In the case of generation, in the generated discourse, the reference expressions would
not be generated. Nevertheless, in both of the cases, one would have a restriction on
the context from where a discourse referent comes from. According to that, one would
have to resolve an anaphoric link in the parsing task, or generate a reference expression
in the generation task.

Asher and Pogodalla (2011) propose an encoding of SDRT in the style of TTDL.
However, one needs to define a richer notion of a left context than just a list of entities.
Indeed, since SDRSs incorporate labels of discourse units and also information about
the attachment points, where new discourse units can be added, one should encode
all these. To adjust the notion of a left context to SDRT, a context is interpreted as a
record with the following fields:

• A field for labels;

⁹⁹Besides DRT (Kamp, 1988), DPL (Groenendijk and Stokhof, 1991) is also encoded in TTDL, because
the notions of left and right contexts defined in TTDL generalize the notions of states, assignments, etc.

321

Chapter 4. Related Work and Conclusive Remarks

• a field for accessible labels;
• a field for accessible discourse referents;
• a field for a proposition.
The richer left context enables one to select more than just an entity from the

context. Also, one can update a discourse not just with an entity but with a new
content coming from the new piece that attaches to the current discourse. To model
that, Asher and Pogodalla (2011) define the following selector and update functions:

• selL : γ → ` selects an accessible label from the left context;
• selE : γ → ι selects an accessible discourse referent from the left context;
• selρ : γ → ` → ` → ` → t selects a discourse relation, i.e., a relation that holds
between three labels, and in result produces a proposition;

• v : γ → ` → γ updates a context with the label coming from the new piece by
establishing the links (via rhetorical relations) between the label of the new piece
and the labels contained in the current context.

Developing a similar approach to the one of Asher and Pogodalla’s (2011) may
help to overcome the problems of anaphora resolution/referring expression generation.
In particular, one can model the syntax-semantics interface without explicitly naming
discourse referents but only the contexts from which they can be selected. Furthermore,
by developing an approach following the TTDL style, one can also think of encoding
D-LTAG where certain connectives have anaphoric arguments. Indeed, D-LTAG considers
finding one of the arguments of an adverbial connective to be beyond a compositional
account of the syntax-discourse interface. Therefore, to develop a TTDL style approach
for encoding anaphoric arguments of adverbial connectives of D-LTAG would allow one
to encode D-LTAG within a type-logical framework.

322

Chapter 5

Conclusion

In this thesis, we took the first steps in the ACG modeling of discourse by encoding
the discourse grammar formalisms, G-TAG and D-STAG, as ACGs. This enabled us to
develop an approach to the syntax-semantics interface for discourse with ACGs.

De Groote (2001) introduced ACGs to address the problems of the syntax-semantics
interface so that both syntax and semantics are encoded in a uniform way. ACGs
proved to be useful for encoding a number of formal grammars, including Tree-Adjoining
Grammars (TAGs). In the ACG encoding of TAG, derivation trees of TAG are modeled
as the pivots to TAG derived trees. In particular, TAG derivation trees were presented as
abstract terms and derived trees as object ones. In addition, by computing out of TAG
derivation trees the Montague style semantic interpretations, the ACG encoding of TAG
proved to be useful for modeling the syntax-semantics interface for sentences (Pogodalla,
2004). The main objective of this thesis was to provide modeling of discourse-level
phenomena with ACGs. In the present work, we have studied the formalisms that o�er
solutions to the problem of discourse modeling based on formal grammars. Since the
ACG encoding of TAG with Montague semantics proved to be successful, the formalisms
that o�ered discourse grammars based on the TAG principles were good candidates
for being encoded as ACGs. We have selected among such formalisms G-TAG (Danlos,
1998) and D-STAG (Danlos, 2009).

G-TAG was introduced for text generation, with an aim to implement it in practical
applications, whereas D-STAG was introduced for discourse parsing. Although both
G-TAG and D-STAG are based on TAG, they were designed under di�erent assumptions
about the discourse structure. While in G-TAG discourse structures are trees, in D-STAG
they can be non-tree shaped directed acyclic graphs (DAGs). That is why G-TAG and
D-STAG grammars are also di�erent from each other. Consequently, the ACGs that
we have constructed to encode G-TAG and D-STAG also di�er. Nevertheless, the
same generic architecture serves to both of these ACG encodings. We have modeled
derivation trees (either of G-TAG or of D-STAG) as abstract terms. In each of these
ACG encodings, we have defined two lexicons. One lexicon interprets the abstract terms
encoding derivation trees into derived trees. The other one interprets the same abstract
terms as logical formulas. Within a logical formula, in addition to the interpretations of
clauses in a discourse, one encodes the structure of the discourse.

323

Chapter 5. Conclusion

The notable di�erence between G-TAG and D-STAG and their corresponding ACG
encodings is that in order to deal with a certain kind of texts, both G-TAG and D-STAG
make use of an extra-grammatical step, whereas their encodings do not. Namely, in order
to model a text where a discourse connective occupies a clause-medial position, both
G-TAG and D-STAG perform an additional, non-grammatical processing of a discourse.
G-TAG does that after the grammatical processing step. The grammatical processing step
gives rise to a discourse where a discourse connective can only occupy a clause-initial
position. In order to generate a discourse where a connective appears at the clause-
medial position, the G-TAG post processing module moves some connectives (if any)
from clause-initial positions to clause-medial ones. In D-STAG, it is the preprocessing
step that takes care of clause-medial connectives. During the preprocessing step, one
normalizes clauses in a discourse containing connectives at clause-medial positions by
moving those connective to clause-initial positions. Afterwards, one applies the D-STAG
grammar in order to obtain the syntactic and semantic interpretations of the discourse.
Thus, each of the G-TAG and D-STAG grammars encodes discourse connectives only
at clause-initial positions.

In contrast to G-TAG and D-STAG, in their ACG encodings, we have modeled
discourse connectives at clause-medial positions as grammar entries. Namely, in each of
these ACG encodings, we have introduced a constant in the abstract vocabulary for
modeling a connective at a clause-medial position. This constant is di�erent from the
one that represents the same connective at a clause-initial position. Having di�erent
constants for modeling a connective in the clause-initial and clause-medial positions
enabled us to define di�erent syntactic interpretations of these constants. At the same
time, we have defined the same semantic interpretations of these constants. In this way,
one obtains the correct semantic and syntactic interpretations of a discourse containing
connectives at clause-medial positions. For each of the formalisms G-TAG or D-STAG,
in its ACG encoding, we have encoded clause-medial connectives without deviating from
the general principles of that formalism regarding discourse connectives and discourse
structure. Although the grammar entries of G-TAG and D-STAG significantly di�er from
each other, in their ACG encodings, we propose modelings of clause-medial connectives
based on the same principles. The method we have developed for encoding clause-
medial connectives within the ACG encodings of G-TAG and D-STAG can be applied
for TAG-based approaches in general. Indeed, both of the abstract vocabularies where
we encode derivation trees of G-TAG and D-STAG are second-order, which is also the
case for the ACG encoding of TAG. In other words, to encode clause-medial connectives,
we do not make use of a more expressive abstract vocabulary than the one that one
designs for encoding TAG derivation trees. While in the abstract vocabulary (either of
the ACG encoding of G-TAG or of D-STAG), we do not encode the constraints needed
for modeling clause-medial connectives, we define rich syntactic interpretations where
we express those constraints. That is, in the syntactic interpretations we encode the
di�erent behaviors of clause-medial and clause-initial connectives. Hence, for TAG-based
approaches, which one can encode with the help of second-order ACGs, one can make
use of the method of encoding clause-medial connectives proposed within the present
work.

The encodings of clause-medial and clause-initial connectives in the abstract vo-

324

cabulary are uniform. For pinpointing where the di�erence between clause-medial and
clause-initial connectives should be encoded, one may search for an answer within
the cognitive aspects of linguistics. We encoded the di�erence between them in their
syntactic interpretations. One may see it as a technical point of our encodings. Never-
theless, one may consider it as a suggestion that in the derivation-level (in the abstract
vocabulary), the clause-medial and clause-initial connectives have the same properties.
On the other hand, it has been argued that clause-medial connectives have di�erent
pragmatic e�ects from clause-initial ones (Forbes et al., 2003). However, the grammars
we encoded as ACGs, (a) they do not provide encodings of clause-medial connectives;
(b) they do not consider other aspects of meaning but only discourse semantics. Due to
that neither our encodings of these formalisms takes into account pragmatic phenomena.

The class of second-order ACGs consists of intrinsically reversible grammars. For
grammars of this class, one uses the same polynomial algorithm to build parse structures
both for strings and logical formulas (Kanazawa, 2007; Salvati, 2005). Since the ACG
encodings we have proposed are second-order, the problems of discourse parsing
and generation with the ACG encodings of G-TAG and D-STAG are of polynomial
complexity.

As for future work, we have identified several problems. For some of them, we have
suggested solutions that could be further refined. Among them is a problem of an
interaction of two connectives appearing in the same clause. While that clause serves
as an argument to both of the connectives, the other arguments of the two connectives
di�er. Although such cases are studied in D-STAG, to encode them, D-STAG makes use
of an extra-grammatical processing. By contrast, we have provided a purely grammatical
modeling of the phenomenon of two connectives appearing in the same clause. Our
encoding of the complex interaction of two discourse connectives is in the boundaries of
second-order ACGs. However, it would be interesting to examine whether our encoding
of this phenomenon is linguistically sound.

In addition, we have also pointed out that to deal with the referring expression
generation and anaphora resolution tasks within a compositional framework, one may
develop an approach based on the TTDL principles (de Groote, 2006). TTDL does
not provide a tool for generating referring expressions or resolving anaphora; it rather
allows one to develop a compositional approach to modeling of anaphoric expressions
without specifying their antecedents but the contexts from where they can be selected.
Such an approach could be useful for modeling discourse formalisms such as D-LTAG,
where certain connectives have anaphoric arguments and thereby their values are not
specified in a D-LTAG interpretation of a discourse.

To sum up, our work makes explicit the ACGs that one can use for discourse
modeling. In particular, we have provided the ACG encodings of two discourse
grammar formalisms, G-TAG and D-STAG. In this way, we have given an answer to the
main inquiry of this thesis. Since the ACG encodings of both G-TAG and D-STAG are
second-order, our results suggest that the second-order ACGs are suitable for expressing
constraints that one needs in the case of modeling the discourse-level phenomena.
Therefore, the results of the current thesis motivate to further investigate the problems
related to discourse with second-order ACGs and/or identify the limits of second-order
ACGs in terms of discourse modeling.

325

Chapter 5. Conclusion

326

Appendix A

TAG as ACG codes

ACG signatures and lexicons that we use in the examples are listed in Section A.1.
It has In order to obtain syntactic and semantic analyses for TAG with Montague
semantics, we use lexicon tag_syntax and tag_semantics , as the following commands
show:

tag_syntax tag_semantics realize
C_grumpy (C_because I_s (C_failed I_s I_vp C_john (C_exam C_an I_n))) (C_is I_vp) C_john:S;

tag_syntax tag_semantics realize
C_grumpy (C_because I_s (C_failed I_s I_vp C_john (C_exam C_an I_n))) C_is C_john:S;

A.1 TAG as ACGs: Signatures and Lexicons

signature derivation_trees =

(* types with as Xa with an "a" index indicate they are meant
for adjunction. See https://hal.inria.fr/inria-00141913 for further
explanation of the TAG into ACG encoding *)

Sa,Na, Na_d, N, VPa, S,WH : type;

(* Declatiation of abstract constants together with their
types. -> stands for the linear implication and => (not used in this
signature) stands for the intuituinnistic implication *)

C_dog,C_cat,C_exam:Na_d -> Na-> N;
C_sleeps:Sa -> VPa -> N -> S;
C_chases, C_loves, C_to_love, C_failed:Sa -> VPa -> N -> N -> S;
C_every,C_a,C_an:Na_d;
C_slowly,C_seems : VPa -> VPa ;
C_new,C_big,C_black : Na -> Na;
C_claims,C_said : Sa -> VPa -> N -> Sa ;
C_john,C_paul,C_mary,C_bill : N ;
C_who : WH;
C_liked : Sa -> VPa -> WH -> N -> S ;
C_does_think : Sa -> VPa -> N -> Sa ;
C_grumpy : Sa -> VPa -> N -> S;
C_is : VPa;

C_because : Sa -> S ->Sa;

(* Dummy element to specify the end of adjunctions *)
I_vp : VPa;
I_n : Na;
I_s : Sa;
end

(* Now we specify the signature for derived trees *)

signature derived_trees =

(* It uses ony one type : tye type of tree *)

tree:type;

327

Appendix A. TAG as ACG codes

(* Here are the non terminal symbol we find in the trees, with
an index indicating their arity *)
WH1,N1,VP1 : tree -> tree;
N2,S2,VP2:tree -> tree -> tree;

(* Here are the terminal symbols *)

every,dog,chases,a,cat,sleeps,slowly,new,big,black,seems,john,mary,bill,paul,
claims,loves,to_love,who,said,liked,does,think,grumpy, is, epsilon, failed, exam, an, because:tree;

(* We define feww constants that will make the lexicon definitions easier. *)

n = lambda n . lambda d a.d (a(N1 n)) : tree -> (tree -> tree) -> (tree -> tree) -> tree;
iv = lambda v . lambda s a np0 .s (S2 np0 (a (VP1 v))) : tree -> (tree -> tree) -> (tree -> tree) -> tree -> tree ;
tv = lambda v . lambda s a np0 np1 .s (S2 np0 (a (VP2 v np1))) : tree -> (tree -> tree) -> (tree -> tree) -> tree -> tree -> tree ;
ph_arg_v = lambda v . lambda s_root a np0 s_foot .s_root (S2 np0 (a (VP2 v s_foot))) : tree -> (tree -> tree) -> (tree -> tree) -> tree -> tree -> tree ;
det = lambda d . lambda n . N2 d n : tree -> (tree -> tree) ;
adv = lambda adv . lambda a v . a (VP2 v adv) : tree -> (tree -> tree) -> (tree -> tree) ;
l_adj = lambda adj. lambda a n . a (N2 adj n) : tree -> (tree -> tree) -> (tree -> tree) ;
r_adj = lambda adj. lambda a n . a (N2 n adj) : tree -> (tree -> tree) -> (tree -> tree) ;
ctrl_v = lambda v. lambda v_root v_foot .v_root (VP2 v v_foot) : tree -> (tree -> tree) -> (tree -> tree) ;
np = lambda proper_name . N1 proper_name : tree -> tree;
inf_tv = lambda v . lambda s a np0 np1 .S2 np1 (s (S2 np0 (a (VP1 v)))) : tree -> (tree -> tree) -> (tree -> tree) -> tree -> tree -> tree ;
wh_extract_tv = lambda v . lambda s adv wh subj . S2 wh (s (S2 subj (adv (VP1 v)))) : tree -> (tree -> tree) -> (tree -> tree) -> tree -> tree -> tree;

padj = lambda adj. lambda s a np0. s (S2 np0 (a (VP2 (VP1 epsilon) adj))) : tree -> (tree -> tree) -> (tree -> tree) -> tree -> tree ;
end

(* Then a signature for the strings *)
signature strings =

string: type;

(* we can define infix and prefix symbols. Note that as for now, the length of symbols can only be 1 *)

infix + : string -> string -> string;

every,dog,chases,a,cat,sleeps,slowly,new,big,black,seems,john,mary,bill,paul,
claims,loves,to,love,who,said,liked,does,think,grumpy, is, epsilon, failed, exam, an, because:string;
end

(* Ok. Now is our first lexicon. It translates derived trees into strings *)

lexicon tag_strings(derived_trees) : strings =

(* So every tree result in a string *)
tree := string;

every := every;
dog := dog;
chases := chases;

exam := exam;
failed := failed;

a := a;
an := an;

cat := cat;
sleeps := sleeps;
slowly := slowly;
new := new;
big := big;
black := black;
seems := seems;
john := john;
mary := mary;
bill := bill;
paul := paul;

claims := claims;
loves := loves;
to_love := to + love;
who := who;
said := said;
liked := liked;
does := does;
think:=think;
grumpy:=grumpy;
epsilon:=epsilon;

is := is;

because:=because;

WH1,N1,VP1 := lambda f.f;
N2,S2,VP2:=lambda f g . f + g;

end

(* We also provide a signature for the semantics *)

signature semantics =

(* We define the usual types *)

328

A.1. TAG as ACGs: Signatures and Lexicons

e,t:type;

(* Then few non logical-constants *)
dog,cat,sleep,grumpy,exam : e->t;
love,chase,like, fail:e -> e -> t;
j,m,b,p:e;
slowly : t -> t;
seem : (e -> t) -> e -> t;
new,big,black:e ->t;
claim,say,think : e -> t -> t;

PresTense: (e -> t) -> e -> t;

Because: t->t->t;

WHO : (e -> t) -> t;

(* And finally, here are the logical constants *)

infix & : t -> t -> t;
infix > : t -> t -> t;
binder All : (e=>t) -> t;
binder Ex : (e=>t) -> t;

end

(* We now define the semantics associated to each derivation tree *)

lexicon tag_semantics(derivation_trees) : semantics =
S := t;
N := (e -> t) -> t;
Sa := t -> t;
Na := (e =>t) -> (e =>t);
VPa := (e -> t) -> (e -> t);
Na_d := (e => t) -> (e -> t) -> t;
WH := (e ->t) -> t;

C_because := lambda a. lambda s x. a (Because s x);

C_every := lambda n.lambda P.All x. (n x) > (P x) ;
C_a, C_an := lambda n.lambda P.Ex x. (n x) & (P x);

C_dog := lambda d a . d (a (Lambda x.dog x)) ;
C_cat := lambda d a . d (a (Lambda x.cat x)) ;
C_exam := lambda d a . d (a (Lambda x.exam x)) ;

C_sleeps := lambda s a S.s(S(a(lambda x.(sleep x))));

C_grumpy := lambda s a S.s(S(a(lambda x.(grumpy x))));
C_is := lambda x. PresTense x;

C_chases := lambda s a S O.s(S(a(lambda x.O(lambda y.(chase x y)))));
C_loves := lambda s a S O.s(S(a(lambda x.O(lambda y.(love x y)))));
C_failed := lambda s a S O.s(S(a(lambda x.O(lambda y.(fail x y)))));

C_to_love := lambda s a O S.s(S(a(lambda x.O(lambda y.(love x y)))));
C_slowly := lambda vp r. vp (lambda x. slowly (r x));
C_seems := lambda vp r. vp (lambda x. seem r x);
C_new := lambda a n . a (Lambda x.(new x)&(n x));
C_big := lambda a n . a (Lambda x.(big x)&(n x));
C_black := lambda a n . a (Lambda x.(black x)&(n x));
C_claims := lambda sa a S comp. sa (S(a(lambda x.claim x comp)));
C_said := lambda sa a S comp. sa (S(a(lambda x.say x comp)));
C_john := lambda P.P j;
C_mary := lambda P.P m;
C_paul := lambda P.P p;
C_bill := lambda P.P b;
C_who := lambda P.WHO P;
C_liked := lambda sa a w S.w(lambda y.sa(S(a(lambda x.(like x y)))));
C_does_think := lambda sa a S comp. sa(S(a(lambda x.(think x comp))));
I_vp := lambda x.x;
I_n := lambda x.x;
I_s := lambda x.x;
end

(* And a lexicon from derivation trees to derived trees *)

lexicon tag_syntax (derivation_trees) : derived_trees =
N, S, WH := tree;
Sa,Na,VPa,Na_d := tree -> tree ;
C_john := np john;
C_mary := np mary;
C_bill := np bill;
C_paul := np paul;
C_dog := n dog;
C_cat := n cat;
C_exam := n exam;
C_chases := tv chases;
C_loves := tv loves ;

C_failed := tv failed ;

C_to_love := inf_tv to_love ;

329

Appendix A. TAG as ACG codes

C_sleeps := iv sleeps;
C_seems := ctrl_v seems;
C_claims := ph_arg_v claims;
C_every := det every;
C_a := det a;

C_an := det an;
C_slowly := adv slowly;
C_new := l_adj new;
C_big := l_adj big;
C_black := l_adj black;

C_who := WH1 who ;
C_liked := wh_extract_tv liked;
C_said := ph_arg_v said;
C_does_think := lambda s_root a subj s_foot . s_root (S2 does (S2 subj (a (VP2 think s_foot))));

C_grumpy := padj grumpy;
C_is := lambda x. VP2 is x;

C_because := lambda a s. lambda x. a (S2 x (S2 because s));

I_n,I_vp,I_s := lambda x.x;
end

330

Appendix B

G-TAG as ACG codes

The ACG signature and lexicons that we use in the examples are listed in Section B.3
on the next page.

