Université des Sciences et Technologies de Lille 1 Ecole doctorale Sciences de la Matière, du Rayonnement et de l'Environnement

> Université de Carthage Institut National Agronomique de Tunisie

Thèse en cotutelle

Pour obtenir le grade de

Docteur

Etude du lien entre la physico-chimie de dérivés laitiers et leur aptitude à l'encrassement lors du traitement thermomécanique en échangeur de chaleur

présentée par Marwa Khaldi

Soutenue le 24/05/2016 à Polytech Lille

M. Thierry Ruiz, Maître de conférences à l'Université de Montpellier

- M. Luc Fillaudeau, Directeur de recherche à l'Université de Toulouse
- M. Hamadi Attia, Professeur à l'Ecole Nationale d'Ingénieurs de Sfax
- M. Mohamed Ali Ayadi, Professeur à l'Institut Supérieur de Biotechnologie de Sfax
- M. Guillaume Delaplace, Directeur de recherche à l'INRA de Lille PIHM UMET
- Mme Salwa Bornaz, Professeure à l'Ecole Supérieure des Industries Alimentaires de Tunis
- M. Romain Jeantet, Professeur à Agrocampus Ouest
- M. Thomas Croguennec, Professeur à Agrocampus Ouest
- M. Christophe André, Enseignant-chercheur à HEI
- M. Pascal Blanpain-Avet, Chargé de recherche à l'INRA de Lille PIHM UMET
- M. Didier Beudon, Directeur de recherche à Savencia

Président du jury Rapporteur Rapporteur Examinateur Directeur de thèse Directrice de thèse Invité/co-directeur de thèse Invité/co-encadrant Invité/co-encadrant Invité/co-encadrant Invité/co-encadrant Invité/co-encadrant

" Tout obstacle renforce la détermination. Celui qui s'est fixé un but n'en change pas "

Léonard de Vinci

REMERCIEMENTS

Je souhaite tout d'abord remercier le Maître de conférences Thierry Ruitz pour avoir présidé le jury lors de ma soutenance de thèse. Je tiens également à remercier le Directeur de recherche Luc Fillaudeau et le Professeur Hamadi Attia qui m'ont fait le grand honneur de rapporter cette thèse ainsi que le Professeur Mohamed Ali Ayadi pour avoir accepté d'examiner ce travail.

Je souhaite exprimer ma profonde gratitude à Guillaume Delaplace, Directeur de Recherche à l'INRA de Lille - PIHM UMET, sans qui ce travail de thèse n'aurait jamais eu lieu. J'ai eu beaucoup de plaisir à travailler avec lui. Je ne le remercierai jamais assez pour m'avoir enseigné son goût du perfectionnisme et son professionnalisme sans faille. Ses conseils avisés et ses critiques constructives m'ont particulièrement été bénéfiques dans la conduite et l'aboutissement de ce travail. Qu'il trouve ici l'expression de toute ma reconnaissance pour son soutien indéfectible et sa disponibilité dans les moments de doute.

Je tiens à adresser mes remerciements à Salwa Bornaz, Professeure à l'ESIAT, pour avoir accepté de co-diriger cette thèse.

Ma reconnaissance va aussi à Romain Jeantet, Professeur à Agrocampus Ouest et co-directeur de thèse, pour l'attention portée à mon travail et le temps qu'il m'a consacré. Ses commentaires pertinents, constructifs et son aide inestimable m'ont permis d'améliorer la qualité de ce manuscrit et des publications.

Je remercie infiniment Thomas Croguennec, Professeur à Agrocampus Ouest, Christophe André, Enseignant-chercheur à HEI, Pascal Blanpain-Avet, Chargé de recherche à l'INRA de Lille - PIHM UMET et Laurent Bouvier, Ingénieur d'études à l'INRA de Lille - PIHM UMET, pour leur participation active et leur implication dans le co-encadrement et le suivi de cette thèse. Leurs suggestions et connaissances éclairées ont permis d'enrichir cette thèse. Je leur suis reconnaissante pour leurs conseils autour de la physico-chimie des solutions laitières, des modèles cinétiques de dénaturation et de la simulation des profils de concentrations des différentes espèces protéiques. Leurs expériences ont été précieuses pour l'amélioration de la qualité finale de ce document de thèse et des publications. Je remercie vivement les membres de PIHM pour leur accueil chaleureux, leur extrême gentillesse, leur générosité inestimable et leurs précieux encouragements.

Je tiens à remercier tout particulièrement Gilles Ronse, Thierry Six et Anne Moreau, Techniciens à l'INRA de Lille - PIHM UMET, pour leur précieuse contribution aux essais d'encrassement sur pilote et de dénaturation thermique. Je remercie également Maude Jimenez, Maître de conférences à l'UMET, et Séverine Bellayer, Ingénieur de recherche à l'UMET, pour leur aide sur les essais de caractérisation de la composition et de la structure de dépôts. J'ai énormément apprécié la qualité humaine des personnes citées ci-dessus, leurs grandes compétences et leurs disponibilités. Cette thèse n'aurait jamais abouti sans leurs collaborations.

Mes vifs remerciements s'adressent aussi à Didier Beudon, Directeur de recherche à Savencia, et Nicolas Erabit, Ingénieur de recherche à Protarmor, pour leur appui et l'éclairage industriel apporté à cette thèse à travers leurs recommandations et leurs conseils.

Cette thèse a été pour moi une expérience scientifique, professionnelle et humaine formidable et très enrichissante. Que toutes les personnes qui ont participé, de près ou de loin, à ce travail trouvent ici une juste reconnaissance et l'expression de ma profonde gratitude.

Enfin, mes plus profonds remerciements vont à mes parents et mon frère Louka qui ont supporté mon stress et mes sautes d'humeur toujours avec tendresse et sourire et qui, malgré la distance, ont toujours été à mes côtés dans les bons comme les mauvais moments. Je leur dédie ce travail et espère être à la hauteur de leur fierté inconditionnelle.

"Soyons reconnaissants aux personnes qui nous donnent du bonheur ; elles sont les charmants jardiniers par qui nos âmes sont fleuries." Marcel Proust

RESUME

Ce travail de thèse est une contribution à la compréhension de l'encrassement des échangeurs de chaleur à plaques (ECP) lors du traitement thermique de solutions de protéines du lactosérum. Ce travail vise principalement à établir les liens existants entre la composition des différentes solutions de lactosérum (teneurs en β -lactoglobuline (β -lg) et en calcium), leurs comportements en dénaturation et leurs aptitudes à encrasser les surfaces chaudes de l'ECP.

Cette étude a montré la forte influence de la teneur en calcium et du ratio molaire calcium/protéine sur : (i) les mécanismes de dénaturation thermique de la β -lg, (ii) les distributions des masses de dépôt protéique collectées, (iii) la dynamique de formation de dépôt et (iv) la structure des premières couches de dépôt en surface.

Par ailleurs, la détermination des constantes cinétiques de dénaturation chaude de la β -lg et la connaissance de l'histoire thermique du produit ont permis de simuler les profils de concentrations des différentes espèces de β -lg (native, dépliée et agrégée) le long de l'ECP et d'étudier la corrélation entre la masse de dépôt sec et les quantités de β -lg dénaturées dans l'ECP. Ainsi, cette simulation a pu mettre en évidence : (i) le faible rôle des agrégats dans les mécanismes d'encrassement et (ii) à la fois l'influence de l'espèce dépliée et de la teneur en calcium dans la distribution du dépôt protéique.

Enfin, une corrélation originale entre la distribution de la masse de dépôt sec dans chaque canal de l'ECP et les paramètres cinétiques de dénaturation a été établie pour chaque solution protéique modèle étudiée, montrant ainsi l'impérieuse nécessité des approches de génie de la réaction chimique pour prédire l'encrassement protéique.

<u>Mots clés</u> : mécanismes d'encrassement de dérivés laitiers, échangeur de chaleur à plaques, calcium, β -lactoglobuline, dénaturation thermique, modélisation, analyse de la structure de dépôts.

Abstract

This Ph.D. work is a contribution for understanding the fouling in plate heat exchangers (PHE) during the heat treatment of whey protein solutions. This work aims at establishing the relationship between the composition of the different whey protein solutions (β -lactoglobulin content (β -lg) and calcium), their denaturation behaviour and their ability to foul the hot surfaces of the PHE.

This study showed the strong impact of the calcium content and the calcium/protein molar ratio on: (i) the β -lg thermal denaturation mechanisms, (ii) the distributions of the deposit fouling, iii) deposit formation dynamics and iv) the structure of the first deposit layers.

The determination of the β -lg denaturation kinetic constants and the knowledge of the thermal profile allowed to simulate the concentration profiles of the different β -lg species (native, unfolded and aggregated) along the PHE and to study the correlation between the dry deposit mass of and the amount of denatured β -lg in the PHE. This simulation highlighted: i) the negligible role of the aggregates in the fouling mechanisms and ii) both the influence of the unfolded species and the calcium content on the distribution of protein deposition.

Finally, a new correlation between the distribution of dry deposit masses in each channel of the PHE and the denaturation kinetic parameters was determined for each studied protein solution, showing thus that chemical reaction engineering approaches are requested for predicting proteinaceous fouling.

<u>Key words</u>: milk derivative fouling mechanisms, plate heat exchanger, calcium, β -lactoglobulin, heat-induced denaturation, modelling, structure deposit analyses.

ملخص

تهدف هذه الأطروحة إلى المساهمة في فهم بقايا المكونات التي تترسب على لوحات المبادلات الحرارية عند المعالجة الحرارية لسوائل بروتينات مصل الألبان.

ويرتكز هذا العمل على بيان العلاقة بين مكونات مختلف سوائل مصل الألبان (مستويات الكالسيوم و β - لكتو غلوبلين) وتفاعلاتها على تغيير طبيعتها وقدرتها على ترك بقايا المكونات على المساحات الساخنة للوحات المبادلات الحرارية. و قد أظهرت هذه الدراسة تأثير قوي لمحتوى الكالسيوم ونسبة الكالسيوم / البروتين على كل مجالات التغيير الحراري β -لكتو غلوبلين ، والتوزيع الجماعي للترسبات، وديناميكية تشكيل الترسبات و هيكلة الطبقات الأولى للترسب على هذه المساحة.

و علاوة على ذلك فإن تحديد الثوابت الحركية لتغير طبيعة المواد ومعرفة البيانات للوحات الحرارية مكنت من محاكاة تركز الأنواع المختلفة من β- لكتو غلوبلين على لوحات المبادلات الحرارية ودراسة العلاقة بين الترسب الجاف وكميات β-لكتو غلوبلين المتغيرة في لوحات المبادلات الحرارية.

وهكذا فإن هذه المحاكاة أبرزت ضعف دور التكتلات على آليات الترسبات والتأثيرات الرئيسية للأنواع غير المطوية والكالسيوم على توزيع ترسب البروتين.

وأخيرا أنشئ لكل سائل ، ارتباط بين توزيع كتلة الترسبات الجافة في كل قناة من لوحات المبادلات الحرارية ومعطيات التغيير ، والتي تبرز الحاجة الملحة لمقاربة هندسية للتفاعل الكيميائي لتوقع الترسبات.

الكلمات الرئيسية: آليات ترسب مشتقات الحليب ، لوحات المبادلات الحرارية ، كالسيوم ، β- لكتو غلوبلين ، التغيير الحراري ، تصميم ، هيكلة الطبقات الأولى للترسب.

Nomenclature

Α	constante définie par l'équation 2.2, -
а	paramètre ajustable de la régression non linéaire, -
b	paramètre ajustable de la régression non linéaire, -
C_A	concentration en β -lg agrégée, g.L ⁻¹
C_{Ca}	concentration en calcium, ppm
C_N	concentration en β -lg native, g.L ⁻¹
Cp_{ec}	chaleur massique de l'eau chaude, J.kg ⁻¹ .K ⁻¹
Cp_p	chaleurs massique du produit, J.kg ⁻¹ .K ⁻¹
C_{S}	concentration en β -lg soluble. g.L ⁻¹
C_{c}^{0}	concentration initiale en β -lg soluble, g.L ⁻¹
C_{U}	concentration en β -lg dépliée, g L ⁻¹
c c	paramètre ajustable de la régression non linéaire -
D_h	diamètre hydraulique entre 2 plaques de l'FCP m
D,	diamètre hydraulique de l'échangeur propre m
d_{h_0}	naramètre giustable de la régression non linégire
u F	espèce entre 2 plaques consécutives de l'ECP m
	épergie d'activation. I mol ⁻¹
E_{A_n}	inergie d'activation, J. 1611 ans et déterminée à martin de madèle de Tallach et
E A,unf	Kulozik (2007), J.mol ⁻¹
$E_{A,agg}$	énergie d'activation d'agrégation déterminée à partir du modèle de Tolkach et
/ 00	Kulozik (2007), J.mol ⁻¹
E_{A_1}	énergie d'activation de dépliement déterminé à partir du modèle de deux réactions
	successives, J.mol ⁻¹
E_{A_2}	énergie d'activation d'agrégation déterminé à partir du modèle de deux réactions
	successives, J.mol ⁻¹
е	espèce entre 2 plaques consécutives de l'ECP, m
e_d	épaisseur moyenne de la couche de dépôt, m
F_T	facteur correctif de la différence de température logarithmique moyenne, -
h_{ec}	coefficient de convection thermique de l'eau chaude, W.m ⁻² .K ⁻¹
h_p	coefficient de convection thermique de la solution protéique modèle, W.m ⁻² .K ⁻¹
kagg	constante cinétique d'agrégation déterminée à partir du modèle de Tolkach et
	Kulozik (2007), $g^{1-n}L^{n-1}s^{-1}$
ka	constante d'accumulation du dépôt définie par l'équation 2.4, -
<i>k</i> _n	constante cinétique de dénaturation, g ¹⁻ⁿ .L ⁿ⁻¹ .s ⁻¹
k_n°	facteur de fréquence de la réaction de dénaturation déterminé à partir du modèle de Tolkach et Kulozik (2007). $\alpha^{1-n} L^{n-1} s^{-1}$
\mathbf{k}°	factour de fréquence de dépliement déterminé à partir du modèle de Tolkach et
κ _{unf}	Tactedi de frequence de deprement determine à partir du modère de Torkach et $V_{r-1} = \frac{1}{2} (2007) = \frac{1}{2} \ln 1 \frac{n-1}{2}$
1 °	Kulozik (2007), g^{2} .L ² .S ²
k _{agg}	facteur de frequence d'agregation determine a partir du modele de Tolkach et $K_{\rm relacile}(2007)$, a^{1-1} L ¹⁻¹ a^{-1}
1.	Kulozik (2007), g. Ls
Kr Iz	constante l'accumulation du depoi definie par l'équation 2.3, -
Kunf	Constante cinetique de depremient determine à partir du modèle de TOIKach et Kulozik (2007) $a^{1-n} L^{n-1} a^{-1}$
k.	Constante cinétique de dénliement déterminée à nortir du modèle de deux résoriers
κ1	successives, g ¹⁻ⁿ .L ⁿ⁻¹ .s ⁻¹

k_2	constante cinétique de d'agrégation déterminée à partir du modèle de deux réactions successives g ¹⁻ⁿ L ⁿ⁻¹ s ⁻¹		
k_1°	facteur de fréquence de dépliement déterminé à partir du modèle de deux réactions successives, $g^{1-n} I^{n-1} e^{-1}$		
k_2°	factoris successives, $g^{-1}L^{-1}$.s facteur de fréquence d'agrégation déterminé à partir du modèle de deux réactions successives. $g^{1-n}L^{n-1}s^{-1}$		
L	largeur de la plaque, m		
<u> </u>	masse de dépôt dans chaque canal, g		
Йр	débit massique du produit ka s ⁻¹		
т _р <i>m</i> ec	débit massique de l'eau chaude ko s ⁻¹		
Nuec	nombre de Nusselt de la solution protéique modèle		
Nup	nombre de Nusselt de l'eau chaude.		
n n	ordre de la réaction de dénaturation déterminé à partir du modèle de Tolkach et		
	Kulozik (2007)		
n 1	ordre de réaction de dépliement déterminé à partir du modèle de deux réactions		
101	successives -		
n 2	ordre de réaction d'agrégation déterminé à partir du modèle de deux réactions		
102	successives -		
Pr	nombre de Prandtl à la température movenne de la solution protétique modèle.		
0	débit. L.h ⁻¹		
\tilde{O}_n	débit du produit. L.h ⁻¹		
O_{ec}	débit de l'eau chaude. L h-1		
\tilde{R}	constante des gazs parfaits égale à 8.314. Lmol^{-1} .K ⁻¹		
Re	nombre de Revnolds -		
Renc	résistance totale du dépôt encrassant, en m^2 , °C, W^{-1}		
r	ratio des constantes cinétiques de dénaturation		
r ₁	constate définie par les équations 3.17 et 3.22		
r_2	constante définie par les équations 3.18 et 3.23		
S	surface d'échange d'une plaque d'ECP, m ²		
Т	température. K		
T_{ep}	température d'entrée du produit, K		
T_{sp}	température de sortie du produit, °C		
T_{eec}	température d'entrée de l'eau chaude, K		
T_{sec}	température de sortie de l'eau chaude, °C		
T_w	température de paroi, °K		
t	temps, s		
U_g	coefficient de transfert de chaleur global, W.m ⁻² .K ⁻¹		
U_{g_0}	coefficient de transfert de chaleur global de l'échangeur propre, W.m ⁻² .K ⁻¹		
V_i	volume du canal, L		
v	vitesse moyenne d'écoulement du fluide, m.s ⁻¹		
Y_n	constante définie par l'équation 3.4, -		
ΔP	perte de charge de l'ECP encrassé, bar		
ΔP_0	perte de charge de l'ECP propre, bar		
ΔT	différence de température entre l'entrée et la sortie du produit, K		
ΔTLN	différence de température logarithmique moyenne entre le produit et l'eau chaude, K		
Δt	pas de temps, s		
α	degré de dépliement, -		
λ_d	conductivité thermique du dépôt encrassant, W.m ⁻¹ .K ⁻¹		

- λ_{ec} conductivité thermique à la température moyenne de la solution protéique modèle, W.m⁻¹.K⁻¹
- λ_p conductivité thermique à la température moyenne de l'eau chaude, W.m⁻¹.K⁻¹
- μ viscosité de la solution protéique modèle, Pa.s
- ρ densité de la solution encrassante modèle, kg.m⁻³
- ρ_d masse volumique de la solution protéique modèle, kg.m⁻³
- τ temps de passage de la solution protéique modèle dans l'ECP, s
- ε efficacité de l'ECP, -

LISTE DES ABREVIATIONS

А	β-lg agrégée
agg	agrégation
Ca	calcium
Ci	numéro du canal
ECP	échangeur de chaleur à plaques
ec	eau chaude
Ν	β-lg native
Pi	numéro de la plaque
р	produit
Ū	β-lg dépliée
unf	dépliement
S	β -lg soluble
WPC	solution à base de concentrats de protéines sériques
WPI	solution à base d'isolats de protéines sériques
β-lg	β-lactoglobuline
α-la	α -lactalbumine

TABLE DES MATIERES

INTRODUCTION	1
FTUDE BIBLIOCRAPHIOUE	Δ
Préambule	+
1 L'encrassement des surfaces d'échange des équinements de transformation : 1	une
roblématique multi-secteurs	ى مىلا 6
2 L'encrossement des surfaces d'échange dans l'industrie laitière : positionnement	U
2. E cherassement des surfaces à cenange dans i industrie fattere, positionnement	8
2.1 Importance du secteur laitier Français et enjeux de maitriser les encrassements	8
2.1. Importance de opérations de texturation/stabilisation par traitement thermique de	0 9nc
2.2. Importance des operations de texturation stabilisation par tratement thermique de	20113 8
2.3 Impact environnemental et économique des encrassements laitiers	9
3 Etudes traitant de l'encrassement des échangeurs de chaleur par des dérivés laitiers	12
3.1 Composition chimique du lait et des dépôts de dérivés laitiers	12
3.1.1 Composition chimique du lait	12
3.1.2. Composition chimique du dépôt laitier	13
3.2. Mécanismes d'encrassement par des solutions protéigues du lactosérum	.15
3.2.1. Composition en protéines du lactosérum	.15
3.2.2. Mécanismes de dénaturation chaude de la β-lactoglobuline	.16
3.2.3. Modèles simplifiés couramment utilisés pour décrire les cinétiques de	10
dénaturation chaude de la β -lg	. 18
3.2.4. Principaux facteurs physico-chimiques influencant les mécanismes de	
dénaturation chaude de la β -lg.	. 20
3.3. Mécanismes de formation du dépôt encrassant par des solutions protéiques	du
lactosérum	. 21
3.3.1. Mécanismes d'initiation et de croissance du dépôt encrassant	. 21
3.3.2. Principales controverses sur la formation du dépôt encrassant	. 23
a) Mécanismes prépondérants	. 23
b) Rôle des espèces dépliées et agrégées de β-lg dans la dynamique de dépôt	.24
c) Eléments constituant la première couche de dépôt	.24
3.3.3. Principaux facteurs physico-chimiques influençant l'encrassement laitier	.25
a) Effets du pH du milieu	26
b) Effets du calcium	.27
c) Effets de l'histoire thermique	.28
d) Effets de la vitesse de la circulation du fluide	. 29
e) Effets du type et des caractéristiques de l'échangeur de chaleur	. 29
3.3.4. Modèles prédictifs de l'encrassement laitier	. 30
a) Modèles à une phase	. 30
b) Modèles à quatre phases	31
c) Modèles 2-D	31
3.4. Méthodologie de mesure de l'encrassement laitier	. 32
3.4.1. Méthodes directes	. 32
3.4.2. Méthodes indirectes	.33
a) Mesure de l'encrassement à partir du suivi du coefficient de transfert de chal	eur
global	.33
b) Mesure de l'encrassement à partir du suivi des pertes de charge	. 35
4. Conclusion	. 36

MATERIELS ET METHODES	38
Chapitre 1 : Fluides modèles mis en œuvre pour les études de dénaturation et les ess	ais
d'encrassement en ECP	39
1. Contraintes techniques pour le choix des solutions protéiques encrassantes	39
2. Poudre protéique retenue pour préparer les solutions protéiques modèles encrassante	es :
composition chimique et conditions de stockage	40
3. Mode d'élaboration des solutions protéiques modèles encrassantes retenues	41
Chapitre 2 : Essais d'encrassement en pilote	42
1. Plateformes expérimentales et conditions opératoires imposées dans l'ECP	42
1.1. Configuration d'ECP à 5 canaux	42
1.2. Configuration d'ECP à 10 canaux	48
2. Quantification des encrassements	50
2.1. Par pesée des masses de dépôt sec	50
2.2. Par la mesure du coefficient de transfert de chaleur global et de la perte de charge.	52
3. Caractérisation de la composition et de la structure des premières couches de dépôt	en
surface	54
3.1. Par microanalyse par sonde électronique (EPMA)	55
3.2. Par spectroscopie de photoélectrons X (XPS)	55
<i>Chapitre 3 : Identification des cinétiques de dénaturation chaude de la β-lg</i>	57
1. Essais de dénaturation chaude de la β-lg en conditions statiques	57
2. Essais de dénaturation chaude de la β-lg en conditions dynamiques	59
3. Détermination de la concentration en β-lg soluble	61
4. Détermination des paramètres cinétiques de dénaturation chaude de la β-lg	62
4.1. Modèle de Tolkach et Kulozik (2007)	63
Identification de l'ordre de réaction, (n).	63
Identification de la constante cinétique de dénaturation, (kn)	65
4.2. Modèle avec deux réactions successives	69
Identification des ordres de réaction, (n ₁ et n ₂)	70
Identification des constantes cinétiques de dénaturation, (k ₁ et k ₂)	70
Chapitre 4 : Détermination des concentrations des différentes espèces de β -lg dans l'ECP	75
1. Simulation des profils de concentrations des différentes espèces de β -lg dans l'ECP av	vec
le modèle de Tolkach et Kulozik (2007)	75
2. Simulation des profils de concentrations des différentes espèces de β -lg dans l'ECP av	vec
le modèle de deux réactions successives	78
RESULTATS ET DISCUSSIONS	80
Chapitre 1 : Etude de l'influence de la teneur en calcium sur la masse de dépôt dans	un
échangeur de chaleur à plaques	81
1. Dispositif expérimental utilisé pour les essais d'encrassement en pilote	81
1.1. Solutions modèles encrassantes étudiées pour les essais d'encrassement	81
1.2. Installation pilote utilisée pour les essais d'encrassement	82
1.3. Conditions de procédé imposées	83
2. Discussions des résultats obtenus	85
2.1. Distribution de la masse de dépôt sec dans l'ECP à $Re = 2000$	85
2.2. Influence de la teneur en calcium sur la quantité de dépôt totale	87
2.3. Influence de la teneur en calcium sur la cinétique d'encrassement de l'ECP	88
2.4. Conductivité thermique et masse volumique des dépôts protéiques contenant	du
	90
2.5. Correlation entre la masse de dépôt, les conditions de procédé et la teneur en calcin	um
des solutions encrassantes	91

3. Conclusion
Chapitre 2 : Cinétiques de dénaturation thermique de la B-lactoglobuline des différentes
solutions protéiques modèles 97
1 Paramètres cinétiques de dénaturation thermique de la B-lo pour les différentes solutions
protégues selon le modèle de Tolkach et Kulozik (2007)
1.1 Influence des conditions expérimentales (conditions statiques vs conditions
$d_{\text{unamiques}}$ sur la dénaturation de la β la et allure des courbes de dénaturation 08
1.2 Influence de le teneur en coloium sur le déneturation thermique de le 8 la 102
1.2. Influence de la tenedi en calcium /mattine aun la dénaturation thermique de la p-1g
1.5. Influence du faito motarie calcium/proteine sur la denaturation merinique de la p-ig
2. Parametres cinetiques de denaturation thermique de la p-lg pour les différentes solutions
proteiques modeles selon le modele avec deux reactions successives
3. Conclusion
Chapitre 3 : Encrassement des échangeurs de chaleur à plaques par les solutions protétques
modèles étudiées
1. Influence du profil thermique sur la distribution de la masse de dépôt sec dans
l'échangeur de chaleur à plaques118
1.1.Cas de la configuration de l'ECP de 5 canaux118
1.2. Cas de la configuration de l'ECP de 10 canaux
2. Influence de la teneur en calcium sur la masse de dépôt sec par canal et la masse totale de
dépôt collectée dans l'échangeur de chaleur à plaques123
2.1. Influence de la teneur en calcium sur la distribution de la masse de dépôt sec par
canal pour différents profils thermiques
2.2. Influence de la teneur en calcium sur la masse de dépôt totale pour différents profils
thermiques
3. Influence du profil thermique et de la teneur en calcium sur la résistance thermique
d'encrassement
4. Influence du ratio molaire calcium/protéine sur la masse de dépôt sec par canal et la
masse totale de dépôt collectée dans l'ECP
4.1. Influence du ratio molaire calcium/protéine sur la distribution de la masse de dépôt
sec pour un profil thermique fixé
4.2 Influence du ratio molaire calcium/protéine sur la masse totale de dépôt collectée
dans l'ECP pour un profil thermique fixé
5. Influence du ratio molaire calcium/protéine sur la résistance thermique d'encrassement
133
6 Observation visuelle du dépôt encrassant à faible et fort ratios molaires calcium/protéine
135
7 Influence du ratio molaire calcium/protéine sur la croissance du dépôt protéique :
caractérisation des premières couches de dépôt en surface de l'ECP 137
Chapitra A : Etuda da la relation entre las espèces de B la en solution et la distribution de la
Chapitre 4. Liude de la relation entre les espèces de p-ig en solution et la distribution de la massa de dépôt son dans l'ECD pour différentes solutions protéigues modèles
142 Influence du mofil thermique sur à le fois le distribution de le mosse de dérêt see dens
1. Influence du profit merinique sur à la rois la distribution de la masse de depoi sec dans
chaque canal de l'ECP et les profils de concentrations des différentes espèces de p-ig en
2. Influence du manfil thermique cun à le fais le distribution de le masse de dérêt and der
2. Influence du profit merinique sur à la fois la distribution de la masse de depoi sec dans
chaque canal de l'ECP et les profils de concentrations des différentes espèces de p-ig en
solution simulees avec le modele de deux reactions successives
5. Comparaison entre les concentrations des agregats calculees et mesurees en sortie de $\frac{1}{2}$
1 EUP a partir du modele de 101Kach et Kulozik (2007) et le modele de deux réactions
successives $(n_1 = n_2 = 1, 3)$

4. Conclusion	5
Chapitre 5 : Etude de la relation entre le ratio des constantes cinétiques de dénaturation	n
chaude de la β-lg et la distribution de la masse de dépôt sec dans l'ECP pour différente	es
solutions de WPI15	7
1. Allure des courbes masse de dépôt sec par canal vs $r = k_{unf}/k_{agg}$ pour nos solution	ıs
protéiques modèles et différentes configurations d'ECP 15	8
2. Influence de ratio molaire calcium/protéine sur l'allure des courbes masse de dépôt se	e
par canal vs $r = k_{unf}/k_{agg}$	i2
3. Evolution de la masse de dépôt sec par canal vs $r = k_{unf}/k_{agg}$ pour des donnée	es
expérimentales rapportées dans la littérature16	5
4. Conclusion	18
CONCLUSION GENERALE ET PERSPECTIVES16	i9
REFERENCES BIBLIOGRAPHIQUES	4
ANNEXES	0
	0
PUBLICATIONS ET COMMUNICATIONS	18

LISTE DES FIGURES

Figure 1.1. Exemple d'encrassement en pétrochimie et en industrie laitière
Figure 1.2. Exemple de dépôts formés suite à un traitement thermique des aliments :7
Figure 1.3. Encrassement dans un échangeur de chaleur à plaques
Figure 1.4. Répartition des dépôts de type A et B le long d'un programme thermique de
stérilisation
Figure 1.5. Structure tertiaire de la β-lg
Figure 1.6. Mécanisme de la dénaturation chaude de la β-lg17
Figure 1.7. Mécanismes de dénaturation chaude de la β-lg comprenant les différents
complexes possibles avec d'autres protéines du lait
Figure 1.8. Mécanisme plus simplifié de la dénaturation de la β-lg
Figure 1.9. Mécanismes d'adhésion des protéines de β-lg sur les surfaces en acier inoxydable
Figure 1.10. Dépôt d'une solution de protéine sérique contenant du calcium formé sur la
surface de l'échangeur de chaleur
Figure 2.1. Schéma de l'installation pilote utilisée pour les essais d'encrassement
(configuration de l'ECP à 5 canaux)
Figure 2.2. Plaque utilisée pour les essais d'encrassement
Figure 2.4. Les profils thermiques imposés dans l'ECP de 5 canaux
Figure 2.5. Montage de l'installation pilote utilisée pour les essais d'encrassement
(configuration de l'ECP à 10 canaux)
Figure 2.6. Représentation de la configuration de l'ECP à 10 canaux utilisée pour les essais
d'encrassement 49
Figure 2.7 Les profils thermiques imposés dans l'ECP à 10 canaux 49
Figure 2.8 Essais de reproductibilité des masses de dépôt sec mesurées sur les plaques de
l'FCP
Figure 2.9 Exemple de l'évolution des températures d'entrée et de sortie du produit et de
l'aqui chauda durant un traitement thermique de 2 haures (profil thermique # 1)
Figure 2.10. Example de l'évalution du coefficient de transfort de chaleur alchel durant le
Figure 2.10. Exemple de l'evolution du coefficient de transfert de chaleur global durant le
traitement thermique dans l'ECP (profil thermique $\#1$) d'une solution modele de WPI
Figure 2.11. Exemple de l'évolution de la perte de charge durant le traitement thermique dans
l'ECP (profil thermique #1) d'une solution modèle de WPI
Figure 2.12. Exemple d'un profil de température de dénaturation chaude de la β -lg pour une
solution de WPI à une teneur en calcium fixe58
Figure 2.13. Dispositif expérimental utilisé à l'échelle pilote pour les essais de dénaturation
chaude de la β -lg (solution modèle de WPI à 1% p/p contenant 100 ppm de calcium total60
Figure 2.14. Représentation de la configuration de l'ECP utilisée pour les essais de
dénaturation chaude en conditions dynamiques
Figure 2.15. Exemple d'une cinétique de dénaturation de la β-lg soluble à 85°C pour une
solution modèle de WPI à 0,5% (p/p) contenant 100 ppm de calcium total
Figure 2.16. Exemple d'une régression linéaire pour $n = 1.5$ et $n = 2$ permettant de déterminer
la constante cinétique de dénaturation à 85°C d'une solution modèle de WPI à 0.5% (n/n)
contenant 100 ppm de calcium total
······································

Figure 2.17. Evolution des constantes cinétiques k_n avec la température selon le modèle de Tolkach et Kulozik (2007) : Graphe d'Arrhenius de la dénaturation chaude de la β-lg où des ajustements par plage de températures ont été réalisés sur les constantes cinétiques de Figure 2.18. Degré de dépliement selon Tolkach et Kulozik (2007) défini à partir du graphe d'Arrhenius d'une solution modèle de WPI à 0,5% (p/p) contenant 100 ppm de calcium total. Figure 2.19. Evolution au cours du temps des concentrations des différentes espèces de β-lg Figure 2.20. Représentation schématique de la méthode de calcul conduisant à déterminer les Figure 2.21. Exemple d'un ajustement des constantes cinétiques de dépliement et d'agrégation Figure 2.22. Evolution au cours du temps des concentrations des différentes espèces de β -lg selon le modèle de deux réactions successives......73 Figure 2.23. Graphe d'Arrhenius de la dénaturation chaude de la β -lg d'une solution modèle de WPI à 0,5% (p/p) contenant 100 ppm de calcium total obtenu en utilisant le modèle de Figure 2.24. Représentation schématique de la méthode de calcul conduisant à déterminer les profils de concentrations des différentes espèces de β-lg dans l'ECP avec le modèle de Figure 2.25. Représentation schématique de la méthode de calcul conduisant à déterminer les profils de concentrations des différentes espèces de β -lg dans l'ECP avec le modèle de deux Figure 2.1. Plateforme expérimentale utilisée pour les essais d'encrassement d'une solution Figure 2.2. Représentation de la configuration de l'ECP utilisée pour les essais Figure 2.3. Profil thermique en solution déterminé numériquement et imposé le long de Figure 2.4. Distribution de la masse de dépôt sec dans chaque canal de l'ECP pour différentes Figure 2.5. Comparaison de la masse de dépôt totale en fonction de la teneur en calcium 87 Figure 2.6. Comparaison de la résistance thermique d'encrassement en fonction de la teneur en calcium d'une solution modèle de WPC à 1% (p/p) pour différents nombres de Reynolds : Figure 2.7. Relation entre la résistance thermique d'encrassement et la masse de dépôt totale Figure 2.8. Comparaison entre les masses de dépôt par canal $(M_{d,i}/\rho.e^3)$ expérimentales et

Figure 4.3. Graphe d'Arrhenius de la dénaturation thermique de la β -lg (avec un ordre de réaction de 1,5) de solutions modèles de WPI à 1% (p/p) et à différentes teneurs en calcium Figure 4.4. Graphe d'Arrhenius de la dénaturation thermique de la β -lg (avec un ordre de réaction de 1,5) d'une solution de β -lg quasi-pure contenant différentes teneurs en calcium Figure 4.5. Graphe d'Arrhenius de la dénaturation thermique de la β -lg de solutions protéiques modèles à teneur en calcium total fixée (100 ppm) et différentes teneurs en WPI Figure 4.6. Graphe d'Arrhenius de la dénaturation chaude de la β -lg avec le modèle de deux réactions successives en fixant $n_1 = n_2 = 1,5$ pour à la fois la réaction de dépliement et Figure 4.7. Graphe d'Arrhenius de la dénaturation chaude de la β-lg avec le modèle de deux réactions successives en fixant $n_1 = 1$ pour la réaction de dépliement et $n_2 = 2$ pour Figure 4.8. Distribution de la masse de dépôt sec dans chaque canal de l'ECP d'une configuration de 5 canaux pour une solution modèle de WPI à 1% (p/p) avec une teneur en Figure 4.9. Dépôt formé dans le 2^{ème} canal de l'ECP pour le profil thermique # 1 (température Figure 4.10. Dépôt formé dans le 5^{ème} canal de l'ECP pour le profil thermique #1 Figure 4.11. Distribution de la masse de dépôt sec dans chaque canal de l'ECP d'une configuration de 10 canaux pour une solution modèle de WPI à 1% (p/p) avec une teneur en Figure 4.12. Distribution de la masse de dépôt sec dans chaque canal de l'ECP pour une solution modèle de WPI à 1% (p/p) avec une teneur en calcium total de 100 ou 120 ppm... 124 Figure 4.13. Masse de dépôt totale obtenue dans l'ECP pour des solutions modèles de WPI à différentes teneurs en calcium total (100 et 120 ppm) et différents profils thermiques...... 126 Figure 4.14. Evolution de la résistance thermique d'encrassement dans le temps au sein de l'ECP à différents profils thermiques pour des solutions de WPI à 1% (p/p) contenant différentes teneurs en calcium total (100 ppm : symboles pleins ; 120 ppm : symboles vides). Figure 4.15. Distribution de la masse de dépôt sec dans chaque canal de l'ECP obtenue lors du traitement thermique (profil thermique #1 fixé) de solutions protéiques modèles à teneur en calcium totale fixée (100 ppm) et à teneur en WPI allant de 0,25 à 2,5% (p/p). 130 Figure 4.16. Masse de dépôt totale en fonction du ratio molaire calcium/protéine des Figure 4.17. Evolution de la résistance d'encrassement dans le temps au sein de l'ECP obtenue lors du traitement thermique (profil thermique #1 fixé) de solutions protéiques modèles à teneur en calcium total fixée (100 ppm) et à teneur en WPI allant de 0,25 à 2,5% Figure 4.18. Couches de dépôt formées dans les différents canaux de l'ECP après 2 h d'essais d'encrassement avec des solutions modèles de WPI à 2,5% (p/p)......136 Figure 4.19. Couches de dépôt formées dans les différents canaux de l'ECP après 2 h d'essais d'encrassement avec des solutions modèles de WPI à 0,25% (p/p)......136 Figure 4.20. Cartographies X des éléments Fe, Cl, S et Ca de la section transversale de la couche de dépôt des solutions modèles de WPI à : a) 0,25% (p/p) et b) 2,5% (p/p). 138

Figure 4.22. Variation à la fois des masses de dépôt sec mesurées dans les 5 canaux de l'ECP et des profils de concentrations des différentes espèces de β -lg simulées avec le modèle de Tolkach et Kulozik (2007) pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm Figure 4.23. Variation à la fois des masses de dépôt sec mesurées dans les différents canaux de l'ECP et des profils de concentrations des différentes espèces de β -lg simulées avec le modèle de Tolkach et Kulozik (2007) pour une solution de β -lg quasi-pure et différents profils Figure 4.24. Variation à la fois des masses de dépôt sec mesurées dans les 5 canaux de l'ECP et des profils de concentrations des différentes espèces de β -lg simulées à partir du modèle de 2 réactions successives en imposant les ordres de réactions $n_1 = n_2 = 1,5$ pour une solution modèle de WPI à 1% (p/p) avec 100 ppm de calcium total et différents profils thermiques. 148 Figure 4.25. Comparaison entre les profils de concentrations des différentes espèces de β -lg simulées à partir du modèle de 2 réactions successives avec $n_1 = n_2 = 1,5$ (trait continu) et $n_1 = n_2 = 1,5$ 1 et $n_2 = 2$ (trait discontinu) en fonction du temps de séjour dans l'ECP pour une solution modèle de WPI à 1% (p/p) avec 100 ppm de calcium total et différents profils thermiques. 150 Figure 4.26. Comparaison entre les profils thermiques de paroi et de produit pour l'essai #1. Figure 4.27. Courbes de la distribution de la masse de dépôt sec dans chaque canal en fonction de r = k_{unf}/k_{agg} pour des solutions modèles de WPI à 1% (p/p) contenant 100 et 120 ppm de calcium total et différents profils thermiques imposés dans l'ECP......159 Figure 4.28. Variation de la masse de dépôt sec dans chaque canal en fonction du ratio..... 161 Figure 4.29. Variation de la masse de dépôt sec dans les différents canaux de l'ECP en Figure 4.30. Variation de la masse de dépôt sec le long de l'ECP en fonction de $r = k_{unf}/k_{agg}$

Liste des tableaux

Tableau 1.1. Composition chimique moyenne du lait de vache (% p/p) 12
Tableau 2.1. Paramètres de procédé (mesurés et calculés) imposés dans l'ECP des différents essais d'encrassement
Tableau 3.1. Composition de la poudre de WPI40Tableau 3.2. Teneur initiale et finale en calcium pour les différentes solutions modèles41Tableau 3.3. Caractéristiques géométriques des plaques V7 (Leuliet, 1988)44Tableau 3.4. Conditions opératoires étudiées à l'échelle pilote avec l'ECP à 5 canaux : débits46et températures moyennes d'entrée et de sortie de la solution de WPI et de l'eau chaude46Tableau 3.5. Coefficients de transfert de chaleur globaux calculés au démarrage des essais46d'encrassement d'une solution modèle de WPI (1% p/p contenant 100 ppm de calcium total)53pour différents profils thermiques imposés dans l'ECP53Tableau 3.6. Expression de Yn pour n =1,5 et n = 2
Tableau 4.1. Paramètres cinétiques de dénaturation de la β -lg des essais pilote et laboratoire (avec un ordre de réaction de 1,5) et comparaison avec les valeurs rapportées dans la littérature.
Tableau 4.2. Paramètres cinétiques de dénaturation de la β -lg de solutions modèles de WPI à 1% (p/p) et à différentes teneurs en calcium total (100 et 120 ppm) (avec un ordre de réaction de 1,5)
Tableau 4.6. Comparaison entre les concentrations des agrégats calculées et simulées à la sortie de l'ECP pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total et pour différents profils thermiques
Tableau A 1. Récapitulatif des paramètres simulés et calculés permettant d'analyser le comportement encrassant de chacune des solutions protéiques modèles étudiées durant un traitement thermique en ECP

d'agrégation des 21 essais d'encrassement d'une solution de β -lg quasi-pure à 6% (p/p) avec 264 ppm de calcium total. 195

INTRODUCTION

Face à la demande croissante des pays émergents (Chine, Inde, Brésil, etc.), l'industrie agro-alimentaire est plus que jamais confrontée à l'élaboration et la transformation de nouveaux produits lactés.

Par ailleurs, dans un contexte de concurrence mondiale et de hausse des coûts des matières premières, la nécessité de valoriser l'intégralité des éléments du lait est de plus en plus forte pour les industriels laitiers tel est le cas des protéines solubles présentes dans les lactosérums issus de la transformation fromagère ou dans les dans les perméats de microfiltration du lait. Compte tenu de leurs propriétés fonctionnelles (pouvoir gélifiant ou moussant) et nutritionnelles (alimentation pour sportif, poudres infantiles), les voies de séparation et de maîtrise des propriétés de ces protéines a fait l'objet de très nombreuses études récentes. Ces dérivés lactés coproduits (lactosérum) ou non (perméat de microfiltration) subissent généralement à un moment ou un autre de leur itinéraire technologique de transformation, une opération de traitement thermique visant à atteindre leur stabilisation microbiologique (pasteurisation, stérilisation) et/ou des finalités organoleptiques (texture-cuisson).

A l'heure actuelle, dans les lignes de production industrielles, le chauffage des produits laitiers est encore principalement réalisé par contact avec une paroi chaude au sein d'un échangeur de chaleur à plaques. Bien que cette technologie conventionnelle ait été éprouvée dans de multiples applications, elle comporte aussi des limites clairement identifiées, telles que l'encrassement des surfaces d'échanges.

Ces problèmes de sécurité des aliments et ces risques de contamination des surfaces d'échanges liés à la présence de souillures, non souhaitées sur les parois d'équipements, sont devenus ces dernières années des enjeux considérables pour les industries agro-alimentaires. En effet, la pression exercée par la demande sociétale et politique (répercussion médiatique d'un problème sanitaire, impacts environnementaux associés aux cycles de nettoyage chimique fréquents) n'a cessé de s'accroître sur les transformateurs laitiers. Ainsi, il est apparu ces deux dernières décennies, un intérêt grandissant pour réduire et maîtriser les encrassements de ces équipements à l'échelle industrielle.

Les mécanismes complexes responsables de la formation de dépôt sur les surfaces des échangeurs de chaleur sont encore loin d'être complétement élucidés. En effet, il existe un réel manque de connaissances sur la relation entre les réactions chimiques en solution à l'échelle moléculaire et la formation de dépôt protéique en surface à l'échelle macroscopique.

C'est dans ce contexte que s'inscrivent nos travaux visant à étudier les réactions chimiques de dénaturation chaude de différentes solutions modèles de β -lactoglobuline (β -lg) et à établir leur lien avec le phénomène d'encrassement des échangeurs de chaleur à plaques (ECP) à l'échelle pilote (distribution des dépôts, caractérisation de la structure des dépôts).

Partant des lacunes générales sur la compréhension du phénomène d'encrassement, nous nous sommes fixés, dans ce travail de thèse, quatre objectifs :

- 1) Identifier les cinétiques de dénaturation chaude de solutions de β -lg contenant différentes concentrations en protéine et en calcium. Il s'agira de quantifier précisément les constantes réactionnelles de différentes solutions protéiques par des essais en laboratoire et en pilote. Par l'analyse de cette base de données expérimentales et confrontation avec la littérature, il s'agira de comprendre le rôle de certains constituants en solution (nature des assemblages protéiques, concentration en protéine, teneur en calcium) sur la réactivité chimique. Il s'agira aussi de mieux identifier les mécanismes prédominants de la dénaturation chaude de la β -lg (dépliement, agrégation) en fonction des plages de températures et les limites de certains schémas réactionnels simplifiés et des méthodes de détermination de ces paramètres cinétiques. Au terme de cette analyse, nous tenterons de proposer les paramètres physico-chimiques clés à considérer pour prédire a priori la réactivité d'une solution de β -lg en présence de calcium ;
- 2) Mieux comprendre comment les paramètres de procédé et la physico-chimie de la solution encrassante impactent les phénomènes d'encrassement. Il s'agira notamment de quantifier pour les solutions modèles protéiques étudiées les encrassements obtenus pour différents profils thermiques. Par l'analyse des essais d'encrassement, nous illustrerons le rôle du calcium dans le phénomène d'encrassement protéique lors des traitements de pasteurisation. Nous mènerons des analyses supplémentaires de caractérisation de dépôt pour déterminer si le calcium est un élément modifiant uniquement la réaction de dénaturation ou un constituant impliqué dans la formation du dépôt participant à la liaison des espèces protéiques constituant le dépôt ;
- 3) Identifier le ou les espèce(s) protéique(s) impliquée(s) dans la formation du dépôt. Notamment, quelles sont parmi les différentes espèces protéiques de la β-lg en capacité de souiller les surfaces celles réellement responsables du dépôt ? Pour cela, nous développerons un modèle simplifié de génie de la réaction simulant les concentrations

des espèces protéiques présentes au sein de l'ECP et les mettrons en relation avec la distribution des quantités de dépôt mesurées pour différentes conditions de procédé ;

4) Proposer une corrélation entre la distribution de la masse de dépôt sec dans chaque canal de l'ECP et les paramètres cinétiques de dénaturation thermique de la β-lg (ordre de réaction, énergies d'activation et facteurs de fréquence). Nous tenterons de confronter cette corrélation aux travaux de la littérature.

Cette thèse est présentée en trois parties. Ces dernières sont chacune divisées en plusieurs chapitres :

- La première partie est consacrée à une étude bibliographique qui permettra de mieux comprendre : (i) les mécanismes de dénaturation chaude de la β-lg, (ii) les mécanismes de formation du dépôt encrassant, (iii) les paramètres influençant l'encrassement laitier et (iv) les méthodes courantes pour suivre et quantifier les encrassements laitiers ;
- Dans la deuxième partie, nous présenterons les moyens expérimentaux et les techniques analytiques mis en œuvre pour accomplir les investigations expérimentales ;
- La dernière partie est dédiée à l'énoncé et à l'analyse des résultats expérimentaux obtenus.

ETUDE BIBLIOGRAPHIQUE

<u>Préambule</u>

Dans ce chapitre bibliographique, nous allons revenir sur les principaux travaux traitant du phénomène d'encrassement dans les échangeurs de chaleur. En tout premier lieu, nous donnerons quelques généralités sur l'encrassement des surfaces d'échange des équipements industriels. Puis, nous centrerons notre propos exclusivement sur les phénomènes d'encrassement des échangeurs de chaleur traitant des produits laitiers.

Nous montrerons d'abord l'importance du secteur laitier en France et des opérations de thermisation en échangeurs de chaleur afin de texturer ou stabiliser les produits laitiers. Ceci nous aidera à illustrer les impacts économiques et environnementaux des encrassements laitiers.

Nous présenterons ensuite la composition chimique du lait et d'un dépôt laitier pour mettre en avant les protéines majoritairement impliquées dans les encrassements selon les paramètres de transformation.

Puis, nous détaillerons les travaux portant sur l'identification des mécanismes de dénaturation et d'encrassement des solutions protéiques de lactosérum proposés dans la littérature. Une attention particulière sera portée pour illustrer le rôle de certains facteurs physico-chimiques sur les mécanismes de dénaturation et d'encrassement et les modèles proposés. Nous tenterons de faire émerger les principales controverses de la littérature sur la formation du dépôt encrassant.

Enfin, nous présenterons quelques méthodes de suivi de l'encrassement habituellement mis en œuvre en échangeurs. Nous nous focaliserons uniquement sur les méthodes qui seront appliquées ultérieurement dans le cadre de ce travail de thèse afin de détecter les cinétiques d'encrassement dans les échangeurs de chaleur.

1. L'encrassement des surfaces d'échange des équipements de transformation : une problématique multi-secteurs

L'encrassement se définit comme l'accumulation d'un dépôt de matière indésirable (organique ou minéral) sur les surfaces des équipements (Taborek et al., 1972 ; Bott, 1988 ; Oliveira et al., 1993). L'encrassement est un problème fréquent lors du traitement thermique dans des échangeurs de chaleur. L'encrassement des surfaces des équipements industriels a été reconnu comme un problème multi-secteurs (Kuppan, 2000 ; McDonald et Magande, 2012). En effet, ce phénomène se produit très fréquemment dans des procédés de transformation (chimiques ou non) non isothermes : cas des procédés avec apport de chaleur comme par exemple le cracking en pétrochimie ou la texturation/stabilisation en agroalimentaire (figure 1.1) (Awad, 2011).

Figure 1.1. Exemple d'encrassement en pétrochimie (© Merus) et en industrie laitière (© SmartFlow).

Résoudre/diminuer les encrassements restent encore aujourd'hui un défi majeur pour les équipementiers élaborant des échangeurs de chaleur (Bott, 2001). L'encrassement des équipements industriels engendre des coûts économiques importants (réduction de l'efficacité du transfert thermique, augmentation de la fréquence des opérations de maintenance et de nettoyage, etc.). De ce fait, de nombreux industriels et chercheurs se sont intéressés à élucider les mécanismes à l'origine de l'adhésion d'un dépôt sur une surface.

L'encrassement est un phénomène très complexe impliquant plusieurs mécanismes très différents selon le secteur (Mansoori, 2001). Quel que soit le secteur, les formations de dépôts sont fortement liés à la composition et aux caractéristiques physico-chimiques des produits en contact avec la surface, aux propriétés de surface de la paroi chaude (rugosité, énergie de surface), à la nature de l'échangeur de chaleur (type tubulaire ou à plaques, géométrie, circulation co ou contre-courant), au mode de transfert de chaleur (direct ou indirect), aux

conditions opératoires imposées (essentiellement températures d'entrée et débits du fluide caloporteur ou calo récepteur et produits à traiter).

De ce fait, plusieurs catégories de dépôts ont été répertoriées. Le type du dépôt est différent d'une industrie à l'autre. Il peut s'agir de dépôts de carbonate de calcium, de sulfate de calcium, de sulfate de barium, de silice ou de fer dans le cas du traitement de l'eau. Dans l'industrie laitière, l'encrassement ou le dépôt est majoritairement associé à la dénaturation thermique de la β -lg rendant son adhésion possible à la surface chaude.

Epstein, (1981) a proposé une classification des dépôts en cinq groupes basés sur les principaux mécanismes physiques ou chimiques à l'origine de leur formation. Selon cette classification, les dépôts peuvent être cristallins, à base de matière biologique, issus de réactions chimiques, de produits de corrosion, ou de particules de matières.

Dans l'industrie alimentaire (qui est notre secteur industriel), les dépôts peuvent aussi être distingués selon le type de matériel le constituant (Bourion, 1998) :

- le dépôt microbiologique : il s'agit de l'accumulation de micro-organismes sur les surfaces. Ces derniers sont simplement adhérents ou colonisent les surfaces sous forme de biofilms ;
- le dépôt minéral : il est le plus souvent issu des fragments du produit ou de l'eau utilisée dans les processus de fabrication ;
- le dépôt organique : il s'agit de l'accumulation macroscopique des fragments du produit (protéine, matière grasse, etc.). C'est ce type de dépôt qui se produit majoritairement pour l'industrie laitière.

Dans l'industrie agro-alimentaire, il n'est pas rare que les mécanismes cités par Epstein (1981) se produisent simultanément, donnant lieu à un dépôt composite (Bott, 1990 ; Sheikholeslami, 1999) (figure 1.2).

Figure 1.2. Exemple de dépôts formés suite à un traitement thermique des aliments :
a) adsorption d'une monocouche de protéine, b) cristallisation, c) dépôt protéique avec inclusions de minéraux, d) dépôt minéral avec inclusions protéiques (Boxler, 2014).

2. L'encrassement des surfaces d'échange dans l'industrie laitière : positionnement et enjeux

2.1. Importance du secteur laitier Français et enjeux de maitriser les encrassements

Moteur de l'économie française, la filière laitière affiche un excédent commercial de plus 3,8 milliards € en 2014. Avec 250 000 emplois (dont 56 500 dans l'industrie) répartis sur tout le territoire, la filière génère un chiffre d'affaires de 27,7 milliards € pesant autant que la construction aéronautique dans l'économie française (ESANE, 2010). L'industrie laitière a réalisé en 2011 près de 750 millions € d'investissements.

La France est le deuxième producteur européen de lait après l'Allemagne (Eurostat, 2011 ; Agreste, 2011). Les 24,6 milliards de litres de laits collectés (Eurostat, 2014) sont utilisés pour fabriquer :

- à 75% des produits laitiers grand public : laits liquides, yaourts, desserts lactés, fromages, beurre et crème. C'est le marché grand public qui génère le plus de valeur : environ 86% du CA de la filière ;
- à 25% des produits intermédiaires utilisés dans l'alimentaire, les secteurs chimiques et pharmaceutiques. Parmi eux, le lactosérum (petit-lait), la poudre de lait, la caséine (protéine du lait) et le babeurre.

2.2. Importance des opérations de texturation/stabilisation par traitement thermique dans le secteur laitier

Les échangeurs de chaleur sont des équipements très souvent rencontrés dans l'industrie laitière où ils participent à de nombreuses étapes de transformation visant à assurer la qualité et la sécurité alimentaire des produits finaux. En effet, la transformation de plus 24,6 milliards de litres de lait chaque année en France situe l'importance des enjeux liés à la maitrise des traitements thermiques.

Dans l'industrie laitière, le traitement thermique est un processus intensif d'énergie puisque chaque produit est chauffé au moins une fois (de Jong, 1997). Un échangeur de chaleur est un dispositif permettant de transférer de la chaleur entre l'utilité (fluide caloporteur ou calo récepteur) et le produit à traiter. Dans la plupart des cas, les deux fluides ne sont pas en contact, et le transfert s'effectue à travers une surface d'échange. Lors de ce transfert de chaleur, une formation non souhaitée de dépôt est fréquemment observée sur les parois de l'équipement.

La pasteurisation et la stérilisation représentent les principaux traitements thermiques utilisés pour la transformation du lait. La différence se situe au niveau des gammes de température et des temps d'application. Une fois le lait traité, il doit répondre à des normes sanitaires et qualitatives très strictes (directive 92/46/CEE du conseil du 16 juin 1992 relative aux règles sanitaires pour la production et la mise sur le marché de lait cru, de lait traité thermiquement et de produits à base de lait).

La pasteurisation est un traitement thermique modéré, visant à détruire la majeure partie des bactéries et des agents pathogènes. Différents barèmes thermiques (couple temps/température) sont appliqués, comme la pasteurisation à basse température (63° C pendant 30 minutes), la pasteurisation à 72–76°C pendant 15 à 20 s et la pasteurisation à haute température ($80-85^{\circ}$ C ou plus pendant 5 s).

La stérilisation consiste à porter le lait à une température de 115°C pendant 15 à 20 min, ou à 150°C pendant 2 secondes pour le lait UHT (Ultra Haute Température, le lait le plus consommé en France). La quasi-totalité des micro-organismes présents sont détruits, assurant ainsi une conservation de longue durée du produit fini.

2.3. Impact environnemental et économique des encrassements laitiers

Le lait est un produit générateur d'encrassement lors de la pasteurisation ou la stérilisation (figure 1.3). L'encrassement des équipements de transformation dans l'industrie laitière a des conséquences fâcheuses et nécessite des contre-mesures plus contraignantes que dans d'autres industries (pétrolières par exemple). Le nettoyage des échangeurs de chaleur s'effectue au moins une fois par jour (Lalande et René, 1988 ; Georgiadis et al., 1998), pour maintenir l'efficacité de la production et garder les normes d'hygiène strictes requises dans la transformation des aliments.

La faible conductivité thermique des dépôts générés en paroi de l'échangeur induit une diminution de l'efficacité thermique de l'échangeur. Au final, en présence d'encrassement, une augmentation de la résistance thermique aux transferts de chaleurs est clairement constatée (Benning et al., 2003 ; Grijspeerdt et al., 2004 ; Jun and Puri, 2005a ; Mahdi et al., 2009).

De plus, une diminution de l'efficacité hydraulique de l'équipement est observée en présence d'encrassement. En effet, une augmentation de la perte de charge dans l'échangeur de chaleur, due à une diminution de la section de passage se produit (Benning et al., 2003 ; Grijspeerdt et al., 2004 ; Fryer et al., 2006). Ceci engendre irrévocablement une augmentation de l'énergie de pompage à délivrer pour maintenir le débit d'écoulement souhaité.

Casanueva-Robles et Bott (2005) ont montré que la perte d'efficacité thermique et hydraulique des échangeurs encrassés, se traduisait également par une émission accrue de dioxyde de carbone.

Figure 1.3. Encrassement dans un échangeur de chaleur à plaques.

L'encrassement des échangeurs thermiques induit aussi un certain nombre de risques sanitaires. En effet, suite à la cuisson du dépôt formé sur les parois d'échange, une détérioration de la qualité organoleptique du produit fini due au relargage dans le produit de composés indésirables (goût cuit, brunissement) peut être observée. Quand le nettoyage et la désinfection sont incomplets dans certaines zones de l'installation, on peut également craindre le développement de biofilm causant la contamination du produit (Daufin et al., 1987 ; Fryer et al., 2006 ; Jun et Puri, 2007).

L'encrassement des installations pénalise très lourdement la rentabilité des entreprises concernées. En effet, l'encrassement a été estimé à travers le monde à une perte de plusieurs milliards €/an. En industrie, le coût de l'encrassement représente 0,1 à 0,3% du Produit National Brut (PNB) (Garrett-Price et al., 1985 ; Bohnet, 1987 ; Chenoweth, 1990 ; Müller-Steinhagen et al., 1993 ; Xu et al., 2007). Visser et Jeurnink, (1997) ont indiqué que le coût de l'encrassement laitier a atteint en France 150 millions €/an en 1990 et 36 millions €/an dans les Pays-Bas en 1986. Les coûts de perte de produit ont été estimés dans les Pays-Bas aux alentours de 3,20 € par tonne de dépôt (de Jong et al., 2002).

Parmi les coûts supplémentaires liés aux contre-mesures découlant de l'encrassement, nous pouvons noter :

- de nouveaux investissements de 10 à 50% (Awad, 2011) en raison d'un surdimensionnement et d'un remplacement précoce des échangeurs détériorés. Müller-Steinhagen (2000) a montré qu'un surdimensionnement des échangeurs de chaleur de 30 à 40% entraîne des coûts supplémentaires d'environ 25%. Une mauvaise évaluation de l'encrassement peut également engendrer un sous-investissement entraînant un mauvais fonctionnement de l'installation ;
- le coût du nettoyage des équipements dû à l'utilisation excessive d'eau de rinçage et de détergents (acide, soude). L'encrassement des installations et leur nettoyage représente 80% des coûts de production dans les industries laitières (van Asslet et al., 2005 ; Bansal et Chen, 2006). Environ 1,7 kg de soude et 0,6 kg d'acide (Spreer, 2005) ou 3 kg d'agents désinfectants et nettoyants et 1,5 m³ d'eau (Guignard et al., 2009) sont nécessaires par tonne de lait traité, correspondant en Allemagne à une consommation annuelle de 70–90 millions de tonnes d'agents nettoyants et désinfectants et 45 millions d'eau (Boxler, 2014). Pour d'autres produits laitiers tels que le fromage ou le yaourt, la consommation de l'eau peut aller jusqu'à 6 m³ par tonne de produit (Guignard et al., 2009).
- le coût des opérations de maintenance supplémentaires. Environ 15% de ces coûts sont attribués à l'entretien des échangeurs de chaleur et des chaudières et 50% sont dus à l'encrassement (Thackery, 1980);
- les dépenses énergétiques supplémentaires générées par la diminution du coefficient de transfert thermique et par l'augmentation de la puissance mécanique nécessaire au pompage du fluide ;
- le coût de l'immobilisation des installations pour procéder à des opérations de nettoyage impactant fortement la marche globale du site. Müller-Steinhagen (2000) a estimé cette perte a environ 1,5 millions \$/jour.

Ainsi, pour toutes les raisons évoquées précédemment, l'encrassement des échangeurs de chaleur a des conséquences économiques fâcheuses. Dans ce contexte, la minimisation de l'encrassement représente un enjeu important autant d'un point de vue scientifique (compréhension des mécanismes d'encrassement) qu'industriel (réduction des coûts de production et amélioration de la qualité des produits).

3. Etudes traitant de l'encrassement des échangeurs de chaleur par des dérivés laitiers

Dans cette partie, nous reviendrons sur ce qui est connu sur les phénomènes d'encrassement des échangeurs de chaleur traitant des produits laitiers.

Nous commencerons par présenter la composition chimique du lait et d'un dépôt laitier pour identifier les protéines majoritairement impliquées dans les encrassements selon les paramètres de transformation.

3.1. Composition chimique du lait et des dépôts de dérivés laitiers

3.1.1. Composition chimique du lait

Sous l'appellation dérivés laitiers (ou encore appelés produits laitiers), nous considérons le lait et l'ensemble des produits laitiers allant des produits plus ou moins solides (fromages, crèmes desserts) aux plus liquides (boissons lactées). La composition chimique de ces produits étant très complexe, seuls les principaux composés présents dans le lait de vache (matière première de la majorité des produits laitiers) seront brièvement présentés.

Le lait est un fluide complexe constitué d'un certain nombre de composants thermiquement instables (protéines, minéraux, etc.). Les proportions respectives de ces composants sont représentées dans le tableau 1.1.

Eau	87,5
Lactose	4,6
Matière grasse	3,9
Protéines	3,4
Minéraux	0,8

Tableau 1.1. Composition chimique moyenne du lait de vache (% p/p) (*Walstra et al., 1999 ; Michalski et al., 2004 ; Lucey et Horne, 2009*).

Environ 78 % de ces protéines sont des caséines comprenant quatre composants majeurs : α s1, α s2, β et K, à respectivement 40, 10, 35 et 12% (p/p). Ces caséines sont organisées dans le lait sous forme de micelles, constituées à 92% de protéines et à 8% de minéraux inorganiques, essentiellement de phosphate de calcium (Ribadeau-Dumas et Grappin, 1989).

3.1.2. Composition chimique du dépôt laitier

La composition et le type de dépôt laitier dépendent très fortement de la composition du dérivé laitier initial et du traitement thermique appliqué.

Le dépôt laitier peut être classé en deux catégories (Burton, 1968 ; Lund et Bixby 1975 ; Visser et Jeurnink 1997 ; Changani et al., 1997) :

- le dépôt de type A (ou dépôt protéique) se forme à des températures comprises entre 75°C et 100°C à la surface d'un échangeur de chaleur. Il est blanc, spongieux et un peu dense. Ce dépôt est essentiellement composé de 50–60% de protéines (essentiellement des protéines du lactosérum et plus particulièrement la β-lactoglobuline), 30–35% de minéraux (essentiellement du calcium et du phosphate) et 5% de lipides (Lyster, 1965 ; Daufin et al., 1987 ; Belmar-Beiny et al., 1993). Delplace et al. (1994) note une différence significative entre la composition chimique du lait entier et celle d'un dépôt laitier (la teneur en protéines d'un lait entier est de seulement 5%). Bell et Sanders (1944), Lalande et al., (1989), Hiddnik et al., (1986) et de Jong et al., (1992) ont montré le rôle fondamental que jouent les protéines du lactosérum dans la formation du dépôt de type A. Il est établi que la protéine majoritaire de ce dépôt laitier est la β-lg, pourtant elle représente que 32% des protéines du lait (Bylund, 1995);
- le dépôt de type B (ou dépôt minéral) apparaît à des températures supérieures à 105°C. Il est gris, compact, granuleux et dur. Il est composé de 70% de minéraux (principalement du phosphate de calcium), 15-20% de protéines et 5% de matières grasses. Lyster (1965) a étudié la composition en minéraux de ce type de dépôt et a noté que le calcium et le phosphore représentent 90% de la teneur totale en minéraux dans le dépôt est dû essentiellement à la précipitation des phosphates de calcium à des températures élevées (Burton, 1968 ; Lalande et al., 1984). Lalande et al. (1989) ont montré que les formes des phosphates de calcium trouvés dans les dépôts de type B peuvent être très diverses : phosphates de calcium hydratés (CaHPO4 ; 2H₂O), phosphates octocalciques (Ca₈H₂(PO4)₆ ; 5H₂O) et hydroxyapatite (Ca₅(PO4)₃ ; OH).

La figure 1.4 illustre la répartition des dépôts de type A et B susceptibles de se produire au cours d'un programme thermique de stérilisation. Selon l'intervalle de températures rencontré, le dépôt de type A ou B peut être prépondérant. Compte tenu du fait que le dépôt de type A, est le plus redoutable pour l'industrie laitière de par son volume et sa présence en quantité importante, nous nous sommes intéressés à la compréhension de la formation de ce type de dépôt. Les traitements thermiques appliqués dans la partie expérimentale n'ont jamais excédé 93°C. Nous n'avons pas travaillé sur du lait directement mais sur des solutions de lactosérum, riche en β -lg (cette protéine est la plus abondante dans le lactosérum).

Figure 1.4. Répartition des dépôts de type A et B le long d'un programme thermique de stérilisation (Burton, 1994).

Compte tenu de la concurrence mondiale et de hausse des coûts des matières premières, la nécessité de valoriser l'intégralité des éléments du lait est de plus en plus forte pour les industriels laitiers. Ainsi, le lactosérum traditionnellement considéré comme un sous-produit de la fabrication du fromage contenant de faibles teneurs en nutriments, est de nos jours de plus en plus récupéré pour être valorisé. Il s'agit notamment d'augmenter la valeur ajoutée de ce constituant traditionnellement destiné à l'alimentation animale afin d'obtenir des ingrédients fonctionnels ou aromatiques. En effet, en raison de leurs propriétés tensioactives (Kilara, 1994 ; Chobert, 2012), les protéines sériques sont des ingrédients intéressants pour augmenter l'aptitude au fouettage, l'émulsification, le pouvoir moussant, la stabilisation, la gélification et la texturation d'une solution protéique (de Wit, 1990 ; Patel et al., 2007 ; Donato et al., 2009). Cette valorisation nécessite des opérations de concentration et de traitement thermiques.

3.2. Mécanismes d'encrassement par des solutions protéiques du lactosérum

Dans ce qui suit, dans un premier temps, les protéines majoritaires du lactosérum (β -lg, α -lactalbumine) seront présentées.

Puis, dans un second temps, nous décrirons le mécanisme de dénaturation chaude de la β lg, protéine majoritaire du lactosérum et du dépôt laitier de type A. Nous évoquerons les modèles cinétiques simplifiés qui ont été proposés pour rendre compte de cette dénaturation.

Nous discuterons dans un troisième temps, l'effet de certains paramètres physicochimiques sur la dénaturation de la β -lg.

3.2.1. Composition en protéines du lactosérum

Les fractions des protéines sériques contiennent un très grand nombre de composants, à savoir : la β -lg, l' α -lactalbumine (α -la), la bovine sérum albumine et les immunoglobulines avec des teneurs respectives de 2,7, 1,2, 0,25 et 0,65 g.L⁻¹. La β -lg est majoritaire (54%), correspondant à environ 3,5 g.L⁻¹ dans le lait (Lalande et al., 1989), suivie de l' α -la (21%). Elles représentent 90% des protéines totales du lactosérum (Kinsella, 1984). Le reste de la fraction protéique est constituée de protéines dites mineures telles que : la lactoperoxydase et la transferrine (Fox et Kelly, 2006).

Nous présentons simplement ici les principales propriétés physico-chimiques de la β -lg et l' α -la :

- la β-lg est constituée de 162 acides aminés pour un poids moléculaire de 18,3 kDa (Papiz et al., 1986 ; Hambling et al., 1992 ; Verheul et al., 1999) et une taille d'environ 3 mm (Mulvihill et Donovan, 1987). Son point isoélectrique est d'environ 5,3 (Lalande et René, 1988) et sa température de dénaturation est estimée à 77°C (Nielsen et al., 1995 ; Relkin, 1996 ; Havea et al., 2001 ; Linmark-Mansson et al., 2005), qui dépendent fortement de l'environnement chimique. Sa structure moléculaire comporte 6–10% d'hélices α, 44– 52% de feuillets β et 15–20% de coudes β (Casal et al., 1988 ; Dong et al., 1996 ; Qi et al., 1997). La molécule de β-lg, comme le montre la figure 1.5, contient deux ponts disulfures (Cys₁₀₆-Cys₁₁₉ et Cys₆₆-Cys₁₆₀) et un groupement thiol libre caché à l'intérieur de la molécule (Cys₁₂₁) à l'état natif (Relkin, 1996 ; Labouré et al., 2004 ; Perez et Pilosof, 2004) ;
- l'α-la renferme 123 acides aminés pour un poids moléculaire de 14,3 kDa. Elle présente deux ponts disulfures et un ion calcium intervenant dans sa stabilisation (Ribadeau-Dumas et Grappin, 1989). Elle contient une faible proportion d'acides aminés structurés

en hélice α (30%) et en feuillets β (9%). Elle possède une plus grande résistance aux traitements thermiques que la β -lg (Lyster, 1970 ; Lalande et al., 1985 ; Mulvihill et Donovan, 1987 ; Gotham et al., 1992 ; Delplace et al., 1994).

Figure 1.5. Structure tertiaire de la β -lg (Ikeguchi, 2014).

3.2.2. Mécanismes de dénaturation chaude de la β-lactoglobuline

Le mécanisme de dénaturation chaude de la β -lg a fait l'objet d'un nombre considérable de travaux (Griffin et al., 1993 ; Qi et al., 1995 ; Dong et al, 1996 ; Elofsson et al., 1996 ; Iametti et al., 1996 ; Oldfield et al., 2005 ; Tolkach et al., 2007 ; Petit et al., 2011) donnant lieu à plusieurs modèles décrivant le comportement thermique de solutions de β -lg quasi-pure. Le modèle dénaturation thermique de la β -lg généralement accepté consiste en un procédé à plusieurs étapes, (Mulvihill et Donovan, 1987 ; Tolkach et Kulozik, 2007), tel que présenté dans la figure 1.6.

A température ambiante et pH physiologique (7,4), la β -lg en solution est à l'état natif sous forme de dimères (N_2) (Lalande et René, 1988 ; Kim et Lund, 1998 ; Sava et al., 2005). A 40°C, la forme dimère se dissocie réversiblement en monomères natifs (N). Chaque monomère possède deux ponts disulfures et un groupement thiol qui se situent à l'intérieur de la molécule. Entre 40 et 55°C, la β -lg subit un léger changement dans sa structure tertiaire. En effet, le monomère subit une transition intramoléculaire en formant l'état R (N_R) (Mulvihill et Donovan, 1987 ; Tolkach et Kulozik, 2007). L'état R de la β -lg se distingue de l'état natif seulement par des changements conformationnels mineurs (spécialement l'hélice α qui masque le groupe thiol libre) (Tolkach et Kulozik, 2007). La molécule de β -lg à l'état R est capable de former des agrégats. Cependant, l'agrégation est négligeable dans ce cas (Tolkach et Kulozik, 2011).