B.1 Examples

In order to obtain an interpretation of g-derivation trees into:
• TAG derivation trees, we use the GTAGtoTAG lexicon;
• syntactic trees, we use the lexsyntax lexicon;
• logical semantics trees, we use the lexsemantics lexicon.
For example, the ACG code of the term t2GTAGex , which encodes the g-derivation tree

in Example 1.2 on page 214, is the following:

G_ensuiteSS
(G_pour_r G_jean (G_passe_laspirateur_sws I_s G_a) (G_etre_recomepnse_par I_s I_vp G_marie))
(G_fait_une_sieste I_s G_a G_jean)

:T

To interpret the term t2GTAGex under the lexicon lexsyntax, we use the following code:

lexsyntax analyse
G_ensuiteSS

(G_pour_r G_jean (G_passe_laspirateur_sws I_s I_vp) (G_etre_recomepnse_par I_s I_vp G_marie))
(G_fait_sieste I_s I_vp G_jean)

:T;

In order to obtain the semantic interpretation provided in Example 1.3 on page 223,
we interpret the same term with the help of the lexicon lexsemantics. We obtain the
following semantic representation

SUCC (GOAL (VACUUM j) (REWARD m j)) (NAP j) : t

B.2 An Example of Generation

We parse a term as follows:

lexsemantics parse SUCC (VACUUM j) (NAP j) : T;

We generate the set of terms over signature Gderivation (see below):

331

Appendix B. G-TAG as ACG codes

G_ensuiteSS (G_passe_laspirateur I_s G_a G_jean) (G_fait_une_sieste I_s G_a G_jean):T;
G_ensuiteST (G_passe_laspirateur I_s G_a G_jean) (AnchorT (G_fait_une_sieste I_s G_a G_jean)) :T;
G_ensuiteTS (AnchorT (G_passe_laspirateur I_s G_a G_jean)) (G_fait_une_sieste I_s G_a G_jean):T;
G_ensuiteTT (AnchorT (G_passe_laspirateur I_s G_a G_jean)) (AnchorT (G_fait_une_sieste I_s G_a G_jean)):T;

G_auparavantSS (G_fait_une_sieste I_s G_a G_jean) (G_passe_laspirateur I_s G_a G_jean):T;
G_auparavantST (G_fait_une_sieste I_s G_a G_jean) (AnchorT (G_passe_laspirateur I_s G_a G_jean)):T;
G_auparavantTS (AnchorT (G_fait_une_sieste I_s G_a G_jean)) (G_passe_laspirateur I_s G_a G_jean):T;
G_auparavantTT (AnchorT (G_fait_une_sieste I_s G_a G_jean)) (AnchorT (G_passe_laspirateur I_s G_a G_jean)):T;

AnchorT (G_apres_c (G_fait_une_sieste I_s G_a G_jean) (G_passe_laspirateur I_s G_a G_jean)) :T;
AnchorT (G_apres_r G_jean (G_fait_une_sieste_sws I_s G_a) (G_avoir_passe_laspirateur I_s I_vp)) :T;

AnchorT (G_avant_c (G_passe_laspirateur I_s G_a G_jean) (G_fasse_une_sieste_subjunctive I_s I_vp G_jean)) :T;
AnchorT (G_avant_r G_jean (G_passe_laspirateur_sws I_s G_a) (G_faire_une_sieste I_s I_vp)) :T;

We translate them using the lexicon lexyield to strings.
For instance, we translate one of the obtained term as follows:

lexyield analyse
G_ensuiteTS (AnchorT (G_passe_laspirateur I_s G_a G_jean)) (G_fait_une_sieste I_s G_a G_jean):T;

B.3 GTAG as ACG: Signatures and Lexicons
signature Gderivation = (* The Abstract Vocabulary for Encoding G-derivation Trees *)
Sa, N, Na_d, Na, VPa, S, T, Sws, Sinf: type;
I_vp : VPa;
I_s : Sa;

I_n : Na;

G_jean, G_marie :N;
G_petit_dejeuner: Na_d -> Na -> N;
G_le:Na_d;
G_delicieux : Na -> Na;

G_ensuiteST : S -> T -> T; (* constant encoding adverbial :ensuite *)
G_ensuiteTS : T -> S -> T; (* constant encoding adverbial :ensuite *)
G_ensuiteTT : T -> T -> T; (* constant encoding adverbial :ensuite *)
G_ensuiteSS : S -> S -> T; (* constant encoding adverbial :ensuite *)

G_auparavantST : S -> T -> T; (* constant encoding adverbial :auparavant *)
G_auparavantTS : T -> S -> T; (* constant encoding adverbial :auparavant *)
G_auparavantTT : T -> T -> T; (* constant encoding adverbial :auparavant *)
G_auparavantSS : S -> S -> T; (* constant encoding adverbial :auparavant *)

G_avant_c: S -> S ->S; (* canonical g-derivation tree avant *)
G_avant_r: N -> Sws -> Sinf ->S; (* reduced conjunction g-derivation tree avant *)

G_pour_c: S -> S ->S; (* canonical g-derivation tree pour *)
G_pour_r: N -> Sws -> Sinf ->S; (* reduced conjunction g-derivation tree pour *)

G_apres_c: S -> S ->S; (* canonical g-derivation tree apres *)
G_apres_r: N -> Sws -> Sinf ->S; (* reduced conjunction g-derivation tree apres *)

G_recomepnse: Sa -> VPa -> N -> N -> S;
G_recomepnse_subjunctive: Sa -> VPa -> N -> N -> S;

G_etre_recomepnse_par: Sa -> VPa -> N -> Sinf; (* reduced clause - infinitive clause *)

G_passe_laspirateur: Sa -> VPa -> N->S;
G_passe_laspirateur_subjunctive: Sa -> VPa -> N->S;
G_passe_laspirateur_sws: Sa -> VPa -> Sws; (* clause lacking a subject*)
G_passer_laspirateur_inf: Sa -> VPa -> Sinf; (* reduced clause - infinitive clause *)
G_avoir_passe_laspirateur: Sa -> VPa -> Sinf; (* reduced clause - infinitive clause *)

G_fait_une_sieste: Sa -> VPa -> N->S;
G_fasse_une_sieste_subjunctive: Sa -> VPa -> N->S;
G_fait_une_sieste_sws: Sa -> VPa ->Sws; (* clause lacking a subject*)
G_faire_une_sieste: Sa -> VPa -> Sinf; (* reduced clause - infinitive clause *)
G_avoir_fait_une_sieste: Sa -> VPa -> Sinf; (* reduced clause - infinitive clause *)

G_fait: Sa -> VPa -> N->N->S;
G_fait_sws: Sa -> VPa -> N ->Sws; (* clause lacking a subject*)
G_faire: Sa -> VPa -> N ->Sinf; (* reduced clause - infinitive clause *)
G_fasse_subjunctive: Sa -> VPa -> N -> N->S;
G_avoir_fait: Sa -> VPa -> N->Sinf; (* reduced clause - infinitive clause *)

G_vraiment : VPa -> VPa;

332

B.3. GTAG as ACG: Signatures and Lexicons

G_a : VPa;

AnchorT: S->T;

end

signature TAGDER = (* The Object Vocabulary for TAG derivation Trees *)

Sa, N, Na_d, Na, VPa, S: type;

c_jean, c_marie : N;
c_petit_dejeuner : Na_d->Na->N;
c_le:Na_d;
c_delicieux:Na->Na;

c_fait_une_sieste, c_fasse_une_sieste, c_etre_recomepnse_par, c_passe_laspirateur :Sa -> VPa -> N -> S;
c_recomepnse :Sa -> VPa -> N -> N -> S;

Concat : S -> S -> S;
c_avantque : S -> S -> S;
c_avantde : S -> S -> S;

c_pourque : S -> S -> S;
c_pour : S -> S -> S;

c_apres, c_apresque: S -> S -> S;

c_disc_ensuite : S -> S -> S;
c_disc_auparavant : S -> S -> S;

c_ensuite_s: Sa;

c_ensuite_v: VPa;

(* Dummy element to specify the end of adjunctions *)
I_vp : VPa;
I_s : Sa;

I_n : Na;

c_fait: Sa -> VPa -> N->N->S;
c_faire: Sa -> VPa -> N->S;
c_fasse_subjunctive: Sa -> VPa -> N -> N->S;

c_faire_une_sieste: Sa -> VPa ->S;

c_fasse_une_sieste_subjunctive: Sa -> VPa -> N->S;

c_recomepnse_subjunctive: Sa -> VPa -> N -> N -> S;

c_avoir_passe_laspirateur: Sa -> VPa -> S;

c_avoir_fait_une_sieste: Sa -> VPa -> S;

c_avoir_fait: Sa -> VPa -> N->S;

c_passe_laspirateur_subjunctive : Sa -> VPa -> N->S;
c_passer_laspirateur_inf : Sa -> VPa ->S;

c_vraiment : VPa -> VPa;

c_a : VPa;

end

lexicon GTAGtoTAG (Gderivation) : TAGDER = (* Interpreting g-derivation trees to TAG derivation Trees *)

T :=S;

S, Sinf, Sinf, S :=S;

333

Appendix B. G-TAG as ACG codes

N:=N;
Na_d:=Na_d;
Na:=Na;

Sws:= N->S;

Sa:=Sa; VPa := VPa;

I_vp:= I_vp;
I_s := I_s;

I_n := I_n;

G_marie:=c_marie;
G_jean:=c_jean;
G_petit_dejeuner:= c_petit_dejeuner;
G_le:=c_le;
G_delicieux := c_delicieux;

G_ensuiteSS := lambda s1 s2. c_disc_ensuite s1 s2;
G_ensuiteST := lambda s1 s2. c_disc_ensuite s1 s2;
G_ensuiteTS := lambda s1 s2. c_disc_ensuite s1 s2;
G_ensuiteTT := lambda s1 s2. c_disc_ensuite s1 s2 ;

G_auparavantSS, G_auparavantTT, G_auparavantTS, G_auparavantST :=lambda s1 s2. c_disc_auparavant s1 s2 ;

G_avant_c := lambda s1 s2. c_avantque s1 s2 ;

G_avant_r := lambda np s1 s2. c_avantde (s1 np) s2;

G_pour_c := lambda s1 s2. c_pourque s1 s2 ;

G_pour_r := lambda np s1 s2. c_pour (s1 np) s2;

G_apres_r := lambda np s1 s2. c_apres (s1 np) s2;

G_apres_c := lambda s1 s2. c_apresque s1 s2 ;

G_recomepnse := c_recomepnse ;
G_recomepnse_subjunctive := c_recomepnse_subjunctive;

G_etre_recomepnse_par := c_etre_recomepnse_par ;

G_passe_laspirateur_sws := c_passe_laspirateur ;

G_fasse_une_sieste_subjunctive:= c_fasse_une_sieste;

G_fait_une_sieste := c_fait_une_sieste;

AnchorT := lambda S. S ;

G_avoir_fait_une_sieste := c_avoir_fait_une_sieste;
G_avoir_passe_laspirateur := c_avoir_passe_laspirateur;
G_fasse_subjunctive := c_fasse_subjunctive;
G_faire := c_faire;
G_fait_sws := c_fait;
G_faire_une_sieste := c_faire_une_sieste;
G_fait := c_fait;
G_fait_une_sieste_sws := c_fait_une_sieste;
G_avoir_fait := c_avoir_fait;

G_passe_laspirateur := c_passe_laspirateur;
G_passer_laspirateur_inf := c_passer_laspirateur_inf;
G_passe_laspirateur_subjunctive := c_passe_laspirateur_subjunctive;

G_vraiment := c_vraiment;

G_a := c_a;

end

signature DerivedTrees = (* The Object Vocabulary for Derived Trees *)
tree :type;

NP1, N1, VP1, V1, Adv1, P1, C, Det1, Punct1 : tree -> tree;
NP2, N2, S2, VP2, V2, PP2, Adv2, D2 :tree -> tree -> tree;
S3: tree -> tree ->tree -> tree;

laspirateur, l, le, aspirateur, passe, etre, recomepnse, avant, de, que, ensuite, auparavant,
Ensuite, Auparavant, jean, marie, fred, paul, par, une, sieste, fait, faire, fasse, avoir,
apres, pour, petit_dejeuner, delicieux, COMMA, DOT, PRO, epsilon, a, vraiment : tree;

334

B.3. GTAG as ACG: Signatures and Lexicons

end

lexicon Syntax (TAGDER) : DerivedTrees = (* Translating TAG derivation trees to derived trees *)

S, N := tree;

Sa, VPa, Na_d, Na := tree -> tree;

I_vp,I_s, I_n := lambda x.x;

c_avantque := lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 avant) (C que)) s2);

c_avantde := lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 avant) (C de)) s2);

c_pourque := lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 pour) (C que)) s2);

c_pour := lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 pour) (C epsilon)) s2);

c_apresque:= lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 apres) (C que)) s2);
c_apres := lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 apres) (C epsilon)) s2);

c_jean := NP1 jean;

c_marie := NP1 marie;

c_le := lambda n . N2 le n ;

c_petit_dejeuner := lambda d a.d (a(N1 petit_dejeuner));

c_delicieux := lambda a n . a (N2 delicieux n);

Concat := lambda s1. lambda s2. S2 s1 (S2 (Punct1 DOT) s2);

c_disc_ensuite := lambda s1. lambda s2. S3 s1 (Punct1 DOT) (S2 (Adv2 Ensuite (Punct1 COMMA)) s2);
c_disc_auparavant := lambda s1. lambda s2. S3 s1 (Punct1 DOT) (S2 (Adv2 Auparavant (Punct1 COMMA)) s2);

c_ensuite_s:= lambda x. S2 (Adv2 Ensuite COMMA) x;

c_ensuite_v:= lambda x. S2 x (Adv2 Ensuite COMMA);

(* Dummy element to specify the end of adjunctions *)
I_s, I_vp :=lambda x.x;

c_fait:= lambda sa va np0 np1 .sa (S2 np0 (va (VP2 fait np1)));
c_faire:= lambda sa va np1 .sa (S2 (NP1 PRO) (va (VP2 faire np1)));
c_fasse_subjunctive:=lambda sa va np0 np1 .sa (S2 np0 (va (VP2 fasse np1)));

c_passe_laspirateur := lambda s a np0. s (S2 np0 (a (VP2 (V1 passe) (NP2 (Det1 l) (N1 aspirateur)))));

c_passe_laspirateur_subjunctive := lambda s a np0. s (S2 np0 (a (VP2 (V1 passe) (NP2 (Det1 l) (N1 aspirateur)))));

c_passer_laspirateur_inf :=lambda s a. s (S2 (NP1 PRO) (a (VP2 (V1 faire) (NP2 (Det1 l) (N1 aspirateur)))));

c_recomepnse := lambda s a np1 np0 .s (S2 np0 (a (VP2 recomepnse np1)));
c_recomepnse_subjunctive:= lambda s a np1 np0 .s (S2 np0 (a (VP2 recomepnse np1)));

c_etre_recomepnse_par := lambda s a np1 .s (S2 (NP1 PRO) (a (VP2 (V2 etre (V1 recomepnse)) (PP2 (P1 par) np1))));

c_fasse_une_sieste := lambda s a np0. s (S2 np0 (a (VP2 (V1 fasse) (NP2 (Det1 une) (N1 sieste)))));

c_fait_une_sieste := lambda s a np0. s (S2 np0 (a (VP2 (V1 fait) (NP2 (Det1 une) (N1 sieste)))));

c_faire_une_sieste:= lambda s a. s (S2 (NP1 PRO) (a (VP2 (V1 faire) (NP2 (Det1 une) (N1 sieste)))));

c_fasse_une_sieste_subjunctive:= lambda s a np0. s (S2 np0 (a (VP2 (V1 fasse) (NP2 (Det1 une) (N1 sieste)))));

335

Appendix B. G-TAG as ACG codes

c_avoir_passe_laspirateur:=lambda s a. s (S2 (NP1 PRO) (a (VP2 (VP2 (V1 avoir) (V1 passe)) (NP2 (Det1 l) (N1 aspirateur)))));

c_avoir_fait_une_sieste:=lambda s a. s (S2 (NP1 PRO) (a (VP2 (VP2 (V1 avoir) (V1 fait)) (NP2 (Det1 une) (N1 sieste)))));

c_avoir_fait:=lambda s a np1. s (S2 (NP1 PRO) (a (VP2 (VP2 (V1 avoir) (V1 fait)) np1)));

c_vraiment := lambda va x. va (VP2 vraiment x);
c_a := lambda x. VP2 a x;

end

signature strings = (* The Object Vocabulary for Encoding Surface Realizations *)

string: type;

(* we can define infix and prefix symbols. Note that as for now, the length of symbols can only be 1 *)

infix + : string -> string -> string;

laspirateur, l, le, aspirateur, passe, etre, recomepnse, avant, de, que, ensuite,
auparavant, Ensuite, Auparavant, Jean, Marie, Fred, Paul, par, une, sieste, fait,
faire, fasse, avoir, apres, pour, petit, dejeuner, delicieux, COMMA, DOT, PRO, epsilon, a, vraiment : string;

end

lexicon Yield(DerivedTrees) : strings = (* Interpreting derived trees as surface strings *)

(* So every tree result in a string *)
tree := string;

NP1, N1, VP1, V1, Adv1, P1, C, Det1, Punct1 := lambda f.f;
NP2, N2, S2, VP2, V2, PP2, Adv2, D2 :=lambda f g . f + g;
S3 := lambda f g h. f + g +h;
faire := faire;
Ensuite := Ensuite ;
l := l ;

le := le;
epsilon := epsilon ;
fait := fait ;
auparavant := auparavant ;
PRO := epsilon ;
sieste := sieste ;
ensuite := ensuite ;
DOT := DOT ;
une := une ;
que := que ;
COMMA := COMMA ;
par := par ;
de := de ;
petit_dejeuner := petit+dejeuner ;
paul := Paul;
avant := avant ;
pour := pour;
fred := Fred ;
recomepnse := recomepnse ;
apres := apres ;
marie := Marie ;
etre := etre ;
avoir := avoir ;
jean := Jean ;
passe := passe ;
fasse := fasse ;
Auparavant := Auparavant ;
aspirateur := aspirateur ;
laspirateur := l+aspirateur ;

delicieux := delicieux;
a := a;
vraiment:=vraiment;

end

signature semantics =

(* We define the usual types *)

e,t:type;
qnp = (e => t) -> t : type;

(* Then few non logical-constants *)

SUCC, GOAL, CAUSE : t->t->t;
sleep, breakfast : e->t;

336

B.3. GTAG as ACG: Signatures and Lexicons

REWARD, LOVE, MAKE : e -> e -> t;
j, m :e;
KINDLY, really: t -> t;
seem : (e -> t) -> e -> t;
new,big,black, delicious: e ->t;
claim,say,think : e -> t -> t;

NAP, VACUUM : e->t;

(* And finally, here are the logical constants *)

infix & : t -> t -> t;
infix > : t -> t -> t;
binder All : (e=>t) -> t;
binder Ex : (e=>t) -> t;

end

lexicon lexsemantics (Gderivation) : semantics = (* The semantic translations of the abstract constants *)

S, T := t;
Sinf, Sws := qnp -> t;

N := qnp;
N := (e => t) -> t;
Na_d:= (e => t) -> (e => t) -> t;
Na :=(e =>t) -> (e =>t);

VPa := (e => t) -> (e => t);
Sa := t -> t;
I_vp,I_s,I_n := lambda x.x;

G_jean := lambda P.P j;
G_marie := lambda P.P m;
G_petit_dejeuner := lambda d a . d (a (Lambda x. breakfast x));
G_le:=lambda n.lambda P.Ex x. (n x) & (P x);
G_delicieux := lambda a n . a (Lambda x.(delicious x)&(n x));

G_ensuiteSS, G_ensuiteTT, G_ensuiteTS, G_ensuiteST := lambda s1 s2. SUCC s1 s2;

G_auparavantSS, G_auparavantTT, G_auparavantTS, G_auparavantST := lambda s1 s2. SUCC s2 s1;

G_avant_c := lambda s1. lambda s2. SUCC s1 s2;

G_avant_r := lambda S. lambda s1. lambda s2. S(Lambda x. (SUCC (s1 (lambda P. P(x)))) (s2 (lambda P. P(x))));

G_apres_c := lambda s1. lambda s2. SUCC s2 s1;

G_apres_r := lambda S. lambda s1. lambda s2. S(Lambda x. (SUCC (s2 (lambda P. P(x)))) (s1 (lambda P. P(x))));

G_pour_c := lambda s1. lambda s2. GOAL s1 s2;

G_pour_r := lambda S. lambda s1. lambda s2. S(Lambda x. (GOAL (s1 (lambda P. P(x)))) (s2 (lambda P. P(x))));

G_recomepnse, G_recomepnse_subjunctive := lambda s a S O . s(S(a(Lambda x.O(Lambda y.(REWARD x y)))));

G_etre_recomepnse_par := lambda s a S O. s(S(a(Lambda x.O(Lambda y.(REWARD x y)))));

G_passe_laspirateur_sws, G_passer_laspirateur_inf, G_avoir_passe_laspirateur := lambda s a S.s(S(a(Lambda x.(VACUUM x))));

G_passe_laspirateur := lambda s a S.s(S(a(Lambda x.(VACUUM x))));
G_passe_laspirateur_subjunctive:= lambda s a S.s(S(a(Lambda x.(VACUUM x))));

G_fait_une_sieste_sws, G_avoir_fait_une_sieste, G_faire_une_sieste := lambda s a S.s(S(a(Lambda x.(NAP x))));

G_fait_une_sieste, G_fasse_une_sieste_subjunctive := lambda s a S.s(S(a(Lambda x.(NAP x))));

G_fasse_subjunctive := lambda s a S O. s(S(a(Lambda x.O(Lambda y.(MAKE x y)))));