Figure 1.6. Mécanisme de la dénaturation chaude de la β -lg (Tolkach et Kulozik, 2007).

Une température supérieure à 60°C entraîne un dépliement réversible de la protéine, ce qui correspond à une altération de sa structure tertiaire suite à la rupture des liaisons non covalentes et l'acquisition d'une réactivité (thiol), formant ainsi l'état " molten globule " (U_{MG}) qui est capable de provoquer l'agrégation de la β -lg (Delplace et al., 1997; Santos et al., 2006). La structure de la molten globule est réversible puisque les liaisons covalentes ne sont pas rompues et la β -lg se replie lorsque la température revient à la température ambiante. La formation de l'état molten globule prend fin à 80-90°C. Enfin, à des températures entre 130 et 140°C, la β -lg irréversiblement dénaturée (UD), également sujette à l'agrégation, se forme suite à la destruction de la structure secondaire de la protéine. Les agrégats (U_m) ou les polymères (U_n) peuvent alors réagir avec l'état R, la molten globule et la β -lg irréversiblement dénaturée.

Une fois dépliée, la β -lg peut réagir avec les autres molécules de β -lg ou les autres protéines présentes au sein de la solution de lactosérum. Selon Boxler (2014), trois réactions principales sont à privilégier (figure 1.7) :

(i) les molécules de β -lg dépliées interagissent entre elles afin de former des agrégats contenant encore un groupe thiol libre (chemin V, figure 1.7) ou les molécules de β -lg dépliées interagissent entre elles pour former des agrégats sans groupe thiol libre (chemins II et XI, figure 1.7);
- (ii) les molécules de β-lg dépliées peuvent former un complexe avec la caséine κ via une réaction d'échange thiol-disulfure et des interactions hydrophobes à la surface de la micelle de caséine (chemin III, figure 1.7) (Fink et Kessler, 1985 ; Paulsson et Dejmek, 1990) ;
- (iii) les molécules de β-lg dépliées peuvent former un complexe avec l'α-la (chemin IV, figure 1.7) (Jeurnink et de Kruif, 1995 ; Kim et Lund, 1998 ; de la Fuente et al., 2002). Ces complexes α-la-β-lg peuvent eux même s'associer à la micelle de caséine (chemin VIII, figure 1.7) (Oldfield et al., 2005). Boxler (2014) précise que les agrégats ne disposant plus d'un groupe thiol libre sont incapables d'interagir via une réaction thiol-disulfure (Oldfield et al., 2005) et restent en solution.

Fempérature	Temps	Structure/réaction	Résultat
20 °C	-	β -lg _N (at pH < 3.5 or pH > 7.5), (β -lg _N) ₂ (at 5.5 < pH < 7.5) or	Molécule native
$\sim 40 \ ^\circ C$	-	$(\beta-lg_N)_8 (at 3.5 < pH < 5.5)$ $\uparrow \downarrow$ $\beta-lg_N$	Dissociation / formation de monomères
$\sim 40-55\ ^\circ\mathrm{C}$	5 – 10 min	∱↓ β-lg _R <u>I</u>	Dépliement partiel
~60-85°C	\geq 15 min	$ \begin{array}{c} & & & \\ \downarrow \text{-SH} & & & \\ II & & & \\ II & & & \\ III & & & \\ III & & & \\ III & & & \\ \end{array} \begin{array}{c} & & & & \\ \forall II & & \\ \beta \text{-lg-}\kappa\text{-casein} & \text{or} \end{array} $	Molten globule / formation de
>125 °C	5 – 10 min	$\begin{vmatrix} \beta - Ig_{MG} & \downarrow V & \chi I & \forall \mu \mu \neq \alpha - Ia - \beta - Ig + \alpha - Ia - \beta - Ig & \chi \\ -SS & \downarrow & \alpha - Ia - \beta - Ig & \chi \\ & \beta - Ig_{S} - g - Ig_{S} & \chi \\ & \beta - Ig_{S} - g - Ig_{S} & \chi \\ & \chi \\ & & & \chi \\ & & & \chi \\ & & & $	protéines et/ou avec les agrégats
		$\beta - \lg_{D} \xrightarrow{XII} (\beta - \lg_{D})_{n} \rightarrow (\beta - \lg_{D})_{m}$	Dépliement complet

Figure 1.7. Mécanismes de dénaturation chaude de la β-lg comprenant les différents complexes possibles avec d'autres protéines du lait (Boxler, 2014).

3.2.3. Modèles simplifiés couramment utilisés pour décrire les cinétiques de dénaturation chaude de la β-lg

Pour donner une vue concise de la dénaturation chaude de la β -lg à des températures entre 60 et 100°C, Oldfield et al. (2005) ont proposé un modèle plus simplifié du mécanisme de dénaturation. Ce modèle résume la dénaturation chaude de la β -lg en une succession de deux réactions : $N \rightarrow U \rightarrow A$.

Lors du traitement thermique, la β -lg native (*N*) se déplie pour former la β -lg molten globule ou encore appelée la β -lg réversiblement dépliée (*U*). C'est le dépliement. L'espèce *U* réagit ensuite avec la β -lg native or d'autres protéines dépliées, via des échanges disulfures ou une oxydation de thiol, pour former la β -lg irréversiblement dénaturée ou encore appelée agrégats (*A*). Chaque étape de la réaction de dénaturation (dépliement et agrégation) est gouvernée par la cinétique.

Tolkach et Kulozik (2007) ont montré que ce modèle cinétique, associé à une quantification des protéines de β -lg solubles (*S*, avec S = N + U) par analyse HPLC, permet d'évaluer les concentrations des différentes espèces de la β -lg (native, dépliée et agrégée) en fonction du temps de chauffe et par conséquent, de caractériser les cinétiques des réactions de dépliement et d'agrégation de la β -lg (figure 1.8).

Figure 1.8. Mécanisme plus simplifié de la dénaturation de la β -lg (Tolkach et Kulozik, 2007). (k_n : constante cinétique de la réaction de dénaturation pour un ordre de réaction égal à n).

La détermination des constantes cinétiques de dénaturation de la β -lg (fonction de la température) a été l'objet de nombreuses publications (Lyster, 1970; Danneberg, 1986; Tolkach et Kulozik, 2007; Petit et al., 2011; Wolz et Kulozik, 2015). Cependant, malgré la diversité des méthodes utilisées (électrophorèse, immunodiffusion, HPLC, etc.), les résultats sont assez cohérents et la grande majorité des auteurs montre que la réaction de dénaturation de la β -lg est une réaction d'ordre *n*:

$$-\frac{dC_S}{dt} = k_n C_S^n \tag{1.1}$$

avec C_S la concentration en β -lg soluble, k_n la constante cinétique de dénaturation et n l'ordre de réaction allant de 1 à 2.

La résolution de cette équation fournit différentes expressions de C_S en fonction de n:

Pour
$$n \neq 1$$
,
 $C_S(t) = C_S^0 (1 + (n-1) k_n (C_S^0)^{n-1} t)^{1/1-n}$
(1.2)

Pour
$$n = 1$$
,
 $C_S(t) = C_S^0 e^{-k_n t}$
(1.3)

avec C_s^0 la concentration initiale en β -lg soluble (au temps zéro) et *t* le temps.

Les équations 1.2 et 1.3 permettent de calculer la constante cinétique de dénaturation à une température donnée :

Pour
$$n \neq 1$$
,

$$k_n = \frac{\left(\frac{C_S(t)}{C_S^0}\right)^{1-n} - 1}{t \cdot (n-1)(C_S^0)^{n-1}}$$
(1.4)

Pour n = 1,

$$k_n = \frac{-\ln\left(\frac{c_S(t)}{c_S^0}\right)}{t} \tag{1.5}$$

3.2.4. Principaux facteurs physico-chimiques influençant les mécanismes de dénaturation chaude de la β-lg

Il est établi qu'un certain nombre de facteurs physico-chimiques influence la dénaturation chaude de la β -lg (Galani, 1997), tel que :

- le pH durant le traitement thermique (Monahan et al., 1995; O'Kennedy, 2006; de Wit, 2009; O'Kennedy et Mounsey, 2009);
- les profils thermiques imposés (Dannenberg et Kessler, 1988 ; de Wit, 1990 ; Monahan et al., 1995 ; Oldfield et al., 2000) ;
- la concentration de la β -lg native des solutions de protéines sériques (Kessler et Beyer, 1991 ; Gotham et al., 1992 ; Verheul et al., 1998 ; Oldfield et al., 2005) ;
- la force ionique de la solution (Verheul et al., 1998 ; O'Kennedy et Mounsey, 2009) ;
- la composition en minéraux, essentiellement la concentration en calcium (Anema et McKenna, 1996 ; Croguennec et al., 2004 ; Navarra et al., 2007). En effet, le calcium

joue un rôle important dans la dénaturation de la β -g. Xiong et al. (1992) ont montré qu'une augmentation de la concentration en CaCl₂ (de 5 à 20 mmol) abaissait la température de dénaturation de 83°C à 75°C. Petit et al. (2011) ont également noté que les constantes cinétiques de dépliement et d'agrégation dépendent fortement de la concentration en calcium (les constantes cinétiques de dénaturation de la β -lg augmentent avec l'augmentation de la teneur en calcium). Il faut noter que la présence de calcium ne modifie pas le mécanisme global de dénaturation de la β -lg (l'ordre de réaction demeure le même et ce, quelle que soit la teneur en calcium) mais influence fortement les cinétiques de dénaturation de la β -lg, principalement dans la zone d'agrégation. Il semble donc que le calcium catalyse l'agrégation de la protéine par échange de charges (Petit et al., 2011). Par ailleurs, Phan-Xuan et al. (2013) ont montré que le calcium favorise la formation de gros agrégats (de l'ordre de 300 nm).

3.3. Mécanismes de formation du dépôt encrassant par des solutions protéiques du lactosérum

Dans ce qui suit, les mécanismes d'initiation et de croissance du dépôt laitier sur les surfaces d'échange seront présentés.

Puis, dans un second temps, nous décrirons les controverses et les questions ouvertes qui existent dans la littérature concernant la formation du dépôt encrassant.

Finalement, nous discuterons l'effet de certains paramètres physico-chimique sur les mécanismes d'adhésion du dépôt et nous présenterons les modèles prédictifs proposés dans la littérature.

3.3.1. Mécanismes d'initiation et de croissance du dépôt encrassant

Burton (1968) a montré que, quels que soient les dépôts, les mécanismes suivants participent à la formation du dépôt sur les surfaces des échangeurs de chaleur :

- réaction chimique ayant lieu dans le produit, qui transforme les constituants chimiques en une ou plusieurs espèces capables de se déposer sur la surface ;
- transport des constituants encrassants du produit (constituant initial ou précurseur de l'encrassement) vers la surface ;
- adsorption des constituants encrassants du produit en surface pour former la première couche de dépôt ;

- croissance de la seconde couche de dépôt : fixation d'autres constituants et/ou des constituants encrassants initiaux (i.e. à l'origine de la formation de la première couche de dépôt);
- croissance et élimination des couches successives de dépôt par effet des contraintes mécaniques induites par l'écoulement.

Plus tard, Hiroshi et al. (1995) a proposé un mécanisme général couramment admis décrivant la formation du dépôt de dérivés laitiers sur les surfaces en acier inoxydable (figure 1.9).

Figure 1.9. Mécanismes d'adhésion des protéines de β-lg sur les surfaces en acier inoxydable (Itoh et al., 1995).

A basse température (25°C), les molécules de β -lg sont adsorbées sur les surfaces jusqu'à formation de la monocouche. Cette interaction protéine-surface dépend de plusieurs facteurs tels que le pH, la température, la conformation de la protéine et les propriétés de surface du matériau. A haute température (75°C), après la formation instantanée de cette monocouche, la chaleur dénature les molécules de β -lg activant ainsi le groupement thiol initialement masqué.

La molécule de β -lg dépliée, devenue thermiquement instable, peut alors choisir entre deux scénarii :

- interaction avec une autre molécule à la paroi, formant ainsi des ponts disulfures avec les molécules déjà adhérées ;
- interaction avec une autre molécule du produit, formant ainsi des agrégats de β-lg. Ces agrégats peuvent, soit rester dans la solution ou migrer vers la paroi pour former des ponts disulfures avec les molécules existantes, favorisant ainsi le développement des couches successives de dépôt.

3.3.2. Principales controverses sur la formation du dépôt encrassant

a) Mécanismes prépondérants

Si les auteurs s'accordent assez bien sur les différentes étapes à l'origine de l'encrassement des surfaces par des dérivés laitiers :

- dénaturation de la β -lg en solution et formation de protéines dépliées et agrégées ;
- transport des β-lg dépliées et agrégées vers la surface ;
- réactions en surface qui engendrent l'adhésion des protéines à la surface, entraînant la formation du dépôt ou sa croissance suite à l'incorporation d'autres protéines et/ou des ions de calcium dans la couche de dépôt ;
- réentraînement (migration possible de certains constituants du dépôt vers le produit) ou arrachement possible de certaines couches du dépôt,

il n'en est pas de même en ce qui concerne l'étape prépondérante du mécanisme d'encrassement contrôlant la formation du dépôt.

En effet, pour Toyoda et al. (1994), Georgiadis et al. (1998), Georgiadis et Macchietto (2000), Bansal et Chen (2005) et Bansal et al. (2005), l'encrassement est contrôlé à la fois par les réactions de transport des constituants encrassants vers la surface ainsi que les réactions en solution (dénaturation) et en surface (ancrage de la matière encrassante à la surface ou sur la couche précédemment déposée).

Par contre, de Jong et van der Linden (1992), de Jong et al. (1992) et Grijspeerdt et al. (2004) indiquent que l'encrassement n'est pas limité par le transport de la matière encrassante vers la surface. Ces résultats sont en accord avec ceux de Paterson et Fryer (1988), Fryer et Belmar-Beiny (1991), Jeurnink et al. (1996), Boxler et al. (2013) qui précisent que la formation du dépôt est limitée uniquement par les réactions en solution et en surface.

b) Rôle des espèces dépliées et agrégées de β -lg dans la dynamique de dépôt

Le rôle des espèces dépliée et agrégée dans la formation du dépôt encrassant sur les surfaces des échangeurs de chaleur est également encore loin d'être complétement élucidé.

Toyoda et al. (1994) ont proposé un modèle d'encrassement laitier en supposant que seuls les agrégats entraînent la formation du dépôt. De même, Changani et al. (1997) ont démontré que l'encrassement protéique se produit lorsque les agrégats sont proches de la surface de l'échangeur de chaleur.

D'un autre côté, Belmar-Beiny et al. (1993) Chen et al. (2001), Bansal et Chen (2005) et Bansal et al. (2005) considèrent qu'à la fois les agrégats et les protéines dépliées participent à la formation du dépôt.

Enfin, Lalande et al. (1985), Arnebrant et al. (1987) et Kessler et Beyer (1991), Grijspeerdt et al. (2004) et Jun et Puri (2005b) considèrent que la réaction de dépliement est la seule réaction gouvernant le dépôt, ce qui laisserait supposer que c'est l'espèce dépliée qui est responsable de la croissance du dépôt.

Ceci est en accord avec les travaux de van Asslet et al. (2005) qui ont souligné que les agrégats ne sont pas impliqués dans les réactions d'encrassement des échangeurs de chaleur et les travaux récents de Blanpain-Avet et al. (2012) et Jimenez et al. (2013). Blanpain-Avet et al. (2012) ont montré que la β -lg dépliée est l'espèce précurseur de la formation du dépôt, à partir de l'analyse de la structure de dépôt par spectroscopie Raman d'une solution d'isolats de protéines sériques. Récemment, Jimenez et al. (2013) ont noté l'absence d'agrégats dans les premières couches de dépôt laitier par des techniques AFM. Ceci conforte aussi les observations de :

- de Jong et al. (1992) qui notent que la formation d'agrégats permet de réduire l'encrassement ;
- René et Lalande (1988), Gothman et al. (1992), Delplace et al. (1997), Visser et Jeurnink (1997), Jun et Puri (2007) et Mahdi et al. (2009) qui ont indiqué que l'encrassement est contrôlé par la réaction d'agrégation.

c) Eléments constituant la première couche de dépôt

Le phosphate de calcium et les protéines sériques ont depuis longtemps été recensés comme des composants clés du dépôt encrassant (Visser et Jeurnink, 1997). Plusieurs études ont tenté de déterminer lequel de ces deux éléments se dépose en premier sur la surface de l'échangeur de chaleur.

Certains travaux ont suggéré que les protéines sont adsorbées en premier sur la surface de l'échangeur de chaleur, en raison de leur forte activité en surface (Fryer et Belmar-Beiny, 1991). Cependant, d'autres auteurs ont rapporté que la première couche de dépôt est essentiellement minérale (Tissier et Lalande, 1986, Foster et al., 1989, Fryer, 1989, Fryer et Belmar-Beiny, 1991), suivie d'une couche de dépôt protéique plus spongieuse.

Maubois (1984) a proposé deux éventuels mécanismes : soit la protéine dénaturée agit comme un noyau sur la croissance des sels minéraux, soit la protéine est adsorbée sur la surface des sels minéraux.

Jimenez et al. (2013) ont démontré, à partir d'analyses des surfaces de dépôt, que la protéine est la première à se déposer durant les essais d'encrassement de solutions de protéines sériques contenant du CaCl₂. Delsing et Hiddink (1983) ont noté que les protéines forment la première couche de dépôt. Ces auteurs ont également constaté que la croissance du dépôt protéique n'est possible qu'en présence de calcium.

Par ailleurs, l'analyse du dépôt encrassant, après un long traitement thermique, montre que le dépôt se formant près de la surface contient une très forte teneur en minéraux (Belmar-Beiny et Fryer, 1992). Cette observation ne peut être expliquée par le fait que les minéraux se forment en premier sur la surface mais uniquement par la diffusion des minéraux à travers le dépôt jusqu'à la surface (Bansal et Chen, 2006).

Foster et Green (1990) ont montré toutefois que la couche protéique est diffuse et irrégulière. Les minéraux pourraient donc la traverser, permettant ainsi aux couches de minéraux et de protéines de se former simultanément.

3.3.3. Principaux facteurs physico-chimiques influençant l'encrassement laitier

La figure 1.10 extraite de Boxler (2014) synthétise les principaux facteurs influençant la formation du dépôt (M_d) aux surfaces des échangeurs de chaleur durant un essai d'encrassement pour une solution de protéines sériques contenant du calcium.

Figure 1.10. Dépôt d'une solution de protéine sérique contenant du calcium formé sur la surface de l'échangeur de chaleur (Boxler, 2014).

a) Effets du pH du milieu

L'effet du pH sur l'encrassement est très complexe. Il est lié au processus de dénaturation des protéines (essentiellement la β -lg) et au mécanisme de précipitation des minéraux. Le pH du lait varie entre 6,6 et 6,8 (Visser et Jeurnink, 1997). La quantité de dépôt augmente nettement avec le pH acide mais son effet diffère selon la nature de l'encrassement :

- dépôt protéique : à des faibles valeurs de pH (pH < 2), les ponts disulfures ne peuvent pas se former et le dépôt est considérablement réduit. A pH = 4,65, proche du point isoélectrique de la β-lg (pH = 5,13), les protéines commencent à s'agréger conduisant ainsi à la formation d'un dépôt plus important. Pour des valeurs de pH allant de 5,6 à 6,5 et à des températures supérieures à 60°C, le groupement thiol devient réactif, le phénomène d'agrégation s'intensifie avec le temps de chauffage et une accumulation de dépôt protéique est observée sur les surfaces de l'échange de chaleur (Visser et Jeurnink, 1997). Pour des valeurs de pH entre 6,5 et 7 (cas de la majorité des produits laitiers), la β-lg se dénature et adhère aux surfaces de l'échangeur de chaleur suite à la formation d'agrégats de plus grande taille.
- dépôt minéral : pour des valeurs de pH inférieures à 6 et des températures de 60°C,
 Andritsos et al. (2002) n'ont observé aucun dépôt pour des essais d'encrassement
 d'environ 2 heures. A des valeurs de pH supérieures à 6, le dépôt minéral commence à se former et le taux d'encrassement augmente fortement dans l'intervalle de pH allant de 6,25 à 6,35, lorsque la solution devient trouble.

Le pH n'affecte donc pas uniquement la quantité de dépôt. Il est également responsable de sa composition. Cette dernière subit plusieurs modifications telles que l'augmentation de la

teneur en minéraux et la diminution de la teneur en protéine, suite à la chute du pH (Skudder et al., 1986 ; Lewis et Heppell, 2000).

b) Effets du calcium

Les ions de calcium sont essentiels à la croissance des couches de dépôt (Xiong, 1992). Changani et al. (1997) ont montré qu'en présence de calcium la quantité de dépôt augmente linéairement.

L'analyse du dépôt encrassant révèle que les couches de dépôt formées à faible teneur en calcium ont une texture spongieuse et molle alors que le dépôt formé à forte teneur en calcium est plus dense et élastique (Guérin et al., 2007). Cette observation est en accord avec les travaux de Pappas et Rothwell (1991) qui ont montré que, lors du chauffage et en présence de calcium, la β -lg s'agrège complétement pour former des structures compactes.

Roefs et Kruif (1994) et Jeurnink et Kruif (1995) ont rapporté qu'une augmentation ou une diminution de la teneur en calcium dans le lait affecte la stabilité à la chaleur et entraîne un encrassement plus important. Les ions de calcium présents dans le lait influencent la température de dénaturation de la β -lg, favorisent l'agrégation et agissent sur la croissance du dépôt encrassant en formant des ponts entre les protéines adsorbées sur la surface de l'échangeur de chaleur et les agrégats formés en solution (Xiong, 1992 ; Christian et al., 2002). Jeurnink et Kruif (1995) ajoutent que lors de la formation des agrégats, les molécules de β -lg dénaturées peuvent s'associer à des molécules de phosphate de calcium et à d'autres protéines présentes dans le lait. Ces ions de calcium précipitent à hautes températures, leur présence favorise donc la précipitation de l'ensemble vers la paroi. Simmons et al. (2007) ont observé une diminution de la taille des agrégats suite à l'augmentation de la teneur en calcium.

Par ailleurs, Delsing et Hiddink (1983), Daufin et al. (1987) et de Jong et al. (1998) ont montré que l'ajout de calcium contribue non seulement à l'accroissement de la quantité de dépôt mais aussi à l'augmentation de la quantité de caséines présentes dans le dépôt. En outre, un changement dans la composition du dépôt protéique a été observé passant de protéines sériques à des caséines (Jeurnink et al., 1996). Jeurnink et de Kruif (1995) ont montré qu'aussi bien l'augmentation que la diminution de la teneur en calcium entraîne une augmentation de l'encrassement laitier. Le calcium agit également sur les changements conformationnels de la molécule de β -lg, facilitant ainsi la dénaturation de la protéine et favorisant la cinétique d'agrégation. Une très faible augmentation de la teneur en calcium influence fortement la formation du dépôt (Guérin et al., 2007). Quatre effets ou une combinaison d'entre eux sont à l'origine de l'augmentation de l'encrassement et des cinétiques de dénaturation chaude de la β -lg (Belmar-Beiny et Fryer, 1993 ; Simons et al., 2002 ; O'Kennedy et Mounsey, 2009) :

- réticulation intermoléculaire de groupes carboxyliques ou chargés négativement, suite à la formation de complexes protéine-Ca²⁺-protéine ;
- effet protecteur sur la protéine chargée négativement ;
- changements conformationnels causés par les ions de calcium, altérant ainsi les interactions hydrophobiques et l'agrégation à fortes températures ;
- formation de ponts entre la protéine adsorbée sur la surface et la protéine agrégée formée en solution.

Cependant, O'Kennedy et Mounsey (2009) ont montré qu'un excès en calcium entraîne un effet inhibiteur sur l'agrégation de la protéine.

c) Effets de l'histoire thermique

La température est le principal facteur contrôlant l'encrassement laitier (Burton, 1968 ; Belmar-Beiny et al., 1993 ; Toyoda et al., 1994 ; Jeurnink et al., 1996 ; Santos et al., 2003). En effet, l'augmentation de la température entraîne un très important dépôt encrassant, et selon la plage de températures étudiée (supérieure à 110°C), la nature du dépôt change du type A au type B (Burton 1968). Chen et Bala (1998) ont étudié l'effet des températures de surface et en solution sur le dépôt protéique et ont noté que la température de surface serait à l'origine de la formation du dépôt encrassant. Ces auteurs ont également rapporté que pour des températures de surface inférieures à 68°C et des températures en solution supérieures à 84°C, aucun encrassement n'a été observé.

Le préchauffage du lait est à l'origine de la dénaturation et de l'agrégation des protéines (principalement la β -lg), conduisant ainsi à un très faible encrassement lors de son passage dans la zone de chauffage de l'échangeur de chaleur (Burton, 1968 ; Foster et al., 1989). La dénaturation de la β -lg et son association avec les micelles de caséine entraîne une réduction du dépôt de type A (Lalande et Tissier, 1985).

d) Effets de la vitesse de la circulation du fluide

La formation du dépôt laitier est également influencée par la vitesse de circulation du fluide dans l'échangeur de chaleur (Visser et al., 1997). Belmar-Beiny et al. (1993) et Santos et al. (2003) ont noté une diminution de l'encrassement suite à l'augmentation de la turbulence. En effet, Lund et Bixby (1975), Bott (1990) ont montré que plus la vitesse du fluide est élevée dans l'échangeur de chaleur, plus le dépôt est faible. Belmar-Beiny et al. (1993) ont ajouté que plus la vitesse de circulation du fluide est élevée, plus le transport des molécules de la β -lg vers la sortie de l'installation est rapide. Par ailleurs, Paterson et Fryer (1988) et Changani et al. (1997) ont observé une diminution de l'épaisseur de la sous-couche limite laminaire, suite à l'augmentation de la vitesse du fluide. Des vitesses d'écoulement très élevées favorisent également le réentraînement du dépôt suite à l'augmentation de la contrainte de cisaillement (Rakes et al., 1986).

Andritsos et al. (2002) ont cependant mentionné qu'une augmentation de la vitesse du fluide tend à augmenter la masse de dépôt minéral. Ce résultat pourrait être expliqué par la nature de ce type de dépôt (phosphate de calcium) compact et adhérent, ce qui minimise le processus de réduction du dépôt encrassant. Ce phénomène reste néanmoins peu fréquent.

e) Effets du type et des caractéristiques de l'échangeur de chaleur

Les échangeurs de chaleur à plaques sont communément utilisés dans les industries laitières parce qu'ils offrent plusieurs avantages tels qu'un transfert de chaleur de haute performance, un faible gradient de température, une forte turbulence et une facilité d'entretien. Cependant, les échangeurs de chaleur à plaques sont sujets à l'encrassement en raison de leurs canaux étroits (Delplace et al., 1994) et des plaques adjacentes présentant des points de contact répartis sur l'étendue de ces plaques (Belmar-Beiny et al., 1993). En outre, afin d'avoir un transfert de chaleur efficace, la température de paroi doit être considérablement plus élevée que la température en solution entraînant ainsi un dépôt laitier plus difficile à éliminer. Les caractéristiques hydrauliques et thermiques complexes des échangeurs de chaleur à plaques rendent l'analyse du dépôt laitier plus difficile. L'utilisation d'écoulement co et contrecourant dans le même échangeur complique encore plus l'analyse du dépôt (Bansal et Chen, 2006). Wahlgren et Arnebrant (1991) et Flint et al. (2000) ont également rapporté que le dépôt qui se colle sur la surface de l'échangeur de chaleur, influence non seulement l'encrassement mais aussi l'adhésion des microorganismes (Skudder et Biss, 1987 ; Fryer et al., 1993 ; Ayadi et al., 2004).

3.3.4. Modèles prédictifs de l'encrassement laitier

La complexité des réactions mises en jeu, la composition chimique des produits et des paramètres intervenant dans les phénomènes d'encrassement, rendent la modélisation et la prédiction de ce phénomène délicate. Cependant, de nombreux auteurs ont proposé d'établir des modèles afin de décrire l'encrassement laitier dans les échangeurs de chaleur tubulaires et à plaques. Dans ce qui suit, nous présentons les principaux modèles de dynamique d'encrassement laitier de la littérature, en distinguant les modèles à une phase et ceux à quatre phases puis les modèles à deux dimensions (2-D).

a) Modèles à une phase

Le modèle à une phase est typiquement utilisé pour décrire la répartition moléculaire monodirectionnelle de la protéine native en fonction de la température. Dans ce cas, il n'y a pas de réaction réversible participant au processus d'encrassement.

Comme cela a été étudié et modélisé dans des travaux antérieurs tels que ceux de Lyster (1970), la concentration en β -lg native à la sortie des échangeurs de chaleur a été décrite avec succès par une cinétique de dénaturation chaude d'ordre deux. Par ailleurs, Delplace et al. (1994) ont effectué des essais dans un ECP avec un arrangement complexe de l'écoulement. Basée sur des conditions en régime stationnaire, la détermination numérique du profil de température pour chaque canal a été utilisée pour simuler la quantité de β -lg dénaturée en sortie de l'ECP. Plus tard, Delplace et Leuliet (1995) ont étudié l'encrassement par un concentré de protéines de lactosérum de plusieurs arrangements de l'écoulement d'un ECP en mesurant à la fois le coefficient de transfert de chaleur et la masse de dépôt sec. Un modèle empirique a ainsi été développé afin de prédire la masse de dépôt sec (notée $M_{d,i}$ dans le i-ème canal) dans chaque canal par le biais du calcul de la dénaturation thermique de la β -lg (équation 1.6). Le modèle empirique proposé reposait sur une simulation numérique des profils de température, à l'état stationnaire.

$$\frac{M_{d,i}}{S.V_i} = 0,127 \, \Delta C_i^{0.5} \tag{1.6}$$

où *S* est la surface d'échange, V_i le volume (constant) du canal et ΔC_i la différence de concentration de β -lg native entre l'entrée et la sortie dans le numéro de canal *i*.

b) Modèles à quatre phases

Le modèle à quatre phases représente l'ensemble des réactions des quatre espèces de la β -lg (native, dépliée, agrégée et déposée en surface). Ce modèle couvre à la fois les réactions en solution et en surface durant le processus de dénaturation de la protéine, qui inclue le dépliement de l'espèce native, l'agrégation et la formation du dépôt en surface (Visser et Jeurnink, 1997).

Tandis que les modèles précités (comprenant une seule phase protéinique) sont des processus de réaction homogène en solution, le modèle à quatre phases est intimement relié à un processus de transfert de matière ou de réaction en surface (Visser et Jeurnink, 1997).

de Jong et al. (1992) et de Jong (1996) ont développé un modèle mathématique dans lequel sont considérées à la fois les réactions en surface et celles en solution. La dénaturation de la β -lg a été décrite comme une cinétique de réactions consécutives de dépliement et d'agrégation (de Wit et Klarenbeek, 1989). Le modèle a été appliqué aux ECP avec les données empiriques de cinétiques de dépliement et d'agrégation de la β -lg.

En prolongeant le travail de de Jong et al. (1992), Toyoda et Fryer (1997) ont développé un modèle dans lequel ils font l'hypothèse que pour chaque protéine présente, le transfert de matière a lieu entre le fluide et la paroi. Néanmoins, ces auteurs ont indiqué que seuls les agrégats peuvent adhérer à la paroi, de telle façon que la quantité déposée est proportionnelle à la concentration de β -lg agrégée au sein de la couche limite thermique. Les travaux de Toyoda et Fryer (1997) ont été approfondis par Georgiadis et al., (1998) et Georgiadis et Macchietto (2000) en y ajoutant le comportement hydrodynamique dans l'échangeur.

c) Modèles 2-D

Les modèles dynamiques 2-D permettent de réaliser une étude exhaustive de l'encrassement laitier dans les ECP en tenant en compte l'effet des corrugations des plaques (Jun et Puri, 2005 et Jun et Puri, 2007), à l'inverse des modèles d'encrassement cités ci-dessus qui sont basés sur une distinction 1-D de l'écoulement.

Jun et al. (2004) ont développé un modèle d'encrassement 2-D en l'associant avec des équations d'équilibre de matière afin de prédire la distribution du dépôt laitier. Les équations de Navier-Stokes de dynamique des fluides ont été résolues et couplées avec l'équation de l'énergie d'équilibre et une cinétique d'encrassement à trois phases.

Bouvier et al. (2014) ont effectué une analyse CFD en 2-D pour simuler localement les mécanismes de dénaturation de la β -lg induite par la chaleur et ont confronté les mesures des

masses de dépôt le long de l'ECP avec le profil de concentration des différentes espèces de β -lg (native, dépliée et agrégée). Ce modèle montre clairement que la forme dépliée de la β -lg est l'espèce précurseur de l'encrassement protéique lors de la pasteurisation de lactosérum dans la plage de températures allant de 75 à 110°C.

Plus récemment, Choi et al. (2013) ont élaboré des modèles d'encrassement à 3-D permettant d'évaluer l'importance de l'orientation des corrugations des plaques de l'échangeur de chaleur.

3.4. Méthodologie de mesure de l'encrassement laitier

Dans ce qui suit, nous présenterons quelques méthodes courantes de suivi de l'encrassement habituellement employées en échangeur. Ces méthodes seront mises en œuvre dans la partie Matériels et Méthodes afin de détecter les cinétiques d'encrassement dans les échangeurs de chaleur. Dans la littérature, des mesures dites " directes " et " indirectes " peuvent être distinguées pour quantifier l'encrassement d'une installation. Dans ce paragraphe, nous détaillerons le principe et l'écueil de ces deux types de mesures.

3.4.1. Méthodes directes

La pesée de la masse de dépôt dans les canaux de l'échangeur de chaleur et l'observation visuelle du dépôt sont les mesures les plus directes du phénomène d'encrassement. Cependant, ces mesures ne peuvent pas se pratiquer sur tous les équipements. En effet, elles sont plus aisées dans le cas des échangeurs à plaques que dans le cas des échangeurs tubulaires, en raison de la facilité d'accès aux surfaces d'échange.

La méthodologie pour peser les plaques varie entre les études (léger rinçage ou non, mode de séchage : étuve ou à l'air ambiant, temps de séchage). En effet, en raison de la teneur en eau encore présente dans le dépôt au moment du démontage de l'échangeur de chaleur, la pesée du dépôt humide aboutit à une précision moindre que la pesée d'un dépôt sec réalisée dans des conditions standardisées (Delplace, 1995). Ainsi, de nombreux auteurs ont étudié les masses de dépôt sec présentes dans chaque canal pour évaluer l'encrassement après un certain temps de fonctionnement de l'échangeur (Buron, 1967 ; Lalande et al., 1984 ; Delplace et al. 1994 ; Yoon et Lund, 1994 ; Fryer et al., 1996 ; Petit et al., 2013).

Ces méthodes directes présentes néanmoins un inconvénient majeur. En effet, les informations obtenues à travers ces mesures ne sont pas dynamiques. Ces mesures ne reflètent l'état de l'échangeur de chaleur qu'au moment de l'arrêt du traitement thermique et ne

précisent en aucun cas l'évolution du dépôt dans le temps. De plus, les pesées ne fournissent qu'une information globale de la distribution du dépôt encrassant.

D'autres mesures directes telles que la microscopie électronique (Tissier et Lalande, 1986 ; Guérin et al., 2007), le TOF-SIMS (Jimenez et al., 2013) et l'AFM (Goode et al., 2013) ont été effectuées sur les dépôts. Ces techniques ont notamment permis d'évaluer la structure et la topographie des dépôts à un temps donné. Elles nécessitent une prise et une préparation des échantillons à analyser, qui ne sont pas adaptées au suivi en ligne de l'évolution de l'encrassement.

3.4.2. Méthodes indirectes

Le développement d'une couche de dépôt sur les surfaces d'un échangeur de chaleur entraîne très souvent une importante baisse des performances thermiques et hydrodynamiques. La mesure de l'encrassement peut donc être déterminée en suivant la diminution avec le temps des performances de l'échangeur.

a) Mesure de l'encrassement à partir du suivi du coefficient de transfert de chaleur global

La formation d'une couche de dépôt sur la surface d'échange entraîne une résistance au transfert thermique supplémentaire, provoquant ainsi la baisse du coefficient de transfert de chaleur global de l'installation. Il faut donc augmenter la puissance thermique fournie pour maintenir le programme thermique souhaité, comme l'indique l'équation suivante :

$$\dot{\mathbf{m}}_P C p_p (T_{sp} - T_{ep}) = \dot{\mathbf{m}}_{ec} C p_{ec} (T_{eec} - T_{sec}) = U_g S \Delta T L N F_T$$
(1.7)

$$\Delta TLN = \frac{(T_{sec} - T_{ep}) - (T_{eec} - T_{sp})}{\ln\left(\frac{T_{sec} - T_{ep}}{T_{eec} - T_{sp}}\right)}$$
(1.8)

avec \dot{m}_p et \dot{m}_{ec} respectivement les débits massiques du produit et de l'eau chaude, T_{ep} et T_{sp} respectivement les températures d'entrée et de sortie du produit, T_{eec} et T_{sec} respectivement les températures d'entrée et de sortie de l'eau chaude, Cp_p et Cp_{ec} les chaleurs massiques respectivement du produit et de l'eau chaude, U_g le coefficient de transfert de chaleur global, S la surface de transfert de chaleur, F_T le facteur correctif de Δ_{TLN} traduisant l'écart entre l'échangeur réel et un échangeur théorique à co ou contre-courant pur, ΔTLN la différence de température logarithmique moyenne entre le produit et l'eau chaude.

Etant donné que \dot{m}_p et T_{ep} sont le plus souvent fixés, il faut donc agir sur le système pour maintenir le programme thermique subit par le produit. Yoon et Lund (1994) ont défini deux méthodes qui peuvent être utilisées pour parvenir à cet objectif :

- la première méthode consiste à augmenter \dot{m}_{ec} ;
- la deuxième méthode consiste à augmenter *T_{eec}* au fur et à mesure du développement de l'encrassement.

Yoon et Lund (1994) ont constaté que la deuxième méthode permet de garder un traitement thermique plus constant et semble donc plus indiquée que la première méthode.

Il est donc possible de suivre l'encrassement d'un échangeur de chaleur en reportant l'évolution dans le temps de U_g ou les grandeurs qui en découlent. En effet, Ling et Lund (1978) ont utilisé l'évolution de $\frac{U_g}{U_{g_0}}$ (où U_{g_0} est le coefficient de transfert de chaleur global de l'échangeur propre). La même représentation a été utilisée plus tard par Delplace (1995) pour décrire l'évolution de l'encrassement d'un échangeur de chaleur à plaques par des solutions de protéines sériques.

Il est également possible de suivre l'évolution de l'encrassement en reportant l'évolution de la résistance totale du dépôt encrassant (R_{enc}) dans le temps. Cette grandeur est définie par l'équation suivante :

$$R_{enc} = \frac{1}{U_g} - \frac{1}{U_{g_0}} \tag{1.9}$$

En supposant que l'encrassement est uniformément réparti dans l'échangeur, cette résistance peut être décrite comme étant le rapport entre l'épaisseur moyenne de la couche de dépôt sur les parois de l'échangeur de chaleur (e_d) et la conductivité thermique de cette dernière (λ_d).

$$R_{enc} = \frac{e_d}{\lambda_d} \tag{1.10}$$

Il semble donc possible d'estimer une épaisseur moyenne de dépôt via le suivi de la résistance totale du dépôt encrassant et de la connaissance de la conductivité thermique des dépôts.

Cependant, il faut rester prudent quant à la fiabilité de cette méthode puisque l'hypothèse posée (uniformité de la répartition du dépôt) nous amène à calculer une épaisseur moyenne équivalente, qui ne traduit pas forcément la réalité et occulte la présence probable d'épaisseurs importantes dans certaines zones critiques (points de contact, entrée/sortie de chaque canal). Par ailleurs, il est difficile d'estimer la valeur de λ_d car le dépôt est généralement poreux, contenant de l'eau et des protéines à différentes proportions. Pour un dépôt de β -lg, Davies et al. (1997) ont indiqué une valeur de λ_d de 0,38 W.m⁻¹.°C⁻¹. Rose et al. (2000) ont proposé pour le même type de dépôt des valeurs allant de 0,13 à 0,33 W.m⁻¹.°C⁻¹ et Tuladhar et al. (2002) ont attribué la valeur de 0,26 W.m⁻¹.°C⁻¹.

b) Mesure de l'encrassement à partir du suivi des pertes de charge

La formation d'une couche de dépôt sur les surfaces d'un échangeur réduit les performances hydrodynamiques des échangeurs, entraînant une augmentation de la puissance de pompage nécessaire au maintien du débit du produit à traiter. Cette diminution est exprimée par l'évolution de la perte de charge en fonction du temps de traitement. Ainsi, Burton (1966), Fryer (1989) et Delplace (1995) ont suivi la formation du dépôt encrassant lors du traitement thermique des produits laitiers.

Une approche basée sur la réduction du diamètre hydraulique (D_h), a été proposée par Lalande et al. (1985) et René et Lalande (1987) visant à estimer l'épaisseur de dépôt à partir de l'évolution de la mesure de la perte de charge (ΔP). Pendant l'encrassement de l'échangeur, la perte de charge augmente (Burton, 1966 ; Fryer, 1989). Elle est traduite par l'équation suivante :

$$\frac{D_{h_0} - D_h}{D_{h_0}} = 1 - \left(\frac{\Delta P_0}{\Delta P}\right)^{\frac{1}{3}}$$
(1.11)

avec ΔP_0 la perte de charge de l'installation propre au débit du produit, D_{h_0} et D_h respectivement les diamètres hydrauliques de l'échangeur propre et de l'échangeur encrassé.

L'épaisseur du dépôt (*e*_d) peut être calculée à partir du diamètre hydraulique $D_h = D_{h0} - e_d$ et par conséquent, par l'intermédiaire des mesures de pertes de charge :

$$e_d = D_{h_0} \cdot \left(1 - \left(\frac{\Delta P_0}{\Delta P}\right)\right)^{\frac{1}{3}} \tag{1.12}$$

Etude Bibliographique

La mesure de la perte de charge permet donc d'évaluer l'encrassement d'un échangeur de chaleur. Cependant, l'utilisation de cette relation doit se faire avec précaution, comme l'ont indiqué Burton (1967), Schreier et al. (1994) et Delplace (1995). En effet, la perte de charge peut évoluer différemment lors des essais effectués dans les mêmes conditions et donner lieu aux mêmes masses de dépôt (Burton, 1968). Cette variation peut s'expliquer par la sensibilité de cette mesure aux phénomènes d'encrassement. Par ailleurs, cette technique n'est pas suffisamment sensible à la détection de fines épaisseurs de dépôt et ne peut nullement renseigner sur la distribution du dépôt le long de l'échangeur de chaleur. La mesure de la perte de charge renseigne donc d'avantage sur l'état des performances hydrodynamiques de l'échangeur de chaleur que sur la quantité de dépôt.

A travers les deux méthodes décrites ci-dessus, il semble que ΔP et U_g sont reliés théoriquement à l'épaisseur du dépôt dans l'échangeur de chaleur. Il est néanmoins difficile d'obtenir des évolutions d'épaisseur de dépôts identiques en se basant sur des mesures simultanées du U_g et de ΔP .

Les travaux de Toyoda et al. (1994) portant sur l'encrassement d'un ECP par des solutions de protéines du lactosérum sont assez significatifs sur ce point. Ces auteurs ont montré qu'on pouvait obtenir trois évolutions totalement différentes de ΔP avec le temps et obtenir néanmoins des évolutions identiques du U_g .

4. Conclusion

L'état des connaissances réalisé dans le chapitre bibliographie a mis en évidence dans un premier temps, l'impact négatif de l'encrassement laitier sur les performances des échangeurs de chaleur conventionnels. Il en ressort que la mise en œuvre d'un traitement thermique de pasteurisation favorise la dénaturation des protéines et leur adhésion systématique à la paroi.

Les travaux portant sur l'encrassement des échangeurs de chaleur par les produits laitiers montrent que ce phénomène est complexe à appréhender et à modéliser car il est gouverné non seulement par des facteurs liés à la composition chimique des assemblages protéiques à pasteuriser mais aussi par les conditions opératoires de chauffage, la géométrie et les propriétés de paroi des échangeurs.

Cet état de l'art a permis néanmoins dans un second temps, de mettre en évidence certaines lacunes de la littérature. Tout d'abord, bien que différents travaux mentionnent abondamment l'influence du calcium sur les phénomènes d'encrassement protéique, très peu données chiffrées reliant réellement la quantité de dépôt à la teneur en calcium après un traitement thermique dans un échangeur de chaleur existent et aucun modèle prédictif d'encrassement ne prend en considération la teneur en calcium des solutions protéiques.

Cet état de connaissance, nous empêche de conclure définitivement si le calcium est vraiment un constituant clé impliqué dans la formation du dépôt, qui participe à la liaison des espèces protéiques constituant le dépôt, et si la teneur en calcium doit être intégrée dans les approches de modélisation de dépôt.

MATERIELS ET METHODES

Chapitre 1 : Fluides modèles mis en œuvre pour les études de dénaturation et les essais d'encrassement en ECP

Dans ce premier chapitre, nous décrirons premièrement le cahier des charges et les choix effectués pour la mise au point de solutions protéiques modèles encrassantes. Nous détaillerons ensuite la composition chimique et le mode d'obtention des solutions protéiques modèles encrassantes retenues.

1. Contraintes techniques pour le choix des solutions protéiques encrassantes

Les fluides modèles encrassants doivent satisfaire les contraintes suivantes :

- Contenir un nombre limité d'assemblages protéiques (caséine, protéines sériques, etc.) et d'éléments minéraux pour simplifier le nombre de complexations possibles entre les espèces protéiques et les sels (calcium, citrate, phosphate) une fois le traitement thermique initié ;
- Etre riches en β-lg (non dénaturée par la chaleur ou par un agent chimique) pour être représentatifs des dérivés laitiers et permettre ainsi d'obtenir des encrassements importants dans les ECP. Il est admis que la β-lg joue en effet un rôle très important dans les phénomènes d'encrassement laitier (Belmar-Beiny et al., 1993);
- Permettre d'obtenir une composition en calcium variable, mais contrôlée ;
- Permettre d'obtenir des résultats d'encrassement les plus reproductibles possibles. Notre choix ne se portera donc pas sur le lait (enrichi en calcium) comme fluide modèle. En effet, le lait est sujet à d'importantes variations en composition chimique selon les saisons et dispose d'une faible stabilité au stockage ;
- Etre facile à préparer et à stocker sans qu'il y ait altération dans le temps. Cette contrainte est importante car nos essais expérimentaux nécessitent de grandes quantités de protéines.

Dans ce contexte, acheter un lot de poudre protéique, le stocker en chambre froide et réhydrater ces poudres, avant chaque essai d'encrassement, pour obtenir des solutions protéiques de composition souhaitée semble être une solution intéressante.

2. Poudre protéique retenue pour préparer les solutions protéiques modèles encrassantes : composition chimique et conditions de stockage

En se basant sur les contraintes citées ci-dessus, nous avons choisi de reconstituer une solution modèle à base d'isolats de protéines laitières (WPI). Il s'agit du Promilk 852 FB1 (Ingredia, Arras, France) conditionné sous forme de poudre. La composition chimique de cette poudre est donnée dans le tableau 2.1.

Composants	Promilk 852 FB1 (% p/p)
Protéines totales	80,1
β -Lg	66,0
a-La	13,3
Lipides	1,0
Lactose	11,0
Minéraux	2,9
Calcium	4,0
Sodium	1,7
Phosphate	2,4

Tableau 2.1. Composition de la poudre de WPI

Cette poudre riche en β -lg et contenant très peu de minéraux permet d'étudier la formation du dépôt de type A (essentiellement protéique) et de limiter la formation du dépôt de type B.

Le Promilk 852 FB1 est conditionné en sacs de 20 kg stockés en chambre froide à 4°C. L'emballage protège la poudre de l'humidité et d'une exposition à la lumière ce qui assurent une longue durée de conservation. Les sacs utilisés pour nos essais expérimentaux appartiennent tous au même lot de fabrication afin d'assurer une qualité la plus constante possible.

3. Mode d'élaboration des solutions protéiques modèles encrassantes retenues

Les solutions de β -lg à 0,25, 0,5, 1, 2 et 2,5% (p/p) sont préparées à température ambiante par dissolution de respectivement 2,5, 5, 10, 20 et 25 g de la poudre de WPI (Promilk 852 FB1) dans 1 L d'eau osmosée. Différentes concentrations de chlorure de calcium CaCl₂ (anhydre, 96%, Acros Organics, Thermo Fisher Scientific, Waltham, USA) sont ajoutées aux solutions de β -lg pour obtenir une teneur en calcium total de 100 et 120 ppm (tableau 2.2). Les concentrations en calcium des différentes solutions modèles ont été déterminées par spectrométrie d'absorption atomique (Spectro AA 55B, Varian, Palo Alto, USA).

Solution de β-lg	Teneur en calcium	Teneur en	Teneur en calcium	Ratio molaire
(% p/p)	dans la poudre de	CaCl ₂ ajouté	total (ppm)	calcium / β -lg
	WPI (ppm)	(ppm)		
0,25	10	90	100	22,9
0,5	20	80	100	11,5
1	40	60	100	5,7
2	80	20	100	2,9
2,5	100	0	100	2,3
1	40	80	120	6,9

Tableau 2.2. Teneur initiale et finale en calcium pour les différentes solutions modèles

Pour éviter toute prolifération microbienne, chacune des solutions est préparée le jour même de l'essai d'encrassement. Le pH des différentes solutions modèles de WPI a été mesuré à chaque essai. Il est de l'ordre de 6,8 pour l'ensemble des solutions encrassantes.

Chapitre 2 : Essais d'encrassement en pilote

Plusieurs essais d'encrassement à l'échelle pilote avec des solutions protéiques modèles de WPI ont été réalisés. Pour se faire, deux plateformes expérimentales comportant deux zones (préchauffage et chauffage) ont dû être mises en œuvre, ainsi qu'une instrumentation apte à détecter les phénomènes de dépôt encrassant dans la zone de chauffage.

Dans ce chapitre, nous décrirons brièvement les plateformes expérimentales utilisées lors des essais d'encrassement. En particulier, nous donnerons des précisions sur les deux configurations d'ECP étudiées (toutes les deux placées en zone de chauffage) : à 5 et à 10 canaux. Nous détaillerons ensuite les tests de caractérisation effectués pour quantifier la masse de dépôt, suivre la dynamique d'encrassement et sonder la structure du dépôt.

1. Plateformes expérimentales et conditions opératoires imposées dans l'ECP

1.1. Configuration d'ECP à 5 canaux

Les essais d'encrassement ont été effectuées sur une installation pilote (figure 2.1). Cette plateforme est constituée de deux zones distinctes :

- Une zone de préchauffage contenant un ECP constitué de 19 plaques de type V7 (Alfa Laval Vicarb, Fontanil-Cornillon, France), soit 9 passes avec un canal par passe. Cette zone est nécessaire pour préchauffer le fluide modèle ;
- Une zone de chauffage renfermant un ECP. Les plaques utilisées sont également de type V7 (figure 2.2). Ces plaques, couramment rencontrées dans l'industrie, sont des plaques à cannelures droites (cannelures perpendiculaires à la direction moyenne de l'écoulement). Les caractéristiques géométriques de ces plaques sont données dans le tableau 2.3.

Figure 2.1. Schéma de l'installation pilote utilisée pour les essais d'encrassement (configuration de l'ECP à 5 canaux).

Figure 2.2. Plaque utilisée pour les essais d'encrassement.

Matériau	Acier inoxydable 316Ti		
Conductivité thermique de la plaque	$16,3 \text{ w.m}^{-1}.^{\circ}\text{C}^{-1}$		
Longueur	0,495 m		
Largeur	0,15 m		
Epaisseur	0,8 mm		
Surface d'échange	0,075 m ²		
Espace inter-plaques	4,0 mm		
Section de passage	6.10^4 m^2		
Angle de cannelure par rapport à l'axe	90°		
longitudinal de la plaque			
Angle de base de la cannelure	35°		
Pas de la cannelure	15 mm		

Tableau 2.3. Caractéristiques géométriques des plaques V7 (Leuliet, 1988).

Dans ce travail de thèse, nous nous sommes uniquement intéressés à la zone de chauffage. L'échangeur thermique utilisé est composé de 10 plaques, soit 5 passes avec un canal par passe, dans lesquelles circulent à contre-courant le produit à traiter et l'eau chaude (figure 2.3).

Figure 2.3. Représentation de la configuration de l'ECP à 5 canaux utilisée pour les essais d'encrassement.

L'ECP a été utilisé pour chauffer les solutions protéiques modèles encrassantes de WPI à des températures supérieures à la température de dénaturation de la β -lg. La température d'entrée de l'eau chaude a été ajustée durant les essais d'encrassement, afin d'assurer une température constante de sortie du produit encrassant à l'issue de la zone de chauffage et un profil thermique constant de la solution modèle de WPI le long de l'ECP.

L'ECP a été alimenté d'une solution modèle de WPI à traiter thermiquement pendant une durée de 2 heures à un débit du produit maintenu à 300 L.h⁻¹ tandis que le débit de l'eau chaude varie de 150, 300 ou 900 L.h⁻¹ selon le type d'expérimentation, ce qui permet d'accroître rapidement la température du produit. Pour ce débit du produit étudié, le temps de séjour moyen dans l'ECP est de 14 s et le nombre de Reynolds moyen (*Re*), calculé pour chaque essai à partir de la distribution moyenne du *Re* dans l'ECP, varie entre 2610 et 2950 pour les différents profils thermiques imposés (équation 2.1). Ces valeurs du *Re* correspondent à un régime d'écoulement turbulent (la limite de la turbulence se situe à *Re* = 776 pour cette configuration d'ECP) et ont été déterminées à partir de la connaissance des profils thermiques et des propriétés physiques de l'eau (plutôt que le lait puisque les différentes concentrations en β -lg des solutions modèles de WPI étudiées sont très faible allant de 0,25 à 2,5% p/p). Cette méthode de calcul a également été utilisée par Delplace et Leuliet (1995) et plus récemment par Petit et al. (2013) :

$$Re = \frac{2.\rho \, Q_p}{\mu L} = \frac{\rho \, \nu \, D_h}{\mu} \tag{2.1}$$

avec Q_p le débit du produit, ρ la masse volumique de la solution protéique modèle, μ la viscosité dynamique du produit, L la largeur de la plaque, v la vitesse moyenne de circulation du fluide entre 2 plaques de l'ECP et D_h le diamètre hydraulique entre 2 plaques de l'ECP qui est égal à 2.*e* (*e* est l'espace inter-plaques).

La préparation de la solution à traiter débute une heure avant la mise en route du traitement thermique afin de permettre une solubilisation complète du produit. L'agitation du mélange eau osmosée et poudre de WPI est effectuée dans une cuve de 600 L à température ambiante. Les paramètres de l'échangeur thermique (débits et températures du fluide à traiter et de l'eau chaude) sont ensuite ajustés en faisant circuler de l'eau dans le système aux températures voulues pour l'expérimentation. Une fois ces paramètres stabilisés, l'expérimentation peut commencer en faisant circuler le produit à traiter dans l'installation. Le produit, initialement à température ambiante, est préchauffé dans un premier échangeur pour

atteindre 60 ou 65°C (selon l'essai expérimental) à la sortie du préchauffeur, et c'est à cette même température qu'il rentre dans la zone de chauffage correspondant au deuxième ECP. Quatre différents profils thermiques ont été imposés dans l'ECP. Ces profils de température ont été choisis pour permettre la formation significative de dépôt, tout en s'assurant que l'ECP puisse fonctionner pendant 2 heures avant que la perte de charge due à l'encrassement ne devienne trop élevée (valeur supérieure à 1 bar).

Les profils de température dans l'ECP ont été simulés avec le logiciel Sphère issu de la méthode numérique proposé par René et al. (1991) permettant de calculer les températures en solution des fluides chaud et froid dans chaque canal de l'ECP. Une fois les performances hydrauliques et thermiques de l'ECP introduites dans le logiciel, les températures en solution des deux fluides peuvent être calculées le long de l'ECP. Chaque profil de température est contrôlé par les paramètres d'entrée de l'ECP, à savoir les températures d'entrée du produit et du fluide chaud (notées respectivement T_{ep} et T_{eec}) et les débits du produit et de l'eau chaude (respectivement Q_p et Q_{ec}). Le tableau 2.4 représente pour chaque profil de température, les valeurs moyennes des températures et des débits simulées du fluide chaud et de la solution modèle de WPI à traiter. La simulation des profils thermiques par le logiciel Sphère a été validé par la passé par Delplace et Leuliet (1995), Delplace et al. (1997), Petit et al., (2013) et Bouvier et al. (2014).

Tableau 2.4. Conditions opératoires étudiées à l'échelle pilote avec l'ECP à 5 canaux : débitset températures moyennes d'entrée et de sortie de la solution de WPI et de l'eau chaude.

N° du profil	T_{ep} (°C)	T_{sp} (°C)	Q_p (L.h ⁻¹)	T_{eec} (°C)	$T_{sec}(^{\circ}\mathrm{C})$	Q_{ec} (L.h ⁻¹)
thermique						
#1	67	84	300	87	72	300
#2	68	84	300	85	81	900
#3	66	83	300	97	69	150
#4	61	74	300	77	66	300

Notons que les profils thermiques simulés prédisent avec succès les températures expérimentales de sortie du produit et de l'eau chaude (notées respectivement T_{sp} et T_{sec}) enregistrées durant les essais d'encrassement.

Les profils de température représentés dans la figure 2.4 sont obtenus suite à des simulations avec le logiciel Sphère et l'utilisation des conditions opératoires résumées dans le tableau 2.4.

Figure 2.3. Les profils thermiques imposés dans l'ECP de 5 canaux.

Les débits volumiques des différents fluides sont mesurés sur la plateforme expérimentale à l'aide de débitmètres électromagnétiques à induction (Krohne type DN10). La pleine échelle de ces capteurs est réglable et permet de mesurer des débits allant jusqu'à 10 m³.h⁻¹. Les températures expérimentales d'entrée et de sortie du produit et de l'eau chaude sont mesurées à l'aide de sondes à résistance de platine (100 Ω à 0°C). Quant à la mesure de la perte de charge, elle a été effectuée à l'aide d'un capteur pleine échelle de 300 hPa (Bailey Sereg type 8D). Les différentes mesures de ces capteurs (débit, température et pression) sont relevées à l'aide d'un système d'acquisition (Burr Brown MCS 100) composé essentiellement d'un convertisseur analogique-digital et d'organes d'entrée-sortie reliés à un ordinateur par l'intermédiaire d'une liaison série (RS 232).

1.2. Configuration d'ECP à 10 canaux

Une deuxième configuration de l'ECP à 10 canaux a été utilisée, pour le traitement thermique d'une durée de 2 heures d'une solution modèle de WPI, afin de comparer les résultats d'encrassement avec ceux obtenus avec la configuration de l'ECP à 5 canaux en imposant les mêmes conditions de procédé. A cet effet, le système utilisé dans cette deuxième configuration est présenté dans la figure 2.5.

Figure 2.4. Montage de l'installation pilote utilisée pour les essais d'encrassement (configuration de l'ECP à 10 canaux).

Il est composé de :

- une cuve de 600 L contenant la solution modèle à traiter ;
- un système Actijoule (Actini, Evian, France) de 30kW constitué de tubes en acier inoxydable (20,7 m de longueur et 23 mm de diamètre) et alimenté en basse tension, préchauffant la solution modèle par effet Joule ;
- un tuyau en acier inoxydable (15,7 m de longueur et 23 mm de diamètre) portant le produit préchauffé du système Actijoule à l'ECP ;
- un ECP constitué de 10 canaux (un canal par passe) avec une configuration à contrecourant (figure 2.6), composé de 21 plaques de type de V7 (Alfa Laval Vicarb, Fontanil-Cornillon, France);
- un chambrage constitué d'un ensemble de 20 m de conduites tubulaires en acier inoxydable (de 36 mm de diamètre intérieur).

Figure 2.5. Représentation de la configuration de l'ECP à 10 canaux utilisée pour les essais d'encrassement.

Des conditions de procédé stables sont assurées en contrôlant les températures à l'entrée et la sortie de l'ECP, les débits, la chute de pression et le coefficient de transfert de chaleur. De plus, les mêmes conditions de procédé que celles présentées dans le tableau 3.4 ont été imposées dans l'ECP à 10 canaux, comme le montre la figure 2.7.

Figure 2.6. Les profils thermiques imposés dans l'ECP à 10 canaux.

Pour cette configuration d'ECP, le temps de séjour moyen dans la zone de chauffage pour un $Q_p = 300 \text{ L.h}^{-1}$ est de 28 s et le *Re* moyen pour les différents profils thermiques étudiés (#1, #2 et #4) varie entre 2614 et 3024. Le profil thermique #3 n'a pas été testé avec cette configuration d'ECP.

Des conditions de procédé répétables sont obtenues avec cet équipement. En effet, chaque expérimentation a été doublée et des écarts inférieurs à 2°C pour les températures d'entrée de l'ECP et de 10 L.h⁻¹ pour les débits ont été notés. Cette observation montre une très faible variabilité des résultats de dénaturation de la β -lg et de l'encrassement de l'ECP, résultats acceptables pour des essais à l'échelle pilote.

Pour les deux configurations d'ECP étudiées (à 5 et à 10 canaux), des échantillons ont été prélevés dans la cuve de lancement et à la sortie du préchauffeur et de l'ECP et ont été aussitôt refroidis dans un bain d'eau à 4°C afin de stopper la réaction de dénaturation chaude de la β -lg. Ces prélèvements permettent à la fois de : (i) comprendre l'effet du traitement thermique sur la dénaturation chaude de la β -lg et les mécanismes d'encrassement et (ii) vérifier que les solutions modèles de WPI ne sont pas significativement dénaturées et agrégées dans la zone de préchauffage.

2. Quantification des encrassements

2.1. Par pesée des masses de dépôt sec

Suite à l'encrassement des plaques de l'ECP après un traitement thermique de la solution modèle de WPI, celles-ci sont démontées permettant ainsi à une partie de l'eau du dépôt de s'écouler. La séparation des plaques d'un canal encrassé n'est pas évidente. En effet, les plaques sont collées entre elles par le dépôt encrassant et au moment de les séparer, des quantités de dépôt protéique peuvent rester collées sur l'une ou l'autre des plaques. Il serait alors hasardeux d'essayer d'interpréter des différences de masses de dépôt entre deux plaques d'un même canal. Nous avons de ce fait interpréter les résultats en termes de masse de dépôt par canal et non par plaque.

Les plaques recouvertes de dépôt humide sont séchées dans une étuve à 50°C pendant 2 heures, ce qui permet de minimiser la teneur en eau des dépôts et peser ainsi avec précision la quantité de dépôt dans chaque canal de l'ECP. La masse de dépôt sec sur chaque plaque s'obtient en soustrayant à la masse de la plaque encrassée celle de la plaque propre. La masse de dépôt sec par canal est obtenue en calculant la moyenne des masses de dépôt sec mesurées

sur deux plaques constituant une passe. Cette méthode permet donc de tracer l'évolution de la quantité de dépôt en fonction de la position dans l'échangeur (par numéro de canal) et de relier ainsi la masse de dépôt formé (après un temps de fonctionnement fixé) au temps de séjour moyen dans l'ECP ou à la température moyenne dans chaque canal.

Une fois les plaques pesées, elles sont remontées dans l'ECP et un nettoyage, avec des solutions de soude à 2% (v/v) et d'acide nitrique à 2 % (v/v) chauffées à 80°C, est effectué jusqu'à atteindre les valeurs initiales de perte de charge et de coefficient de transfert thermique de l'installation (indiquant que les plaques sont propres). Cette dernière étape permet de s'assurer que les expérimentations se déroulent toujours dans les mêmes conditions initiales.

La figure 2.8 représente un exemple de la reproductibilité des résultats d'encrassement à partir de la mesure des masses de dépôt sec dans chaque canal de l'ECP à 5 canaux, pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total. La numérotation des canaux de 1 à 5 correspond à celle de la figure 2.3.

Figure 2.7. Essais de reproductibilité des masses de dépôt sec mesurées sur les plaques de *l'ECP*.

La figure 2.8 montre que la reproductibilité des essais d'encrassement (essai 1 et essai 2) réalisés dans des conditions identiques (profil thermique imposé #1) est satisfaisante. En effet, à titre d'exemple, la masse de dépôt sec mesurée dans le 5^{ème} canal de l'ECP est de 40,4 g pour l'essai 1 contre 41,1 g pour l'essai 2.

2.2. Par la mesure du coefficient de transfert de chaleur global et de la perte de charge

Au cours des essais d'encrassement, le coefficient de transfert de chaleur global (U_g) est mesuré au travers de l'augmentation de la température d'entrée de l'eau chaude, nécessaire au maintien de la température de sortie du produit. La figure 2.9 représente un exemple de l'évolution des températures d'entrée et de sortie des fluides chaud et froid au cours du temps pour un essai donné (solution modèle de WPI à 1% p/p contenant 100 ppm de calcium total, profil thermique imposé #1).

Figure 2.8. Exemple de l'évolution des températures d'entrée et de sortie du produit et de l'eau chaude durant un traitement thermique de 2 heures (profil thermique # 1).

Le suivi du coefficient U_g permet de représenter l'état d'encrassement de l'ECP durant le traitement thermique d'une solution modèle de WPI (figure 2.10) et de connaître l'évolution de la résistance thermique de transfert de chaleur en fonction du temps $(1/U_g)$. Le tableau 2.5 reporte les coefficients de transfert de chaleur globaux au démarrage des essais d'encrassement. La perte de charge est également enregistrée au cours des essais expérimentaux afin de suivre la progression de l'encrassement des plaques de l'ECP (figure 2.11). Elle est de l'ordre de 0,2 bars.

Figure 2.9. Exemple de l'évolution du coefficient de transfert de chaleur global durant le traitement thermique dans l'ECP (profil thermique #1) d'une solution modèle de WPI.

Tableau 2.5. Coefficients de transfert de chaleur globaux calculés au démarrage des essais d'encrassement d'une solution modèle de WPI (1% p/p contenant 100 ppm de calcium total) pour différents profils thermiques imposés dans l'ECP.

N° du profil thermique	U_g (W.m ⁻² .°C ⁻¹)
#1	1337
#2	1540
#3	1020
#4	
	1255

Figure 2.10. Exemple de l'évolution de la perte de charge durant le traitement thermique dans l'ECP (profil thermique #1) d'une solution modèle de WPI.

3. Caractérisation de la composition et de la structure des premières couches de dépôt en surface

Des analyses Electron Probe MicroAnalysis (EPMA) et par Spectroscopie de Photoélectrons X (XPS) ont été réalisées pour étudier la composition et la structure des premières couches du dépôt encrassant. Les techniques de caractérisation en surface ont été effectuées à partir d'échantillons de morceaux découpés de plaques d'ECP après un essai d'encrassement. Malgré la destruction de la plaque encrassée, cette méthode destructive a été choisie pour étudier les couches réelles de dépôt. En effet, il est rare dans la littérature que la caractérisation de la couche de dépôt ait été effectuée sur un dépôt formé directement sur les plaques de l'ECP et en zone de chauffage.

Dans ce travail de thèse, le dépôt formé a été analysé dans des conditions réelles, directement sur la surface corruguée d'une plaque d'ECP situé dans la zone de chauffage de l'installation (configuration de l'ECP à 5 canaux).

Nous avons décidé d'analyser la solution modèle de WPI la plus concentrée (2,5% p/p) et la moins concentrée (0,25% p/p). Le choix de ces deux solutions n'est pas arbitraire et sera expliqué dans la partie "Résultats et discussions ". Pour les deux solutions de β -lg étudiées, le

même traitement thermique a été imposé dans l'ECP, à savoir le profil de température #1 (T_{ep} 65°C, T_{sp} 85°C, Q_p 300 L.h⁻¹ et Q_{ec} 300 L.h⁻¹).

3.1. Par microanalyse par sonde électronique (EPMA)

Les morceaux de plaque ont été enrobés dans de la résine époxy, polis avec une polisseuse manuelle à plateau rotatif (ESC 200 GT) en utilisant différents disques (d'une suspension diamantée de taille de particules allant jusqu'à ¼ µm) et recouverts d'un film de carbone en utilisant le dispositif de pulvérisation Bal-Tec SCD005. Ce mode opératoire permet la stabilisation de l'échantillon et l'accès à une surface très plate indispensable pour ces analyses. En effet, le dépôt protéique sec adhère mal à la surface de la plaque. Il est donc susceptible de se détacher lors de l'émission du faisceau d'électrons. L'utilisation de la résine époxy permet par conséquent d'immobiliser l'échantillon dans une position stable. En outre, l'application d'une couche de carbone de quelques nanomètres est nécessaire afin de rendre la surface de l'échantillon conductrice.

L'EPMA est une technique d'analyse in situ non destructive permettant de détecter tous les éléments à partir du Béryllium dans un volume de l'ordre du micromètre cube avec une sensibilité d'environ 100 ppm. La microsonde électronique analyse l'émission X produite par l'interaction entre des électrons incidents et les éléments constituant l'échantillon à analyser. L'émission X issue de l'échantillon a été analysée dans le cas de l'EPMA Cameca SX-100 par des spectromètres à dispersion de longueur d'onde, à 15 kV 15 nA pour les images en électrons rétrodiffusés et à 15 kV 40 nA pour les cartographies X. Pour ces cartographies, un cristal PET a été utilisé pour détecter les rayonnements K α du sulfure (élément caractéristique de la molécule de β -lg), du calcium et du chlore (élément caractéristique du CaCl₂ utilisé) et un cristal LiF pour détecter le rayonnement K α du fer (élément caractéristique de la plaque de l'ECP). Les cartographies sont codées par couleur du noir au rouge : le noir indiquant l'absence de l'élément et le rouge étant la plus forte concentration détectée.

3.2. Par spectroscopie de photoélectrons X (XPS)

La spectroscopie XPS est une technique d'analyse de l'extrême surface de l'échantillon, de profondeur d'analyse inférieure à 10 nm. Le principe de cette technique consiste à mesurer le nombre d'électrons émis dans un intervalle d'énergie en fonction de l'énergie de liaison des électrons. Chaque élément chimique étant caractérisé par un spectre unique, cette méthode spectroscopique permet d'analyser précisément la nature chimique des échantillons. Des

analyses semi-quantitatives peuvent être également extraites des spectres XPS normalisés en se basant sur la hauteur et la surface des pics. L'identification de l'état chimique d'un élément peut donc être obtenue à partir de la mesure exacte de la position des pics et de leurs séparations en énergie.

Les analyses ont été effectuées sur un Axis Ultra DLD (Kratos Analytical), utilisant une source de rayons X monochromatique Al K α (1486,6 eV) dans les conditions suivantes : une tension d'émission de 15 kV, un courant de 10 mA, une pression de 10⁻⁷ Pa à l'intérieur de la chambre et une surface de la zone analysée de 300 × 700 µm² sur une profondeur de 10 nm. Un spectre général est acquis sur une gamme d'énergies de liaison comprises entre 0 et 1300 eV. Une énergie de passage de 160 eV avec un pas de 1 eV est utilisée pour l'enregistrement des spectres haute résolution des pics du carbone (C1s). Le traitement des données expérimentales se fait à l'aide du logiciel Casa XPS (Casa Software, Ltd). Pour cela, une remise à l'échelle est d'abord réalisée en plaçant le pic C-C du C1s à 285 eV. Les pics Ca2p ont été décomposés selon la forme des pics entre les limites gaussienne et lorentzienne.

Chapitre 3 : Identification des cinétiques de dénaturation chaude de la β-lg

Dans ce chapitre, nous présenterons d'abord la méthode et les techniques utilisées pour évaluer les cinétiques de dénaturation des solutions protéiques modèles encrassantes et déterminer les paramètres cinétiques de dénaturation chaude de la β-lg.

1. Essais de dénaturation chaude de la β-lg en conditions statiques

L'identification des cinétiques de dénaturation chaude de la β -lg des solutions protéiques modèles encrassantes a été majoritairement effectuée par le biais de tests à l'échelle laboratoire en conditions statiques.

Pour ce faire, nous avons placé des échantillons de solutions modèles de WPI à caractériser dans des tubes à essai en inox et leur avons fait subir une montée en température jusqu'à atteindre une température de plateau final allant de 68° C à 93° C. Cette température de plateau final est appelée température de dénaturation de la β -lg et présentée à la figure 3.12.

Pour obtenir la montée en température (de 20°C à la température de dénaturation souhaitée), les tubes à essai ont été introduits dans 3 bains-marie successifs de températures connues et contrôlées.

Pour chaque température de dénaturation de la β -lg, 12 tubes en inox contenant chacun 2 mL de la solution protéique modèle ont été utilisés. Ces tubes à essais ont été retirés au fur et à mesure du troisième bain-marie, après avoir passé un temps connu à la température de dénaturation.

Une fois extraits du troisième bain-marie, ces tubes à essais ont été immédiatement refroidis à 4°C pour figer la cinétique de dénaturation et permettre un dosage non biaisé par HPLC des β -lg solubles.

Plus précisément, le protocole opératoire multi étapes suivant a été adopté :

les échantillons sont placés dans un premier bain-marie à 60°C (pour les essais de dénaturation dont les températures désirées sont inférieures à 80°C) ou à 65°C (pour les essais de dénaturation dont les températures désirées sont supérieures à 80°C). Ce premier bain-marie sert à préchauffer les échantillons sans dénaturer les protéines en solution. En effet, la température de dénaturation de la β-lg est d'environ 74–77°C (Nielsen et al., 1995 ; Linmark-Mansson et al., 2005 ; Guérin et al., 2007) ;

- lorsque la température du premier bain-marie est atteinte, les échantillons sont placés dans un second bain-marie à des températures allant de 90°C (pour les essais de dénaturation dont les températures désirées sont inférieures à 80°C) à 100°C (pour les essais de dénaturation dont les températures désirées sont supérieures à 80°C). Ce deuxième bain-marie sert à chauffer l'échantillon très rapidement à la température désirée de l'essai afin de limiter la dénaturation de la β-lg ;
- dès lors que la température de dénaturation de la β-lg (ou encore appelée température de plateau) est atteinte, le premier échantillon est prélevé à t = 0 min, lorsque la température de l'échantillon est à la température désirée, et aussitôt plongé dans un bain à 4°C (eau glacée) pour stopper la réaction. Les 11 autres échantillons sont maintenus pendant un temps suffisant dans un troisième bain-marie (fixé à 1°C au-dessus de la température désirée de l'essai), prélevés à différents instants (correspondant à un intervalle de temps fixe) et refroidis aussitôt à 4°C.

Le profil de température des échantillons a été mesuré en plaçant une sonde de température (reliée à un système d'acquisition de température) dans un tube témoin en inox rempli d'eau. Un exemple d'un profil de température de dénaturation chaude de la β -lg pour une solution de WPI à 1% (p/p) contenant 100 ppm de calcium total est présenté dans la figure 2.12.

Figure 2.11. Exemple d'un profil de température de dénaturation chaude de la β -lg pour une solution de WPI à une teneur en calcium fixe.

2. Essais de dénaturation chaude de la β-lg en conditions dynamiques

Des essais de dénaturation chaude de la β -lg ont également été effectués à l'échelle pilote en conditions dynamiques afin de comparer les paramètres cinétiques obtenus dans ces conditions avec ceux en conditions statiques.

L'appareil utilisé pour le traitement thermique de la solution modèle de WPI (1% p/p contenant 100 ppm de calcium total) est composé de deux ECP et d'un chambreur tubulaire (utilisé pour la prise des échantillons). Le premier ECP est utilisé pour le préchauffage de la solution protéique modèle et le deuxième pour le chauffage de celle-ci jusqu'à la température de dénaturation de la β -lg. Le chambreur tubulaire permet la prise d'échantillons pour analyse en HPLC. Les mêmes montées en températures ont été imposées à l'échelle pilote et laboratoire (il faut par exemple 14 s pour monter de 65 à 85°C). De plus, les mêmes temps de prise des échantillons ont été fixés. Par exemple, les temps de prélèvement d'un essai à 85°C sont de : 0 min, 15 s, 30 s, 45 s, 1 min, 1 min 30 s, 2 min, 2 min 30 s, 3 min, 5 min, 7 min et 10 min).

Le dispositif expérimental utilisé est représenté dans la figure 2.13. Il est constitué de :

- deux cuves à double-enveloppe d'environ 6 L chacune, contenant la solution protéique modèle à traiter, raccordées sur une pompe à lobes (GM137) ;
- deux ECP de type V2 (Alfa Laval Vicarb, Fontanil-Cornillon, France) utilisés pour le préchauffage et le chauffage et montés en série dans le même bâti. Chacun de ces ECP sont constitués de 11 plaques, soit 5 passes avec un canal par passe avec une configuration à contre-courant (figure 2.14);
- un chambreur tubulaire double enveloppe (40 m de longueur et 12 mm de diamètre intérieur) équipé de 12 prises d'échantillons ;
- un premier circuit d'eau chaude constitué d'un échangeur Actijoule de 30 kW utilisé pour le chauffage de la solution protéique modèle étudiée ;
- un deuxième circuit d'eau chaude constitué également d'un échangeur Actijoule de 15kW
 utilisé pour le préchauffage de la solution protéique modèle étudiée ;
- un troisième circuit d'eau chaude constitué d'une petite boucle d'eau chaude à injection directe de vapeur permettant de maintenir la température du fluide modèle dans le chambreur.

Figure 2.12. Dispositif expérimental utilisé à l'échelle pilote pour les essais de dénaturation chaude de la β -lg (solution modèle de WPI à 1% p/p contenant 100 ppm de calcium total.

Figure 2.13. Représentation de la configuration de l'ECP utilisée pour les essais de dénaturation chaude en conditions dynamiques.

3. Détermination de la concentration en β-lg soluble

Les concentrations en β - lg solubles (β -lg native + β -lg dépliée) des différents échantillons, dénaturés à une température donnée, sont obtenues par analyse HPLC (chromatographie liquide à haute performance) après dilution, ajustement du pH à 4,6 avec de l'acide acétique et centrifugation afin de précipiter les agrégats à 9000 tr.min⁻¹ pendant 30 min à 4°C.

Le système chromatographique complet de Waters (Milford, Massachusetts, USA) a été utilisé pour ces analyses. Ce système comporte une pompe quadratique (modèle 616), un injecteur automatique (modèle 717 Plus), un spectrophotomètre UV-visible utilisé comme détecteur (modèle 486), un four à colonne (chromatographie de Jones, modèle 7971), une colonne séparatrice à phase inverse (CLHP ACE 300 Å C4 : $250 \times 4,6$ mm) et un logiciel d'acquisition (Millenium 3.2).

Les analyses ont été effectuées dans les conditions suivantes : un débit de 1 mL.min⁻¹, un volume d'injection de 20 μ L, une température de la colonne de 40°C, une longueur d'onde de détection de 214 nm et un gradient d'élution de 0,1% (v/v) d'acide trifluoroacétique (99 %, Acros Organics, Thermo Fisher Scientific, Waltham, Massachusetts, USA) dans de l'eau milli-Q (Millipore, Bedford, MA) vers 0,1% (v/v) d'acide trifluoroacétique dans un mélange de 80% (v/v) d'acétonitrile (HPLC gradient grade, Thermo Fisher Scientific, Waltham, Massachusetts, USA) et 20% (v/v) d'eau milli-Q. Un rinçage quotidien de la colonne a été effectué avant chaque lancement des échantillons avec 100% (v/v) d'acétonitrile pendant 60 min à 0,5 mL.min⁻¹. Une gamme étalon a été préparée à différentes concentrations de 0,5, 1, 2, 3 et 4 g.L⁻¹ à partir d'une solution de β -lg quasi-pure (β -lg : 88,85% p/p, Biopure, Ingredia, Arras, France) dissoute dans de l'eau milli-Q.

Chaque échantillon, dénaturé à une température donnée, a été analysé trois fois et sa concentration a été calculée à partir de la moyenne des trois surfaces des pics chromatographiques mesurées. La concentration de chaque échantillon permet ainsi de connaître la concentration en β -lg soluble en fonction du temps à la température de dénaturation (figure 2.15).

Figure 2.14. Exemple d'une cinétique de dénaturation de la β -lg soluble à 85°C pour une solution modèle de WPI à 0,5% (p/p) contenant 100 ppm de calcium total.

Détermination des paramètres cinétiques de dénaturation chaude de la β-lg

Ce paragraphe présente les méthodes utilisées pour déterminer : (i) dans un premier temps l'ordre de réaction et la constante cinétique de dénaturation à chaque température de dénaturation, à partir de la connaissance de la concentration en β -lg soluble et son évolution dans le temps, (ii) puis, les paramètres cinétiques de dénaturation chaude de la β -lg (énergies d'activation et facteurs de fréquence et constantes cinétiques des réactions de dépliement et d'agrégation) pour chaque solution protéique modèle, dans la plage de températures étudiée (68-93°C).

Deux méthodes différentes, basées respectivement sur le modèle de Tolkach et Kulozik (2007) et celui avec deux réactions successives, conduisant à différents paramètres cinétiques de dénaturation chaudes de la β -lg sont décrites.

4.1. Modèle de Tolkach et Kulozik (2007)

La réaction de dénaturation chaude de la β -lg concerne la transformation de l'espèce soluble (notée *S*) en agrégats (notés *A*). La dénaturation de la β -lg est décrite par l'équation chimique :

$$S \xrightarrow{k_n} A$$
 (2.2)

et définie par l'équation cinétique :

$$-\frac{dC_S}{dt} = k_n C_S^n \tag{2.3}$$

où *Cs* désigne la concentration en β -lg soluble, k_n la constante de la réaction de dénaturation à identifier et *n* l'ordre de réaction généralement compris entre 1 et 2 (Mulvihill et Donovan, 1987 ; Dannenberg et Kessler, 1988 ; Relkin, 1996 ; Petit et al., 2011).

L'intégration de l'équation 2.3 conduit à l'expression suivante :

$$k_n t = \frac{1}{n-1} (C_S^{1-n} - C_S^{0\,1-n}) = Y_n \tag{2.4}$$

avec C_S^0 désignant la concentration en β -lg soluble du premier échantillon (c'est-à-dire le premier prélèvement à t = 0 min à la température de dénaturation).

Identification de l'ordre de réaction, (n).

Dans ce travail de thèse, nous avons fait varier l'ordre de réaction, n entre 1 et 2 (avec un pas de 0,1) pour déterminer le meilleur ajustement des données expérimentales. Les expressions de Y_n correspondantes aux ordres de réaction 1,5 et 2 apparaissent dans le tableau 2.6.

Tableau 2.6. Expression de Y_n pour n = 1,5 et n = 2.

N	1,5	2
Y_n	$2 \cdot \left(\frac{1}{\sqrt{C_s}} - \frac{1}{\sqrt{C_s^0}}\right)$	$\frac{1}{C_S} - \frac{1}{C_S^0}$

Un exemple typique d'une régression linéaire des points expérimentaux en fonction du temps de prélèvement obtenue pour les ordres de réaction n = 1,5 et n = 2 suite à un essai de dénaturation chaude de la β -lg d'une solution modèle de WPI à 0,5% (p/p) contenant 100 ppm de calcium total est présenté sur la figure 2.16. Cette figure montre que quel que soit l'ordre de réaction (1,5 ou 2), le tracé de Y_n en fonction du temps conduit à une droite de pente k_n .

Figure 2.15. Exemple d'une régression linéaire pour n = 1,5 et n = 2 permettant de déterminer la constante cinétique de dénaturation à 85°C d'une solution modèle de WPI à 0,5% (p/p) contenant 100 ppm de calcium total.

Ceci illustre que les deux ordres de réaction 1,5 et 2 conviennent pour ajuster les données expérimentales. Nous avons néanmoins choisi de fixer *n* à 1,5, pour l'ensemble des essais de dénaturation chaude de la β -lg des différentes solutions modèles de WPI et la plage de températures étudiée allant de 68 à 93°C, puisque l'ordre de réaction généralement admis dans la littérature est de 1,5 (Anema, 2000 ; Tolkach et Kulozik, 2005 ; Anema et al., 2006 ; Tolkach et Kulozik, 2007 ; Zúñiga et al., 2010 ; Petit et al., 2011 ; Wolz et Kulozik, 2015 ; Akkerman et al., 2016 ; Loveday, 2016 ; Kerche et al., 2016).

Identification de la constante cinétique de dénaturation, (k_n).

Il a été établi à maintes reprises que les constantes cinétiques de dénaturation sont dépendantes de la température (Tolkach et Kulozik, 2007 ; Petit et. al, 2011). Cette thermodépendance est traditionnellement décrite par une loi d'Arrhenius du type :

$$\ln(k_n) = \ln(k_n^{\circ}) - \frac{E_{A_n}}{RT}$$
(2.5)

avec k_n° le facteur de fréquence, E_{A_n} l'énergie d'activation, R la constante des gaz parfaits et T la température.

La figure 2.17 représente un exemple de l'évolution de la constante k_n avec la température pour une solution modèle de WPI à 0,5% (p/p) contenant 100 ppm de calcium total. Cette figure confirme les prévisions attendues, à savoir la dépendance de la température de la constante k_n .

Figure 2.16. Evolution des constantes cinétiques k_n avec la température selon le modèle de Tolkach et Kulozik (2007) : Graphe d'Arrhenius de la dénaturation chaude de la β -lg où des ajustements par plage de températures ont été réalisés sur les constantes cinétiques de dépliement et d'agrégation (k_{unf} et k_{agg}).

L'observation de la figure 2.17 montre clairement qu'il n'est pas possible de décrire la thermo-dépendance de k_n par une loi d'Arrhenius unique pour la plage de températures allant de 70 à 90°C. Ce résultat laisse présager qu'il existe deux mécanismes superposés qui deviennent tout à tour prépondérant selon la plage de températures considérée (de 70 à 80°C et de 80°C à 90°C) et qu'un ajustement différent par plage de températures doit être réalisé.

La figure 3.17 montre également que la rupture de pente est observée à T = 80 °C. Cette rupture de pente a déjà été observée par d'autres auteurs (Tolkach et Kulozik, 2007 ; Petit et al., 2011 ; Wolz et Kulozik, 2015) et expliquée par un changement d'étape limitante : la réaction de dépliement de la β -lg est limitante en-dessous de 80°C et au-delà, c'est la réaction d'agrégation qui devient limitante. En effet, lorsque la température est inférieure à la température critique (80°C), la protéine est partiellement dépliée entraînant une diminution de la vitesse de réaction mesurée tandis que pour des températures supérieures, la protéine est totalement dépliée.

Les deux régressions linéaires obtenues à partir des valeurs expérimentales dans les deux plages de températures permettent donc de déterminer les paramètres cinétiques (facteurs de fréquence et énergies d'activation) relatifs aux phénomènes de dépliement et d'agrégation :

Si
$$T < 80^{\circ}$$
C, $k_n = k_{unf}$:

$$\ln(k_{unf}) = \ln(k_{unf}^{\circ}) - \frac{E_{A,unf}}{RT}$$
(2.6)

avec k_{unf} la constante cinétique de dépliement, k_{unf}° le facteur de fréquence de dépliement et $E_{A,unf}$ l'énergie d'activation de dépliement.

Si
$$T > 80^{\circ}$$
C, $k_n = k_{agg}$:

$$ln(k_{agg}) = ln(k_{agg}) - \frac{E_{A,agg}}{RT}$$
(2.7)

avec k_{agg} la constante cinétique d'agrégation, k_{agg}° le facteur de fréquence d'agrégation et $E_{A,agg}$ l'énergie d'activation d'agrégation.

Ainsi, les constantes cinétiques (k_{unf} et k_{agg}) spécifiques aux deux mécanismes de dénaturation de la β -lg (dépliement et agrégation) peuvent être déterminées.

Tolkach et Kulozik (2007) ont introduit une grandeur α nommée degré de dépliement. α régit l'équilibre réversible instantané entre l'espèce N et l'espèce U, à une température donnée. α est défini comme le ratio de la concentration de l'espèce U sur la concentration de l'espèce S:

$$\alpha = \frac{c_U}{c_N + c_U} = \frac{c_U}{c_S} \tag{2.8}$$

Tolkach et Kulozik (2007) ont relié α aux constantes cinétiques de dénaturation à partir de l'exploitation de la rupture de pente observée sur le graphe d'Arrhenius (figure 3.18).

Figure 2.17. Degré de dépliement selon Tolkach et Kulozik (2007) défini à partir du graphe d'Arrhenius d'une solution modèle de WPI à 0,5% (p/p) contenant 100 ppm de calcium total.

L'expression liant α aux constantes cinétiques de dénaturation k_{unf} et k_{agg} proposée par Tolkach et Kulozik (2007) est la suivante :

$$\alpha = \exp\left(\frac{\ln(k_n) - \ln(k_{agg})}{n}\right)$$

avec $k_n = k_{unf}$ si $T < 80^{\circ}$ C ou $k_n = k_{agg}$ si $T > 80^{\circ}$ C. (2.9)

Matériels & Méthodes

Au final, on constate que la connaissance à chaque instant de C_S et de α (à une température donnée) permet donc de calculer les concentrations des espèces dépliée, native et agrégée (respectivement C_U , C_N et C_A) :

$$C_U = \alpha \cdot C_S \tag{2.10}$$

$$C_N = (1 - \alpha). C_S \tag{2.11}$$

$$C_A = C_S^0 - C_S \tag{2.12}$$

Pour une cinétique de dénaturation établie en condition statique (à température de dénaturation constante), l'évolution de C_s au cours du temps est mesurée. Il est donc très aisé de simuler l'apparition de l'espèce A (équation 2.12) et la disparition des espèces N (équation 2.11) et U (équation 2.12) et par conséquent de l'espèce S. Nous donnons à titre d'exemple un de ces graphes à la figure 2.19 (pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium traitée thermiquement à 75°C).

Figure 2.18. Evolution au cours du temps des concentrations des différentes espèces de β -lg selon le modèle de Tolkach et Kulozik (2007).

Les valeurs simulées correspondent à celles obtenues lors d'une dénaturation à 75°C d'une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total. Les valeurs de l'espèce soluble mesurée au cours de cette expérience de dénaturation ont également été reportées.

4.2. Modèle avec deux réactions successives

La méthodologie proposée par Tolkach et Kulozik (2007) est couramment admise et pratiquée dans le secteur laitier pour identifier des constantes de dépliement et de d'agrégation. Ce modèle présente l'avantage de ne faire intervenir qu'une seule constante de vitesse k_n . Cependant, cette méthodologie d'un point de vue conceptuel se distingue des modèles de génie chimique classique. En effet, en génie de la réaction chimique, on n'a pas l'habitude de déduire a postériori deux constantes réactionnelles (constantes de dépliement et d'agrégation) à partir d'un schéma réactionnel comportant initialement une seule réaction $(S \rightarrow A)$.

Afin d'avoir une approche plus conforme aux mécanismes proposés dans la littérature, un modèle avec deux réactions successives a été proposé pour rendre compte de la transformation des espèces protéiques suite à la dénaturation chaude de la β -lg.

Le modèle avec deux réactions successives consiste en la succession de deux mécanismes successifs à contrôle cinétique :

- Le dépliement de la β -lg native (notée N) pour former l'espèce dépliée (notée U) ;
- L'espèce U, réactive, forme des agrégats (notés A) suite à l'association de deux β-lg dépliées via leurs thiols libres.

Les équations 3.13 et 3.14 résument le mécanisme de dénaturation tel que décrit ci-dessus :

$$N \xrightarrow{k_1} U \tag{2.13}$$

$$U \xrightarrow{k_2} A \tag{2.14}$$

où k_1 et k_2 sont respectivement les constantes cinétiques de dépliement et d'agrégation.

Avec, ce modèle à deux réactions successives, les évolutions des concentrations des espèces N et U (respectivement C_N et C_U) sont régies par les équations suivantes :

$$\frac{dc_N}{dt} = -r_1 \tag{2.15}$$

$$\frac{dC_U}{dt} = r_1 - r_2 \tag{2.16}$$

avec : $r_1 = k_1 \cdot C_N^{n_1}$ (2.17)

$$r_2 = k_2 . C_U^{n_2} \tag{2.18}$$

Identification des ordres de réaction, (n1 et n2).

Dans un premier temps, afin de garder quelques similarités avec le modèle de Tolkach et Kulozik (2007), nous avons fixé l'ordre de réaction à 1,5 pour à la fois les réactions de dépliement et d'agrégation ($n_1 = n_2 = 1,5$). Puis, l'ordre de réaction a été fixé à 1 pour la réaction de dépliement ($n_1 = 1$) et à 2 pour l'agrégation ($n_2 = 2$). Là encore, le choix de ces ordres de réaction, à savoir 1 et 2, n'a pas été subjectif. En effet, la réaction de dépliement a souvent été considérée par certains comme étant une réaction de premier ordre (Verheul et al., 1998) : $N \rightarrow U^*$ (U^* est la β -lg partiellement dépliée). L'agrégation étant une réaction bimoléculaire, il est donc logique de supposer une réaction du second ordre (Verheul et al., 1998) : $U^* + U^* \rightarrow U_2^*$.

Identification des constantes cinétiques de dénaturation, (k1 et k2).

Les paramètres cinétiques de dénaturation de la β -lg (k_1 et k_2) ont été identifiés grâce à l'algorithme présenté à la figure 2.20. La chronologie de cet algorithme est la suivante :

- Initialisation de k_1 et k_2 ;
- Calcul de concentrations C_N , C_U , C_A , à chaque instant t_i pour i allant de 0 à N. Pour cela, un bilan de population a été réalisé s'appuyant sur l'apparition/disparition des espèces entre deux instants consécutifs t_{i+1} et t_i tels que $t_{i+1} - t_i = \Delta t$. Les calculs sont basés sur le fait que : i) l'équation (2.15) traduisant la disparition de l'espèce N admet une solution analytique, ii) l'équation (2.16) régissant l'évolution en concentration de l'espèce U peut être résolue de façon discrète par la méthode d'Euler avec un pas de temps $\Delta t = 0,05$ s, iii) et que la concentration en agrégat correspond à la concentration de l'espèce soluble initiale à laquelle la concentration en soluble restant ($C_S = C_N + C_U$) a été retranchée ;
- Comparaison des Cs calculée et Cs mesurée. Comme la Cs mesurée n'a pas été sondée à chaque instant (12 prélèvements), la Cs mesurée a été prise égale aux valeurs obtenues en utilisant le modèle de Tolkach et Kulozik (2007) servant de référence ;
- Optimisation des valeurs de k_1 et k_2 afin d'obtenir un profil de concentration C_S calculée identique au profil de concentration de $C_{S mesurée}$. La méthode des moindres carrées

a été utilisée grâce au solveur d'Excel : variations de k_1 et k_2 afin de minimiser la fonction objectif (f_{ob}) définie par la somme des carrés de la différence entre $C_{S calculée}$ et $C_{S mesurée}$.

Figure 2.19. Représentation schématique de la méthode de calcul conduisant à déterminer les paramètres cinétiques de dénaturation chaude de la β -lg.

La figure 2.21 représente un exemple d'ajustement de k_1 et k_2 par la méthode des moindres carrés permettant d'obtenir un profil de concentration $C_{S calculée}$ identique à celui de $C_{S mesurée}$.

Figure 2.20. Exemple d'un ajustement des constantes cinétiques de dépliement et d'agrégation à 85°C pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total.

A l'issue de l'étape d'optimisation, on obtient les constantes de dénaturation k_1 et k_2 mais aussi l'évolution de la concentration des différentes espèces de β -lg pour la température de dénaturation imposée. La figure 2.22 représente l'apparition de l'espèce *A* et la disparition des espèces *N* et *U* (et par conséquent l'espèce *S*) à 75°C, pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium.

Figure 2.21. Evolution au cours du temps des concentrations des différentes espèces de β -lg selon le modèle de deux réactions successives.

Les valeurs simulées correspondent à celles obtenues lors d'une dénaturation à 75°C d'une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total. Les valeurs d'espèce soluble mesurées au cours de cette expérience de dénaturation ont également été reportées.

La détermination de k_1 et k_2 pour chaque température de dénaturation permet le tracé du graphe d'Arrhenius (figure 2.23).

A partir du graphe d'Arrhenius, l'expression des constantes cinétiques de dépliement et d'agrégation (k_1 et k_2) est définie par les équations 2.19 et 2.20, pour l'ensemble des températures étudiées :

$$k_1 = k_1^{\circ} \exp\left(\frac{-E_{A_1}}{RT}\right) \tag{2.19}$$

avec k_1 la constante cinétique de dépliement, k_1° le facteur de fréquence de dépliement et E_{A_1} l'énergie d'activation de dépliement.

$$k_2 = k_2^{\circ} \exp\left(\frac{-E_{A_2}}{RT}\right) \tag{2.20}$$

avec k_2 la constante cinétique d'agrégation, k_2° le facteur de fréquence d'agrégation et E_{A_2} l'énergie d'activation d'agrégation.

Figure 2.22. Graphe d'Arrhenius de la dénaturation chaude de la β -lg d'une solution modèle de WPI à 0,5% (p/p) contenant 100 ppm de calcium total obtenu en utilisant le modèle de deux réactions successives.

Chapitre 4 : Détermination des concentrations des différentes espèces de β-lg dans l'ECP

Nous présentons, dans ce dernier chapitre de la partie Matériels et Méthodes, la méthodologie utilisée pour déterminer les concentrations des différentes espèces protéiques (native, dépliée et agrégée) dans l'ECP en se basant sur les paramètres cinétiques de dénaturation chaude de la β -lg (dépliement et agrégation) et la connaissance des profils thermiques subis par les solutions protéiques modèles dans l'échangeur. La simulation de ces profils de concentrations le long de l'ECP sera effectuée avec les deux modèles étudiés : (i) le modèle de Tolkach et Kulozik (2007), (ii) et le modèle avec deux réactions successives en fixant dans un premier temps, l'ordre de réaction à 1,5 pour à la fois les réactions de dépliement et d'agrégation ($n_1 = n_2 = 1,5$) puis, à 1 pour la réaction de dépliement ($n_1 = 1$) et 2 pour l'agrégation ($n_2 = 2$).

Pour les deux modèles étudiés, la résolution des différentes équations, permettant de simuler les concentrations des espèces protéiques, a été effectuée par la méthode d'Euler. La discrétisation réalisée avec un pas de temps de 0,05 secondes a été réalisé sur les profils de températures imposés le long de l'ECP

Plusieurs hypothèses simplifiant le calcul de CN, CU et CA ont été considérées, à savoir :

- L'histoire thermique du produit depuis l'entrée de l'installation (à τ = 0 s) est calculée par le logiciel Sphère, conduisant à la connaissance de la loi : T_i = f(τ(i));
- L'écoulement dans l'ECP lors des traitements thermiques des solutions modèles de WPI est unidimensionnel et stationnaire ;
- La disparition de la β-lg dépliée le long de l'ECP, lors de la formation du dépôt encrassant, n'est pas prise en compte.

Simulation des profils de concentrations des différentes espèces de β-lg dans l'ECP avec le modèle de Tolkach et Kulozik (2007)

Dans l'hypothèse d'un écoulement piston, les équations d'évolution des concentrations des espèces protéiques sont identiques à celles d'un système fermé (substitution du temps de réaction par le temps de passage τ) :

$$\frac{dC_S}{d\tau} = -k_n C_S^{1,5} \tag{2.21}$$

Le graphe 2.24 résume la méthodologie utilisée pour simuler les concentrations des différentes espèces de β -lg dans l'ECP, pour chaque profil thermique imposé, suite à la détermination des constantes k_n , k_{unf} et k_{agg} et de α .

Figure 2.23. Représentation schématique de la méthode de calcul conduisant à déterminer les profils de concentrations des différentes espèces de β -lg dans l'ECP avec le modèle de Tolkach et Kulozik (2007).

2. Simulation des profils de concentrations des différentes espèces de β-lg dans l'ECP avec le modèle de deux réactions successives

Les profils de concentrations des espèces de β -lg ont également été simulés avec le modèle de deux réactions successives. Dans l'hypothèse d'un écoulement piston, les équations d'évolution des concentrations des espèces protéiques sont :

$$\frac{dC_N}{d\tau} = -r_1 \tag{2.22}$$

$$\frac{dC_U}{d\tau} = r_1 - r_2 \tag{2.23}$$

Le graphe 2.25 décrit la méthodologie utilisée pour simuler l'apparition et la disparition des différentes espèces de β -lg le long de l'ECP à partir du modèle de deux réactions successives, pour chaque profil thermique imposé, suite à la détermination des constantes k_1 et k_2 (avec $n_1 = n_2 = 1,5$ ou $n_1 = 1$ et $n_2 = 2$).

Figure 2.24. Représentation schématique de la méthode de calcul conduisant à déterminer les profils de concentrations des différentes espèces de β -lg dans l'ECP avec le modèle de deux réactions successives.

RESULTATS ET DISCUSSIONS

Chapitre 1 : Etude de l'influence de la teneur en calcium sur la masse de dépôt dans un échangeur de chaleur à plaques

Dans ce chapitre, nous avons exploité une base de données existante d'essais d'encrassement avec des solutions à base de concentrats de protéines sériques (WPC à 1% p/p) ayant différentes teneurs en calcium (comprise entre 70 et 87,4 ppm) dans le but d'évaluer l'existence de corrélations positives entre les phénomènes d'encrassement et la teneur en calcium des solutions protéiques.

Dans un premier temps, nous discuterons l'effet de la teneur en calcium sur la distribution de la masse de dépôt dans un ECP et sur la masse totale de dépôt pour une condition de marche (profil thermique et vitesse de circulation du produit fixés).

Dans un second temps, nous montrerons comment l'évolution de la résistance thermique d'encrassement avec le temps est impactée par la teneur en calcium et par la vitesse de circulation des solutions protéiques.

Dans un troisième temps, nous utiliserons les données sur les résistances thermiques d'encrassement et les masses de dépôt pour tenter d'évaluer la conductivité thermique et l'épaisseur des dépôts protéiques contenant du calcium. Nous discuterons ces valeurs avec celles obtenues dans la littérature.

Enfin, nous montrerons qu'une corrélation simple peut être établie pour traduire quantitativement la relation de cause à effet entre les masses de dépôt collectées vs les teneurs en calcium et les vitesses de circulation des solutions protéiques le long de la paroi de l'ECP.

1. Dispositif expérimental utilisé pour les essais d'encrassement en pilote

1.1. Solutions modèles encrassantes étudiées pour les essais d'encrassement

Les solutions encrassantes étudiées sont reconstituées à partir d'une poudre de WPC 75 (Armor Protéines, France) dissoute dans de l'eau afin d'obtenir une solution modèle à 1% (p/p). La poudre de WPC est constituée principalement de protéines (75% p/p) où la β -lg et l' α -la représentent respectivement 63% et 11% (p/p), de 10% (p/p) de lactose et d'une faible teneur en minéraux (< 4% p/p).

La teneur en calcium initiale dans la poudre est de 45 ppm. L'eau utilisée est un mélange d'eau dure et d'eau adoucie obtenue à l'aide d'un adoucisseur d'eau (HI-FLO 1, Culligan, Purolite C100E resin, France). Les teneurs en calcium de l'eau dure et de l'eau adoucie, déterminées par spectrométrie d'absorption atomique (Philips, Pye Unicam), varient entre 170 et 200 ppm et entre 1 et 3 ppm, respectivement. La teneur en calcium totale des solutions modèles, comprise entre 70 et 87,4 ppm, est obtenue en mélangeant une quantité fixe de poudre de WPC avec de l'eau dure et de l'eau adoucie. Nous n'avons pas trouvé dans cette base de données des essais effectués avec des concentrations en calcium totales plus importantes.

Les solutions modèles sont préparées la veille de chaque essai d'encrassement et stockées à 4°C pendant 15 heures afin d'éviter les risques de prolifération bactérienne. Le pH des solutions modèles de WPC a été mesuré pour chaque essai. Il varie entre 7,3 et 7,7 pour l'ensemble des solutions testées.

1.2. Installation pilote utilisée pour les essais d'encrassement

La plateforme expérimentale utilisée pour les essais d'encrassement est présentée dans la figure 3.1. Elle est constituée de deux ECP (Model V7, Alfa-Laval Vicarb, France) équipés chacun de plaques planes corruguées (0,15 m de largeur, 0,5 m de longueur).

Figure 3.1. Plateforme expérimentale utilisée pour les essais d'encrassement d'une solution modèle de WPC à 1% (p/p).

Le premier ECP (21 plaques, 10 canaux, 1 canal par passe) est utilisé pour préchauffer la solution modèle de 4 à 60°C. Le deuxième ECP est composé de 13 plaques, soit 6 canaux avec un canal par passe, dans lesquelles circulent à contre-courant l'eau chaude et le fluide modèle à traiter (figure 3.2). Ce deuxième ECP permet de chauffer la solution encrassante de WPC au-delà de la température de dénaturation et d'étudier par conséquent le dépôt formé sur les différentes plaques de l'ECP. Les pesées des dépôts encrassants ont été effectuées uniquement sur ce deuxième ECP.

Figure 3.2. Représentation de la configuration de l'ECP utilisée pour les essais d'encrassement.

1.3. Conditions de procédé imposées

Le tableau 3.1 représente les paramètres de procédé imposés pour les 12 essais d'encrassement effectués avec les solutions modèles de WPC à 1% (p/p) à différentes teneurs en calcium (allant de 70 à 87,4 ppm).

Un seul profil thermique a été imposé dans l'ECP pour l'ensemble des essais d'encrassement (figure 3.3). En effet, la température d'entrée de l'eau chaude a été ajustée durant les essais afin d'assurer une température constante de sortie du produit (T_{sp}) proche de 96°C. Ce profil thermique a été simulé avec le logiciel Sphère développé par Leuliet (1988) et René et al. (1991) à partir de la connaissance des débits et de la température d'entrée du produit à traiter ($T_{ep} \approx 60^{\circ}$ C) et celle de l'eau chaude.

Tableau 3.1. Paramètres de procédé (mesurés et calculés) imposés dans l'ECP desdifférents essais d'encrassement.

	Nombre de	Teneur en	$T_{ep}(^{\circ}\mathrm{C})$		T_{sp} (°C)		Masse de
Essai	Reynolds	calcium	<i>t</i> = 0	<i>t</i> = 330	<i>t</i> = 0	<i>t</i> = 330	dépôt totale
	moyen	(ppm)	min	min	min	min	(g)
А	2000	72,9	62,3	60,0	96,8	97,2	214,2
В	2003	79,8	60,0	59,7	96,5	96,6	360,0
С	2040	82,2	61,5	61,3	97,1	96,3	509,0
D	2040	85,6	60,4	61,5	95,8	96,9	594,2
Е	3394	70,0	63,8	63,9	95,5	95,7	367.3
F	3220	76,3	61,3	61,3	95,7	95,5	686,1
G	3214	78,0	62,6	62,2	95,0	95,0	697,6
Н	3232	86,5	62,7	63,6	94,6	94,6	921.8
Ι	4938	74,6	60,8	61,4	95,4	95,2	324,2
J	4920	77,4	61,3	60,8	96,2	96,0	368,2
Κ	4942	77,8	63,2	63,9	95,4	95,1	426,1
L	4926	87,4	61,2	61,4	95,9	95,7	714,1

 $(T_{ep}: température d'entrée du produit à traiter; T_{sp}: température de sortie du produit).$

Figure 3.3. Profil thermique en solution déterminé numériquement et imposé le long de *l'ECP*.

Les nombres de Reynolds (*Re*), allant de 2000 à 5000, rapportés dans le tableau 3.1 ont été calculés pour chaque essai à partir de la distribution du nombre de Reynolds moyen dans l'ECP. Plus la valeur du Reynolds est élevée, plus la vitesse de circulation du produit est importante (et par conséquent, plus le temps de séjour dans l'ECP est faible).

La viscosité des solutions est déterminée à partir des propriétés physiques de l'eau (cette viscosité correspond plus ou moins à la viscosité de la solution de WPC puisque la concentration en β -lg de la solution modèle étudiée est très faible) à la température moyenne de l'ECP.

2. Discussions des résultats obtenus

2.1. Distribution de la masse de dépôt sec dans l'ECP à Re = 2000

La figure 3.4 représente la distribution de la masse de dépôt sec dans chaque canal de l'ECP pour une solution modèle de WPC à 1% (p/p) contenant différentes teneurs en calcium (72,9–85,6 ppm), à Re = 2000. Les profils des quantités de dépôt sec le long de l'ECP à Re = 3200 et Re = 5000 donnant lieu à des résultats similaires, seul le profil de la masse de dépôt sec par canal à Re = 2000 a été tracé.

La figure 3.4 montre que la masse de dépôt par canal augmente linéairement le long de l'ECP et qu'elle dépend notamment de la teneur en calcium dans la gamme étudiée (72,9–85,6 ppm).

Figure 2.4. Distribution de la masse de dépôt sec dans chaque canal de l'ECP pour différentes teneurs en calcium allant de 72,9 à 85,6 ppm à Re = 2000.

Pour l'ensemble des concentrations en calcium étudiées, très peu de dépôt est reporté dans le 1^{er} canal de l'ECP. Ce résultat est attendu puisque la molécule de β -lg n'est pas dénaturée à 62,8°C (température du 1^{er} canal de l'ECP), entraînant ainsi une faible quantité du dépôt. Ces résultats sont en accord avec les observations de Lyster (1970), Dannenberg (1986), Bradley et al. (1989) et Delplace et al. (1994) confirmant que la dénaturation chaude de la β -lg ne peut avoir lieu qu'à des températures supérieures à 70°C. Dans les autres canaux de l'ECP, les températures de sortie du produit sont suffisamment élevées (68,5–93,1°C) pour engendrer la dénaturation chaude de la β -lg et conduire par conséquent à des masses de dépôt sec plus importantes. Par ailleurs, le dépôt encrassant atteint sa valeur maximale à la sortie de l'ECP à une température de 93,1°C. Ces observations montrent que la distribution de la masse de dépôt protéique est fortement influencée par la température. Ce résultat était attendu puisqu'il a été démontré que la réaction de dénaturation chaude de la β -lg de solutions de protéines sériques contenant du calcium dépend significativement de la température (Petit et al., 2013).

L'effet de la variation de la teneur en calcium (70–87,4 ppm) sur la quantité totale de dépôt sec mesurée après un traitement thermique dans l'ECP de 330 minutes à différents nombres de Reynolds (2000, 3200 et 5000) sera commenté dans le paragraphe suivant.

2.2. Influence de la teneur en calcium sur la quantité de dépôt totale

La figure 2.5 représente l'évolution de la masse de dépôt totale dans l'ECP en fonction de la concentration en calcium de solutions modèles de WPC à 1% (p/p). Chaque symbole correspond à un essai d'encrassement. La forme des symboles rend compte de la valeur du Reynolds moyen pour l'essai d'encrassement.

La figure 2.5 montre que pour chaque nombre de Reynolds, la masse de dépôt totale augmente linéairement avec la concentration en calcium. Une augmentation de la concentration de calcium de 20% conduit à un doublement de la masse totale de dépôt le long de l'ECP. Ces résultats montrent que le calcium est un catalyseur de l'encrassement comme l'ont suggéré Daufin et al. (1987) et Xiong (1992). D'après Xiong (1992), les ions calcium pourraient interagir avec les groupements carboxyliques de l'acide aspartique et glutamique de la β -lg et favoriseraient ainsi la fixation des espèces protéiques, entraînant ainsi une masse de dépôt plus importante.

Figure 2.5. Comparaison de la masse de dépôt totale en fonction de la teneur en calcium (70–87,4 ppm) d'une solution modèle de WPC à 1% (p/p) pour différents nombres de Reynolds (2000, 3200 et 5000) après 330 min d'encrassement.

Il faut noter que la croissance du dépôt ne peut pas être ici attribuée aux interactions entre les ions calcium et les micelles de caséines (Visser et Jeurnink, 1997) puisque ces dernières sont absentes dans la campagne d'essais menée.

La figure 2.5 montre également que la masse de dépôt totale à Re = 3200 dans la gamme de concentration étudiée (70–86,5 ppm) est nettement supérieure à celle observée à Re = 2000 ou Re = 5000. En effet, la quantité de dépôt à Re = 2000 est la plus faible enregistrée, tandis qu'un pic de la masse de dépôt totale est observé à Re = 3200 et ce, pour l'ensemble des concentrations étudiées. Ceci prouve que la vitesse de circulation du produit est un facteur intervenant dans la dynamique de dépôt, sans pour autant que l'augmentation de la masse de dépôt soit une fonction monotone du Reynolds. Il est fort probable que des valeurs élevées du nombre de Reynolds entrainent une augmentation concomittante de la vitesse de formation de dépôt (due à un meilleur transport des espèces précurseurs du dépôt) et de la vitesse d'arrachement du dépôt (par érosion des couches supérieures du dépôt à l'interface avec la solution protéique en circulation). De ce fait, un optimum semble exister. Il est difficile cependant d'émettre plus hypothèse à partir de cette analyse a posteriori de la base de données.

2.3. Influence de la teneur en calcium sur la cinétique d'encrassement de l'ECP

Les figures 2.6.a et b représentent l'évolution de la résistance thermique d'encrassement en fonction du temps pour différentes teneur en calcium de solutions modèles de WPC à 1% (p/p). Chaque figure correspond à un nombre de Reynolds (2000 et 3200).

Figure 2.6. Comparaison de la résistance thermique d'encrassement en fonction de la teneur en calcium d'une solution modèle de WPC à 1% (p/p) pour différents nombres de Reynolds : a) 2000 et (b) 3200.

Ces figures confirment que la dynamique de dépôt dépend fortement de la teneur en calcium et de la vitesse de passage du produit le long de la paroi de l'ECP. Il est probable que l'augmentation de la concentration en calcium des solutions protéiques permet de fixer un plus grand nombre d'espèces protéiques et d'accélérer ainsi la formation du dépôt protéique.
2.4. Conductivité thermique et masse volumique des dépôts protéiques contenant du calcium

La figure 2.7 représente, pour les différentes teneurs en calcium étudiées, la relation entre la résistance thermique d'encrassement d'une solution modèle de WPC à 1% (p/p) et la masse de dépôt totale calculée par rapport à la surface d'échange totale de l'ECP.

Figure 2.7. Relation entre la résistance thermique d'encrassement et la masse de dépôt totale pour différentes teneurs de calcium (70–87,4 ppm).

La figure 2.7 montre que pour les différentes teneurs en calcium, l'ensemble des points expérimentaux sont rassemblés sur une seule courbe maîtresse et ce, quel que soit le nombre de Reynolds imposé. En effet, une augmentation linéaire de la résistance thermique d'encrassement avec la masse de dépôt totale est observée.

Ces résultats indiquent clairement que la résistance d'encrassement est fortement dépendante de la masse de dépôt protéique par unité de surface.

La pente de la courbe de la figure 2.7 permet de calculer le produit $\rho_d \lambda_d$. Nous avons évoqué dans la partie bibliographie qu'il n'était pas simple d'obtenir des valeurs de λ_d . Pour autant, nous avons mené le calcul à terme même si nos distributions de dépôts (et donc l'épaisseur des dépôts) sont loin d'être homogènes dans les canaux de l'ECP.

Le produit $\rho_d \lambda_d$ est égal à 84 W.kg.m⁻⁴.K⁻¹. Par ailleurs, Delplace et Leuliet (1995) ont calculé la conductivité thermique apparente lors de l'encrassement d'un ECP par une solution protéique modèle à 1% (p/p). Elle est de 0,27 W.m⁻¹.K⁻¹ alors que la valeur trouvée dans cette étude est de 0,084 W.m⁻¹.K⁻¹ en considérant que la masse volumique de la solution de WPI (ρ_d) est celle de l'eau. Cet écart important entre nos résultats et ceux de Delplace et Leuliet (1995) pourrait être expliqué par la variation de la teneur en calcium rendant le dépôt moins dense et entraînant ainsi une diminution de la conductivité thermique. Compte tenu de la nonuniformité de l'épaisseur de dépôt, il est difficile d'aller plus loin dans la discussion de l'influence du calcium sur la conductivité thermique des dépôts. Néanmoins, ces résultats sont aussi en adéquation avec les travaux de Guérin et al. (2007) qui ont souligné que la structure et l'apparence du dépôt encrassant dépendent fortement des concentrations en calcium pour des dépôts protéiques contenant du calcium, correspondant à des températures de paroi allant de 74 à 102°C. Pour des températures de paroi supérieures à 85°C, Davies et al. (1997) ont obtenu une valeur de $\rho_d \lambda_d$ de 470 W.kg.m⁻⁴.K⁻¹ (contre 84 W.kg.m⁻⁴.K⁻¹ dans cette étude). Une telle différence pourrait être expliquée par le fait que les concentrations en protéine et en calcium des solutions encrassantes sont différentes. En effet, la teneur en protéine dans cette étude est de 1% (p/p) contre 3,5% (p/p) pour la solution modèle de Davies et al. (1997). Par ailleurs, la teneur en calcium n'est pas mentionnée dans les travaux de Davies al. (1997).

2.5. Corrélation entre la masse de dépôt, les conditions de procédé et la teneur en calcium des solutions encrassantes

Nous avons montré dans ce chapitre que pour un profil thermique donné, la quantité et la dynamique de dépôt sont fortement impactées par les quantités de calcium et les vitesses de circulation des fluides. Dans ce qui suit, nous allons évaluer si une corrélation simple peut être établie et traduire quantitativement cette relation de cause à effet.

La variable cible dont nous souhaitons prédire l'évolution est la masse de dépôt locale $(M_{d,i})$ formée dans chaque canal *i* de l'ECP (après un traitement thermique de 330 min d'une solution encrassante de WPC).

Nous avons utilisé la méthode de modélisation par analyse dimensionnelle décrite par Delaplace et al. (2014) pour élaborer ce modèle.

- La 1^{ère} étape consiste à dresser le listing des variables influençant $M_{d,i}$. $M_{d,i}$ dépend de trois grands types de variables d'entrée, à savoir :

(i) celles liées à la géométrie : l'espèce entre 2 plaques consécutives de l'ECP (e) ;

- (ii) celles liées aux propriétés physiques des solutions encrassantes : la teneur en calcium (*C_{Ca}*), la viscosité (μ) et la densité (ρ) du fluide ;
- (iii) celles liées aux paramètres de procédé : la température d'entrée du produit (T_{ep}), la température de sortie du produit dans le canal *i* ($T_{sp,i}$) et la vitesse moyenne d'écoulement du fluide (v).

Nous avons donc : { $M_{d,i}$, C_{Ca} , v, e, ρ , μ , T_{ep} , $T_{sp,i}$ }.

L'ensemble des 8 variables est décrit par 4 dimensions (masse, longueur, temps, température). Selon le théorème Vaschy-Buckingham, une relation entre 4 nombres sans dimension suffit pour traduire l'évolution du système :

$$\frac{M_{d,i}}{\rho e^3} = f\left(Re, \frac{C_{Ca}}{\rho}, \frac{T_{sp,i}}{T_{ep}}\right)$$
(2.1)

- La deuxième étape consiste à proposer une forme mathématique pour la relation de procédé qui pourrait capter la physique des phénomènes et décrire précisément cette relation de cause à effet entre ces nombres sans dimensions.

Le phénomène d'encrassement est le résultat d'un équilibre entre l'accumulation de matières protéiques (les espèces en solution participant au dépôt) et leur disparition de la couche encrassante (détachement par bloc ou érosion). Nous pouvons donc nous attendre à ce que l'équation ci-dessous puisse corréler l'évolution de la masse de dépôt locale $M_{d,i}$ aux conditions opératoires :

$$\frac{M_{d,i}}{\rho.e^3} = k_d.A - k_r \tag{2.2}$$

avec A une constante dépendante de la concentration en calcium et des températures dans

l'ECP :
$$A = g\left(\frac{C_{Ca}}{\rho}, \frac{T_{sp,i}}{T_{ep}}\right);$$

et k_d et k_r deux paramètres respectivement liés à l'accumulation et à l'élimination du dépôt à la surface. k_d et k_r sont fonction de la vitesse de circulation et donc du nombre de Reynolds ($Re = \frac{\rho.v.2e}{\mu}$ avec $e = \frac{D_h}{2}$ et D_h est le diamètre hydraulique).

En réalisant des ajustements sur les points expérimentaux, nous pouvons montrer que le jeu de coefficients empirique ci-dessous, permet de prédire les masses de dépôt le long de l'ECP (pour une solution de WPC fixée et un profil de température dans l'échangeur donné).

$$A = \left(\frac{C_{Ca}}{\rho}\right)^{1,5} \left(\frac{T_{sp,i}}{T_{ep}}\right)^{5,9}$$
(2.3)

$$k_d = 9,14 \ Re^2 - 7,62.10^4 \ Re + 2,4.10^8 \tag{2.4}$$

$$k_r = 1,23.10^{-3} Re^2 - 8,85 Re + 2,16.10^4$$
(2.5)

La Figure 2.8 compare la masse de dépôt simulée et expérimentale. Une concordance étroite entre le modèle et les expériences d'encrassement est observée. Ce résultat est logique puisque le nombre de paramètres du modèle (8 coefficients) est élevé.

Figure 2.8. Comparaison entre les masses de dépôt par canal $(M_{d,i}/\rho.e^3)$ expérimentales et prédites.

Cette comparaison montre que :

- la masse de dépôt est très dépendante de la température moyenne au sein du canal (liée à la dépendance de la réaction de dénaturation avec la température);
- la teneur en calcium des solutions protéiques a une influence significative sur le pouvoir encrassant des solutions et une relation quantitative masse de dépôt-concentration en calcium peut être établie.

Ce modèle a néanmoins une portée limitée en termes de prédiction d'encrassement puisqu'il n'est valable que pour un temps d'essai d'encrassement donné et n'a été testé que pour un seul profil de température. Cependant, la démarche de modélisation menée est un démonstrateur qui prouve que le calcium est loin d'avoir un rôle mineur dans le phénomène d'encrassement et met en lumière qu'il est important d'intégrer cette donnée dans les modèles prédictifs.

3. Conclusion

L'exploitation de cette base de données a permis de certifier sans ambiguïté la forte influence de la teneur en calcium sur le comportement encrassant d'une solution modèle de WPC durant un traitement thermique dans un ECP.

Cependant, nous sommes toujours aveugles au terme de cette exploitation sur la relation entre les réactions chimiques en solution à l'échelle moléculaire et la formation de dépôt protéique en surface à l'échelle macroscopique.

Les cinétiques de dénaturation de ces solutions modèles (solutions de WPC à 1% p/p à différentes teneurs en calcium) n'ont pas été établies. Il est donc impossible :

- de savoir si le calcium est un élément qui affecte uniquement la réaction de dénaturation ou qui est impliqué dans la formation du dépôt par liaison des espèces protéiques constituant le dépôt. Dans cette hypothèse, existe-t-il des ratios calcium/protéine qui permettraient de diminuer les cinétiques d'encrassement ?;
- d'établir le lien entre les résultats des masses de dépôt mesurées et la cinétique de dénaturation chaude de la β-lg.

C'est dans ce contexte que vont s'inscrire nos travaux visant à étudier les réactions chimiques de dénaturation chaude de différentes solutions modèles de β -lg et à observer leurs comportements encrassants dans des ECP à l'échelle pilote (distribution des dépôts, caractérisation de la structure des dépôts). Cependant, les essais expérimentaux de ce travail

de thèse ne seront pas réalisés avec la même référence de WPC, qui n'est plus fabriquée aujourd'hui.

Dans la base de données utilisée, un seul profil thermique a été imposé le long de l'ECP pour l'ensemble des essais d'encrassement. Nous ne sommes donc pas en capacité d'analyser le lien existant entre les profils thermiques imposées, la cinétique d'encrassement d'une solution modèle dans l'ECP et la distribution de la masse de dépôt protéique.

Partant des lacunes générales sur la compréhension du phénomène d'encrassement, nous nous sommes fixés, dans ce travail, quatre objectifs :

- Identifier les cinétiques de dénaturation de solutions de β-lg contenant différentes concentrations en protéine et en calcium, à partir de la détermination des paramètres cinétiques de dénaturation chaude de la β-lg (ordres de réaction, énergies d'activation, facteurs de fréquence) par des tests en laboratoire et des validations pilote. Ces essais permettront de mieux comprendre le rôle de la nature des assemblages protéiques et des teneurs en protéine et en calcium sur la réactivité chimique et de mieux identifier les mécanismes prédominants de la dénaturation chaude de la β-lg (dépliement et agrégation) et les limites de certains schémas réactionnels simplifiés et des méthodes de détermination de ces paramètres cinétiques en fonction des plages de températures étudiées. Au terme de cette analyse, nous tenterons de proposer les paramètres physico-chimiques clés à considérer (réflexion sur le rôle des ratios calcium/protéiques) pour prédire a priori la réactivité d'une solution de β-lg en présence de calcium ;
- 2) Mieux comprendre comment le profil thermique et la composition en protéine et calcium impactent les phénomènes d'encrassement. Il s'agira notamment de réaliser pour l'ensemble des solutions modèles protéiques étudiées des encrassements à l'échelle pilote pour différents profils thermiques et de mettre en relation les masses de dépôt sec obtenues avec ces paramètres de procédé ou la composition des solutions encrassantes. Quelques analyses de caractérisation des dépôts seront réalisées en appui de ces essais d'encrassement pour mieux comprendre le rôle du calcium ;
- 3) Identifier parmi les différentes espèces de β-lg générées lors du traitement thermique, celles qui sont impliquées dans la formation du dépôt, c'est à dire celles en capacité de souiller les surfaces de l'ECP et pouvant servir de marqueur du dépôt. Pour cela, nous tenterons de développer un modèle simplifié de génie de la réaction chimique simulant les concentrations des espèces protéiques présentes au sein de l'ECP et les mettrons en relation avec la distribution des masses de dépôt sec mesurées pour l'ensemble des profils thermiques imposés ;

 Proposer un mode de représentation permettant de corréler la distribution de la masse de dépôt sec dans chaque canal de l'ECP et les paramètres cinétiques de dénaturation chaude de la β-lg.

Chapitre 2 : Cinétiques de dénaturation thermique de la βlactoglobuline des différentes solutions protéiques modèles

Dans ce chapitre, nous présentons les cinétiques de dénaturation thermique de la β -lg pour l'ensemble des solutions protéiques modèles encrassantes étudiées (chapitre 1 de la partie Matériels et Méthodes). Ce premier chapitre sur nos résultats expérimentaux a pour objectif de mieux comprendre et quantifier le rôle de la température et de la teneur en calcium sur ces cinétiques de dénaturation.

Dans un premier temps, nous appliquerons la méthode de Tolkach et Kulozik (2007) pour obtenir l'évolution de la constante k_n avec la température. Nous tracerons d'abord les graphes d'Arrhenius d'une solution modèle de WPI à 1% (p/p) à teneur en calcium total fixée (100 ppm). Nous analyserons la forme des courbes obtenues et discuterons l'impact des plages de températures sur les mécanismes réactionnels élémentaires qui apparaissent lors de la dénaturation (dépliement et agrégation). Ceci nous permettra d'obtenir un premier jeu de paramètres cinétiques (ordre de réaction, énergies d'activation et facteurs de fréquence) pour les mécanismes élémentaires de dépliement et agrégation. Nous vérifierons également sur cette solution protéique modèle que ces cinétiques de dénaturation, établies à l'échelle laboratoire (en conditions statiques) sont conformes à celles déterminées à l'échelle pilote (en conditions dynamiques).

Dans un deuxième temps, nous illustrerons le rôle de la teneur en calcium sur les cinétiques de dénaturation chaude de la β -lg. Pour ce faire, nous comparerons les graphes d'Arrhenius des solutions modèles de WPI à 1% (p/p) à 100 et 120 ppm de calcium total en utilisant l'approche de Tolkach et Kulozik (2007).

Afin d'illustrer que le ratio molaire calcium/protéine est un paramètre clé des cinétiques de dénaturation de la β -lg, des expériences supplémentaires en laboratoires seront menées avec des solutions protéiques à ratios molaires calcium/protéine variables (variant de 2,3 à 22,9). Les paramètres cinétiques (ordre de réaction, énergie d'activations et facteurs de fréquence) de ces expériences complémentaires de dénaturation à des ratios molaires calcium/protéine variables seront déterminés et discutés en utilisant une nouvelle fois l'approche de Tolkach et Kulozik (2007).

Enfin, une méthode, basée sur un modèle à deux réactions successives, sera également appliquée pour obtenir un deuxième jeu de paramètres cinétiques de dénaturation pour la solution protéique modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total. Ce deuxième jeu de paramètres cinétiques, différent de celui obtenu via l'approche de Tolkach et Kulozik (2007), nous sera utile un peu plus tard (dans le chapitre 3 de la partie Résultats et Discussions) pour calculer l'apparition et la disparition des espèces protéiques (native, dépliée et agrégée) le long de l'ECP étudié et comparer ces profils de concentration à ceux obtenus via le premier jeu de paramètres cinétiques.

Paramètres cinétiques de dénaturation thermique de la β-lg pour les différentes solutions protéiques selon le modèle de Tolkach et Kulozik (2007)

Comme nous l'avons souligné dans le chapitre 3 de la partie Matériels et Méthodes, des essais de dénaturation thermique de la β -lg ont été effectués en laboratoire (conditions statiques) et au pilote (conditions dynamiques) dans le but de déterminer l'ordre de la réaction de dénaturation et l'évolution de la constante k_n avec la température.

Nous avons précédemment établi (dans le chapitre 3 de la partie Matériels et Méthodes) que l'ordre de réaction de la dénaturation chaude de la β -lg est de 1,5 pour l'ensemble des solutions modèles de WPI étudiées et ce, quelle que soit la température de dénaturation dans la plage allant de 68 à 93°C. Par conséquent, nous discuterons uniquement dans ce qui suit l'allure des graphes d'Arrhenius décrivant l'évolution de la constante k_n avec l'inverse de la température absolue.

1.1. Influence des conditions expérimentales (conditions statiques vs conditions dynamiques) sur la dénaturation de la β -lg et allure des courbes de dénaturation

La figure 4.1 représente le graphe d'Arrhenius obtenu pour un ordre de réaction de 1,5, suite à la dénaturation thermique de la β -lg de la solution protéique modèle avec 1% (p/p) de WPI et une teneur en calcium total de 100 ppm.

Sur cette figure, les dénaturations obtenues à l'échelle laboratoire (conditions statiques) et à l'échelle pilote (conditions dynamiques) sont reportées.

Figure 4.1. Graphe d'Arrhenius de la dénaturation thermique de la β -lg (avec un ordre de réaction de 1,5) de la solution protéique modèle de WPI à 1% (p/p) et 100 ppm de calcium total.

Les tests de dénaturation ont été réalisé à l'échelle pilote (conditions dynamiques) et à l'échelle laboratoire (conditions statiques).

La figure 4.1 confirme nos prévisions, à savoir la dépendance de la température de la constante k_n . Cette figure montre également que les courbes de dénaturation déterminées dans les conditions statiques et dynamiques sont assez proches. Cette tendance est confirmée par le calcul des paramètres cinétiques, dans les zones de dépliement et d'agrégation, reportés au tableau 4.1. Ce tableau sera commenté ultérieurement.

La figure 4.2 représente le graphe d'Arrhenius obtenu suite à la dénaturation thermique de la β -lg de la solution protéique modèle avec 1% (p/p) de WPI et une teneur en calcium total de 100 ppm. Seuls les résultats expérimentaux obtenus en conditions statiques ont été conservés. Sur cette figure, le graphe d'Arrhenius de Petit et al. (2011), obtenu pour un ordre de réaction de 1,5 suite à la dénaturation thermique d'une solution de β -lg quasi-pure (6% p/p et 264 ppm de calcium total) en conditions statiques, a également été tracé.

L'analyse de la figure 4.2 montre clairement que pour notre solution protéique et celle de Petit et al. (2011), il n'est pas possible de décrire la thermo-dépendance de k_n par une loi d'Arrhenius unique pour la plage de températures allant de 68 à 93°C.

Figure 4.2. Comparaison du graphe d'Arrhenius de la dénaturation thermique de la β-lg (avec un ordre de réaction de 1,5) de la solution protéique modèle de WPI à 1% (p/p) et 100 ppm de calcium total et de celui de Petit et al. (2011).
Les tests de dénaturation ont été réalisés selon des protocoles similaires en laboratoire (conditions statiques).

La figure 4.2 illustre qu'il existe deux mécanismes simultanés dans la dénaturation thermique de la β -lg pour notre solution protéique modèle. Chacun des deux mécanismes devient tout à tour prépondérant selon la plage de températures considérée (en dessous de 80°C et au-dessus de 80°C). De ce fait, un ajustement selon la plage de températures, en dessous ou au-dessus de la température critique de 80°C, doit être réalisé pour décrire l'évolution de k_n avec la température.

On constate que si on prolonge virtuellement le segment de droite relatif au dépliement (situé sur le côté droit de la figure 4.2) dans la zone d'agrégation (située sur le côté gauche de la figure 4.2 car la zone d'agrégation se situe pour des températures au-dessus de 80°C), ce segment de droite (non représenté sur la figure 4.2) est au-dessus du segment de droite relatif à l'agrégation. Ceci signifie qu'au-dessus de la température critique de 80°C, la réaction d'agrégation est limitante car plus lente que celle de dépliement.

Par un raisonnement similaire, on constate qu'au-dessous de la température critique de 80° C, le dépliement de la β -lg est limitant ce qui signifie que cette réaction est plus lente que la réaction d'agrégation.

Ces premiers résultats sont en accord avec les travaux avec Wolz et Kulozik (2015) qui ont observé la coexistence de deux mécanismes (dépliement et agrégation) et ont signalé que leurs prédominances sont liées à l'intervalle de température. Nos résultats sont également en accord avec les travaux de Petit et al. (2011) démontrant, pour le cas d'une solution modèle de β -lg quasi-pure, que la température critique qui partage le graphe d'Arrhenius en deux parties linéaires est située aussi aux alentours de 80°C.

Cependant, la rupture de pente de $\ln(k_n)$ en fonction de 1/T est moins abrupte avec notre solution protéique modèle que dans le cas de Petit et al. (2011). Ceci est probablement dû à la composition différente de nos solutions protéiques : celle de Petit et al. (2011) est constituée quasi exclusivement de β -lg (à 88%) alors que l'assemblage protéique de notre solution protéique modèle est plus complexe (constituée de 66% de β -lg et de 13% d' α -la). Il est fort probable que la présence d' α -la dans la composition de la solution modèle induit des cinétiques d'agrégation radicalement différente. En effet, l' α -la est susceptible de se dénaturer dans l'intervalle de températures étudié (de 68 à 93°C) et il est établi que cette protéine peut former des liaisons covalentes (disulfure) avec la β -lg dépliée via leurs groupements thiols. De ce fait, il n'est pas surprenant d'observer un accroissement de la cinétique d'agrégation de la β -lg en présence de l' α -la, engendrant également une rupture de pente moins marquée.

D'autre part, la concentration protéique de notre solution et celle de Petit et al. (2011) sont très différentes (respectivement 1% p/p et 6% p/p). D'autres facteurs comme la teneur en calcium (respectivement 100 ppm et 264 ppm) peuvent également expliquer ces différences de comportement à la dénaturation des deux solutions protéiques. Il est établi que le calcium peut également influencer les mécanismes de dénaturation de la β -lg, comme nous l'avons montré dans le chapitre 0 (Analyse d'une base de données existante d'essais d'encrassement), soit en modifiant la force ionique et par conséquent la conformation des protéines, ou bien en développant des interactions spécifiques avec les protéines via des groupements d'acides

aminés (Petit et al., 2011). En effet, le calcium forme non seulement des complexes avec la protéine de β -lg mais aussi des ponts entre deux sous-unités protéiques (Anema et MC Kenna, 1996) favorisant ainsi l'agrégation de la β -lg (Xiong, 1992).

Le tableau 4.1 reporte les paramètres cinétiques de dénaturation (facteurs de fréquence $\ln k^{\circ}$ et les énergies d'activation E_A) calculés pour la solution protéique modèle étudiée aussi bien dans la zone de dépliement que dans la zone d'agrégation (notés respectivement *unf* et *agg*). Ces paramètres cinétiques de dénaturation ont été obtenus par régression linéaire suite à l'ajustement des courbes d'Arrhenius présentées à la figure 4.1. Il a été choisi ici de ne pas commenter les valeurs des facteurs de fréquence puisqu'il existe peu d'explication dans la littérature sur leur signification physique, notamment pour des réactions se produisant en milieu aqueux comme notre étude.

L'analyse du tableau montre que les paramètres cinétiques de dénaturation dans les zones de dépliement et d'agrégation sont significativement différents confirmant ainsi l'existence d'un double mécanisme (dépliement et agrégation).

шетиште.					
Paramètre de	Solutions modèles de WPI à 1% (p/p) et 100 ppm de calcium total		Dannenberg et	de Jong et al.	Tolkach et
denaturation	Conditions	Conditions	- Ressier (1966)	(2002)	Kuložik (2007)
	statiques	dynamiques			
Dépliement					
$\ln(k_{unf}^{\circ})$	124,8	131,0	86,7	86,4	98,9
$E_{A,unf}$ (kJ.mol ⁻¹)	384,5	403,2	272,5	261,4	313,9
Agrégation					
$\ln(k_{agg}^{\circ})$	86,4	81,9	13,5	14,0	21,7
$E_{A,agg}$ (kJ.mol ⁻¹)	271,3	259,3	51,0	91,3	80,8

Tableau 4.1. Paramètres cinétiques de dénaturation de la β-lg des essais pilote et laboratoire (avec un ordre de réaction de 1,5) et comparaison avec les valeurs rapportées dans la

1:44 for a true

Le tableau 4.1 indique également que la valeur de $E_{A,unf}$ est plus élevée que celle de $E_{A,agg}$. Ces résultats sont en adéquation avec les résultats de Dannenberg et Kessler (1986), de Jong et al. (2002), Tolkach et Kulozik (2007) et Petit et al. (2011) pour leurs solutions de protéines sériques à différentes teneurs en calcium (teneurs non répertoriées excepté dans les travaux de Petit et al. (2011)). Ces auteurs ont indiqué que la barrière d'énergie à franchir pour la réaction de dépliement est plus importante que celle nécessaire à l'agrégation, ce qui expliquerait le fait que $E_{A,unf} > E_{A,agg}$.

Etant donné que les paramètres cinétiques déterminés en conditions dynamiques et statiques sont très proches, nous avons choisi de réaliser uniquement des essais statiques pour déterminer les paramètres cinétiques de dénaturation des autres solutions protéiques modèles. Ceci se justifie car cette méthode est plus facile à mettre en œuvre. Dans ce qui suit, nous allons analyser l'influence du calcium sur les cinétiques de dénaturation pour d'autres solutions protéiques modèles. Nous commençons par la solution protéique modèle ayant la même concentration en β -lg, à savoir : 1% (p/p).

1.2. Influence de la teneur en calcium sur la dénaturation thermique de la β-lg

La figure 4.3 compare les graphes d'Arrhenius (obtenus pour un ordre de réaction de 1,5), suite à la dénaturation thermique de la β -lg de solutions protéiques modèles avec 1% (p/p) de WPI et des teneurs en calcium total égales à 100 et 120 ppm.

L'analyse de la figure 4.3 montre que, pour la solution protéique à 1% (p/p) contenant 120 ppm de calcium total, le graphe d'Arrhenius est décalé en ordonnées vers des valeurs plus élevées de k_n . Ce résultat illustre que l'évaluation de la teneur exacte en calcium total des solutions protéiques modèles est loin d'être sans importance car elle impacte grandement la réaction de dénaturation chaude de la β -lg. Cette augmentation d'aptitude à la dénaturation de la β -lg avec l'augmentation de la teneur en calcium des solutions protéiques est en adéquation avec les travaux (Simons et al., 2002 ; O'Kennedy et Mounsey, 2009). En effet, ces auteurs ont émis l'hypothèse que l'augmentation de la teneur en calcium de solutions de protéines sériques entrainait des changements conformationnels dans la structure de la β -lg ou un écrantage des charges des protéines, favorisant ainsi les réactions de dépliement et d'agrégation.

Figure 4.3. Graphe d'Arrhenius de la dénaturation thermique de la β -lg (avec un ordre de réaction de 1,5) de solutions modèles de WPI à 1% (p/p) et à différentes teneurs en calcium total (100 et 120 ppm).

Le tableau 4.2 représente les énergies d'activation et les facteurs de fréquence calculés à partir de la figure 4.3 en appliquant la méthode décrite dans le chapitre 3 de la partie Matériels et Méthodes.

Tableau 4.2. Paramètres cinétiques de dénaturation de la β -lg de solutions modèles de WPI à 1% (p/p) et à différentes teneurs en calcium total (100 et 120 ppm) (avec un ordre de réaction

de 1,5).				
Paramètre de dénaturation	100 ppm de calcium total	120 ppm de calcium total		
Dépliement				
$\ln(\hat{k_{unf}})$	124,8	117,3		
$E_{A,unf}$ (kJ.mol ⁻¹)	384,5	360,8		
Agrégation				
$\ln(\hat{k_{agg}})$	86,4	83,2		
$E_{A,agg}$ (kJ.mol ⁻¹)	271,3	260,4		

L'analyse du tableau 4.2 montre clairement que les énergies d'activation des étapes de dépliement et d'agrégation diminuent significativement lorsque la teneur en calcium de la solution protéique modèle augmente. Ce résultat illustre que les barrières énergétiques nécessaires à l'initiation de ces deux étapes de la réaction de dénaturation sont plus simples à franchir dès lors que la teneur en calcium de la solution protéique augmente.

La diminution de la valeur de $E_{A,unf}$ de 384,5 à 360,8 kJ.mol⁻¹, à respectivement 100 et 120 ppm de calcium total, pourrait être expliquée par l'action protectrice du calcium envers les molécules de β -lg dépliées (Verheul et al., 1998). En effet, selon ces auteurs, les molécules de β -lg présentent une stabilité thermique maximale à 100 ppm de calcium total en raison de la répulsion intramoléculaire réduite entre les acides aminés chargés, ainsi qu'à la formation de liaisons hydrogènes supplémentaires (Tolkach et Kulozik, 2005). A 120 ppm de calcium total, une forte dissociation des acides aminés chargés entraîne un accroissement des répulsions intramoléculaires, conduisant ainsi à la déstabilisation de la molécule de β -lg et une baisse de l'énergie d'activation.

Dans la zone où l'agrégation est limitante, la valeur de l'énergie d'activation $E_{A,agg}$ semble diminuer plus faiblement avec l'augmentation de la teneur en calcium (passant respectivement de 271,3 à 260,4 kJ.mol⁻¹ de 100 à 120 ppm de calcium total). Simons et al., (2002) et O'Kennedy et Mounsey (2009) ont proposé des hypothèses pour expliquer l'agrégation favorisée de la β -lg en présence de calcium dans la solution modèle de WPI. Selon ces auteurs, le calcium se ponte aux molécules de β -lg dépliées, neutralisant ainsi la charge de surface et modifiant les interactions ioniques entre les molécules de β -lg dépliées.

Les effets de l'augmentation de la teneur en calcium sur la dénaturation chaude de la β -lg reportés à la figure 4.3 et au tableau 4.2 pour nos deux solutions modèles de WPI à 1% (p/p) avec 100 et 120 ppm de calcium total (constituée de 66% de β -lg et de 13% d' α -la) sont également conformes à ceux de Petit et al. (2011) établis avec une solution de β -lg quasi-pure à 6% (p/p) et 264 ppm de calcium total (constituée de 88% de β -lg). En effet, la figure 4.4 et le tableau 4.3, extraits de la publication de Petit et al. (2011), montrent que les tendances observées lors de nos expériences de dénaturation concernant l'effet du calcium sont également présentes pour cette solution protéique plus simple.

Figure 4.4. Graphe d'Arrhenius de la dénaturation thermique de la β -lg (avec un ordre de réaction de 1,5) d'une solution de β -lg quasi-pure contenant différentes teneurs en calcium (Petit et al., 2011).

Tableau 4.3. Paramètres cinétiques de dénaturation d'une solution de β -lg quasi-pure			
contenant différentes teneurs en calcium total (Petit et al., 2011).			
Paramètre de	Teneur en calcium (ppm)		

Paramètre de		Teneur en calcium (ppm)			
dénaturation	0	66	132	264	
Dépliement					
$\ln(\hat{k_{unf}})$	72,9	79,9	100,3	98,4	
$E_{A,unf}(kJ.mol^{-1})$	234,5	254,0	311,1	304,7	
Agrégation					
$\ln(\hat{k_{agg}})$	25,4	28,8	32,8	32,1	
$E_{A,agg}$ (kJ.mol ⁻¹)	95,0	103,5	113,2	111,0	

Nos résultats expérimentaux sur l'étude de la dénaturation thermique de la β -lg, croisés avec les travaux de la communauté scientifique, nous permettent d'affirmer que pour les solutions protéiques modèles étudiées, le calcium est un constituant en capacité d'accroitre la cinétique des deux étapes de dénaturation protéique (dépliement, agrégation).

D'après la littérature, le calcium est un agent qui modifie les répulsions intramoléculaires et favorise le pontage des molécules de β -lg dépliées selon l'histoire en température subie par la solution protéique. Cependant, pour de faibles concentrations en β -lg ou de fortes concentrations en calcium, il pourrait avoir un rôle négligeable. Il est fort probable par exemple que les interactions calcium- β -lg soient dépendantes du ratio molaire calcium/protéine.