G_fait_sws, G_faire, G_avoir_fait:= lambda s a O S. s(S(a(Lambda x.O(Lambda y.(MAKE x y)))));
G_fait:= lambda s a S O . s(S(a(Lambda x.O(Lambda y.(MAKE x y)))));

G_vraiment := lambda vp r. vp (Lambda x. really (r x));
G_a := lambda x.x;

AnchorT := lambda x.x;

end

337

Appendix B. G-TAG as ACG codes

lexicon lexsyntax = Syntax << GTAGtoTAG

lexicon lexyield = Yield << lexsyntax

338

Appendix C

Encoding Clause-Medial
Connectives

C.1 Examples

In order to generate the text of Example 2.1 on page 246, we translate the term
encoding its g-derivation tree with the lexyield lexicon.

lexyield analyse
G_ensuite_m
(AnchorT
(G_pour_r G_jean (G_passe_laspirateur_sws I_s G_a)

(G_etre_recomepnse_par I_s I_vp G_marie))
)
(G_fait_une_sieste I_s G_a G_jean)
:T;

By interpreting the same term with the lexsemantics lexicon, one obtain the following
semantic representation:

SUCC
(GOAL

(VACUUM j) (REWARD m j)
)
(SUCC

(Ex x. ((delicious x) & (breakfast x)) & (MAKE x j))
(NAP j)

)
: t

C.2 ACG Signatures and Lexicons: Clause-Medial Con-
nectives

signature Gderivation = (* The Abstract Vocabulary for Encoding G-derivation Trees *)
Sa, N, Na_d, Na, VPa, S, T, Sws, Sinf: type;

I_vp : VPa;
I_s : Sa;
I_n : Na;

G_jean, G_marie :N;
G_petit_dejeuner: Na_d -> Na -> N;
G_le:Na_d;

339

Appendix C. Encoding Clause-Medial Connectives

G_delicieux : Na -> Na;

G_ensuiteTT : T -> T -> T; (* constant encoding adverbial :ensuite *)
G_ensuite_m : T -> S -> T; (* constant encoding clause-medial adverbial :ensuite *)

G_auparavantTT : T -> T -> T; (* constant encoding adverbial :auparavant *)
G_auparavant_m : T -> S -> T; (* constant encoding clause-medial adverbial :ensuite *)

G_avant_c: S -> S ->S; (* canonical g-derivation tree avant *)
G_avant_r: N -> Sws -> Sinf ->S; (* reduced conjunction g-derivation tree avant *)

G_pour_c: S -> S ->S; (* canonical g-derivation tree pour *)
G_pour_r: N -> Sws -> Sinf ->S; (* reduced conjunction g-derivation tree pour *)

G_apres_c: S -> S ->S; (* canonical g-derivation tree apres *)
G_apres_r: N -> Sws -> Sinf ->S; (* reduced conjunction g-derivation tree apres *)

G_recomepnse: Sa -> VPa -> N -> N -> S;
G_recomepnse_subjunctive: Sa -> VPa -> N -> N -> S;

G_etre_recomepnse_par: Sa -> VPa -> N -> Sinf; (* reduced clause - infinitive clause *)

G_passe_laspirateur: Sa -> VPa -> N->S;
G_passe_laspirateur_subjunctive: Sa -> VPa -> N->S;
G_passe_laspirateur_sws: Sa -> VPa -> Sws; (* clause lacking a subject*)
G_passer_laspirateur_inf: Sa -> VPa -> Sinf; (* reduced clause - infinitive clause *)
G_avoir_passe_laspirateur: Sa -> VPa -> Sinf; (* reduced clause - infinitive clause *)

G_fait_une_sieste: Sa -> VPa -> N->S;
G_fasse_une_sieste_subjunctive: Sa -> VPa -> N->S;
G_fait_une_sieste_sws: Sa -> VPa ->Sws; (* clause lacking a subject*)
G_faire_une_sieste: Sa -> VPa -> Sinf; (* reduced clause - infinitive clause *)
G_avoir_fait_une_sieste: Sa -> VPa -> Sinf; (* reduced clause - infinitive clause *)

G_fait: Sa -> VPa -> N->N->S;
G_fait_sws: Sa -> VPa -> N ->Sws; (* clause lacking a subject*)
G_faire: Sa -> VPa -> N ->Sinf; (* reduced clause - infinitive clause *)
G_fasse_subjunctive: Sa -> VPa -> N -> N->S;
G_avoir_fait: Sa -> VPa -> N->Sinf; (* reduced clause - infinitive clause *)

G_vraiment : VPa -> VPa;
G_a : VPa;

AnchorT: S->T;

end

signature gderivationtrees = (* An object Vocabulary for Encoding G-derivation Trees *)
Sa, N, Na_d, Na, VPa, S, T : type;
I_vp : VPa;
I_s : Sa;

I_n : Na;

g_jean, g_marie :N;
g_petit_dejeuner: Na_d -> Na -> N;
g_le:Na_d;
g_delicieux : Na -> Na;

g_ensuiteTT : T -> T -> T; (* constant encoding adverbial :ensuite *)
g_ensuite_m : T -> S -> T; (* constant encoding clause-medial adverbial :ensuite *)

g_auparavantTT : T -> T -> T; (* constant encoding adverbial :auparavant *)
g_auparavant_m : T -> S -> T; (* constant encoding clause-medial adverbial :ensuite *)

g_avant_c: S -> S ->S; (* canonical g-derivation tree avant *)
g_avant_r: S -> S ->S; (* reduced conjunction g-derivation tree avant *)

g_pour_c: S -> S ->S; (* canonical g-derivation tree pour *)
g_pour_r: S -> S ->S; (* reduced conjunction g-derivation tree pour *)

g_apres_c: S -> S ->S; (* canonical g-derivation tree apres *)
g_apres_r: S -> S ->S; (* reduced conjunction g-derivation tree apres *)

g_recomepnse: Sa -> VPa -> N -> N -> S;
g_recomepnse_subjunctive: Sa -> VPa -> N -> N -> S;

g_etre_recomepnse_par: Sa -> VPa -> N -> S; (* reduced clause - infinitive clause *)

g_passe_laspirateur: Sa -> VPa -> N->S;
g_passe_laspirateur_subjunctive: Sa -> VPa -> N->S;
g_passer_laspirateur_inf: Sa -> VPa -> S; (* reduced clause - infinitive clause *)
g_avoir_passe_laspirateur: Sa -> VPa -> S; (* reduced clause - infinitive clause *)

340

C.2. ACG Signatures and Lexicons: Clause-Medial Connectives

g_fait_une_sieste: Sa -> VPa -> N->S;
g_fasse_une_sieste_subjunctive: Sa -> VPa -> N->S;
g_faire_une_sieste: Sa -> VPa -> S; (* reduced clause - infinitive clause *)
g_avoir_fait_une_sieste: Sa -> VPa -> S; (* reduced clause - infinitive clause *)

g_fait: Sa -> VPa -> N->N->S;
g_faire: Sa -> VPa -> N ->S; (* reduced clause - infinitive clause *)
g_fasse_subjunctive: Sa -> VPa -> N -> N->S;
g_avoir_fait: Sa -> VPa -> N->S; (* reduced clause - infinitive clause *)

g_vraiment : VPa -> VPa;
g_a : VPa;

AnchorT: S->T;

end

lexicon LGg (Gderivation) : gderivationtrees = (* Interpreting G-derivations to g-derivation trees *)

T :=T;

S, Sinf :=S;

N:=N;
Na_d:=Na_d;
Na:=Na;

Sws:= N->S;

Sa:=Sa; VPa := VPa;

I_vp:= I_vp;
I_s := I_s;

I_n := I_n;

G_marie:=g_marie;
G_jean:=g_jean;
G_petit_dejeuner:= g_petit_dejeuner;
G_le:=g_le;
G_delicieux := g_delicieux;

G_avant_c := lambda s1 s2. g_avant_c s1 s2 ;

G_avant_r := lambda np s1 s2. g_avant_r (s1 np) s2;

G_pour_c := lambda s1 s2. g_pour_c s1 s2 ;

G_pour_r := lambda np s1 s2. g_pour_r (s1 np) s2;

G_apres_r := lambda np s1 s2. g_apres_r (s1 np) s2;

G_apres_c := lambda s1 s2. g_apres_c s1 s2 ;

G_recomepnse := g_recomepnse ;
G_recomepnse_subjunctive := g_recomepnse_subjunctive;

G_etre_recomepnse_par := g_etre_recomepnse_par ;

G_passe_laspirateur_sws := lambda s a. lambda subj. g_passe_laspirateur s a subj;
(* the argument modeling the subject of ‘the clause missing the subject’ is the last abstraction (lambda subj)*)

G_fasse_une_sieste_subjunctive:= g_fasse_une_sieste_subjunctive;

G_fait_une_sieste := g_fait_une_sieste;

AnchorT := AnchorT ;

G_avoir_fait_une_sieste := g_avoir_fait_une_sieste;
G_avoir_passe_laspirateur := g_avoir_passe_laspirateur;
G_fasse_subjunctive := g_fasse_subjunctive;
G_faire := g_faire;

G_fait_sws := lambda s a obj. lambda subj. g_fait s a subj obj;
(* the argument modeling the subject of ‘the clause missing the subject’ is the last abstraction (lambda subj)*)

G_faire_une_sieste := g_faire_une_sieste;
G_fait := g_fait;

341

Appendix C. Encoding Clause-Medial Connectives

G_fait_une_sieste_sws := lambda s a subj. g_fait_une_sieste s a subj;
(* the argument modeling the subject of ‘the clause missing the subject’ is the last abstraction (lambda subj)*)

G_avoir_fait := g_avoir_fait;

G_passe_laspirateur := g_passe_laspirateur;
G_passer_laspirateur_inf := g_passer_laspirateur_inf;
G_passe_laspirateur_subjunctive := g_passe_laspirateur_subjunctive;

G_vraiment := g_vraiment;

G_a := g_a;

G_ensuiteTT := g_ensuiteTT;
G_auparavantTT := g_auparavantTT;

G_ensuite_m := g_ensuite_m;
G_auparavant_m := g_auparavant_m;

end

signature TAGDER = (* The Object Vocabulary for TAG derivation Trees *)

Sa, N, Na_d, Na, VPa, S: type;

c_jean, c_marie : N;
c_petit_dejeuner : Na_d->Na->N;
c_le:Na_d;
c_delicieux:Na->Na;

c_fait_une_sieste, c_fasse_une_sieste, c_etre_recomepnse_par, c_passe_laspirateur :Sa -> VPa -> N -> S;
c_recomepnse :Sa -> VPa -> N -> N -> S;

Concat : S -> S -> S;
c_avantque : S -> S -> S;
c_avantde : S -> S -> S;

c_pourque : S -> S -> S;
c_pour : S -> S -> S;

c_apres, c_apresque: S -> S -> S;

c_disc_ensuite : S -> S -> S;
c_disc_auparavant : S -> S -> S;

c_ensuite_s: Sa;

c_ensuite_v: VPa;
c_auparavant_v: VPa;

(* Dummy element to specify the end of adjunctions *)
I_vp : VPa;
I_s : Sa;
I_n : Na;

c_fait: Sa -> VPa -> N->N->S;
c_faire: Sa -> VPa -> N->S;
c_fasse_subjunctive: Sa -> VPa -> N -> N->S;

c_faire_une_sieste: Sa -> VPa ->S;

c_fasse_une_sieste_subjunctive: Sa -> VPa -> N->S;

c_recomepnse_subjunctive: Sa -> VPa -> N -> N -> S;

c_avoir_passe_laspirateur: Sa -> VPa -> S;

c_avoir_fait_une_sieste: Sa -> VPa -> S;

c_avoir_fait: Sa -> VPa -> N->S;

c_passe_laspirateur_subjunctive : Sa -> VPa -> N->S;
c_passer_laspirateur_inf : Sa -> VPa ->S;

c_vraiment : VPa -> VPa;

342

C.2. ACG Signatures and Lexicons: Clause-Medial Connectives

c_a : VPa;

APP: VPa -> VPa -> VPa;

end
lexicon gdertoTAGder (gderivationtrees) : TAGDER = (* Interpreting g-derivation trees as TAG derivation Trees *)

T :=S;

N:=N;
Na_d:=Na_d;
Na:=Na;

Sa:=Sa;

S:= VPa -> S; VPa := VPa -> VPa;

I_vp:= lambda x.x;
I_s := I_s;

I_n := I_n;

g_marie:=c_marie;
g_jean:=c_jean;
g_petit_dejeuner:= c_petit_dejeuner;
g_le:=c_le;
g_delicieux := c_delicieux;

g_ensuiteTT := lambda s1 s2. c_disc_ensuite s1 s2 ;

g_auparavantTT :=lambda s1 s2. c_disc_auparavant s1 s2 ;

g_ensuite_m := lambda s1 s2. Concat s1 (s2 c_ensuite_v);
g_auparavant_m := lambda s1 s2. Concat s1 (s2 c_auparavant_v);

g_avant_c := lambda s1 s2 mod. c_avantque (s1 mod) (s2 I_vp) ;

g_avant_r := lambda s1 s2. lambda mod. c_avantde (s1 mod) (s2 I_vp);

g_pour_c := lambda s1 s2 mod. c_pourque (s1 mod) (s2 I_vp);

g_pour_r := lambda s1 s2 mod. c_pour (s1 mod) (s2 I_vp);

g_apres_r := lambda s1 s2 mod. c_apres (s1 mod) (s2 I_vp);

g_apres_c := lambda s1 s2 mod. c_apresque (s1 mod) (s2 I_vp);

g_recomepnse := lambda s a subj obj. lambda mod. c_recomepnse s (a mod) subj obj;
g_recomepnse_subjunctive := lambda s a subj obj. lambda mod. c_recomepnse_subjunctive s (a mod) subj obj;

g_etre_recomepnse_par := lambda s a subj. lambda mod. c_etre_recomepnse_par s (a mod) subj;

g_fasse_une_sieste_subjunctive:= lambda s a subj. lambda mod. c_fasse_une_sieste s (a mod) subj;

g_fait_une_sieste := lambda s a subj. lambda mod. c_fait_une_sieste s (a mod) subj;

AnchorT := lambda S. S I_vp ;

g_avoir_fait_une_sieste := lambda s a. lambda mod. c_avoir_fait_une_sieste s (a mod) ;
g_avoir_passe_laspirateur := lambda s a. lambda mod. c_avoir_passe_laspirateur s (a mod) ;
g_fasse_subjunctive := lambda s a subj obj. lambda mod. c_fasse_subjunctive s (a mod) subj obj;
g_faire := lambda s a obj. lambda mod. c_faire s (a mod) obj ;
g_faire_une_sieste := lambda s a. lambda mod. c_faire_une_sieste s (a mod) ;
g_fait := lambda s a subj obj. lambda mod. c_fait s (a mod) subj obj;
g_avoir_fait := lambda s a obj. lambda mod. c_avoir_fait s (a mod) obj ;

g_passe_laspirateur := lambda s a subj. lambda mod. c_passe_laspirateur s (a mod) subj ;
g_passer_laspirateur_inf := lambda s a. lambda mod. c_passer_laspirateur_inf s (a mod) ;
g_passe_laspirateur_subjunctive := lambda s a subj. lambda mod. c_passe_laspirateur_subjunctive s (a mod) subj ;

g_a := lambda x. APP c_a x;

g_vraiment := lambda A. lambda x. A (c_vraiment x) ;

end

343

Appendix C. Encoding Clause-Medial Connectives

signature DerivedTrees = (* The Object Vocabulary for Derived Trees *)
tree :type;

NP1, N1, VP1, V1, Adv1, P1, C, Det1, Punct1 : tree -> tree;
NP2, N2, S2, VP2, V2, PP2, Adv2, D2 :tree -> tree -> tree;
S3: tree -> tree ->tree -> tree;

laspirateur, l, le, aspirateur, passe, etre, recomepnse, avant, de, que, ensuite, auparavant,
Ensuite, Auparavant, jean, marie, fred, paul, par, une, sieste, fait, faire, fasse, avoir,
apres, pour, petit_dejeuner, delicieux, COMMA, DOT, PRO, epsilon, a, vraiment : tree;

end

lexicon Syntax (TAGDER) : DerivedTrees = (* Translating TAG derivation trees to derived trees *)

S, N := tree;

Sa, VPa, Na_d, Na := tree -> tree;

I_vp,I_s, I_n := lambda x.x;

c_avantque := lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 avant) (C que)) s2);

c_avantde := lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 avant) (C de)) s2);

c_pourque := lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 pour) (C que)) s2);

c_pour := lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 pour) (C epsilon)) s2);

c_apresque:= lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 apres) (C que)) s2);
c_apres := lambda s1. lambda s2. S2 s1 (S2 (PP2 (Adv1 apres) (C epsilon)) s2);

c_jean := NP1 jean;

c_marie := NP1 marie;

c_le := lambda n . N2 le n ;

c_petit_dejeuner := lambda d a.d (a(N1 petit_dejeuner));

c_delicieux := lambda a n . a (N2 delicieux n);

Concat := lambda s1. lambda s2. S2 s1 (S2 (Punct1 DOT) s2);

c_disc_ensuite := lambda s1. lambda s2. S3 s1 (Punct1 DOT) (S2 (Adv2 Ensuite (Punct1 COMMA)) s2);
c_disc_auparavant := lambda s1. lambda s2. S3 s1 (Punct1 DOT) (S2 (Adv2 Auparavant (Punct1 COMMA)) s2);

c_ensuite_s:= lambda x. S2 (Adv2 Ensuite COMMA) x;

c_ensuite_v:= lambda x. VP2 (Adv1 ensuite) x;

c_auparavant_v := lambda x. VP2 (Adv1 auparavant) x;

(* Dummy element to specify the end of adjunctions *)
I_s, I_vp :=lambda x.x;

c_fait:= lambda sa va np0 np1 .sa (S2 np0 (va (VP2 fait np1)));
c_faire:= lambda sa va np1 .sa (S2 (NP1 PRO) (va (VP2 faire np1)));
c_fasse_subjunctive:=lambda sa va np0 np1 .sa (S2 np0 (va (VP2 fasse np1)));

c_passe_laspirateur := lambda s a np0. s (S2 np0 (a (VP2 (V1 passe) (NP2 (Det1 l) (N1 aspirateur)))));

c_passe_laspirateur_subjunctive := lambda s a np0. s (S2 np0 (a (VP2 (V1 passe) (NP2 (Det1 l) (N1 aspirateur)))));

c_passer_laspirateur_inf :=lambda s a. s (S2 (NP1 PRO) (a (VP2 (V1 faire) (NP2 (Det1 l) (N1 aspirateur)))));

c_recomepnse := lambda s a np1 np0 .s (S2 np0 (a (VP2 recomepnse np1)));
c_recomepnse_subjunctive:= lambda s a np1 np0 .s (S2 np0 (a (VP2 recomepnse np1)));

c_etre_recomepnse_par := lambda s a np1 .s (S2 (NP1 PRO) (a (VP2 (V2 etre (V1 recomepnse)) (PP2 (P1 par) np1))));

344

C.2. ACG Signatures and Lexicons: Clause-Medial Connectives

c_fasse_une_sieste := lambda s a np0. s (S2 np0 (a (VP2 (V1 fasse) (NP2 (Det1 une) (N1 sieste)))));

c_fait_une_sieste := lambda s a np0. s (S2 np0 (a (VP2 (V1 fait) (NP2 (Det1 une) (N1 sieste)))));

c_faire_une_sieste:= lambda s a. s (S2 (NP1 PRO) (a (VP2 (V1 faire) (NP2 (Det1 une) (N1 sieste)))));

c_fasse_une_sieste_subjunctive:= lambda s a np0. s (S2 np0 (a (VP2 (V1 fasse) (NP2 (Det1 une) (N1 sieste)))));

c_avoir_passe_laspirateur:=lambda s a. s (S2 (NP1 PRO) (a (VP2 (VP2 (V1 avoir) (V1 passe)) (NP2 (Det1 l) (N1 aspirateur)))));

c_avoir_fait_une_sieste:=lambda s a. s (S2 (NP1 PRO) (a (VP2 (VP2 (V1 avoir) (V1 fait)) (NP2 (Det1 une) (N1 sieste)))));

c_avoir_fait:=lambda s a np1. s (S2 (NP1 PRO) (a (VP2 (VP2 (V1 avoir) (V1 fait)) np1)));

c_vraiment := lambda va x. va (VP2 vraiment x);
c_a := lambda x. VP2 a x;

APP := lambda a1 a2 x. a1 (a2 x);
end

signature strings = (* The Object Vocabulary for Encoding Surface Realizations *)

string: type;

(* we can define infix and prefix symbols. Note that as for now, the length of symbols can only be 1 *)

infix + : string -> string -> string;

laspirateur, l, le, aspirateur, passe, etre, recomepnse, avant, de, que, ensuite,
auparavant, Ensuite, Auparavant, Jean, Marie, Fred, Paul, par, une, sieste, fait,
faire, fasse, avoir, apres, pour, petit, dejeuner, delicieux, COMMA, DOT, PRO, epsilon, a, vraiment : string;

end

lexicon Yield(DerivedTrees) : strings = (* Interpreting derived trees as surface strings *)

(* So every tree result in a string *)
tree := string;