Si tel est le cas, le ratio molaire calcium/protéine devrait être considéré plutôt que la concentration seule en protéine des solutions pour évaluer l'aptitude à la dénaturation d'une solution protéique modèle. Nous allons tenter d'infirmer ou de confirmer ces hypothèses en analysant l'influence du ratio molaire calcium/protéine sur la dénaturation thermique de la β -lg en réalisant d'autres expériences de dénaturation (en conditions statiques). Pour ce faire, des solutions protéiques modèles avec des ratios calcium/protéine variables seront élaborées. Ces solutions seront obtenues en variant la teneur en protéine des solutions et en gardant la concentration de calcium total inchangée.

1.3. Influence du ratio molaire calcium/protéine sur la dénaturation thermique de la β-lg

La figure 4.5 représente les graphes d'Arrhenius de dénaturation de la β -lg (avec un ordre de réaction de 1,5) pour les solutions modèles à 0,25; 0,5; 1; 2 et 2,5% (p/p) contenant une teneur en calcium total de 100 ppm. La plage de températures couverte par les graphes d'Arrhenius varie de 68 à 93°C.

Pour l'ensemble des solutions protéiques modèles testées, la figure 4.5 confirme certaines prévisions attendues pour les courbes d'Arrhenius de dénaturation chaude de la β -lg, à savoir :

- l'existence de deux mécanismes simultanés (dépliement et agrégation) pour la dénaturation;
- une température critique de 80°C, délimitant les zones de prédominance des deux mécanismes.

Figure 4.5. Graphe d'Arrhenius de la dénaturation thermique de la β-lg de solutions protéiques modèles à teneur en calcium total fixée (100 ppm) et différentes teneurs en WPI (allant de 0,25 à 2,5% p/p). Ces solutions protéiques modèles ont ainsi des ratios molaires calcium/protéine variant de 2,3 à 22,9.

L'analyse des différentes courbes d'Arrhenius en fonction de la concentration en protéine des solutions modèles de WPI (variant de 0,25 à 2,5% p/p) montre que la cinétique de dénaturation de la β -lg diminue considérablement lorsque la concentration en protéine de la solution modèle augmente (passant de 0,25% p/p à 2,5% p/p). Ce résultat est plutôt inattendu et en contradiction avec les travaux de Wolz et Kulozik (2015) rapportant que plus la concentration en β -lg de la solution est élevée, plus la réactivité chimique de la solution est importante.

Cette analyse montre clairement que la réactivité (en termes de dénaturation) d'une solution protéique ne se prédit pas seulement à partir de la connaissance de la concentration en β -lg. D'autres facteurs de composition comme l'environnement physico-chimique (pH, force ionique, etc.) et la teneur en calcium doivent être plus systématiquement précisés dans

les bases de données de dénaturation pour espérer hiérarchiser les solutions protéiques en termes de réactivité.

L'analyse des graphes d'Arrhenius en fonction du ratio molaire calcium/protéine des solutions modèles (variant de 2,3 à 22,9) montre en revanche que le ratio molaire calcium/protéine semble être un paramètre plus adéquat pour classifier les solutions protéiques en termes de réactivité. En effet, les évolutions $\ln(k_n)$ versus 1/T sont presque parallèles à la fois dans les zones limitantes de dépliement et d'agrégation. Les courbes apparaissent simplement décalées en ordonnée en fonction de la valeur du ratio molaire calcium/protéine. Précisément, les cinétiques de dénaturation de la β -lg augmentent significativement lors de l'augmentation du ratio molaire calcium/protéine. Ainsi, on constate que la dénaturation de la solution modèle de WPI à 0,25% (p/p) est très élevée en raison de son fort ratio molaire calcium/protéine, comparé à celui de la solution modèle à 2,5% (p/p).

Ces résultats montrant que le ratio molaire calcium/protéine influence significativement le niveau de réactivité d'une solution protéique. Ceci est en accord avec les travaux de Sherwin et Foegeding (1997), qui ont démontré que l'agrégation est influencée par le rapport CaCl₂/protéine stœchiométrie, plutôt que les concentrations en Ca²⁺ et en protéine séparément.

Bien que les graphes d'Arrhenius des solutions modèles de WPI soient classés en fonction du rapport molaire calcium/protéine, on constate sur la figure 4.5 que l'accroissement de k_n (observé sur les cinétiques de dénaturation) n'est pas proportionnel au rapport molaire calcium/protéine. En effet, l'analyse de la figure 4.5 semble indiquer l'existence d'un seuil au-delà duquel une augmentation du ratio molaire calcium/protéine a peu d'effet sur l'augmentation de la dénaturation. Ce seuil est visible pour les valeurs élevées de ratios molaires calcium/protéine. On constate que pour les deux solutions modèles de WPI ayant le ratio molaire le plus élevé (11,5 et 22,9 correspondant aux solutions protéiques à 0,5 et 0,25% p/p), les courbes de dénaturation sont quasiment confondues. Ceci est particulièrement vrai dans la zone limitante d'agrégation. Ces résultats sont en accord avec les travaux de Simons et al. (2002) suggérant que les ions de calcium peuvent se lier à des carboxylates avec un certain seuil d'affinité.

L'analyse approfondie des graphes d'Arrhenius en fonction du ratio molaire calcium/protéine des solutions protéiques modèles, montre que les courbes ne subissent pas rigoureusement et systématiquement un simple décalage en valeur sur l'axe des ordonnées et ne peuvent pas être considérées comme une famille de courbes parallèles sur l'ensemble de

la plage de températures. En effet, pour certaines solutions modèles de WPI à forts ratios molaires calcium/protéine, telle que la solution à 0,25% (p/p), le décalage observé sur l'axe des ordonnées de la zone limitante de dépliement est légèrement différent de celui de la zone limitante d'agrégation. Malheureusement, aucune explication ne peut être avancée en l'état des travaux pour expliquer ce changement de pente dans la phase de dépliement.

Pour l'ensemble des solutions protéiques modèles testées (à teneur en calcium total fixe égale à 100 ppm et à teneur en protéine variable de 0,25% à 2,5% p/p), les paramètres cinétiques de dénaturation de la β -lg (facteurs de fréquence $\ln k^\circ$ et énergies d'activation E_A des réactions de dépliement et d'agrégation) sont résumés dans le tableau 4.4.

Tableau 4.4. Paramètres cinétiques de dénaturation de la β-lg (avec un ordre de réaction de 1,5) de solutions protéiques modèles à teneur en calcium total fixée (100 ppm) et à différentes teneurs en WPI (allant de 0,25 à 2,5% p/p).

Paramètres	Solutions modèles de WPI étudiées (% p/p)				
de dénaturation	0,25	0,5	1	2	2,5
		Ratio	molaire calcium	protéine	
	22,9	11,5	5,7	2,9	2,3
Dépliement					
$\ln(\mathring{kunf})$	147,8	141,8	124,8	107,1	107,5
$E_{A,unf}$ (kJ.mol ⁻¹)	449,8	431,6	384,5	335,7	337,2
Agrégation					
$\ln(k_{agg})$	78,2	74,2	86,4	58,6	59,7
$E_{A,agg}$ (kJ.mol ⁻¹)	245,5	233,5	271,3	193,3	197,6

Pour ces solutions à différentes teneurs en protéine (de 0,25% à 2,5% p/p), l'analyse du tableau 4.4 traduit quantitativement que les paramètres cinétiques de dénaturation dans les zones limitantes de dépliement et d'agrégation sont significativement différents, confirmant la généricité du double mécanisme proposé lors de la dénaturation de la β -lg. Le tableau 4.4 confirme aussi que pour ces solutions à teneur en protéine variable, l'énergie d'activation nécessaire au dépliement reste plus élevée et plus importante que celle nécessaire à l'agrégation.

L'analyse du tableau 4.4 montre également que l'énergie d'activation nécessaire au dépliement ($E_{A,unf}$) est une fonction monotone croissante du ratio molaire calcium/protéine. L'augmentation significative de $E_{A,unf}$ (de 193,3 à 245,5 kJ.mol⁻¹) avec l'augmentation des ratios molaires calcium/protéine (de 2,3 à 22,9) indique que la réaction de dépliement a besoin de plus d'énergie pour son initiation lorsque le ratio molaire calcium/protéine augmente. Ceci s'explique par le fait que le calcium joue un rôle de protection des molécules de β -lg natives en perturbant les liaisons non covalentes de ces molécules. Par ailleurs, on constate que les énergies d'activation obtenues dans la réaction de dépliement sont très élevées (de l'ordre de 300 kJ.mol⁻¹), indiquant ainsi que la réaction de dépliement correspond à la rupture de liaisons hydrogènes ou hydrophobes (Petit et al., 2011).

Par ailleurs, l'analyse du tableau 3.3 montre que l'énergie d'activation nécessaire à l'agrégation présente un extremum en fonction du ratio molaire calcium/protéine. On observe tout d'abord une augmentation de $E_{A,agg}$ de 197,6 à 271,3 kJ.mol⁻¹quand le ratio calcium/protéine passe de 2,3 à 5,7, Puis, une diminution de l'énergie d'activation de 271,3 à 245,5 kJ.mol⁻¹ quand le ratio molaire calcium/protéine passe de 5,7 à 22,9. Nous ne sommes pas en mesure d'émettre des hypothèses sur l'origine des interactions complexes calcium-protéine induisant ces changements d'énergie d'activation dans la phase d'agrégation. La réponse à ces questions va bien au-delà des objectifs initiaux de ce travail de thèse qui consistait à déterminer les paramètres cinétiques de dénaturation (ordre de réaction n = 1,5; facteurs de fréquence $\ln(k^{\circ}unf)$ et $\ln(k^{\circ}agg)$; énergies d'activation $E_{A,unf}$ et $E_{A,agg}$) des réactions de dépliement et d'agrégation pour être en mesure de :

- calculer la concentration des espèces protéiques (native, dépliée, agrégée) dans l'ECP en fonction du profil thermique appliqué ;
- ii) lier les constantes cinétiques de dépliement et d'agrégation (k_{unf} et k_{agg}) aux masses de dépôts encrassants.

2. Paramètres cinétiques de dénaturation thermique de la β-lg pour les différentes solutions protéiques modèles selon le modèle avec deux réactions successives

Dans ce qui suit, nous reportons les valeurs obtenues pour le deuxième jeu de paramètres cinétiques de dénaturation chaude de la β -lg (n_1 , k_1 , E_{A_1} , n_2 , k_2 , E_{A_2}) pour la solution protéique modèle avec 1% (p/p) de WPI et 100 ppm de calcium total. En effet, comme nous l'avons

indiqué en préambule de ce sous-chapitre, une autre méthode que celle de Tolkach et Kulozik (2007), basée sur un modèle à deux réactions successives, a été appliquée (cf. chapitre 2 de la partie Matériels et Méthodes) pour obtenir un deuxième jeu de paramètres cinétiques de dénaturation.

Ce deuxième jeu de paramètres cinétiques sera mobilisé dans le chapitre 3 de la partie Résultats et Discussions pour calculer les concentrations des espèces protéiques obtenues au sein de l'ECP. Celles-ci seront comparées à celles obtenues en utilisant le jeu de paramètres cinétiques obtenus via l'approche de Tolkach et Kulozik (2007).

Bien que la méthode Tolkach et Kulozik (2007) constitue la référence quand on identifie un jeu de paramètres cinétiques de dénaturation d'une solution protéique laitière, cette comparaison a été jugée nécessaire car cette méthodologie se différencie des méthodes de génie chimique classiques lors de la réalisation des bilans de populations concernant l'apparition et la disparition des espèces protéiques. En effet, Tolkach et Kulozik (2007) identifient deux constantes de dénaturation à partir d'un mécanisme supposé mono-étape (disparition des espèces solubles) et les utilisent pour calculer la concentration des espèces N, U et A via l'introduction d'une constante de dépliement (α). Cette approche est peu commune en génie chimique, où on a l'habitude d'associer à l'apparition de chaque espèce (ici U et A), au moins une constante réactionnelle (ici k_1 et k_2 provenant du schéma réactionnel à deux réactions successives supposé en amont).

La figure 4.6 représente le graphe d'Arrhenius de la solution modèle de WPI à 1% (p/p) et une teneur en calcium total de 100 ppm dans l'intervalle de températures allant de 70 à 90°C, à partir du modèle avec deux réactions successives et en fixant $n_1 = n_2 = 1,5$ pour les deux réactions.

Figure 4.6. Graphe d'Arrhenius de la dénaturation chaude de la β -lg avec le modèle de deux réactions successives en fixant $n_1 = n_2 = 1,5$ pour à la fois la réaction de dépliement et d'agrégation.

Le modèle à deux réactions successives proposé pour décrire la réaction de dénaturation chaude de la β -lg est très différent du modèle de Tolkach et Kulozik (2007) (cf. chapitre 2 de la partie Matériels et Méthodes). Les valeurs des paramètres cinétiques (k_1 et k_2) ne peuvent donc pas être directement comparées à k_{unf} et k_{agg} . De plus, à notre connaissance, aucune valeur de k_1 et k_2 n'est reportée dans la littérature ce qui nous empêche de comparer nos valeurs avec d'autres. L'analyse de la figure 4.6 permet néanmoins d'observer que contrairement au modèle de Tolkach et Kulozik (2007), pour chaque température de dénaturation, la constante cinétique de dépliement est toujours supérieure à la constante cinétique d'agrégation.

La figure 4.7 représente le graphe d'Arrhenius de la solution modèle de WPI à 1% (p/p) et une teneur en calcium total de 100 ppm dans l'intervalle de températures allant de 70 à 90°C, à partir du modèle de deux réactions successives et en fixant $n_1 = 1$ pour la réaction de dépliement et $n_2 = 2$ pour l'agrégation.

Figure 4.7. Graphe d'Arrhenius de la dénaturation chaude de la β -lg avec le modèle de deux réactions successives en fixant $n_1 = 1$ pour la réaction de dépliement et $n_2 = 2$ pour l'agrégation.

Le tableau 4.5 représente les énergies d'activation et les facteurs de fréquence des réactions de dépliement et d'agrégation avec le modèle de deux réactions successives obtenus à partir des graphes d'Arrhenius des figures 4.6 et 4.7. Les paramètres cinétiques de dénaturation de la β -lg sont assez proches pour les différents ordres de réaction fixés (tableau 4.5). Cependant, les valeurs des paramètres cinétiques de la réaction de dépliement sont significativement différentes de ceux de l'agrégation. C'est notamment le cas de E_A à $n_1 = n_2 = 1,5$ qui passe du simple au double de la réaction de dépliement à l'agrégation (de 182,5 à 342,3 kJ.mol⁻¹). Ces résultats sont contraires à ceux obtenus par le modèle de Tolkach et Kulozik (2007), pour lesquels nous avons montré que l'énergie d'activation de la réaction de dépliement supérieure à celle calculée à l'agrégation. Ceci signifie cette fois que la barrière énergétique à franchir pour créer de l'agrégation est supérieure à celle au dépliement.

	Modèles de deux réactions successives			
Paramètre de dénaturation	$n_1 = n_2 = 1,5$	n = 1 et $n = 2$		
Dépliement				
$\ln (k_1^\circ)$	60,9	47,1		
E_{A_1} (kJ.mol ⁻¹)	182,5	145,9		
Agrégation				
$\ln(k_2^\circ)$	110,2	132,3		
E_{A_2} (kJ.mol ⁻¹)	342,3	407,8		

Tableau 4.5. Paramètres cinétiques de dénaturation de la β -lg à partir du modèle de deux réactions successives.

Les paramètres cinétiques de dénaturation (ordres de réaction n_1 et n_2 , facteurs de fréquence $\ln(k_1^\circ)$ et $\ln(k_2^\circ)$, énergies d'activation E_{A_1} et E_{A_2}) présentés dans le Tableau 4.5 seront mobilisés dans le chapitre 3 de la partie Résultats et Discussions. Ils seront utilisés pour calculer les constantes cinétiques de dépliement et d'agrégation (k_1 et k_2) et pour évaluer la concentration des espèces protéiques dans l'ECP en fonction du profil thermique appliqué.

3. Conclusion

L'influence des conditions expérimentales (conditions statiques et dynamiques), de la teneur en calcium total (100 et 120 ppm) et du ratio molaire calcium/protéine (de 2,3 à 22,9) sur la dénaturation chaude de la β -lg de différentes solutions modèles de WPI ont été étudiées dans l'intervalle de températures allant de 68 à 93°C.

Les différents graphes d'Arrhenius obtenus à partir du modèle de Tolkach et Kulozik (2007) ont montré pour l'ensemble des solutions modèles étudiées que :

- le mécanisme général de dénaturation de la β-lg est constitué de deux réactions, à savoir : le dépliement et l'agrégation, séparées par une température critique de l'ordre de 80°C qui correspond à la transition entre l'intervalle de températures où la zone de dépliement est limitante et l'intervalle de températures où la zone d'agrégation est limitante ;
- l'augmentation de la teneur en calcium pour une teneur en protéine fixée influence fortement les mécanismes de dénaturation chaude de la β-lg ;
- le ratio molaire calcium/protéine semble être un indicateur pertinent pour appréhender la réactivité en termes de dénaturation de nos solutions protéiques modèles.

Les exploitations des résultats expérimentaux de dénaturation ont permis de disposer de deux jeux de paramètres cinétiques qui seront utilisés dans la suite de ce travail de thèse pour la prédiction à la fois des différentes espèces de β -lg (native, dépliée et agrégée), à partir de la connaissance du profil thermique appliqué, mais aussi pour établir des liens entre la distribution de la masse de dépôt sec dans l'ECP et les mécanismes de dénaturation sous-jacents des solutions protéiques testées.

Chapitre 3 : Encrassement des échangeurs de chaleur à plaques par les solutions protéiques modèles étudiées

Dans ce chapitre, nous discutons les encrassements obtenus lors de traitements thermiques en ECP pour l'ensemble des solutions protéiques modèles encrassantes formulées (chapitre 1 de la partie Matériels et Méthodes) et caractérisées en termes de dénaturation (chapitre 1 de la partie Résultats et Discussions).

Pour faciliter la lecture du document, nous ne présenterons pas systématiquement l'ensemble des essais. Un tableau de synthèse rassemblant toutes les conditions opératoires des différents essais d'encrassement et les masses de dépôts associées est cependant donné en annexe (tableau A.1).

Dans un premier temps, nous tenterons d'illustrer l'impact des paramètres de formulation (teneur en calcium des solutions protéiques) et de procédé (profils thermiques) sur la distribution de la masse de dépôt sec dans un ECP et sur l'aspect visuel du dépôt encrassant. Pour ce faire, nous analyserons les résultats bruts après 2 heures d'essai d'encrassement, pour différents profils thermiques imposés au sein de l'ECP étudié (pour une vitesse de circulation fixée des solutions encrassantes) et pour des solutions encrassantes à teneur en protéine fixée (1% p/p) contenant différentes teneurs en calcium (100 et 120 ppm).

Nous illustrerons également l'influence des paramètres de formulation et de procédé sur la dynamique de formation de dépôt (via l'observation de l'évolution de la résistance thermique d'encrassement avec le temps lors de ces essais).

Ensuite, nous montrerons l'intérêt d'utiliser le ratio molaire calcium/protéine (plutôt que la concentration seule en protéine des solutions) pour évaluer le pouvoir encrassant d'une solution modèle. Pour cela, nous analyserons des essais d'encrassement supplémentaires (réalisés avec des solutions protéiques à teneur en calcium fixée de 100 ppm et différentes concentrations en protéine allant de 0,25 à 2,5% p/p).

Enfin, nous tenterons de sonder les premières couches de dépôt de différentes solutions protéiques modèles ayant différents ratios molaires calcium/protéine afin de mieux comprendre les mécanismes mis en jeu à fort et à faible ratio molaire calcium/protéine.

Le but de cette analyse sera d'illustrer l'évolution de la structure du dépôt en fonction du ratio molaire calcium/protéine.

1. Influence du profil thermique sur la distribution de la masse de dépôt sec dans l'échangeur de chaleur à plaques

1.1. Cas de la configuration de l'ECP de 5 canaux

La figure 4.8 représente la distribution des masses de dépôt sec obtenues expérimentalement dans l'ECP à 5 canaux (section 1.1 du chapitre 2 de la partie Matériels et Méthodes) pour les différents profils thermiques imposées (figure 3.4 du chapitre 2 de la partie Matériels et Méthodes), pour une des solutions protéiques modèles étudiées (solution de WPI à 1% p/p avec une teneur en calcium total de 100 ppm).

La numérotation des canaux de 1 à 5 traduit l'ordre de passage du fluide protéique dans l'ECP comme indiqué à la figure 3.3 du chapitre 2 de la partie Matériels et Méthodes.

Figure 4.8. Distribution de la masse de dépôt sec dans chaque canal de l'ECP d'une configuration de 5 canaux pour une solution modèle de WPI à 1% (p/p) avec une teneur en calcium total de 100 ppm.

La figure 4.8 illustre que le dépôt sec formé n'est pas uniforme tout au long des canaux successifs de l'ECP. La masse de dépôt sec dans chaque canal est clairement impactée par le profil thermique imposé (#1 à #4) qui modifie la température moyenne du canal.

Pour l'ensemble des profils thermiques imposés, on constate que la masse de dépôt est une fonction croissante monotone le long des canaux de l'ECP. La masse de dépôt atteint sa valeur maximale dans le 5^{ème} canal (allant jusqu'à 55,3 g pour le profil thermique #3). Ceci illustre que la masse de dépôt par canal est fortement corrélée à la température moyenne du canal, ce qui est logique compte tenu de l'effet observé de la température sur les cinétiques de dénaturation de la solution protéique modèle étudiée (figure 4.2 chapitre 1 de la partie Résultats et Discussions). Ceci est notamment vrai pour le profil thermique #4, avec lequel la masse de dépôt sec par canal est très faible en comparaison avec celle obtenue pour les autres profils thermiques, et pour lequel la température finale en sortie de l'ECP atteinte par ce profil thermique (74°C) était plus faible par rapport aux trois autres profils thermiques étudiés (≈ 84 °C en moyenne).

La figure 4.8 indique également que les mécanismes de dépôt sont accélérés lorsque la température dépasse une température critique, au-delà de 70°C. En effet, lorsque la température du canal est inférieure à 70°C, très peu de dépôt par canal est reporté (moins de 1 g de dépôt par canal pour 2h d'essai d'encrassement). C'est notamment le cas dans le 1^{er} canal de l'ECP pour les profils thermiques #1 et #3 où les températures moyennes de canal sont de l'ordre de 67°C et les masses de dépôt sec par canal obtenues sont de 0,3 g. Cependant, dès que la température du canal devient supérieure à 70°C, la masse de dépôt sec obtenue augmente significativement quel que soit le canal (4,5 g dans le 2^{ème} canal pour 71°C de température moyenne avec le profil thermique #1). On observe ainsi que des valeurs importantes de masses de dépôt sec peuvent être obtenues dès les trois premiers canaux de l'ECP. En effet, les masses de dépôt par canal collectées dans les trois premiers canaux de l'ECP dans le cas du profil thermique #2 sont deux à trois fois supérieures à celles obtenues pour les profils thermiques #1 et #3. Ce résultat s'explique par le fait que pour le profil thermique #2, les températures moyennes atteintes dans les premiers canaux de l'ECP (passant de 68°C dans le 1^{er} canal à 74°C dans le 2^{ème} canal pour atteindre 79°C dans le 3^{ème} canal) sont supérieures de plusieurs degrés à celles induites par les profils de température #1 et #3 (la température moyenne de l'ordre de 67°C dans le 1er canal et n'atteignant qu'un maximum de 76°C dans le 3^{ème} canal).

Les photographies de dépôts formés (figures 4.9 et 4.10) dans les différents canaux successifs de l'ECP étudié (subissant une température de canal moyenne croissante) illustrent aussi qu'au-delà d'une température moyenne de canal critique de 70°C, les mécanismes de formation du dépôt sont nettement plus conséquents. On constate également que le dépôt blanc et spongieux correspond bien au dépôt de type A décrit par Burton (1968).

Figure 4.9. Dépôt formé dans le 2^{ime} canal de l'ECP pour le profil thermique # 1 (température moyenne du canal = $71^{\circ}C$).

Figure 4.10. Dépôt formé dans le 5^{eme} canal de l'ECP pour le profil thermique # 1 (température moyenne du canal = $84^{\circ}C$).

En conclusion, toutes ces observations indiquent clairement que la distribution de la masse de dépôt dans l'ECP est significativement influencée par la température et qu'une température de canal critique proche de 70°C induit une formation de dépôt nettement plus prononcée.

Ces résultats étaient néanmoins prévisibles puisque la réaction de dénaturation thermique de la β -lg (dépliement et agrégation) d'une solution protéique (contenant du calcium) est dépendante de la température (Petit et al., 2013) et n'a lieu qu'à des températures supérieures à 70°C (Lyster, 1970 ; Dannenberg, 1986 ; Bradley et al., 1989 et Delplace et al., 1994). Ces conclusions concernant l'effet de la température moyenne du canal sur la masse de dépôt ont également été observées pour d'autres solutions protéiques modèles et ne seront pas présentées ici.

1.2. Cas de la configuration de l'ECP de 10 canaux

La figure 4.11 représente la distribution de la masse de dépôt sec dans un ECP à 10 canaux (cf. section 1.2 du chapitre 2 de la partie Matériels et Méthodes) pour une solution modèle de WPI à 1% (p/p) avec une teneur en calcium total de 100 ppm et ce, pour différents profils thermiques (représentées à la figure 3.7 du chapitre 2 de la partie Matériels et Méthodes). Seuls trois profils thermiques ont été réalisés avec cette configuration d'ECP à 10 canaux, à savoir les profils thermiques #1, #2, #4. Le profil thermique #3 exigeait une température d'entrée de l'eau chaude très élevée (supérieure à 110°C) qui était, avec cette configuration, impossible à maintenir durant les 2 heures de l'essai d'encrassement.

Dans le cas de la configuration d'ECP à 10 canaux, le temps de séjour dans l'ECP est le double de la configuration à 5 canaux.

La numérotation des canaux de 1 à 10 correspond à celle de la figure 3.6 du chapitre 2 de la partie Matériels et Méthodes.

Figure 4.11. Distribution de la masse de dépôt sec dans chaque canal de l'ECP d'une configuration de 10 canaux pour une solution modèle de WPI à 1% (p/p) avec une teneur en calcium total de 100 ppm.

La figure 4.11 montre que, pour cette configuration d'ECP et les trois profils thermiques étudiés, la masse de dépôt sec par canal est également une fonction monotone croissante dans l'ECP pour atteindre une valeur maximale dans le 10^{ème} canal (allant jusqu'à 55,9 g pour le profil thermique #2).

Ces résultats, observés dans le cas d'une configuration d'ECP de 10 canaux, confirment l'effet de la température sur la masse de dépôt induite. Dans le cas du profil thermique #1, on observe que la masse de dépôt par canal varie de 0,2 g (1^{er} canal) à 47,7 g (10^{eme} canal). Ces masses de dépôt par canal correspondent respectivement à une température moyenne de 66 et 85°C.

Les masses de dépôt obtenues dans les différents canaux de l'ECP dans le cas du profil thermique #2 sont nettement plus importantes que celles du profil thermique #1. Ceci est conforme aux prévisions. En effet, les températures moyennes dans les 10 canaux de l'ECP sont nettement plus élevées pour le profil thermique #2, accélérant fortement la distribution de la masse de dépôt dans chaque canal de l'ECP.

La figure 4.11 montre une nouvelle fois que la masse de dépôt obtenue, dans le cas du profil thermique #4, est la plus faible enregistrée. En effet, la formation de dépôt n'est observée qu'à 74°C correspondant à la température moyenne du 9^{ème} canal de l'ECP et atteint un maximum de 2,1 g dans le 10^{ème} canal à 75°C. La température de sortie du produit étant très faible (75°C), l'encrassement de l'ECP commence donc plus tard (dans les dernières passes de l'ECP).

Toutes ces observations peuvent une nouvelle fois être reliées aux mécanismes de dénaturation chaude de la β -lg. En effet, plus la température moyenne de la solution modèle est élevée, plus la β -lg est dénaturée rapidement (chapitre 1 de la partie Résultats et Discussions). De plus, plus la température est élevée, plus l'étape d'agrégation limite la réaction.

A haute température (> 74°C), la β -lg dénaturée est disponible en quantité suffisante dès les premières passes pour former une couche de dépôt sur les parois chaudes de l'ECP.

Bien que le temps de séjour dans l'ECP soit le double de celui de la configuration à 5 canaux, la distribution de la masse de dépôt dans l'ECP reste principalement influencée par la température. On constate également avec cette seconde configuration, qu'une température moyenne de canal supérieure à 70°C est nécessaire pour obtenir une masse de dépôt conséquente après 2 heures d'encrassement.

2. Influence de la teneur en calcium sur la masse de dépôt sec par canal et la masse totale de dépôt collectée dans l'échangeur de chaleur à plaques

2.1. Influence de la teneur en calcium sur la distribution de la masse de dépôt sec par canal pour différents profils thermiques

La figure 4.12 représente la distribution de la masse de dépôt sec obtenue expérimentalement dans l'ECP à 5 canaux (section 1.1 du chapitre 2 de la partie Matériels et Méthodes) pour deux solution modèles de WPI à 1% (p/p) avec une teneur en calcium total de 100 et 120 ppm et ce, pour les différents profils thermiques #1 à #4 (représentés à la figure 3.4 du chapitre 2 de la partie Matériels et Méthodes).

Figure 4.12. Distribution de la masse de dépôt sec dans chaque canal de l'ECP pour une solution modèle de WPI à 1% (p/p) avec une teneur en calcium total de 100 ou 120 ppm.

Chaque vignette correspond à un profil de température différent : a) pour le profil thermique #1, b) pour le profil thermique #2, c) pour le profil thermique #3 et d) pour le profil thermique #4.

Résultats & Discussions

Comme pour la solution protéique modèle précédente à 100 ppm de calcium (figure 4.8), on constate sur la figure 4.12 que le profil thermique #4 génère une augmentation monotone de la masse de dépôt par canal tout au long des canaux de l'ECP pour atteindre un maximum de 13,1 g dans le 5^{ème} canal de l'ECP. Cette faible masse de dépôt par canal s'explique par la faible concentration de la β -lg dénaturée générée à ces faibles températures (d'une température moyenne de 61°C dans le 1^{er} canal à 74°C dans le dernier canal de l'ECP). Ceci suggère une nouvelle fois que la protéine se dépose sur les parois chaudes de l'ECP uniquement quand la température en solution est suffisamment élevée pour générer la dénaturation de la β -lg.

Pour cette nouvelle solution protéique à teneur en calcium plus élevée (120 ppm au lieu de 100 ppm), on constate également que la masse de dépôt par canal reste fortement influencée par le profil thermique. Cependant, contrairement à la solution protéique de 1% (p/p) avec une teneur en calcium total de 100 ppm (figure 4.8), l'évolution de la masse de dépôt sec par canal avec la température n'est plus une fonction strictement croissante mais semble atteindre une valeur plateau d'environ 40g.

Cette valeur plateau de dépôt sec est atteinte dès que la température moyenne dépasse 68–74°C (ce qui correspond à la température moyenne atteinte dans le 2^{ème} canal de l'ECP pour les trois profils de température #1 à #3). Cette valeur plateau de masse de dépôt semble indiquer qu'il existe une limite maximale de l'encrassement avec la température au sein de l'ECP pour cette solution protéique modèle. Ceci n'était pas le cas pour la solution protéique avec une teneur plus faible en calcium (solution de WPI à 1% (p/p) avec une teneur en calcium total de 100 ppm).

Cette première analyse permet donc d'affirmer que la composition en calcium des solutions protéiques induit des changements sur les mécanismes de formation de dépôt. De ce fait, selon la teneur en calcium de la solution protéique, on pourra à une température fixée atteindre plus ou moins rapidement une valeur plateau de masse de dépôt par canal au sein de l'ECP.

L'analyse de la figure 4.12 met en évidence que pour l'ensemble des profils thermiques imposés, la forte croissance du dépôt sec par canal a lieu dans une plage de température très étroite (entre 68°C et 74°C). Cette plage de températures correspond aussi à celle où on observe le démarrage de la réaction de dénaturation de la β -lg. En effet, [68°C–74°C] correspond à l'intervalle de températures où la réaction de dénaturation de la β -lg devient significative (Daufin et al., 1987 ; Linmark-Mansson et al., 2005).
2.2. Influence de la teneur en calcium sur la masse de dépôt totale pour différents profils thermiques

La figure 4.13 représente l'influence de la teneur en calcium sur la masse de dépôt sec totale dans l'ECP pour les solutions modèles de WPI à 1% (p/p) contenant 100 et 120 ppm de calcium total.

Figure 4.13. Masse de dépôt totale obtenue dans l'ECP pour des solutions modèles de WPI à différentes teneurs en calcium total (100 et 120 ppm) et différents profils thermiques.

La figure 4.13 montre que, pour les mêmes températures d'entrée et de sortie du produit (profils thermiques #1 à #4), la masse de dépôt totale est fortement impactée selon la concentration en calcium. C'est notamment le cas du profil thermique #1 dont la masse de dépôt totale passe de 104,7 g à 100 ppm de calcium total à 154,1 g à 120 ppm de calcium total. Cette tendance a également été observée pour les profils thermiques #3 et #4. Cependant, pour le profil thermique #2, les masses de dépôt totales obtenues à 100 et 120 ppm de calcium total sont très proches (respectivement 160,4 et 161,4 g).

Par ailleurs, pour les solutions protéiques à teneur en calcium plus élevée (120 ppm au lieu de 100 ppm), on constate également que la masse de dépôt par canal reste fortement influencée par le profil thermique.

3. Influence du profil thermique et de la teneur en calcium sur la résistance thermique d'encrassement

La figure 4.14 représente l'évolution de la résistance thermique d'encrassement avec le temps lors d'un traitement thermique dans l'ECP des solutions modèles de WPI à 1% (p/p) avec une teneur en calcium total 100 et 120 ppm, pour les différents profils thermiques imposés (#1 à #4).

Conformément à ce qui est prévisible, cette figure montre que la résistance thermique d'encrassement augmente linéairement avec le temps de traitement pour l'ensemble des essais d'encrassement. Cependant, la pente de ces courbes est très différente selon le profil thermique appliqué (#1 à#4) et la teneur en calcium total (100 ou 120 ppm) des solutions protéiques de WPI à 1% (p/p).

Figure 4.14. Evolution de la résistance thermique d'encrassement dans le temps au sein de l'ECP à différents profils thermiques pour des solutions de WPI à 1% (p/p) contenant différentes teneurs en calcium total (100 ppm : symboles pleins ; 120 ppm : symboles vides).

La figure 4.14 indique clairement que, la résistance d'encrassement croit quand la concentration en calcium de la solution protéique modèle augmente (cas des profils thermiques #1 à #3).

Cependant, cette augmentation de la résistance thermique n'est pas toujours significative (cas du profil thermique #4) et dépend aussi du profil thermique imposé. Par exemple, pour le profil thermique #4 (61–74°C), les courbes des résistances thermiques d'encrassement correspondant aux concentrations en calcium de 100 et 120 ppm sont superposées.

Ces observations sont conformes aux résultats observés dans le chapitre 0 (Analyse d'une base de données existante d'essais d'encrassement) soulignant que la dynamique de de dépôt dépend fortement de la teneur en calcium. Ces résultats sont également en accord avec les travaux de Daufin et al. (1987), Xiong (1992) et Simons et al. (2002) qui ont montré que le calcium peut interagir avec le groupe carboxyle des acides aspartique et glutamique de la β -lg et favoriser par conséquent la croissance du dépôt en stabilisant les agrégats. Simmons et al. (2007) ont indiqué que le calcium serait à l'origine de la croissance du dépôt laitier et de la modification de l'aspect de ce dernier dans l'intervalle de températures allant de 75 à 90°C. Par ailleurs, Pappas et Rothwell (1991) ont montré que lors d'un traitement thermique (80–110°C) d'une solution de β -lg avec du calcium, la protéine s'agrège totalement pour former des structures compactes.

Nos propres résultats expérimentaux obtenus sur des solutions de protéines sériques reconstituées (Promilk 852 FB1 ; WPI 1% p/p à 100 et 120 ppm de calcium total) confortent nos résultats préliminaires obtenus à partir de l'analyse d'une base de données existantes d'essais d'encrassement réalisés avec d'autres solutions protéiques modèles (WPC 75 ; WPC 1% p/p avec 70 à 87,4 ppm de calcium).

Ces résultats montrent sans contestation que si des facteurs physiques (température moyenne dans le canal) ont bien une influence sur la formation du dépôt, certains paramètres de composition jusqu'ici très peu pris en considération dans la prédiction du potentiel encrassant de solutions protéiques (comme la teneur en calcium) jouent également un rôle clé qui ne peut être négligé.

Il est désormais clair avec ces essais d'encrassement sur des solutions protéiques modèles que la teneur en calcium : (i) impactent fortement les distributions de masses de dépôt par canal et la masse totale de dépôt collectée dans l'ECP et (ii) influencent significativement la dynamique de formation de dépôt et la structure. Ces résultats, croisés avec les travaux rapportés dans la littérature, nous permettent d'ores et déjà d'émettre l'hypothèse que le calcium est un agent en capacité de lier les protéines constituant les couches supérieures de dépôt et les protéines dénaturées en solution, entraînant une formation accélérée d'encrassement des surfaces.

Ainsi, pour certains scénarii, le calcium facilitera la formation du dépôt. Dans certains cas cependant, le calcium pourra avoir un rôle négligeable. Il est fort probable par exemple que lorsque le taux de dénaturation est très faible (faible concentration en protéine native ou traitement thermique peu dénaturant), la concentration en protéines dénaturées limite la progression du dépôt. Ceci pourrait expliquer les très faibles valeurs de masse de dépôt sec par canal, de masse totale de dépôt et de résistance thermique d'encrassement observées pour le profil thermique #4 (traitement thermique très peu sévère).

Si tel est le cas, le ratio molaire calcium/protéine devrait être considéré plutôt que la concentration seule en protéine des solutions modèles pour évaluer le pouvoir encrassant d'une solution. Nous allons tenter d'infirmer ou confirmer ces hypothèses en analysant l'influence du ratio molaire calcium/protéine sur la distribution des dépôts en réalisant d'autres essais d'encrassement avec des solutions protéiques modèles ayant des ratios molaire calcium/protéine maitrisés.

4. Influence du ratio molaire calcium/protéine sur la masse de dépôt sec par canal et la masse totale de dépôt collectée dans l'ECP

4.1. Influence du ratio molaire calcium/protéine sur la distribution de la masse de dépôt sec pour un profil thermique fixé

La figure 4.15 représente les masses de dépôt obtenues dans chaque canal de l'ECP pour les solutions protéiques modèles à 0,25 ; 0,5 ; 1 ; 2 et 2,5% (p/p) contenant une teneur en calcium total de 100 ppm et en imposant le même profil thermique #1 au sein de l'ECP.

Figure 4.15. Distribution de la masse de dépôt sec dans chaque canal de l'ECP obtenue lors du traitement thermique (profil thermique #1 fixé) de solutions protéiques modèles à teneur en calcium totale fixée (100 ppm) et à teneur en WPI allant de 0,25 à 2,5% (p/p).
Ces solutions protéiques modèles ont ainsi des ratios molaires calcium/protéine variant de 2,3 à 22,9.

La figure 4.15 montre une nouvelle fois que pour une solution protéique modèle donnée l'encrassement de l'ECP est très fortement influencé par la température moyenne du canal.

Par ailleurs, la masse de dépôt sec n'est pas uniforme dans les 5 canaux de l'ECP et est distribuée très différemment par canal en fonction du ratio molaire calcium/protéine des solutions modèles étudiées. Selon le ratio molaire calcium/protéine des solutions protéiques modèles (de 2,3 à 22,9), l'évolution de la masse de dépôt par canal tout au long de l'ECP est décrite par différentes fonctions :

- monotone croissante (solutions protéiques avec les ratios molaires calcium/protéine de 2,3 et 2,9);
- monotone croissante suivi d'un plateau (solutions protéiques avec les ratios molaires calcium/protéine de 5,7 et 11,5);

 monotone croissante puis monotone décroissante (solution protéiques avec le ratio molaire calcium/protéine de 22.9).

Ceci prouve une nouvelle fois que la température moyenne du canal et la teneur en protéine ne sont pas les seuls indicateurs à considérer pour décrire la complexité du phénomène d'encrassement.

La figure 4.15 montre également que pour chaque solution modèle de WPI, la masse de dépôt totale augmente très fortement dans le $2^{\text{ème}}$ canal de l'ECP. Cette augmentation est sans doute une nouvelle fois imputable à l'initiation de la réaction de dénaturation de la β -lg (Havea et al., 2001 ; Linmark-Mansson et al., 2005) entre 67°C (température moyenne du 1^{er} canal de l'ECP) et 71°C (température moyenne du $2^{\text{ème}}$ canal).

On remarque d'ores et déjà que les masses de dépôt sec obtenues dans le $2^{\text{ème}}$ canal de l'ECP pour les solutions modèles à 0,25 et 0,5% (p/p) sont les plus importantes, ce qui est en accord avec les valeurs élevées des constantes cinétiques de dépliement de ces deux solutions. L'augmentation de la masse de dépôt pourrait donc être fortement liée à la disponibilité des espèces dépliées de la β -lg, qui agiraient comme précurseurs dans le mécanisme d'encrassement protéique. Cette hypothèse sera discutée plus longuement dans le prochain chapitre traitant de l'étude de la relation entre les espèces de β -lg en solution et la distribution de la masse de dépôt sec dans l'ECP (chapitre 3 de la partie Résultats et Discussions).

4.2. Influence du ratio molaire calcium/protéine sur la masse totale de dépôt collectée dans l'ECP pour un profil thermique fixé

La figure 4.16 représente l'influence du ratio molaire calcium/protéine sur la masse de dépôt sec totale générée au sein de l'ECP pour des solutions protéiques modèles (solutions protéiques de WPI de 0,25 à 2,5% p/p avec une teneur en calcium fixée à 100ppm) subissant le profil thermique #1 au sein de l'ECP. Nous avons également reporté sur cette figure la masse de dépôt sec obtenue pour une solution protéique modèle de 1% (p/p) avec 120 ppm de calcium total (correspondant à un ratio calcium/protéine de 6,9).

Figure 4.16. Masse de dépôt totale en fonction du ratio molaire calcium/protéine des différentes solutions de WPI étudiées.

Ces résultats sont obtenus lors du traitement thermique (profil thermique #1 fixé) de solutions protéiques modèles à teneur en calcium totale fixée (100 ppm) et à teneur en WPI allant de 0,25 à 2,5% (p/p) correspondant à des ratios molaires calcium/protéine variant de 2,3 à 22,9.

La figure 4.16 montre clairement que la masse de dépôt totale augmente avec le ratio molaire calcium/protéine puis décroit légèrement.

L'augmentation de la masse totale de dépôt sec se produit jusqu'à une valeur maximale de 155,6 g; ce maximum de masse de dépôt est obtenu pour un ratio molaire calcium/protéine compris entre 6,9 et 11,5. La masse de dépôt sec diminue ensuite pour atteindre une valeur de 135,2 g pour un ratio molaire calcium/protéine de 22,9.

Les résultats de la figure 4.16 montrent irréfutablement que la masse totale de dépôt sec n'est pas uniquement corrélée à la concentration en β -lg de la solution modèle de WPI. En effet, pour le profil thermique imposé, bien que la teneur en protéine augmente (passant de 0,25 à 2,5% p/p) la masse totale de dépôt collectée diminue.

Ce résultat non intuitif va à l'encontre des idées reçues dans le secteur industriel et montre l'importance de connaitre le ratio molaire calcium/protéine pour prédire le phénomène d'encrassement.

La diminution de la masse totale de dépôt pour des ratios calcium/protéine élevés (entre 11,5 et 22.3) peut s'expliquer :

- soit par la trop faible concentration initiale en espèce native (0,25% p/p de WPI). De ce fait, le calcium en excès n'aurait plus qu'un rôle mineur puisque le phénomène d'encrassement serait limité par la faible concentration en β-lg dénaturée ;
- soit par l'effet protecteur du calcium envers la dénaturation de la β-lg à un fort ratio calcium/protéine comme suggéré par Roefs et Peppelman (2001).

5. Influence du ratio molaire calcium/protéine sur la résistance thermique d'encrassement

La figure 4.17 représente l'évolution de la résistance d'encrassement lors d'un traitement thermique (profil thermique #1) dans l'ECP des solutions modèles de WPI à 1% (p/p) à différents ratios molaires calcium/protéine (allant de 2,3 à 22,9).

Figure 4.17. Evolution de la résistance d'encrassement dans le temps au sein de l'ECP obtenue lors du traitement thermique (profil thermique #1 fixé) de solutions protéiques modèles à teneur en calcium total fixée (100 ppm) et à teneur en WPI allant de 0,25 à 2,5%

p/p).

Pour l'ensemble des solutions protéiques modèles testées et le profil thermique #1 imposé, la résistance thermique d'encrassement semble augmenter linéairement avec le temps. La pente de ces évolutions s'ordonne en fonction du ratio molaire calcium/protéine. Plus le ratio molaire calcium/protéine est important, plus la valeur de la pente de la droite est élevée. Ceci confirme les mesures des masses totales de dépôt au bout de 2 heures dans l'ECP, montrant que le phénomène d'encrassement s'intensifie avec l'augmentation du ratio molaire calcium/protéine.

Les résultats de la figure 4.17 montrent irréfutablement que l'évolution dans le temps de la résistance thermique d'encrassement n'est pas uniquement corrélée à la concentration en β -lg de la solution modèle de WPI. En effet, pour le profil thermique imposé, bien que la teneur en protéine diminue (passant de 2,5 à 0,25% p/p), la dynamique de déposition (via l'augmentation de la pente) augmente.

On constate que selon la valeur du ratio molaire calcium/protéine, la durée de la période d'induction (période située juste après le démarrage de l'essai d'encrassement et où une valeur légèrement négative ou plateau de la résistance thermique d'encrassement est constatée) varie. Les résultats de la période d'induction ne seront cependant pas commentés plus en détail ici. En effet, selon les conditions opératoires, il est difficile de distinguer cette période de celle où le régime permanent est réellement atteint. Compte tenu du mode opératoire de mise en régime de l'installation, la température de l'eau chaude et celle du produit à traiter augmentent jusqu'à atteindre des valeurs constantes au début de la période d'induction. Néanmoins, pour l'ensemble de nos essais, après 30 minutes, les températures sont constantes (régime permanent), la phase d'induction est considérée comme achevée et l'évolution de la résistance thermique d'encrassement peut être analysée.

La figure 4.17 montre également qu'à faible ratio molaire calcium/protéine (2,3 et 2,9), la résistance thermique d'encrassement évolue très peu. Ce résultat pourrait s'expliquer par le fait que le ratio molaire calcium/protéine est faible. De ce fait, peu d'ions calcium sont en capacité de jouer un rôle de médiateur pour lier des protéines dénaturées.

A environ 1 heure 30 minutes du début du traitement thermique, des perturbations sont observées. L'explication généralement avancée pour cette observation est le phénomène d'arrachement des couches de dépôt sous l'effet de la contrainte mécanique, qui augmente au fur et à mesure que se développe une épaisseur de dépôt plus conséquente dans l'échangeur (Fryer, 1989). Cependant, l'explication de ce phénomène semble peu plausible dans notre cas puisque la cohésion du dépôt encrassant formé semble forte. Ce dernier est très difficile à enlever par une simple action mécanique. De plus, aucun amas de particules n'a été observé dans le liquide à la sortie de l'ECP ou lors du démontage de ce dernier.

Les résultats de la figure 4.17 suggèrent une nouvelle fois que le calcium participe à la structuration du dépôt et à la croissance des couches de dépôt. En effet, le calcium favoriserait la croissance du dépôt encrassant en liant et stabilisant les protéines dénaturées en solution et de la couche supérieure de dépôt. Si tel est le cas, le sondage de dépôts devrait conduire à des structures différentes selon la teneur en calcium des solutions protéiques utilisées. Nous allons tenter d'infirmer ou confirmer ces hypothèses en analysant des dépôts à faible et fort ratios molaires calcium/protéine (2,3 et 22,9 respectivement).

6. Observation visuelle du dépôt encrassant à faible et fort ratios molaires calcium/protéine

Les figures 4.18 et 4.19 représentent les dépôts formés dans les canaux de l'ECP après des essais d'encrassement de 2 heures avec des solutions de WPI modèles à 0,25 et 2,5% (p/p) contenant toutes les deux une teneur en calcium total fixe de 100 ppm.

Ces deux solutions protéiques modèles ont ainsi des ratios molaires calcium/protéine contrôlés de 2,3 (solution protéique à 2,5% p/p de WPI) et 22,9 (solution protéique à 0,25% p/p de WPI).

Les figures 4.18 et 4.19 montrent clairement que pour ces deux solutions protéiques, l'aspect des dépôts dans les canaux de l'ECP est significativement différent, alors que le profil thermique appliqué est identique.

Pour la solution modèle à 2,5% (p/p), la couche de dépôt formée, y compris dans le 5^{ème} canal de l'ECP, est très mince et à peine visible en dépit de la température élevée du canal de l'ECP (84°C). Très peu de dépôt est observé à une température bien supérieure à 80°C, température à laquelle la β -lg est supposée être dénaturée (Lyster, 1970 ; Delplace et al., 1994 ; Linmark-Mansson et al., 2005 ; Petit et al., 2011).

En revanche pour la solution modèle de WPI à 0,25% (p/p), le dépôt formé est présent dès les premiers canaux de l'ECP. On peut constater, dès le 2^{ème} canal de l'ECP, que la couche de dépôt formée est très épaisse et répartie de manière homogène sur la plaque de l'ECP. Il apparait donc clairement que même à basse température (71°C), une importante couche de dépôt est formée.

Figure 4.19. Couches de dépôt formées dans les différents canaux de l'ECP après 2 h d'essais d'encrassement avec des solutions modèles de WPI à 0,25% (p/p).

Figure 4.18. Couches de dépôt formées dans les différents canaux de l'ECP après 2 h d'essais d'encrassement avec des solutions modèles de WPI à 2,5% (p/p).

7. Influence du ratio molaire calcium/protéine sur la croissance du dépôt protéique : caractérisation des premières couches de dépôt en surface de l'ECP

Afin de caractériser l'encrassement laitier et mieux comprendre le rôle du ratio molaire calcium/protéine dans la croissance du dépôt protéique, la morphologie et la composition chimique des premières couches de dépôt formées à la surface des plaques de l'ECP ont été analysées par EPMA (microanalyse par sonde électronique) (figure 4.20) et XPS (spectroscopie de photoélectrons X) (figure 4.21). Pour ce faire, des plaques contenant du dépôt encrassant ont été découpées en différents échantillons (coupes transversales) et certains de ces échantillons ont été analysés.

Les analyses EPMA, présentées à la figure 4.20, révèlent la présence d'éléments caractéristiques de l'acier (Fe, fer), de la protéine (S, soufre), du calcium (Ca) et du chlore (Cl). Les cartographies sont codées par couleur du noir (caractérisant l'absence de l'élément) au rouge (indiquant la plus forte concentration détectée). Comme les échelles de couleur sont identiques, il est possible de comparer les concentrations d'un même élément entre les figures 4.20a et 4.20b.

La cartographie du calcium et du soufre de la solution protéique à 0,25% (p/p) (figure 4.20a) indiquent que la couche de dépôt formée est épaisse, n'est pas répartie de manière homogène et se développe suivant une croissance en arborescence. La figure 4.20a montre également que le calcium et le soufre sont répartis de manière homogène dans l'arborescence et sont situés au même endroit. Ces résultats sont en accord avec les observations de Jimenez et al. (2013) qui ont expliqué cette structure arborescente comme une co-construction de la couche de dépôt par à la fois les protéines et les particules de calcium. Ces derniers agissent comme des points d'ancrage pour favoriser la croissance du dépôt.

*La section transversale est enrobée dans de la résine époxy contenant du chlore, ce qui expliquerait pourquoi le Cl est détecté au-dessus de l'acier inoxydable (AI).

Figure 4.20. Cartographies X des éléments Fe, Cl, S et Ca de la section transversale de la couche de dépôt des solutions modèles de WPI à : a) 0,25% (p/p) et b) 2,5% (p/p).

Il est néanmoins difficile de comparer davantage nos résultats avec ceux de Jimenez et al. (2013). En effet, les couches de dépôt analysées n'ont pas été formées dans les mêmes conditions (concentrations en calcium et en protéine, profils thermiques imposés dans l'ECP) ni localisées et collectées au même endroit de l'ECP.

Dans ce travail de thèse, les dépôts protéiques ont été collectés directement dans les canaux de l'ECP sur la surface corruguée des plaques de l'ECP et par conséquent, dans la zone de chauffage. Jimenez et al. (2013) ont en revanche caractérisé les dépôts formés sur des coupons en acier inoxydable insérés dans un tube correspondant à la zone de chambrage située après l'ECP.

Jimenez et al. (2013) ont utilisé une solution de WPI à 1% (p/p) et 120 ppm de calcium, correspondant à un ratio molaire calcium/protéine de 6,9. De plus, dans les travaux de Jimenez et al. (2013), la réhydratation des solutions protéiques encrassantes a été effectuée avec de l'eau dure alors que dans notre cas, elle a été réalisée avec de l'eau osmosée.

La couche de dépôt de la solution modèle de WPI à 2,5% (p/p), représentée dans la figure 4.20b, est homogène, plus mince (~ 50 μ m) et plus compacte que celle de la solution

modèle à 0,25% (p/p). La figure 4.20b montre que le calcium et le soufre sont également dans ce cas colocalisés, malgré un plus faible ratio molaire calcium/protéine comparé à celui de la solution précédente à 0,25% (p/p) (couleur bleue prédominante contre couleur verte dans la figure 4.20a).

Les résultats des analyses EPMA montre donc que le ratio molaire calcium/protéine agit non seulement sur la masse de dépôt formé sur la surface de la plaque de l'ECP mais aussi sur la structure du dépôt.

Compte tenu des résultats, il est fort probable qu'à faible ratio molaire calcium/protéine, les interactions protéine-protéine soient majoritaires (au détriment des interactions protéineparticules de calcium dans la couche de dépôt), induisant une cinétique de formation de dépôt lente. Ainsi, une structure mince, lisse et compacte de dépôt est générée au final. A l'inverse, à fort ratio molaire calcium/protéine, le calcium accélère la croissance de la couche de dépôt en favorisant la fixation des protéines dénaturées. La croissance de la couche de dépôt est dans ce cas accélérée par la présence des particules de calcium, conduisant ainsi à une structure épaisse, spongieuse et rugueuse.

Notons que 90 ppm de calcium sous forme de CaCl₂ ont été ajoutées à la solution modèle de WPI à 0,25% (p/p). De ce fait, il n'était pas exclu que le chlore pourrait être présent dans le dépôt et pourrait être un élément expliquant la formation de ses différentes structures. Cependant, le chlore n'a pas été détecté dans la couche de dépôt analysée, ce qui signifie qu'il est absent ou qu'il est présent en faible quantité dans le dépôt. Le chlore n'est donc pas un élément intervenant au développement de la couche de dépôt encrassante.

Par ailleurs, une analyse complémentaire a été effectuée par XPS afin de mieux comprendre la forme chimique du calcium constituant le dépôt de la solution protéique à 0,25% (p/p) (figure 4.21). Cette analyse a montré que pour le phosphore, un seul pic a été identifié contre deux pour le calcium à respectivement 350,8 et 347,2 eV, correspondant à Ca 2p1/2 et Ca 2p3/2 du phosphate de calcium. Le ratio molaire expérimental calcium/phosphate est d'environ 1,45. Cette valeur est proche de celles trouvées dans la littérature de l'ordre de 1,47 (Tissier et Lalande, 1986) et 1,5 (Chusuei et Goodman, 1999).

Figure 4.21. Analyse XPS des particules de calcium.

Ce résultat représente une autre grande différence avec le travail de Jimenez et al. (2013) qui ont montré, pour leur solution encrassante et leurs conditions opératoires, que le carbonate de calcium serait impliqué dans le mécanisme d'encrassement au sein de l'ECP. La présence du carbonate de calcium pourrait être expliquée par le fait que la réhydratation de la solution protéique modèle utilisée par Jimenez et al. (2013) s'est faite avec de l'eau dure. En revanche, dans le cas de ce travail de thèse, les solutions encrassantes ont été préparées avec de l'eau osmosée afin de limiter la formation de carbonate de calcium. De plus, les concentrations en minéraux (principalement le calcium et le phosphore) de ces deux solutions sont très différentes, ce qui peut conduire à un équilibre différent en sels minéraux.

8. Conclusion

Les résultats de ce chapitre ont pu mettre en évidence l'influence du ratio molaire calcium/protéine sur la distribution de la masse de dépôt sec et sur la structure des premières couches de dépôt obtenues lors de traitement thermique de différentes solutions modèles de

WPI dans l'ECP. De même, ce chapitre a fait apparaître le rôle prépondérant de l'histoire thermique subie par la solution dans le phénomène d'encrassement laitier.

Il est clair que :

- la distribution de la masse de dépôt dépend fortement des profils thermiques imposés dans l'ECP ;
- la masse totale de dépôt et l'accroissement de la dynamique d'encrassement (via le suivi de résistance thermique encrassante dans le temps) ne sont pas positivement corrélés à la concentration en β-lg des solutions modèles de WPI (à une teneur en calcium variable). Ces deux grandeurs physiques sont par contre positivement corrélées aux ratios molaires calcium/protéine des solutions encrassantes ;
- l'augmentation des ratios molaires calcium/protéine entraîne une forte augmentation des masses de dépôt et des résistances thermiques encrassantes dans l'ECP dans l'intervalle de températures allant de 65 à 85°C ;
- la structure des premières couches de dépôt en surface est influencée par le ratio molaire calcium/protéine. A faible ratio molaire calcium/protéine, la couche de dépôt est mince, lisse et compacte et à l'inverse, très épaisse, rugueuse et spongieuse à fort ratio molaire calcium/protéine ;
- les cartographies à fort ratio molaire calcium/protéine indiquent que les particules de calcium accélèrent la croissance de la couche de dépôt en exposant une plus grande surface au dépôt protéique ;
- les cartographies à faible ratio molaire calcium/protéine indiquent que les interactions protéine-protéine sont favorisées au détriment des interactions protéine-particules de calcium dans la couche de dépôt.

Ces résultats permettent d'affirmer que le calcium est un agent en capacité de lier les protéines constituant les couches supérieures de dépôt et les protéines dénaturées en solution, entraînant une formation accélérée d'encrassement des surfaces.

Nous ne savons pas encore préciser à ce stade quelles espèces dénaturées (agrégées ou dépliées) constituent le dépôt et le lien exacte entre le comportement en dénaturation des solutions protéiques modèles et la formation des dépôts. C'est pourquoi nous allons étudier dans le prochain chapitre la relation entre les espèces de la β -lg (native, dépliée et agrégée) en solution et la distribution de la masse de dépôt dans l'ECP.

Chapitre 4 : Etude de la relation entre les espèces de β-lg en solution et la distribution de la masse de dépôt sec dans l'ECP pour différentes solutions protéiques modèles

Nous proposons dans ce chapitre de mieux cerner les espèces protéiques responsables de la formation du dépôt. Pour ce faire, nous étudierons l'influence des profils de température sur à la fois la distribution de la masse de dépôt sec dans chaque canal de l'ECP et les profils de concentrations des différentes espèces de β -lg au sein de l'ECP.

Cette étude sera effectuée pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total. Les profils de concentration seront simulés à partir du modèle de Tolkach et Kulozik (2007) et le modèle de deux réactions successives (chapitre 4 de la partie Matériels et Méthodes). Les résultats obtenus (relation entre la β -lg dépliée et la masse de dépôt sec formé dans l'ECP) seront comparés à ceux obtenus avec une solution modèle de β -lg quasi-pure (solution modèle de Petit et al. (2013) : 6% p/p et 264 ppm de calcium total).

Influence du profil thermique sur à la fois la distribution de la masse de dépôt sec dans chaque canal de l'ECP et les profils de concentrations des différentes espèces de β-lg en solution simulées avec le modèle de Tolkach et Kulozik (2007)

Les figures 4.22a, 4.22b, 4.22c et 4.22d représentent la variation à la fois des profils de concentrations simulées des différentes espèces de β -lg et des masses de dépôt sec mesurées dans les 5 canaux de l'ECP, pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total et ce, pour l'ensemble des profils thermiques étudiés (#1, #2, #3 et #4).

Figure 4.22. Variation à la fois des masses de dépôt sec mesurées dans les 5 canaux de l'ECP et des profils de concentrations des différentes espèces de β-lg simulées avec le modèle de Tolkach et Kulozik (2007) pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total et différents profils thermiques imposés (#1, #2, #3 et #4).

Les figures 4.22 montrent que : (i) l'espèce N disparaît progressivement le long de l'ECP, à mesure que la température augmente dans les canaux, au profit de l'apparition des espèces U et A, et (ii) l'espèce U apparaît plus tôt que l'espèce A, qui enregistre la plus faible concentration dans l'ECP.

L'analyse des figures 4.22 montrent également que le traitement thermique joue un rôle important dans l'encrassement de l'ECP. En effet, l'augmentation de la température moyenne du produit dans l'ECP entraîne un fort accroissement non seulement du niveau de dénaturation chaude de la β -lg mais aussi de la masse de dépôt sec. Par ailleurs, on constate que la concentration de l'espèce *N* reste proche de sa valeur initiale (de l'ordre de 6 g.L⁻¹) à la température moyenne d'entrée du produit (61–68°C). Ceci est logique car dans ce cas, la température est plus faible que la température de dénaturation de la β -lg allant de 74 à 76°C (Guérin et al., 2007).

Afin d'étudier le rôle des processus de dépliement et d'agrégation de la β -lg sur les mécanismes de formation de dépôt encrassant, la distribution de la masse de dépôt sec mesurée dans les différents canaux de l'ECP et les concentrations des espèces *U* et *A* ont été analysées simultanément. Les allures des différents profils de concentrations de la β -lg, présentés dans les figures 4.22, sont cohérents avec la distribution des concentrations des espèces *N*, *U* et *A* calculées à partir de la modélisation CFD d'un canal unique de l'ECP durant la pasteurisation du lait (De Bonnis et Ruocco, 2009) et d'un ECP comprenant 10 canaux (configuration 1 canal par passe) durant la pasteurisation de WPI à 6% (p/p) (Bouvier et al., 2014).

Par ailleurs, les figures 4.22 montrent qu'en l'absence de l'espèce *A*, une faible quantité de l'espèce *U* en solution est suffisante pour observer la croissance du dépôt protéique au sein de l'ECP. Ce résultat est en accord avec les travaux de Delplace et Leuliet (1995) qui ont constaté que de très faibles quantités de β -lg dépliées sont nécessaires pour observer une augmentation de la masse de dépôt sec. Le dépôt anticipe donc la formation des agrégats. Plus généralement, l'observation des figures 4.22 montrent qu'il existe une corrélation entre la concentration de l'espèce *U* et la formation de dépôt puisque le profil de concentration de la β -lg dépliée suit la distribution de la masse de dépôt sec le long de l'ECP. Par ailleurs, le maximum du dépôt encrassant correspond au canal de l'ECP dans lequel la concentration de l'espèce *U* atteint son maximum (e.g. pour le profil thermique #1, le dépôt atteint un maximum de 40,7 g et une *Cu* maximale de 5,1 g.L⁻¹ dans le 5^{ème} canal).

L'hypothèse que l'espèce dépliée serait à l'origine du dépôt protéique est en accord avec les travaux de Blanpain-Avet et al. (2012) qui ont montré à partir d'analyses Raman que les molécules de β -lg présentes dans les premières couches de dépôt ont une structure secondaire différente de celle des agrégats. Ces auteurs ont également rapporté que la protéine de β -lg " molten globule " favorise l'encrassement des ECP et que les agrégats ne sont pas impliqués dans la formation de dépôt. De même, nos résultats sont cohérents avec les conclusions de De Jong et al. (1992), Delplace et al. (1997) et van Asselt et al. (2005) qui ont affirmé que favoriser la formation des agrégats pourrait être un moyen de réduire l'encrassement laitier.

Les résultats observés dans les figures 4.22 ont été confrontés aux résultats de Blanpain et al. (2016). En effet, la configuration plus étendue de l'ECP étudié par ces auteurs a permis une observation plus complète des phénomènes. Les résultats de Blanpain et al. (2016) sont présentés dans les figures 4.23a, 4.23b, 4.23c et 43.23d. Ces figures représentent les masses de dépôt sec dans chaque canal de l'ECP, pour chacun des essais d'encrassement correspondant aux conditions opératoires #1, #3, #6 et #15 (données en annexe : tableau A.2) imposées par Petit et al. (2013), ainsi que les profils de concentrations des différentes espèces de β -lg (*N*, *U* et *A*) simulés au sein de l'ECP (21 plaques, 10 canaux, 1 canal par passe) pour une solution modèle de β -lg quasi-pure à 6% (p/p) contenant 264 ppm de calcium.

Les figures 4.23 confirment les principales conclusions retenues lors de l'exploitation des résultats présentés dans les figures 4.22. Cependant, l'évolution de la masse de dépôt sec est plus complexe. En effet, la masse de dépôt augmente dans les premiers canaux de l'ECP, quel que soit le profil thermique imposé puis, atteint un maximum et diminue dans les derniers canaux de l'ECP, tel est le cas du profil thermique #6 (figure 4.23c) où la masse de dépôt est à son maximum dans le canal 3 avec une valeur de 82,2 g puis chute brusquement pour atteindre 21,7 g à la sortie de l'ECP (canal 10).

Si la β -lg agrégée était à l'origine du dépôt, le dépôt protéique augmenterait linéairement dans l'ECP puisque les agrégats sont censés augmenter en taille et en nombre durant le traitement thermique. Or, ceci est en contradiction avec les observations des figures 4.23 où l'on observe des évolutions de masse de dépôt sec et de concentration en *A* non corrélées. La β -lg agrégée ne semble donc pas être l'espèce précurseur du dépôt protéique.

Figure 4.23. Variation à la fois des masses de dépôt sec mesurées dans les différents canaux de l'ECP et des profils de concentrations des différentes espèces de β-lg simulées avec le modèle de Tolkach et Kulozik (2007) pour une solution de β-lg quasi-pure et différents profils thermiques.

L'hypothèse supposant que la β -lg dépliée serait l'espèce précurseur du dépôt protéique semble donc être confirmée, comme le montre les résultats des figures 4.23. Ces hypothèses sont en accord avec les travaux de Belmar-Beiny (1992), Petermeier et al. (2002), Jun et Puri (2007) et Choi et al. (2013). Ces auteurs ont développé leurs modèles déterministes de l'encrassement selon l'approche que seule la molécule dépliée est déposée sur la surface de l'échangeur de chaleur et est l'élément essentiel dans la formation de dépôt. Jimenez et al. (2013) ont également rapporté que les mécanismes d'encrassement sont initiés par le dépôt de la β -lg dépliée sur le substrat en acier inoxydable. Par ailleurs, Petit et al. (2013) ont montré que la masse de dépôt totale collectée dans l'ECP est essentiellement gouvernée par un nombre adimensionnel ($\exp(\frac{-E_{A,unf}}{RT_{ep}})$) faisant intervenir l'énergie d'activation de dépliement ($E_{A,unf}$) et la température d'entrée du produit (T_{ep}). De même, Bouvier et al. (2014) ont souligné, à partir des analyses CFD-2D et des essais d'encrassement, que le β -lg dépliée est à l'origine du dépôt formé sur les parois de l'ECP.

L'analyse de l'ensemble de ces résultats montrent clairement que la β -lg dépliée est à l'origine du dépôt encrassant et ce, indépendamment de la solution modèle protéique étudiée et des conditions de procédé imposées.

Influence du profil thermique sur à la fois la distribution de la masse de dépôt sec dans chaque canal de l'ECP et les profils de concentrations des différentes espèces de β-lg en solution simulées avec le modèle de deux réactions successives

Les figures 4.24a, 4.24b, 4.24c et 4.24d représentent la variation des distributions des masses de dépôt sec mesurées et des profils de concentrations des différentes espèces de β -lg dans chacun des 5 canaux de l'ECP simulées avec le modèle de deux réactions successives en fixant $n_1 = n_2 = 1,5$ pour les réactions de dépliement et d'agrégation, pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total et en imposant différents profils thermiques au sein de l'ECP.

Figure 4.24. Variation à la fois des masses de dépôt sec mesurées dans les 5 canaux de l'ECP et des profils de concentrations des différentes espèces de β -lg simulées à partir du modèle de 2 réactions successives en imposant les ordres de réactions $n_1 = n_2 = 1,5$ pour une solution modèle de WPI à 1% (p/p) avec 100 ppm de calcium total et différents profils thermiques.

Les constantes de vitesse k_1 et k_2 du modèle des réactions successives ont été déterminées de façon à décrire de façon équivalente à celui de Tolkach et Kulozik (2007) l'évolution de la concentration de l'espèce A et donc du soluble total S. Les différences liées au type de modèle retenu ne peuvent donc concerner que la répartition entre les espèces N et U.

Concernant le profil de concentration de l'espèce dépliée, la figure 4.24 montre que les valeurs obtenues à l'entrée de l'ECP, pour l'ensemble des profils thermiques (#1, #2, #3 et #4), sont nettement supérieures à celles obtenues avec le modèle de Tolkach et Kulozik (2007), de respectivement $C_U < 1.6$ g.L⁻¹ et $C_U < 0.3$ g.L⁻¹.

Cette différence rendrait ce modèle plus vraisemblable que celui de Tolkach et Kulozik (2007) puisque l'espèce U est pressentie comme étant à l'origine du dépôt. Le modèle de Tolkach et Kulozik (2007) serait donc susceptible de sous-estimer la concentration C_U .

Les figures 4.25a, 4.25b, 4.25c et 4.25d comparent les profils de concentrations des différentes espèces de β -lg simulées à partir du modèle de deux réactions successives avec $n_1 = n_2 = 1,5$ (trait continu) et $n_1 = 1$ et $n_2 = 2$ (trait discontinu) en fonction du temps de séjour dans l'ECP, et ce pour l'ensemble des paramètres de procédé étudiés.

Les figures 4.25 montrent clairement que pour l'ensemble des profils thermiques (#1, #2, #3 et #4), la décomposition de l'espèce native est plus lente dans le cas du modèle de deux réactions successives avec $n_1 = 1$ et $n_2 = 2$ qu'avec celui de $n_1 = n_2 = 1,5$. En effet, à la sortie de l'ECP, la concentration de la β -lg native, simulée avec le modèle de deux réactions successives avec $n_1 = 1$ et $n_2 = 2$, atteint un minimum allant de 2,5 à 5,2 g.L⁻¹ pour respectivement les profils thermiques #2 et #4, contre 0,15 et 1,96 g.L⁻¹ pour le modèle de deux réactions successives avec $n_1 = n_2 = 1,5$. Ces résultats sont simplement dus à une vitesse de disparition plus faible liée à un ordre de réaction inférieur (1 au lieu de 1,5).

L'analyse des figures 4.25 montre également qu'une libération de l'espèce U est plus rapide dans le cas du modèle de deux réactions successives avec $n_1 = n_2 = 1,5$. Ceci est dû au fait que l'évolution du soluble total S ne dépend pas du modèle retenu : une faible valeur de N est compensée par une valeur de U plus importante.

Les profils présentés dans les figures 4.25 sont comparables aux profils de concentrations des espèces N, U et A rapportés par de Jong (1992) considérant que la dénaturation chaude de la β -lg est une succession de deux réactions (le dépliement et l'agrégation).

Figure 4.25. Comparaison entre les profils de concentrations des différentes espèces de β -lg simulées à partir du modèle de 2 réactions successives avec $n_1 = n_2 = 1,5$ (trait continu) et $n_1 = 1$ et $n_2 = 2$ (trait discontinu) en fonction du temps de séjour dans l'ECP pour une solution modèle de WPI à 1% (p/p) avec 100 ppm de calcium total et différents profils thermiques.

Pour conclure, les profils de concentration proposés par le modèle de deux réactions successives avec $n_1 = n_2 = 1,5$ paraissent plus vraisemblable au niveau de la répartition de l'espèce *U* dans l'ECP. En effet, une évolution similaire des profils de concentration en β -lg dépliée et de la masse de dépôt sec peut être observée. Le modèle avec les valeurs de $n_1 = n_2 = 1,5$ sera retenu dans la suite de ce chapitre.

3. Comparaison entre les concentrations des agrégats calculées et mesurées en sortie de l'ECP à partir du modèle de Tolkach et Kulozik (2007) et le modèle de deux réactions successives ($n_1 = n_2 = 1,5$)

Nous présentons dans ce paragraphe une comparaison entre les concentrations des agrégats en sortie de l'ECP calculées avec les différents modèles étudiés et les concentrations expérimentales.

Le tableau 4.6 représente une comparaison entre les concentrations de la β -lg agrégée calculées et mesurées à la sortie de l'ECP d'une solution de WPI à 1% (p/p) contenant 100 ppm de calcium total, pour les différents profils thermiques imposés (#1, #2, #3 et #4).

	1 55	1 0 1			
C_A calculées (g.L ⁻¹)					
Profils thermiques	à partir du				
	Modèle Tolkach et Kulozik (2007)	Modèle de 2 réactions	CA mesurées (g.L ⁻¹)		
		successives			
		$n_1 = n_2 = 1,5$			
#1	1,1	0,9	2,8		
#2	1,4	1,2	3,5		
#3	1,3	1,1	3,4		
#4	0,06	0,04	0,08		

Tableau 4.6. Comparaison entre les concentrations des agrégats calculées et simulées à la sortie de l'ECP pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total et pour différents profils thermiques.

Le tableau 4.6 montre que les valeurs simulées avec le modèle de Tolkach et Kulozik (2007) sont très proches de celles simulées à partir du modèle de deux réactions successives avec $n_1 = n_2 = 1,5$ et ce, pour l'ensemble des conditions de procédé étudiées. Cependant, pour les profils thermiques #1, #2 et #3, la concentration des agrégats mesurée est largement supérieure à la concentration des agrégats calculée. Les deux modèles utilisés pour le calcul des concentrations des différentes espèces de la β -lg semblent donc sous-estimer la concentration des agrégats à la sortie de l'ECP.

Cet écart entre les valeurs simulées et calculées dans le tableau 4.6 pourrait être expliqué par le fait que nous ne tenons pas compte dans le cas du modèle à écoulement piston de la corrugation des plaques de l'ECP, entraînant ainsi une mauvaise distribution du flux dans les canaux de l'ECP (Jun et Puri, 2007). Une seconde hypothèse est que le système de refroidissement de descente en température des échantillons prélevés n'est pas assez efficace. De ce fait, la concentration en agrégats dans les échantillons ne correspondrait pas à celle réellement formée uniquement par le passage dans l'installation. Dans ce cas, la concentration en agrégats simulée serait forcément inférieure à la valeur expérimentale.

Par ailleurs, le calcul des concentrations des différentes espèces de β -lg a été effectué à partir de la température en solution, sans tenir compte de la température de paroi qui peut grandement influencer les paramètres cinétiques de dénaturation de la protéine (Bouvier et al., 2014).

Cette température de paroi peut être calculée à partir de l'équation du bilan thermique sur l'ECP :

$$U_g S \left(T_{ec} - T_p \right) = h_p S \left(T_w - T_p \right)$$

$$\tag{4.1}$$

avec *S* la surface d'échange, U_g le coefficient de transfert global et h_p le coefficient de convection thermique du produit et T_w , T_p et T_{ec} respectivement les températures de paroi, du produit et de l'eau chaude.

Les coefficients de convection thermique sont déterminés à partir des équations suivantes :

$$h_p = \frac{Nu_p \,\lambda_p}{D_h} \tag{4.2}$$

$$h_{ec} = \frac{N u_{ec} \lambda_{ec}}{D_h} \tag{4.3}$$

Résultats & Discussions

avec h_{ec} le coefficient de convection thermique de l'eau chaude, D_h le diamètre hydraulique, λ_p et λ_{ec} respectivement les conductivités thermiques à la température moyenne du produit et de l'eau chaude et Nu_p et Nu_{ec} respectivement les nombres de Nusselt du produit et de l'eau chaude.

Le nombre de Nusselt des fluides chaud et froid est déterminé à partir de la corrélation suivante (Leuliet, 1988) :

$$Nu = 0,2031 Re^{0,656} Pr^{0,33}$$
(4.4)
avec *Re* le nombre de Reynolds à la température moyenne du fluide concerné et *Pr* le nombre
de Prandtl à la température moyenne du fluide concerné.

Les coefficients h_p et h_{ec} sont reliés par la relation suivante (la conduction à travers la plaque de l'ECP n'est pas prise en compte), permettant ainsi de déterminer U_g :

$$\frac{1}{U_g} = \frac{1}{h_{ec}} + \frac{1}{h_p}$$
(4.5)

La température de paroi T_w s'écrit donc :

$$T_w = T_p + \frac{U_g}{h_p} \left(T_{ec} - T_p \right) \tag{4.6}$$

La figure 4.26 compare les profils de températures de paroi et de produit pour l'essai #1.

Figure 4.26. Comparaison entre les profils thermiques de paroi et de produit pour l'essai #1.

La figure 4.26 montre que les profils thermiques de paroi et de produit sont assez proches. Ceci est également le cas pour les autres essais (#2, #3 et #4) non présentés ici.

Le tableau 4.7 représente une comparaison entre les concentrations des agrégats de la β -lg mesurées et calculées (à partir du modèle de Tolkach et Kulozik (2007) et celui de deux réactions successives) à la sortie de l'ECP, en prenant en compte la température de paroi T_w .

Tableau 4.7. Simulation de la concentration de la β-lg agrégée à la sortie de l'ECP à partir des températures en proche paroi et comparaison avec la concentration des agrégats mesurée pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total.

	C_A calculées (g.L ⁻¹) à partir du		
Profils thermiques	Modèle Tolkach et Kulozik (2007)	Modèle de 2 réactions successives $n_1 = n_2 = 1,5$	C _A mesurées (g.L ⁻¹)
#1	1,5	1,3	2,8
#2	1,6	1,4	3,5
#3	3,1	3,4	3,4

Le tableau 4.7 montre que même en intégrant la température de paroi dans la simulation des concentrations des agrégats en sortie de l'ECP, les valeurs de C_A mesurées demeurent largement supérieures aux valeurs calculées, aussi bien avec le modèle de Tolkach et Kulozik (2007) que le modèle de deux réactions successives. Des erreurs expérimentales lors du figeage de la réaction de dénaturation pourraient entraîner une surestimation des C_A mesurées.

La comparaison entre les tableaux 4.6 et 4.7 montre une faible augmentation des concentrations des agrégats calculées avec les deux modèles étudiés aux températures en solution et de paroi, excepté pour le profil thermique #3. Ce résultat est prévisible car les profils de températures de produit et de paroi sont parallèles et très proches, ce qui entraîne une correction peu significative.

Par ailleurs, il est difficile d'obtenir des mesures fiables de la température de paroi avec cette configuration complexe de l'ECP (nombreux canaux, recirculation du fluide, turbulence du fluide, etc.). De plus, la formation de dépôt encrassant lors du traitement thermique de la solution protéique modèle peut influencer la distribution de la température dans l'ECP.

Il demeure néanmoins nécessaire de tenir compte de la température de paroi dans les modèles cinétiques utilisés pour décrire le dépôt protéique dans l'ECP. Des analyses plus poussées (CFD) sont donc requises afin de déterminer au mieux cette température.

4. Conclusion

Les résultats de ce chapitre ont permis de simuler non seulement les profils de concentrations des différentes espèces de β -lg mais aussi d'établir une relation entre ces profils de concentrations et la distribution de la masse de dépôt sec dans les différents canaux de l'ECP.

La comparaison entre les profils de concentrations de β -lg et la distribution de la masse de dépôt sec, des différentes solutions modèles protéiques étudiées et pour l'ensemble des conditions de procédé imposées, a pu mettre en évidence que :

- l'apparition de la β-lg agrégée est postérieure à la formation de dépôt. Le rôle des agrégats dans les mécanismes d'encrassement est donc négligeable ;
- la libération de la β-lg dépliée en solution, même en faible quantité, joue un rôle clé dans la croissance du dépôt protéique et sa localisation dans l'ECP. En effet, le profil de concentration de l'espèce dépliée suit la distribution de la masse de dépôt sec le long de l'ECP.

Ces résultats suggèrent donc que la connaissance de la réactivité chimique des solutions modèles protéiques est d'une grande importance puisque l'évolution des profils de concentrations des différentes espèces de β -lg dans les canaux de l'ECP dépend fortement des constantes cinétiques de dénaturation chaude de la protéine. Existerait-il par conséquent une corrélation directe entre les constantes cinétiques de dénaturation de la β -lg et la distribution de la masse de dépôt sec dans chaque canal de l'ECP ? Cette question sera traitée dans le chapitre suivant.

Chapitre 5 : Etude de la relation entre le ratio des constantes cinétiques de dénaturation chaude de la β-lg et la distribution de la masse de dépôt sec dans l'ECP pour différentes solutions de WPI

Nous avons vu dans le chapitre précédent que les mécanismes d'encrassement sont gouvernés par les réactions de dénaturation chaude de la β -lg. En effet, ces réactions chimiques, se produisant en solution (dépliement et agrégation de la β -lg) lors du traitement thermique de solutions protéiques modèles, sont à l'origine de l'apparition/disparition de plusieurs espèces (*N*, *U*, *A*) au sein de l'ECP, ce qui module la concentration de ces espèces au sein de l'ECP et par conséquent la croissance et la distribution du dépôt encrassant le long de l'ECP. Le chapitre précédent nous a aussi permis de mettre en lumière que lorsque l'agrégation devenait prépondérante par rapport à l'étape de dépliement, la formation de dépôt était limitée. Cependant, jusqu'ici nous n'avons pas cherché à établir de liens directs entre les constantes de cinétique de dénaturation et les masses de dépôt.

L'objectif principal de chapitre est de combler en partie ces lacunes en répondant directement à la question suivante : est-il possible de prédire la masse de dépôt sec dans chaque canal de l'ECP à partir de la seule connaissance des constantes cinétiques des réactions de dénaturation de la β -lg ? Cette corrélation prédictive, si elle existe, est-elle valide pour les différentes solutions modèles protéiques testées et les différents profils thermiques étudiés ?

Pour ce faire, nous avons choisi :

- de représenter l'évolution de la masse de dépôt sec par canal en fonction du ratio $r = k_{unf}/k_{agg}$ des constantes cinétiques de dépliement (k_{unf}) et d'agrégation (k_{agg}) calculées à la température moyenne de chaque canal. Compte tenu du modèle retenu $(S \rightarrow A)$, le rapport k_{unf}/k_{agg} représente le rapport des vitesses des réactions de dépliement et d'agrégation. C'est un indicateur local évalué à la température moyenne du canal et sa position par rapport à 1 permet de déterminer l'étape limitante de la réaction (dépliement ou agrégation) pour chaque intervalle de températures ;
- d'analyser l'allure des courbes obtenues et leurs potentiels prédictifs vis-à-vis de l'encrassement.

Ce mode de représentation n'a jamais été adopté précédemment par d'autres auteurs à notre connaissance dans la littérature et sera discuté dans un premier temps pour des solutions modèles de WPI à 1% (p/p) contenant différentes teneurs en calcium (100 et 120 ppm) puis,

pour des solutions protéiques modèles incluant différents ratios molaires calcium/protéine (de 2,3 à 22,9) et ce, pour différentes conditions opératoires imposées dans l'ECP, à savoir : différents profils thermiques (#1, #2, #3 et #4) et configurations de l'ECP (5 et 10 canaux).

Enfin, l'évolution de la masse de dépôt en fonction du ratio r sera tracée pour une solution de β -lg quasi-pure (6% p/p avec 264 ppm de calcium total) à partir de la connaissance de l'histoire thermique du produit et des constantes cinétiques de dénaturation rapportées par Petit et al. (2011) et présentées dans le tableau 4.3 (chapitre 1 de la partie Résultats et Discussions).

1. Allure des courbes masse de dépôt sec par canal vs $r = k_{unf}/k_{agg}$ pour nos solutions protéiques modèles et différentes configurations d'ECP

La figure 4.27 représente l'évolution de la masse de dépôt dans chaque canal de l'ECP en fonction de r, pour des solutions modèles de WPI à 1% (p/p) contenant 100 et 120 ppm de calcium total et différents profils thermiques imposés dans les 5 canaux de l'ECP.

L'analyse de la figure 4.27 semble indiquer que pour chaque solution protéique modèle, on obtient une courbe maîtresse (sigmoïde) rassemblant l'ensemble des données des masses de dépôt sec mesurées dans chaque canal de l'ECP en fonction de *r* et ce, quel que soit le profil thermique imposé. Même si on note une dispersion importante sur ces deux premières solutions protéiques modèles, l'existence de courbes en S sera confirmée ultérieurement sur les autres solutions (figures 4.28 et 4.29). Ces courbes en S peuvent être décrites, pour l'ensemble des essais d'encrassement, par la fonction suivante :

$$M_{d,i} = a + \frac{b-a}{1 + \left(\frac{c}{r}\right)^d}$$
(4.7)

avec *a*, *b*, *c* et *d* des paramètres ajustables de la régression non linéaire et $M_{d,i}$ la masse de dépôt sec dans chaque canal de l'ECP.

Figure 4.27. Courbes de la distribution de la masse de dépôt sec dans chaque canal en fonction de $r = k_{unf}/k_{agg}$ pour des solutions modèles de WPI à 1% (p/p) contenant 100 et 120 ppm de calcium total et différents profils thermiques imposés dans l'ECP.

La dispersion observée sur ces courbes en S peut être due à la difficulté de disposer de mesures expérimentales précises (reproductibilité des essais d'encrassement) mais aussi au choix de représentation. En effet, le positionnement en abscisse des masses de dépôt sec par canal est très dépendant de la température moyenne du canal. Comme les montées en température au sein des canaux de l'ECP sont importantes, la température moyenne du canal est parfois mal discrétisée et donc mal évaluée.

Les deux courbes maîtresses, représentées dans la figure 4.27, sont constituées de deux zones distinctes : (i) une première zone caractérisée par une forte augmentation de la masse de dépôt sec par canal à des valeurs de r proches de 0, suivie d'un maximum de la quantité de dépôt à une certaine valeur de r et (ii) une deuxième zone où la masse de dépôt semble atteindre une valeur limite à une certaine valeur de r.

Pour la solution modèle à 1% (p/p) contenant 100 ppm de calcium total, la masse de dépôt sec augmente à partir de r = 0,22 (correspondant au début de l'encrassement de l'ECP) et atteint un plateau à r > 0,89.

Pour la deuxième solution modèle de WPI étudiée (1% p/p à 120 ppm de calcium total), l'augmentation de la quantité de dépôt commence à des valeurs de *r* proches de 0,23 et atteint un maximum à r = 0,67.

Pour les deux solutions modèles de WPI étudiées et l'ensemble des profils thermiques imposés, l'augmentation de la masse de dépôt est observée à des valeurs de *r* inférieures à 1, correspondant à une température du canal légèrement inférieure à la température critique de transition séparant les deux mécanismes de dénaturation chaude de la β -lg (~ 80°C). Ceci confirme l'hypothèse que la réaction de dépliement contrôle la croissance de la masse de dépôt. Ce résultat est en adéquation avec les travaux de Blanpain-Avet (2012) et van-Asslet (2005) indiquant que les protéines de β -lg agrégées ne sont pas à l'origine du dépôt encrassant.

D'autres essais d'encrassement ont été menés sur un ECP avec une configuration de 10 canaux afin de vérifier la validité de l'approche utilisée (masse de dépôt par canal en fonction de *r*) indépendamment de la configuration de l'ECP, pour une solution modèle de WPI à 1% (p/p) contenant 100 ppm de calcium total (figure 4.28). Un seul profil thermique (#1) a été imposé dans l'ECP.

La figure 4.28 montre que la masse de dépôt dans les différents canaux de l'ECP est corrélée au ratio r. En effet, une courbe en S est à nouveau observée. Elle est caractérisée par deux zones distinctes : (i) une forte augmentation de la masse de dépôt à de valeurs de r inférieures à 1 (entre 0,5 et 0,99) correspondant à la zone de dépliement (pour des températures allant de à 69 à 80°C) et (ii) une deuxième zone où la masse de dépôt sec semble atteindre son maximum à des valeurs de r > 1 correspondant à la zone d'agrégation (pour des températures supérieures à 80°C).

Figure 4.28. Variation de la masse de dépôt sec dans chaque canal en fonction du ratio $r = k_{unf}/k_{agg}$ pour une configuration d'ECP de 10 canaux.

L'analyse de la figure 4.28 montre que la dispersion des données vis-à-vis de leur inscription sur une courbe maîtresse unique est plus faible qu'à la figure 4.27. Ceci est logique car pour cette configuration d'ECP, la montée en température par canal est faible ce qui améliore la précision sur la valeur de *r*. Ce résultat montre clairement que la distribution de la masse de dépôt sec dans l'ECP est contrôlée par les réactions chimiques en solution et que la variable *r* rend bien compte de l'avancement local de la réaction de dénaturation. En effet, quand le dépliement est important mais que l'agrégation n'est pas prépondérante (0,5 < r < 1), l'augmentation de la concentration en espèces dépliées est significative et on note une forte augmentation de la masse de dépôt par canal. Dès lors que l'agrégation devient prépondérante (*r* proche de 1), la concentration en β -lg dépliées mobilisables pour former des dépôts en paroi diminue et par voie de conséquence, la masse de dépôt formé par canal cesse d'augmenter.

La détermination du ratio r, identifié à l'échelle laboratoire à partir des constantes cinétiques de dénaturation chaude de la β -lg, semble donc être un outil prédictif pour renseigner sur la croissance du dépôt encrassant et la distribution de la masse de dépôt le long de l'ECP.
Il semble en effet que la corrélation entre la masse de dépôt sec par canal et le ratio r peut être un mode de représentation intéressant pour identifier les canaux sujets à fort encrassement. De plus, on constate que ces graphes prédictifs semblent applicables à l'ensemble des solutions protéiques modèles et ce, quels que soient la teneur en calcium, la configuration de l'ECP et le profil thermique imposé. Notons qu'il était impossible d'effectuer, avec les deux types de configuration de l'ECP, des essais d'encrassement à des valeurs de r plus élevées (r > 1,40) correspondant à une température du canal supérieure à 84°C, en raison du colmatage de l'installation pilote.

2. Influence de ratio molaire calcium/protéine sur l'allure des courbes masse de dépôt sec par canal vs $r = k_{unf}/k_{agg}$

Nous avons établi aux chapitres 1 et 2 de la partie Résultats et Discussions que le ratio molaire calcium/protéine permettait de classifier l'aptitude à l'encrassement des solutions protéiques modèles et qu'il impactait aussi les paramètres cinétiques de dénaturation. Dans ce qui suit, nous cherchons à déterminer l'influence du ratio molaire calcium/protéine de solutions protéiques modèles sur l'allure des courbes masse de dépôt par canal vs *r*. Les essais d'encrassements ont été réalisés avec une configuration d'ECP de 5 canaux.

La figure 4.29 représente l'évolution de la masse de dépôt dans chaque canal de l'ECP en fonction de *r*, pour différents ratios molaires calcium/protéine allant de 2,3 à 22,9. Le même profil thermique (#1) a été imposé dans l'ECP pour les différentes solutions modèles de WPI.

La figure 4.29 montre que pour chaque ratio molaire calcium/protéine, une courbe en S peut être observée décrivant ainsi la variation de la masse de dépôt sec dans les différents canaux de l'ECP. Ces courbes en S peuvent être décrites, pour l'ensemble des essais d'encrassement, par la fonction mathématique présentée dans l'équation 4.7.

Figure 4.29. Variation de la masse de dépôt sec dans les différents canaux de l'ECP en fonction du ratio $r = k_{unf}/k_{agg}$ pour différents ratios molaires calcium/protéine.

Les différentes courbes maîtresses de la figure 4.29, représentant la masse de dépôt par canal en fonction de r, sont constituées de deux zones : (i) une zone de dépliement caractérisée par une forte augmentation de la masse de dépôt sec à des valeurs de r proches de 0, suivie d'un maximum de la masse de dépôt à r < 1 (entre 0,6 et 0,99 correspondant à des températures allant de 76 à 80°C) et (ii) une zone d'agrégation où la masse de dépôt sec semble atteindre une valeur limite à une certaine valeur de r.

La croissance du dépôt, qui commence à des valeurs de r proches de 0, confirme l'importance d'initier le dépliement pour que le dépôt protéique se dépose sur les plaques de l'ECP. De plus, la forte augmentation de la masse de dépôt à des valeurs de r inférieures à 1 prouve encore une fois que c'est la réaction de dépliement qui gouverne la croissance du dépôt le long de l'ECP.

La figure 4.29 montre également que, pour les différents ratios molaires calcium/protéine étudiés, l'augmentation de la masse de dépôt sec par canal ne suit pas la même pente. La pente de chacune de ces courbes en S est donc influencée par le ratio molaire calcium/protéine

de la solution protéique modèle. On constate, d'une manière générale que plus le ratio molaire calcium/protéine est important, plus la pente est forte.

Par ailleurs, l'observation des différentes courbes montrent que l'intervalle de températures de la zone de dépliement diminue lorsque le ratio molaire calcium/protéine augmente. Ces tendances sont notables pour l'ensemble des solutions modèle sauf pour celle avec un ratio molaire calcium/protéine de 22,9. Ceci pourrait être expliqué par le fait que pour cette solution, on a observé que la courbe de dénaturation ne subissait pas un simple décalage en ordonnées en fonction du ratio calcium/protéine (chapitre 1 de la partie Résultats et Discussions). Ce changement de forme de la courbe de dénaturation engendre des ratios r différents des autres solutions protéiques modèles, influençant ainsi la représentation de la courbe de la variation de la masse de dépôt sec par canal en fonction du ratio r.

Dans la zone limitante d'agrégation (température du canal > 80°C et r > 1), un plateau est observé pour chacun des ratios molaires calcium/protéine étudié. Ce résultat pourrait être expliqué par le fait que la collision entre les molécules de β -lg dépliées favorise la formation des agrégats plutôt que la formation de la couche de dépôt encrassante (Delplace et al., 1997). Par ailleurs, on constante que les valeurs de ce plateau augmentent avec l'accroissement du ratio molaire calcium/protéine. Cependant, la valeur du plateau du ratio molaire calcium/protéine de 22,9 (ratio molaire calcium/protéine le plus élevé) diminue légèrement.

L'analyse de la figure 4.29 montre clairement que quel que soit le ratio molaire calcium/protéine, la masse de dépôt sec par canal atteint une valeur limite maximale lorsque la réaction d'agrégation est suffisamment élevée pour consommer les espèces dépliées de la β -lg sous forme d'agrégats. Le ratio molaire calcium/protéine traduit fidèlement les états d'avancement des réactions de dépliement et d'agrégation dans le canal de l'ECP et par conséquent, la distribution de la masse de dépôt pour un profil thermique donné.

Il est donc clair, pour les différentes solutions protéiques modèles contenant différents ratios molaires calcium/protéine, que la masse de dépôt sec par canal est fortement corrélée au ratio r. Ce résultat montre l'importance de déterminer les constantes cinétiques de dénaturation chaude de la β -lg afin de maitriser l'encrassement.

3. Evolution de la masse de dépôt sec par canal vs $r = k_{unf}/k_{agg}$ pour des données expérimentales rapportées dans la littérature

Afin de confirmer que l'approche préconisée (évaluation du ratio r le long de l'échangeur) dans nos travaux est robuste pour apporter une vision de la distribution des dépôts sec au sein des ECP, quelle que soit la nature de la solution protéique encrassante à traiter, nous avons décidé de tracer l'évolution de la masse de dépôt sec par canal vs r issue de travaux d'autres auteurs. Nous avons utilisé les travaux de Petit et al. (2011, 2013) car les constantes cinétiques de dénaturation chaude de la β -lg et les masses de dépôt sec par canal obtenues pour différents traitements thermiques étaient disponibles pour sa solution de β -lg quasi-pure. De plus, ces travaux ont été menés au sein du laboratoire et la base de données nous est donc facilement accessible.

La figure 4.30 représente la variation de la masse de dépôt sec dans chaque canal de l'ECP en fonction de *r* pour différentes conditions de procédé (T_{sp} la température de sortie du produit, ΔT_p la différence de température entre l'entrée et la sortie du produit, τ le temps de passage du produit et ε l'efficacité de l'ECP), pour une solution de β -lg quasi-pure (solution à 6% p/p contenant 264 ppm de calcium total).

L'analyse de la figure 4.30 montre que pour l'ensemble des conditions de procédé imposées, une seule et unique courbe en cloche peut être tracée. En effet, pour les 21 essais d'encrassement, la distribution de la masse de dépôt dans chaque canal de l'ECP en fonction de r peut être décrite par la fonction non linéaire suivante à 4 paramètres :

$$M_{d,i} = a + b \exp\left(-0.5 \left(\frac{\ln\left(\frac{r}{c}\right)}{d}\right)^2\right)$$
(4.8)

Cette fonction mathématique permet d'obtenir un bon ajustement de la courbe maîtresse des masses de dépôt sec par canal en fonction de r (R² = 0,73).

Figure 4.30. Variation de la masse de dépôt sec le long de l'ECP en fonction de $r = k_{unf}/k_{agg}$ pour une solution de β -lg quasi-pure et différentes conditions de procédé Les symboles en légende indiquent les divers paramètres de procédé qui ont permis d'obtenir différents encrassements (T_{sp} température de sortie du produit, ΔT_p différence de température entre l'entrée et la sortie du produit, τ temps de séjour du produit et ε efficacité de l'ECP).

La comparaison des résultats de la figure 4.30 avec nos propres essais expérimentaux montre que la courbe maîtresse n'est plus une courbe en S mais une courbe présentant un optimum. Ceci dit les résultats obtenus avec cette forme de courbe ne sont pas contradictoires avec les nôtres. En effet, Petit et al. (2011, 2013) ont pu couvrir des gammes de ratios r beaucoup plus élevées car les profils de températures imposés n'étaient pas les mêmes et aucun colmatage de leurs installations n'a été constaté aux ratios de r > 1,4 avec leur solution protéique modèle (ratio calcium/protéine = 2,3). Il n'est pas à exclure que la masse de dépôt sec par canal diminue avec r au-delà du premier plateau pour nos solutions protéiques encrassantes. Ceci semble être le cas d'ailleurs pour la solution protéique à fort ratio calcium/protéine = 22,9 apparaissant à la figure 4.29.

La courbe maîtresse observée sur la figure 4.30 est caractérisée par deux zones distinctes : (i) un fort accroissement de la quantité de dépôt à des valeurs de *r* proches de 0 (r = 0,005, 0,01, 0,02 et 0,03 correspondant à respectivement ΔT_p , T_{sp} , ε et τ), suivi d'un maximum de la masse de dépôt à des valeurs de *r* proches de 0,4 (correspondant à une température du canal de l'ordre de 75°C), puis (ii) d'une diminution progressive de la masse de dépôt au-delà d'une certaine valeur *r*.

Pour les 21 essais d'encrassement, l'augmentation de la masse de dépôt sec par canal dans la zone de dépliement en fonction de *r* pourrait être expliquée par le fait que le degré de dépliement est insuffisant pour que l'agrégation soit la réaction prédominante. En effet, la probabilité de collision entre deux molécules de β -lg est très faible dans ces conditions. La croissance et le maximum du dépôt encrassant sont donc principalement dus au dépôt de la β -lg dépliée.

Par ailleurs, malgré l'augmentation de la température le long de l'ECP, la forte diminution de la masse de dépôt pour des valeurs de de *r* entre 0,4 et 1 pourrait être expliquée par la consommation des molécules de β -lg dépliées sous forme d'agrégats en solution. Nos propres travaux (chapitre 3 de la partie Résultats et Discussions) et ceux de de Jong et al. (1992), Delplace et al. (1997) et van Asselt et al. (2005) ont montré que la formation des agrégats réduit l'encrassement.

Les résultats de la figures 4.30 montre clairement que les réactions de dénaturation de la β -lg (dépliement et agrégation) gouvernent la croissance du dépôt et renseigne sur le comportement encrassant dans l'ECP de solutions protéiques modèles.

Cette description de l'évolution de la masse de dépôt en fonction du ratio r est un mode de représentation très instructif en termes de propositions de modèles mécanistiques. En effet, cette approche montre la défaillance de certains modèles de la littérature : bon nombre de modèles généralement admis la littérature tiennent compte uniquement de la concentration de la β -lg native à la sortie de chaque canal de l'ECP (Delplace et al., 1994 ; Delplace et al., 1997) pour la prédiction du taux d'encrassement. Cependant, ces modèles ne peuvent pas expliquer la diminution de la masse de dépôt observée dans l'échangeur de chaleur, malgré l'augmentation à la fois de la température dans les différents canaux de l'ECP et le profil de concentration de la β -lg dépliée. A contrario, la connaissance de l'histoire thermique du produit le long de l'ECP et la détermination du ratio r, identifié à l'échelle laboratoire à partir des constantes cinétiques de dénaturation chaude de la β -lg, permet de renseigner sur la croissance du dépôt encrassant et la distribution de la masse de dépôt dans les différents canaux de l'ECP. De plus, on s'aperçoit que certains paramètres, tels que la contrainte de cisaillement et la température de paroi, ne sont pas forcément nécessaires pour obtenir la tendance de la distribution de la masse de dépôt dans les différents canaux de l'ECP et une prédiction grossière mais robuste pour l'ensemble des conditions de procédé étudiées.

4. Conclusion

Les résultats de ce dernier chapitre montrent clairement que les réactions de dénaturation chaude de la β -lg gouvernent la croissance du dépôt. L'agrégation limite le dépôt alors que le dépliement (sans agrégation) favorise le dépôt.

Pour chacune des solutions protéiques modèles étudiées, on observe l'existence d'une courbe maîtresse décrivant l'évolution de la masse de dépôt sec dans chaque canal de l'ECP (au bout d'un temps de fonctionnement donné) en fonction des ratios des constantes cinétiques de dénaturation chaude de la β -lg ($r = k_{unf}/k_{agg}$ calculé à la température moyenne du canal).

L'existence de courbe maîtresse laisse présager :

- que l'identification des constantes cinétiques de dénaturation à l'échelle laboratoire doit être entreprise pour maîtriser l'encrassement de l'ECP ;
- et quelques essais d'encrassement ciblés avec une solution protéique donnée pourraient suffire pour prédire le comportement encrassement d'une solution dans d'autres conditions de traitement thermique.

A ce stade, plus de recul et des essais complémentaires sont nécessaires pour établir la portée réelle de ces approches de génie de la réaction chimique présentées dans ce travail de thèse et évaluer dans quelle mesure ces graphes prédictifs peuvent être utilisés pour limiter l'encrassement des surfaces de l'ECP en appliquant des profils thermiques différents ou en faisant évoluer la configuration et la géométrie de l'ECP ou la formulation de la solution protéique modèle étudiée.

CONCLUSION GENERALE ET PERSPECTIVES

Au-delà des conclusions évoquées dans chaque chapitre, nous synthétisons ici quelques enseignements que nous retenons de ce travail de thèse.

A travers ce travail de thèse, nous avons cherché à comprendre les mécanismes de formation de dépôt protéique dans des ECP et ses liens avec à la fois la physico-chimie des solutions (principalement la teneur en calcium) et les paramètres de procédé (profils thermiques imposés et configurations de l'ECP).

Ce type de travaux est rare dans la littérature. Pour preuve, à l'heure actuelle, la teneur en calcium des solutions protéiques n'est que rarement reportée dans les études traitant de la dénaturation chaude de la β -lg et/ou l'encrassement des échangeurs thermiques. Par ailleurs, on constate que les études, tentant de cerner l'évolution de la réactivité avec la composition des solutions protéiques du lactosérum sont quasi-inexistantes. De même, les approches de génie de la réaction établissant des liens entre la concentration des espèces protéiques et la masse des dépôts ont rarement été menées au sein des ECP.

Dans la première partie de ce travail (chapitre 0), nous avons exploité une base de données existante d'essais d'encrassement avec des solutions de protéines sériques (WPC 1% p/p) ayant différentes teneurs en calcium (comprise entre 70 et 87,4 ppm) dans le but d'évaluer l'existence de corrélations positives entre les phénomènes d'encrassement et la teneur en calcium des solutions protéiques. L'exploitation de cette base de données a donc permis de certifier sans ambiguïté la forte influence de la teneur en calcium sur le comportement encrassant d'une solution modèle de WPC durant un traitement thermique dans un ECP. Nous avons mené une démarche modeste de modélisation par analyse dimensionnelle de ces données afin d'évaluer si une corrélation simple peut être établie et traduire quantitativement cette relation de cause à effet entre la masse de dépôt par canal et les conditions d'encrassement (teneur en calcium de la solution protéique, température du canal de l'ECP, hydrodynamique). Cette étude a été un démonstrateur qui prouve que la teneur calcium a un rôle majeur dans le phénomène d'encrassement et met en lumière la nécessité d'intégrer cette information dans les modèles pour décrire les phénomènes de formation de dépôt encrassant.

Dans la deuxième partie de ce travail (chapitre 1), nous avons procédé à des essais d'identification des cinétiques de dénaturation chaude (68 à 93°C) de la β -lg de différentes solutions modèles de WPI.

La méthodologie utilisée a permis de répondre aux objectifs scientifiques fixés : caractérisation des cinétiques de dénaturation de la β -lg dans des conditions proches des traitements thermiques en ECP.

Avec ces fluides modèles et nos conditions de pH, nous avons confirmé que le mécanisme général de dénaturation de la β -lg pouvait se résumer en deux étapes, à savoir le dépliement et l'agrégation, séparées par une température critique de l'ordre de 80°C.

Nous avons montré qu'une légère augmentation de la teneur en calcium (passant de 100 à 120 ppm de calcium total) favorise les réactions de dépliement et d'agrégation de la β -lg et modifie significativement les cinétiques de dénaturation.

L'augmentation de la teneur en calcium pour une teneur en protéine fixée (1% p/p) influence fortement les mécanismes de dénaturation chaude de la β -lg et les paramètres cinétiques de dénaturation associés (facteurs de fréquence $\ln k^\circ$ et les énergies d'activation E_A pour un ordre de réaction égal à 1.5).

Par ailleurs, nous avons montré que les cinétiques de dénaturation de la β -lg se classifient selon le ratio molaire calcium/protéine (de 2,3 à 22,9). Plus ce ratio est élevé, plus la constante de dénaturation k_n est importante. Le ratio molaire calcium/protéine semble être un indicateur pertinent pour appréhender la réactivité (en termes de dénaturation) de nos solutions protéiques modèles à contrario de la concentration en protéine (de 0,25 à 2,5% p/p), qui n'est pas un paramètre capable d'ordonner la réactivité des solutions de WPI à teneur variable en calcium.

Dans la troisième partie de ce travail (sous chapitre 2), des essais d'encrassement en ECP de différentes solutions protéiques modèles de WPI ont été effectués. Nous avons constaté que la distribution des dépôts par canal et la quantité de dépôt totale dépendent fortement des profils thermiques imposés au sein de l'ECP mais aussi de la teneur en calcium des solutions encrassantes.

Par ailleurs, nous avons montré que pour un traitement thermique donné l'aptitude à l'encrassement des solutions protéiques s'ordonne selon la valeur du ratio molaire calcium/protéine. Il a été établi qu'il n'est pas envisageable de prédire la masse de dépôt à partir de la seule connaissance de la concentration en la β -lg à teneur variable en calcium. Le

contrôle du ratio molaire calcium/protéine des solutions de lactosérum est donc un levier puissant pour la maîtrise du potentiel encrassant des solutions traitées.

Dans le chapitre 2, nous avons également effectué des analyses EPMA des premières couches de dépôt. Celles-ci ont été réalisées sur des couches de dépôt formées en zone de chauffe (analyse destructive des dépôts formés sur les plaques d'ECP). Nous avons ainsi montré que la structure de ces couches de dépôt protéique était différente selon le ratio molaire calcium/protéine. En effet, l'analyse des cartographies spatiales obtenues à fort ratio molaire calcium/protéine indiquent que les particules de calcium participent au dépôt et accélèrent la croissance des couches successives, favorisant sans doute les liaisons intermoléculaires entre les protéines dénaturées. A l'inverse, pour de faibles ratios molaires calcium/protéine, les interactions calcium-protéines sont très limitées et seules des interactions protéine-protéine peuvent avoir lieu, ce qui ralentit la cinétique du dépôt.

Dans la quatrième partie de ce travail (chapitre 3), nous avons étudié le lien entre les profils de concentrations des différentes espèces de β -lg et la distribution de la masse de dépôt sec dans les différents canaux de l'ECP. Une part importante du chapitre 3 est dédiée à la modélisation des phénomènes caractérisées expérimentalement afin de comprendre les mécanismes.

Nous avons ainsi pu mettre en évidence le faible rôle des agrégats dans les mécanismes d'encrassement (l'apparition de la β -lg agrégée est postérieure à la formation de dépôt) et le rôle clé de la β -lg dépliée dans la croissance du dépôt protéique (le profil de concentration de l'espèce dépliée suit la distribution de la masse de dépôt et le dépôt se forme immédiatement après que des faibles concentrations de protéines dépliées soient libérées).

Parallèlement à ces travaux s'appuyant sur le modèle cinétique de Tolkach et Kulozich (2007) (couramment admis pour les solutions de lactosérum), une réflexion a été engagée d'un point de vue méthodologique sur le choix des modèles cinétiques à utiliser pour simuler au mieux ce bilan de population et repositionner les approches de génie de la réaction dans un contexte plus classique de génie des procédés. Ce travail conceptuel a aussi permis de mieux cerner les limites de nos approches de modélisation (importance de connaitre la distribution des temps de séjours et la proportion du volume de solutions protéiques à la température de paroi via l'épaisseur de la couche limite thermique pour prédire l'agrégation).

Bien qu'elle soit empirique, la corrélation entre la masse de dépôt sec et les quantités de β -lg dénaturées dans l'ECP permet de prédire les masses de dépôt formés sur les surfaces d'échange après un certain temps de fonctionnement.

Dans la dernière partie de ce travail de thèse (chapitre 4), nous avons cherché à établir de liens directs entre les constantes de cinétique de dénaturation (celles obtenues via l'approche de Tolkach et Kulozik (2007)) et les masses de dépôt sec.

Pour chacune des solutions protéiques modèles étudiées, on a montré l'existence d'une courbe maîtresse décrivant l'évolution de la masse de dépôt sec dans chaque canal de l'ECP (au bout d'un temps de fonctionnement donné) en fonction des ratios des constantes cinétiques de dénaturation chaude de la β -lg ($r = k_{unf}/k_{agg}$ calculé à la température moyenne du canal). L'existence de telles courbes maîtresses laisse présager que quelques essais d'encrassement ciblés avec la solution protéique à traiter pourraient suffire pour prédire le comportement encrassant de cette matrice dans n'importe quelles conditions de traitements thermiques. Il apparaît d'ores et déjà à l'issue de ces travaux que la maitrise de l'encrassement de s ECP nécessite un pré-requis : l'identification des constantes cinétiques de dénaturation de la β -lg.

Ce nouvel éclairage sur les phénomènes d'encrassement laitier apporté par la représentation proposée (masse de dépôt par canal vs $r = k_{unf}/k_{agg}$) est très récent et ne peut pas être considéré à l'heure actuelle comme complètement achevé.

Il nécessiterait une prise de recul plus importante et des travaux complémentaires, aussi bien à l'échelle laboratoire (identification des paramètres cinétiques avec d'autres solutions protéiques) qu'à l'échelle pilote (essais d'encrassement avec d'autres profils thermiques, configurations d'ECP et pour d'autres temps de séjour ou volume de produit traité). L'influence de certains paramètres de procédé tels que la température de paroi et la vitesse de cisaillement mériteraient aussi d'être plus amplement étudiées.

Cependant, ce modèle mécanistique basé sur des approches de génie de la réaction semble réaliste, ce qui améliore son possible déploiement à d'autres matrices ou d'autres procédés thermiques.

Les résultats des chapitres 0 à 4 ont été valorisés dans 4 articles. 2 des articles sont édités et 2 sont en procédure de reviewing. Les contenus de ces articles sont joints en annexe.

Les objectifs scientifiques de la thèse concernant une meilleure compréhension des mécanismes de formation de dépôt ont donc été atteints ce qui n'exclut pas un nombre important de suite à donner. Quelques perspectives scientifiques à court terme sont détaillées ci-après.

 Identifier l'action du calcium à l'échelle moléculaire dans la formation de dépôt : L'influence du calcium total sur les cinétiques de dénaturation et la distribution de la masse de dépôt a été mise clairement en évidence. Il serait intéressant de distinguer les contributions du calcium complexé et libre dans ses phénomènes, en dosant le calcium ionique des solutions. Le dosage du calcium ionique dans les solutions protéiques avant et après traitements sur pilote permettrait de boucler la conservation de matière sur l'élément calcium et de mieux évaluer la quantité de calcium mobilisée dans le dépôt formé en fonction des ratios calcium/protéine initiaux.

2) Complexifier les matrices et évaluer la validité de l'approche de génie de la réaction : Pour des raisons détaillées dans le document, des solutions modèles de WPI ont été utilisées dans la thèse. Bien que le choix de ces solutions modèles soit justifié par des objectifs de compréhension des mécanismes, elles ne représentent pas la complexité d'un concentré de protéines sériques industrielles (autres assemblages protéiques, autres minéraux comme le phosphore) ou de solutions laitières (présence de caséines, lactose, lipide). Il serait intéressant d'effectuer des essais d'encrassement et d'identification des paramètres cinétiques de dénaturation pour ces matrices protéiques plus complexes. A ce stade, des essais ont été effectués en laboratoire et en pilote sur des solutions de β -lg en présence à la fois de calcium et de phosphore. Les premiers essais ouvrent la possibilité de déployer l'approche de génie de la réaction proposée à des matrices protéiques plus complexes.

REFERENCES BIBLIOGRAPHIQUES

- Akkerman M., Rauh V.M., Christensen M., Johansen L.B, Hammershøj M., Larsen L.B. (2016). Effect of heating strategies on whey protein denaturation – Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Dairy Science, 99 (1), 152–166.
- Anema S.G., McKenna A.B. (1996). Reaction kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk. Journal of Agricultural and Food Chemistry, 44, 422–428.
- Andritsos N., Yiantsios S.G., Karabelas A.J. (2002). Calcium phosphate scale formation from simulated milk ultrafiltrate solutions. Food and Bioproducts Processing, 80, p. 223–230.
- Anema S.G. (2000). Effect of milk concentration on the irreversible thermal denaturation and disulfide aggregation of β-lactoglobulin. Journal of Agricultural and Food Chemistry, 48 (9), 4168–4175.
- Anema S.G., Lee S.K, Klostermeyer H. (2006). Effect of protein, nonprotein-soluble components, and lactose concentrations on the irreversible thermal denaturation of β -lactoglobulin and α -lactalbumin in skim milk. Journal of Agricultural and Food Chemistry, 54 (19), 7339–7348.
- Arnebrant T., Barton K., Nylander T. (1987). Adsorption of α-lactalbumin and βlactoglobulin on metal surfaces versus temperature. Journal of Colloid and Interface Science, 119 (2), 383–390.
- Ayadi M.A., Leuliet J.C., Chopard F., Berthou M., Lebouche M. (2004). Continuous ohmic heating unit under whey protein fouling. Innovative Food Science and Emerging Technologies, 5 (4), 465–473.
- Awad M.M. (2011). Fouling of heat transfer surfaces. Heat Transfer Theoretical Analysis, Experimental Investigations and Industrial Systems, 505–542.
- Bansal B., Chen X.D. (2005). Modelling of milk fouling during ohmic heating. Chemeca Conference, Brisbane, Australia, September 25–28.
- Bansal B., Chen X.D, Lin S.X.Q. (2005). Skim milk fouling during ohmic heating. Heat exchanger fouling and cleaning: challenges and opportunities. In: Proceedings of 6th International Conference on Heat Exchanger Fouling and Cleaning – Challenges and Opportunities, Engineering Conferences International, Kloster Irsee, Germany, June 5– 10.

- Bansal B., Chen X.D. (2006). A critical review of milk fouling in heat exchangers. Comprehensive Reviews in Food Science and Food Safety, 5 (2), 27–33.
- Bell R.W., Sanders C.F. (1944). Prevention of milkstone formation in a High-Temperature-Short-Time heater by preheating milk, skim milk and whey. Journal of Dairy Science, 27, 499–504.
- Belmar-Beiny M.T., Fryer P.J. (1992). Bulk and surface effects on the initial stages of whey fouling. Trans. IChemE, 70, 193–198.
- Belmar-Beiny M.T., Gotham S.M., Paterson W.R., Fryer P.J., Pritchard A.M. (1993). The effect of Reynolds number and fluid temperature in whey protein fouling. Journal of Food Engineering, 19 (2), 119–139.
- Benning R., Petermeier H., Delgado A., Hinrichs J., Kulozik U., Becker T. (2003). Process design for improved fouling behaviour in dairy heat exchangers using a hybrid modelling approach. Food and Bioproducts Processing, 81, 266–274.
- Blanpain-Avet P., Hédoux A., Guinet Y., Paccou L., Petit J., Six, T., Delaplace G. (2012). Analysis by Raman spectroscopy of the conformational structure of whey proteins constituting fouling deposits during the processing in a heat exchanger. Journal of Food Engineering, 110, 86–94.
- Bohnet M. (1987). Fouling of heat transfer surfaces. Chemical Engineering and Technology, 10 (2), 113–125.
- Bott T.R. (1988). Crystallisation fouling basic science and models. In: Melo L.F., Bott T.R., Bernardo C.A. (Ed.), Fouling Science and Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 251–260.
- Bott T.R. (1990). Fouling Notebook, IChemE, Rugby, UK.
- Bott T.R. (2001). Heat transfer to foul or not to foul-that is the question. Chemical Engineering Progress, 97, 30–37.
- Bourion F. (1998). Encrassement des surfaces : souillures minérales, organiques et microbiologiques. Nettoyage et désinfection dans les entreprises alimentaires. Laval : ASEPT, 4, 67–72.
- Bouvier L., Moreau A., Ronse G., Six T., Petit J., and Delaplace G. (2014). A CFD model as a tool to simulate β-lactoglobulin heat-induced denaturation and aggregation in a plate heat exchanger. Journal of Food Engineering, 136, 56–63.

- Boxler C., Augustin W., Scholl S. (2013). Fouling of milk components on DLC coated surfaces at pasteurization and UHT temperatures. Food and Bioproducts Processing, 91, 336–347.
- Boxler C. (2014). Fouling by milk constituents and cleaning of modified surfaces. Ph.D. Thesis, Technische Universität Braunschweig, Germany.
- Bradley S.E., Fryer P.J., Griffin T.A., Wilson D.I. (1989). Use of an Oscillatory Flow Heat Exchanger in Food Processing. In: Fouling and Cleaning in Food Processing, Institute for Dairy Science and Food Processing, Technische Universität München, München, Deutschland, 14–24.
- Burton H. (1966). A comparison between a hot-wire laboratory apparatus and a plate heat exchanger for determining the sensitivity of milk to deposit formation. Journal of Dairy Research, 33, 317–324.
- Burton, H. (1967). Seasonal variation in deposit formation from whole milk on a heated surface. Journal of Dairy Research, 35, 137–143.
- Burton H. (1968). Deposits from whole milk in heat treatment plant a review and discussion. Journal of Dairy Research, 35, 317–330.
- Burton H. (1994). Ultra-high temperature processing of milk and milk products. Kluwer Academic Publishers, London, UK.
- Bylund, G. (1995). Dairy processing handbook. Tetra Pak Processing Systems AB, Lund, Sweden.
- Casal H.L., Köhler U., Mantsch H.H. (1988). Structural and conformational changes of βlactoglobulin B: an infrared spectroscopic study of the effect of pH and temperature. Biochimica et Biophysica Acta, 957, 11–20.
- Casanueva-Robles T., Bott T.R. (2005). The environmental effect of heat exchangerfouling: a case study. In: Proceedings of 6th International Conference on Heat Exchanger Fouling and Cleaning – Challenges and Opportunities, Engineering Conferences International, Kloster Irsee, Germany, June 5–10.
- Changani S.D., Belmar-Beiny M.T., Fryer P.J. (1997). Engineering and chemical factors associated with fouling and cleaning in milk processing. Experimental Thermal and Fluid Science, 14 (4), 392–406.
- Chen X.D, Bala P. (1998). Investigation of the influences of surface and bulk temperatures upon fouling of milk components onto a stainless steel probe. Proceedings fouling and cleaning in food processing. Jesus College, Cambridge, England, April 6–8.

- Chen X.D., Chen J., Wilson D.I. (2001). Modelling whey protein based fouling of heat exchangers further examining the deposition mechanisms. In: Proceedings of heat exchanger fouling fundamental approaches and technical solutions. Davos, Switzerland, July 8–13.
- Chenoweth J.M. (1990). Final report of the HTRI/TEMA joint committee to review the fouling section of the TEMA standards. Heat Transfer Engineering, 11 (1), 73–107.
- Chobert J.-M. (2012). Milk protein tailoring to improve functional and biological properties. Journal of Bioscience and Biotechnology, 1 (3), 171–197.
- Choi W., Jun S., Nguyen L.T., Rungraeng N., Yi H., Balasubramanian S., Puri V.M., Lee J. (2013). 3-D milk fouling modeling of plate heat exchangers with different surface finishes using computational fluid dynamics codes. Journal of Food Process Engineering, 36 (4), 439–449.
- Christian G.K, Changani S.D, Fryer P.J. (2002). The effect of adding minerals on fouling from whey protein concentrate development of a model fouling fluid for a plate heat exchanger. Trans. IChemE, 80, 231–239.
- Chusuei C.C., Goodman, D.W. (1999). Calcium phosphate phase identification using XPS and time-of-flight cluster SIMS. Analytical Chemistry, 71, 149–153.
- Croguennec T., O'Kennedy B.T., Mehra R. (2004). Heat-induced denaturation/aggregation of β-lactoglobulin A and B: kinetics of the first intermediates formed. International Dairy Journal, 14, 399–409.
- Dannenberg F. (1986). Zur Reaktionskinetik der Molkenprotein denaturiezung und der technologische bedeutung. Ph.D. Thesis, TU Munich, Germany.
- Dannenberg F., Kessler H.G. (1988). Reaction kinetics of the denaturation of whey proteins in milk. Journal of Food Science, 53 (1), 258–263.
- Daufin G., Labbé J.P., Quemerais A., Brulé G., Michel F., Roignant M., Priol M. (1987). Fouling of a heat exchange surface by whey, milk and model fluids: an analytical study. Lait, 67, 339–364.
- Davies T.J., Henstridge S.C., Gillham C.R., Wilson D.I. (1997). Investigation of whey protein deposit properties using heat flux sensors. Chemical Engineering Research and Design, 75, 106–110.
- De Bonis M.V., Ruocco G. (2009). Conjugate fluid flow and kinetics modeling for heat 835 exchanger fouling simulation. International Journal of Thermal Sciences, 48, 2006–2012.

- de Jong P., Bouman S., van der Linden H.J.L.J. (1992). Fouling of heat treatment equipment in relation to the denaturation of β -lactoglobulin. The Journal of the Society of Dairy Technology, 45 (1), 3–8.
- de Jong P., van der Linden H.J.L.J. (1992). Design and operation of reactors in the dairy industry. Chemical Engineering Science, 47, 3761–3768.
- de Jong P. (1996). Modeling and optimization of thermal treatments in dairy industry. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.
- de Jong P. (1997). Impact and control of fouling in milk processing. Trends in Food Science and Technology, 8, 401–405.
- de Jong P., van der Horst H.C., Waalewijn R. (1998). Reduction of protein and mineral fouling. Fouling and Cleaning in Food Processing; Jesus College, Cambridge, England, April 6–8.
- de Jong P., teGiffel M.C., Straatsma H., Vissers M.M.M. (2002). Reduction of fouling and contamination by predictive kinetic models. International Dairy Journal, 12 (2), 285–292.
- de la Fuente M.A., Singh H., Hemar Y. (2002). Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins. Trends in Food Science and Technology, 13, 262–274.
- De Wit J.N., Klarenbeek G. (1989). Technological and functional aspects of milk proteins. In: Barth C., Sclime E. (Ed.), Milk Proteins in Human Nutrition, Steinkopff, Darmstadt, pp. 211–222.
- de Wit J.N. (1990). Thermal stability and functionality of whey proteins. Journal of Dairy Science, 73, 3602–3612.
- de Wit, J.N. (2009). Thermal behaviour of bovine β -lactoglobulin at temperatures up to 150°C. A review. Trends in Food Science & Technology, 20 (1), 27–34.
- Delaplace G., Loubière K., Ducept F., Jeantet R. (2014). Modélisation en génie des procédés par analyse dimensionnelle : Méthode et exemples résolus. In: Tec & Doc: Lavoisier (Ed.), Paris, France, 464 p.
- Delplace F., Leuliet J.C., Tissier J.P. (1994). Fouling experiments of a plate heat exchanger by whey proteins solutions. Chemical Engineering Research and Design, 72, 163–169.
- Delplace F. 1995. Identification des échangeurs de chaleur à plaques. Application à l'étude de l'encrassement par les produits laitiers. Ph.D. Thesis, Nancy I University.

- Delplace F., Leuliet J.C. (1995). Modelling fouling of a plate heat exchanger with different flow arrangements by whey protein solutions. Chemical Engineering Research and Design, 73, 112–120.
- Delplace F., Leuliet J.C., Levieux D. (1997). A reaction engineering approach to the analysis of fouling by whey proteins of a six channels-per-pass plate heat exchanger. Journal of Food Engineering, 34, 91–108.
- Delsing B.M.A., Hiddink J. (1983). Fouling of heat transfer surfaces by dairy fluids. Netherlands Milk Dairy Journal, 37, 139–48.
- Donato L., Schmitt C., Bovetto L., Rouvet M. (2009). Mechanism of formation of stable heatinduced β-lactoglobulin microgels. International Dairy Journal, 19, 295–306.
- Dong A., Matsuura J., Allison S.D., Chrisman E., Manning M.C., Carpenter J.F. (1996). Infrared and circular dichroism spectroscopic characterization of structural differences between β-lactoglobulin A and B. Biochemistry, 35, 1450–1457.
- Elofsson U.M., Dejmek P., Paulsson M.A. (1996). Heat-induced aggregation of βlactoglobulin studied by dynamic light scattering. International Dairy Journal, 6, 343– 357.
- Epstein N. (1981). Fouling: Technical Aspects (Afterword to Fouling in Heat Exchangers). In: Somerscales E.F.C., Knudsen J.G. (Ed.), Fouling of Heat-transfer Equipment, Hemisphere, Washington D.C, pp. 31–53.
- Fink A., Kessler H.G. (1985) Changes in the fat globule membrane produced by heating. Milchwissenschaft, 40, 261–264.
- Flint S.H., Brooks J.D., Bremer P.J. (2000). Properties of the stainless steel substrate influencing the adhesion of thermo-resistant streptococci. Journal of Food Engineering, 43 (4), 235–242.
- Foster C.L., Britten M., Green M.L. (1989). A model heat-exchange apparatus for the investigation of fouling of stainless steel surfaces by milk I: Deposition formation at 100°C. Journal of Dairy Research, 56, 201–209.
- Foster C.L., Green M.L. (1990). A model heat exchange apparatus for the investigation of fouling of stainless steel surfaces by milk II: Deposition of fouling material at 140°C, its adhesion and depth profiling. Journal of Dairy Research, 57, 339–348.
- Fox P.F., Kelly A.L. (2006). Indigenous enzymes in milk: Overview and historical aspects Part 1. International Dairy Journal, 16, 500–516.

- Fryer P.J., Slater N.K.H. (1984). Reaction fouling from food fluids. American Society of Mechanical Engineers, 35, 65–73.
- Fryer P.J. (1989). The uses of fouling models in the design of food process plant. Journal of the Society of Dairy Technology, 42 (1), 23–29.
- Fryer P.J., Belmar-Beiny M.T. (1991). Fouling of heat exchangers in the food industry: a chemical engineering perspective. Trends in Food Science and Technology, 2, 33–37.
- Fryer P.J, de Alwis A.A.P, Koury E., Stapley A.G.F., Zhang L. (1993). Ohmic processing of solid-liquid mixtures: heat generation and convection effects. Journal of Food Engineering, 18, 101–125.
- Fryer P.J., Robins P.T., Green C., Schreier P.J.R., Pritchard A.M., Hasting A.P.M., Royston D.G., Ritchardson, J.F. (1996). A statistical model for fouling of a plate heat exchanger by whey protein solution at UHT conditions, Trans. IChemE, 74, 189–199.
- Fryer P.J., Christian G.K., Liu W. (2006). How hygiene happens; the physics and chemistry of cleaning. International Journal of Dairy Technology, 59, 76–84.
- Galani D., Apenten R.K.O. (1997). The comparative heat stability of bovine β-lactoglobulin in buffer and complex media. Journal of the Science of Food and Agriculture, 74, 89–98.
- Garrett-Price B.A., Smith S.A., Watts R.L., Knudsen J.G., Marner W.J., Suitor J.W. (1985). Fouling of Heat Exchangers, Characteristics, Costs, Prevention, Control and Removal, Noyes, Park Ridge, N.J., 9–19.
- Georgiadis M.C., Rotstein G.E., Macchietto S. (1998). Optimal design and operation of heat exchangers under milk fouling. American Institute of Chemical Engineers Journal, 44 (9), 2099–2111.
- Georgiadis M.C., Macchietto S. (2000). Dynamic modelling and simulation of plate heat exchangers under milk fouling. Chemical Engineering Science, 55, 1605–1619.
- Goode K.R., Asteriadou K., Robbins P.T., Fryer P.J. (2013). Fouling and cleaning studies in the food and beverage industry classified by cleaning type. Comprehensive Reviews in Food Science and Food Safety, 12, 121–143.
- Gotham S.M., Fryer P.J., Pritchard A.M. (1992). β-lactoglobulin denaturation and aggregation reactions and fouling deposit formation: A DSC study. International Journal of Food Science & Technology, 27, 313–327.
- Griffin W.C., Griffin M.C.A., Martin S.R., Price J. (1993). Molecular basis of thermal aggregation of bovine beta-lactoglobulin A. Journal of the Chemical Society, 89, 3395–3405.

- Grijspeerdt K., Mortier L., de Block J., van Renterghem R. (2004). Applications of modelling to optimize ultra-high temperature milk heat exchangers with respect to fouling. Food Control, 15, 117–130.
- Guérin R., Ronse G., Bouvier L., Debreyne P., Delaplace G. (2007). Structure and rate of growth of whey protein deposit from in situ electrical conductivity during fouling in a plate heat exchanger. Chemical Engineering Science, 62, 1948–1957.
- Guignard C., Verones F., Loerincik Y., Jolliet O. (2009). Environmental/Ecological impact of the dairy sector. Bulletin of the International Dairy Federation, 436, 1–60.
- Hambling S.G., McAlpine A S., Sawyer L. (1992). β-lactoglobulin. In: Fox P.F. (Ed.), Advanced Dairy Chemistry. Elsevier Applied Science, London and New York, 1, pp. 141–190.
- Havea P., Singh H., Creamer L.K. (2001). Characterization of heat-induced aggregates of βlactoglobulin, α-lactalbumin and bovine serum albumin in a whey protein concentrate environment. Journal of Dairy Research, 68, 483–497.
- Hiddink J., Lalande M., Maas AJ.R., Streuper A. (1986). Heat treatment of whipping cream.1. Fouling of the pasteurization equipment. Milchwissenschajt, 41 (9), 542–546.
- Itoh H., Nagata A., Toyomasu T., Sakiyama T., Nagai T., Saeki T., Nakanishi K. (1995). Adsorption of β-lactoglobulin onto the surface of stainless particles. Bioscience, Biotechnology, and Biochemistry, 59 (9), 1648–1651.
- Iametti S., De Gregori B., Vecchio G., Bonomi F. (1996). Modifications at different structural levels occur during the heat denaturation of β-lactoglobulin. European Journal of Biochemistry, 237, 106–112.
- Ikeguchi M. (2014). Transient Non-Native Helix Formation during the Folding of β-Lactoglobulin. Biomolecules, 4 (1), 202–216.
- Jeurnink T.J.M., de Kruif K.G. (1995). Calcium concentration in milk in relation to heat stability and fouling. Netherlands Milk and Dairy Journal, 49, 151–165.
- Jeurnink T.J.M., Walstra P., de Kruif C.G. (1996). Mechanisms of fouling in dairy processing. Netherlands Milk and Dairy Journal, 50, 407–426.
- Jimenez M., Delaplace G., Nuns, N., Bellayer S., Deresmes D., Ronse G., Alogaili G., Collinet-Fressancourt M., Traisnel M. (2013). Toward the understanding of the interfacial dairy fouling deposition and growth mechanisms at a stainless steel surface: a multiscale approach. Journal of Colloid and Interface Science, 404, 192–200.

- Jun S., Puri V.M., Roberts R.F. (2004). A 2D dynamic model for fouling performance of plate heat exchangers. Journal of Food Engineering, 47 (1), 213–222.
- Jun S., Puri V.M. (2005a). 3D milk-fouling model of plate heat exchangers using computational fluid dynamics. International Journal of Dairy Technology, 58 (4), 214– 224.
- Jun S. Puri V.M. (2005b). Fouling Model for Heat Exchangers in Food Processing: A Review. Journal of Food Process Engineering, 28, 1–34.
- Jun S., Puri V.M. (2007). Plate heat exchanger: thermal and fouling analysis. In: Sun D.-W. (Ed.), Computational fluid dynamics in food processing, CRC Press, Taylor and Francis Group, 417–432.
- Kerche F., Weterings M., Beyrer M. (2016). The effect of temperature and shear upon technological properties of whey protein concentrate: Aggregation in a tubular heat exchanger. International Dairy Journal, doi:10.1016/j.idairyj.2016.02.032.
- Kessler H.-G., Beyer H.-J. (1991). Thermal denaturation of whey proteins and its effect in dairy technology. International Journal of Biological Macromolecules, 13, 165–173.
- Kilara, A. (1994). Chapter 11 Whey protein functionality. In: Hettiarachchy N.S., Ziegler G.R. (Ed.), Protein functionality in food systems, New York, USA, pp. 335–355.
- Kim J., Lund D. (1998). Kinetics of β-lactoglobulin adsorption onto stainless steel surfaces. Biotechnology Progress, 14, 951–958.
- Kinsella J.E. (1984). Milk proteins: physicochemical and functional properties. Critical Reviews in Food Science and Nutrition, 21, 197–262.
- Kuppan T. Heat Exchanger Design Handbook, Marcel Dekker, Inc, New York, USA, 2000.
- Labouré H., Cases E., Cayot P. (2004). Heat induced β-lactoglobulin polymerization: Role of change in medium permittivity. Food Chemistry, 85, 399–406.
- Lalande M., Tissier J.-P, Corrieu G. (1984). Fouling of a plate heat exchanger used in ultrahigh-temperature sterilization of milk. Journal of Dairy Research, 51, 557–568.
- Lalande M., Tissier J.-P, Corrieu G. (1985). Fouling of heat transfer surfaces related to βlactoglobulin denaturation during heat processing of milk. Biotechnology Progress, 1, 131–139.
- Lalande M., René F. (1988). Fouling by milk and dairy product and cleaning of heat exchangers. In: Melton L., Bott T.R., Bernardo M. (Ed.), Fouling science and technology, Amsterdam, Kluwer, 557–573.

- Lalande M., Rene F., Tissier J.P. (1989). Fouling and its control in heat exchangers in the dairy industry. Biofouling, 1 (3), 233–250.
- Leuliet J.C. (1988). Comportements hydraulique et thermique des échangeurs à plaques traitant des produits non-Newtoniens, Ph.D. Thesis, Nancy I University, France.
- Lewis M., Heppell N. (2000). Continuous thermal processing of foods: pasteurization and UHT sterilization. Gaithersburg: Aspen Publication.
- Ling A.C., Lund D.B. (1978). Apparatus for studying fouling of heated surfaces by biological fluids. Journal of Food Science, 43 (2), 390–403.
- Linmark-Mansson H., Timgren A., Alden G., Paulsson M. (2005). Two-dimensional gel electrophoresis of proteins and peptides in bovine milk. International Dairy Journal, 15, 111–121.
- Loveday S.M. (2016). beta-lactoglobulin heat denaturation: A critical assessment of kinetic modelling. International Dairy Journal, 52, 92–100.
- Lund D.B., Bixby D. (1975). Fouling of heat exchange surfaces by milk. Process Biochemistry, 10 (9), 52–55.
- Lucey J.A., Horne D.S. (2009). Milk salts: technological significance. Advanced Dairy Chemistry: Lactose, Water, Salts and Minor Constituents, 3, 351–389.
- Lyster R.L.J. (1965). The composition of milk deposits in an ultra-high-temperatureplant. Journal of Dairy Research, 32, 203–208.
- Lyster R.L.J. (1970). The denaturation of α -lactalbumin and β -lactoglobulin in heated milk. Journal of Dairy Research, 37, 233–243.
- Mahdi Y., Mouheb A., Oufer L. (2009). A dynamic model for milk fouling in a plate heat exchanger. Applied Mathematical Modelling, 33, 648–662.
- Mansoori G.A. (2001). Deposition and fouling of heavyorganic oils and other compounds. In: 9th International Conference on Properties and Phase Equilibria for Product and Process Design, Okayama, Japan, May 20–25.
- Maubois J.L. (1984). Separation, extraction and fractionation of milk protein components. Le Lait, 64, 485–495.
- McDonald A.G., Magande H.L. (2012). Fundamentals of Heat Exchanger Design. In: Introduction to Thermo-Fluids Systems Design. John Wiley and Sons: Chichester, UK, pp. 127–211.
- Merus. (2007). Bio Fouling at a refinery in Dubai removed and stopped. Available from: www.merusonline.com/biofouling-refinery. [Accessed 14/03/2016].

- Michalski M., Ollivon M., Briard V., Leconte N., Lopez C. (2004). Native fat globules of different sizes selected from raw milk: thermal and structural behavior. Chemistry and Physics of Lipids, 132, 247–261.
- Monahan F.J., German J.B., Kinsella J.E. (1995). Effect of pH and temperature on protein unfolding and thiol/disulfide interchange reactions during heat-induced gelation of whey protein. Journal of Agricultural and Food Chemistry, 43, 46–52.
- Morison K.R., Tie S.-H. (2002). The development and investigation of a model milk mineral fouling solution. Food and Bioproducts Processing, 80 (4), 326–331.
- Mulvihill D.M., Donovan M. (1987). Whey proteins and their thermal denaturation A review. Irish Journal of Food Science and Technology, 11, 43-75.
- Müller-Steinhagen, H. (1993). Fouling: the ultimate challenge for heat exchanger design. Proceedings of the Sixth International Symposium on Transport Phenomena in Thermal Engineering, Seoul, Korea, 811–823.
- Müller-Steinhagen, H.M. (2000). Handbook of heat exchanger fouling: Mitigation and cleaning technologies. IChemE, Rugby, UK, Publico Publications.
- Navarra G., Leone M., Militello V. (2007). Thermal aggregation of β-lactoglobulin in presence of metal ions. Biophysical Chemistry, 131, 52–61.
- Nielsen B. T., Singh H., Latham J.M. (1995). Aggregation of bovine β-lactoglobulin A and B on heating at 75°C. International Dairy Journal, 6, 519–527.
- O'Kennedy B.T., Mounsey J.S., Murphy F., Pesquera L., Mehra R. (2006). Preferential heatinduced denaturation of bovine β-lactoglobulin variants as influenced by pH. Milchwissenschaft, 61, 366–369.
- O'Kennedy B.T., Mounsey J.S. (2009). The dominating effect of ionic strength on the heat induced denaturation and aggregation of β-lactoglobulin in simulated milk ultra filtrate. International Dairy Journal, 19, 123–128.
- Oldfield D.J., Singh H., Taylor M.W., Pearce K.N. (2000). Heat-induced interactions of βlactoglobulin and α-lactalbumin with the casein micelle in pH-adjusted skim milk. International Dairy Journal, 10, 509–518.
- Oldfield D.J., Singh H., Taylor M.W. (2005). Kinetics of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration. Journal of Dairy Research, 72, 369–378.
- Oliveira R., Melo L., Pinheiro M., Vieira M. J. (1993). Surface interactions and deposit growth in fouling of heat exchangers. Corrosion Reviews, 11, 55–95.

- Papiz M.Z., Sawyer L., Eliopoulos E.E., North A.C.T., Findlay J.B.C., Sivaprasadarao R., Jones T.A., Newcomer M.E., Kraulis P.J. (1986). The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature, 324, 383–385.
- Pappas C.P., Rothwell J. (1991). The effects of heating, alone or in the presence of calcium or lactose, on calcium binding to milk proteins. Food Chemistry, 42 (2), 183–201.
- Patel H.A., Anema S.G., Holroyd S.E., Singh H., Creamer L.K. (2007). Methods to determine denaturation and aggregation of proteins in low-, medium- and high-heat skim milk powders. Dairy Science and Technology, 87, 251–268.
- Paterson W.R., Fryer P.J. (1988). A reaction engineering approach to the analysis of fouling. Chemical Engineering Science, 43 (7), 1714–1717.
- Patil G. R., Reuter H. (1986). Deposit formation in UHT plants. I. Effects of forewarming in indirectly heated plants. Milchwissenschaft 41, 337–339.
- Paulsson M., Dejmek P. (1990). Thermal denaturation of whey proteins in mixtures with caseins studied by differential scanning calorimetry. Journal of Dairy Science, 73, 590– 600.
- Perez O.E., Pilosof A.M.R. (2004). Pulsed electric effects on the molecular structure and gelation of β -lactoglobulin concentrate and egg white. Food Research International, 37, 102–110.
- Petermeier H., Benning R., Delgado A., Kulozik U., Hinrichs J., Becker T. (2002). Hybrid model of the fouling process in tubular heat exchangers for the dairy industry. Journal of Food Engineering, 55, 9–17.
- Petit J., Herbig A.-L., Moreau A., Delaplace G. (2011). Influence of calcium on βlactoglobulin denaturation kinetics: implications in unfolding and aggregation mechanisms. Journal of Dairy Science, 94 (12), 5794–5810.
- Petit J., Six T., Moreau A., Ronse G., Delaplace G. (2013). Beta-lactoglobulin denaturation, aggregation, and fouling in a plate heat exchanger: pilot-scale experiments and dimensional analysis. Chemical Engineering Science, 101, 432–450.
- Phan-Xuan T., Durand D., Nicolai T., Donato L., Schmitt C., Bovetto L. (2013). Tuning the structure of protein particles and gels with calciumor sodium ions. Biomacromolecules, 14 (6), 1980–1989.
- Qi X.L., Brownlow S., Holt C., Sellers P. (1995). Thermal denaturation of β-lactoglobulin: effect of protein concentration at pH 6.75 and 8.05. Biochimica et Biophysica Acta, 1248, 43–49.

- Qi X.L., Holt C., McNulty D., Clarke D.T., Brownlow S., Jones G.R. (1997). Effect of temperature on the secondary structure of β-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: A test of the molten globule hypothesis. Biochemical Journal, 324, 341–346.
- Rakes P.A., Swartzel K.R., Jones V.A. (1986). Deposition of dairy protein-containing fluids on heat exchanger surfaces. Biotechnology Progress, 2 (4), 210–217.
- Relkin P. (1996). Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin: A thermodynamic approach. Critical Reviews in Food Science and Nutrition, 36, 565–601.
- René F., Lalande M. (1987). Échangeur de chaleur à plaques et joints. Résolution numérique des équations d'échange thermique entre les différents canaux. Revue Générale Thermique Française, 311, 577–583.
- René F., Lalande M. (1988). Descriptions et mesures des phénomènes d'encrassement des échangeurs de chaleur. Cas du traitement thermique du lait. Entropie, 139, 13–23.
- René F., Leuliet J.C., Lalande M. (1991). Heat transfer to Newtonian and non-Newtonian food fiuids in plate heat exchangers: experimental and numerical approaches, Food and Bioproducts Processing, 69, 115–126.
- Ribadeau-Dumas B., Grappin R. (1989). Milk protein analysis. Le Lait, 69 (5), 357-416.
- Roefs S.P.F.M., de Kruif K.G. (1994). A model for the denaturation and aggregation of βlactoglobulin. European Journal of Biochemistry, 226, 883–889.
- Roefs S.P.F.M., Peppelman, H.A. (2001). Aggregation and gelation of whey proteins: specific effect of divalent cations? In: Dickinson E., Miller R. (Ed.), Food Colloids Fundamentals of Formulation. The Royal Society of Chemistry, Cambridge, pp. 358–368.
- Rose I.C., Watkinson A.P., Epstein N. (2000). Testing a mathematical model for initial chemical reaction fouling using a dilute protein solution. Canadian Journal of Chemical Engineering, 78, 5–11.
- Rosmaninho R., Santos O., Nylander T., Paulsson M., Beuf M., Bénézech T., Yiantsios S., Andritsos N., Karabelas A., Rizzo G., Müller-Steinhagen H., Melo L.F. (2007). Modified stainless steel surfaces targeted to reduce fouling – Evaluation of fouling by milk components. Journal of Food Engineering, 80 (4), 1176–1187.
- Sava N., Van der Plancken I., Claeys W., Hendrickx M. (2005). The kinetics of heat-induced structural changes of β-lactoglobulin. Journal of Dairy Science, 88, 1646–1653.