NP1, N1, VP1, V1, Adv1, P1, C, Det1, Punct1 := lambda f.f;
NP2, N2, S2, VP2, V2, PP2, Adv2, D2 :=lambda f g . f + g;
S3 := lambda f g h. f + g +h;
faire := faire;
Ensuite := Ensuite ;
l := l ;
le := le;
epsilon := epsilon ;
fait := fait ;
auparavant := auparavant ;
PRO := epsilon ;
sieste := sieste ;
ensuite := ensuite ;
DOT := DOT ;
une := une ;
que := que ;
COMMA := COMMA ;
par := par ;
de := de ;
petit_dejeuner := petit+dejeuner ;
paul := Paul;
avant := avant ;
pour := pour;
fred := Fred ;
recomepnse := recomepnse ;
apres := apres ;
marie := Marie ;
etre := etre ;
avoir := avoir ;
jean := Jean ;
passe := passe ;
fasse := fasse ;
Auparavant := Auparavant ;
aspirateur := aspirateur ;
laspirateur := l+aspirateur ;
delicieux := delicieux;
a := a;
vraiment:=vraiment;

end

345

Appendix C. Encoding Clause-Medial Connectives

signature semantics =

(* We define the usual types *)

e,t:type;
qnp = (e => t) -> t : type;

(* Then few non logical-constants *)

SUCC, GOAL, CAUSE : t->t->t;
sleep, breakfast : e->t;
REWARD, LOVE, MAKE : e -> e -> t;
j, m :e;
KINDLY, really: t -> t;
seem : (e -> t) -> e -> t;
new,big,black, delicious: e ->t;
claim,say,think : e -> t -> t;

NAP, VACUUM : e->t;

(* And finally, here are the logical constants *)

infix & : t -> t -> t;
infix > : t -> t -> t;
binder All : (e=>t) -> t;
binder Ex : (e=>t) -> t;

end

lexicon lexsemantics (Gderivation) : semantics = (* The semantic translations of the abstract constants *)

S, T := t;
Sinf, Sws := qnp -> t;
N := qnp;
N := (e => t) -> t;
Na_d:= (e => t) -> (e => t) -> t;
Na :=(e =>t) -> (e =>t);
VPa := (e => t) -> (e => t);
Sa := t -> t;
I_vp,I_s,I_n := lambda x.x;

G_jean := lambda P.P j;
G_marie := lambda P.P m;
G_petit_dejeuner := lambda d a . d (a (Lambda x. breakfast x));
G_le:=lambda n.lambda P.Ex x. (n x) & (P x);
G_delicieux := lambda a n . a (Lambda x.(delicious x)&(n x));

G_ensuiteTT, G_ensuite_m := lambda s1 s2. SUCC s1 s2;
G_auparavantTT, G_auparavant_m := lambda s1 s2. SUCC s2 s1;

(* the semantic interpretations of clause-medial and clause-initial connectives are the same - they differ only by their syntactic properties *)

G_avant_c := lambda s1. lambda s2. SUCC s1 s2;

G_avant_r := lambda S. lambda s1. lambda s2. S(Lambda x. (SUCC (s1 (lambda P. P(x)))) (s2 (lambda P. P(x))));

G_apres_c := lambda s1. lambda s2. SUCC s2 s1;

G_apres_r := lambda S. lambda s1. lambda s2. S(Lambda x. (SUCC (s2 (lambda P. P(x)))) (s1 (lambda P. P(x))));

G_pour_c := lambda s1. lambda s2. GOAL s1 s2;

G_pour_r := lambda S. lambda s1. lambda s2. S(Lambda x. (GOAL (s1 (lambda P. P(x)))) (s2 (lambda P. P(x))));

G_recomepnse, G_recomepnse_subjunctive := lambda s a S O . s(S(a(Lambda x.O(Lambda y.(REWARD x y)))));

G_etre_recomepnse_par := lambda s a S O. s(S(a(Lambda x.O(Lambda y.(REWARD x y)))));

G_passe_laspirateur_sws, G_passer_laspirateur_inf, G_avoir_passe_laspirateur := lambda s a S.s(S(a(Lambda x.(VACUUM x))));
(* the argument modeling the subject of ‘the clause missing the subject’ and of ’the infinitive clause’ is the last abstraction *)

G_passe_laspirateur := lambda s a S.s(S(a(Lambda x.(VACUUM x))));
G_passe_laspirateur_subjunctive:= lambda s a S.s(S(a(Lambda x.(VACUUM x))));

G_fait_une_sieste_sws, G_avoir_fait_une_sieste, G_faire_une_sieste := lambda s a S.s(S(a(Lambda x.(NAP x))));

G_fait_une_sieste, G_fasse_une_sieste_subjunctive := lambda s a S.s(S(a(Lambda x.(NAP x))));

G_fasse_subjunctive := lambda s a S O. s(S(a(Lambda x.O(Lambda y.(MAKE x y)))));

346

C.2. ACG Signatures and Lexicons: Clause-Medial Connectives

G_fait_sws, G_faire, G_avoir_fait:= lambda s a O. lambda S. s(S(a(Lambda x.O(Lambda y.(MAKE x y)))));
(* the argument modeling the subject of ‘the clause missing the subject’ and of ’the infinitive clause’ is the last abstraction *)

G_fait:= lambda s a S O . s(S(a(Lambda x.O(Lambda y.(MAKE x y)))));

G_vraiment := lambda vp r. vp (Lambda x. really (r x));
G_a := lambda x.x;

AnchorT := lambda x.x;

end

lexicon GTAGtoTAG = gdertoTAGder << LGg

lexicon lexsyntax = Syntax << GTAGtoTAG

lexicon lexyield = Yield << lexsyntax

347

Appendix C. Encoding Clause-Medial Connectives

348

Appendix D

D-STAG as ACG codes

D.1 D-STAG Syntax, Semantics, Postposed & Preposed
Connectives, Modi�ers of Discourse

In Section D.3, we provide the codes for the ACG toolkit consisting of the ACG
signatures and lexicons for interpreting D-STAG derivation trees into syntactic derived
trees and (unlabeled) semantics are provided. In Section D.4.1, we list the commands
that one can use in order to check the examples used in the ACG encoding of D-STAG
after running the ACG codes given in Section D.3.

D.2 Examples

We use the following piece of code and commands in order to encode the derivation
tree, and interpret the yield, syntactic, and semantic interpretations of Fred is grumpy
because he lost his keys.

d_yield d_syntax discourse_semantics analyse
d_initial_anchor_s C0

(d_because I_DU I_DU I_DU (d_anchor_s C1 I_DU)): T;

We use the following piece of code and commands in order to encode the derivation
tree, and interpret the yield, syntactic, and semantic interpretations of Fred is grumpy
because he lost his keys. Moreover, he failed his exam.

d_yield d_syntax discourse_semantics analyse
d_initial_anchor_s C0

(d_because I_DU I_DU I_DU (d_anchor_s C1
(d_punct_moreover I_DU I_DU I_DU (d_anchor_s C2 I_DU)))): T;

We use the following piece of code and commands in order to encode the derivation
tree, and interpret the yield, syntactic, and semantic interpretations of Fred is grumpy
because he did not sleep well. He had nightmares.

349

Appendix D. D-STAG as ACG codes

d_yield d_syntax discourse_semantics analyse
d_initial_anchor_s C0

(d_because I_DU I_DU
(d_discourse_empty I_DU I_DU I_DU (d_anchor_s C4 I_DU))

(d_anchor_s C3 I_DU)): T;

We use the following piece of code and commands in order to encode the derivation
tree, and interpret the yield, syntactic, and semantic interpretations of Fred went to the
supermarket because the fridge was empty. Then, Fred went to the movies.

d_yield d_syntax discourse_semantics analyse
d_initial_anchor_s C5

(d_because I_DU
(d_punct_then_s I_DU I_DU I_DU

(d_anchor_s C7 I_DU)) I_DU
(d_anchor_s C6 I_DU)) : T;

We use the following piece of code and commands in order to encode the derivation
tree, and interpret the yield, syntactic, and semantic interpretations of Fred went to the
supermarket because the fridge was empty. Fred then went to the movies.

d_yield d_syntax discourse_semantics analyse
d_initial_anchor_s C5

(d_because I_DU
(d_then_v I_DU I_DU I_DU

(d_anchor_s C7 I_DU)) I_DU
(d_anchor_s C6 I_DU)) : T;

We use the following piece of code and commands in order to encode the derivation
tree, and interpret the yield, syntactic, and semantic interpretations of Fred is grumpy
because his wife is away this week. This shows how much he loves her.

d_yield d_syntax discourse_semantics analyse
d_initial_anchor_s C0

(d_because
(d_discourse_empty_comment I_DU I_DU I_DU

(d_anchor_s C9 I_DU)) I_DU I_DU
(d_anchor_s C8 I_DU)) : T;

We use the following piece of code and commands in order to encode the derivation
tree, and interpret the yield, syntactic, and semantic interpretations of When Fred was is
Paris, he went to the Ei�el Tower. Next, he visited the Louvre.

d_yield d_syntax discourse_semantics analyse
d_initial_anchor_s C11

(d_when
(d_punct_next_s I_DU I_DU I_DU

(d_anchor_s C12 I_DU)) I_DU I_DU I_DU
(d_anchor_s C10 I_DU)) : T;

350

D.3. ACG Signatures and Lexicons: Syntax and Unlabeled Semantics

We use the following piece of code and commands in order to encode the derivation
tree, and interpret the yield, syntactic, and semantic interpretations of Fred is grumpy
because, for example, he failed his exam.

d_yield d_syntax discourse_semantics analyse
d_initial_anchor_s C0

(d_because_mod I_DU I_DU I_DU d_forexample
(d_anchor_s C2 I_DU)) : T;

We use the following piece of code and commands in order to encode the derivation
tree, and interpret the yield, syntactic, and semantic interpretations of Fred is grumpy,
because, he, for example, failed his exam.

d_yield d_syntax discourse_semantics analyse
d_initial_anchor_s C0

(d_because_initial_medial I_DU I_DU I_DU d_forexample_medial
(d_anchor_s C2 I_DU)):T;

D.3 ACG Signatures and Lexicons: Syntax and Unla-
beled Semantics

signature DSTAG =
DU,DUa,T:type;
NP,N,Adj,Det,S:type;
Na, Na_d,VPa,Adja,Sa, DCa, Dcav:type;

DC = DUa-> DUa-> DUa-> DU-> DUa : type;
DC_preposed = DUa-> DUa-> DUa-> DUa-> DU-> DUa : type;
DC_mod = DUa-> DUa-> DUa-> DCa -> DU-> DUa : type;
DC_modv = DUa-> DUa-> DUa-> Dcav ->DU-> DUa : type;

In:Na;
Ivp:VPa;
Iadj:Adja;
Is : Sa;

d_forexample:DCa;
d_forexample_medial:Dcav;

d_fred,d_this,d_he,d_her, d_Eiffel, d_Louvre, d_Paris : NP;
d_is: Sa -> VPa -> VPa -> NP -> Adj -> S;
d_was: Sa -> VPa -> VPa -> NP -> Adj -> S;
d_was_in: Sa -> VPa -> VPa -> NP -> NP -> S;
d_grumpy,d_empty: Adja -> Adj;
d_away: Adja -> NP -> Adj;

d_the,d_his,d_a,d_plur : Na_d;
d_keys,d_nightmare,d_exam,
d_supermarket,d_fridge,d_movies,d_wife,d_week : Na_d -> Na-> NP;

d_shows: Sa -> VPa -> VPa -> NP -> S -> S;

d_lost,d_had,d_failed,d_loves: Sa -> VPa -> VPa -> NP -> NP -> S;
d_went_to, d_visited : Sa -> VPa -> VPa -> NP -> NP -> S;

d_didnt:VPa -> VPa;
d_sleep: Sa -> VPa -> VPa -> NP -> S;
d_how_much:Sa;

d_when:DC_preposed;
d_because:DC;
d_moreover,d_punct_moreover: DC ;
d_then_s,d_punct_then_s:DC;
d_then_v:DC;
d_punct_next_s:DC;

d_discourse_empty:DC;
d_discourse_empty_comment:DC;

d_initial_anchor_s:S -> DUa -> T;
d_anchor_s:S -> DUa -> DU;

351

Appendix D. D-STAG as ACG codes

I_DU : DUa;

d_because_mod : DC_mod;
d_moreover_modv: DC_modv;
d_because_modv: DC_modv;

d_because_initial_medial: DC_modv;

C0=d_is Is Ivp Ivp d_fred (d_grumpy Iadj) : S;
C1=d_lost Is Ivp Ivp d_he (d_keys d_his In) :S;
C2=d_failed Is Ivp Ivp d_he (d_exam d_his In) :S;
C3=d_sleep Is Ivp (d_didnt Ivp) d_he :S;
C4= d_had Is Ivp Ivp d_he (d_nightmare d_plur In):S;

C5= d_went_to Is Ivp Ivp d_fred (d_supermarket d_the In) :S;
C6= d_was Is Ivp Ivp (d_fridge d_the In) (d_empty Iadj):S;
C7= d_went_to Is Ivp Ivp d_fred (d_movies d_the In) :S;
C8= d_is Is Ivp Ivp (d_wife d_his In) (d_away Iadj (d_week d_the In)):S;
C9= d_shows Is Ivp Ivp d_this (d_loves d_how_much Ivp Ivp d_he d_her) :S;

C11=d_was_in Is Ivp Ivp d_fred d_Paris :S;
C12=d_went_to Is Ivp Ivp d_he d_Eiffel :S;
C13=d_visited Is Ivp Ivp d_fred d_Louvre :S;

C20=d_loves Is Ivp Ivp d_fred d_Paris :S;
C21=d_loves Is Ivp Ivp d_fred d_Eiffel :S;
C22=d_loves Is Ivp Ivp d_fred d_Louvre :S;

end

signature logic =
e,t,l:type;

ttt=(t => t) => t:type;

qnp=(e=>t)=>t:type;
infix & : t => t => t;
prefix - : t => t;

(* Implications*)
infix > : t => t => t;

(* Quantifiers *)
binder All : (e=>t) => t;
binder Ex : (e=>t) => t;
binder ExUni : (e=>t) => t;

fred,this, eiffel, louvre, paris :e;
bad_mood:e=>t;
away:e=> e => t;
empty:e=>t;
key,nightmare,license,supermarket,fridge,movies,week:e=>t;
wife:e=>e=>t;

lose,have,miss,love,go_to,fail,be_in:e=>e=>t;

show:e=>t=>t;

PAST:t=>t;
PLUR: (e =>t) => qnp;

sleep:e=>t;
badly,a_lot:t=>t;

Explication : t=> t=> t ;
Continuation : t=> t=> t ;
Narration : t=> t=> t ;
Commentary : t => t => t;
Circumstance: t => t => t;

Exemplification : t => (t => t)=>t;

missing_arg : (t=>t=>t) => t=>t;

transitive_verb =
Lambda v. Lambda S A1 A2 s o mod.S(s(Lambda x.o(Lambda y.A2 (mod (A1(v x y)))))):

(e=>e=>t) => (t=>t) => (t=>t) => (t=>t) => qnp => qnp => (t=>t) => t;

intransitive_verb =
Lambda v. Lambda S A1 A2 s mod.S(s(Lambda x.A2 (mod (A1 (v x))))):

(e=>t) => (t=>t) => (t=>t) => (t=>t) => qnp => (t=>t) => t;

noun = Lambda n. Lambda d a. d (a (Lambda x. n x)):
(e=>t) => ((e => t) => (e => t) => t) => ((e => t) => (e => t)) => (e => t) => t;

352

D.3. ACG Signatures and Lexicons: Syntax and Unlabeled Semantics

phi’’ = Lambda R X Y P.X(Lambda x.Y(Lambda y.(P x) & (R x y))):
(t => t=> t)=> ((t => t)=> t)=> ((t => t)=> t)=> (t=> t)=> t;

my_phi’ = Lambda R. Lambda X Y P.X(Lambda x.Y(Lambda y. P (R x y))):
(t => t=> t)=> ((t => t)=> t)=> ((t => t)=> t)=> (t=> t)=> t;

B = Lambda R.
Lambda d4 d3 d2.

Lambda d_subst.
Lambda d_foot.

d4 (
(phi’’ R)

(d3 d_foot)
(d2 d_subst)

) :
(t => t => t) =>

(ttt => ttt) =>
(ttt => ttt) =>

(ttt => ttt) =>
ttt =>

(ttt => ttt);

A’ = Lambda R.
Lambda d4 d3 d2.

Lambda d_subst.
Lambda d_foot.

d4 (
(my_phi’ R)

(d3 d_foot)
(d2 d_subst)

) :
(t => t => t) =>

(ttt => ttt) =>
(ttt => ttt) =>

(ttt => ttt) =>
ttt =>

(ttt => ttt);
S’ = Lambda R.
Lambda d4 d3 d2 mod.

Lambda d_subst.
Lambda d_foot.

d4 (
(my_phi’ (mod R))

(d3 d_foot)
(d2 d_subst)

) :
(t => t => t) =>

(ttt => ttt) =>
(ttt => ttt) =>

(ttt => ttt) => ((t => t => t)=>(t => t => t)) =>
ttt =>

(ttt => ttt);

S’’= Lambda R.
Lambda d4 d3 d2 mod.

Lambda d_subst.
Lambda d_foot.

d4 (
(phi’’ (mod R))

(d3 d_foot)
(d2 d_subst)

) :
(t => t => t) =>

(ttt => ttt) =>
(ttt => ttt) =>

(ttt => ttt) => ((t => t => t)=>(t => t => t)) =>
ttt =>

(ttt => ttt);

A_preposed = Lambda R.
Lambda d5 d4 d3 d2.

Lambda d_subst.
Lambda d_foot.

d4 (
(my_phi’ R)

(d3 (d5 d_foot))
(d2 d_subst)

) :
(t => t => t) =>
(ttt => ttt) =>
(ttt => ttt) =>
(ttt => ttt) =>

(ttt => ttt) =>
ttt =>

(ttt => ttt);

cont = Lambda t.Lambda P.P t:t => (t=>t) => t;

353

Appendix D. D-STAG as ACG codes

end

nl_lexicon discourse_semantics(DSTAG):logic =
NP := qnp;
N := e=>t;
Adj := e=>t;
S := (t=>t) => t;
Det := (e=>t) => qnp;

Na_d := (e => t) => (e => t) => t;

Na := (e=>t) => (e=>t);
VPa := t => t;
Adja:= (e=>t) => (e=>t);
Sa:= t => t;
DCa, Dcav := (t => t => t)=>(t => t => t);

d_plur:= Lambda P Q.(PLUR P) Q;

Ivp,Iadj,Is,In:=Lambda x.x;

(* To be changed for pronouns *)
d_fred,d_he := Lambda P.P fred;
d_Eiffel := Lambda P.P eiffel;
d_Louvre := Lambda P.P louvre;
d_Paris := Lambda P.P paris;

d_her := Lambda P.ExUni x. (wife x fred) & (P x);
d_this:= Lambda P.P this;

d_is,d_was := Lambda S A1 A2 s adj mod. (S(s (Lambda x.A2 (mod (A1 (adj x))))));
d_grumpy := Lambda m.m bad_mood;
d_away := Lambda m P z .P(Lambda x. m (Lambda y. away y x) z) ;
d_empty := Lambda m.m empty;

d_the,d_his := Lambda P Q.ExUni x.(P x) & (Q x);
d_a := Lambda P Q.Ex x.(P x) & (Q x);

d_keys:= noun key;
d_nightmare := noun nightmare;
d_exam := noun license;
d_supermarket := noun supermarket;
d_fridge := noun fridge;
d_movies := noun movies ;
d_wife := noun (Lambda x. wife x fred);
d_week := noun week;

d_shows := Lambda S A1 A2 s c mod. mod (S (s (Lambda x . A2 (A1 (show x (c (Lambda y.y)))))));

d_lost := transitive_verb lose;
d_had := transitive_verb have;
d_failed := transitive_verb fail;
d_loves := transitive_verb love;
d_went_to, d_visited := transitive_verb go_to;
d_was_in := transitive_verb be_in;

d_sleep := intransitive_verb sleep;

d_didnt := Lambda m P.m (- P);
d_how_much := Lambda s.a_lot s;

d_forexample_medial, d_forexample := lambda R p q. Exemplification q (lambda r. R p r);

DU := ttt;
DUa := ttt => ttt;
T := t;
I_DU := Lambda x.x;

d_when := A_preposed Circumstance;
d_because := A’ Explication;
d_moreover, d_punct_moreover := A’ Continuation;
d_then_s, d_then_v, d_punct_then_s, d_then_v := B Narration;
d_punct_next_s:= A’ Narration;

d_discourse_empty_comment := A’ Commentary;
d_discourse_empty := B Explication;

d_initial_anchor_s := Lambda s mod. mod (Lambda Q.Q (s (Lambda x.x))) (Lambda x.x);

d_anchor_s := Lambda s mod.Lambda P. mod (Lambda Q.Q (s (Lambda x.x))) P;

d_because_mod, d_because_initial_medial, d_because_modv := S’ Explication;
d_moreover_modv:= S’’ Continuation;

end

354

D.3. ACG Signatures and Lexicons: Syntax and Unlabeled Semantics

signature TAG =
NP,N,Adj,S,Det:type;
Na,Na_d,VPa,Adja,Sa:type;
In:Na;
Ivp:VPa;
Iadj:Adja;
Is : Sa;

c_fred,c_this,c_he,c_her : NP;
c_Paris : NP;
c_Eiffel : NP;
c_Louvre : NP;
c_is,c_was: Sa -> VPa -> NP -> Adj -> S;
c_grumpy,c_empty: Adja -> Adj;
c_away: Adja -> NP -> Adj;

c_the,c_his,c_a,c_plur :Na_d;
c_keys,c_nightmare,c_exam,
c_supermarket,c_fridge,c_movies,c_wife,c_week : Na_d -> Na-> NP;

c_lost,c_had,c_failed,c_loves: Sa -> VPa -> NP -> NP -> S;
c_went_to, c_visited : Sa -> VPa -> NP -> NP -> S;
c_was_in : Sa -> VPa -> NP -> NP -> S;

c_shows: Sa -> VPa -> NP -> S -> S;

c_didnt:VPa -> VPa;
c_sleep: Sa -> VPa -> NP -> S;
c_how_much:Sa -> Sa;

c_because:Sa;
c_when:Sa;
c_moreover_comma: Sa ;
c_moreover_v:VPa -> VPa;
c_because_v:VPa -> VPa;

c_then_comma_s:Sa;
c_then_v:VPa -> VPa;
c_next_comma_s:Sa;

c_forexample:Sa->Sa;
c_forexample_medial:(VPa->VPa)->(VPa->VPa);

transitive_verb=
lambda v.

lambda sa va1 va2 subj obj.
lambda dc mod.

v (sa dc) (va2 (mod (va1 Ivp))) subj obj:
(Sa -> VPa -> NP -> NP -> S) ->

(Sa -> Sa) -> (VPa -> VPa) -> (VPa -> VPa) -> NP -> NP ->
Sa -> (VPa -> VPa) -> S;

intransitive_verb=
lambda v.

lambda sa va1 va2 subj.
lambda dc mod.

v (sa dc) (va2 (mod (va1 Ivp))) subj:
(Sa -> VPa -> NP -> S) ->

(Sa -> Sa) -> (VPa -> VPa) -> (VPa -> VPa) -> NP ->
Sa -> (VPa -> VPa) -> S;

aux = lambda aux.
lambda va v .aux (va v) :

(VPa -> VPa) ->
(VPa -> VPa) -> VPa -> VPa;

v_adv = lambda adv.
lambda va v. adv (va v) :

(VPa -> VPa) ->
(VPa -> VPa) -> VPa -> VPa;

pont = lambda v.
lambda sa va1 va2 subj scomp.lambda dc mod.v (sa dc) (va2 (mod (va1 Ivp))) subj (scomp Is (lambda x.x)):
(Sa -> VPa -> NP -> S -> S) ->
(Sa -> Sa) -> (VPa -> VPa) -> (VPa -> VPa) -> NP -> (Sa -> (VPa -> VPa) -> S) -> Sa -> (VPa -> VPa) -> S;

I_va = lambda x.x : VPa -> VPa;
I_va_va = lambda x.x : (VPa -> VPa) -> VPa -> VPa;

concat_wo_punct,concat_w_punct : Sa -> Sa -> Sa -> S -> Sa;
concat_wo_punct_preposed : Sa -> Sa -> Sa -> Sa -> S -> Sa;

c_discourse_wo_punct_s = lambda dm_s dm_v. lambda dua1 dua2 dua3 s.
concat_wo_punct dua1 dua2 dua3 (s dm_s dm_v):
Sa -> (VPa -> VPa) -> Sa -> Sa -> Sa -> (Sa -> (VPa -> VPa) -> S) -> Sa;
c_discourse_w_punct_s = lambda dm_s dm_v. lambda dua1 dua2 dua3 s.
concat_w_punct dua1 dua2 dua3 (s dm_s dm_v):
Sa -> (VPa -> VPa) -> Sa -> Sa -> Sa -> (Sa -> (VPa -> VPa) ->S) -> Sa;

355

Appendix D. D-STAG as ACG codes

c_discourse_preposed = lambda dm_s dm_v. lambda dua5 dua1 dua2 dua3 s.
concat_wo_punct_preposed dua5 dua1 dua2 dua3 (s dm_s dm_v):

Sa -> (VPa -> VPa) -> Sa -> Sa -> Sa -> Sa -> (Sa -> (VPa -> VPa) ->S) -> Sa;

clause_modification: S -> Sa -> S;

end

signature trees =
tree:type;
N1,NP1,V1,Adv1,VP1,Adj1,S1,Det1,Prep1: tree -> tree;
N2,NP2,PP2,VP2,Adj2,S2:tree -> tree -> tree;
S3: tree -> tree -> tree -> tree;
S4: tree -> tree -> tree -> tree -> tree;
S5: tree -> tree -> tree -> tree -> tree -> tree;

Id=lambda x.x:tree -> tree;

dot,comma:tree;

Fred,is,was,didnt,grumpy,lost,the,keys,failed,exam,
sleep,well,had,nightmare,s,went,to, in, supermarket,fridge,empty,movies,
his,wife,away,a,week,this,shows,he,her,loves, visited, forexample,
moreover,moreover_comma,then,then_comma,because,how_much, when, next_comma, Paris, Louvre, Eiffel, tower:tree;

epsilon:tree;

transitive_verb=
lambda v. lambda S A s o.S(S2 s (A (VP2 (V1 v) o))):
tree ->
(tree -> tree) ->
(tree -> tree) ->
tree ->
tree ->
tree ;

intransitive_verb=
lambda v. lambda S A s.S(S2 s (A (VP1 (V1 v)))):
tree ->
(tree -> tree) ->
(tree -> tree) ->
tree ->
tree ;

aux =
lambda a. lambda A x. VP2 (A (VP1 a)) x :
tree ->
(tree -> tree) ->
tree ->
tree ;

v_adv = lambda a. lambda A x. A(VP2 (Adv1 a) x) :
tree ->
(tree -> tree) ->
tree ->
tree ;

s_adv = lambda a. lambda S x. S(S2 (Adv1 a) x) :
tree ->
(tree -> tree) ->
tree ->
tree ;

pont=
lambda v. lambda S A s comp.S(S2 s (A (VP2 (V1 v) (S1 comp)))):
tree ->
(tree -> tree) ->
(tree -> tree) ->
tree ->
tree ->
tree ;

close = lambda f.f epsilon:(tree -> tree) -> tree;

c_discourse_wo_punct = lambda s1 s2 s3 s x.
s1 (s2 (S2 x (s3 s))) :

(tree -> tree) ->
(tree -> tree) ->
(tree -> tree) ->

tree ->
tree -> tree;

c_discourse_w_punct = lambda p. lambda s1 s2 s3 s x.
s1 (s2 (S3 x p (s3 s))) :

tree ->

356

D.3. ACG Signatures and Lexicons: Syntax and Unlabeled Semantics

(tree -> tree) ->
(tree -> tree) ->
(tree -> tree) ->

tree ->
tree -> tree;

concat_discourse_punct_preposed = lambda s5 s4 s3 s2 s x.
s4 (s3 (S3 (s2 s) comma (s5 x))) :

(tree -> tree) ->
(tree -> tree) ->

(tree -> tree) ->
(tree -> tree) ->

tree ->
tree -> tree;

noun = lambda n. lambda d a. d (a (N1 n)): tree -> (tree -> tree) -> (tree -> tree) -> tree;
det = lambda d. lambda n. N2 d n : tree -> (tree -> tree);
plur = lambda n. NP2 n s : tree -> tree ;
l_adj = lambda adj. lambda a n. a (N2 adj n): tree -> (tree -> tree) -> (tree -> tree);

end

lexicon derived_trees(TAG):trees =
NP,N,Adj,S,Det:=tree;

Na_d,Na,VPa,Adja,Sa:=tree -> tree;

Iadj,Ivp,In,Is := lambda x.x;

c_fred:= NP1 Fred;
c_this := NP1 this;
c_he := NP1 he;
c_her := NP1 her;
c_is:= lambda S A s adj. S(S2 s (A (VP2 (V1 is) adj)));
c_was:= lambda S A s adj. S(S2 s (A (VP2 (V1 was) adj)));
c_grumpy:= lambda m. m(Adj1 grumpy);
c_empty := lambda m.m(Adj1 empty);

c_Eiffel:= NP2 (Det1 the) (N2 Eiffel tower);
c_Louvre := NP2 (Det1 the) (N1 Louvre);
c_Paris := NP1 Paris;

c_away := lambda m n .m (Adj2 (Adj1 away) n) ;

c_the := det the;
c_his := det his;
c_a := det a;
c_plur := plur;
c_keys:= noun keys;
c_fridge:= noun fridge;
c_movies:= noun movies;
c_exam:= noun exam;
c_supermarket:= noun supermarket;
c_nightmare:= noun nightmare;
c_wife:= noun wife;
c_week:= noun week;

c_lost:=transitive_verb lost;
c_had:=transitive_verb had;
c_failed:=transitive_verb failed;
c_loves:=transitive_verb loves;
c_visited:=transitive_verb visited;

c_went_to:= lambda S A s c.S(S2 s (A (VP2 (V1 went) (PP2 (Prep1 to) c))));
c_was_in:= lambda S A s c.S(S2 s (A (VP2 (V1 was) (PP2 (Prep1 in) c))));

c_forexample := lambda S x. S(S2 (Adv1 forexample) x);

c_forexample_medial:= lambda B. lambda Z. lambda u. Z (B (lambda y. VP2 y u) (Adv1 forexample));

c_didnt:= aux didnt;
c_sleep:= intransitive_verb (VP2 sleep well);

c_shows:= pont shows;
c_how_much := s_adv how_much;

c_then_comma_s := s_adv then_comma (lambda x.x);
c_then_v := v_adv then;
c_moreover_v := v_adv moreover;
c_because_v := v_adv because;

c_moreover_comma := s_adv moreover_comma (lambda x.x);
c_because := s_adv because (lambda x.x);
c_when := s_adv when (lambda x.x);
c_next_comma_s := s_adv next_comma (lambda x.x);

357

Appendix D. D-STAG as ACG codes

concat_wo_punct_preposed:=concat_discourse_punct_preposed;
concat_w_punct:= c_discourse_w_punct dot;
concat_wo_punct:= c_discourse_wo_punct;

clause_modification := lambda s m.m s;

end

signature strings =
o:type;
string = o->o:type;
infix + = lambda a b z.a (b z):string -> string -> string;
binary = lambda x y. x + y: string -> string -> string ;
ternary = lambda x y z. x + y + z: string -> string -> string -> string;
E=lambda x.x:string;

Fred,is,was,did,not,grumpy,lost,the,keys,failed,exam,
well,sleep,had,nightmare,s,went,to, in, supermarket,fridge,empty,movies,
his,wife,away,a,week,this,shows,he,her,loves, visited, for, example,
moreover,then,because,how,much, when, next, Paris, Louvre, Eiffel, Tower:string;

dot,comma,epsilon:string;
end

lexicon disc_clause_interface(DSTAG):TAG =

T := S;

NP:=NP;
N:=N;
Adj:=Adj;
Det:=Det;
Na:=Na;
Adja:=Adja;
Na_d:=Na_d;

VPa:=VPa -> VPa;
Sa:=Sa->Sa;
S:= Sa -> (VPa -> VPa) -> S;
DU:= Sa -> (VPa -> VPa)-> S;
DUa:= Sa;

Dcav:=(VPa -> VPa)-> VPa -> VPa;
DCa := Sa->Sa;

In:=In;
Ivp:=lambda P.P;
Iadj:=Iadj;
Is := lambda P.P;

d_fred := c_fred;
d_this := c_this;
d_Louvre := c_Louvre;
d_Paris := c_Paris;
d_Eiffel := c_Eiffel;
d_he :=c_he;
d_her := c_her ;
d_is := lambda sa va1 va2 np adj.lambda dc mod. c_is (sa dc) (va2 (mod (va1 Ivp))) np adj ;
d_was := lambda sa va1 va2 np adj.lambda dc mod. c_was (sa dc) (va2 (mod (va1 Ivp))) np adj ;
d_grumpy:=c_grumpy;
d_empty:=c_empty;
d_away := c_away;

d_the := c_the ;
d_his := c_his;
d_a:=c_a;
d_plur := c_plur;
d_keys:=c_keys;
d_nightmare := c_nightmare;
d_exam := c_exam;
d_supermarket := c_supermarket;
d_fridge := c_fridge;
d_movies := c_movies;
d_wife := c_wife;
d_week:=c_week;

d_lost:=transitive_verb c_lost;
d_had := transitive_verb c_had;
d_failed := transitive_verb c_failed;
d_loves:=transitive_verb c_loves;
d_visited:=transitive_verb c_visited;

d_went_to := transitive_verb c_went_to ;
d_was_in := transitive_verb c_was_in ;

358

D.3. ACG Signatures and Lexicons: Syntax and Unlabeled Semantics

d_shows := pont c_shows;

d_didnt:=aux c_didnt;
d_sleep := intransitive_verb c_sleep;
d_how_much := c_how_much;

I_DU := Is;
d_then_v := c_discourse_w_punct_s Is c_then_v;
d_then_s := c_discourse_wo_punct_s c_then_comma_s (lambda x.x);
d_moreover := c_discourse_wo_punct_s c_moreover_comma (lambda x.x);
d_punct_then_s := c_discourse_w_punct_s c_then_comma_s (lambda x.x);
d_punct_moreover := c_discourse_w_punct_s c_moreover_comma (lambda x.x);
d_because := c_discourse_wo_punct_s c_because (lambda x.x);
d_when := c_discourse_preposed c_when (lambda x.x);
d_punct_next_s := c_discourse_wo_punct_s c_next_comma_s (lambda x.x);

d_because_mod := lambda dua1 dua2 dua3 mod s. concat_wo_punct dua1 dua2 dua3 (s (mod c_because) (lambda x.x));
d_moreover_modv := lambda dua1 dua2 dua3 mod s. concat_wo_punct dua1 dua2 dua3 (s Is (mod c_moreover_v));
d_because_modv := lambda dua1 dua2 dua3 mod s. concat_wo_punct dua1 dua2 dua3 (s Is (mod c_because_v));

d_because_initial_medial := lambda dua1 dua2 dua3 mod s. concat_wo_punct dua1 dua2 dua3 (s c_because (mod (lambda x.x)));

d_forexample:=c_forexample;
d_forexample_medial:=c_forexample_medial;

d_discourse_empty := c_discourse_w_punct_s Is (lambda x.x);
d_discourse_empty_comment := c_discourse_w_punct_s Is (lambda x.x);

d_initial_anchor_s := lambda s mod.clause_modification (s Is (lambda x.x)) mod;
d_anchor_s := lambda s mod dc_s dc_v. clause_modification (s dc_s dc_v) mod;

end

lexicon yields(trees):strings =
tree:=string;

N1,NP1,V1,Adv1,VP1,Adj1,S1,Det1,Prep1 := lambda x.x;
N2,NP2,PP2,VP2,Adj2,S2 := lambda x y.x+y;
S3 := lambda x y z. x+y+z;
S4 := lambda x y z u. x+y+z+u;
S5 := lambda x y z u t. x+y+z+u+t;

dot := dot;
comma := comma;
epsilon:=epsilon;

Fred:=Fred;
is:=is;
was:=was;
didnt:=did+not;
grumpy:=grumpy;
lost:=lost;
the:=the;
keys:=keys;
failed:=failed;
exam:=exam;
sleep:=sleep;
well:=well;
had:=had;
nightmare:=nightmare;
s:=s;
went:=went;
to:=to;
in:=in;
supermarket:=supermarket;
fridge:=fridge;
empty:=empty;
movies:=movies;
his:=his;
wife:=wife;
away:=away;
a:=a;
week:=week;
this:=this;
shows:=shows;
he:=he;
her:=her;
loves:=loves;
visited:=visited;
forexample:=for+example;
moreover:=moreover;
moreover_comma:=moreover+comma;
then:=then;
then_comma:=then+comma;
because:=because;
how_much:= how+much;
when:=when;
next_comma:=next+comma;

359

Appendix D. D-STAG as ACG codes

Paris:=Paris;
Louvre:=Louvre;
Eiffel:=Eiffel;
tower:=Tower;

end

lexicon d_syntax = derived_trees << disc_clause_interface
lexicon d_yield = yields << d_syntax

D.4 The ACG Signatures and Lexicons for D-STAG as
ACG - Labeled Semantics

D.4.1 Examples

We use the following code in order to obtain the derivation tree and the labeled
semantic interpretation of Fred is grumpy because he lost his keys.

labeled_semantics analyse
d_initial_anchor_s C0

(d_because I_DU I_DU I_DU (d_anchor_s C1 I_DU)): T;

We use the following code in order to obtain the derivation tree and the labeled
semantic interpretation of Fred is grumpy because he lost his keys. Moreover, he failed his
exam.

labeled_semantics analyse
d_initial_anchor_s C0

(d_because I_DU I_DU I_DU (d_anchor_s C1
(d_punct_moreover I_DU I_DU I_DU (d_anchor_s C2 I_DU)))): T;

We use the following command in order to obtain the derivation tree and the labeled
semantic interpretation of Fred is grumpy because he did not sleep well. He had nightmares.

labeled_semantics analyse
d_initial_anchor_s C0

(d_because I_DU I_DU
(d_discourse_empty I_DU I_DU I_DU (d_anchor_s C4 I_DU))

(d_anchor_s C3 I_DU)): T;

We use the following code in order to obtain the derivation tree and the labeled
semantic interpretation of Fred went to the supermarket because the fridge was empty. Then,
Fred went to the movies.

labeled_semantics analyse
d_initial_anchor_s C5

(d_because I_DU
(d_punct_then_s I_DU I_DU I_DU

(d_anchor_s C7 I_DU)) I_DU
(d_anchor_s C6 I_DU)) : T;

360

D.4. The ACG Signatures and Lexicons for D-STAG as ACG - Labeled Semantics

We use the following code in order to obtain the derivation tree and the labeled
semantic interpretation of Fred went to the supermarket because the fridge was empty. Fred
then went to the movies.

labeled_semantics analyse
d_initial_anchor_s C5

(d_because I_DU
(d_then_v I_DU I_DU I_DU

(d_anchor_s C7 I_DU)) I_DU
(d_anchor_s C6 I_DU)) : T;

We use the following code in order to obtain the derivation tree and the labeled
semantic interpretation of Fred is grumpy because his wife is away this week. This shows
how much he loves her.

labeled_semantics analyse
d_initial_anchor_s C0

(d_because
(d_discourse_empty_comment I_DU I_DU I_DU

(d_anchor_s C9 I_DU)) I_DU I_DU
(d_anchor_s C8 I_DU)) : T;

D.4.2 ACG Signatures and Lexicons for Interpreting D-STAG deriva-
tion trees into Labeled Semantics

signature DSTAG =
DU,DUa,T:type;
NP,N,Adj,Det,S:type;
NPa,Na,VPa,Adja,Sa, Na_d:type;

DC = DUa-> DUa-> DUa-> DU-> DUa : type;

In:Na;
Ivp:VPa;
Iadj:Adja;
Is : Sa;

d_fred,d_this,d_he,d_her : NP;
d_is: Sa -> VPa -> VPa -> NP -> Adj -> S;
d_was: Sa -> VPa -> VPa -> NP -> Adj -> S;
d_grumpy, d_empty: Adja -> Adj;
d_big, d_important : Adja -> Adja;
d_away: Adja -> NP -> Adj;

d_the, d_his,d_a, d_plur : Na_d;
d_keys,d_nightmare,d_exam,
d_supermarket,d_fridge,d_movies,d_wife,d_week : Na_d -> Na-> NP;

d_lost,d_had,d_failed,d_loves: Sa -> VPa -> VPa -> NP -> NP -> S;
d_went_to : Sa -> VPa -> VPa -> NP -> NP -> S;

d_shows: Sa -> VPa -> VPa -> NP -> S -> S;

d_didnt:VPa -> VPa;
d_sleep: Sa -> VPa -> VPa -> NP -> S;
d_how_much:Sa;

d_because:DC;
d_moreover,d_punct_moreover: DC ;
d_then_s,d_punct_then_s:DC;
d_then_v:DC;

d_discourse_empty:DC;
d_discourse_empty_comment:DC;

d_initial_anchor_s:S -> DUa -> T;

361

Appendix D. D-STAG as ACG codes

d_anchor_s:S -> DUa -> DU;

I_DU : DUa;

C0=d_is Is Ivp Ivp d_fred (d_grumpy Iadj) : S;
C1=d_lost Is Ivp Ivp d_he (d_keys d_his In) :S;
C2=d_failed Is Ivp Ivp d_he (d_exam d_his In) :S;
C3=d_sleep Is Ivp (d_didnt Ivp) d_he :S;
C4= d_had Is Ivp Ivp d_he (d_nightmare d_plur In):S;

C5= d_went_to Is Ivp Ivp d_fred (d_supermarket d_the In) :S;
C6= d_was Is Ivp Ivp (d_fridge d_the In) (d_empty Iadj):S;
C7= d_went_to Is Ivp Ivp d_fred (d_movies d_the In) :S;
C8= d_is Is Ivp Ivp (d_wife d_his In) (d_away Iadj (d_week d_the In)):S;
C9= d_shows Is Ivp Ivp d_this (d_loves d_how_much Ivp Ivp d_he d_her) :S;

end

signature logic =
e,t,l:type;

ttt=(l => t) => t:type;

qnp=(e=>l=>t)=>l=>t:type;
infix & : t => t => t;

(* Implications*)
infix > : t => t => t;

prefix - : t => t;
(* Quantifiers *)
binder All : (e=>t) => t;
binder Ex : (e=>t) => t;
binder ExUni : (e=>t) => t;
binder Ex_l : (l=>t) => t;

TOP:t;
PLUR: (e =>l =>t) => qnp;

fred,this,he,elle:e;
grumpy:e=>l=>t;
away:e=> e => l => t;
empty, big, important:e=>l=>t;
keys,nightmare,exam,supermarket,fridge,movies,week:e=>l=>t;
wife:e=>e=>l=>t;

lose,have,fail,love,go_to:e=>e=>l=>t;

show:e=>t=>l=>t;

PAST:t=>t;

sleep:e=>l=>t;
badly,a_lot:t=>t;

Explanation : l=> l=> l => t ;
Continuation : l=> l=> l =>t ;
Narration : l=> l=> l=>t ;
Comment : l => l => l=>t;

missing_arg : (t=>t=>t) => t=>t;

transitive_verb =
Lambda v. Lambda S A1 A2 s o mod.Lambda l.(S(s(Lambda x l’.o(Lambda y l’’.(A2 (mod (A1(v x y l’’))))) l’) l)):

(e=>e=>l=>t) => (t=>t) => (t=>t) => (t=>t) => qnp => qnp => (t=>t) => l => t;

intransitive_verb =
Lambda v. Lambda S A1 A2 s mod.Lambda l.(S(s(Lambda x l’.(A2 (mod (A1 (v x l’))))) l)):

(e=>l=>t) => (t=>t) => (t=>t) => (t=>t) => qnp => (t=>t) => l => t;

noun = Lambda n. Lambda d a. d (a (Lambda x l. n x l)):
(e => (l => t)) => ((e => (l => t)) => ((e => (l => t)) => (l => t))) => (((e => (l => t)) => (e => (l => t))) => ((e => (l => t)) => (l => t)));

phi’’ = Lambda R X Y P.Ex_l l.X(Lambda x.Y(Lambda y.(P x) & (R x y l))):
(l => l=> l =>t)=> ((l => t)=> t)=> ((l => t)=> t)=> (l=> t)=> t;

my_phi’ = Lambda R X Y P.Ex_l l.X(Lambda x.Y(Lambda y. (R x y l) & (P l))): (l => l=> l=> t)=> ((l => t)=> t)=> ((l => t)=> t)=> (l=> t)=> t;
B = Lambda R.