- Santos O., Nylander T., Rizzo G., Müller-Steinhagen H., Trägårdh C., Paulsson M. (2003). Study of whey protein adsorption under turbulent flow rate. In: Proceedings of heat exchanger fouling and cleaning – fundamentals and applications, Santa Fe, New Mexico, U.S.A, May 18–22.
- Santos O., Nylander T., Paulsson M., Tragardh A.C. (2006). Whey protein adsorption onto steel-surfaces – Effect of temperature, flow rate, residence time and aggregation. Journal of Food Engineering, 74, 468–483.
- Schreier P.J.R., Fryer P.J. (1995). Heat exchanger fouling: A model study of the scale up of laboratory data. Chemical Engineering Science, 50, 1311–1321.
- Sheikholeslami R. (1999). Composite Fouling Inorganic and Biological: A Review. Environmental Progress, 18 (2), 113–122.
- Sherwin C., Foegeding E. (1997). The effects of CaCl₂ on aggregation of whey proteins. Milchwissenschaft, 52, 93–96.
- Simons J.-W.F.A., Kosters H.A. (2002). Visschers R.W., de Jongh H.H.J. Role of calcium as trigger in thermal β-lactoglobulin aggregation. Archives of Biochemistry and Biophysics, 406 (2), 143–152.
- Simmons M.J.H., Jayaraman P., Fryer P.J. (2007). The effect of temperature and shear rate upon the aggregation of whey protein and its implication for milk fouling. Journal of Food Engineering, 79, 517–528.
- Skudder P.J., Brooker B.E., Bonsey A.D., Alvarez-Guerrero N.R. (1986). Effect of pH on the formation of deposit from milk on heated surfaces during ultra-high temperature processing. Journal of Dairy Research, 53, 75–87.
- Skudder P., Biss C. (1987). Aseptic processing of food products using ohmic heating. Chemical Engineering Journal, 26–28.
- SmartFlow. (2015). CleanFlow for milk heat exchangers. Available from: www.smartflow.eu/technology-cleanflow.php. [Accessed 14/03/2016].
- Spreer, E. (2005). Technologie der Milchverarbeitung, ISBN 3-89947-233-0 HC.
- Szirtes T. (1998). Applied dimensional Analysis and Modeling. New York: McGraw-Hill.
- Taborek J., Aoki T., Ritter R. B., Palen J.W., Knudsen J.G. (1972). Fouling: The major unresolved problem in heat transfer. Chemical Engineering Progress, 68, 59–68.
- Thackery P.A. (1980). The cost of fouling in heat exchanger plant. Effluent and Water Treatment Journal, 5 (20), 112–115.

- Tuladhar T.R., Paterson W.R., Wilson D.I. (2002). Investigation of alkaline cleaning-in-place of whey protein deposits using dynamic gauging. Food and Bioproducts Processing, 80, 199–214.
- Tissier J.P., Lalande, M. (1986). Experimental device and methods for studying milk deposit formation on heat exchanger surfaces. Biotechnology Progress, 2, 218–229.
- Tolkach A, Kulozik U. (2005). Effect of pH and temperature on the reaction kinetic parameters of the thermal denaturation of β -lactoglobulin. Milchwissenschaft Milk Science International, 60 (3), 248–252.
- Tolkach A., Kulozik U. (2007). Reaction kinetic pathway of reversible and irreversible thermal denaturation of β -lactoglobulin. Dairy Science and Technology, 87, 301–315.
- Toyoda I., Schreier P.J.R., Fryer P.J. (1994). A computational model for reaction fouling from whey protein solutions. Fouling and Cleaning in Food Processing, Jesus College, Cambridge, England, 222–229.
- Toyoda I., Fryer P.J. (1997). A computational model for reaction and mass transfer in fouling from whey protein solutions. In: Panchal C.B. (Ed.), Fouling mitigation of industrial heat exchange equipment. Begell House, New York, pp. 589–600.
- van Asselt A.J., Vissers M.M.M., Smit F., de Jong P. (2005). In-line control of fouling. In: Proceedings of 6th International Conference on Heat Exchanger Fouling and Cleaning – Challenges and Opportunities, Engineering Conferences International, Kloster Irsee, Germany, June 5–10.
- Verheul M., Roefs S.P.F.M., de Kruif K.G. (1998). Kinetics of heat-induced aggregation of beta-lactoglobulin. Journal of Agricultural and Food Chemistry, 46, 896–903.
- Verheul M., Pedersen J.S, Roefs S.P.F.M, de Kruif K.G. (1999). Association behavior of native β-lactoglobulin. Biopolymers, 49, 11–20.
- Visser J., Jeurnink T.J.M. Fouling of heat exchangers in the dairy industry. (1997). Experimental Thermal and Fluid Science, 14, 407–424.
- Walstra P., Geurts T.J., Noomen A., Jellema A., van Boekel M.A.J.S. (1999). Dairy technology, principles of milk properties and processes. Marcel Dekker, Inc., New York.
- Wahlgren M., Arnebrant T. (1991). Protein adsorption to solid surfaces. Trends in Biotechnology, 9, 201–208.
- Wolz M., Kulozik, U. (2015). Thermal denaturation kinetics of whey proteins at high protein concentrations. International Dairy Journal, 49, 95–101.

- Xiong Y.L. (1992). Influence of pH and ionic environment on thermal aggregation of whey proteins. Journal of Agricultural and Food Chemistry, 40, 380–384.
- Xu Z.-M., Zhang Z.-B, Yang S.-R. (2007). Costs due to utility fouling in China. In: Proceedings of 7th International Conference on Heat Exchanger Fouling and Cleaning – Challenges and Opportunities New York, 113–118.
- Yoon J., Lund D.B. (1994). Magnetic treatment of milk and surface treatment of plate heat exchangers: effect on milk fouling. Journal of Food Science, 59 (5), 964–980.
- Zúñiga R.N, Tolkach A., Kulozik U., Aguilera J.M. (2010). Kinetics of formation and physicochemical characterization of thermally-induced beta-lactoglobulin aggregates. Journal of Food Science, 75 (5), 261–268.

ANNEXES

Tableau A 1. Récapitulatif des paramètres simulés et calculés permettant d'analyser le comportement encrassant de chacune des solutions protéiques modèles étudiées durant un traitement thermique en ECP.

Solution	Teneur	Ratio		T° movenne	Nbre de		Masse de	Masse	$r = k_{unf}$
de β-lg	de β -lg calcium molaire		Profil	dans chaque	canaux	Masse de dépôt dans	moyenne	dépôt	dans
(% p/p)	total	calcium/	thermique	canal (°C)	de	chaque canal (g)	par canal	totale	chaque
	(ppm)	p-ig			l'ECP		(g)	(g)	canal
				67		$\begin{array}{c c} Canal 1 & \underline{Essai 1} & 0,3 \\ \hline Essai 2 & 0,3 \end{array}$	- 0,3		0,2
				71		$\begin{array}{c c} \text{Canal 2} & \underline{\text{Essai 1}} & 4,2 \\ \hline \text{Essai 2} & 4,9 \end{array}$	4,5		0,3
			#1	76	5	Canal 3 Essai 1 18,8 Essai 2 20,8	- 19,8	104,7	0,5
				81		Canal 4 Essai 1 38,6 Essai 2 40,0	39,3		0,9
				84		Canal 5 Essai 1 40,4 Essai 2 41,1	40,7		1,3
				68		Canal 1 Essai 1 3,8 Essai 2 4,2	4,0		0,2
				74		Canal 2 Essai 1 24,1 Essai 2 26,6	25,3		0,5
			#2	79	5	Canal 3 Essai 1 38,2 Essai 2 41,3	- 39,7	160,4	0,8
				82		Canal 4 Essai 1 43,4 Essai 2 48,5	46,0		1,1
1	100	57		84		$\begin{array}{c c} \text{Canal 5} & \underline{\text{Essai 1}} & 43,5 \\ \hline \text{Essai 2} & 47,1 \end{array}$	45,3		1,4
1	100	5,1	#3	66	5	Canal 1 Essai 1 0,2 Essai 2 0,4	- 0,3	_	0,2
				68		Canal 2 Essai 1 1,8 Essai 2 2,4	- 2,1		0,2
				72		Canal 3 Essai 1 14,1 Essai 2 15,3	14,7	117,3	0,3
				77		Canal 4 Essai 1 46,6 Essai 2 43,1	44,9		0,7
				83		Canal 5 <u>Essai 1 58,4</u> Essai 2 52,3	55,3		1,2
				61		$\begin{array}{c c} Canal 1 & \underline{Essai 1} & 0,2 \\ \hline Essai 2 & 0,1 \end{array}$	- 0,1		0,1
				64		$\begin{array}{c c} \text{Canal 2} & \underline{\text{Essai 1}} & 0,9 \\ \hline \text{Essai 2} & 0,7 \end{array}$	- 0,8		0,1
			#4	68	5	$\begin{array}{c c} Canal 3 & \underline{Essai 1} & 1,2 \\ \hline Essai 2 & 0,9 \end{array}$	1,0	6,7	0,2
				72		Canal 4 Essai 1 1,3 Essai 2 1,8	1,5		0,3
				74		Canal 5 <u>Essai 1 3,4</u> Essai 2 2,9	- 3,1		0,5
1	100	57	#1	66	10	Canal 1 Essai 1 0,3 Essai 2 0,2	- 0,2	173 3	0,2
1		5,1	17 1	69	10	$\begin{array}{c c} \text{Canal 2} & \underline{\text{Essai 1}} & 0,5 \\ \hline \text{Essai 2} & 0,3 \end{array}$	- 0,5	175,5	0,2

Solution de β-lg (% p/p)	Teneur en calcium total (ppm)	Ratio molaire calcium/ β-lg	Profil thermique	T° moyenne dans chaque canal (°C)	Nbre de canaux de l'ECP	Masse chaq	de dépôt dans ue canal (g)	Masse de dépôt moyenne par canal (g)	Masse de dépôt totale (g)	$r = k_{unf} / k_{agg}$ dans chaque canal
			71		Canal 3	Essai 1 0,8 Essai 2 0,5	- 1,1	(6/	0,3	
				73		Canal 4	Essai 1 2,8 Essai 2 2,5	4,2		0,4
				75		Canal 5	Essai 1 7,6 Essai 2 7,2	9,8		0,5
			#1	77	10	Canal 6	Essai 1 14,2 Essai 2 14,3	17,7	173.3	0,6
			<i>#</i> 1	79	10	Canal 7	Essai 1 21,9 Essai 2 23,5	27,0	175,5	0,8
				81		Canal 8	Essai 1 31,8 Essai 2 33,7	37,8	-	1,0
				83		Canal 9	Essai 143,3Essai 247,6	49,9		1,2
				85		Canal 10	Essai 146,0Essai 247,7	47,7		1,4
				68		Canal 1	Essai 1 8,1 Essai 2 6,8	7,5	-	0,2
			#2	73	- 10	Canal 2	Essai 1 26,5 Essai 2 13,6	- 20,1		0,4
				77		Canal 3	Essai 1 34,1 Essai 2 20,4	27,3		0,6
				79		Canal 4	Essai 1 37,0 Essai 2 27,2	32,1		0,8
1	100	5,7		81		Canal 5	Essai 1 42,7 Essai 2 34	- 38,4	377,3	1,0
1	100			82		Canal 6	Essai 1 45,2 Essai 2 40,8	43,0		1,1
				83		Canal 7	Essai 1 50,5 Essai 2 47,6	49,1	-	1,3
				84		Canal 8	Essai 1 47,2 Essai 2 54,4	50,8		1,4
				85		Canal 9	Essai 1 45,4 Essai 2 61,2	53,3		1,4
				85		10	Essai 1 43,6 Essai 2 68 Essai 1 0.3	- 55,9		1,5
				61		Canal 1	$\begin{array}{c c} \underline{\text{Essai 1}} & 0, 5 \\ \hline \\ \hline \\ \underline{\text{Essai 2}} & 0 \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\$	0,2		0,1
				63		Canal 2	$\begin{array}{c c} \text{Essai 1} & 0,2 \\ \hline \text{Essai 2} & 0 \\ \hline \text{Essai 1} & 0.2 \\ \end{array}$	0,1		0,1
				64		Canal 3		0.2		0,1
			#4	66	10	Canal 4	Essai 2 0 Essai 1 0.2	0,2	5,0	0,2
			<i>n</i> 	67	10	Canal 5	Essai 2 0 Essai 1 0.4	0.2		0,2
				69		Canal 6	Essai 2 0 Essai 1 0.5	0.3	_	0,2
				//0		Canal 7	Essai 2 0 Essai 1 0.7	0.4		0,3
				72		Canal 8	Essai 2 0,1	- 0,4		0,4

Solution de β-lg (% p/p)	Teneur en calcium total (ppm)	Ratio molaire calcium/ β-lg	Profil thermique	T° moyenne dans chaque canal (°C)	Nbre de canaux de l'ECP	Masse chaq	de dépôt dans ue canal (g)	Masse de dépôt moyenne par canal (g)	Masse de dépôt totale (g)	$r = k_{unf} / k_{agg}$ dans chaque canal	
1	100	57	#4	74	10	Canal 9	Essai 1 1,6 Essai 2 1,3	- 1,4	- 50	0,4	
	100	5,7		75		Canal 10	Essai 1 2,2 Essai 2 1,9	2,1	5,0	0,5	
				67		Canal 1	Essai 1 7,4 Essai 2 5,9	6,6		0,4	
				71		Canal 2	Essai 1 36,7 Essai 2 34,7 Essai 1 27.0	35,7		0,5	
			#1	76	5	Canal 3	Essai 1 37,9 Essai 2 39,6 Essai 1 35,6	- 38,7	154,1	0,7	
				81		Canal 4	Essai 1 35,6 Essai 2 36,1 Essai 1 37,0	35,8		0,9	
				84		Canal 5	Essai 1 37,9 Essai 2 36,3 Essai 1 9.3	- 37,1		1,0	
				68		Canal 1	Essai 1 9,5 Essai 2 8,6 Essai 1 40	8,9		0,5	
				74	5	Canal 2	Essai 2 38,9 Essai 1 40,2	39,5		0,6	
1 120) 6,9	#2	79		Canal 3	Essai 2 40,1 Essai 1 35,1	- 40,1	161,4	0,8	
				82		Canal 4	Essai 2 35,5 Essai 1 37,6	- 35,3	-	1,0	
	120			64	5	Canal 1	Essai 2 37,5 Essai 1 4	- 57,0		1,1	
				68		Canal 2	Essai 24,8Essai 132,7	- 33 /		0,4	
			#3	72		Canal 3	Essai 234,1Essai 138,6	- 40.2	155.0	0,5	
				77		Canal 4	Essai 2 41,8 Essai 1 39,7	45.7	-	0.7	
				83		Canal 5	Essai 2 51,6 Essai 1 31,3	- 31,3	<u>.</u>	1,0	
				61		Canal 1	Essai 2 31,4 Essai 1 0,6 Essai 2 0.4	- 0,5		0,3	
				64		Canal 2		- 3,3	-	0,4	
			#4	68	5	Canal 3	Essai 2 3,1 Essai 1 2,7 Essai 2 2,4	- 2,5	27,4	0,5	
				72		Canal 4	Essai 2 2,1 Essai 1 7,6 Essai 2 8.2	- 7,9	-	0,5	
				74		Canal 5	Essai 1 12,5 Essai 2 13,7	- 13,1		0,6	
				67		Canal 1	Essai 1 3,6 Essai 2 3,1	- 3,3		0,1	
0.27	100	22 û	#1	71	-	Canal 2	Essai 1 23,5 Essai 2 21,6	22,6	- 105 -	0,2	
0,25	100	22,9		76	5	Canal 3	Essai 1 35,9 Essai 2 32,0	33,9	135,2	0,6	
						81		Canal 4	Essai 1 42,1 Essai 2 39,1	40,6	

Solution de β-lg (% p/p)	Teneur en calcium total (ppm)	Ratio molaire calcium/ β-lg	Profil thermique	T° moyenne dans chaque canal (°C)	Nbre de canaux de l'ECP	Masse chaq	de dépôt d jue canal (g	lans g)	Masse de dépôt moyenne par canal (g)	Masse de dépôt totale (g)	$r = k_{unf}/k_{agg}$ dans chaque canal
0,25	100	22,9	#1	84	5	Canal 5	Essai 1 Essai 2	38,2 31,2	34,7	135,2	2,6
				67		Canal 1	Essai 1 Essai 2	3,8 4,5	4,1		0,1
				71		Canal 2	Essai 1 Essai 2	27,5 29,1	28,3		0,2
0,5	100	11,5	#1	76	5	Canal 3	Essai 1 Essai 2	35,1 36.4	35,7	155,6	0,5
				81		Canal 4	Essai 1 Essai 2	43,5	44,4		1,3
				84		Canal 5	Essai 1 Essai 2	43,3	43,0		2,4
		2,9	#1	67		Canal 1	Essai 1 Essai 2	0,3	0,5		0,2
	100			71	5	Canal 2	Essai 1 Essai 2	3,6 4 9	4,3	-	0,3
2				76		Canal 3	Essai 1 Essai 2	4,7	5,9	48,4	0,6
				81		Canal 4	Essai 1 Essai 2	12,7 19.3	16,0		1,1
				84		Canal 5	Essai 2 Essai 1 Essai 2	19,3 19,7 23.8	21,7	-	1,8
				67		Canal 1	Essai 1 Essai 2	0,5	0,5		0,2
				71		Canal 2	Essai 1 Essai 2	3,9 3,8	3,9	29,0	0,3
2,5	100	2,3	2,3 #1	76	5	Canal 3	Essai 1 Essai 2	4,5	4,3		0,7
				81		Canal 4	Essai 2 Essai 2	10,9	10,6		1,3
				84		Canal 5	Essai 1 Essai 2	10,5 10,1 9,3	9,7		2,0

N° du profil	T_{ep} (°C)	T_{sp} (°C)	Q_p (L.h ⁻¹)	T_{eec} (°C)	Tsec (°C)	Q_{ec} (L.h ⁻¹)
thermique						
#1	60	85	147	89	64	159
#3	49	75	149	80	53	155
#6	70	95	149	100	74	152
#15	60	84	298	103	62	194

Tableau A.2. Conditions opératoires étudiées par Petit et al. (2013) pour des essais d'encrassement en ECP d'une solution de β -lg quasi-pure à 6% (p/p) avec 264 ppm de calcium total.

Profil thermique	N° de canal	Masse de dépôt moyenne par canal (g)	$r = k_{unf}$ k_{agg} dans chaque canal	Profil thermique	N° de canal	Masse de dépôt moyenne par canal (g)	$r = k_{unf}$ k_{agg} dans chaque canal
	1	1.2	0.0		1	1.9	0.0
	2	17.8	0.1		2	20.7	0.1
	3	43.3	0.1		3	54.9	0.8
#1	4	54.3	0.2	#5	4	79.1	1.1
	5	84.5	0.3	110	5	93.5	0.3
Influence	6	92.4	0.5	Influence	6	89.5	0.5
de T_{sp}	7	87.3	0.8	de T_{sp}	7	119.6	0.8
· · I	8	87.6	1.4	· · I	8	65	1.3
	9	53,2	2,2		9	37	2,2
	10	26,2	3.2		10	16,7	3.1
	1	62,8	0,3		1	0	0,0
	2	66,3	0,5		2	2,4	0,0
	3	82,2	0,8		3	21,1	0,0
#2	4	78,6	1,3	#6	4	51,1	0,0
	5	65,8	2,1	-	5	70,1	0,1
Influence	6	59,5	3,4	Influence	6	82	0,1
de T_{sp}	7	46,8	5,3	de T_{sp}	7	90,1	0,2
	8	38,2	8,4		8	150,7	0,4
	9	33,2	13,4		9	78,5	1,1
	10	21,7	18,6		10	24,5	2,6
	1	0	0,0		1	11,6	0,1
	2	0	0,0		2	43,7	0,2
	3	0	0,0		3	67,8	0,6
#3	4	0,2	0,0	#7	4	71	1,0
	5	8,9	0,0		5	64,9	1,5
Influence	6	30,9	0,1	Influence	6	56,2	2,1
de T_{sp}	7	66,2	0,1	du $ au$	7	39,2	2,5
	8	81,7	0,2		8	22,3	2,9
	9	72	0,3		9	12,64	3,2
	10	54,5	0,5		10	26,2	3,4
	1	2	0,0		1	0,9	0,0
	2	15	0.1		2	20	0.0
	3	42.3	0.1		3	53.5	0.0
#4	4	63.8	0.2	#8	4	67.3	0.1
	5	76.3	0.3		5	70	0.1
Influence	6	67.1	0.5	Influence	6	67.6	0.2
de T_{sp}	7	81.1	0.8	du $ au$	7	72.2	0.5
•	8	42.9	1.3		8	63.1	0.9
	9	28.2	2.2		9	60.2	1.9
	10	13.3	3,1		10	27,8	3,1

Tableau A.3. Masses de dépôt et ratios des constantes cinétiques de dépliement et d'agrégation des 21 essais d'encrassement d'une solution de β -lg quasi-pure à 6% (p/p) avec 264 ppm de calcium total.

Profil thermique	N° de canal	Masse de dépôt moyenne par canal (g)	$r = k_{unf}/k_{agg}$ dans chaque canal	Profil thermique	N° de canal	Masse de dépôt moyenne par canal (g)	$r = k_{unf}$ k_{agg} dans chaque canal
	1 2 3	49,5 55 77,6	0,3 0,4 0,5	#13	1 2 3	2,4 14,6 46,1	0,0 0,1 0,1
#9 Influence	4 5 6	90,4 70,9 70,4	0,6 0,8 1 1	Influence	4 5 6	78 73,5 59.9	0,2 0,3 0,5
du τ	7 8	59,5 37,9	1,1 1,5 2,0	de ΔT_p	7 8	57 44,7	0,8 1,3
	9 10	25,7 13,6	2,6 3,3		9 10	29,6 10,8	2,2 3,2
#10	1 2 3	39,7 71,7 75,4	0,1 0,2 0,3	#14	1 2 3	3,6 29,6 58,7	0,0 0,1 0,3
Influence $du \tau$	4 5 6 7	65,1 68,7 63,5	0,5 0,8 1,3	Influence de ΔT_p	4 5 6 7	68,2 61,8 56,2	0,6 1,0 1,4
uu t	7 8 9	62,6 43 42,9	2,1 3,4 5,5		7 8 9	42,1 26,4 16,5	1,9 2,5 3,0
	10 1 2	0	0,0		10 1 2	-0,6	0,0 0,0
#11	2 3 4	30,9 60,1	0,0 0,1	#15	2 3 4	49,7 77,6	0,0 0,1 0,1
Influence de ΔT_p	5 6 7	73,9 70 64,6	0,1 0,2 0,3	Influence de ε	5 6 7	65,3 64,7	0,2 0,3 0,6
	8 9 10	66,5 56,2 30,8	0,5 0,9 1,2		8 9 10	58,4 47,2 21	1,1 2,1 3,2
	1 2	7,1 30	0,0 0,1		1 2	13,3 48,9	0,1 0,2
#12	3 4	63 77,3	0,1 0,2	#16	3 4	81,7 76,9	0,2 0,4
Influence de ΔT_p	5 6 7	78,6 60,1 62,6	0,3 0,5 0,8	Influence de ε	5 6 7	69,5 64,4 61,3	$0,5 \\ 0,8 \\ 1,1$
	8 9 10	56,1 41,6 16,5	1,3 2,2 3,1		8 9 10	53 33,4 14	1,7 2,5 3,3

Profil thermique	N° de canal	Masse de dépôt moyenne par canal (g)	$r = k_{unf}/k_{agg}$ dans chaque canal	Profil thermique	N° de canal	Masse de dépôt moyenne par canal (g)	$r = k_{unf}$ k_{agg} dans chaque canal
	1	1,3	0,0		1	0	0,0
	2	23,6	0,1		2	7,9	0,0
	3	62,2	0,1		3	37,2	0,1
#17	4	77,5	0,2	#20	4	63,5	0,1
	5	70,7	0,3		5	68,4	0,1
Influence	6	65,2	0,5	Influence	6	64,1	0,2
de ε	7	61,7	0,8	de ε	7	57,8	0,4
	8	51,3	1,4		8	46	0,7
	9	44,5	2,2		9	33,2	1,6
	10	21,5	3,2		10	13,4	2,9
	1	0	0,0		1	4,3	0,0
	2	0	0,0		2	40	0,1
	3	0	0,0		3	78,9	0,1
#18	4	0	0,0	#21	4	74,5	0,2
	5	9,8	0,0		5	70,4	0,3
Influence	6	37,2	0,1	Influence	6	65,3	0,5
de ε	7	70,4	0,1	de ε	7	59,9	0,8
	8	76	0,2		8	56	1,4
	9	67,3	0,3		9	41,8	2,2
	10	54,2	0,5		10	18,5	3,2
	1	0	0,0				
	2	11,7	0,1				
	3	47,2	0,1				
#19	4	73,4	0,2				
	5	71,4	0,3				
Influence	6	63,4	0,5				
de ε	7	59,9	0,8				
	8	53,4	1,3				
	9	37,1	2,2				
	10	13,9	3,1				
PUBLICATIONS ET COMMUNICATIONS

1. Revues internationales avec comité de lecture

Articles acceptés

[1] **Khaldi M.**, Blanpain-Avet P., Guérin R., Ronse G., Bouvier L., André C., Bornaz S., Croguennec T., Jeantet R., Delaplace G. Effect of calcium content and flow regime on whey protein fouling and cleaning in a plate heat exchanger. Journal of Food Engineering, 147, (2015), 68–78.

[2] **Khaldi M.**, Ronse G., André C., Blanpain-Avet P., Bouvier L., Six T., Bornaz S., Croguennec T., Jeantet R., Delaplace G. Denaturation kinetics of whey protein isolate solutions and fouling mass distribution in a plate heat exchanger. International Journal of Chemical Engineering, 2015 (Article ID 139638), 10 p.

En évaluation

[3] Blanpain-Avet P., André C., **Khaldi M.**, Bouvier L., Petit J., Six T., Jeantet R., Croguennec T., Delaplace G. (2016). Predicting the distribution of a whey protein fouling in a corrugated plate heat exchanger using the kinetic parameters of the thermal unfolding/aggregation process of beta-lactoglobulin, submitted to Journal of Dairy Science, Manuscript IDJDS-16-10957.

[4] **Khaldi M.**, Croguennec T., André C., Ronse G., Jimenez M., Bellayer S., Blanpain-Avet P., Bouvier L., Six T., Bornaz S., Jeantet R., Delaplace G. (2016). Effect of calcium/protein molar ratio on β -lactoglobulin denaturation kinetics and fouling phenomena, submitted to Biofouling, Manuscript GBIF-2016-0118.

2. Communication dans un congrès international avec actes et sélection sur texte complet

[5] **Khaldi M.**, Ronse G., André C., Blanpain-Avet P., Bouvier L., Six T., Bornaz S., Croguennec T., Jeantet R., Delaplace G. (2015). Relationship between β -lactoglobulin denaturation and fouling mass distribution in a plate heat exchanger. e-Proceedings of International conference on Heat Exchanger Fouling and cleaning, June 07-12, Enfield, Ireland, Editors: M.R. Malayeri, H. Muller-Steinhagen, A.P. Watkinson. Oral presentation.

3. Communication dans des colloques sans actes

[6] **Khaldi M.**, Blanpain-Avet P., André C., Ronse G., Bouvier L., Six T., Moreau A., Bornaz S., Croguennec T., Jeantet R., Delaplace G. (2014). Etude du lien entre la physico-chimie de dérivés laitiers et leurs aptitudes à l'encrassement lors du traitement thermomécanique en échangeur de chaleur à plaques. Journée des Jeunes Chercheurs GEPROC-UGéPE, October 23, Mons, Belgium. Oral presentation

[7] **Khaldi M.**, Blanpain-Avet P., André C., Ronse G., Bouvier L., Six T., Moreau A., Bornaz S., Croguennec T., Jeantet R., G. Delaplace. (2014). Etude du lien entre la physico-chimie de dérivés laitiers et leurs aptitudes à l'encrassement lors du traitement thermomécanique en échangeur à plaques. Journée Jeunes Chercheurs HEI, April 17, Lille, France. Oral presentation.

Journal of Food Engineering 147 (2015) 68-78

Contents lists available at ScienceDirect

Journal of Food Engineering

journal homepage: www.elsevier.com/locate/jfoodeng

Effect of calcium content and flow regime on whey protein fouling and cleaning in a plate heat exchanger

^a INRA, UR638, PIHM (Processus aux Interfaces et Hygiène des Matériaux), BP 20039, 369, rue Jules Guesde, F-59651 Villeneuve d'Ascq, France

^bAGROCAMPUS OUEST, UMR 1253, F-35042 Rennes, France

^c INRA, UMR1253, F-35042 Rennes, France

^d Laboratoire de Génie des procédés, HEI, F-59046 Lille, France

^e Institut National Agronomique de Tunisie, 43, avenue Charles Nicolle, 1082 Tunis-Mahrajène, Tunisia

^f Ecole Supérieure des Industries Alimentaires de Tunis, 58, avenue Alain Savary, 1003 Tunis-Cité El Khadra, Tunisia

ARTICLE INFO

Article history: Received 11 March 2014 Received in revised form 9 September 2014 Accepted 11 September 2014 Available online 19 September 2014

Keywords: Protein fouling Cleaning Beta-lactoglobulin Calcium concentration Hydrodynamics Plate heat exchanger Dimensional analysis

ABSTRACT

Fouling and cleaning with a whey protein concentrate solution in a plate heat exchanger were investigated with a varying calcium concentration (from 70 to 87.5 mg L^{-1}) and under a wide range of hydrodynamic conditions for a bulk fouling fluid temperature, ranging from 60 and 96 °C.

This work demonstrates that increasing the calcium concentration in whey protein concentrate contributes to the amount of fouling and affects the thermal conductivity of the deposit. It was also observed that the fluid flow regime during fouling, impacts the deposit growth, modifies the structure of fouled layers and has a significant consequence on cleaning behaviour.

Finally, a dimensional analysis together with experimental measurements, allowed a relationship to be established enabling prediction of the amount of dry mass deposited locally as a function of the known calcium content, Reynolds number and bulk fluid temperature.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the food industry, thermal treatments are often carried out to reduce the microbial load of food products and to deactivate enzymes that would otherwise cause quality loss. The fouling of heated surfaces, inherent to heat treatments, remains one of the major issues in food industry, as this compromises product quality and process efficiency (Visser and Jeurnink, 1997; Jun and Puri, 2007; Mahdi et al., 2009).

Fouling with WPC solutions has been widely investigated over the last twenty years both in PHEs, (Lalande et al., 1984; Daufin et al., 1987; Delplace et al., 1994; Jeurnink and de Kruif, 1995; Christian et al., 2002; Srichantra et al., 2006), or in tubular heat exchangers (THEs) (Delsing and Hiddink, 1983; Gotham et al., 1989; Jeurnink et al., 1989; Belmar-Beiny et al., 1993). Fouling deposits consist of a layer of protein aggregates and minerals,

E-mail address: marwa.khaldi@lille.inra.fr (M. Khaldi).

which are mostly calcium phosphate (Tissier and Lalande, 1986). The protein/mineral ratio in the deposits depends on temperature (Burton, 1968).

Protein fouling is mainly due to the protein aggregation resulting from disulphide interchange reactions (–SH/SS) (Lalande et al., 1985; Shimada and Cheftel, 1989; Hoffmann and Van Mil, 1997). Beta-lactoglobulin (BLG) is recognized as the main protein responsible for fouling in milk and milk derivatives (Lalande et al., 1985; Lalande and Rene, 1988).

Lin et al. (2006) reported the effects of ionic calcium on reactions related to casein micelle stability, such as heat stability and susceptibility to sediment formation and fouling. In the case of WPC fouling, the literature also evokes calcium-dependent fouling, yet few quantitative data are available concerning the influence of calcium on the behaviour of whey protein fouling during long experiments in a PHE. It has been recognized that calcium ions substantially affect the interactions between protein molecules (Schmidt et al., 1978) and have a strong impact on the BLG denaturation/aggregation (Jeyarajah and Allen, 1994; O'Kennedy and Mounsey, 2009; Petit et al., 2011). However, the specific interaction between Ca^{2+} and BLG at molecular level are still poorly

journal of food engineering

^{*} Corresponding author at: INRA, UR638, PIHM (Processus aux Interfaces et Hygiène des Matériaux), BP 20039, 369, rue Jules Guesde, F-59651 Villeneuve d'Ascq, France. Tel.: +33 (0)320 435 418; fax: +33 (0)320 435 426.

Nomenclature

Α	constant defined by Eq. (7) (-)
C_{ca}	calcium concentration (kg m ⁻³)
C_{pp}, C_{ph}	specific heat for the product and hot water (J kg ^{-1} K ^{-1})
d_h	hydraulic diameter (m)
di	internal diameter (m)
е	gap between two consecutive plates (m)
F_T	logarithmic mean temperature difference correction
	factor (–)
k _d , k _r	coefficients in Eq. (7) (–)
\dot{m}_p, \dot{m}_h	mass flow rates for the product and hot water (kg s^{-1})
$\dot{M_d}$	amount of deposit (kg)
Q	flow rate $(m^3 s^{-1})$
R	molar ratio within the fouling solution, equal to the cal-
	cium concentration divided by the β-lactoglobulin con-
	centration (–)
Re	Reynolds number (–)
R_f	fouling resistance (m ² °C W ⁻¹)
S	heat transfer area (m ²)
t	time (s)
ū	average flow velocity (m s^{-1})
U_g	overall heat transfer coefficient (W m ^{-2} K ^{-1})
-	

average crossflow velocity of the fouling solution in the ν fouling step between two plates of the PHE (m s^{-1}) width of the V7 plate (m) w ΔP_0 pressure drop for clean exchanger (mbars) ΔP instantaneous pressure drop (mbars) $\Delta \theta LMTD$ logarithmic mean temperature difference (K) μ Newtonian viscosity (Pa s) density (kg m $^{-3}$) ρ θ temperature (K) Subscript hot water h i inlet outlet 0 channel number i product p Abbreviations beta-lactoglobulin BLG PHE plate heat exchanger WPC whey protein concentrate

understood (Simons et al., 2002). The presence of calcium ions enhances the heat-induced aggregation of BLG (Sherwin and Foegeding, 1997), and the structure of aggregates was found to depend on a critical molar ratio of calcium to protein (Phan-Xuan et al., 2013).

It has been suggested that three parameters, or combinations of them, might be responsible for calcium-induced protein aggregation (Simons et al., 2002). The first phenomenon is related to intermolecular cross-linking of adjacent negatively-charged or carboxylic groups by the formation of protein-Ca²⁺-protein complexes (Brvant and McClements, 1998; Hongsprabhas et al., 1999). The second is the intramolecular electrostatic shielding of negative charges on the protein, thereby favouring BLG aggregation by hydrophobic bonds (Hongsprabhas and Barbut, 1997; Roefs and Peppelman, 2001). The third is an ion-induced conformational change, which leads to altered hydrophobic interactions and aggregation at elevated temperatures (Kinsella and Whitehead, 1989; Wang and Damodaran, 1991). The latter indicates that calcium acts principally on BLG aggregation (Mulvihill and Donovan, 1987; Petit et al., 2011) by both increasing the size of aggregates (Allen and Smith, 2001; Schmitt et al., 2007) and lowering the BLG denaturation temperature, which in turn, favours aggregate formation (De Wit, 1990; Simmons et al., 2007). Its role in BLG unfolding is limited to the reinforcement of the native BLG tertiary structure (Petit et al., 2011). However, it has been demonstrated that the role of Ca²⁺ in the formation of intermolecular bridges is unlikely (Xiong et al., 1993), and its action was limited to screening BLG surface charges (Simons et al., 2002).

Interestingly, Phan-Xuan et al. (2013) reported that a critical molar ratio of calcium to protein (noted R) is needed to permit microgel formation. These are independent of the protein concentration for pH \ge 6.9. At *R* < 1, aggregates have the form of small curved strands, whilst at higher ratios, larger spherical particles are formed. The critical ratio increases only slightly with decreasing heating temperature from 1–1.5 at 85 °C to 2–2.5 at 70 °C. The microgel suspensions are stable in a narrow range of R, although aggregating at higher calcium concentrations.

Alternatively, it has been shown that the deposit consists of both protein and calcium particles aggregates. This protein is present on the surface, as well as in steel defects and inside the grain boundaries. However, the calcium ions are mostly concentrated in the upper side of the grain boundaries (Jimenez et al., 2013).

Although the residence time within the heat exchanger would have an effect on the thermal denaturation kinetics of BLG, data concerning the effect of the flow regime upon the fouling behaviour for long duration experiments (i.e. Reynolds numbers or shear stress values) are scarce. The only work that gives detailed results on the effect of the Reynolds number on fouling by WPC in a THE is that of Belmar-Beiny et al. (1993) for a fouling run of an hour. They showed that the higher the Reynolds number (in the range 2000– 7000) the smaller the deposit, which decreased steadily, even with a shear rate lower than those encountered in PHE.

There is therefore a lack of data whether confirmed or controversial concerning the dependence of the deposit fouling structure on the calcium content of the fouling fluid or on the Reynolds number in a PHE. To fill the gap, the effect of both the calcium content (70–87.5 mg L⁻¹ corresponding to *R* ranging from 6.8 to 8.5) and the Reynolds number on fouling, with a WPC solution as a model fluid, was investigated. WPC was chosen because it is widely used as a functional food ingredient in food products. Consequently, it constitutes a good model for other milk-based products. The experimental fouling study was performed using a whey protein concentrate in a well-defined geometry, namely a plate heat exchanger, for 330 min. In addition, cleaning trials were performed to investigate the effect of the deposit structure on the cleaning process.

2. Materials and methods

2.1. Fouling fluid

Whey protein powder from sweet whey (WPC 75, Armor Proteines, France) dissolved in controlled-quality water (1% w/w), was used as the model fluid. The composition of the WPC powder was mainly proteins (75% w/w), in which BLG and alpha-lactalbumin represented 63% and 11% respectively, and lactose (10% w/w). Minerals represented less than 4% (w/w) of the total dry weight. WPC 75 powder appeared to contain 50% w/w of native BLG. The native protein concentration was then 2.4 g L^{-1} , which is close to that of BLG in milk, which generally varies between 2.1 and 3.1 g L^{-1} (Bansal and Chen, 2006). The calcium content of the powder was 450 mg per 100 g of powder. Water consisted of a mixture of Lille (France) tap water and soft water using a water softener (HI-FLO 1, Culligan, Purolite C100E resin, France). The calcium and sodium contents of the tap water, determined by atomic absorption spectrophotometry (Philips, Pye Unicam), varied between 170–200 mg L^{-1} and 44–64 mg L^{-1} , respectively. The range of calcium and sodium contents of the soft water was 1.0-3.0 mg L^{-1} and 304–341 mg L^{-1} , respectively. The desired calcium content in the fouling fluid was obtained by mixing raw water, soft water and a fixed amount of powder. The addition of sodium ions could not be assessed, since they were came from the water softener. The sodium concentration in the fouling fluid was determined and reported in Table 1.

The model fluid was prepared the day before the experiment and, in order to prevent bacterial proliferation, it was stored at $4 \,^{\circ}$ C for 15 h. Whatever the experiment, the density of the WPC solution was 999.7 and 985.4 kg m⁻³ at 25 °C and 60 °C, respectively, as measured in a Anton-Paar densimeter. The viscosity, measured using a capillary rheometer (Schott Geräte, AVS 300, Germany), was 0.001 and 5.2 10⁻⁴ Pa s at 25 °C and 60 °C, respectively. The pH of the fouling product remained between 7.3 and 7.7.

2.2. Experimental pilot plant

Fouling experiments were carried out on the pilot plant presented in Fig. 1.

Table 1

Summary of measured and calculated parameters during heat transfer to study fouling behaviour of 1% WPC solution as a model fluid. (θ_{ip} and θ_{op} : inlet and outlet temperature of the product at t = 0 and $t_f = 330$ minutes; U_g : overall heat transfer coefficient).

Run	Mean Re (-)	Ca ²⁺ (mg/l)	Na ⁺ (mg/l)	θ_{ip} (°C)		θ_{op} (°C)		$U_g (W/m^2)$	°C)	Total mass deposit (g)
				t = 0	t_f	t = 0	t_f	t = 0	t_f	
А	2000	72.9	344.0	62.3	60.0	96.8	97.2	1221.1	900.2	214.2
В	2003	79.8	303.2	60.0	59.7	96.5	96.6	1562.4	798.4	360.0
С	2040	82.2	280.0	61.5	61.3	97.1	96.3	1618.5	718.2	509.0
D	2040	85.6	277.4	60.4	61.5	95.8	96.9	1507.0	659.4	594.2
E	3394	70.0	323.6	63.8	63.9	95.5	95.7	1985.3	1110.3	367.3
F	3220	76.3	472.0	61.3	61.3	95.7	95.5	2075.7	630.0	686.1
G	3214	78.0	364.9	62.6	62.2	95.0	95.0	2303.0	775.7	697.6
Н	3232	86.5	331.2	62.7	63.6	94.6	94.6	1969.4	529.1	921.8
Ι	4938	74.6	329.0	60.8	61.4	95.4	95.2	2532.6	1246.1	324.2
J	4920	77.4	303.0	61.3	60.8	96.2	96.0	2961.2	1097.2	368.2
К	4942	77.8	340.0	63.2	63.9	95.4	95.1	2585.1	1081.8	426.1
L	4926	87.4	306.0	61.2	61.4	95.9	95.7	2690.7	704.7	714.1

Fig. 1. Schematic diagram of experimental set-up for heat-transfer to study fouling behaviour of 1% WPC solution as a model fluid.

Pi PLATE NUMBER

Fig. 2. Plate heat exchanger flow arrangement.

Fig. 3. Bulk temperatures profile numerically determined.

There were two PHEs (Model V7, Alfa-Laval Vicarb, France) equipped with straight corrugation plates (0.15 m wide and 0.5 m long, giving an effective exchange area of 0.825 m^2). The first PHE (21 plates, 10 passes and 1 channel per pass for the two sides) was necessary to pre-heat the model fluid from 4 °C to 60 °C, and was therefore subjected to negligible fouling. Fouling observations were thus focused on the second PHE (13 plates, 6 passes and 1 channel per pass for the two sides, see Fig. 2).

During fouling experiments, the inlet hot water was adjusted to ensure a constant outlet product temperature close to 96 °C and a constant product temperature profile along the PHE as a function of time. The temperature profile for clean conditions in the PHE was determined using the numerical method developed on the Sphere software (patented by our laboratory). Once the hydraulic and thermal performances of a given PHE are identified and implemented in this software, the mass and energy balances are calculated. These balances together with known inlet temperatures and flow rates of hot and cold fluids, enables the bulk temperature profile to be assessed. The bulk temperature profile obtained by this method is presented in Fig. 3. Sphere Software has been extensively validated in the past using local temperature measurements from sensors implemented in PHEs. However, for this work, further validations were carried out to check that the average outlet temperature of the PHE was accurately predicted from the numerical method.

The WPC flow rate varied using a volumetric pump from 5.55×10^{-5} to 1.38×10^{-4} m³ s⁻¹ to attain a range of Reynolds number from 2000 to 5000. For this flow rate range, the average residence time was comprised between 12.7 and 31.8 s.

The average Reynolds number for the clean PHE was determined from the distribution of Re along the PHE as displayed in the following equation:

$$Re = 2\rho \cdot Q/\mu \cdot w = \rho \cdot v \cdot d_h/\mu \tag{1}$$

 d_h is the hydraulic diameter defined by: $d_h = 2 \times e$, where e (=0.004 m) represents the gap between two consecutive PHE plates.

The Reynolds numbers reported in this work corresponds to the Reynolds number averaged along the PHE (without fouling). These were computed from the distribution of the Reynolds number along the PHE, based on the knowledge of the bulk temperature profile and physical properties of the water. Water's (rather than milk's) physical properties were used both in the Reynolds number averaged along the PHE calculation and for numerical simulation, due to very low concentration of the solution (1% w/w). This method has previously been adopted by Delplace et al. (1997) and more recently by Petit et al. (2013). Fouling runs were performed at three different values of Reynolds number (Re = 2000, 3200 and 5000) corresponding to different flow rates of protein solutions, 200 L/h, 320 and 500 L/h, respectively.

The superficial flow velocity was calculated using the average cross section between two PHE plates. This was 0.092, 0.14 and 0.23 m s⁻¹ at *Re* = 2000, *Re* = 3200 and *Re* = 5000, respectively.

Despite this relatively narrow range of Reynolds number values, it will be shown later that a noticeable velocity effect could be observed on the fouling phenomena.

The ratio between hot water and WPC solution flow rates was kept constant at 1.2. During all fouling runs, a constant back-pressure of 2.1 bars was applied to the PHE.

Temperatures and flow rates were measured with platinum resistance probes (Pt100, Fer Constantan) and electromagnetic flowmeters (Krohne IFM, Germany), respectively. The expected precision for the measurements was ± 0.2 °C for the temperature measurements and $\pm 1\%$ of the full scale of the sensor for the flow rate measurements. All measurements were collected using a data acquisition system (Agilent Technologies 34970A, USA).

2.3. Experimental fouling runs

Twelve fouling runs were conducted with various calcium concentrations, ranging from 70.0 to 87.5 mg L⁻¹, in the WPC solutions (Table 1). The calcium content was much lower than that of normal milk. Only a small range of calcium content was investigated in order to highlight the fact that a very slight chemical variation results in a large variation in the fouling. The objective was to illustrate that it is essential to assess this chemical parameter accurately, which to date, is not commonly evaluated even in the development of a model foulant fluid.

The PHE was brought to thermal equilibrium at the desired process temperature using reverse osmosis water. Then the feed was switched from reverse osmosis water to model fluid. The protein solution was not recirculated to avoid fouling from already-treated material. The experimental run was continued for 330 min. After the experiment, the protein solution was replaced by water. The extent of fouling was determined from the total weight of moist deposits and the final fouling resistance. The system was dismantled and the deposit mass inside the PHE was weighed using Mettler apparatus with a precision of 0.1 g.

The locally deposited mass M_{dj} on each channel j (1 < j < 6) and the total amount of deposit inside the PHE were reported.

The amount of fouling was also monitored by calculating the fouling resistance. A linear relationship was visible between the average fouling resistance R_f , defined by Eq. (2), and the fouling thickness, assuming that the deposit layers are covered uniformly.

$$\frac{1}{U_{g(t)}} = \frac{1}{U_{g(0)}} + R_f \tag{2}$$

where $U_{g(0)}$ and $U_{g(t)}$ are the overall heat transfer coefficients at the beginning of fouling runs (i.e. the overall heat transfer coefficient before the occurrence of fouling) and at time *t* (i.e., the overall heat transfer coefficient including the additional contribution of fouling).

The heat transfer coefficient was computed from the energy balance equation:

$$\dot{m}_p C_{p_p}(\theta_{op} - \theta_{ip}) = \dot{m}_h C_{p_h}(\theta_{ih} - \theta_{oh}) = U_g S \Delta \theta_{\text{LTDM}} F_T$$
(3)

 F_T is a correction factor taking into account that a impure countercurrent flow could exist inside the plate heat exchanger. Leuliet et al. (1988) provide equations for PHEs using analogy with the shell and tube correction factor. Their method was used for this work to evaluate the F_T factor.

2.4. Cleaning

After being weighed, the PHE was remounted and cleaned using a single-stage cleaner which consists of a 2% (w/w) caustic soda solution at 85 °C. The standard cleaning procedure used was as follows: (1) rinsing for 10 min with water at room temperature; (2) 35 min in NaOH 2% at 85 °C and (3) 15 min rinsing with water at room temperature.

Cleaning solutions were recirculated at 400 L h^{-1} until the pressure drop values reached the initial pressure drop. The extent of cleaning was monitored using a pressure drop sensor (Sitrans P 7MF4443, Siemens). In the case of the appearance of a swollen secondary deposit, the flow rate was increased to accelerate the cleaning.

2.5. Dimensional analysis

For a fixed native BLG concentration of 2.4 g L⁻¹ and a fixed fouling period (330 min), the amount of deposits in the PHE due to fouling is a function of Re, temperature and mineral concentration. The locally deposited mass M_{dj} on a plate, after 330 min of fouling, was chosen as target variable depending on three sets of parameters: (i) geometry (e_0), (ii) physical properties (C_{ca} , μ , ρ) and (iii) process parameter (θ_{opj} , θ_{ip} , \bar{u}). θ_{opj} refers to the temperature of the product at the outlet of the channel *j*. θ_{ip} refers to the temperature of the product at the inlet of the first channel. Therefore we obtain the following relevance list:

$$\{M_{d,j}, C_{\mathsf{Ca}}, \bar{u}, e_0, \rho, \mu, \theta_{op,j}, \theta_{ip}\}$$

$$\tag{4}$$

The above list reports 8 parametric dimensional variables and four dimensions. Therefore there are 8 - 4 = 4 dimensionless pinumbers given by the transformation of the dimensional set matrix as described by Szirtes (1998):

$$\left\{\frac{M_{dj}}{\rho e_0^3}, \operatorname{Re}, \frac{\mathcal{C}_{\operatorname{Ca}}}{\rho}, \frac{\theta_{opj}}{\theta_{ip}}\right\}$$
(5)

Thus, dimensional analysis of the deposited mass characteristics in a PHE leads to a process relationship between the four pinumbers:

$$\frac{M_{dj}}{\rho e_0^3} = f\left(Re, \frac{C_{Ca}}{\rho}, \frac{\theta_{opj}}{\theta_{ip}}\right)$$
(6)

where *f* is an unknown function. Experimental results, concerning the amount of deposit in the last four channels for various Reynolds numbers (2000, 3200 and 5000), temperatures (77–97.1 °C) and calcium content (70.0–87.5 mg L⁻¹), were used to identify the unknown function *f*. A set of 44 experimental points was obtained to identify the process relationship.

3. Results and discussion

3.1. Characterization of the build-up of the protein fouling

Fig. 4 represents dry weights of deposit measurements in each PHE channel (at the end of the experiment) at Re = 2000 for different calcium contents. Deposit distribution profiles at Re = 3200 and Re = 5000 being similar, only that of Re = 2000 has been displayed.

Low deposit amounts were observed in the first PHE channel. This could be explained by stating that sparse BLG denaturation occurred in the first channel at 62.8 °C and then very little fouling took place. This result is in agreement with observations made by Lyster (1970), Dannenberg (1986), Bradley et al. (1989) and

Fig. 4. Dry weights of deposit in the PHE with varying calcium content for Re = 2000.

Delplace et al. (1994) confirming that denaturation of BLG begins when temperatures are greater than 70 °C. In the other channels, the outlet temperatures were sufficient to result in heat denaturation of BLG and therefore a higher deposit quantity was measured here. Fouling reached its highest value at the PHE outlet at 93.1 °C. These observations indicate that the BLG fouling distribution in the PHE is significantly affected by temperature. This was expected since the thermal denaturation reaction (unfolding plus aggregation) for BLG solutions in the presence of calcium has been shown to be temperature dependent (Petit et al., 2013).

In this work, fouling of the PHE by WPC with various calcium concentrations from 70.0 to 87.5 mg L^{-1} at three Reynolds values (2000, 3200 and 5000) during 330 min was carried out. The measured deposit mass as well as the fouling resistance evolution with time, were both monitored.

3.2. Effect of calcium content on fouling

Fig. 5 represents the evolution of the total amount of deposit mass in the PHE with the calcium concentration. Each symbol represents different fouling process parameters (WPC solution flow rate).

For each Reynolds number, the amount of deposit mass increased linearly with calcium concentration. It can be observed that the trends obtained at different Reynolds numbers are similar and consequently the curves are parallel.

An average increase of twenty per cent in calcium content resulted in more than doubling the amount of deposit.

Alternatively, fouling resistance data confirmed the observed results concerning the amount of deposit as a function of calcium concentration (Fig. 6).

Fig. 5. Total amount of deposited mass after 5.5 h of heat transfer in PHE with varying calcium concentration in WPC solution for *Re* = 2000, 3200 and 5000.

Fig. 6. Fouling resistances during heat transfer experiments with varying calcium concentration in WPC model fluid at three Reynolds numbers: (a) 2000, (b) 3200 and (c) 5000.

However, it can be noted that at Re = 2000, fouling resistance curves for calcium content of 82.3 and 85.6 mg L⁻¹ were superposed. This phenomenon was not observed with the amount of deposit data since between 82.3 and 85.6 mg L⁻¹, a difference of 18% was obtained. The fouling resistance curve obtained at Re = 3200 for 76.3 mg L⁻¹ is located above the curve at 78.0 mg L⁻¹ while the amount of deposit at 78.0 mg L⁻¹ is slightly higher than at 76.3 mg L⁻¹. This may indicate that the varying structures of the different deposits may affect heat transfer coefficients, as was suggested by Christian et al. (2002).

The results show that the fouling potential of WPC in the PHE for temperature range 60–96 °C, is altered and favoured by an addition of calcium to the model fluid, within a range of 70.0–87.4 mg L⁻¹. This fairly well confirms the assumption of Daufin et al. (1987), Xiong (1992) and Simons et al. (2002), who asserted that calcium can interact with the aspartic and glutamic acid carboxyl group of the BLG, and thereby favour the growth of the deposit by stabilizing protein aggregates.

Calcium ions, essentially present in the deposit solid (Tissier and Lalande, 1986), are important in the growth of fouled layers (Xiong, 1992). This is because they form bridges between adsorbed proteins and those protein aggregates occurring in the bulk, consequently modifying the protein aggregation rate and leading to a greater cohesion between the protein aggregates which in turn, change the deposit structure (Phan-Xuan et al., 2013). Simmons et al. (2007) revealed an increase in deposition upon a Couette surface due to calcium ions (920 mg L^{-1}) and a modification in the appearance of the deposit for a temperature range 75–90 °C. In addition, Pappas and Rothwell (1991) showed that BLG completely aggregated to form compact structures when heated with calcium from 80 °C to 110 °C. The structure was less compact without calcium. Guérin et al. (2007) observed that fouled layers formed with low calcium content, after fouling runs at Re 3200 using 1% WPC, had a soft spongy texture, whereas deposits formed at higher calcium contents were denser and elastic. In the presence of Ca^{2+} , the fouling layer was very thick, white, not homogenous and very rough in appearance (Jimenez et al., 2013). Simmons et al. (2007) also showed that increasing the levels of calcium had a dramatic effect on the size of the aggregates produced, which decreased with increasing mineral concentration.

In the present work, results conflicting with those of Christian et al. (2002) were obtained. Indeed, these authors showed a reduction in fouling with increasing calcium concentrations both in a PHE pasteurizer ($62-114 \circ C/9.5 s$) and a UHT section ($126-138 \circ C/7 s$). No evidence can be found to explain such a difference, since similar BLG concentrations of 0.3% and 0.45% w/w in WPC solutions were used. It is interesting to note that Simmons et al. (2007) showed an increase in the aggregate size with increasing temperature and this may explain the contradictory results. The larger-sized aggregates occurring at higher temperatures, may be swept along by the flow and may reduce the fouling deposit.

The difference in the results may also be explained by a discrepancy in the ionic strength, due to the calcium of the fouling solution over pH range tested. The calcium ionic strength was much greater for Christian et al. (2002), varying from 10 to 120 mmol L^{-1} than in this study $(3.5-4.4 \text{ mmol } \text{L}^{-1})$. Indeed, Twoney et al. (1997) showed that increasing the ionic strength due to calcium, leads to a lower unfolding temperature of the BLG, hence resulting in an increase in the aggregation rate of the proteins in the bulk. Moreover, for pH values > 5.1, which would correspond to the isoelectric point of the BLG, proteins have a negative net charge. Calcium ions act as a counter-ion and neutralize the charge of the protein. Caussin and Bouhallab (2004) reported the existence of a threshold concentration of minerals for BLG gel formation. Below the concentration threshold, the protein aggregation is limited by electrostatic repulsion (Phan-Xuan et al., 2013). This results in a filamentous network forming with low-density aggregates. Above the concentration threshold, attraction is intensive, leading to the formation of gels with granular structure composed of larger and denser aggregates.

The above observations, as well as that of Twoney et al. (1997), Caussin and Bouhallab (2004) and Simmons et al. (2007) confirm the influence of the calcium ions on the fouling behaviour of WPC, i.e. the increase in the amount of deposit with increasing calcium concentration for a temperature range of 60–96 °C.

3.3. Effect of Reynolds number on WPC fouling

The amount of deposit as a function of calcium content for different Reynolds number is shown in Fig. 5. The fouling resistance curves obtained for the three Reynolds numbers are reported in Fig. 6. It can be noted that the range of the ordinate axis was kept constant to permit a better comparison. From Fig. 5, it is found that the amount of deposit at Re = 3200 over the complete calcium content range is higher than that of Re = 2000 or Re = 5000. The lowest amount of deposit was obtained at Re = 2000. These fouling resistance curves confirm the previous trend with reasonable accuracy. A peak in deposit amounts and fouling resistance was observed in the PHE (60–96 °C) close to Re = 3200, whatever the calcium content (70–87.5 mg L⁻¹) of the WPC solution.

From Fig. 6, it can be seen that the velocity of protein solutions significantly impact the fouling rate and kinetics. Indeed, Fig. 6 shows a change in R_f -time profiles from being chiefly linear at Re = 2000 and Re = 3200 to non-linear increase times at Re = 5000. This change in deposition kinetics provides additional evidence that a transition in deposit nature occurs when velocity increases within this range.

At this stage, it is very difficult to elucidate that mechanism responsible for higher extents of fouling at an intermediate flow rate.

Shear stress level is known to be one of the parameters affecting the kinetics of fouling mechanism, as first underlined by Kern and Seaton (1959).

Indeed, these authors hypothesized that the formation of a fouling layer is a consequence of the rate of aggregates entering and escaping. Simmons et al. (2007) joined these authors in underlining that the final aggregate size in Couette apparatus for 75– 90 °C, is a balance between aggregate strength, particle collision rate and breakage; the latter two being a function of the shear field. According to Simmons et al. (2007), particle growth rate is enhanced by increasing shear rate. In contrast, Erabit et al. (2014) reported that there is no significant difference between the distributions. According to the latter, at a shear rate of 100 s⁻¹ and a time range of 0–240 s, there is no breakage of aggregates in the suspensions formed by heat treatment.

In this work, the flow regime selected was turbulent. Therefore, it is difficult to assess a shear rate range. However, it is clear that the shear stress field increases with increasing Reynolds numbers, thereby modifying aggregate breakage and the probability of particle collision.

Thus, the experimental increase in the amount of deposit between Re = 2000 and Re = 3200 may presumably be explained by a smaller aggregates size at a higher shear stress favouring the calcium bindings between adsorbed proteins and protein aggregates in the bulk upon carboxyl groups (Xiong, 1992), and consequently favouring deposit growth.

In these conditions, it is likely that a more energetic particle collision (of unfolded protein species) with the deposit layer compacts the deposit or initializes the breakage and re-entrainment of some of the fouled layer deposit, which would modify the density and appearance of the fouled layer structure. This may explain the decrease in the amount of deposit and in the fouling resistance between Re = 3200 and Re = 5000. The threshold Reynolds number for this PHE would appear to fall between 3200 and 5000.

Visual observations of the deposit structure obtained at different Reynolds numbers confirm this hypothesis. The surface of deposits at the highest *Re* (5000) had a smooth appearance, whereas for the two other Reynolds numbers, it the structure appeared granular.

More fouling data at intermediate flow rates and evidence of deposit removal would be very useful in confirming these hypotheses.

3.4. Fouling resistance versus wet deposit coverage: thermal conductivity of the deposit

Davies et al. (1997) investigated whey protein deposit properties (3.5% w/w WPC) using heat flux sensors in a concentric-tube device. These authors plotted fouling resistance (after a fouling run of 60 min) versus wet deposit coverage (wet deposit mass divided per unit area), which allowed an average thermal conductivity to be estimated. To investigate whether the thermal conductivity of our deposits was significantly affected by the calcium content of the 1% (w/w) whey protein solution, this approach was adapted and carried out in this work. Wet deposit coverage was computed by dividing the total wet deposit collected by the total heat exchanger surface of the PHE. This was feasible since for all the fouling runs, a presence of mass deposit was detected in each channel (from the first to the 6th channel) and the distribution of mass deposit through each channel was observed to be uniform (visual inspection of the deposit).

Fouling resistance measured on the PHE against wet deposit coverage is reported in Fig. 7.

Whatever the experimental conditions for fouling runs (Reynolds number applied during fouling tests and calcium content), all data are gathered on a single master curve. For the whole set of deposits collected, a linear increase in the final fouling resistance with the wet deposit coverage could be observed.

These results indicate that for a given type of soil (in this work, whey protein-related deposit), the fouling resistance could be evaluated directly from a knowledge of wet deposit coverage.

A further analysis of Fig. 7 highlights that the final wet deposit coverage (at a given processing time here of 330 min) is an intermediate experimental value, depending on fouling kinetics which are governed by the physico-chemical properties of soil and process parameters (both calcium content and Reynolds number). Consequently, a shift in final wet deposit mass (and corresponding fouling resistance) is observed when these parameters vary. In particular, for a given Reynolds number, an increase in wet deposit mass is clearly and systematically observed when the calcium content of the protein solution increases.

Using the slope of the master curve in the same way as Davies et al. (1997), the product $\rho_f \lambda_f$ can be calculated. The $\rho_f \lambda_f$ value was found to be equal to 84 W kg m⁻⁴ K⁻¹ for deposits exposed to wall temperatures between 74 °C (outlet without fouling) and 102 °C (inlet without fouling). By comparison, Davies et al. (1997) obtained a value of 470 W kg m⁻⁴ K⁻¹ for deposits exposed to wall temperatures below 85 °C. This great difference between the two values can be explained by the difference in device of the protein concentration for the fouling solution varying from 1% for this work to 3.5% for Davies et al. (1997) work and also of calcium contents.

Delplace and Leuliet (1995) investigated the fouling of PHE by 1% (w/w) whey protein solutions and noted an apparent thermal conductivity. Considering that for this work that the ρ_f is that of

water, the apparent thermal conductivity in this work $(0.084 \text{ W m K}^{-1})$ is much lower than that calculated by Delplace and Leuliet $(0.27 \text{ W m K}^{-1})$. This may be mainly due to the difference in calcium content, which makes the deposit airier, thus inducing a decrease in thermal conductivity. This is an agreement with the work of Morison and Tie (2002), who observed that in the presence of minerals (calcium phosphate for their work), the deposit grew on the surface by leaving more gaps between foulant materials. They consequently suggested that fouling is not only a result of the deposition of material precipitated within the bulk solution. Indeed, according to these authors, the presence of minerals encouraged precipitation at the surface of the PHE, provoking greater protein fouling.

This is also consistent with the work of Jimenez et al. (2013). Indeed, using various analytical techniques on a stainless steel surface, Jimenez et al. (2013) established that the microstructure of the fouling layers (Promilk 1% w/w) differs widely, depending on calcium content. They therefore illustrated that calcium elements (calcium carbonate for their work) were involved in the deposition mechanism. These observations also confirm the previous work of Guérin et al. (2007), who, using electrical conductivity measurements in the PHE and visual observations, showed that the structure and appearance of the fouling deposit is highly dependent on calcium concentrations.

3.5. Deposit structure and cleaning experiments

The link between deposit structure and cleaning was made by recording the evolution of the pressure drop during cleaning of the PHE. An example of the evolution of pressure drop as a function of time during cleaning experiments, obtained after fouling at Re = 2000 and Re = 5000, is given in Fig. 8. The ordinate stands for the pressure drop data divided by the pressure drop measured by the circulation of water at 400 L h⁻¹ just after fouling and before the switch from osmosis water to the sodium hydroxide solution. The PHE was considered to be clean when the pressure drop had recovered to 90% of its maximum pressure values (Christian et al., 2002). The trends of all the cleaning runs were similar to the two cleaning experiment curves.

Black symbols indicate fouling at Re = 2000. Measurements were made at constant cleaning solution (water plus NaOH plus water) flow rates at 400 L h⁻¹ throughout the cleaning test. The permutation instant between the cleaning solution and the associated solutions' flow rates are indicated at the top of Fig. 8. Monitoring revealed that cleaning can be said to be effective at the point

Fig. 7. Relationship between final fouling resistance and wet deposit coverage.

Fig. 8. Pressure drop during cleaning with 2% NaOH of PHE, for similarly fouled fluid at two Reynolds numbers: 2000 and 5000. (ΔP_0 and ΔP represent the initial pressure drop before cleaning with the NaOH solution (at *t* = 0) and the instantaneous overall pressure drop respectively).

where a significant increase in pressure drop occurs and this can be seen to happen immediately after the permutation of the NaOH solution. This sudden increase corresponds to the swelling of the fouling deposit due to the NaOH solution and is followed by a sharp pressure drop decrease corresponding to the removal of the whole swollen deposit from the surface. The cleaning time of this fouling run was close to 5.3 min.

For fouling at Re = 5000, grey symbols were used. For this cleaning test, the permutation point between the cleaning solution and the associated solutions' flow rates are indicated at the bottom of Fig. 8. Monitoring revealed that the cleaning process is more complex. Indeed, after the first increase and decrease steps corresponding to swelling and removal of the deposit, an additional increase in the pressure drop was observed. This second increase in the pressure drop leads us to suggest that the first deposit swelling had partly succeeded in detaching the deposit from the metal surface. However, it is impossible to remove the whole deposit by the alkaline cleaning at 400 L h⁻¹: a higher flow rate of the cleaning solution was required to complete cleaning. Consequently, it was decided to increase the NaOH solution flow rate.

Consequently, a second increase in pressure drop was observed. This second increase in pressure drop corresponds to the swelling of a novel thin layer of deposit due to an increase in the flow rate of the cleaning solution. This second increase was again followed by a sharp increase in pressure drop corresponding to the removal of a part of the deposit. This more complex cleaning behaviour requiring more severe hydrodynamic conditions, can be explained by the fact that various hydrodynamic conditions during fouling process parameters have shaped differently the structure deposit. The change in cleaning (ΔP – time) profiles, where the removal of material formed at *Re* = 2000 is different to that for deposition at *Re* = 5000, provides separate evidence for the transition in deposit nature induced by protein velocity parameters.

It could be assumed that at higher flow rates during the fouling phase, the compactness of the deposit and the number of calcium bindings, due to weaker size aggregates (Simmons et al., 2007), are greater. This would reinforce the adhesion forces and limit the sodium hydroxide seepage into the deposit. Consequently, the cleaning time for this cleaning test is much longer than that obtained at Re = 2000. This showed that either the structure of the deposit and/or the adhesion forces of the protein are strongly dependent fouling conditions, especially on the Reynolds number.

3.6. Dimensional analysis for the mass deposit and process relationship

As fouling deposits are the result of a balance between protein deposition and their expulsion from the fouling layer, a non-monomial process relationship (Szirtes, 1998) is thus proposed:

$$\frac{M_{dj}}{\rho e_0^3} = k_d \cdot A - k_r \tag{7}$$

where k_d and k_r are functions of the Reynolds number, which report the extent of solid deposition and solid detachment phenomenon respectively, due to changes in the Reynolds number. *A* is a constant which includes the characteristic concentration of calcium in the fluid and the characteristic temperature of PHE. Using the experimental results, the coefficients (k_d and k_r) and constant *A* are determined, which are shown below:

$$A = \left(\frac{C_{Ca}}{\rho}\right)^{1.049} \cdot \left(\frac{\theta_{opj}}{\theta_{ip}}\right)^{5.889}$$
(8)

$$k_{d} = 9.141 \cdot Re^{2} - 7.622 \cdot 10^{4} \cdot Re + 2.400 \cdot 10^{8}$$

and
$$k_{r} = 1.123 \cdot 10^{-3} \cdot Re^{2} - 8.851 \cdot Re + 2.158 \cdot 10^{4}$$
(9)

Fig. 9. Comparison between experimental and predicted characteristic locally deposited mass $(M_d/\rho \cdot e_0^3)$ obtained from whey protein solution along the PHE.

As expected, a comparison between the adjusted and experimental amount of deposit shows a close agreement between the model and fouling experiments (Fig. 9). Obviously, more data will be useful in ascertaining the validity of the model for larger ranges of Re and calcium concentrations.

Nevertheless, the interest of this non-monomial relationship lies more in its ability to translate the existence of a balance between the deposition and the release of the fouled layer, than to provide accurate data on mass deposit, since it is limited to a given BLG concentration, a given duration of fouling experiments and a given geometry. Moreover, the model proposed underlines the role of calcium ions and temperature in the potential fouling extent of WPC fluids in the PHE for a fixed Reynolds number.

4. Conclusion

Long term fouling experiments during the heat transfer were performed to quantify the effect of the calcium concentration and of the Reynolds number upon the fouling behaviour of a WPC solution in a PHE. The extent of fouling deposit was monitored by weighing the mass of the dry fouling deposit on the plates. The fouling kinetics were monitored through pressure drop and fouling resistance measurements. The resistance of the deposit to an alkaline cleaning cycle was evaluated through cleaning sequences with water and NaOH solutions.

It was shown that:

- For a fixed Reynolds number, the fouling potential of the WPC in the PHE for a temperature ranging from 60 to 96 °C, is altered and favoured by an addition of calcium to the model fouling fluid in the range of 70–87.5 mg L⁻¹.
- The amount of deposit was also affected by the Reynolds number in the course of fouling runs. The amount of deposit increased with Reynolds numbers from Re = 2000 to Re = 3200 and decreased above Re = 3200. This behaviour is attributed to the shear stress field, which governs collision between adsorbed proteins and unfolded proteins, and modifies the compactness or erosion of deposit promoting deposit adhesion. The extent of fouling and the associated changes in structure and deposit kinetics due to fouling conditions (i.e. process parameters and solution chemistry) were also observed through the evolution of fouling resistance, together with time and wet deposit coverage, then confirmed by the cleaning test behaviour.

Acknowledgments

The authors are indebted to the scientific committee of Agrocampus Ouest Rennes and HEI (Hautes Etudes d'Ingénieur, Lille) for stimulating discussions and financial support for the Ph.D. Thesis of the first author.

References

- Allen, E., Smith, P., 2001. A Review of Particle Agglomeration, vol. 398. AEA Technology/Research/Public Service Enterprise Group. AEA Technology Engineering Services Inc., Sterling, VA.
- Bansal, B., Chen, X.D., 2006. A critical review of milk fouling in heat exchangers. Compr. Rev. Food Sci. Food Saf. 5, 27–33.
- Belmar-Beiny, M.T., Gotham, S.M., Paterson, W.R., Fryer, P.J., 1993. The effect of Reynolds number and fluid temperature in whey protein fouling. J. Food Eng. 19, 119–139.
- Bradley, S.E., Fryer, P.J., Griffin, T.A., Wilson, D.I., 1989. Use of an Oscillatory Flow Heat Exchanger in Food Processing. In: Fouling and Cleaning in Food Processing. Institute for Dairy Science and Food Processing, Technische Universität München, München, Deutschland, pp. 14–24.
- Bryant, M.C., McClements, D.J., 1998. Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends Food Sci. Technol. 9, 143–151.