Lambda d4 d3 d2.
Lambda d_subst.

Lambda d_foot.
d4 (

(phi’’ R)

362

D.4. The ACG Signatures and Lexicons for D-STAG as ACG - Labeled Semantics

(d3 d_foot)
(d2 d_subst)

) :
(l => l => l => t) =>

(ttt => ttt) =>
(ttt => ttt) =>

(ttt => ttt) =>
ttt =>

(ttt => ttt);

A’ = Lambda R.
Lambda d4 d3 d2.

Lambda d_subst.
Lambda d_foot.

d4 (
(my_phi’ R)

(d3 d_foot)
(d2 d_subst)

) :
(l => l => l=>t) =>

(ttt => ttt) =>
(ttt => ttt) =>

(ttt => ttt) =>
ttt =>

(ttt => ttt);

cont = Lambda t.Lambda P.P t:t => (t=>t) => t;

end

nl_lexicon labeled_semantics(DSTAG):logic =
NP := qnp;
N := e=> l => t;
Adj := e=>l => t;
S := (t=>t) => l => t;
Det := (e=>l=>t) => qnp;
Na_d := (e=>l=>t) => (e=>l=>t)=> l => t;

d_plur:= Lambda P Q.(PLUR P) Q;

NPa:= qnp => qnp;
VPa := t => t;
Na, Adja:= (e=>l=>t) => (e=>l=>t);
Sa:= t => t;

Ivp,Iadj,Is,In:=Lambda x.x;

d_fred,d_he := Lambda P l .P fred l;
d_her := Lambda P l .ExUni x. (wife x fred l) & (P x l);
d_this:= Lambda P l .P this l;

d_is,d_was := Lambda S A1 A2 s adj mod.Lambda l. (S(s (Lambda x l.A2 (mod (A1 (adj x l)))) l));
d_grumpy := Lambda m.m grumpy;
d_away := Lambda m P z l .P(Lambda x l’. m (Lambda y l’’. away y x l’’) z l’) l ;
d_empty := Lambda m.m empty;

d_the,d_his := Lambda P Q l.ExUni x.(P x l) & (Q x l);
d_a := Lambda P Q l.Ex x.(P x l) & (Q x l);

d_keys:= noun keys;
d_nightmare := noun nightmare;
d_exam := noun exam;
d_supermarket := noun supermarket;
d_fridge := noun fridge;
d_movies := noun movies ;
d_wife := noun (Lambda x l. wife x fred l);
d_week := noun week;

d_lost := transitive_verb lose;
d_had := transitive_verb have;
d_failed := transitive_verb fail;
d_loves := transitive_verb love;
d_went_to := transitive_verb go_to;

d_shows := Lambda S A1 A2 s c mod l.S(s(Lambda x l’.A2 (mod(A1 (show x (Ex_l l_1.(c (lambda x.x) l_1)) l’)))) l);

d_sleep := intransitive_verb sleep;

d_didnt := Lambda m P.m (- P);
d_how_much := Lambda s.a_lot s;

DU := ttt;
DUa := ttt => ttt;
T := t;
I_DU := Lambda x.x;

d_because := A’ Explanation;

363

Appendix D. D-STAG as ACG codes

d_moreover,d_punct_moreover := A’ Continuation;
d_then_s,d_then_v,d_punct_then_s := B Narration;
d_then_v := B Narration;
d_discourse_empty_comment := A’ Comment;
d_discourse_empty := B Explanation;

d_initial_anchor_s := Lambda s mod.Ex_l l. mod (Lambda Q.(s (Lambda x.x) l) & Q l) (Lambda l.TOP);

d_anchor_s := Lambda s mod.Lambda P.Ex_l l. mod (Lambda Q.(s (Lambda x.x) l) & (Q l)) P;

d_important:=Lambda a n. a (Lambda x l. (important x l) & (n x l));
d_big:= Lambda a n. a (Lambda x l. (big x l) & (n x l));

end

364

Appendix E

Related Work and Conclusive
Remarks

Below, we provide the ACG code for modeling a discourse where two connectives
appear in a clause, for instance as it is in the following discourse:

(69), repeated
[John ordered three cases of Barolo]0. [But he had to cancel the order]1
[because then he discovered he was broke]2.
Interpretation: (ContrastF0F1)∧(ExplanationF1F2)∧(NarrationF0F2)

By running the following command, one obtains the semantic interpretation of the
discourse (69).

discourse_semantics analyse d_initial_anchor_s C0
(d_but (d_because d_then
(d_anchor_s C2 I_DU))

I_DU I_DU I_DU
(d_anchor_s C1 I_DU)):T;

The ACG Code for Multiply Connectives in a Clause

signature discourse_grammar =
DU,DUa ,T, Ra, DUn, S :type;

d_because : Ra->DU->DUn;
d_then: Ra;
d_but : DUn-> DUa-> DUa-> DUa-> DU-> DUa;

I_DU : DUa;
I_DUn: DUn;

d_initial_anchor_s: S -> DUa -> T;
d_anchor_s:S -> DUa -> DU;

C0, C1, C2:S;

end

365

Appendix E. Related Work and Conclusive Remarks

signature logic =
e,t,l:type;

ttt=(t => t) => t:type;

infix & : t => t => t;

EXPLANATION, NARRATION, CONTRAST : t => t => t;

my_phi’ = Lambda R. Lambda X Y P.X(Lambda x.Y(Lambda y. P (R x y))):
(t => t=> t)=> ((t => t)=> t)=> ((t => t)=> t)=> (t=> t)=> t;

F0, F1, F2: t;
end

nl_lexicon discourse_semantics(discourse_grammar):logic =

DU,S := ttt;
DUa := ttt => ttt;
T := t;

Ra:= (t=>t=>t)=>t=>t=>t=>t;
DUn := (ttt=>ttt=>ttt)=>ttt=>ttt=>ttt;

I_DU := Lambda x.x;
I_DUn:=Lambda x.x;

d_then := Lambda R f2 f0 f1. (R f1 f2) & (NARRATION f0 f2);

d_because:= Lambda DRa. Lambda F3 Q F2 F1. lambda D.
D((Q F2 F1 (lambda x. x)) & (F3 (Lambda f3. (F2 (Lambda f2. (F1 (Lambda f1. DRa EXPLANATION f3 f2 f1)))))));

d_but := Lambda P d4 d3 d2.
Lambda d_subst.

Lambda d_foot.
d4(
P(my_phi’ CONTRAST)

(d3 d_foot)
(d2 d_subst)

);

d_anchor_s := Lambda s mod.Lambda P. mod (Lambda Q.Q (s (Lambda x.x))) P;

d_initial_anchor_s := Lambda s mod. mod (Lambda Q.Q (s (Lambda x.x))) (Lambda x.x);

C0:= Lambda P. P F0;
C1:= Lambda P. P F1;
C2:= Lambda P. P F2;

end

366

Bibliography

Abeillé, Anne (1988). “Parsing French with Tree Adjoining Grammar: Some Linguistic
Accounts”. In: Proc. of the 12th COLING. Budapest, Hungary, pp. 7–12. url: http:
//aclweb.org/anthology/C/C88/C88-1002.pdf (cit. on pp. 203, 234).

Aït-Kaci, Hassan and Roger Nasr (1986). “LOGIN: A logic programming language
with built-in inheritance”. In: The Journal of logic programming 3.3, pp. 185–
215. doi: 10.1016/0743 - 1066(86) 90013 - 0. url: http : //www.hassan - ait -

kaci.net/pdf/login-jlp-86.pdf (cit. on pp. 155, 216).
Ajdukiewicz, Kazimierz (1935). “Die syntaktische Konnexität”. In: Stud. Philos. 1, pp. 1–

27. url: http://www.ifispan.waw.pl/studialogica/s-p-f/volumina_i-iv/I-03-
Ajdukiewicz-small.pdf (cit. on p. 26).

Asher, Nicholas and Alex Lascarides (2003). Logics of Conversation. Cambridge University
Press (cit. on pp. 16, 17, 20, 107, 108, 112, 119, 120, 123, 124, 125, 174, 251).

Asher, Nicholas and Sylvain Pogodalla (2011). “SDRT and Continuation Semantics”.
In: New Frontiers in Arti�cial Intelligence JSAI-isAI 2010 Workshops, LENLS, JURISIN,
AMBN, ISS, Tokyo, Japan, November 18-19, 2010, Revised Selected Papers. Ed. by Takashi
Onada, Daisuke Bekki, and Eric McCready. Vol. 6797. Lecture Notes in Computer
Science. Springer, pp. 3–15. doi: 10.1007/978-3-642-25655-4_2. url: https:

//hal.inria.fr/inria-00565744 (cit. on pp. 288, 321, 322).
Asher, Nicholas and Laure Vieu (2005). “Subordinating and Coordinating Discourse Rela-

tions”. In: Lingua 115.4, pp. 591–610. url: https://www.irit.fr/publis/LILAC/AV-
Lingua05.pdf (cit. on p. 123).

Barendregt, H. P. (1992). “Handbook of Logic in Computer Science (Vol. 2)”. In: ed. by
S. Abramsky, Dov M. Gabbay, and S. E. Maibaum. New York, NY, USA: Oxford
University Press, Inc. Chap. Lambda Calculi with Types, pp. 117–309 (cit. on p. 54).

Bar-Hillel, Yehoshua (1953). “A Quasi-Arithmetical Notation for Syntactic Description”.
In: Language 29.1, pp. 47–58. doi: 10.2307/410452 (cit. on p. 26).

Bernard, Timothée (2015). “Verbes d’attitude propositionnelle et analyse discursive”. MA
thesis. Université Paris Diderot - Paris 7. url: https://hal.inria.fr/hal-01256344
(cit. on p. 92).

Bimbó, Katalin (2015). “The decidability of the intensional fragment of classical linear
logic”. In: Theoretical Computer Science 597, pp. 1–17 (cit. on p. 79).

Blackburn, Patrick (2000). “Representation, Reasoning, and Relational Structures:
a Hybrid Logic Manifesto”. In: Logic Journal of IGPL 8.3, pp. 339–365. doi:
10.1093/jigpal/8.3.339 (cit. on p. 308).

367

http://aclweb.org/anthology/C/C88/C88-1002.pdf
http://aclweb.org/anthology/C/C88/C88-1002.pdf
http://dx.doi.org/10.1016/0743-1066(86)90013-0
http://www.hassan-ait-kaci.net/pdf/login-jlp-86.pdf
http://www.hassan-ait-kaci.net/pdf/login-jlp-86.pdf
http://www.ifispan.waw.pl/studialogica/s-p-f/volumina_i-iv/I-03-Ajdukiewicz-small.pdf
http://www.ifispan.waw.pl/studialogica/s-p-f/volumina_i-iv/I-03-Ajdukiewicz-small.pdf
http://dx.doi.org/10.1007/978-3-642-25655-4_2
https://hal.inria.fr/inria-00565744
https://hal.inria.fr/inria-00565744
https://www.irit.fr/publis/LILAC/AV-Lingua05.pdf
https://www.irit.fr/publis/LILAC/AV-Lingua05.pdf
http://dx.doi.org/10.2307/410452
https://hal.inria.fr/hal-01256344
http://dx.doi.org/10.1093/jigpal/8.3.339

BIBLIOGRAPHY

Bloomfield, Leonard (1933). Language. Chicago: University of Chicago Press (cit. on
p. 31).

Bos, Johan (1995). “Predicate Logic Unplugged”. In: Proceedings of the 10th Amsterdam Col-
loquium. url: http://www.let.rug.nl/bos/pubs/Bos1996AmCo.pdf (cit. on pp. 114,
148).

Brainerd, Walter S. (1969). “Tree generating regular systems”.
In: Information and Control 14.2, pp. 217–231. url: http :

//calhoun.nps.edu/bitstream/handle/10945/40135/Brainerd _ Tree _

Generating.pdf?sequence=1 (cit. on pp. 35, 36).
Carlson, Lynn and Daniel Marcu (2001). Discourse Tagging Reference Manual. Tech. rep.

ISI-TR-545. University of Southern California Information Sciences Institute. url:
http://www.isi.edu/~marcu/discourse/tagging-ref-manual.pdf (cit. on p. 98).

Charolles, Michel (2005). “Framing adverbials and their role in discourse cohesion,
from connection to forward labelling”. In: Proceedings of Symposium on the Ex-
ploration and Modelling of Meaning. Biarritz, France. url: http://w3.erss.univ-

tlse2.fr : 8080/index.jsp ? perso = bras&subURL = sem05/proceedings - final/02 -

Charolles.pdf (cit. on pp. 7, 95, 176, 189).
Chomsky, Noam (1956). “Three models for the description of language”. In: IRE

Transactions on Information Theory 2. http://www.chomsky.info/articles/195609--
.pdf – last visited 14th January 2009, pp. 113–124 (cit. on pp. 26, 31, 32).

Chomsky, Noam (1959). “On certain formal properties of grammars”. In: Information
and Control 2.2, pp. 137–167. doi: dx.doi.org/10.1016/S0019-9958(59)90362-6
(cit. on p. 35).

Curry, Haskell B. (1960). “Some Logical Aspects of Grammatical Structure”. In: Journal
of Symbolic Logic 25.4, pp. 341–341 (cit. on pp. 3, 52).

Dale, Robert (1995). “Introduction to Natural Language Generation. Barcelona, ESSLLI
1995”. url: http://comp.mq.edu.au/~rdale/teaching/esslli/ (cit. on p. 18).

Danlos, Laurence (1998). “G-TAG : un formalisme lexicalisé pour la génération de
textes inspiré de TAG”. In: Traitement Automatique des Langues 39.2. Article dans
revue scientifique avec comité de lecture., 28 p. url: https://hal.inria.fr/inria-
00098489 (cit. on pp. 5, 20, 153, 163, 196, 323).

Danlos, Laurence (2000). “G-TAG: A lexicalized formalism for text generation in-
spired by Tree Adjoining Grammar”. In: Tree Adjoining Grammars: Formalisms,
Linguistic Analysis, and Processing. Ed. by Anne Abeillé and Owen Rambow.
Vol. 107. CSLI Lecture Notes. CSLI Publications, pp. 343–370. url: http :

//www.linguist.jussieu.fr/~danlos/Dossier % 20publis/G - TAG - eng′01.pdf (cit.
on pp. 20, 153, 169, 203).

Danlos, Laurence (2009). “D-STAG : un formalisme d’analyse automatique de discours
basé sur les TAG synchrones”. In: Revue TAL 50.1, pp. 111–143. url: https:

//hal.inria.fr/inria-00524743 (cit. on pp. 90, 94, 174, 323).
Danlos, Laurence (2011). “D-STAG: a Formalism for Discourse Analysis based on

SDRT and using Synchronous TAG”. In: 14th conference on Formal Grammar - FG
2009. Ed. by Philippe de Groote, Markus Egg, and Laura Kallmeyer. Vol. 5591.
LNCS/LNAI. Springer, pp. 64–84. doi: 10.1007/978-3-642-20169-1_5. url: http:

368

http://www.let.rug.nl/bos/pubs/Bos1996AmCo.pdf
http://calhoun.nps.edu/bitstream/handle/10945/40135/Brainerd_Tree_Generating.pdf?sequence=1
http://calhoun.nps.edu/bitstream/handle/10945/40135/Brainerd_Tree_Generating.pdf?sequence=1
http://calhoun.nps.edu/bitstream/handle/10945/40135/Brainerd_Tree_Generating.pdf?sequence=1
http://www.isi.edu/~marcu/discourse/tagging-ref-manual.pdf
http://w3.erss.univ-tlse2.fr:8080/index.jsp?perso=bras&subURL=sem05/proceedings-final/02-Charolles.pdf
http://w3.erss.univ-tlse2.fr:8080/index.jsp?perso=bras&subURL=sem05/proceedings-final/02-Charolles.pdf
http://w3.erss.univ-tlse2.fr:8080/index.jsp?perso=bras&subURL=sem05/proceedings-final/02-Charolles.pdf
http://www.chomsky.info/articles/195609--.pdf
http://www.chomsky.info/articles/195609--.pdf
http://dx.doi.org/dx.doi.org/10.1016/S0019-9958(59)90362-6
http://comp.mq.edu.au/~rdale/teaching/esslli/
https://hal.inria.fr/inria-00098489
https://hal.inria.fr/inria-00098489
http://www.linguist.jussieu.fr/~danlos/Dossier%20publis/G-TAG-eng'01.pdf
http://www.linguist.jussieu.fr/~danlos/Dossier%20publis/G-TAG-eng'01.pdf
https://hal.inria.fr/inria-00524743
https://hal.inria.fr/inria-00524743
http://dx.doi.org/10.1007/978-3-642-20169-1_5
http://webloria.loria.fr/~degroote/FG09/Danlos.pdf
http://webloria.loria.fr/~degroote/FG09/Danlos.pdf

BIBLIOGRAPHY

//webloria.loria.fr/~degroote/FG09/Danlos.pdf (cit. on pp. 5, 17, 94, 95, 174,
175, 180, 181, 250).

Danlos, Laurence (2012). Annotation manuelle ou semi-automatique du FDTB: Problèmes à
l’interface syntaxe-sémantique pour les connecteurs de discours. Université Paris Diderot -
Paris 7. url: http://mathilde.dargnat.free.fr/index_fichiers/Danlos-ppt.pdf
(cit. on p. 93).

Danlos, Laurence (2013). “Connecteurs de discours adverbiaux: Problèmes à l’interface
syntaxe-sémantique”. In: Linguisticae Investigationes. Adverbes et compléments adver-
biaux 36.2, pp. 261–275. url: https://hal.inria.fr/hal-00932184 (cit. on pp. 91,
92, 93).