- Burton, H., 1968. Deposits of whole milk in treatment plants: a review and discussion. J. Dairy Res. 35, 317–330.
- Caussin, F., Bouhallab, S., 2004. Environnement minéral et propriétés fonctionnelles des protéines sériques. In: Minéraux et produits laitiers, Ed. Tec & Doc. pp. 343– 390.
- Christian, G.K., Changani, S.D., Fryer, P.J., 2002. The effect of adding minerals on fouling from whey protein concentrate. Development of a model fouling fluid for a plate heat exchanger. Trans. IChemE 80, 231–239.
- Dannenberg, F., 1986. Zur Reaktionskinetik der Molkenproteindenaturiezung und deren technologischer bedeutung. PhD Thesis, TU Munich.
- Daufin, G., Labbé, J.P., Quemerais, A., Brulé, G., Michel, F., Roignant, M., Priol, M., 1987. Fouling of a heat exchange surface by whey, milk and model fluids: an analytical study. Lait 67, 339–364.
- Davies, T.J., Henstridge, S.C., Gillham, C.R., Wilson, D.I., 1997. Investigation of whey protein deposit properties using heat flux sensors. Trans. IChemE 75, 106– 110.
- De Wit, J.N., 1990. Thermal stability and functionality of whey proteins. J. Dairy Sci. 73, 3602–3612.
- Delplace, F., Leuliet, J.C., 1995. Modelling fouling of a plate heat exchanger with different flow arrangements by whey protein solutions. Trans. IChemE 73, 112–120.
- Delplace, F., Leuliet, J.C., Tissier, J.P., 1994. Fouling experiments of a plate heat exchanger by whey proteins solutions. Trans. IChemE 72, 163–169.
- Delplace, F., Leuliet, J.C., Levieux, D., 1997. A reaction engineering approach to the analysis of fouling by whey proteins of a six-channels-per-pass plate heat exchanger. J. Food Eng. 34, 91–108.
- Delsing, B.M.A., Hiddink, J., 1983. Fouling of heat transfer surfaces by dairy liquids. Neth. Milk Dairy J. 37, 139–148.
- Erabit, N., Flick, D., Alvarez, G., 2014. Formation of β-lactoglobulin aggregates during thermomechanical treatments under controlled shear and temperature conditions. J. Food Eng. 120, 57–68.
- Gotham, S.M., Fryer, P.J., Pritchard, A.M., 1989. Model studies of food fouling. In: Kessler, H.G., Lund, D.B., (Eds.), Food and Cleaning in Food Processing. Prien, Bavaria, Germany, 5–7 June 1989. pp. 1–13.
- Guérin, R., Ronse, G., Bouvier, L., Debreyne, P., Delaplace, G., 2007. Structure and rate of growth of whey protein deposit from *in situ* electrical conductivity during fouling in a plate heat exchanger. Chem. Eng. Sci. 62, 1948–1957.
- Hoffmann, M.A.M., Van Mil, P.J.J.M., 1997. Heat-induced aggregation of βlactoglobulin: role of the free thiol group and disulfide bonds. J. Agric. Food Chem. 45, 2942–2948.
- Hongsprabhas, P., Barbut, S., 1997. Structure-forming processes in Ca²⁺-induced whey protein isolate cold gelation. Int. Dairy J. 7, 827–834.
- Hongsprabhas, P., Barbut, S., Marangoni, A.G., 1999. The structure of cold-set whey protein isolate gels prepared with Ca2+. Food Sci. Technol. – Lebensm.-Wiss. Technol. 32, 196–202.
- Jeurnink, T.J.M., de Kruif, K.G., 1995. Calcium concentration in milk in relation to heat stability and fouling. Neth. Milk Dairy J. 49, 151–165.
- Jeurnink, T.J.M., Brinkman, D.W., Stemerdink, A.D., 1989. Distribution and composition of deposit in heat exchangers. In: Kessler, H.G., Lund, D.B. (Eds.), Food and Cleaning in Food Processing. Prien, Bovaria, Germany, 5–7 June 1989, pp. 25–36.
- Jeyarajah, S., Allen, J.C., 1994. Calcium binding and salt-induced structural changes of native and preheated beta-lactoglobulin. J. Agric. Food Chem. 42, 80–85.
- Jimenez, M., Delaplace, G., Nuns, N., Bellayer, S., Deresmes, D., Ronse, G., Alogaili, G., Collinet-Fressancourt, M., Traisnel, M., 2013. Toward the understanding of the interfacial dairy fouling deposition and growth mechanisms at a stainless steel surface: a multiscale approach. J. Colloid Interface Sci. 404, 192–200.
- Jun, S., Puri, V.M., 2007. Plate heat exchanger: thermal and fouling analysis. In: Sun, D.-W. (Ed.), Computational Fluid Dynamics in Food Processing. CRC Press, New York, pp. 417–430.
- Kern, D.Q., Seaton, R.E., 1959. A theoretical analysis of thermal surface fouling. Britannic Chem. Sci. 4 (5), 258–262.
- Kinsella, J.E., Whitehead, D.M., 1989. Proteins in whey: chemical, physical and functional properties. Academic Press, pp. 343–437. Lalande, M., Rene, F., 1988. Fouling by milk and dairy product and cleaning of heat
- Lalande, M., Rene, F., 1988. Fouling by milk and dairy product and cleaning of heat exchange surfaces. In: Melo, L.F., Bott, T.R., Bernardo, C.A. (Eds.), Fouling Science and Technology. Kluwer Academic Publishers, Dordrecht, pp. 57–574.
- Lalande, M., Tissier, J.P., Corrieu, G., 1984. Fouling of a plate heat exchanger used in ultra-high-temperature sterilization of milk. J. Dairy Res. 51, 557–568.
- Lalande, M., Tissier, J.P., Corrieu, G., 1985. Fouling of heat transfer surfaces related to β -lactoglobulin denaturation during heat processing of milk. Biotechnol. Prog. 1, 131–139.
- Leuliet, J.C., Maingonnat, J.F., Lalande, M. 1988. Thermal behaviour of plate heat exchangers with Newtonian and non-Newtonian fluids. In: Proceedings Congres Eurotherm 5 et 1er Colloque TIFAN, Compiegne, pp. 1–15.
- Lin, M.J., Lewis, M.J., Grandison, S., 2006. Measurement of ionic calcium in milk. Int. J. Dairy Technol. 59, 192–199.
- Lyster, R.L.J., 1970. The denaturation of α -lactalbumin and β -lactoglobulin in heated milk. J. Dairy Res. 37, 233–243.
- Mahdi, Y., Mouheb, A., Oufer, L., 2009. A dynamic model for milk fouling in a plate heat exchanger. Appl. Math. Model. 33, 648–662.
- Morison, K.R., Tie, S.-H., 2002. The development and investigation of a model milk mineral fouling solution. Food Bioprod. Process. 80 (4), 326–331.
- Mulvihill, D.M., Donovan, M., 1987. Whey proteins and their thermal denaturation. Irish J. Food Sci. Technol. 11, 43–77.

- O'Kennedy, B.T., Mounsey, J.S., 2009. The dominating effect of ionic strength of the heat-induced denaturation and aggregation of beta-lactoglobulin in simulated milk ultrafiltrate. Int. Dairy J. 19, 123–128.
- Pappas, C.P., Rothwell, J., 1991. Mechanisms of protein fouling in heat exchangers. Food Chem. 42, 183–201.
- Petit, J., Herbig, A.L., Moreau, A., Delaplace, G., 2011. Influence of calcium on βlactoglobulin denaturation kinetics: implications in unfolding and aggregation mechanisms. J. Dairy Sci. 94 (12), 5794–5810.
- Petit, J., Six, T., Moreau, A., Ronse, G., Delaplace, G., 2013. Beta-lactoglobulin denaturation, aggregation, and fouling in a plate heat exchanger: pilot-scale experiments and dimensional analysis. Chem. Eng. Sci. 101, 432–450.
- Phan-Xuan, T., Durand, D., Nicolai, T., 2013. Tuning the structure of protein particles and gels with calcium or sodium ions. Biomacromolecules 14, 1980–1989.
- Roefs, S.P.F.M., Peppelman, H.A., 2001. Aggregation and gelation of whey proteins: specific effect of divalent cations? In: Dickinson, E., Miller, R. (Eds.), Food Colloids Fundamentals of Formulation. The Royal Society of Chemistry, Cambridge, pp. 358–368.
- Schmidt, R.H., Illingworth, B.L., Ahmed, E.M., 1978. Heat induced gelation of peanut protein/whey protein blends. J. Food Sci. 43, 613–621.
- Schmitt, C., Bovay, C., Rouvet, M., Shojaei-Rami, S., Kolodziejczyk, E., 2007. Whey protein soluble aggregates from heating with NaCl: Physicochemical, interfacial and foaming properties. Langmuir 23, 4155–4166.
- Sherwin, C.P., Foegeding, E.A., 1997. The effects of CaCl₂ on aggregation of whey proteins. Milchwissenschaft-Milk Sci. Int. 52 (2), 93–96.
- Shimada, K., Cheftel, J.C., 1989. Sulfydryl group/disulfide bond interchange reactions during heat-induced gelation of whey protein isolate. J. Agric. Food Chem. 37, 161–168.

- Simmons, M.J.H., Jayaraman, P., Fryer, P.J., 2007. The effect of temperature and shear rate upon the aggregation of whey protein and its implication for milk fouling. J. Food Eng. 79, 517–528.
- Simons, J.-W.F.A., Kosters, H.A., Visschers, R.W., de Jongh, H.H.J., 2002. Role of calcium as trigger in thermal beta-lactoglobulin aggregation. Arch. Biochem. Biophys. 406, 143–152.
- Srichantra, A., Newstead, D.F., MCcarthy, O.J., Paterson, A.H.J., 2006. Effect of preheating on fouling of a pilot scale UHT sterilizing plant by recombined, reconstituted and fresh whole milks. Food Bioprod. Process. 84, 279–285.
- Szirtes, T., 1998. Applied Dimensional Analysis and Modeling. McGraw-Hill Education, Europe.
- Tissier, J.P., Lalande, M., 1986. Experimental device and methods for studying milk deposit formation on heat exchange surfaces. Biotechnol. Prog. 2, 218–229.
- Twoney, M., Keogh, M.K., Mehra, R.A.J., Okennedy, B.T., 1997. Gel characteristics of β-lactoglobulin, whey protein concentrate and whey protein isolate. J. Texture Stud. 28, 387–403.
- Visser, J., Jeurnink, Th.J.M., 1997. Fouling of heat exchangers in the dairy industry. Exp. Therm. Fluid. Sci. 14, 407–424.
- Wang, C.H., Damodaran, S., 1991. thermal gelation of globular-proteins influence of protein conformation on gel strength. J. Agric. Food Chem. 39, 433–438.
- Xiong, Y.L., 1992. Influence of pH and ionic environment on thermal aggregation of whey proteins. J. Agric. Food Chem. 40, 380–384.
- Xiong, Y.L, Dawson, K.A., Wan, L., 1993. Thermal aggregation of β-lactoglobulin: effect of pH, ionic environment and thiol reagent. J. Dairy Res. 76, 71–77.

Research Article

Denaturation Kinetics of Whey Protein Isolate Solutions and Fouling Mass Distribution in a Plate Heat Exchanger

Marwa Khaldi,^{1,2,3} Gilles Ronse,^{1,2} Christophe André,^{1,2,4} Pascal Blanpain-Avet,^{1,2} Laurent Bouvier,^{1,2} Thierry Six,^{1,2} Saloua Bornaz,⁵ Thomas Croguennec,⁶ Romain Jeantet,⁶ and Guillaume Delaplace^{1,2}

¹INRA, UR638, Processus aux Interfaces et Hygiène des Matériaux (PIHM), BP 20039, 369 rue Jules Guesde, 59651 Villeneuve d'Ascq, France

²Unité de Matériaux et Transformations (UMET), UMR CNRS 8207, Université de Lille 1, 59650 Villeneuve d'Ascq, France

³Institut National Agronomique de Tunisie, 43 avenue Charles Nicolle, 1082 Tunis Mahrajène, Tunisia

⁴*HEI*, *Laboratoire de Génie des Procédés*, 59046 *Lille*, *France*

⁵*Ecole Supérieure des Industries Alimentaires de Tunis, 58 avenue Alain Savary, 1003 Tunis El Khadra, Tunisia* ⁶*INRA, AGROCAMPUS OUEST, UMR 1253, 35042 Rennes, France*

Correspondence should be addressed to Marwa Khaldi; marwa.khaldi@lille.inra.fr

Received 23 July 2015; Revised 9 October 2015; Accepted 11 October 2015

Academic Editor: Xijun Hu

Copyright © 2015 Marwa Khaldi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Few investigations have attempted to connect the mechanism of dairy fouling to the chemical reaction of denaturation (unfolding and aggregation) occurring in the bulk. The objective of this study is to contribute to this aspect in order to propose innovative controls to limit fouling deposit formation. Experimental investigations have been carried out to observe the relationship between the deposit mass distribution generated in plate heat exchangers (PHE) by a whey protein isolate (WPI) mainly composed of β lactoglobulin (β -Lg) and the ratio between the unfolding and aggregation rate constants. Experiments using a PHE were carried out at a pilot scale to identify the deposit distribution of a model fouling solution with different calcium contents. In parallel, laboratory experiments were performed to determine the unfolding/aggregation rate constants. Data analysis showed that (i) β -Lg denaturation is highly dependent on the calcium content, (ii) for each fouling solution, irrespective of the imposed temperature profile, the deposit mass in each channel and the ratio between the unfolding and aggregation rate constants seem to be well correlated. This study demonstrates that both the knowledge of the thermal profile and the β -Lg denaturation rate constants are required in order to predict accurately the deposit distribution along the PHE.

1. Introduction

In the dairy industry, heat treatments are carried out in order to ensure food security and to impart several functionalities to milk and its derivatives, like thermal stability, viscosity, or gelation [1–3].

Fouling deposit formation on heat exchanger surfaces is a major industrial problem of milk processing plants, which involves frequent cleaning of the installations, thereby resulting in excessive rinsing water and harsh chemicals use. A number of studies have reported the drastic economic costs of fouling. Fouling and the resulting cleaning of the process equipment account for about 80% of the total production costs [4]. According to Tay and Yang [5], the total heat exchanger fouling costs for highly industrialized countries are about 0.25% of the Gross National Product. In the USA, total fouling costs have been estimated as US \$ 7 billion [6].

Milk fouling deposit is complex in nature. Deposit is formed by a mixture of inorganic salts (mainly calcium) and proteins (largely whey proteins). The key role played by β -Lg has been recognized in most milk fouling studies [7–9].

The fouling mechanisms are complicated and involve chemical reactions and heat and mass transfer processes [7–10]. The deposition is a result of a number of stages

occurring at both the bulk volume and the surface [11] as follows:

- (i) unfolding and aggregation of proteins in the bulk;
- (ii) transport of the unfolded and aggregated proteins to the surface;
- (iii) surface reactions resulting in incorporation of protein into the deposit layer;
- (iv) possible reentrainment or removal of deposit toward the bulk.

At the state of the art, the possible limiting processes controlling fouling phenomena (bulk reaction regarding the temperature profiles, surface reaction concerning the flow conditions, and mass transfer of the different protein species occurring in the bulk) are not clearly elucidated and ambiguity on foulant precursor (unfolded and/or aggregated species) also exists.

Belmar-Beiny et al. [11] and Schreier and Fryer [12] proposed that fouling was dependent on the bulk and surface reactions and not on the mass transfer. Belmar-Beiny et al. [11], using a tubular heat exchanger fouled with whey protein concentrate, correlated the mass deposit with the volume of fluid hot enough to produce unfolded and aggregated proteins. This result highlighted the importance of denaturation reactions in the bulk but does not allow concluding specifically which protein species are dominant on fouling. On the other hand, van Asselt et al. [13] stated that β -Lg aggregates are not involved in the fouling reactions.

So, there is still a lack of knowledge between the chemical reactions occurring in the bulk (unfolding and aggregation of β -Lg for a given temperature profile), their consequences on foulant precursor concentrations, and the extent of fouling.

In this study, we propose to partially fill this gap by investigating the chemical reactions of β -Lg denaturation occurring in the bulk, for two WPI model fouling solutions, and their link with the fouling phenomena.

The main objective of this work is to investigate whether a relationship can be established between the distribution of the dry fouling deposit mass in each PHE channel and the β -Lg rate constants (computed at the mean channel temperature) of the model fouling solutions, for various operating conditions (processing parameters inducing various thermal profiles).

2. Materials and Methods

2.1. Fouling Model Fluids. The model fluids used in this study were reconstituted from WPI Promilk 852FB1 supplied by Ingredia (France). The composition of the powder is shown in Table 1.

In each experiment, 1% (w/w) β -Lg solutions with various calcium concentrations were prepared by mixing 10 g of WPI powder in 1L reverse osmosis water at room temperature. Then, different quantities of a molar calcium chloride (anhydrous, 96%, Acros Organics, Thermo Fisher Scientific, Waltham, MA, USA) solution were added to the β -Lg solution to obtain the two model fouling solutions

TABLE 1: Composition of WPI powder.

Component	Promilk 852FB1 (% w/w)
Total proteins	80.1
β -Lg	66.0
α-lactalbumin	13.3
Fat	1
Lactose	11
Minerals	2.9

containing, respectively, (i) 1% (w/w) β -Lg and 100 ppm of total calcium and (ii) 1% (w/w) β -Lg and 120 ppm of total calcium. The pH of these fouling solutions was close to 6.8.

Only a small range of calcium content was studied because it is admitted that a very slight chemical variation results in a large variation in the fouling formation [14, 15]. The calcium concentration of the two model solutions was determined by atomic absorption spectrometry with a Spectro AA 55B apparatus (Varian, Palo Alto, CA, USA).

2.2. Thermal Denaturation Experiments at Constant Holding Temperature. All thermal denaturation experiments were conducted on twelve samples of 2 mL that were put in stainless steel tubes (350 mm length, 10 mm core diameter, 1 mm wall thickness, and $0.3 \,\mu$ m surface roughness), to be closer to the actual conditions on the PHE. The investigated temperatures was ranged from 65 to 92°C.

Before submitting samples to the desired holding temperature, the samples were preheated at 60°C for the range of desired temperatures below 80°C and 65°C for the range of desired temperatures over 80°C in a first water bath. The choice of this water bath temperature is not trivial. The β -Lg denaturation temperature is estimated at about 77°C [16, 17].

The temperature increase from the preheating temperature to the desired holding temperature was performed by placing the samples in a second water bath whose temperature was maintained until 20°C higher than the holding temperature. The second water bath was used in order to reduce the heat increase time and the denaturation level before sampling. The first sample, corresponding to time zero, was taken when the sample temperature was equal to the desired holding value.

The eleven other samples were maintained during a time sufficient in a third water bath, taken off at different times, and cooled down immediately in a beaker with melting ice to stop further β -Lg denaturation. The third water bath was fixed 2°C higher than the desired temperature. From the second to the third water bath, the heating rate is ranged between 0.83 and 0.93°C·s⁻¹.

The temperature profile in samples placed in the three water baths was determined using a sensor connected to a temperature measurement acquisition system, placed in a stainless steel tube filled with water (Figure 1).

2.3. HPLC Analysis. The soluble (native and unfolded) β -Lg concentration in the samples was evaluated by HPLC

FIGURE 1: Imposed temperature profiles (in the three water baths) to carry out thermal denaturation at a constant holding temperature.

after precipitation of the aggregated protein at pH 4.6 and their removal by centrifugation (9000 rpm for 30 min at 4°C). The chromatographic system (Waters, Milford, MA, USA) included a 717 Plus autosampler, a 616 quadratic pump system, a Jones Model 7971 column oven, a CLHP ACE 300 Å C4 separation column and the associated guard column (Advanced Chromatography Technologies, Aberdeen, UK), a 486 UV-visible spectrophotometer, and an acquisition software (Millennium 3.2, Waters).

The mobile phases used in HPLC were 0.1% (v/v) trifluoroacetic acid (99%, Acros Organics, Thermo Fisher Scientific, Waltham, MA, USA) in Milli-Q water and 0.1% trifluoroacetic acid in a mixture of 80% acetonitrile (HPLC grade, Thermo Fisher Scientific, Waltham, MA, USA) and 20% Milli-Q water.

The HPLC analyses were carried out at the following conditions: flow rate $1 \text{ mL} \cdot \text{min}^{-1}$, injection volume $20 \,\mu\text{L}$, temperature 40°C , elution of the proteins using a gradient of acetonitrile, and detection of the eluted proteins at wavelength 214 nm. Analyses were repeated three times for each standard or sample. Calibration standards in the range from 0.5 to 4 g-L^{-1} were prepared by dissolving β -Lg powder in Milli-Q water. For each experiment, the sample concentrations were calculated by averaging the three measured chromatographic areas and converting this area value into a β -Lg concentration using the HPLC calibration curve.

2.4. Determination of the β -Lg Rate Constants from HPLC Measurements. The reaction model used in this study is derived from the work of Tolkach and Kulozik [18]. The denaturation reaction concerns the transformation of soluble species (noted *S*) into aggregates (noted *A*) which is described by the chemical equation $S \rightarrow A$ and defined in

$$-\frac{dC_S}{dt} = k_n C_S^n,\tag{1}$$

where C_S is the soluble β -Lg concentration, k_n the denaturation rate constant for a reaction order equal to n, and t the time.

FIGURE 2: Schematic diagram of the experimental setup carried out for fouling runs with the 1% (w/w) WPI solutions.

For each temperature, the corresponding denaturation rate constant was determined from the Arrhenius plot. The relation between the denaturation kinetic rate and the heat treatment temperature is given by

$$\ln\left(k_n\right) = \ln\left(k_n^0\right) - \frac{E_A}{RT},\tag{2}$$

where k_n^0 is the denaturation frequency factor, E_A the denaturation activation energy, *R* the universal gas constant, and *T* the temperature.

The value of *n* was varied from 1 to 2 (in steps of 0.1) to determine the reaction order that gives the best regression coefficient when plotting $(C_S/C_S^0)^{1-n} - 1$ as a function of time, where C_S^0 is the initial (time zero) β -Lg total soluble concentration.

The slope of this linear representation is equal to $k_n(n-1)(C_S^0)^{n-1}$ and leads to the determination of k_n . This method was also used by Petit et al. [14], Tolkach and Kulozik [18], and Dannenberg and Kessler [19].

The value of n = 1.5 reaction order was suitable for the whole β -Lg denaturation reaction in the investigated temperature range (from 65 to 92°C).

2.5. Fouling Runs and Determination of the Deposit Mass Distribution. Fouling experiments were carried out in a pilot plant (Figure 2). The fouling rig was composed of two distinct zones: (i) a preheating zone composed of a heat exchanger with V7 types plates (Vicarb, Alfa Laval, France) and 9 passes (one channel per pass), necessary to preheat the model fluid, and (ii) a heating zone composed of a PHE (Vicarb, model V7, Alfa Laval, France).

Thermal profile number	Total calcium content (ppm)	T_{ip} (°C)	T_{op} (°C)	$Q_p (L \cdot h^{-1})$	$Q_h (\mathrm{L}\cdot\mathrm{h}^{-1})$
#1	100	65	85	300	300
#2	100	65	85	300	900
#3	100	65	85	300	150
#4	100	60	75	300	300
#1	120	65	85	300	300
#2	120	65	85	300	900
#3	120	65	85	300	150
#4	120	60	75	300	300

TABLE 2: Operating conditions investigated with the pilot scale experimental set: mean inlet and outlet temperatures and flow rates of β -Lg concentrate and hot water.

FIGURE 3: Plate heat exchanger flow arrangement.

The PHE setup consisted of 10 plates; that is, 5 passes (one channel per pass) of about 0.074 m^2 projected heat transfer area per plate (0.495 m length and 0.15 m width) were installed in a countercurrent configuration to optimize the heat transfer, as represented in Figure 3. The defined design permitted being closer to industrial heat treatment conditions.

The temperature profile inside the heat exchanger was simulated with Sphere software (previously developed at our laboratory): temperatures in all passes of hot and cold fluids were calculated from the knowledge of fluids' inlet temperature and flow rate, plate properties, and heat exchanger design. The temperature profile is controlled by the heat exchanger inlet parameters: product and hot fluid inlet temperatures (T_{ip} and T_{iw}) and product and hot water flow rates (resp., Q_p and Q_h). This was achieved with the operating conditions indicated in Table 2, displaying the average values of temperatures and flow rates recorded during each heat treatment experiment.

The temperature profiles displayed in Figure 4 were obtained by Sphere simulations by employing the operating conditions summarized in Table 2. Eight fouling runs were conducted with WPI solutions containing two calcium concentrations (100 and 120 ppm).

Heat exchanger plates were weighted before each heat treatment experiment. After being dried in an air oven at

FIGURE 4: The imposed thermal profiles in the PHE (Sphere simulations).

 50° C, fouled plates were weighted at ambient temperature and the dry deposit mass on each plate was deduced by subtraction.

The amount of fouling was also monitored by calculating the fouling resistance. A linear relationship was visible between the average fouling resistance R_f , defined by (3), and the fouling thickness, assuming that the deposit layers are covered uniformly:

$$\frac{1}{U_{g(t)}} = \frac{1}{U_{g(0)}} + R_f,$$
(3)

where $U_{g(0)}$ and $U_{g(t)}$ are the overall heat transfer coefficients at the beginning of fouling runs (i.e., the overall heat transfer coefficient before the occurrence of fouling) and at time *t* (i.e., the overall heat transfer coefficient including the additional contribution of fouling).

A logarithmic mean temperature difference (LMTD) method was used to relate the heat transfer rate to the overall heat transfer coefficient. In the case of a no pure

FIGURE 5: Arrhenius plot for the β -Lg denaturation of 1% (w/w) WPI fouling solutions at various calcium concentrations (100 and 120 ppm).

cross countercurrent flow inside the plate heat exchanger, the correction factor F_T is classically introduced:

$$\dot{m}_p C_{p_p} \left(T_{op} - T_{ip} \right) = \dot{m}_h C_{p_h} \left(T_{ih} - T_{oh} \right)$$

$$= U_q S \Delta T_{\text{LMTD}} F_T,$$
(4)

where C_{p_p} and C_{p_h} are, respectively, the specific heat for the product and hot water, \dot{m}_p and \dot{m}_h are, respectively, the mass flow rates for the product and hot water, T is the temperature, and S is the heat transfer area.

Leuliet et al. [20] gave equations for PHE using analogy with shell and tube correction factor. Their method was used for this work to evaluate the F_T factor.

3. Results and Discussion

3.1. Arrhenius Plots for the β -Lg Denaturation of the Model Solutions. The Arrhenius plots for the denaturation reaction of the WPI model fouling solutions at two calcium concentrations (100 and 120 ppm) were presented in Figure 5. This figure shows the temperature influence on the β -Lg denaturation kinetic rate in the range from 65 to 92°C.

Two mechanisms appear in Figure 5, separated by an Arrhenius critical temperature of about 80°C. This slope change suggests two temperature ranges: below the critical temperature, the β -Lg denaturation reaction is unfolding limited which means that the unfolding reaction is slower than aggregation and over 80°C, β -Lg denaturation is limited by the aggregation reaction and in that case, aggregation is the slower reaction.

TABLE 3: Denaturation parameters at the two calcium concentrations.

Denaturation parameter	100 ppm total calcium	120 ppm total calcium
Unfolding		
$\ln(k_{unf}^0)$	124.8	117.2
$E_{A,\text{unf}}$ (kJ·mol ⁻¹)	384.5	360.7
Aggregation		
$\ln(k_{agg}^0)$	86.3	83.1
$E_{A,agg}$ (kJ·mol ⁻¹)	271.2	260.4

These results are in agreement with Petit et al. [14]. Even in the case of quasi-pure β -Lg model solution, the critical temperature that splits the Arrhenius plot in two linear parts was estimated at 80°C, each temperature range being related to the predominance of the unfolding or aggregation mechanisms, indicating that denaturation kinetic rates varied with temperature. However, this slope break is less clear in the case of our model fouling solution, probably due to its more complex composition (mixture of β -Lg and α -lactalbumin).

Figure 5 also shows that β -Lg denaturation kinetics increased with calcium concentration. Even if the exact contribution of calcium on the denaturation of β -Lg is still unclear, it is speculated that calcium induces protein charge shielding or conformational changes in β -Lg structure [21, 22] favouring both unfolding and aggregation reactions. This result illustrates that it is essential to know the exact content of calcium in the fouling solutions to have a clear view of the denaturation reaction. This information, not commonly evaluated nowadays in the literature, is essential to the development of accurate model of fouling based on engineering denaturation reaction.

The frequency factor logarithms $(\ln k^0)$ and activation energies (E_A) , obtained by fitting Arrhenius plot regression for the unfolding and aggregation denaturation mechanism (noted, resp., unf and agg), are shown in Table 3.

3.2. Fouling Mass Distribution in the PHE. Figure 6 represents the deposit layer formed in the first and last channels of the PHE, at, respectively, 65° C (inlet temperature) and 85° C (outlet temperature), after fouling run conducted with 1% (w/w) WPI solution containing 100 ppm of total calcium. At the highest temperature, the fouling layer is white, very thick, and homogeneous. It clearly appears that very low fouling is obtained in the first channel of the PHE, where the bulk temperature is lower than 70°C. Fouling is not expected to occur under 65–72°C [23, 24]. These observations are in agreement with Foster et al. [25] work, which showed that deposit increases with temperature, making fouling rougher and more adherent to hot surfaces.

Figure 7 represents the fouling results obtained with 1% (w/w) WPI model solution containing 100 and 120 ppm of total calcium at different temperature profiles. This figure shows that the dry deposit is not uniform and is distributed differently depending on the thermal profile and the calcium

FIGURE 6: Pictures of the deposit collected on heat exchanger surface in the first and last channels of the PHE.

concentration. Indeed, for the first solution at 100 ppm calcium, the deposit mass increases linearly to reach a maximum in the 5th channel, whatever the imposed thermal profile. However, at 120 ppm calcium, the deposit mass reached a stationary value of about 260 g/m² over 74°C (2nd channel temperature), for the first three temperature profiles, which consisted in a fouling maximum limit. This increasing deposit mass at low temperatures resulted from the strong increase of β -Lg denaturation level between 65°C (1st channel temperature) and 74°C (2nd channel temperature), temperature range for which the β -Lg denaturation reaction becomes significant [17, 26]. The thermal profile #4 increases linearly, reaching a maximum of 84.5 g/m² in the 5th channel.

The deposit mass is negligible, for the thermal profile #4 at 100 and 120 ppm calcium, owing to the lack of denatured β -Lg in the bulk at such low temperatures. It is suggested that β -Lg fouled hot surfaces only when the bulk temperature was high enough to allow β -Lg denaturation.

Figure 8 represents the effect of the temperature profile on the total amount of deposit mass in the PHE for the two fouling solutions. It can be observed that, for the same inlet and outlet product temperature, the total deposit mass varied with the calcium concentration. This is the case of the thermal profile #1, for which the total deposit mass goes from 1415 g/m² at 100 ppm calcium to 2082 g/m² at 120 ppm calcium. This was also observed for the temperature profiles #3 and #4. However, for the thermal profile #2, the total amount of deposit was very close at 100 and 120 ppm calcium.

This difference of fouling distributions obtained at various calcium concentrations demonstrates the major role of the temperature profile on β -Lg fouling and its distribution in the PHE.

3.3. Effect of Thermal Profiles and Calcium Concentration on Fouling Rate. Figure 9 shows the fouling rate behaviour during heating of the WPI solution at 100 and 120 ppm calcium in the PHE, for each thermal profile. An increase in the fouling rate with time is evident. A difference between the fouling rates can be observed for the four temperature profiles, at 100 ppm and 120 ppm calcium.

The results also show that the fouling potential of WPI in the PHE increases with the increasing temperature. Indeed, for temperature range of 65-85°C, fouling rate is altered and favoured by higher amount of calcium in the model fluid. It can be noted that, for the thermal profile #4 (60-75°C), fouling resistance curves for calcium content of 100 and 120 ppm calcium were superposed. These results are not contradictory with the assumption of Daufin et al. [27], Xiong [28], and Simons et al. [21], who asserted that calcium can interact with the aspartic and glutamic acid carboxyl group of the β -Lg and so favour the growth of the deposit by stabilizing protein aggregates. This is because calcium ions form bridges between adsorbed proteins and the protein aggregates occurring in the bulk, consequently modifying the protein aggregation rate and leading to a greater cohesion between the protein aggregates which in turn change the deposit structure [29]. Simmons et al. [30] revealed an increase in deposition upon a Couette surface due to calcium ions and a modification in the appearance of the deposit for a temperature range 75-90°C. In addition, Pappas and Rothwell [31] showed that β -Lg completely aggregated to form compact structures when heated with calcium from 80 to 110°C.

3.4. Relationship between β -Lg Heat Denaturation Rate Constants and the Distribution of the Deposit Mass along the PHE. To study the relationship between the chemical reaction of the β -Lg denaturation and the deposit formation rate within the PHE, the deposit mass distribution in the different channel of the PHE was plotted against $r = k_{unf}/k_{agg}$ (Figure 10). The value of r was calculated at the average temperature of the channel. $k_{\rm unf}$ and $k_{\rm agg}$ represent, respectively, the reaction rate constants for the unfolding and aggregation limited zones deduced from the Arrhenius plots (Figure 5) for the two WPI model fouling solutions (at 100 and 120 ppm of calcium).

For each fouling solution, it could be observed that an S curve (plot of the deposit mass per channel versus r) consolidates the fouling data, whatever the imposed thermal profile. The S curves could be described, for all fouling runs, by the following function:

$$M_d = a + \frac{b - a}{1 + (c/r)^d},$$
(5)

where M_d is the measured dry fouling deposit mass per channel along the PHE and *a*, *b*, *c*, and *d* are four constants.

The two master curves, representing the deposit mass per channel versus the ratio r, contained different characteristic zones:

- (i) an unfolding limited zone with a sharp increase of the deposit mass per channel with *r*;
- (ii) an aggregation limited zone where the deposit mass per channel seems to reach a limiting value.

Indeed, the curve of the dry deposit mass at 100 ppm calcium showed a sharp increase at values of r close to 0.22 (relative

FIGURE 7: Fouling mass distribution, related to the projected heat transfer area per plaque, in each channel of the PHE for the two fouling solutions. 1% (w/w) WPI solution containing (a) 100 ppm calcium and (b) 120 ppm calcium (#*i* corresponds to the thermal profile number given in Figure 4 and Table 2).

FIGURE 8: Total amount of the deposit mass in the PHE per unit area for 1% (w/w) WPI fouling solutions at various calcium concentrations (100 and 120 ppm) and for different temperature profiles (#*i* corresponds to the thermal profile number given in Figure 4 and Table 2).

to the fouling beginning), then reaching a plateau at r = 0.91. For the second fouling solution (WPI solution containing 120 ppm of calcium), the increase of r values starts at 0.23 and the maximum of the deposit mass is reached at r = 0.67.

In summary, for the two fouling model solutions and the operating conditions investigated, it can be observed that a sharp increase of deposit mass occurs, when r is located between 0.22 and 0.89 (corresponding to bulk temperatures ranging from 65 to 80.5°C). The fact that the deposit mass increases strongly, when r is below 1, shows that the unfolding limited zone controls the growth of the deposit mass. This result also shows that the deposit mass per channel decreases

FIGURE 9: Fouling resistance evolution with time measured along the PHE. Various symbols refer to various fouling runs with varying thermal profiles and various calcium content for the 1% w/w WPI solutions (closed symbols: 100 ppm calcium; open symbols: 120 ppm calcium) (#i corresponds to the thermal profile number given in Figure 4 and Table 2).

when the aggregation reaction is high enough to consume the unfolded species under aggregates forms. This result is in agreement with the previous observation of van Asselt et al. [13] and consistent with the work of Blanpain-Avet et al. [32]. Indeed, these authors conclude from fouled deposit

FIGURE 10: Plots of the dry deposit masses per unit area versus the ratio of unfolding and aggregation rate constants for the 1% w/w WPI solutions (closed symbols: 100 ppm calcium; open symbols: 120 ppm calcium) (*#i* corresponds to the thermal profile number given in Figure 4 and Table 2).

analysis by Raman spectroscopy that protein aggregates are not present in the deposit. This result is also supported by the recent study of Bouvier et al. [33] which showed that a correlation can be established between the unfolded β -Lg content within the PHE and the dry deposit mass distribution.

Unfortunately, it was not possible to perform pilot scale experiments at higher values of r (r > 1.40), corresponding to the channel temperature above 84.4°C, because of the clogging of the installation.

To ascertain validity of the master curve independently of the PHE configuration, further experiments were conducted at PHE consisting of 10 passes (one channel per pass) for a 1% (w/w) WPI model solution at 100 ppm calcium. One thermal profile (#1), out of the four tested for the five channels of the PHE, was imposed. Figure 11 represents the deposit mass per channel versus the ratio r.

Also in this case, the fouling mass is reasonably well correlated to the ratio r showing the following:

- (i) the importance of determining this indicator for predicting fouling mass distribution;
- (ii) the robustness of the approach.

4. Conclusions

Fouling experiments were performed with 1% (w/w) WPI solutions, at two different calcium concentrations, in order to investigate the effect of the operating conditions associated with the chemical denaturation reactivity of heat treatment in a PHE on the deposit formation. The extent of fouling

FIGURE 11: Variation of the dry deposit mass per unit area in the various channels with the ratio *r* for a 10-pass PHE configuration (#1 corresponds to the thermal profile given in Figure 4 and Table 2).

deposit was monitored by weighing the mass of the dry fouling deposit on the plates.

It was shown that

- (i) β-Lg denaturation is a complex process with a twostep mechanism highly dependent on the calcium content;
- (ii) an increase of the calcium content in the fouling solution induced a strong increase in the β-Lg denaturation level and consequently in the fouling mass within the PHE at high temperatures;
- (iii) the fouling mass distribution also depends on the thermal profiles imposed on the fouling solutions;
- (iv) the dry deposit mass on each pass of the PHE seems to be correlated with $r = k_{unf}/k_{agg}$. This observation indicates that the knowledge of this parameter is important to predict the mass distribution of the fouling deposit.

This work clearly shows that β -Lg competitive reactions (unfolding and aggregation) governing the growth of fouling for a WPI solution and the identification of the heat-induced denaturation kinetic by means of laboratory experiments are prerequisites to control fouling. We encourage strongly the fouling community to develop database on these aspects to be able to predict the distribution of fouling mass whatever the imposed temperature profile and to mitigate fouling.

Nomenclature

<i>a</i> :	Adjusted parameter in the nonlinear regression $using(5)$
<i>b</i> :	Adjusted parameter in the nonlinear regression
	using (5)
<i>c</i> :	Adjusted parameter in the nonlinear regression
Ca	Using (5)
Ca:	Concentration, ppin Concentration of the total soluble $\beta \perp \alpha \alpha \perp^{-1}$
$C_{\rm S}$.	Concentration of the total soluble p -Lg, g L
C_{p_p} :	Specific heat for the product,) kg K
C_{p_h} :	Specific heat for the hot water, J kg ⁻ K
<i>d</i> :	Adjusted parameter in the nonlinear regression
г	using (5)
E_A :	Activation energy, J mol
$E_{A,agg}$:	β -Lg aggregation activation energy,) mol
$E_{A,unf}$:	β -Lg unfolding activation energy, β mol
F_T :	Logarithmic mean temperature difference, -
k_n :	Denaturation rate constant, $g^{n} L^{n-1} s^{n-1}$
k_n^0 :	Denaturation frequency factor, $g^{1} L^{n-1}s^{1}$
$k_{\rm unf}$:	Unfolding rate constant, g^{1} "L" is i
k_{agg} :	Aggregation rate constant, $g^{1-n}L^{n-1}s^{-1}$
M_d :	Measured dry fouling deposit mass in a channel
	along the PHE, g
т _р :	Mass flow rates for the product, kg s
\dot{m}_h :	Mass flow rates for the hot water, kg s ^{-1}
n:	Heat-induced denaturation reaction order
Q_p :	WPI fouling solution flow rate, L h
Q_h :	Hot water flow rate, L h ⁻¹
<i>r</i> :	Ratio between the unfolding and aggregation rate
D	constants, -
R:	The universal gas constant equal to 8.314, $1-1$ $x=1$
D	$J \mod K$
R_f :	Fouling resistance, m C w
S:	Heat transfer area, m ²
1 _{ih} :	Hot water temperature at the PHE inlet, K
1 _{<i>ip</i>} :	inlet. K
T_{ab} :	Hot water temperature at the PHE outlet, K
T_{op} :	Hot water temperature at the PHE outlet, K
U_{a} :	Overall heat transfer coefficient, $W m^{-2} K^{-1}$
ΔT_{IMTD} :	Logarithmic mean temperature difference, K.
LIVIID	

Subscript

- agg: Aggregation
- C_i : Channel number
- *h*: Hot water
- *p*: Product
- P_i : Plate number
- PHE: Plate heat exchanger
- unf: Unfolding
- WPI: Whey protein isolate
- α -La: α -lactalbumin
- β -Lg: β -lactoglobulin
- *#i*: Thermal profile number.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors are indebted to the Scientific Committee of Agrocampus Ouest Rennes and HEI (Hautes Etudes d'Ingénieur, Lille) for stimulating discussions and financial support for the Ph.D. Thesis of the first author.

References

- D. M. Mulvihill and M. Donovan, "Whey proteins and their thermal denaturation—a review," *Irish Journal of Food Science* and Technology, vol. 11, no. 1, pp. 43–75, 1987.
- [2] N. Sava, I. Van der Plancken, W. Claeys, and M. Hendrickx, "The kinetics of heat-induced structural changes of β-lactoglobulin," *Journal of Dairy Science*, vol. 88, no. 5, pp. 1646–1653, 2005.
- [3] C. Schmitt, C. Bovay, M. Rouvet, S. Shojaei-Rami, and E. Kolodziejczyk, "Whey protein soluble aggregates from heating with NaCl: physicochemical, interfacial, and foaming properties," *Langmuir*, vol. 23, no. 8, pp. 4155–4166, 2007.
- [4] B. Bansal and X. D. Chen, "A critical review of milk fouling in heat exchangers," *Comprehensive Reviews in Food Science and Food Safety*, vol. 5, no. 2, pp. 27–33, 2006.
- [5] S. N. Tay and C. Yang, Assessment of the Hydro-Ball Condenser Tube Cleaning System, HydroBall Technics (SEA) Pte, Singapore, 2006.
- [6] H. M. Müller-Steinhagen, Handbook of Heat Exchanger Fouling: Mitigation and Cleaning Technologies, Publico Publications, Essen, Germany; Institution of Chemical Engineers, Rugby, UK, 2000.
- [7] M. Lalande and J. P. Tissier, "Fouling of heat transfer surfaces related to β-lactoglobulin denaturation during heat processing of milk," *Biotechnology Progress*, vol. 1, no. 2, pp. 131–139, 1985.
- [8] P. De Jong, R. Waalewijn, and H. J. L. J. Van Der Linden, "Validity of a kinetic fouling model for heat-treatment of whole milk," *Le Lait*, vol. 73, no. 3, pp. 293–302, 1993.
- [9] S. D. Changani, M. T. Belmar-Beiny, and P. J. Fryer, "Engineering and chemical factors associated with fouling and cleaning in milk processing," *Experimental Thermal and Fluid Science*, vol. 14, no. 4, pp. 392–406, 1997.
- [10] H. Burton, "Properties of UHT-processed milk," in *Ultra-High Temperature Processing of Milk and Milk Products*, pp. 254–291, Elsevier Applied Science Publishers, 1988.
- [11] M. T. Belmar-Beiny, S. M. Gotham, W. R. Paterson, P. J. Fryer, and A. M. Pritchard, "The effect of Reynolds number and fluid temperature in whey protein fouling," *Journal of Food Engineering*, vol. 19, no. 2, pp. 119–139, 1993.
- [12] P. J. R. Schreier and P. J. Fryer, "Heat exchanger fouling: a model study of the scaleup of laboratory data," *Chemical Engineering Science*, vol. 50, no. 8, pp. 1311–1321, 1995.
- [13] A. J. van Asselt, M. M. M. Vissers, F. Smit, and P. de Jong, "Inline control of fouling," in *Proceedings of the Heat Exchanger Fouling and Cleaning—Challenges and Opportunities*, Engineering Conferences International, Irsee, Germany, June 2005.
- [14] J. Petit, A.-L. Herbig, A. Moreau, and G. Delaplace, "Influence of calcium on β -lactoglobulin denaturation kinetics: implications

in unfolding and aggregation mechanisms," *Journal of Dairy Science*, vol. 94, no. 12, pp. 5794–5810, 2011.

- [15] M. Khaldi, P. Blanpain-Avet, R. Guérin et al., "Effect of calcium content and flow regime on whey protein fouling and cleaning in a plate heat exchanger," *Journal of Food Engineering*, vol. 147, pp. 68–78, 2015.
- [16] B. T. Nielsen, H. Singh, and J. M. Latham, "Aggregation of bovine β-lactoglobulins A and B on heating at 75°C," *International Dairy Journal*, vol. 6, no. 5, pp. 519–527, 1996.
- [17] H. Lindmark-Månsson, A. Timgren, G. Aldén, and M. Paulsson, "Two-dimensional gel electrophoresis of proteins and peptides in bovine milk," *International Dairy Journal*, vol. 15, no. 2, pp. 111–121, 2005.
- [18] A. Tolkach and U. Kulozik, "Reaction kinetic pathway of reversible and irreversible thermal denaturation of βlactoglobulin," *Dairy Science and Technology*, vol. 87, no. 4-5, pp. 301–315, 2007.
- [19] F. Dannenberg and H. G. Kessler, "Reaction kinetics of the denaturation of whey proteins in milk," *Journal of Food Science*, vol. 53, no. 1, pp. 258–263, 1988.
- [20] J. C. Leuliet, J. F. Maingonnat, and M. Lalande, "Thermal behaviour of plate heat exchangers with Newtonian and non-Newtonian fluids," in *Proceedings of the Congres Eurotherm 5 et Ier Colloque TIFAN*, pp. 1–15, Compiegne, France, 1988.
- [21] J.-W. F. A. Simons, H. A. Kosters, R. W. Visschers, and H. H. J. de Jongh, "Role of calcium as trigger in thermal β-lactoglobulin aggregation," *Archives of Biochemistry and Biophysics*, vol. 406, no. 2, pp. 143–152, 2002.
- [22] B. T. O'Kennedy and J. S. Mounsey, "The dominating effect of ionic strength on the heat-induced denaturation and aggregation of β-lactoglobulin in simulated milk ultrafiltrate," *International Dairy Journal*, vol. 19, no. 3, pp. 123–128, 2009.
- [23] M. Lalande, F. Rene, and J.-P. Tissier, "Fouling and its control in heat exchangers in the dairy industry," *Biofouling*, vol. 1, no. 3, pp. 233–250, 1989.
- [24] J. Visser and T. J. M. Jeurnink, "Fouling of heat exchangers in the dairy industry," *Experimental Thermal and Fluid Science*, vol. 14, no. 4, pp. 407–424, 1997.
- [25] C. L. Foster, M. Britten, and M. L. Green, "A model heatexchange apparatus for the investigation of fouling of stainless steel surfaces by milk. I. Deposit formation at 100°C," *Journal of Dairy Research*, vol. 56, no. 2, pp. 201–209, 1989.
- [26] P. Havea, H. Singh, and L. K. Creamer, "Characterization of heat-induced aggregates of β-lactoglobulin, α-lactalbumin and bovine serum albumin in a whey protein concentrate environment," *Journal of Dairy Research*, vol. 68, no. 3, pp. 483– 497, 2001.
- [27] G. Daufin, J. P. Labbé, A. Quemerais et al., "Fouling of a heat exchange surface by whey, milk and model fluids: an analytical study," *Le Lait*, vol. 67, no. 3, pp. 339–364, 1987.
- [28] Y. L. Xiong, "Influence of pH and ionic environment on thermal aggregation of whey proteins," *Journal of Agricultural and Food Chemistry*, vol. 40, no. 3, Article ID 91-5-154, pp. 380–384, 1992.
- [29] T. Phan-Xuan, D. Durand, T. Nicolai, L. Donato, C. Schmitt, and L. Bovetto, "Tuning the structure of protein particles and gels with calcium or sodium ions," *Biomacromolecules*, vol. 14, no. 6, pp. 1980–1989, 2013.
- [30] M. J. H. Simmons, P. Jayaraman, and P. J. Fryer, "The effect of temperature and shear rate upon the aggregation of whey protein and its implications for milk fouling," *Journal of Food Engineering*, vol. 79, no. 2, pp. 517–528, 2007.

- [31] C. P. Pappas and J. Rothwell, "The effects of heating, alone or in the presence of calcium or lactose, on calcium binding to milk proteins," *Food Chemistry*, vol. 42, no. 2, pp. 183–201, 1991.
- [32] P. Blanpain-Avet, A. Hédoux, Y. Guinet et al., "Analysis by Raman spectroscopy of the conformational structure of whey proteins constituting fouling deposits during the processing in a heat exchanger," *Journal of Food Engineering*, vol. 110, no. 1, pp. 86–94, 2012.
- [33] L. Bouvier, A. Moreau, G. Ronse, T. Six, J. Petit, and G. Delaplace, "A CFD model as a tool to simulate β -lactoglobulin heat-induced denaturation and aggregation in a plate heat exchanger," *Journal of Food Engineering*, vol. 136, pp. 56–63, 2014.

Predicting the distribution of a whey protein fouling in plate heat exchanger using the kinetic parameters of the thermal denaturation reaction of beta-lactoglobulin and the bulk temperature profiles.

Journal:	Journal of Dairy Science
Manuscript ID	JDS-16-10957
Article Type:	Research
Date Submitted by the Author:	28-Jan-2016
Complete List of Authors:	BLANPAIN-AVET, Pascal; INRA (Institut National de la Recherche Agronomique), André, Christophe; HEI Khaldi, Marwa Bouvier, Laurent Petit, Jeremy Six, Thierry; INRA, UR 638-PIHM Jeantet, Romain Croguennec, Thomas; AGROCAMPUS OUEST, Food science Delaplace, Guillaume; INRA, UR638-PIHM
Key Words:	beta-lactoglobulin, plate heat exchanger, fouling mass prediction, heat- induced beta-lactoglobulin denaturation process

SCHOLARONE[™] Manuscripts

Journal of Dairy Science

1	Inter	pretive	Summary	:

Predicting the distribution of a whey protein fouling in a corrugated plate heat exchanger
using the kinetic parameters of the beta-lactoglobulin thermal unfolding/aggregation process

4

5 Blanpain-Avet

6

7 Experiments have been conducted at pilot scale in a corrugated plate heat exchanger (PHE) 8 and fouling deposits were generated using a model beta-lactoglobulin (BLG) fouling solution. 9 This study has shown that the dry mass distribution of fouling deposits in the PHE was 10 reasonably well correlated to the ratio $R=k_{unf}/k_{agg}$ (with k_{unf} and k_{agg} the unfolding and 11 aggregation rate constants, respectively) derived from both the thermal denaturation process 12 of BLG and the imposed bulk temperature profile. The prevalence of the concentration of 13 BLG aggregates limits fouling. This suggests that the release of the unfolded BLG within the 14 bulk fluid is a key phenomenon which controls the extent of protein fouling as well as its 15 location inside the PHE. 16

17 <u>Running head</u> :

18 HEAT INDUCED BETA-LACTOGLOBULIN DENATURATION

- 19
- 20

Journal of Dairy Science

21	Predicting the distribution of a whey protein fouling in plate heat exchanger using the
22	kinetic parameters of the thermal denaturation reaction of beta-lactoglobulin and the
23	bulk temperature profiles
24	
25	P. Blanpain-Avet ^{*1} , C. André [†] , M. Khaldi [*] , L. Bouvier [*] , J. Petit [‡] , T. Six [*] , R. Jeantet
26	[§] , T. Croguennec [§] and G. Delaplace [*]
27	
28	* INRA, PIHM - UR638 (Processus aux Interfaces et Hygiène des Matériaux), UMET (Unité
29	Matériaux Et Transformations) UMR CNRS 8207, 369, rue Jules Guesde, BP 20039, 59651
30	Villeneuve d'Ascq Cedex (France). Tel. : +33(0) 320435430 ; fax : +33(0)320435426.
31	⁺ HEI (Ecole des hautes Etudes d'Ingénieur), Département Chimie, Textiles et Process
32	Innovants, 13, rue de Toul, 59046 Lille Cedex (France).
33	[‡] ENSAIA - Université de Lorraine – Laboratoire d'Ingénierie des Biomolécules (LiBio), 2
34	avenue de la Forêt de Haye – TSA 40602, 54518 Vandoeuvre-les-Nancy cedex (France)
35	[§] Agrocampus Ouest, UMR 1253, STLO (Science et Technologie du Lait et de l'Oeuf), 65 rue
36	de Saint-Brieuc, CS 84215, 35042 Rennes (France)
37	
38	
39	
40	
41	
42	
43	
44	¹ : To whom correspondence should be addressed : blanpain-avet@lille.inra.fr
45	

46 ABSTRACT

47

48 Fouling of plate heat exchangers (PHEs) is a severe problem in the dairy industry notably 49 because the relationship between the build-up of protein fouling deposits and the chemical 50 reactions taking place into the fouling solution has not yet been fully elucidated. Experiments 51 have been conducted at pilot scale in a corrugated PHE and fouling deposits were generated 52 using a model beta-lactoglobulin (BLG) fouling solution for which the BLG thermal 53 denaturation reaction constants had been previously determined experimentally. Then 54 eighteen different bulk temperature profiles within the PHE were imposed. Analysis of the 55 fouling runs shows that the dry deposit mass per channel versus the ratio $R=k_{unf}/k_{agg}$ (with k_{unf} 56 and k_{agg} representing respectively the unfolding and aggregation rate constants computed 57 from both the identification of the BLG thermal denaturation process and knowledge of the 58 imposed bulk temperature profile into the PHE channel) is able to gather reasonably well the 59 experimental fouling mass data into a unique master curve. This type of representation of the 60 results clearly shows that the heat-induced reactions (unfolding and aggregation) of the 61 various BLG molecular species into the bulk fluid is essential to capture the trend of the 62 fouling mass distribution inside a PHE. This investigation also illustrates unambiguously that 63 the release of the unfolded BLG (also called BLG molten globule) within the bulk fluid (and 64 the absence of its consumption in the form of aggregates) is a key phenomenon which 65 controls the extent of protein fouling as well as its location inside the PHE.

- 66
- Key-words : beta-lactoglobulin, plate heat exchanger, fouling mass prediction, heat-induced
 beta-lactoglobulin denaturation process, unfolding and aggregation rate constants.
- 69
- 70

7	1
	1

INTRODUCTION

72

73 Fouling of heat exchanger surfaces is a major industrial problem of milk processing plants, 74 which lowers the heat transfer efficiency, shortens run times, and requiring a daily cleaning 75 (Bansal et al., 2006; Sadeghinezhad et al., 2013). This has consequences for the dairy industry 76 both in terms of economics and sustainability. The reactor generally chosen to perform 77 heating of milk is a PHE which features a number of favourable aspects compared to tubular 78 heat exchangers or ohmic heaters. Fouling from milk-based fluids has been studied for a 79 number of years in a variety of experimental geometries. Only a summary focusing on the 80 topic of the most relevant fouling studies found in the literature will be presented here.

The key role played by BLG has been recognized in most milk fouling studies for a type A (protein) fouling that takes place in the 75-110°C temperature range (Lalande et al., 1985; Changani et al., 1997; De Jong, 1997), as classified by Burton (1968). The predominant role of BLG has been connected to its thermal unfolding and aggregation process and thus depends strongly on protein structure (Blanpain-Avet et al., 2012; Petit et al., 2013).

86 The following five steps possibly involved in the formation of fouling deposits have also been
87 suggested (Burton, 1968):

Chemical reactions in the product (i.e., thermal denaturation), which convert one or
 more of its constituent into a form capable of being deposited on the surface.

Lalande et al. (1985) were the first who investigated the effect of BLG denaturation in milk fouling and proposed that the heat denaturation of this globular protein results in the destabilization of the milk-based product and gets rise to foulant precursors which lead further to fouling on the heat transfer area. De Jong et al. (1992) applied the kinetics of the BLG denaturation to analyze fouling in PHEs and found that the amount of deposit could be correlated to the concentration of unfolded BLG and surface temperature. It is today well

Journal of Dairy Science

96	established that three protein structures are involved in the course of the thermal denaturation
97	: native (N), unfolded (U) and aggregated (A) BLG. At $pH > 6.8$ and for bulk temperature
98	below 110°C which is our concern here, native BLG (N) unfolds to form the molten globule
99	BLG (U) exposing its reactive thiol (-SH) groups. This partially unfolded species can react in
100	the product with native or other unfolded BLG via thiol/disulphide interchange or thiol
101	oxidation to form denatured BLG (A) (Oldfield et al., 2005; De Wit, 2009), and this multistep
102	scheme of the heat-induced denaturation of BLG has been clearly illustrated in the
103	investigation of Tolkach and Kulozik (2007) and is summarized in the original publication as
104	shown by Figure 1.
105	2. Transportation of the product constituents (foulant or foulant precursor) to the surface
106	depending on the flow regime.
107	3. Adsorption of a layer of some fouling material to the surface in order to form an initial
108	fouling layer.
109	Since fouling occurs at the solid/liquid interface, surface properties play an important role, as
110	shown in the context of whey protein fouling (Boxler et al., 2014).
111	4. Deposition of other fouling materials or more of the same on the initial fouling layer.
112	The fouling material could stick on the initial layer and then could participate in deposit layer
113	formation or form aggregates with other constituents into the bulk.
114	Non-native forms of BLG (unfolded and aggregated) were suggested the molecular species
115	forming the deposit; however, findings reported in the literature were not always in agreement
116	when discussing which species are involved in fouling build up and induced more fouling
117	(Bansal et al., 2006; Sadeghinezhad et al., 2013). Blanpain-Avet et al. (2012) used recently
118	the Raman spectroscopy method to show that aggregates (characterized by an irreversibly
119	altered secondary structure) were not the cause of BLG deposits.

5. Build-up of the fouling layer by deposition of further material, compensated by the
mechanical removal of material through shearing forces caused by the flow of product
across the deposited-liquid interface.

The recent studies of Jimenez et al. (2013), Collier et al. (2015) and Khaldi et al. (2015a) have shown the role of the fouling fluid composition and the flow regime in both deposit growth, adhesion and modification of the structure of fouled layers.

126

127 The type and the composition of deposits were also largely investigated. For a temperature 128 below 110°C, the deposit is a type A (protein) fouling as classified by Burton (1968), 129 consisting of 50-70 wt % proteins, 30-40 wt % minerals and 4-8 wt % fat (Fickak et al., 130 2011). Depending on the fouling solution chemistry and temperature profile, deposit can 131 contain other elements such as inorganic salts such as calcium phosphate (Rosmaninho and 132 Melo, 2006) or amorphous carbonate calcium (Jimenez et al., 2013). For a tubular heat exchanger, Belmar-Beiny et al. (1992) proposed a simple fouling model in which fouling was 133 134 correlated with the volume of fluid hot enough to produce denatured and aggregated proteins. 135 This result highlighted the importance of bulk reactions involved in denaturation, does not 136 pinpoint the nature of the chemical reactions in the product leading to fouling (unfolding 137 and/or bulk aggregation). Developing the idea proposed by Lalande et al. (1985) and Belmar 138 and Beiny (1992), Delaplace and Leuliet (1995) established a correlation between the 139 deposited dry mass and the native BLG concentrations difference between the inlet and outlet 140 of the channels; the proposed model shows unambiguously that the fouling rate depends on 141 the concentration of the denatured BLG molecules. Unfortunately it did not provide the 142 distribution of the unfolded and aggregated BLG species along the PHE channel, and failed 143 consequently to precise on how these two competitive/temperature dependent reactions 144 govern fouling mechanisms.

145

146 In spite of such progress and although the relationship between bulk reactions and protein 147 deposition has been investigated and reasonably clarified by a few authors (see for example 148 the excellent review paper of Bansal and Chen (2006)), knowledge has to be improved to link 149 the chemical reactions in the bulk (i.e., unfolding, aggregation of BLG) and the extent of 150 fouling. The present study endeavours to address some of these issues, making it crucial to 151 collect accurate and reliable information on kinetic data related to the protein fouling solution 152 used as regards the process of BLG unfolding and aggregation. The objective of this work 153 was to show, for a given temperature profile inside the PHE, the appropriateness of using the ratio R (= k_{unf}/k_{agg}) derived from the kinetic parameters determined at laboratory scale in 154 155 predicting the distribution within the PHE of the dry fouling deposit mass for various 156 operating conditions. For this purpose, a model whey protein isolate (WPI) fouling solution at a concentration of 6 wt. % and at a fixed calcium content of 264 mg.l⁻¹, for which the heat-157 158 induced BLG unfolding/aggregation process has been previously determined in the literature 159 via a kinetic model (Petit et al., 2011), was selected as a model fouling solution. MATERIALS AND METHODS 160 161 162 163 **WPI** Fouling Solution 164 165 The PHE was fouled using a reconstituted industrial whey protein isolate (WPI) with an 166 unknown pretreatment. WPI powder was at a 6 wt.% concentration (pH 6.8) and at a 6.6 mM

167 ionic calcium content (anhydrous calcium chloride, CaCl₂, 96 % min, Prolabo, VWR, USA).

168 Such an ionic calcium content (i.e., 264 mg.l⁻¹ of atom calcium content considering a

169 molecular weight of 40.08 grammes per mole) was selected as the experimental program of

170	this study was part of the research program GLOBULE (ANR-08-ALIA-08). It is noticed that
171	the conformational state of BLG within the WPI powder plays a dominant role in this study; it
172	was thus measured experimentally by RP-HPLC (using solutions of known concentrations of
173	WPI powder) that native (non aggregated) BLG represented on average 89 percent w/w in the
174	WPI powder. WPI powder composition was the following : 89 wt. % BLG (in weight percent
175	on a dry basis), α -lactalbumin < 0.01 wt.% (BLG and α -lactalbumin were measured using
176	RP-HPLC according to a methodology described by Petit et al., 2011), 0.1 wt % fat, 1.9 wt %
177	ash, moisture 4.1 wt %.
178	The experimental procedure of preparation of the fouling solution was the following: 15 kg of
179	WPI powder was added to 250 litres of deionised water maintained at 40°C in the launching
180	tank (see Fig. 2) and dissolving occurred during two hours by gently stirring the solution
181	followed by the addition of 187 g anhydrous CaCl ₂ .
182	
183	Fouling Rig and Plate Heat Exchanger Configuration
184	
185	
	Fouling experiments were conducted using the fouling rig shown schematically in Figure 2.
186	Fouling experiments were conducted using the fouling rig shown schematically in Figure 2. The fouling rig was composed of three distinct zones: a pre-heating, a heating and a holding
186 187	Fouling experiments were conducted using the fouling rig shown schematically in Figure 2. The fouling rig was composed of three distinct zones: a pre-heating, a heating and a holding zones. The pre-heating zone was composed of a tubular joule effect heater (JEH , Actijoule,
186 187 188	Fouling experiments were conducted using the fouling rig shown schematically in Figure 2. The fouling rig was composed of three distinct zones: a pre-heating, a heating and a holding zones. The pre-heating zone was composed of a tubular joule effect heater (JEH , Actijoule, Actini, 30 kW). The role of JEH is to rise the temperature of the fouling solution from 40°C to
186 187 188 189	Fouling experiments were conducted using the fouling rig shown schematically in Figure 2. The fouling rig was composed of three distinct zones: a pre-heating, a heating and a holding zones. The pre-heating zone was composed of a tubular joule effect heater (JEH, Actijoule, Actini, 30 kW). The role of JEH is to rise the temperature of the fouling solution from 40°C to PHE inlet temperature, T _{ip} ranging from 50°C to 70°C. In the JEH zone, fouling was
186 187 188 189 190	Fouling experiments were conducted using the fouling rig shown schematically in Figure 2. The fouling rig was composed of three distinct zones: a pre-heating, a heating and a holding zones. The pre-heating zone was composed of a tubular joule effect heater (JEH , Actijoule, Actini, 30 kW). The role of JEH is to rise the temperature of the fouling solution from 40°C to PHE inlet temperature, T _{ip} ranging from 50°C to 70°C. In the JEH zone, fouling was considered negligible as the denaturation temperature of BLG is 74 - 76°C (Guérin et al.,

193 a holder, was used in order to mimic industrial process conditions. A PHE was used to heat

192

water as the heating medium; a pilot-scale PHE in countercurrent configuration, supplied with

194 the fouling solution above the denaturation temperature (with a product outlet temperature,

Journal of Dairy Science

T_{op}, ranging from 70 to 95°C). The PHE (VICARB, model V7, Alpha-Laval, France) involves 195 196 21 plates (each plate was 0.495 m long and 0.15 m wideways, providing an exchange surface 197 of 0.075 m²) forming ten passes of one channel for both sides; the PHE was the investigated 198 zone for the measurement of the fouling mass distribution. The distance noted h (or flow gap) 199 between two consecutive plates was equal to 3.9 10⁻³ m. The plates had 35° corrugation angle 200 and the overall exchange surface was 1.43 m². The holding zone was 20 m in length and made up of an assembly of insulated stainless steel tubular pipes of $23.4 \ 10^{-3}$ m internal diameter. 201 202 The other elements consisted of a storage tank of 300 litres for the fouling solution whose 203 temperature was controlled at $40 \pm 1^{\circ}$ C using a tubular JEH (Actijoule, Actini, 15 kW). The 204 flow rate in the fouling rig was ensured by a volumetric pump (noted FP, Fig. 2; type PL 205 20.12/40, PCM Pompes, France). The investigated zone for the deposited fouling mass was 206 the PHE heating zone. 207 Stable process conditions were ensured by monitoring the heat exchanger inlet and outlet 208 temperatures and flow rates using the following sensors i) electromagnetic flowmeters for the 209 flow rates (± 1 % of the full scale), ii) platinum resistance probes for temperatures of all fluids 210 (\pm 0.2°C). A differential pressure transducer (Schlumberger Type D, \pm 0.25 % of the full 211 scale) was also used for the PHE pressure drop. All parameters were collected via a data 212 acquisition system (Agilent Technologies, USA) with an acquisition period of 15 s.

213

214 Fouling Trial Protocol and Deposit Weighing

215

Each fouling trial consisted of five stages:

217 - initial stabilization of hydraulic and thermal parameters using reverse osmosis (RO) water

218 circulation as product in the pilot plant,

- fouling run, with a fouling solution flow rate, Q_p , varying between 150 and 300 l.h⁻¹ (turbulent flow regime with 500< Re <1000). The Reynolds number in the PHE (Re) was computed based on physical properties of water, by assuming that the presence of a 6 wt % WPI in water does not modify them significantly as reported by Delplace and Leuliet (1995) and Delplace et al. (1997); Reynolds number was defined by : Re = $\rho.v.D_h/\mu$, where the equivalent diameter D_h is twice the average space h between two plates of the PHE (h = 0.0039 m).

226 - first RO water rinse,

227 - NaOH-HNO₃ cleaning procedure,

- final RO water rinse.

Heat exchange conditions (e.g., temperature profile, heat transfer coefficient) were totally controlled by the PHE inlet parameters : product and hot fluid inlet temperatures, respectively T_{ip} and T_{ih} , and flow rates, respectively Q_p and Q_h . Consequently, it was possible to impose different temperature profiles (i.e., bulk temperature evolution with time). During the experiments, the inlet temperature of hot water was adjusted to ensure a constant outlet fouling solution temperature in the holding zone and a constant product temperature profile along the PHE as a function of time.

In addition the temperature in the holding section was maintained equal to T_{op} in all experiments. The PHE inlet parameters associated with each fouling run are reported in Table 1. A total volume of 250 litres of the WPI fouling solution was processed for each fouling run. As the product flow rate varied, run duration ranged from 50 min at Q_p =300 l.h⁻¹ to 100 min at Q_p =150 l.h⁻¹. After reaching thermal equilibrium with RO water, the feed was switched from RO water to the fouling solution and the fouling stage was continued.

The fouling solution was not re-circulated once it was heated through the tubular JEH andPHE.

ScholarOne support: (434) 964 4100

Journal of Dairy Science

244	After the fouling experiment, fouling solution was replaced by RO water at room temperature
245	to decrease the PHE temperature and to stop the protein deposit growth. Following the first
246	rinse, the PHE was dismantled and each fouled plate was carefully removed and stored at
247	70°C for 4 hours in order to measure the dry weight of deposit onto the fouled plate.
248	Fouling mass in a single channel c (noted $m_{dep,c}$) was determined by adding up the two deposit
249	mass values obtained for the plates constituting the pass walls. The different channels (noted
250	c) were numbered from 1 to 10 from the right (inlet) to the left (outlet) of the PHE.
251	
252	Numerical Evaluation of the Bulk and Wall Temperature Profiles along the PHE
253	
254	For each experiment, the bulk temperature profile in the plate heat exchanger was obtained by
255	simulation with Sphere software (Danone, Paris, France), previously developed at the
256	laboratory applying the numerical method proposed by René et al. (1991). Once the hydraulic
257	and thermal performances of the considered PHE were implemented in this software, the bulk
258	temperatures of both fluids at any location of the heat exchanger can be calculated from the
259	knowledge of the inlet temperatures and flow rates of hot and cold fluids. The set of eighteen
260	bulk temperature profiles displayed in Figures 3a-3d were obtained by tuning the varying
261	PHE inlet parameters gathered in Table 1.
262	In Table 1 also appear the different output variables resulting from the varying PHE inlet
263	parameters imposed, namely :
264	- the product temperature at the PHE outlet (T _{op}),
265	- the temperature increase between the PHE inlet and outlet ($\Delta T_p = T_{op} - T_{ip}$),
$T_{\rm en} - T_{\rm in}$	

266 - the heat exchange efficiency
$$(\varepsilon = \frac{T_{op} - T_{ip}}{T_{ih} - T_{ip}}),$$

ScholarOne support: (434) 964 4100
- the mean residence time of the product in the PHE (
$$\tau = \frac{V_{exch}}{Q_p}$$
 where V_{exch}=3.1 litres)

These variables (T_{op} , τ , ΔT_p and ε) are global output parameters which quantify how the heat and momentum transport in the PHE are affected by varying PHE inlet parameters. The output variables gathered in Table 1 will be used latter in the article to discuss fouling mass deposit results.

In Figures 3a-3d, it could be observed that the temperature profiles have different shapes (linear or not), inducing different denaturation rates along the PHE. Note that the nominal process conditions of the reference experiment (#1, Table 1) were similar to industrial conditions: temperature increase from 60 to 85°C in the PHE in 74.6 seconds and then holding at 85°C for 16.6 seconds.

Whatever the PHE inlet parameters imposed, a good agreement between experimental and simulated values was observed for the hot water and BLG concentrate outlet bulk temperatures, which is an additional validation of the simulated temperature profiles provided by the Sphere software.

281 In Fig. 3a, the simulated plate wall temperature profiles (noted T_{wall}) along the PHE have been 282 also presented for run #1 to run #6. The plate wall temperature of each run has been evaluated 283 according to the method described by Toyoda et al. (1994) in the absence of fouling. From 284 Figure 3a analysis, it appears that for each case, T_{wall} values are very close to the bulk fluid 285 temperature (T_b) values along the PHE (the percent variation between T_{wall} and T_b in each 286 pass does not exceed + 0.5 %, if we except the two values at the PHE inlet and outlet for 287 which percent variation can reach up to 4 %). Similar magnitude of variation between bulk 288 and plate wall temperature profiles was obtained for the other runs. Consequently, for sake of 289 simplicity, it was decided (i) to consider, for the numerical simulation of the population 290 balance, that the totality of the volume of fluid in the channel is submitted to a bulk

temperature profile, and (ii) to take no account of the slight temperature gradient between the
surface and the bulk, which could modify the population balance (i.e., BLG species N, U and
A).
Determination of the Kinetic Parameters
Experimental Thermal Denaturation Tests
Thermal denaturation tests on samples of the model fouling solution in the 68 - 96°C holding
temperature range were conducted at laboratory scale, according to the methodology wholly
described by Petit et al. (2011). Briefly, this method consists in submitting samples of the
model fouling solutions (volume of 1.4 ml per sample) to two subsequent temperature ramps
by immerging polypropylene tubes (containing static samples of the model fouling solution)
in consecutive water baths. The first temperature ramp is at 60°C (i.e., under the denaturation
temperature of BLG equal to 74-76°C, Guérin et al., 2007) while the second one is tuned at
the desired holding temperature. Once the desired holding temperature is reached, the time is
set to zero and samples were progressively taken off the bath at different residence times and
cooled down quickly below 60°C using an ice water bath.
HPLC Analysis

The concentration of soluble (native) BLG species (and the resulting concentration of aggregated BLG) in each sample versus time was evaluated by analyzing each sample using RP-HPLC. RP-HPLC analysis is carried out after precipitation of the aggregated protein at pH 4.6 (using the addition of 1M acetic acid) and its removal by centrifugation (9000 rpm for 30

316 min at 4°C). The chromatographic system (Waters, Milford, Massachusetts, USA) included a 317 717 Plus autosampler, a 616 quadratic pump system, a Jones Model 7971 column oven, a 318 CLHP ACE 300 Å C4 separation column and the associated guard column (Advanced 319 Chromatography Technologies, Aberdeen, United-Kingdom), 486 UV-visible а 320 spectrophotometer and an acquisition software (Millenium 3.2, Waters). The mobile phases 321 used in HPLC were 0.1 % (v/v) trifluoroacetic acid (99 %, Acros Organics, Thermo Fisher 322 Scientific, Waltham, Massachusetts, USA) in Milli-Q water, and 0.1 % trifluoroacetic acid in 323 a mixture of 80% acetonitrile (HPLC grade, Thermo Fisher Scientific, Waltham, 324 Massachusetts, USA) and 20% Milli-Q water.