Danlos, Laurence, Frédéric Meunier, and Vanessa Combet (2011). “EasyText: an
Operational NLG System”. In: ENLG 2011 - 13th European Workshop on Natural
Language Generation. Nancy, France. url: https://hal.inria.fr/inria-00614760
(cit. on pp. 19, 153).

de Groote, Philippe (2001). “Towards abstract categorial grammars”. In: Association for
Computational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter. Colloque avec actes et comité de lecture. internationale. Toulouse, France,
pp. 148–155. url: https://hal.inria.fr/inria-00100529 (cit. on pp. 2, 3, 52, 53,
60, 61, 64, 69, 77, 78, 80, 85, 323).

de Groote, Philippe (2002). “Tree-Adjoining Grammars as Abstract Categorial Gram-
mars”. In: Proceedings of the Sixth International Workshop on Tree Adjoining Grammars
and Related Frameworks (TAG+6). Università di Venezia, pp. 145–150. url: http:
//www.loria.fr/equipes/calligramme/acg/publications/2002-tag+6.pdf (cit. on
pp. 4, 53, 57, 69, 70, 77, 78).

de Groote, Philippe (2006). “Towards a Montagovian Account of Dynamics”. In:
Proceedings of Semantics and Linguistic Theory XVI. Ed. by Masayuki Gibson and
Jonathan Howell (cit. on pp. 288, 320, 325).

de Groote, Philippe and Sarah Maarek (2007). “Type-theoretic extensions of Abstract Cat-
egorial Grammars”. url: https://hal.inria.fr/inria-00187759 (cit. on p. 201).

de Groote, Philippe, Sarah Maarek, and Ryo Yoshinaka (2007). “On two Extensions
of Abstract Categorial Grammars”. In: 14th International Conference on Logic for
Programming, Arti�cial Intel ligence and Reasoning - LPAR 2007. Ed. by Nachum
Dershowitz and Andrei Voronkov. Vol. 4790. Yerevan, Armenia: Springer, pp. 273–
287. doi: 10.1007/978-3-540-75560-9_21. url: https://hal.inria.fr/inria-
00609120 (cit. on p. 201).

de Groote, Philippe and Sylvain Pogodalla (2003). “m-Linear Context-Free Rewriting
Systems as Abstract Categorial Grammars”. In: Proceedings of Mathematics of Language
- MOL-8. Ed. by Richard T. Oehrle and James Rogers. Colloque avec actes et comité
de lecture. internationale. Bloomington, Indiana, United States, pp. 71–80. url:
https://hal.inria.fr/inria-00107690 (cit. on p. 77).

de Groote, Philippe and Sylvain Pogodalla (2004). “On the expressive power of Ab-
stract Categorial Grammars: Representing context-free formalisms”. In: Journal of
Logic, Language and Information 13.4. http://www.springerlink.com/content/1572-9583/,
pp. 421–438. doi: 10.1007/s10849-004-2114-x. url: https://hal.inria.fr/inria-
00112956 (cit. on pp. 4, 53, 77, 78).

369

http://webloria.loria.fr/~degroote/FG09/Danlos.pdf
http://webloria.loria.fr/~degroote/FG09/Danlos.pdf
http://mathilde.dargnat.free.fr/index_fichiers/Danlos-ppt.pdf
https://hal.inria.fr/hal-00932184
https://hal.inria.fr/inria-00614760
https://hal.inria.fr/inria-00100529
http://www.loria.fr/equipes/calligramme/acg/publications/2002-tag+6.pdf
http://www.loria.fr/equipes/calligramme/acg/publications/2002-tag+6.pdf
https://hal.inria.fr/inria-00187759
http://dx.doi.org/10.1007/978-3-540-75560-9_21
https://hal.inria.fr/inria-00609120
https://hal.inria.fr/inria-00609120
https://hal.inria.fr/inria-00107690
http://dx.doi.org/10.1007/s10849-004-2114-x
https://hal.inria.fr/inria-00112956
https://hal.inria.fr/inria-00112956

BIBLIOGRAPHY

Dines, Nikhil et al. (2005). “Attribution and the (Non-)Alignment of Syntactic and
Discourse Arguments of Connectives”. In: Proceedings of the Workshop on Frontiers
in Corpus Annotations II: Pie in the Sky. CorpusAnno ’05. Ann Arbor, Michigan:
Association for Computational Linguistics, pp. 29–36 (cit. on p. 92).

Forbes, Katherine et al. (2003). “D-LTAG System: Discourse Parsing with a Lexicalized
Tree-Adjoining Grammar”. In: Journal of Logic, Language and Information 12.3. Spe-
cial Issue: Discourse and Information Structure, pp. 261–279. doi: 10.1023/A:

1024137719751. url: http : //www.coli.uni - saarland.de/~korbay/esslli01 -

wsh/Jolli/Final/forbes-etal.pdf (cit. on pp. 131, 135, 308, 325).
Forbes-Riley, Katherine, Bonnie Webber, and Aravind Joshi (2006). “Computing Dis-

course Semantics: The Predicate-Argument Semantics of Discourse Connectives in
D-LTAG”. In: Journal of Semantics 23.1, pp. 55–106. doi: 10.1093/jos/ffh032. eprint:
http://jos.oxfordjournals.org/content/23/1/55.full.pdf+html (cit. on pp. 131,
144).

Girard, Jean-Yves (1987a). “Linear Logic”. In: Theoretical Computer Science 50, pp. 1–102
(cit. on p. 79).

Girard, Jean-Yves (1987b). “Multiplicatives”. In: Logic and Computer Science: New Trends
and Applications. Ed. by G. Lolli. Rendiconti del Seminario Matematico dell’Università
e Politecnico di Torino, pp. 11–34 (cit. on p. 79).

Goldreich, Oded (2008). Computational Complexity: A Conceptual Perspective. 1st ed. New
York, NY, USA: Cambridge University Press (cit. on pp. 26, 33).

Greibach, Sheila A. (1965). “A New Normal-Form Theorem for Context-Free Phrase
Structure Grammars”. In: J. ACM 12.1, pp. 42–52. doi: 10.1145/321250.321254

(cit. on p. 35).
Groenendijk, Jeroen and Martin Stokhof (1991). “Dynamic predicate logic”. English. In:

Linguistics and Philosophy 14.1, pp. 39–100. doi: 10.1007/BF00628304 (cit. on pp. 17,
107, 321).

Hobbs, Jerry R. (1985). On the Coherence and Structure of Discourse. Tech. rep. CSLI-
85-37. Center for the Study of Language and Information, Stanford, CA. url:
http://www.isi.edu/~hobbs/ocsd.pdf (cit. on pp. 15, 16).

Hopcroft, John E., Rajeev Motwani, and Je�rey D. Ullman (2006). Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc. (cit. on p. 26).

Joshi, Aravind K. (1985). “Tree adjoining grammars: How much context-sensitivity is
required to provide reasonable structural descriptions?” In: Natural language parsing.
Ed. by David R. Dowty, Lauri Karttunen, and Arnold M. Zwicky. Cambridge Books
Online. Cambridge University Press, pp. 206–250 (cit. on pp. 26, 36).

Joshi, Aravind K. (1994). “Current Issues in Computational Linguistics: In Honour of
Don Walker”. In: ed. by Antonio Zampolli, Nicoletta Calzolari, and Martha Palmer.
Dordrecht: Springer Netherlands. Chap. Some Recent Trends In Natural Language
Processing, pp. 491–501. doi: 10.1007/978-0-585-35958-8_26 (cit. on p. 37).

Joshi, Aravind K., Laura Kallmeyer, and Maribel Romero (2003). “Flexible Composi-
tion in LTAG: Quantifier Scope and Inverse Linking”. In: Proceedings of the Fifth
International Workshop on Computational Semantics IWCS-5. Ed. by Harry Bunt, Ielka
van der Sluis, and Roser Morante (cit. on p. 149).

370

http://dx.doi.org/10.1023/A:1024137719751
http://dx.doi.org/10.1023/A:1024137719751
http://www.coli.uni-saarland.de/~korbay/esslli01-wsh/Jolli/Final/forbes-etal.pdf
http://www.coli.uni-saarland.de/~korbay/esslli01-wsh/Jolli/Final/forbes-etal.pdf
http://dx.doi.org/10.1093/jos/ffh032
http://jos.oxfordjournals.org/content/23/1/55.full.pdf+html
http://dx.doi.org/10.1145/321250.321254
http://dx.doi.org/10.1007/BF00628304
http://www.isi.edu/~hobbs/ocsd.pdf
http://dx.doi.org/10.1007/978-0-585-35958-8_26

BIBLIOGRAPHY

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi (1975). “Tree Adjunct
Grammars”. In: Journal of Computer and System Sciences 10.1, pp. 136–163. doi:
10.1016/S0022-0000(75)80019-5 (cit. on pp. 2, 26, 29, 37).

Joshi, Aravind K. and Yves Schabes (1997). “Tree-Adjoining Grammars”. English. In:
Handbook of Formal Languages. Ed. by Grzegorz Rozenberg and Arto Salomaa.
Springer Berlin Heidelberg, pp. 69–123. doi: 10.1007/978-3-642-59126-6_2. url:
http://www.cis.upenn.edu/~joshi/joshi-schabes-tag-97.pdf (cit. on pp. 37, 38,
39, 43).

Joshi, Aravind, Laura Kallmeyer, and Maribel Romero (2007). “Flexible Composition In
Ltag: Quantifier Scope and Inverse Linking”. English. In: Computing Meaning. Ed. by
Harry Bunt and Reinhard Muskens. Vol. 83. Studies in Linguistics and Philosophy.
Springer Netherlands, pp. 233–256. doi: 10.1007/978-1-4020-5958-2_11 (cit. on
p. 143).

Jurafsky, Daniel and James H. Martin (2000). Speech and Language Processing: An Introduc-
tion to Natural Language Processing, Computational Linguistics, and Speech Recognition.
1st. Upper Saddle River, NJ, USA: Prentice Hall PTR (cit. on p. 35).

Kallmeyer, Laura (2010). Parsing Beyond Context-Free Grammars. 1st. Springer Publishing
Company, Incorporated. doi: 10.1007/978-3-642-14846-0 (cit. on p. 46).

Kamp, Hans (1981). “Référence Temporelle et Représentation Du Discours”. In: Language
64, pp. 39–64 (cit. on p. 116).

Kamp, Hans (1988). “Discourse Representation Theory: What it is and where it ought
to go”. In: Natural Language and the Computer. Ed. by A. Bläser. Berlin: Springer,
pp. 84–111 (cit. on pp. 17, 116, 321).

Kamp, Hans and Uwe Reyle (1993). From Discourse to Logic: Introduction to Model-
theoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory.
Vol. 42. Studies in Linguistics and Philosophy. Dordrecht: Springer Netherlands. doi:
10.1007/978-94-017-1616-1 (cit. on pp. 107, 116).

Kamp, Hans, Josef van Genabith, and Uwe Reyle (2011). Discourse Representation Theory.
doi: 10.1007/978-94-007-0485-5_3 (cit. on pp. 17, 116).

Kanazawa, Makoto (2006). “Abstract Families of Abstract Categorial Languages”. In:
vol. 165. Proceedings of the 13th Workshop on Logic, Language, Information and
Computation (WoLLIC 2006) Logic, Language, Information and Computation 2006,
pp. 65–80. url: http://research.nii.ac.jp/~kanazawa/publications/afacl.pdf
(cit. on p. 77).

Kanazawa, Makoto (2007). “Parsing and Generation as Datalog Queries”. In: Proceedings
of the 45th Annual Meeting of the Association of Computational Linguistics (ACL). Prague,
Czech Republic: Association for Computational Linguistics, pp. 176–183. acl: P07-
1023. url: http://www.aclweb.org/anthology/P07-1023 (cit. on pp. 5, 11, 53, 77,
79, 80, 82, 85, 197, 209, 219, 225, 236, 325).

Kanazawa, Makoto (2015). “Syntactic Features for Regular Constraints and an
Approximation of Directional Slashes in Abstract Categorial Grammars”. In:
Proceedings for ESSLLI 2015 Workshop ‘Empirical Advances in Categorial Gram-
mars’. Ed. by Yusuke Kubota and Robert Levine, pp. 34–70. url: http :

//research.nii.ac.jp/~kanazawa/publications/approx_proc.pdf (cit. on p. 198).

371

http://dx.doi.org/10.1016/S0022-0000(75)80019-5
http://dx.doi.org/10.1007/978-3-642-59126-6_2
http://www.cis.upenn.edu/~joshi/joshi-schabes-tag-97.pdf
http://dx.doi.org/10.1007/978-1-4020-5958-2_11
http://dx.doi.org/10.1007/978-3-642-14846-0
http://dx.doi.org/10.1007/978-94-017-1616-1
http://dx.doi.org/10.1007/978-94-007-0485-5_3
http://research.nii.ac.jp/~kanazawa/publications/afacl.pdf
P07-1023
P07-1023
http://www.aclweb.org/anthology/P07-1023
http://research.nii.ac.jp/~kanazawa/publications/approx_proc.pdf
http://research.nii.ac.jp/~kanazawa/publications/approx_proc.pdf

BIBLIOGRAPHY

Kanazawa, Makoto and Ryo Yoshinaka (2005). Lexicalization of second-order ACGs. Tech-
nical Report NII-2005-012E. Tokyo, Japan: National Institute of Informatics, pp. 1–
18. url: http://www.nii.ac.jp/TechReports/public_html/05-012E.pdf (cit. on
pp. 77, 78).

Ker, Andrew D. (2009). “Lambda Calculus, University of Oxford”. url:
http : //www.cs.ox.ac.uk/andrew.ker/docs/lambdacalculus - lecture - notes -

ht2009.pdf (cit. on p. 182).
Kobele, Gregory M. (2012). “Idioms and extended transducers”. In: Proceedings of the 11th

International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+11).
Paris, France, pp. 153–161 (cit. on pp. 207, 259).

Kreinovich, Vladik et al. (1998). Computational complexity and feasibility of data processing
and interval computations. Vol. 10. Applied optimization. Dordrecht, Boston: Kluwer
Academic Publishers (cit. on p. 26).

Kruij�, Geert-jan M. (2001). A Categorial-Modal Architecture of Informativity. PhD thesis,
Charles University, Prague (cit. on p. 308).

Lambek, Joachim (1958). “The Mathematics of Sentence Structure”. In: Americal Mathe-
matical Monthly 65, pp. 154–170. doi: 10.2307/2271418 (cit. on pp. 26, 52, 308).

Lascarides, Alex and Nicholas Asher (2007). “Segmented Discourse Representation
Theory: Dynamic Semantics with Discourse Structure”. In: Computing Meaning:
Volume 3. Ed. by Harry Bunt and Reinhard Muskens. Kluwer Academic Publishers,
pp. 87–124. url: http://homepages.inf.ed.ac.uk/alex/papers/iwcs4.pdf (cit. on
pp. 109, 116).

Maletti, Andreas and Joost Engelfriet (2012). “Strong Lexicalization of Tree Adjoining
Grammars”. In: Proceedings of the 50th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Jeju Island, Korea: Association for Computa-
tional Linguistics, pp. 506–515. url: http://www.aclweb.org/anthology/P12-1053
(cit. on p. 78).

Mann, William C. and Sandra A. Thompson (1986). “Assertions from Discourse
Structure”. In: Strategic Computing - Natural Language Workshop: Proceedings of a
Workshop Held at Marina del Rey, California, May 1-2, 1986, pp. 257–270. url:
http://www.aclweb.org/anthology/H86-1024 (cit. on pp. 16, 98).

Mann, William C. and Sandra A. Thompson (1987). Rhetorical Structure Theory: A Theory
of Text Organization. Tech. rep. ISI/RS-87-190. Information Sciences Institute (cit. on
pp. 16, 17, 97).

Mann, William C. and Sandra A. Thompson (1988). “Rhetorical Structure Theory:
Toward a functional theory of text organization”. In: Text 8.3, pp. 243–281. url: http:
//semanticsarchive.net/Archive/GMyNDBjO/RST%20towards%20a%20functional%

20theory%20of%20text%20organization.pdf (cit. on pp. 97, 100, 101).
Marcu, Daniel (1997). “The Rhetorical Parsing, Summarization, and Generation of

Natural Language Texts”. Ph.D. dissertation. Department of Computer Science. url:
https://tspace.library.utoronto.ca/bitstream/1807/12342/1/NQ35238.pdf (cit.
on pp. 16, 97, 102, 103, 104, 105, 106).

Marcu, Daniel (2000). The Theory and Practice of Discourse Parsing and Summarization.
Cambridge, MA, USA: MIT Press (cit. on pp. 102, 104, 106).

372

http://www.nii.ac.jp/TechReports/public_html/05-012E.pdf
http://www.cs.ox.ac.uk/andrew.ker/docs/lambdacalculus-lecture-notes-ht2009.pdf
http://www.cs.ox.ac.uk/andrew.ker/docs/lambdacalculus-lecture-notes-ht2009.pdf
http://dx.doi.org/10.2307/2271418
http://homepages.inf.ed.ac.uk/alex/papers/iwcs4.pdf
http://www.aclweb.org/anthology/P12-1053
http://www.aclweb.org/anthology/H86-1024
http://semanticsarchive.net/Archive/GMyNDBjO/RST%20towards%20a%20functional%20theory%20of%20text%20organization.pdf
http://semanticsarchive.net/Archive/GMyNDBjO/RST%20towards%20a%20functional%20theory%20of%20text%20organization.pdf
http://semanticsarchive.net/Archive/GMyNDBjO/RST%20towards%20a%20functional%20theory%20of%20text%20organization.pdf
https://tspace.library.utoronto.ca/bitstream/1807/12342/1/NQ35238.pdf

BIBLIOGRAPHY

McKeown, Kathleen R. (1992). Text generation - using discourse strategies and focus constraints
to generate natural language text. Studies in natural language processing. Cambridge
University Press, pp. I–X, 1–246 (cit. on p. 18).

Meunier, Frédéric (1997). “Implantation du formalisme de génération G-TAG”. PhD
thesis. Université Paris 7 — Denis Diderot (cit. on p. 153).

Michaelis, Jens (2001). “Transforming Linear Context-Free Rewriting Systems into
Minimalist Grammars”. English. In: Logical Aspects of Computational Linguistics. Ed. by
Philippe de Groote, Glyn Morrill, and Christian Retoré. Vol. 2099. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pp. 228–244. doi: 10.1007/3-540-
48199-0_14 (cit. on p. 53).

Miltsakaki, E. et al. (2004). “Annotating Discourse Connectives and Their Arguments”.
In: HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation. Ed. by A. Meyers.
Boston, Massachusetts, USA: Association for Computational Linguistics, pp. 9–16.
url: http://www.aclweb.org/anthology/W04-2703 (cit. on p. 89).

Montague, Richard (1970a). “English as a Formal Language”. In: Linguaggi Nella Società
e Nella Tecnica. Ed. by B. Visentini. Edizioni di Communita, pp. 188–221 (cit. on
p. 52).

Montague, Richard (1970b). “Universal Grammar”. In: Theoria 36.3, pp. 373–398 (cit. on
p. 52).

Montague, Richard (1973). “The Proper Treatment of Quantification in Ordinary
English”. In: Formal Philosophy: Selected Papers of Richard Montague. Ed. by Richmond
Thomason. New Haven, CT: Yale University Press, pp. 247–270 (cit. on pp. 3, 17,
52, 53, 80, 81, 82, 219, 289).

Moortgat, Michael (1997). “Categorial Type Logics”. In: Handbook of Logic and Language.
Elsevier, pp. 93–177 (cit. on p. 52).

Morrill, G.V. (1994). Type Logical Grammar. 3Island Press (cit. on p. 52).
Muskens, Reinhard (2001). “Lambda-Grammars and the Syntax-Semantics Interface”.

English. In: Proceedings of the Thirteenth Amsterdam Colloquium. Ed. by R. van Rooy
and M. Stokhof. Amsterdam, pp. 150–155 (cit. on p. 52).

Nakatsu, Crytal and Michael White (2010). “Generating with Discourse Combinatory Cat-
egorial Grammar”. In: Linguistic Issues in Language Technology 4.1, pp. 1–64. url: http:
//journals.linguisticsociety.org/elanguage/lilt/article/view/1277.html

(cit. on pp. 307, 308, 309, 311, 312, 313).
Nesson, Rebecca, Giorgio Satta, and Stuart M. Shieber (2010). “Complexity, Parsing, and

Factorization of Tree-local Multi-component Tree-adjoining Grammar”. In: Comput.
Linguist. 36.3, pp. 443–480. doi: 10.1162/coli_a_00005 (cit. on p. 47).

Nicholas, Nick (1994). “Problems in the application of Rhetorical Structure Theory to
text generation”. MA thesis. Australia: University of Melbourne (cit. on p. 97).

Nijholt, Anton (1980). Context-Free Grammars: Covers, Normal Forms, and Parsing. Vol. 93.
Lecture Notes in Computer Science. Berlin, Germany: Springer Verlag. url: http:
//doc.utwente.nl/66928/ (cit. on p. 33).

Oehrle, Dick (1995). “Some 3-Dimensional Systems of Labelled Deduction”. In: Logic
Journal of IGPL 3.2-3, pp. 429–448. doi: 10.1093/jigpal/3.2-3.429 (cit. on p. 52).

Oehrle, Richard T. (1988). “Multi-Dimensional Compositional Functions as a Basis
for Grammatical Analysis”. English. In: Categorial Grammars and Natural Language

373

http://dx.doi.org/10.1007/3-540-48199-0_14
http://dx.doi.org/10.1007/3-540-48199-0_14
http://www.aclweb.org/anthology/W04-2703
http://journals.linguisticsociety.org/elanguage/lilt/article/view/1277.html
http://journals.linguisticsociety.org/elanguage/lilt/article/view/1277.html
http://dx.doi.org/10.1162/coli_a_00005
http://doc.utwente.nl/66928/
http://doc.utwente.nl/66928/
http://dx.doi.org/10.1093/jigpal/3.2-3.429

BIBLIOGRAPHY

Structures. Ed. by Richard T. Oehrle, Emmon Bach, and Deirdre Wheeler. Vol. 32.
Studies in Linguistics and Philosophy. Springer Netherlands, pp. 349–389. doi:
10.1007/978-94-015-6878-4_13 (cit. on p. 52).

Oehrle, Richard T. (1994). “Term-labeled categorial type systems”. English. In: Linguistics
and Philosophy 17.6, pp. 633–678. doi: 10.1007/BF00985321 (cit. on p. 52).

Pogodalla, Sylvain (2004). “Computing Semantic Representation: Towards ACG Abstract
Terms as Derivation Trees”. In: Seventh International Workshop on Tree Adjoining Gram-
mar and Related Formalisms - TAG+7, pp. 64–71. url: http://hal.inria.fr/inria-
00107768 (cit. on pp. 5, 53, 80, 323).

Pogodalla, Sylvain (2009). “Advances in Abstract Categorial Grammars: Language
Theory and Linguistic Modeling. ESSLLI 2009 Lecture Notes, Part II”. url: http:
//hal.inria.fr/hal-00749297 (cit. on pp. 5, 53, 80, 85, 196, 216, 219, 251).

Polanyi, Livia (1985). “A theory of discourse structure and discourse coherence”. In:
Papers from the General Session at the 21st Regional Meeting of the Chicago Linguistics
Society. Ed. by P. D. Kroeber, W. H. Eilfort, and K. L. Peterson (cit. on p. 112).

Pompigne, Florent (2013). “Logical modelization of language and Abstract Catego-
rial Grammars”. Theses. Université de Lorraine. url: https://tel.archives-

ouvertes.fr/tel-00921040 (cit. on pp. 198, 201).
Prasad, Rashmi et al. (2008). “The Penn Discourse TreeBank 2.0.” In: LREC. European

Language Resources Association (cit. on pp. 88, 89).
Prévot, Laurent and L. Vieu (2008). “The moving right frontier”. In: PRAGMATICS AND

BEYOND NEW SERIES. Vol. 172. Amsterdam, p. 53. url: https://hal.archives-
ouvertes.fr/hal-01231937 (cit. on p. 109).

Ranta, Aarne (1994). Type-theoretical Grammar. Indices (Claredon). Clarendon Press
(cit. on p. 52).

Salvati, Sylvain (2005). “Problèmes de filtrage et problèmes d’analyse pour les grammaires
catógorielles abstraites”. PhD thesis. Institut National Polytechnique de Lorraine.
url: http://www.labri.fr/perso/salvati/downloads/articles/these.pdf (cit. on
pp. 5, 53, 77, 78, 79, 325).

Salvati, Sylvain (2010). “The Mathematics of Language: 10th and 11th Biennial Confer-
ence, MOL 10, Los Angeles, CA, USA, July 28-30, 2007, and MOL 11, Bielefeld,
Germany, August 20-21, 2009, Revised Selected Papers”. In: ed. by Christian Ebert,
Gerhard Jäger, and Jens Michaelis. Berlin, Heidelberg: Springer Berlin Heidelberg.
Chap. A Note on the Complexity of Abstract Categorial Grammars, pp. 266–271.
doi: 10.1007/978-3-642-14322-9_20 (cit. on p. 79).

Schabes, Yves, Anne Abeillé, and Aravind K. Joshi (1988). “Parsing Strategies with ’Lex-
icalized’ Grammars: Application to Tree Adjoining Grammars”. In: Coling Budapest
1988 Volume 2: International Conference on Computational Linguistics, pp. 578–583. url:
http://www.aclweb.org/anthology/C88-2121 (cit. on pp. 43, 44).

Schabes, Yves and Aravind K. Joshi (1988). “An Earley-type Parsing Algorithm for Tree
Adjoining Grammars”. In: Proceedings of the 26th Annual Meeting on Association for
Computational Linguistics. ACL ’88. Bu�alo, New York: Association for Computational
Linguistics, pp. 258–269. doi: 10.3115/982023.982055 (cit. on pp. 37, 43).

Schabes, Yves and Aravind K. Joshi (1991). “Current Issues in Parsing Technology”. In:
ed. by Masaru Tomita. Boston, MA: Springer US. Chap. Parsing with Lexicalized

374

http://dx.doi.org/10.1007/978-94-015-6878-4_13
http://dx.doi.org/10.1007/BF00985321
http://hal.inria.fr/inria-00107768
http://hal.inria.fr/inria-00107768
http://hal.inria.fr/hal-00749297
http://hal.inria.fr/hal-00749297
https://tel.archives-ouvertes.fr/tel-00921040
https://tel.archives-ouvertes.fr/tel-00921040
https://hal.archives-ouvertes.fr/hal-01231937
https://hal.archives-ouvertes.fr/hal-01231937
http://www.labri.fr/perso/salvati/downloads/articles/these.pdf
http://dx.doi.org/10.1007/978-3-642-14322-9_20
http://www.aclweb.org/anthology/C88-2121
http://dx.doi.org/10.3115/982023.982055

BIBLIOGRAPHY

Tree Adjoining Grammar, pp. 25–47. doi: 10.1007/978-1-4615-3986-5_3 (cit. on
p. 43).

Schabes, Yves and Stuart M. Shieber (1994). “An Alternative Conception of Tree-
Adjoining Derivation”. In: Computational Linguistics 20.1, pp. 91–124. acl: J94-1004.
url: http://www.aclweb.org/anthology/J94-1004 (cit. on p. 60).

Schlenker, Philippe (2011). “DRT with local contexts”. English. In: Natural Language
Semantics 19.4, pp. 373–392. doi: 10.1007/s11050-011-9069-7 (cit. on p. 21).

Shieber, Stuart M. (1985). “Evidence against the context-freeness of natural language”.
English. In: Linguistics and Philosophy 8.3, pp. 333–343. doi: 10.1007/BF00630917
(cit. on pp. 26, 37).

Shieber, Stuart M. (1994). “Restricting the Weak-Generative Capacity of Synchronous
Tree-Adjoining Grammars”. In: Computational Intelligence 10.4, pp. 371–385. doi:
10.1111/j.1467-8640.1994.tb00003.x (cit. on p. 49).

Shieber, Stuart M. and Yves Schabes (1990). “Synchronous Tree-Adjoining Grammars”.
In: COLNG 1990 Volume 3: Papers presented to the 13th International Conference on
Computational Linguistics, pp. 253–258. url: http://www.aclweb.org/anthology/C90-
3045 (cit. on pp. 2, 47, 174, 176, 250).

Soricut, Radu and Daniel Marcu (2003). “Sentence Level Discourse Parsing using
Syntactic and Lexical Information”. In: Proceedings of the 2003 Human Language
Technology Conference of the North American Chapter of the Association for Computational
Linguistics. url: http://www.aclweb.org/anthology/N03-1030 (cit. on p. 95).

Steedman, Mark (1987). “Combinatory grammars and parasitic gaps”. English. In:
Natural Language & Linguistic Theory 5.3, pp. 403–439. doi: 10.1007/BF00134555
(cit. on p. 308).

Steedman, Mark (2000). “Information Structure and the Syntax-Phonology Interface”.
In: Linguistic Inquiry 31.4, pp. 649–689 (cit. on p. 137).

Vijay-Shanker, K., David J. Weir, and Aravind K. Joshi (1987). “Characterizing Struc-
tural Descriptions Produced by Various Grammatical Formalisms”. In: Proceedings
of the 25th Annual Meeting on Association for Computational Linguistics. ACL ’87.
Stanford, California: Association for Computational Linguistics, pp. 104–111. doi:
10.3115/981175.981190 (cit. on pp. 46, 235).

Webber, Bonnie Lynn (2004). “D-LTAG: extending lexicalized TAG to discourse”.
In: Cognitive Science 28.5. 2003 Rumelhart Prize Special Issue Honoring Ar-
avind K. Joshi, pp. 751–779. doi: 10.1207/s15516709cog2805 _ 6. url: http :

//homepages.inf.ed.ac.uk/bonnie/cogsci28bw.pdf (cit. on pp. 44, 89, 90, 131,
134, 135, 307).

Webber, Bonnie Lynn and Aravind K. Joshi (1998). “Anchoring a Lexicalized Tree-
Adjoining Grammar for Discourse”. In: Discourse Relations and Discourse Markers,
pp. 86–92. url: http://www.aclweb.org/anthology/W98-0315 (cit. on pp. 89, 90,
131).

Webber, Bonnie, Marcus Egg, and Evangelia Kordoni (2012). “Discourse structure and
language technology”. In: Natural Language Engineering 18 (04), pp. 437–490. doi:
10.1017/S1351324911000337 (cit. on p. 92).

Webber, Bonnie and Rashmi Prasad (2009). “Discourse Structure: Swings and Round-
abouts”. In: Linguistics, Special issue on Structuring Information in Discourse: the Ex-

375

http://dx.doi.org/10.1007/978-1-4615-3986-5_3
J94-1004
http://www.aclweb.org/anthology/J94-1004
http://dx.doi.org/10.1007/s11050-011-9069-7
http://dx.doi.org/10.1007/BF00630917
http://dx.doi.org/10.1111/j.1467-8640.1994.tb00003.x
http://www.aclweb.org/anthology/C90-3045
http://www.aclweb.org/anthology/C90-3045
http://www.aclweb.org/anthology/N03-1030
http://dx.doi.org/10.1007/BF00134555
http://dx.doi.org/10.3115/981175.981190
http://dx.doi.org/10.1207/s15516709cog2805_6
http://homepages.inf.ed.ac.uk/bonnie/cogsci28bw.pdf
http://homepages.inf.ed.ac.uk/bonnie/cogsci28bw.pdf
http://www.aclweb.org/anthology/W98-0315
http://dx.doi.org/10.1017/S1351324911000337

BIBLIOGRAPHY

plicit/Implicit Dimension. Ed. by Cathrine Fabricius-Hansen and Bergljot Behrens. url:
http://folk.uio.no/larsbun/osla-1-1.pdf (cit. on pp. 88, 91).

Webber, Bonnie et al. (1999). “Discourse Relations: A Structural and Presuppositional
Account Using Lexicalised TAG”. In: Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics. College Park, Maryland, USA: Association for
Computational Linguistics, pp. 41–48. url: http://www.aclweb.org/anthology/P99-
1006 (cit. on pp. 89, 131).

Webber, Bonnie et al. (2003). “Anaphora and Discourse Structure”. In: Computational
Linguistics 29.4, pp. 545–587. doi: 10.1162/089120103322753347 (cit. on pp. 16, 89,
90, 91, 131, 146, 148, 151, 307).

Weir, David Jeremy (1988). “Characterizing Mildly Context-Sensitive Grammar For-
malisms”. Supervisor: Aravind K. Joshi. PhD thesis. Philadelphia, PA, USA (cit. on
pp. 46, 53).

Wellner, Ben and James Pustejovsky (2007). “Automatically Identifying the Arguments
of Discourse Connectives”. In: Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL). Prague, Czech Republic: Association for Computational Linguistics,
pp. 92–101. url: http://www.aclweb.org/anthology/D07-1010 (cit. on p. 95).

Wolf, Florian and Edward Gibson (2004). “Representing discourse coherence: A corpus-
based analysis”. In: Proceedings of Coling 2004. Geneva, Switzerland: COLING, pp. 134–
140. url: http://www.aclweb.org/anthology/C04-1020 (cit. on p. 17).

XTAG-Group (1998). A Lexicalized Tree Adjoining Grammar for English. Tech. rep. Uni-
versity of Pennsylvania. url: http://arxiv.org/abs/cs.CL/9809024 (cit. on pp. 39,
73, 199, 234).

Yoshinaka, Ryo (2006). “Extensions and Restrictions of Abstract Categorial Grammars”.
PhD thesis. Tokyo, Japan: University of Tokyo. url: http://www.iip.ist.i.kyoto-
u.ac.jp/member/ry/PhD_Yoshinaka.pdf (cit. on pp. 77, 78, 79).

376

http://folk.uio.no/larsbun/osla-1-1.pdf
http://www.aclweb.org/anthology/P99-1006
http://www.aclweb.org/anthology/P99-1006
http://dx.doi.org/10.1162/089120103322753347
http://www.aclweb.org/anthology/D07-1010
http://www.aclweb.org/anthology/C04-1020
http://arxiv.org/abs/cs.CL/9809024
http://www.iip.ist.i.kyoto-u.ac.jp/member/ry/PhD_Yoshinaka.pdf
http://www.iip.ist.i.kyoto-u.ac.jp/member/ry/PhD_Yoshinaka.pdf

	Résumé
	Abstract
	Remerciements
	List of Tables
	List of Figures
	Introduction générale
	Le panorama
	Introduction
	Grammaires Formelles
	Grammaires Catégorielles Abstraites
	Formalismes Discursifs
	G-TAG
	D-STAG
	Le problèmes des connecteurs médiaux

	G-TAG comme ACGs
	Chapter 7 - Clause-Medial Connectives
	D-STAG comme ACGs
	Conclusion

	I Introduction
	Introduction
	Discourse Coherence, Structure, and Interpretation
	Discourse Processing
	Discourse Parsing
	Discourse Generation

	An Example of a Text Generation System
	The Problems Considered in the Present Work
	The Road Map of the Thesis
	Formal Grammars
	Overview
	Preliminary Notions
	Phrase Structure Grammars
	The Chomsky Hierarchy of Grammars
	Context-Free Grammars
	Regular Tree Grammars
	Mildly-Context Sensitivity

	Tree-Adjoining Grammars
	Basic Notions and Properties
	LTAG - Lexicalized TAG

	Synchronous Tree Adjoining Grammar
	Abstract Categorial Grammars
	Introduction
	Mathematical Preliminaries
	Strings and Trees as o-terms
	Strings
	Trees

	Adjunction and Substitution as Functional Application
	Substitution as Functional Application
	Adjunction as Functional Application

	Abstract Categorial Grammars
	An Example of an ACG
	ACGs with the Same Abstract Language
	Composition of ACGs
	CFGs as ACGs
	General Principles
	An Exemplifying Encoding
	General Case
	TAGs as ACGs
	General Principles
	An Exemplifying Encoding
	TAG Derivation Trees as Abstract Terms
	Derived Trees as Object Terms
	Interpretations as Derived Trees
	Yields as Object Terms

	General Case
	The ACG Encoding of an Exemplifying LTAG for a Fragment of English

	The ACG Hierarchy of Languages
	Second-Order ACGs
	String Languages
	Tree Languages

	ACGs of Order n3
	Second-Order Almost-Linear ACGs (-CFGs)
	TAG with Montague Semantics as ACGs
	Montague Semantics as Object Terms
	Interpretations as Montague Semantics
	Discourse Theories
	Linguistic Aspects of Discourse Connectives
	Arg1
	Arg2
	Attitude Verbs
	Clause-medial Adverbials

	Constraints for Identifying Arguments of a Discourse Connective

	Rhetorical Structure Theory
	Basic Principles
	Schemas
	A Formalization of RST
	RST Structures as Trees
	An Extension of RST
	Extended Relations
	Nondeterminism

	Segmented Discourse Representation Theory
	Basic Principles of SDRT
	Discourse Coherence
	The Right Frontier Constraint

	The Logical Form of Discourse
	The Logical Form of Clauses
	Discourse Representation
	DRT
	The DRS Syntax
	Dynamic Semantics of DRSs

	The SDRS Language
	Availability
	Dynamic Semantics of SDRSs

	Discourse Grammar Formalisms
	D-LTAG
	D-LTAG Elementary Trees
	Structural Connectives
	Initial Trees
	Auxiliary Trees
	Anaphoric Connectives

	Discourse Parsing with D-LTAG
	Computing Discourse Semantics
	Subordinate Conjunctions
	Coordinate Conjunctions
	Interaction between Subordinate and Coordinate Conjunctions
	Adverbial Connectives
	Computing Semantics of a Discourse with a Parasitic Connective
	The Interpretation of a Parasitic Adverbial Connective
	D-LTAG and Hole Semantics
	Computing Interpretation of a Discourse with a Parasitic Adverbial

	Discourse Structure

	G-TAG
	Architecture
	Grammatical Step
	Post Processing Step

	Conceptual Representation Language
	LOGIN
	The Language of G-TAG
	Conceptual Representation Inputs as Trees

	Lexical Databases
	Lexical Entries
	Morpho-Syntactic Realizations of a Lexical Entry

	G-derivation and G-derived Trees
	Discourse Grammar
	Adverbials
	Subordinate Conjunctions
	Canonical
	Reduced

	An Example of Text Generation

	D-STAG
	Discourse Normalized Form
	D-STAG: Synchronous Tree Adjoining Grammar for Discourse
	Trees Anchored by Clauses
	Adverbial Connectives and Postposed Conjunctions

	The D-STAG Discourse Update and the Right Frontier of a Discourse
	Semantic Interpretation
	D-STAG Semantic Trees Encoding -terms
	Two Kinds of Semantic Trees Anchoring Discourse Relations

	Parsing Ambiguity
	D-STAG Examples
	Preposed Conjunctions
	Modifiers of Discourse Connectives in D-STAG

	II Thesis Contributions
	G-TAG as ACGs
	Motivations
	The ACG Architecture for G-TAG
	G-derivation Trees as Abstract Terms
	Types
	Constants
	Discourse Connectives
	Adverbials
	Subordinate Conjunctions

	Introducing First Order Predicates in the Abstract Vocabulary
	A Clause Missing a Subject - Sws
	Reduced (Infinitive) Clauses - Sinf

	Declaring the Abstract Signature GTAG and the Abstract Language

	Interpretations as TAG Derivation Trees
	Interpretations of Types
	Interpretations of Constants
	Adverbials
	Conjunctions
	The Canonical Conjunction
	The Reduced Conjunction

	First Order Predicates
	A Reduced (Infinitive) Clause
	A Clause Missing a Subject

	Interpretations as Conceptual Representations
	Encoding Conceptual Representations
	Interpretations of Types
	Interpretations of Constants
	Adverbials
	Conjunctions
	Canonical Conjunctions
	Reduced Conjunctions

	Reduced (Infinitive) Clauses and Clauses Missing Subjects

	Parsing and Generation Using the ACG encoding of G-TAG
	Encoding Clause-Medial Connectives
	Encoding Clause-Medial Connectives
	A New Analysis of Clause-Medial Connectives
	Encoding Clause-medial Connectives in the Abstract Vocabulary

	Interpretations of G-derivation Trees as TAG Derivation Trees
	A Modular Interpretation of GTAG to TAG Derivation Trees
	The Lexicon from GTAG to g-der
	Interpretations of Types
	Interpretations of Constants
	Conjunctions
	First Order Predicates

	The Lexicon from g-der to TAGDer
	Interpretations of Types
	Interpretations of Constants
	Clause-medial Adverbials
	Subordinate Conjunctions
	First Order Predicates

	D-STAG as ACGs
	Motivations
	The ACG Architecture of D-STAG
	D-STAG Derivation Trees as Abstract Terms
	Interpretations as TAG Derivation Trees
	Connectives at the Clause-Medial & the Clause-Initial Positions
	Clause-Initial and Clause-Medial Connectives as Adjunctions
	A Clause-Medial Connective Between Two Adverbs
	Interpretations of Types
	Interpretations of Constants
	Discourse Connectives
	First Order Predicates

	Interpretations of Newly Introduced Constants TAGDer as Derived Trees
	The Examples of Deriving D-STAG Syntactic Trees
	Encoding D-STAG Semantic Trees
	Extending the Abstract Vocabulary DSTAGDer
	The Signature DSTAGsem
	Interpretations of Types
	Interpretations of Constants
	Discourse Connectives
	First Order Predicates

	The Examples of Semantic Interpretations
	Interpretation as Labeled Formulas
	A Signature LABELsem For Encoding Labeled Semantic Representations
	Interpretations as Types and Terms Built Upon LABELsem
	Interpretations of Types
	Interpretations of Constants
	Discourse Connectives
	First Order Predicates

	Examples of Labeled Interpretations

	Preposed Conjunctions
	Interpretation as TAG Derivation, and TAG Derived Trees
	Interpretation as D-STAG Semantic Trees
	Modifiers of Discourse Connectives
	Interpretations as TAG Derivation Trees
	Interpretation as D-STAG Semantic Trees

	Related Work and Conclusive Remarks
	Related Work
	Questions
	Paired Connectives and Nested Relations
	Asymmetry of Clause-medial Connectives
	Multiple Connectives within a Clause
	Answers
	Paired Connectives and Nested Relations
	Asymmetry of Clause-medial Connectives
	Multiple Connectives within a Clause
	Anaphora Resolution and Referring Expression Generation
	Conclusion
	TAG as ACG codes
	TAG as ACGs: Signatures and Lexicons

	G-TAG as ACG codes
	Examples
	An Example of Generation
	GTAG as ACG: Signatures and Lexicons

	Encoding Clause-Medial Connectives
	Examples
	ACG Signatures and Lexicons: Clause-Medial Connectives

	D-STAG as ACG codes
	D-STAG Syntax, Semantics, Postposed & Preposed Connectives, Modifiers of Discourse
	Examples
	ACG Signatures and Lexicons: Syntax and Unlabeled Semantics
	The ACG Signatures and Lexicons for D-STAG as ACG - Labeled Semantics
	Examples
	ACG Signatures and Lexicons for Interpreting D-STAG derivation trees into Labeled Semantics

	Related Work and Conclusive Remarks
	Bibliography