HPLC analyses were carried out using the following conditions : flow rate 1 ml.min⁻¹, 325 326 injection volume 20 µl, temperature 40°C, elution of the proteins using a gradient of 327 acetonitrile and detection of the eluted proteins at a wavelength of 214 nm. Analyses were 328 repeated three times for each standard or sample. Calibration standards in the range from 0.5 to 4 g.1⁻¹ were prepared by dissolving a known amount of lyophilized BLG powder (purchased 329 330 from Sigma-Aldrich, France, purity minimum 90 % for BLG) in Milli-Q water. For each 331 experiment, sample concentrations were calculated by averaging the three measured 332 chromatographic areas and converting this area value into a native BLG concentration using a 333 HPLC calibration curve previously determined.

334

335 Determination of the Denaturation Reaction Order (n) and the Formal Denaturation Rate
 336 Constant (k_n)

337

The reaction scheme used in this study to describe the heat-induced denaturation reaction ofBLG is derived from the work of Tolkach and Kulozik (2007), that is :

 $S \xrightarrow{k_n} A$

ScholarOne support: (434) 964 4100

(1)

- 341 with S representing the total soluble BLG species (i.e., non-aggregated BLG as measured by
- 342 HPLC in the supernatant of the heated solution assayed following the precipitation at pH 4.6)
- 343 and A representing the aggregated (insoluble) BLG; k_n is the formal denaturation rate
- 344 constant for an overall reaction order equal to n (k_n is expressed as $g^{1-n} l^{n-1} . s^{-1}$).

345 Consequently, the denaturation kinetics concerning the transformation of soluble species into 346 insoluble species could be defined by the general rate equation (2) :

$$\frac{dC_s}{dt} = -k_n C_s^n, \qquad (2)$$

348 where C_s is the soluble (non-aggregated) BLG concentration (g.l⁻¹).

349 Resolution of equation (2) provides different C_s expressions depending on whether the

350 reaction order value is equal to 1 or not (see Petit et al., 2011).

351 For
$$n \neq 1$$
, $C_s(t) = C_s^{\circ}(1 + (n-1)k_n C_s^{\circ n-1}t)^{k_{-n}}$ (3)

352 And for
$$n = 1$$
, $\ln \left(\frac{C_S(t)}{C_S} \right) = -k_n C_S \circ^{n-1} t$ (4)

- 353 with C_{s}° is the initial (time zero) BLG total soluble concentration (g.l⁻¹).
- 354 The value of n was varied from 1 to 2 (in steps of 0.1). Then $\binom{C_s(t)}{C_{s0}}^{1-n}$ for $n \neq 1$ (or

 $\ln \binom{C_s(t)}{C_{s0}}$ for n = 1) was plotted as a function of time. The reaction order that gives the best fit (according to the criterium of a Pearson product moment correlation coefficient close to r=1) of the experimental data was retained (it was found for all experiments that n=1.5). Finally, applying a denaturation reaction order of n=1.5 for the whole range of the holding temperatures investigated, the corresponding denaturation rate constant (k_n = k_{1.5}) for each holding temperature was deduced from the slope of a linear regression.

- 361
- 362 Arrhenius Plot and Determination of the Reaction Rate Constants (kunf and kagg).

363

To observe the temperature dependency of the formal denaturation rate constant, an Arrhenius plot involving the variation of the logarithm of $k_{1.5}$ with the inverse holding temperature, 1/T, (see Figure 4) was built. The Arrhenius plot exhibited two zones separated by a critical (or bend-) temperature (noted T_{critical}) close to 78°C.

368 When the temperature dependence of the formal denaturation rate constant is described by

369 equation (5), the slope break delimitates two temperature ranges with different values for

370 $\ln(k^{\circ}_{n})$ and E_{A} :

371
$$\ln(k_n) = \ln(k_n^\circ) - \frac{E_A}{R_{gas}T}$$
 (5)

372 where k_n^0 is the denaturation frequency factor (also called preexponential factor), E_A the 373 denaturation activation energy, R_{gas} the universal gas constant and T the holding temperature.

374 Considering the fact that the Arrhenius plot $(k_n \text{ versus } 1/T \text{ curve could not be described by a})$

375 unique thermal dependency, it was chosen to assume (similarly to Tolkach and Kulozik

376 (2007) and to Petit et al. (2011)) that the denaturation process of BLG is not as trivial as a 377 two-state process (i.e., $S \rightarrow A$, see eqn (1)); it has been thus assumed here to be a three-state 378 process (represented in Figure 5, as proposed by Tolkach and Kulozik (2007)).

379 In the reaction scheme represented in Fig. 5, consisting of a set of reversible consecutive reactions of unfolding and aggregation, k_{unf} and k_{agg} are the unfolding and aggregation rate 380 381 constants, respectively, n is the reaction order of the unfolding and aggregation process (n was 382 found to be equal to 1.5 for the WPI fouling solution used, see Petit et al. (2011)) and α is the 383 unfolding degree defined by Tolkach and Kulozik (2007); α is related to the temperature-384 dependent equilibrium between the species N (folded native BLG) and U_{MG} (thermally 385 induced BLG molten globule). The unfolding step corresponds to the reversible 386 transformation of N to U_{MG.} This step is thus considered as a temperature-dependent

equilibrium between native and unfolded BLG molecules. The aggregation step corresponds to the irreversible transformation of U_{MG} to A.

The advantage of using the kinetic model of Tolkach and Kulozik (2007) is that it takes account of the existence of the BLG molten globule and gives also a mathematical interpretation of the occurrence of the sharp bend on the Arrhenius plot is provided. Below the critical temperature, the denaturation reaction is limited by the unfolding reaction while above the critical temperature, BLG denaturation is limited by the aggregation reaction (Tolkach and Kulozik, 2007; Petit et al., 2011).

Consequently, linear regressions of the experimental values in the two temperature ranges allowed us to determine the kinetic parameters (frequency factors and activation energies) related to the unfolding (equation (6)) and aggregation (equation (7)) phenomena (Petit et al., 2011) :

399
$$\ln(k_{unf}) = \ln(k_{0,unf}) - \frac{E_{a,unf}}{R_{eas}T}$$
(6)

400 where k_{unf} is the unfolding rate constant depending on n (g¹⁻ⁿ.lⁿ⁻¹.s⁻¹), $k_{0,unf}$ the unfolding 401 frequency factor (g¹⁻ⁿ.lⁿ⁻¹.s⁻¹), and $E_{a,unf}$ the unfolding activation energy (J.mol⁻¹), and

$$402 \qquad \ln(k_{agg}) = \ln(k_{0,agg}) - \frac{E_{a,agg}}{R_{gas}T}$$

$$\tag{7}$$

403 where k_{agg} is the aggregation rate constant depending on n (g¹⁻ⁿ.1ⁿ⁻¹.s⁻¹), $k_{0,agg}$ the aggregation 404 frequency factor (g¹⁻ⁿ.1ⁿ⁻¹.s⁻¹), and $E_{a,agg}$ the aggregation activation energy (J.mol⁻¹).

Table 2 presents the kinetic parameters derived from eqns (6) and (7). These kinetic parameters ($k_{0,unf}$, $E_{a,unf}$, $k_{0,agg}$, $E_{a,agg}$) fully define the BLG denaturation in each temperature range and were used to calculate the concentration of the different BLG species (N, U and A)

408 induced by different temperatures profile as illustrated later in this paper.

409

410 Calculation of the BLG Unfolding Degree (α)

411

412The formation of the molten globule state (U) during thermal treatment of protein solution can413be characterized by an equilibrium between native (N) and partially unfolded BLG which414quantitatively can be described by an unfolding degree
$$\alpha$$
 (Tolkach and Kulozik, 2007):415 $\alpha = \frac{C_U}{C_N + C_U} = \frac{C_U}{C_s}$ (8)416The value of the unfolding degree α varies between 0 (all BLG molecules are native, low417temperature area) and 1 (all BLG molecules are completely unfolded, high temperature area).418The concentration of unfolded BLG (C_U) and native BLG (C_N) during the heat treatment can419be derived from eqn. (8):420 $C_U = \alpha.C_s$ (9)421and consequently,422 $C_N = (1 - \alpha).C_s$ (10)423In the aggregation - limited area (at low values of 1/T), the unfolding of BLG is completed so424takes the value of 1 and, consequently, the term $n.ln(\alpha) = 0$. Therefore, the formal BLG425takes the value of 1 and, consequently, the term $n.ln(\alpha) = 0$. Therefore, the formal BLG426denaturation rate constant is confounded with the aggregation rate constant (Tolkach and427Kulozik, 2007): $ln(k_n) = ln(k_{ngg})$.428With decreasing temperature into the unfolding-limited temperature area (1/T values430Kulozik, 2007): $ln(k_n) = ln(k_{ngg})$ in this area. Therefore, in the unfolding-limited431sharp edge between (k_{und}) and (k_{sgg}) in this area. Therefore, in the unfolding-limited432temperature area, α can be calculated from the formal velocity constant k_n and the433

435
$$\alpha = \exp\left(\frac{\ln(k_n) - \ln(k_{agg})}{n}\right)$$
(11)

436 Table 3 shows a calculation of the unfolding degree α according to equation (11) with n=1.5 437 using the formal denaturation rate constant (i.e., k_{1.5}) in the 45-110°C temperature range. 438

439 Determination of the Concentration Profiles of the BLG Species (N, U, A)

440

441 The numerical simulation of the concentration profiles of the different BLG species within the

442 PHE (i.e., C_N , C_U , $C_A = f$ (mean residence time, τ)) was computed from the knowledge of :

(i) the kinetics of the heat-induced BLG unfolding and aggregation reactions
(measured in the range 68-96°C), which is schematized by the set of reversible
consecutive reactions presented in Fig. 5 (Tolkach and Kulozik, 2007);

446 (ii) the simulated profile of the bulk fluid temperature within the PHE for given PHE447 inlet parameters in the clean steady-state.

More precisely, the evaluation of the concentration profile of the various BLG species (i.e., native N, unfolded U and aggregated A) along the PHE was obtained using the Runge-Kutta 4 numerical method to solve equations (2), (6), (7), (8), (9), (10) and (11). The concentration at any mean residence time (noted τ) of the irreversibly aggregated BLG (C_A) can be calculated as the difference between the calculated concentration of the total soluble species (i.e., C_N + C_U) and the starting (initial) measured BLG concentration of the WPI fouling solution.

The temperature-dependent reaction rate constants (k_{unf} and k_{agg}) are derived from eqns (6) and (7) by using the kinetic parameters included in Table 2. Discretization was carried out with a time step equal to 0.01 second, which resulted in a sufficiently good accuracy of calculated data. The simplifying assumptions used in the calculation of the concentrations C_N , C_U and C_A are the following : (i) the flow in the whey protein treating PHE is considered as a

	one-dimensional (1-D) plug flow model, (ii) the temperature profile into the bulk fluid is
460	linear in each channel c of the PHE, i.e., local temperature gradients within the thermal
461	boundary layer are not taken into account, and (iii) the loss of the unfolded BLG protein along
462	the PHE involved in the deposition process is not considered.
463	
464	Statistical Analysis
465	
466	Statistical analyses of deposit mass were performed using SigmaStat 3.1 and SigmaPlot 10.0
467	software (Systat Software, Inc., Point Richmond, CA). The level of significance was pvalue
468	<0.05.
469	
470	RESULTS AND DISCUSSION
471	
472	Influence of the Temperature Profiles on Dry Deposit Masses Measured in each PHE
473	Channel and on the Concentration Profiles within the PHE for the various BLG Species.
474	
475	Figures 6a, 6b, 6c, 6d and 6e present the dry deposit masses measured in each channel at the
476	end of the experiments for five representative fouling runs (corresponding to experiments
476 477	end of the experiments for five representative fouling runs (corresponding to experiments $\#1,\#2,\#3,\#6$ and $\#15$, respectively) together with the concentration profiles of the different
476 477 478	end of the experiments for five representative fouling runs (corresponding to experiments #1,#2, #3, #6 and #15, respectively) together with the concentration profiles of the different BLG species (N, U, A) determined numerically along the PHE. For sake of clarity, scales
476 477 478 479	end of the experiments for five representative fouling runs (corresponding to experiments #1,#2, #3, #6 and #15, respectively) together with the concentration profiles of the different BLG species (N, U, A) determined numerically along the PHE. For sake of clarity, scales concerning some protein species concentrations have been divided by a shift factor and are
476477478479480	end of the experiments for five representative fouling runs (corresponding to experiments #1,#2, #3, #6 and #15, respectively) together with the concentration profiles of the different BLG species (N, U, A) determined numerically along the PHE. For sake of clarity, scales concerning some protein species concentrations have been divided by a shift factor and are indicated in the legend. As expected, the distribution of dry masses of deposit within the PHE

482 more severe is the thermal treatment, the more the distribution of dry masses of deposit are

483 located in the first channels of the PHE. For low temperature treatments, dry deposit masses484 are more important close to the PHE outlet.

485 As for the dry deposit masses, the apparition and disappearance of protein species (N, U, A) 486 appear to be significantly impacted by the temperature profile. In general, species U appears 487 earlier and at a higher concentration in the PHE than species A. This confirms that unfolding 488 and aggregation reactions have a predominant area depending on the temperature range. 489 Species N disappears progressively along the PHE but at different residence times depending 490 on the temperature profile imposed. Figs. 6a to 6d show evidences of the nonlinearity of 491 population species balance : concentration C_A is not simply complementary to concentration 492 C_{N} .

493 Concerning the species concentration, it could be observed that :

494 i) when relatively low temperature ($45^{\circ}C < T_{ip} < 70^{\circ}C$) compared to the denaturation 495 temperature of BLG (circa 74-76°C, Guérin et al., 2007) is set at the PHE inlet, the 496 concentration of N (C_N) is close to its initial value (i.e. $\approx 53.3 \text{ g.l}^{-1}$) and U remains 497 at a low concentration level ($C_U < 8.9 \text{ g.l}^{-1}$) whereas A is either not detected or is at 498 a concentration level that is considerably lower than C_U ($C_A < 2.7 \text{ g.l}^{-1}$) (Figures 499 6a, 6c and 6e).

- 500 ii) A significant concentration of A (different of zero) occurs only for run #6 (Fig. 6d) 501 for which the inlet PHE temperature was the highest (T_{ip} =70°C).
- 502 iii) The concentration profile of the unfolded BLG (C_U) is characterized by: (i) an 503 initial increase depending on the product temperature, (ii) a maximum value 504 appearing earlier in the PHE if the product temperature is high and (iii) following 505 this maximum, a decrease at the expense of C_A up to the PHE outlet.
- 506 iv) The concentration of the aggregated BLG (C_A) increased strongly from the 507 channel for which C_U reached its maximum value (Figures 6a and 6d), then

508 increased more slowly up to the PHE outlet. The concentration profile of the 509 aggregated BLG (C_A) did not exhibit a maximum contrary to what observed for 510 C_U .

The BLG unfolding and aggregation process was thus markedly impacted by the average temperature prevailing in the PHE, which is agreement with previous studies using the same WPI fouling solution (Petit et al., 2011, 2013). Indeed the aggregation level measured at the PHE outlet increased from 49.8 % to 97.3 % for a T_{op} value ranging from 70 to 95°C, respectively. This observation is due to the significant enhancement of the BLG unfolding and aggregation kinetics with temperature as described by the Arrhenius equation.

The simulated concentration profiles presented in Fig. 6 are consistent with the distribution of C_N , C_U and C_A calculated using CFD in the modeling of both a single-channel PHE during pasteurization of milk (De Bonis and Ruocco, 2009). These concentration profiles are also in good agreement with the typical concentration - time curves reported by De Jong et al. (1992), who have considered however that the heat-induced denaturation of BLG could be described as a consecutive reaction of unfolding and aggregation (N \rightarrow U \rightarrow A), which differs from the set of reversible consecutive reactions used in this study (see Fig. 5).

524

525Interrelation between the Bulk BLG Species Concentrations and the Dry Deposit Mass526Distribution : Predominant Role of the Unfolded BLG (U) in the Build-up of Fouling

527

In order to make the connection between the role of the bulk protein unfolding and aggregation process and the mechanism of deposit formation, the experimental distribution of the dry deposit mass along the PHE channels c (noted $m_{dep,c}$) and the variation of the concentration of unfolded (C_U) and aggregated (C_A) BLG have been analyzed simultaneously.

From this analysis, it appears clearly that aggregates are not the precursor of deposit. Indeed, the appearance of BLG aggregates is subsequent to fouling (Figures 6a, 6c and 6e) and one can observe a decrease in the deposited mass when C_A increases sharply for all runs. This confirms that aggregates are not major species involved in whey protein deposit formation. This investigation also illustrates unambiguously that the release of unfolded BLG within the bulk fluid (and its non-consumption in the form of BLG aggregates) is a key phenomenon which controls the extent of protein fouling as well as its location inside the PHE.

This assumption is in agreement with previously results reported by Blanpain-Avet et al. (2012) through a Raman analysis of the first deposit layer located at the *stainless steel-fouling layer* interface; indeed Blanpain-Avet et al. (2012) clearly demonstrated that protein species present in the first layer of the deposit have a secondary structure which differs significantly from that of the aggregates, BLG aggregates being characterized by an irreversibly altered secondary structure.

This result is also in coherence with authors who have argued that favouring the formation of protein aggregates could be a way to reduce fouling (De Jong et al. 1992; Delplace et al., 1997; Van Asselt et al., 2005). It can also be seen that the experimental deposit mass continually increases up to the pass in the PHE where the aggregation rate increases significantly. The same observation was made by de Jong et al. (1993) in the case of the modelling of whole milk fouling in a PHE.

Fig. 6 also indicates that, in the absence of species A, very little U species into the bulk fluid is enough for the observation of a BLG deposit. This result is in agreement with the observation of Delplace and Leuliet (1995) who have noted that very low quantities of denatured BLG are required to observe an increase in the dry deposit mass.

As shown in Figure 6, the hypothesis that species U is the precursor of a whey protein fouling

556 in the 70-95°C temperature range and that the aggregation reaction limits fouling, appears to

be plausible since the fouling rate, derived from the measurement of deposit masses,decreases when the aggregate concentration increases.

559 This result is also in agreement with the work of Petit et al. (2013) who have led a 560 dimensional analysis to identify the dimensionless numbers governing the fouling and the 561 aggregation formation when a WPI fouling solution (of the same chemical composition) is 562 heated in a pilot scale PHE. Indeed these authors have shown that the total dry masses of 563 deposit collected in the PHE were essentially governed by the Arrhenius exponential factor of 564 the BLG unfolding reaction, that is $exp(-E_{a,unf}/(R_{gas},T_{ip}))$, which combines in a single 565 dimensionless number the overwhelming influence of temperature and BLG reactivity as 566 regards the unfolding. This is also in agreement with the statement of Bouvier et al. (2014) 567 who have underlined, using a 2-D CFD analysis and experimental fouling trials, that the 568 unfolded BLG is a precursor of the dry deposit at the heat transfer wall.

569

570 Modelling the Distribution of the Dry Deposited Fouling Mass by means of the Ratio R=

571 k_{unf}/k_{agg} derived from the Kinetic Parameters

572

To consolidate the hypothesis of a direct contribution of the competitive reactions of unfolding and aggregation taking place in the bulk fluid to the deposit formation rate within the PHE, an attempt has been made to model the dry deposit mass per channel through the ratio R between the unfolding reaction rate constant (noted k_{unf}) and the aggregation reaction rate constant (noted k_{agg}).

For each channel of the PHE, the ratio $R=k_{unf}/k_{agg}$ was calculated at the arithmetic mean bulk temperature of the channel, $T_{c,b}$ (i.e., corresponding to the approximated bulk temperature at the middle point of the channel noted c, by assuming a linear temperature profile along the PHE) :

582
$$T_{c,b} = \frac{T_{c,in} + T_{c,out}}{2}$$
 (12)

where $T_{c,in}$ and $T_{c,out}$ are the temperatures at the inlet and outlet of the channel c of the PHE, respectively.

585 R is a dimensionless ratio indicating the degree of completion of the heat-induced 586 denaturation reaction, which is of course strongly affected by the temperature level and by the 587 physico-chemical environment of the fouling solution (i.e., protein concentration and 588 composition, mineral content affecting the kinetic denaturation rate constant). When we 589 transform into logarithmic scale, it is seen that the ratio R represents the difference in logarithm between the unfolding rate constant and the aggregation one, i.e., $\ln(k_{unf}) - \ln(k_{agg})$. 590 591 R is thus equal to 1 at the critical temperature ($T_{critical}$) of the sharp edge on the Arrhenius plot 592 (Figure 4).

Figure 7 represents the variation of the measured dry deposit mass per channel (noted $m_{dep,c}$) with the ratio R for all the PHE temperature profiles imposed. For sake of clarity, fouling trials are classified in different symbols, indicating the independent process parameters which have varied (T_{op} : red triangle, ΔT_p : green square, τ : black circle and ε : blue diamond) and lead to a different temperature profile.

Analysis of Figure 7 shows that the $m_{dep,c}$ versus R representation is capable reasonably well of gathering all the experimental dry deposit mass per channel data onto a unique fitting master curve, independently of the temperature profile imposed. For all fouling runs, $m_{dep,c}$ versus R data could be described by the following four parameters nonlinear function :

602
$$m_{dep,c} = a + b \cdot \exp\left[-0.5 \cdot \left(\frac{\ln\left(\frac{R}{c}\right)}{d}\right)^2\right]$$
 (13)

A reasonably good fit could be reached ($r^2=0.728$, p<0.0001). Raw residuals (i.e. $y_i - \hat{y}_i$, data not shown) were found to be quite well distributed around zero indicating that no bias was introduced by the model.

This result representation clearly shows that chemical reaction on the bulk control the dry fouling mass distribution inside a PHE. This result also shows the importance of determining a priori the denaturation rate constants to prdict the fouling mass distribution.

609 The m_{dep,c} versus R curves were characterized by different zones : (i) an initial sharp increase

610 at values of R close to zero, followed by a maximum of the deposit mass at a certain value of

611 R (noted $R^* = k_{unf}/k_{agg}$), (ii) then beyond R^* it is observed a gradual decrease in the deposit 612 mass with increasing values of R.

613 It is noticed that the R values at which fouling begins to form are very close to zero:

614 R=0.0065, 0.01, 0.0305 and 0.037 respectively for the different serie ΔT_p , T_{op} , ϵ and τ (Table

615 4), that is, at $T_{c,b} \ll T_{critical}$ within the unfolding-limited temperature area; this confirms, as

shown in Figure 6, that very little U species is required into the bulk fluid for BLG fouling to

Interestingly, the maximum of the deposit mass derived from the fitting curve (beyond which m_{dep,c} decreases gradually, see Figure 7) takes place at an almost constant R^{*} value for the investigated operating conditions : $0.339 < R^* < 0.659$ for the different series, corresponding to bulk temperatures (noted T^{*}) ranging from 71.8 to 75.5 °C (Table 4), i.e., at a temperature inferior to T_{critical}.

From the plot of the fitting curve of the m_{dep,c} versus R data points for all experiments (Figure
7), several valuable insights into the BLG fouling mechanisms can be drawn.

Fouling first builds up and deposit mass increases sharply in the unfolding-limited temperature area up to a critical value of the ratio R, i.e., $R^* \approx 0.405$ where the deposit mass is the highest, as shown in Figure 7. At temperatures below 78°C (T_{critical}) corresponding to the

unfolding-limited temperature area, the unfolding degree is insufficient for the irreversible
aggregation reaction to be predominant: the probability of a collision between two unfolded
BLG molecules is low under these conditions so that the fouling growth until the maximum of
deposited fouling mass is primarily caused by the deposition of unfolded BLG.

Beyond $R^* \approx 0.405$ at an increasing temperature along the PHE, it is observed in Figure 7 an important and significant decrease in the deposit mass up to a R value close to about 1 beyond which the rate of fouling mass decrease reduces progressively within the aggregation-limited temperature area. In the aggregation-limited area, BLG unfolding is completed so that only the unfolded BLG molecules exist in the solution (i.e., $\alpha=1$, Fig. 4).

This decrease in fouling may be interpreted and explained by the consumption of the unfolded BLG molecules for the formation in the bulk fluid of BLG aggregates: an increase in the collision probability between unfolded BLG molecules will promote aggregate formation rather than deposit layer formation as pointed out by Delplace et al. (1997).

641 From the data analysis in the sections above, the predominant role of the unfolded BLG in the 642 rise of fouling has been shown. The representation adopted (i.e., m_{dep,c} versus R) gives a 643 concise and unprecedented view of the competitive reactions (unfolding and aggregation) 644 governing the growth of fouling for a WPI solution. This curve (Fig. 7) was validated when 645 T_{wall} values are very close to T_b values along the PHE (see Fig. 3a). This curve made it possible to explain the decrease in the deposit mass which occurs when CA exponentially 646 647 increases along the PHE. This tool gives much more information as regards the fouling 648 behaviour of a product than the difference between the inlet and outlet native BLG 649 concentrations of the channel, which is generally considered for the prediction of fouling 650 rates. Indeed, models involving the difference between the inlet and outlet native BLG 651 concentrations of the channel are not able to explain the decrease in mass deposit when the 652 average temperature of the bulk and the unfolded protein species concentration increase.

Thus, the determination of the ratio $R=k_{unf}/k_{agg}$ that could be easily derived from the identification of the heat-induced BLG denaturation kinetic by means of laboratory measurements, made it possible to obtain useful guidelines on the extent of the deposited fouling mass and its distribution.

657 Interestingly, it should also be stated that this approach has been successfully used by Khaldi 658 et al. (2015 b,c) for another PHE arrangement and a substantially different derivative milk-659 based product (see Figure 8 extracted and adapted from Khaldi et al. (2015 b,c). Indeed the 660 PHE set-up consisted of 5 passes (one channel-per-pass) for Khaldi et al. (2015 b,c) instead of 661 10 passes (one channel-per-pass) in this study. In our case, the fouling solution is a BLG 662 concentrate composed almost exclusively of BLG (89 wt. % in BLG plus less than 0.01 wt. % of α -lactalbumin) with 264 mg.¹ of ionic calcium. On the other hand, for Khaldi et al. (2015) 663 b, c), the product was a 1 wt. % reconstitued WPI solution (Promilk 852 FB1 from IDI SAS, 664 665 Arras, France) composed of a whey protein mixture (66 wt. % BLG plus 13 wt. % α lactalbumin) containing 100 mg.l⁻¹ of ionic calcium (more details can be found in the paper of 666 667 Khaldi et al. (2015 b, c)). In the same way, the fouling mass per channel was reasonably well 668 correlated to the ratio R as shown by Fig. 8 and, whatever the temperature profile, a master 669 fitting curve could be determined (Khaldi et al., 2015 b,c); the shape of the fitting curve is different since the kinetic denaturation parameters ($k_{0,unf}$, $k_{0,agg}$, $E_{a,unf}$, $E_{a,agg}$) are not the same. 670 671 These consolidated results show : (i) the robustness of the reaction engineering approach used 672 here to the analysis of fouling, (ii) that the identification of the heat-induced denaturation 673 kinetics of BLG by means of laboratory scale experiments, i.e., in static conditions in the 674 absence of fluid flow, is a prerequisite for the control of a whey protein fouling. Additionally, 675 as our reaction engineering approach to the analysis of fouling was found to be applicable and 676 appropriate for another PHE geometry (see Fig. 8), this gives some confidence that our 677 predictive model represented in Fig. 7 is likely to be broadly applicable and likely not to be

678 specific to the particular set-up (geometry) investigated. Also it would be interesting, through 679 further experiments using very different types of heat exchanger, to see to what extent the 680 predictive model is specific to the PHE type and geometry used, as the ratio R is certainly 681 closely related to the flow and heat characteristics of the PHE (characteristics comprise the 682 mixing intensity, residence time distribution, global heat transfer coefficient and so forth).

- 683
- 684

685

CONCLUSIONS

686 Deposits were generated by means of a fouling-rinsing sequence performed at pilot scale 687 using a model WPI solution for which the BLG heat-induced denaturation has been 688 previously determined via a kinetic model (Petit et al., 2011). A PHE in counter-current 689 configuration and equipped with straight corrugated plates was used in the pilot plant. The 690 experimental design used for the heat treatment consisted of the variation of PHE inlet 691 parameters, which induced various thermal profiles for the fouling solution within the PHE. 692 Four independent process parameters, that is, the product temperature at the PHE outlet (T_{op}), 693 the mean residence time (τ), the temperature increase between the PHE inlet and outlet (ΔT_p) 694 and the heat exchange efficiency (ε) could be used to describe the shape of the temperature 695 profile within the PHE and discuss separately their influence on fouling behaviour. 696 The comparison between the BLG concentration profiles and the BLG fouling deposit

697 distribution along the PHE allowed us to put forward several important fouling mechanisms: 698 i) there is a decrease in the deposited mass when the aggregation process prevails, well before 699 that C_U decreases, ii) very little U species into the bulk fluid is required for BLG to be 690 deposited onto the plates of the heat exchanger, and iii) the dry deposit mass distribution 701 depends pretty much on a single parameter, the ratio between the unfolding rate constant and 702 the aggregation rate constant (noted R). The analysis of the database of the experimental runs

703 clearly shows that the mass of dry deposit on each pass of the PHE is fairly well correlated 704 with R and that this parameter alone is able to predict the location of the fouling deposit. It is observed that the amount of deposited BLG decreases when the ratio R exceeds $R^* = k_{unf}/k_{agg}^*$ 705 706 ≈ 0.4 (Figure 7). Results definitely assigned the unfolded BLG (or BLG in the molten globule state) as the precursor species of fouling. It could also be seen (see Fig. 3a) that T_{wall} and T_{b} 707 can be considered as being parallel and very close (the percent variation between T_{wall} and T_b 708 values does not exceed + 0.5 %). Therefore the type of reaction (i.e., unfolding versus 709 710 aggregation) is very unlikely to be changed between the bulk fluid and the plate wall surface, 711 which validates the appropriateness of the calculated concentration profiles (i.e., BLG species 712 N, U and A) presented in Figures 6a-6e. 713 This study suggests that bulk processes are important in whey protein fouling in the 45-95°C

714 range and that the prevalence of the concentration of BLG aggregates limits fouling. It also 715 appears that knowledge of the appropriate kinetic constants (for the unfolding and aggregation 716 mechanism) is of great importance as the concentration evolution of the different BLG 717 species (N, U and A) within a PHE depends strongly on kinetic constants (especially the 718 activation energy). Moreover, the distribution of protein species is strongly related to the 719 distribution of the dry fouling masses.

Further work is ongoing to determine to what extent the reaction engineering approach to the analysis of fouling developed in this study depends upon the geometry and arrangement of the PHE, and whether it can also be applied on various plate-type heat exchangers (e.g., plate-fin heat exchangers).

- 724
- 725

ACKNOWLEDGEMENTS

726

727	This	work was carried out within the framework of an ARCIR ("Actions de Recherche
728	Conce	ertées d'Initiative Régionale") program (European regional development fund
729	09 31	0 243 and 03 310 241), which joined non elucidated scientific issues of the Globule
730	projec	et (ANR-08-ALIA-08).
731		
732		NOMENCLATURE
733		
734	a	adjusted parameter in the nonlinear regression using eqn. (13)
735	b	adjusted parameter in the nonlinear regression using eqn. (13)
736	c	adjusted parameter in the nonlinear regression using eqn. (13)
737	C_{A}	calculated concentration of aggregated BLG (A) along the PHE channels (kg.m ⁻³)
738	C_N	calculated concentration of native BLG (N) along the PHE channels (kg.m ⁻³)
739	C_s	concentration of total soluble (i.e. non-aggregated) BLG (noted S) (i.e., $C_s = C_N + C_U$)
740		(kg.m ⁻³)
741	C_{S}°	concentration of initial (time zero) total soluble (i.e. non-aggregated) BLG (kg.m ⁻³)
742	$C_{\rm U}$	calculated concentration of unfolded BLG (U) along the PHE channels (kg.m ⁻³)
743	d	adjusted parameter in the nonlinear regression using eqn. (13)
744	D_{h}	equivalent diameter between two plates of the PHE (=2h) (m)
745	Ea	activation energy (J. mol ⁻¹)
746	E _{a,agg}	BLG aggregation activation energy (J. mol ⁻¹)
747	$E_{a,unf}$	BLG unfolding activation energy (J. mol ⁻¹)
748	h	height of the liquid stream between two plates of the PHE (=0.0039) (m)
749	$k_{0,agg}$	aggregation pre-exponential factor (kg ¹⁻ⁿ .m ⁻³⁽¹⁻ⁿ⁾ .s ⁻¹)
750	$k_{0,unf}$	unfolding pre-exponential factor (kg ¹⁻ⁿ .m ⁻³⁽¹⁻ⁿ⁾ .s ⁻¹)
751	k _{agg}	aggregation reaction rate constant (kg ¹⁻ⁿ .m ⁻³⁽¹⁻ⁿ⁾ .s ⁻¹)

 k_n formal BLG denaturation rate constant for a reaction order equal to n, as defined by

753 eqn. (2)
$$(kg^{1-n}.m^{-3(1-n)}.s^{-1})$$

- 754 k_{unf} unfolding reaction rate constant (kg¹⁻ⁿ.m⁻³⁽¹⁻ⁿ).s⁻¹)
- $m_{dep,c}$ measured dry fouling deposit mass in a channel c along the PHE (kg)
- n heat-induced denaturation reaction order (experimentally n=1.5), as defined by eqn
- 757 (2), dimensionless
- 758 Q_h hot water flow rate in the fouling stage (l.h⁻¹)
- 759 Q_p WPI fouling solution flow rate in the fouling stage (l.h⁻¹)
- 760 r correlation coefficient, dimensionless
- 761 R ratio between the unfolding rate constant and the aggregation rate constant, calculated

in the bulk solution (= k_{unf}/k_{agg}), as defined by eqns (6) and (7)), dimensionless

- 763 R^* value of the ratio R=k_{unf}/k_{agg} corresponding to the maximum of the fitted m_{dep,c} versus
- 764 R curve, i.e., $R^* = k_{unf}/k_{agg}^*$, for which the dry deposit mass $m_{dep,c}$ is the highest,
- 765 dimensionless
- 766 R_{gas} universal gas constant (=8.314) (J.mol⁻¹.K⁻¹)
- 767 Re average Reynolds number of the fouling solution in the fouling step between two
- 768 plates of the PHE (= $\rho.v.D_h/\mu$), dimensionless
- 769 t time (s)
- 770 T temperature (°C)
- 771 T* bulk temperature associated to the ratio $R^* = k_{unf}/k_{agg}^*$ corresponding to the maximum
- of the fitted $m_{dep,c}$ versus R curve, for which the deposit mass $m_{dep,c}$ is the highest (°C)
- 773 T_b bulk fluid temperature (°C)
- 774 $T_{c,b}$ arithmetic mean of $T_{c,in}$ and $T_{c,out}$, as defined by eqn. (12), corresponding to the 775 approximated bulk temperature at the middle point of a channel c (°C)

776	$T_{c,in}$	temperature at the inlet of the channel c of the PHE, derived from the numerical	
777		method proposed by René et al. (1991) (°C)	
778	T _{c,out}	temperature at the outlet of the channel c of the PHE, derived from the numerical	
779		method proposed by René et al. (1991) (°C)	
780	T _{critical}	critical temperature of the Arrhenius plot, delimiting the unfolding-limited range and	
781		the aggregation-limited range (°C)	
782	T_{ih}	hot water temperature at the PHE inlet (°C)	
783	T_{ip}	WPI fouling solution temperature at the PHE inlet (°C)	
784	T_{oh} hot water temperature at the PHE outlet (°C)		
785	T _{op}	WPI fouling solution temperature at the PHE outlet (°C)	
786	T_{wall}	plate wall temperature (°C)	
787	V	average crossflow velocity of the fouling solution in the fouling step between two	
788		plates of the PHE (m.s ⁻¹)	
789	V _{exch}	PHE volume (m ³)	
790	yi	observed (experimental) value of the dry deposit mass along the various channels c of	
791		the PHE (i.e., equal to $m_{dep,c}$) as a function of the ratio R, see Fig. 7 (kg)	
792	\hat{y}_i	fitted value of the measured dry deposit mass along the various channels c of the PHE	
793		as a function of the ratio R, as defined by eqn. (13) (kg)	
794			
795	Symbo	ols	
796			
797	α	unfolding degree of BLG, i.e., ratio between the concentration of the partially	
798		unfolded BLG (C_U) and native BLG (C_N) under the conditions used, as defined by	
799		eqns (8) and (11), dimensionless	
800	μ	dynamic viscosity of solution (Pa.s)	

801	ρ	specific mass of solution (kg.m ⁻³)	
802	ΔT_{p}	WPI fouling solution temperature increase between the PHE inlet and outlet	
803		$(=T_{op} - T_{ip})$ (°C)	
804	τ	mean residence time of the WPI fouling solution in the PHE (s)	
805	3	heat exchange efficiency on the product side, dimensionless	
806			
807	Subsc	eript	
808			
809	agg	aggregation	
810	b	bulk	
811	c	channel of the PHE	
812	unf	unfolding	
813			
814	Abbr	eviations	
815			
816	А	aggregated BLG	
817	BLG	beta-lactoglobulin	
818	JEH	joule effect heater	
819	Ν	native BLG	
820	PHE	plate heat exchanger	
821	RO	reverse osmosis	
822	RP-H	PLC reverse phase - high performance liquid chromatography	
823	S	total (time dependent) soluble (i.e. non-aggregated) BLG species quantified by RP-	
824		HPLC	
825	U	unfolded BLG, also called BLG molten globule	

- V_{MG} BLG in the molten globule state
- 827 WPI whey protein isolate
- 828

829	REFERENCES
830	
831	Bansal, B., and X. D. Chen. 2006. A critical review of milk fouling in heat exchangers.
832	Comprehensive Reviews in Food Science and Food Safety. 5: 27-33.
833	
834	Belmar-Beiny, M.T., and P. J. Fryer. 1992. Bulk and surface effects on the initial stages of
835	whey fouling. Trans. IChemE, Part C. 70:193-198.
836	
837	Blanpain-Avet, P., A. Hédoux, Y. Guinet, L. Paccou, J. Petit, T. Six, and G. Delaplace. 2012.
838	Analysis by Raman spectroscopy of the conformational structure of whey proteins
839	constituting fouling deposits during the processing in a heat exchanger. J. Food Eng. 110
840	(1):86-94.
841	
842	Bouvier, L., A. Moreau, G. Ronse, T. Six, J. Petit, and G. Delaplace. 2014. A CFD model as a
843	tool to simulate β -lactoglobulin heat-induced denaturation and aggregation in a plate heat
844	exchanger. J. Food Engineering, 136:56-63.
845	
846	Boxler, C., W. Augustin, and S. Scholl. 2014. Influence of surface modification on the
847	composition of a calcium phosphate-rich whey protein deposit in a plate heat exchanger.
848	Dairy Science and Technology, 94:17-31.
849	
850	Burton, H. 1968. Deposit of whole milk in treatment plants - a review and discussion. Journal
851	of Dairy Research, 34:317-330.

852

853	Changani, S.D., M.T. Belmar-Beiny, and P.J. Fryer. 1997. Engineering and chemical factors		
854	associated with fouling and cleaning in milk processing. Experimental Thermal and Fluid		
855	Science, 14:2-406.		
856			
857	Collier, N., D. Callens, P. Campistron, B. Nongaillard, M. Jimenez, G. Alogaili, P. Debreyne,		
858	and Delaplace, G., 2015. Ultrasonic adhesion measurement of whey protein fouling. Heat		
859	Transfer Engineering, 36 (7):1-9.		
860			
861	De Bonis, M. V., and G. Ruocco. 2009. Conjugate fluid flow and kinetics modeling for heat		
862	exchanger fouling simulation. International Journal of Thermal Sciences. 48:2006-2012.		
863			
864	De Jong, P., S.Bouman, and H. J. Van Der Linden. 1992. Fouling of heat treatment equipment		
865	in relation to denaturation of β -lactoglobulin. Journal of the Society of Dairy Technology. 45		
866	(1):3-8.		
867			
868	De Jong, P., R. Waalewijn, and H. J. L. J. Van Der Linden. 1993. Validity of a kinetic fouling		
869	model for heat-treatment of whole milk. Lait. 73 (3):293-302.		
870			
871	De Jong, P. 1997. Impact and control of fouling in milk processing. Trends in Food Science		
872	and Technology, 8:401-405.		
873			
874	De Wit, J.N. 2009. Thermal behaviour of bovine β -lactoglobulin at temperatures up to 150°C.		
875	A review. Trends in Food Science and Technology. 20:27-34.		
876			

877	Delplace, F., and JC. Leuliet. 1995. Modelling fouling of a plate heat exchanger with
878	different flow arrangments by whey protein solutions. Trans. IChemE, Part C. 73:112 - 120.
879	
880	Delplace, F., JC. Leuliet, and D. Levieux. 1997. A reaction engineering approach to the
881	analysis of fouling by whey proteins of a six-channels-per-pass plate heat exchanger. J. Food
882	Eng. 34:91-108.
883	
884	Fickak, A., A. Al-Raisi, and X. D. Chen. 2011. Effect of whey protein concentration on the
885	fouling and cleaning of a heat transfer surface. J. Food Eng. 104:323-331.
886	
887	Guérin, R., G. Ronse, L. Bouvier, P. Debreyne, and G. Delaplace. 2007. Structure and rate of
888	growth of whey protein deposit from <i>in situ</i> electrical conductivity during fouling in a plate
889	heat exchanger. Chemical Engineering Science. 62:1948-1957.
890	
891	Jimenez, M., G. Delaplace, N. Nuns, S. Bellayer, D. Deresmes, G. Ronse, G. Alogaili, M.
892	Collinet-Fressancourt, and M. Traisnel. 2013. Toward the understanding of the interfacial
893	dairy fouling deposition and growth mechanisms at a stainless steel surface: A multiscale
894	approach. J. Colloid and Interface Science. 404:192-200.
895	
896	Khaldi, M., P. Blanpain-Avet, R. Guérin, G. Ronse, L. Bouvier, C. André, S. Bornaz, T.
897	Croguennec, R. Jeantet, and G. Delaplace. 2015a. Effect of calcium content and flow regime
898	on whey protein fouling and cleaning in a plate heat exchanger. J. Food Eng. 147:68-78.
899	
900	Khaldi M., G. Ronse, C. André, P. Blanpain-Avet, L. Bouvier, T. Six, S. Bornaz, T.

902	denaturation and fouling mass distribution in a plate heat exchanger, In : Heat Exchanger
903	Fouling and Cleaning Conference, Session 9: Fouling during Food Processing, June 7-12,
904	2015, Enfield (Dublin), County Meath (Ireland).
905	
906	Khaldi M., G. Ronse, C. André, P. Blanpain-Avet, L. Bouvier, T. Six, S. Bornaz, T.
907	Croguennec, R. Jeantet, and and G. Delaplace. 2015c. Denaturation kinetics of whey protein
908	isolate solutions and fouling mass distribution in a plate heat exchanger. International J.
909	Chemical Engineering. Volume 2015, Article ID 139638.
910	http://dx.doi.org/10.1155/2015/139638.
911	
912	Lalande, M., JP. Tissier, and G. Corrieu. 1985. Fouling of heat transfer surfaces related to β-
913	lactoglobulin denaturation during heat processing of milk. Biotechnology Progress. 1 (2):131-
914	139.
915	
916	Oldfield, D.J., H. Singh, and M. W. Taylor. 2005. Kinetics of heat induced whey protein
917	denaturation and aggregation in skim milks with adjusted whey protein concentration. J.
918	Dairy Research. 72:369-378.
919	
920	Petit, J., A. L. Herbig, A. Moreau, and G. Delaplace. 2011. Influence of calcium on beta-
921	lactoglobulin denaturation kinetics: implications in unfolding and aggregation mechanisms. J.
922	Dairy Sci. 94 (12):5794-5810.
923	
924	Petit, J., T. Six, A. Moreau, G. Ronse, and G. Delaplace. 2013. β-lactoglobulin denaturation,

- 925 aggregation and fouling in a plate heat exchanger : Pilot-scale experiments and dimensional
- 926 analysis. Chemical Engineering Science, 101:432-450.

0	2	7
1	4	1

) []	
928	René, F., JC. Leuliet, and M. Lalande. 1991. Heat transfer to Newtonian and non-Newtonian
929	food fluids in plate heat exchangers : Experimental and numerical approaches. Trans.
930	IChemE, Part C. 69:115-126.
931	
932	Rosmaninho, R., and L. F. Melo. 2006. Calcium phosphate deposition from simulated milk
933	ultrafiltrate on different stainless steel-based surfaces. International Dairy Journal. 16:81-87.
934	
935	Sadeghinezhad, E., S. N. Kazi, A. Badarudin, M. N. M. Zubair, B.L. Dehkordi, and C. S. Oon.
936	2013. A review of milk fouling on heat exchanger surfaces. Reviews in Chemical
937	Engineering, 29 (3):169-188.
938	
939	Tolkach, A., and U. Kulozik. 2007. Reaction kinetic pathway of reversible and irreversible
940	thermal denaturation of β -lactoglobulin. Lait. 87:301-315.
941	
942	Toyoda I., P. J. R. Schreier, and P.J. Fryer. 1994. A computational model for reaction fouling
943	from whey protein solutions, In : Fouling and Cleaning in Food Processing Congress, Jesus
944	College, Cambridge, 23-25 March 1994, pp. 222-229.
945	
946	Van Asselt, A.J., M. M. M. Vissers, F. Smit, and P. de Jong. 2005. In-line control of fouling,
947	In : Proceedings of Heat Exchanger Fouling and Cleaning - Challenges and Opportunities,
948	Kloster Irsee, Germany, June 5-10, New York (USA), Engineering Conferences International.
949	

951

952	Figure 1. Multistage process characterizing BLG thermal denaturation/aggregation (extracted					
953	and adapted from Tolkach and Kulozik (2007)).					
954	U_{MG}^{*} : Molten globule state (reversible unfolding with a more flexible tertiary structure and a					
955	quasi-intact secondary structure). N_2 : native dimer; N: native monomer; N_R : R-state; U_D:					
956	completely unfolded molecule; U_n , U_m : polymerised BLG molecules (aggregates).					
957						
958	Figure 2. Schematic diagram of the experimental set-up used at pilot scale for the fouling					
959	experiments. ΔP : differential pressure; F: flowmeter; FP: feed pump; H: homogeneizer; P:					
960	pressure gauge; T: temperature probe; V1: counter-pressure regulation valve.					
961						
962	Figure 3. Calculated bulk temperature profiles inside the PHE using the Sphere software					
963	(René et al., 1991) for the four independent process parameters investigated (that is, T_{op} (Fig.					
964	3a), τ (Fig. 3b), ΔT_p (Fig. 3c) and ϵ (Fig. 3d)). Bulk temperature is plotted against the mean					
965	residence time (τ) and the pass number (i-th pass of the PHE) within the PHE.					
966						
967	Figure 4. Arrhenius plot for the BLG thermal denaturation reaction with a n=1.5 reaction					
968	order, for the 6 wt.% BLG fouling solution used at 6.6 mM calcium content (adapted from					
969	Petit et al. (2011)). Solid and dashed lines correspond to the linear regressions of experimental					
970	data.					
971						
972	Figure 5. Schematic diagram of the reaction scheme selected for the thermal					

974 and aggregation).

973

ScholarOne support: (434) 964 4100

denaturation/aggregation process of BLG : a set reversible consecutive reactions (unfolding

975

976 **Figure 6.** Typical and representative variation with the residence time within the PHE (τ) of 977 both the predicted concentration profile of the various BLG species (N, U, A) and the 978 experimental dry deposit mass in the various channels (m_{dep,c}) for various operating 979 conditions (i.e., experiments #1, #2, #3, #6 and #15).

980

981 Figure 7. Variation of the dry deposit mass in the various channels of the PHE $(m_{dep,c})$ with 982 the ratio R derived at T_{c,b} using eqns (6), (7) and (12), for all experiments (from run #1 to run 983 #18). Fitting curve of experimental data was derived from eqn. (13).

984

985 Figure 8. Variation of the dry deposit mass in the different channels of a corrugated PHE 986 with the ratio R for a WPI fouling solution composed of Promilk 852 FB1 (IDI SAS, Arras, France) at a concentration of 1 wt. % with a calcium content equal to 100 mg.l⁻¹ (extracted 987 988 and adapted from Khaldi et al. (2015 b,c)).

989

990	TABLE CAPTIONS
991	
992	Table 1. Experimental design used for the heat treatment (which consisted of the variation of
993	four independent process parameters, that is, the product temperature at the PHE outlet (T_{op}) ,
994	the mean residence time (τ), the temperature increase between the PHE inlet and outlet (ΔT_p)
995	and the heat exchange efficiency (ε)).
996	
997	Table 2. Kinetic parameters used for the protein reaction scheme adopted in the bulk fluid
998	(unfolding and aggregation reactions of BLG, Petit et al. (2011)).
999	
1000	Table 3. Calculation of the unfolding degree of BLG (α) as a function of temperature, on the
1001	basis of the formal kinetic parameters and according to eqn. (11).
1002	
1003	Table 4. Values of the ratio $R = k_{unf}/k_{agg}$ corresponding to the maximum of the fitted $m_{dep,c}$
1004	versus R curve, i.e., $R^* = k_{unf}/k_{agg}^*$, for which the deposit mass $m_{dep,c}$ is the highest together
1005	with the corresponding bulk temperature (T^*), and values of the ratio k_{unf}/k_{agg} at which fouling
1006	begins to build-up (i.e. when $m_{dep,c} \ge 0.1$).
1007	

1008	Table 1. Experimental design used for the heat treatment (which consisted of the variation of
1009	four independent process parameters, that is, the product temperature at the PHE outlet (T_{op}) ,
1010	the mean residence time (τ), the temperature increase between the PHE inlet and outlet (ΔT_p)

1011 and the heat exchange efficiency (ϵ)).

Experiment	T_{ip} (°C)	T_{ih} (°C)	$Q_p(l.h^{-1})$	$Q_{h}(l.h^{-1})$	T_{op} (°C)	T_{oh} (°C)	τ (s)	ε (%)
Investigation of T _{op} influence								
#1 (reference)	60	87.8	150	150	85.1	62.7	74.6	90.3
#2	45	72.8	150	150	70	47.7	74.6	89.9
#3	50	77.8	150	150	75	52.7	74.6	89.9
#4	55	82.8	150	150	80	57.7	74.6	90.3
#5	65	92.8	150	150	90	67.7	74.6	90.3
#6	70	97.8	150	150	95	72.7	74.6	90.3
		Inv	estigation of	of τ influen	ce			
#1 (reference)	60	87.8	150	150	85.1	62.7	74.6	90.3
#7	60	87.8	175	175	85	62.7	63.9	89.9
#8	60	87.8	200	200	85	62.7	56	89.9
#9	60	87.8	250	250	84.9	62.8	44.8	89.6
#10	60	88	300	300	85	62.9	37.3	89.3
Investigation of ΔT_p influence								
#1 (reference)	60	87.8	150	150	85.1	62.7	74.6	90.3
#11	50	88.8	150	150	85	53.7	74.6	90.2
#12	55	88.3	150	150	85	58.2	74.6	90.1
#13	65	87.2	150	150	85	67.1	74.6	90.1
#14	70	86.6	150	150	85	71.6	74.6	90.4

		Inv	estigation	of ε influen	ice			
#10	60	88	300	300	85	62.9	37.3	89.3
#15	60	98.5	300	150	85.1	60.8	37.3	65.2
#16	60	91.6	300	200	85	61.6	37.3	79.1
#17	60	86	300	400	85.1	66.8	37.3	96.5
#18	60	85.4	300	600	85	72.7	37.3	98.4

1012 1013

- 1014 **Table 2.** Kinetic parameters used for the protein reaction scheme adopted in the prediction of
- 1015 fouling (unfolding and aggregation reactions of BLG, Petit et al. (2011)).
- 1016

	Reaction	Variables	Values	Units
	Unfolding	E _{a,unf}	304.7	kJ.mol ⁻¹
		ln (k _{0,unf})	98.4	(-)
		reaction order	1.5	(-)
	Aggregation	E _{a,agg}	111	kJ.mol ⁻¹
		$\ln (k_{0,agg})$	32.1	(-)
		reaction order	1.5	(-)
1017 1018			Q	

Page 47 of 63

Journal of Dairy Science

1019 **Table 3.** Calculation of the unfolding degree of BLG (α) on the basis of the formal kinetic

- 1020 parameters and according to eqn. (11).
- 1021

T (°C)	$k_n (g^{-0.5}.1^{0.5}.s^{-1})$	Ln(k _n)	Ln(k _{agg})	$Ln(k_n)$ - $Ln(k_{agg})$	Ln a	α(-)
110	6.42 x 10 ⁻²	-2.745	-2.745	0.0	0.0	1.0
105	4.05 x 10 ⁻²	-3.206	-3.206	0.0	0.0	1.0
100	2.52 x 10 ⁻²	-3.679	-3.679	0.0	0.0	1.0
95	1.55 x 10 ⁻²	-4.165	-4.165	0.0	0.0	1.0
90	9.43 x 10 ⁻³	-4.664	-4.664	0.0	0.0	1.0
85	5.64 x 10 ⁻³	-5.178	-5.178	0.0	0.0	1.0
80	3.33 x 10 ⁻³	-5.705	-5.705	0.0	0.0	1.0
78	2.56 x 10 ⁻³	-5.969	-5.921	-0.048	-0.032	0.969
75	1.04 x 10 ⁻³	-6.868	-6.248	-0.62	-0.413	0.662
73	5.66 x 10 ⁻⁴	-7.476	-6.470	-1.006	-0.671	0.511
70	2.24 x 10 ⁻⁴	-8.402	-6.807	-1.595	-1.063	0.345
67	8.75 x 10 ⁻⁵	-9.344	-7.150	-2.193	-1.462	0.232
65	4.63 x 10 ⁻⁵	-9.981	-7.382	-2.599	-1.732	0.177
60	9.10 x 10 ⁻⁶	-11.608	-7.975	-3.633	-2.422	0.089
55	1.70 x 10 ⁻⁶	-13.284	-8.586	-4.698	-3.132	0.044
50	3.02 x 10 ⁻⁷	-15.012	-9.215	-5.797	-3.864	0.021
45	5.09 x 10 ⁻⁸	-16.794	-9.864	-6.930	-4.620	0.010

1022 1023
Table 4. Values of the ratio $R=k_{unf}/k_{agg}$ corresponding to the maximum of the fitted $m_{dep,c}$ versus R curve, i.e., $R^*=k_{unf}/k_{agg}^*$, for which the deposit mass $m_{dep,c}$ is the highest together with the corresponding bulk temperature (T^{*}), and values of the ratio k_{unf}/k_{agg} at which fouling begins to build-up (i.e. when $m_{dep,c} \ge 0.1$).

	Type of experiment	$R^* = k_{unf} / k_{agg}^* (-)$	T [*] (°C)	R at which fouling begins to build-	
				up, i.e., when $m_{dep,c} \ge 0.1 \text{ g}$ (-)	
	varying τ (s)	0.391	72.6	0.037	
	varying T _{op} (°C)	0.659	75.5	0.01	
	varying ε (%)	0.362	72.1	0.0305	
	Varying ΔT_p (°C)	0.339	71.8	0.0065	
	All data points	0.405	72.8	0.0145	
	(runs #1 #18)				
1029 1030			20		

P. Blanpain-Avet. FIGURE 1

1035 1036	FIGURE
1037	
1038	
1039	

P. Blanpain-Avet. FIGURE 2

P. Blanpain-Avet. FIGURE 3a

P. Blanpain-Avet FIGURE 3c

P. Blanpain-Avet. FIGURE 3d

P. Blanpain-Avet FIGURE 5

Effect of the calcium/protein molar ratio on β-lactoglobulin denaturation kinetics and fouling phenomena

Journal:	Biofouling
Manuscript ID	GBIF-2016-0118
Manuscript Type:	Original Paper
Keywords:	milk derivative fouling mechanisms, plate heat exchanger, calcium, β -lactoglobulin, heat-induced denaturation, structure deposit analyses

http://mc.manuscriptcentral.com/gbif

Biofouling

Effect of the calcium/protein molar ratio on β-lactoglobulin denaturation kinetics and
 fouling phenomena

M. Khaldi^{a,b,c*}, T. Croguennec^{d,e}, C. André^{a,b,f}, G. Ronse^{a,b}, M. Jimenez^{b,g}, S. Bellayer^{b,g}, P.
Blanpain-Avet^{a,b}, L. Bouvier^{a,b}, T. Six^{a,b}, S. Bornaz^h, R. Jeantet^{d,e}, and G. Delaplace^{a,b}

6 ^aINRA, UR 638, PIHM, Villeneuve d'Ascq, France ; ^bUMET, CNRS-UMR 8207, Université de

7 Lille 1, Villeneuve d'Ascq, France; ^cInstitut National Agronomique de Tunisie, Tunis

8 Mahrajène, Tunisia; ^dAgrocampus Ouest, UMR 1253, Rennes, France; ^eINRA, UMR1253,

9 Rennes, France; ^fHEI, Laboratoire de Génie des procédés, Lille, France; ^gENSCL, ISP,

10 Université de Lille 1, Villeneuve d'Ascq, France; ^hESIAT, Tunis El Khadra, Tunisia.

11 *Corresponding author. Email: marwa.khaldi@gmail.com

.

13 Many studies demonstrated the key role of β -lactoglobulin (β -LG) denaturation in the initiation of fouling and 14 mentioned that interactions between β -LG and calcium are involved in the deposit fouling growth. However, no 15 study in the literature addressed exhaustively the influence of calcium/protein molar ratio on β -LG denaturation and 16 its consequence both on fouling mass along the plate heat exchanger (PHE) and the structure of the fouling deposit 17 layer. The objective of this work is to partially fill this gap.

For the investigated operating conditions, results established that β-LG denaturation constants, the deposit mass and the structure of the fouling deposits are correlated to calcium/protein molar ratio. This work shows that calcium/protein molar ratio is a lever to consider to control fouling, and that it is possible, for solutions containing different calcium/protein molar ratio, to use denaturation rate constants combined with temperature profiles in the PHE for predicting their fouling behaviour.

Keywords: milk derivative fouling mechanisms, plate heat exchanger, calcium, β-lactoglobulin, heat-induced
 denaturation, structure deposit analyses.

26 Abbreviations

aggregated β-LG А C_i channel number h hot water Ν native β-LG product р \mathbf{P}_{i} plate number PHE plate heat exchanger U unfolded B-LG WPI whey protein isolate α-La alpha-lactalbumine β-LG beta-lactoglobulin

38 Introduction

Heat treatments are commonly applied to milk during industrial processing in order to ensure the microbial safety of dairy products as well as to extend shelf life (McKinnon et al., 2009). Fouling of heat treatment equipment in the dairy industry is a persistent issue which is not yet totally understood and consequently is still a challenge to overcome.

Fouling is the accumulation of unwanted material on solid surfaces of heat exchangers. The formation of this additional insulated layer on heat exchanger walls leads to reduced product outputs (both the flow rate and outlet temperature). To compensate the overall decrease of heat exchanger processing performances (i.e. the decrease of heat transfer efficiency on the process side and the increase of the pressure drop required for pumping the product at the desired flow rate) and to achieve the desired thermal schedule, additional thermal or mechanical energy inputs are required (Müller-Steinhagen, 1993; Delplace et al., 1994; Visser and Jeurnink, 1997; Bansal and Chen, 2006).

The presence of fouling in milk derivative processing plants also induces protein losses and the risk of re-entrainment of unconsolidated deposit in the processing line. To avoid any process quality problem, reduced run times are often imposed (Gillham et al., 2000). The frequent cleaning increases strongly the environmental impacts, due to the use of important water volumes and detergent quantities. According to van Asslet et al. (2005), about 80% of the total production costs in the dairy industry can be attributed to fouling and cleaning of the process equipment.

Researchers have clearly established that both calcium and whey proteins are involved in the deposit build-up (Jeurnink et al., 1996) for milk-based derivatives. Due to their heat sensitivity, it is known that these two components are destabilized in the bulk solution at temperatures above 70°C (Petit et al., 2011). Less knowledge is available concerning foulant transport of these species from the bulk of the process fluid to the surface and subsequent interactions between these reactive forms and the surface.

The great majority of the published fouling studies focus mainly on the description of the protein heat induced mechanisms. The two major proteins in the bovine whey are β-LG and αlactalbumin (α-LA). Both of these proteins are sensitive to heat treatments but β-LG is the major protein reported in fouling deposit studies (Visser and Jeurnink, 1997). This fact explains why protein fouling models are mainly based on the heat denaturation of this protein. Oldfield et al. (2005) and Petit et al. (2011) proposed a 2-step reaction to model the β-LG denaturation mechanism: $N \rightarrow U \rightarrow A$.

Biofouling

Under heat treatment, the native β -LG (N) unfolds to form reversibly unfolded β -LG (U). Then, these unfolded β -LG can react with native or other unfolded β -LG via disulfide interchange or thiol oxidation to form aggregates (A) or can stick on the heat transfer surface. The question, of which of the aggregated or unfolded β -LG governs the fouling reaction, was during a long time a controversy about β -LG fouling mechanism. Nevertheless, Blanpain-Avet et al. (2012) put an end to this debate by showing that the deposit structure is free from aggregated β -LG, indicating that β -LG aggregates are not involved in the fouling mechanism and that the unfolded β -LG are the precursor species.

Even if the exact role of calcium in the formation of fouling is not wholly elucidated, it was reported that calcium plays a double role: in the denaturation reaction and in facilitating the attachment of the β -LG unfolded species. Indeed, calcium ions influence the denaturation temperature of β -LG and promote its aggregation by attaching to β -LG in the bulk (Jeyarajah and Allen, 1994; O'Kennedy and Mounsey, 2009), and enhance the deposition on the heat transfer surface by forming bridges between the proteins, adsorbed on the heat transfer surface or located on the upper layer of the deposit, and reactive species formed in the bulk (Xiong, 1992; Changani et al., 1997; Christian et al., 2002; Bansal and Chen, 2006).

The nature of the inorganic salt, which participates to the deposit by creating carboxylate bonds between the protein and precipitated minerals, is highly dependent on the composition of the fouling solution. Indeed, some studies reported that calcium phosphate is present in the protein fouling deposit (Lalande and René, 1988; Tsuge et al., 2002) while other authors reported that calcium carbonate is detected at the interface (Jimenez et al., 2013).

Simons et al. (2002) investigated specifically the interactions between calcium and β -LG fouling solutions and it was suggested that calcium is able to influence β -LG denaturation and aggregation mechanisms in three different ways depending on the environmental conditions:

i) Calcium can cause the intermolecular crosslinking of adjacent negatively charged groups
 (such as carboxylic groups) of β-LG, leading to β-LG aggregation by bridging;

97 ii) Ionic calcium takes part in the intramolecular electrostatic shielding of β-LG negative
 98 charges, which tends to lower Coulombian repulsions between β-LG molecules and favors
 99 β-LG aggregation by hydrophobic bonds;

100 iii) Calcium can induce specific conformational changes in the β-LG tertiary structure, leading
101 to local unfolding of β-LG and exposition of its free thiol group.

Most of studies on fouling mechanisms were based on β-LG solutions, by investigating
 only protein deposition and putting aside the contributions of inorganic salts such as calcium.
 No study in the literature has demonstrated the relationship between the calcium/protein molar

ratio and the amount of fouling along the PHE. Only Phan-Xuan et al. (2013) work has reported that a critical molar ratio of calcium to proteins changes the whey protein aggregate structure independently on the protein concentration. Furthermore, no study reported the influence of calcium/protein molar ratio on the structure of the fouling layer deposit. Jimenez et al. (2013) have recently tried to identify the role of calcium in fouling deposition and growth mechanisms at a stainless steel surface but the influence of calcium/protein molar ratio on fouling layer growth mechanisms is not addressed.

The originality of the current work is twofold. First, kinetic parameters related to heat-induced β -LG denaturation (from 70 to 90°C) were determined by HPLC for different whey protein isolate (WPI) model solutions containing different calcium/protein molar ratio (ranging from 2.3 to 22.9). The evolution of the kinetic parameters of these fouling solutions with both the temperature and the calcium/protein molar ratio are discussed. In a second part, fouling runs with these WPI solutions are carried out and fouling phenomena (the amount deposit mass and the surface characterization of the fouling layer) are investigated and discussed in regards of calcium/protein molar ratio.

121 Materials and methods

122 Fouling model fluids

123 The model fluids used in this study were reconstituted from WPI Promilk 852FB1 supplied124 by Ingredia (France). The composition of the powder is shown in Table 1.

For the whole experiment, the 0.25, 0.5, 1, 2 and 2.5% (w/w) WPI solutions with a fixed calcium concentration (100 ppm) were prepared by mixing respectively 2.5, 5, 10, 20, and 25 g of WPI powder in 1 L reverse osmosis water at room temperature. Then, different quantities of a molar calcium chloride (anhydrous, 96%, Acros Organics, Thermo Fisher Scientific, Waltham, MA, USA) solution were added to the β -LG solutions to obtain a total calcium amount equal to 100 ppm (Table 2). The pH of these fouling solutions was close to 6.8. As model solutions contain the same amount of calcium, the calcium/protein molar ratio decreases (from 22.9 to 2.3) when protein concentration in model solution increases (from 0.25 to 2.5% (w/w).

The calcium concentration of the five model solutions was determined by atomic absorptionspectrometry with a Spectro AA 55B apparatus (Varian, Palo Alto, CA, USA).

Biofouling

136 Thermal denaturation experiments

A similar heat treatment protocol was applied to each model solution in order to determine
the kinetic parameters of β-LG thermal denaturation.

All thermal denaturation experiments were conducted on twelve samples of 2 mL that were
placed in stainless steel tubes (350 mm length, 10 mm core diameter, and 1 mm wall thickness.
The investigated temperatures ranged from 70 to 90°C and correspond to the bulk temperature
range imposed on the PHE.

Before submitting samples to the desired holding temperatures, the samples were preheated in a first water bath at 60°C when desired holding temperatures are below 80°C, and at 65°C for desired holding temperatures over 80°C. The temperature of the two water baths used for preheating are 5 degrees different, in order to get a faster temperature rise when higher holding temperatures are targeted. It should be noted that the temperature of the water bath used for preheating is less than the β -LG denaturation temperature, which is comprised between 74 and 77°C (Nielsen et al., 1995; Linmark-Mansson et al., 2005; Guérin et al., 2007).

The temperature increase from the preheating temperature to the desired holding temperature was performed by placing the samples in a second water bath whose temperature was maintained until 20°C higher than the holding temperature. The second water bath was used in order to reduce the heat increase time and to limit the denaturation level before sampling. The first sample, corresponding to time zero, was taken when the sample temperature was equal to the desired holding value.

The eleven other samples were maintained during a sufficient time in a third water bath (fixed
2°C higher than the desired holding temperature), taken off at different times, and cooled down
immediately in a beaker with melting ice after sampling to stop further β-LG denaturation.

The temperature profile in samples placed in the three water baths was determined using a
sensor connected to a temperature measurement acquisition system and placed in a stainless
steel tube filled with water (Figure 1).

⁺⁹ 162

163 HPLC analysis

The soluble (native and unfolded) β -LG concentration in the samples was evaluated by HPLC after precipitation of the aggregated protein at pH 4.6 and their removal by centrifugation (9000 rpm for 30 min at 4°C). The chromatographic system (Waters, Milford, Massachusetts, USA) included a 717 Plus autosampler, a 616 quadratic pump system, a Jones Model 7971 column oven, a HPLC ACE 300 Å C4 separation column, and the associated guard

169 column (Advanced Chromatography Technologies, Aberdeen, United-Kingdom), a 486 UV170 visible spectrophotometer and an acquisition software (Millenium 3.2, Waters).

The mobile phases used in HPLC were 0.1 % (v/v) trifluoroacetic acid (99 %, Acros Organics, Thermo Fisher Scientific, Waltham, Massachusetts, USA) in Milli-Q water (Millipore, Bedford, MA), and 0.1 % trifluoroacetic acid in a mixture of 80% acetonitrile (HPLC grade, Thermo Fisher Scientific, Waltham, Massachusetts, USA) and 20% Milli-Q water.

The HPLC analyses were carried out in the following conditions: flow rate 1 mL.min⁻¹, injection volume 20 μ L, temperature 40°C, elution of the proteins using a gradient of acetonitrile and detection of the eluted proteins at wavelength 214 nm. Analyses were repeated three times for each standard or sample. Calibration standards in the range from 0.5 to 4 g.L⁻¹ were prepared by dissolving pure β -LG powder (Biopure industrial powder: β -LG 88.85%) in Milli-Q water. A daily column conditioning was achieved by eluting acetonitrile at 1 mL.min⁻¹ during one hour.

183 For each experiment, the sample concentrations were calculated by averaging the three 184 measured chromatographic areas and converting this area value into a β -LG concentration 185 using the HPLC calibration curve.

35 187

187 Determination of the β -LG rate constants

The reaction model used in this study is derived from the work of Tolkach and Kulozik (2007). The denaturation reaction concerns the transformation of soluble species (*S*) into aggregates (*A*). HPLC analysis is solely able to quantify β -LG soluble concentration (*C_S*). Indeed, native and unfolded β -LG concentrations (*C_N* and *C_U*) remain inaccessible with this analytical technique.

193 The β -LG denaturation is described by the chemical equation $S \xrightarrow{\kappa_n} A$ 194 and defined by Equation 1.

- 50 195
- 52 196

$$-\frac{dC_s}{dt} = k_n C_s^{\ n} \qquad (1)$$

197 where k_n the denaturation rate constant, *n* the denaturation reaction order, and *t* the time.

For each desired holding temperature, the corresponding denaturation rate constant was determined from the Arrhenius plot. The relation between the denaturation kinetic rate and the heat treatment temperature is given by Equation 2.

Biofouling

$$\ln(k_n) = \ln(k_n^{\circ}) - \frac{E_A}{RT} \qquad (2)$$

where k_n^0 is the denaturation frequency factor, E_A the denaturation activation energy, R the universal gas constant, and T the desired holding temperature of heat treatment (K).

207 Determination of the deposit mass distribution

Fouling experiments were carried out on a pilot plant that is schematized on figure 2. The fouling ring was composed of two distinct zones: i) a pre-heating zone composed of a heat exchanger with V7 types plates (Vicarb, Alfa-Laval, France), 9 passes (one channel-per-pass) necessary to preheat the model fluid; ii) a heating zone composed of a PHE (Vicarb, model V7, Alfa-Laval, France).

Experiments have been conducted, at pilot scale, in a corrugated PHE consisting of 10 plates, i.e. 5 passes (one channel-per-pass) of about 0.074 m² exchange surface (0.495 m length, 0.15 m width), in counter-current configuration to optimize the heat transfer, as represented in figure 3. The defined design permitted to be closer to industrial heat treatment conditions.

The PHE was used to heat the WPI fouling solutions above the denaturation temperature. During experiments, the inlet temperature of hot water was adjusted to ensure a constant outlet fouling solution temperature in the holding zone as well as a constant profile of product temperature along the PHE. 600 L of model fouling solution were processed during each pilot scale experiment, which corresponds to a fouling duration of about 2 hours. The pH of the fouling solutions was about 6.8.

The temperature profile inside the PHE was simulated with Sphere software (previously developed in our laboratory): temperatures in all passes of hot and cold fluids were calculated from the knowledge of fluids inlet temperature and flow rate, plate properties, and exchanger design, and validated in our previous study (Khaldi et al., 2015a). The temperature profile is controlled by the PHE inlet parameters: product and hot water inlet temperatures (T_{ip} and T_{ih}) and product and hot water flow rates (Q_p and Q_h). As the temperature value for the β -LG denaturation is comprised between 74 and 77°C (Nielsen et al., 1995; Linmark-Mansson et al., 2005; Guérin et al., 2007), it was decided to set the product outlet temperature (T_{op}) at 85°C. This was achieved with the operating conditions indicated in Table 3, displaying the average values of temperatures and flow rates recorded for each WPI fouling solution.

The bulk temperature profile displayed in figure 4 was obtained by Sphere simulations by employing the operating conditions gathered in Table 3. One fouling run was conducted for each WPI fouling solution (0.25, 0.5, 1, 2, and 2.5% w/w) prepared at fixed calcium content (100 ppm).

Heat exchanger plates were weighed before each heat-treatment experiment. After each fouling experiment, the PHE was dismantled and each fouled plate was carefully removed and stored in an air oven at 50°C for 2 hours. Then, fouled plates were weighed at ambient temperature and the dry deposit mass on each plate was calculated by simple subtraction.

243 Surface characterization of the fouling layer

To determine the fouling deposit composition, Electron Probe Micro Analyzer (EPMA) and X-ray Photoelectron Spectroscopy (XPS) were used. Surface characterization techniques were carried out on samples of heat exchanger plates (cut pieces of heat exchanger plates) after the fouling run. In spite of requiring the destruction of the fouled plate, the destructive method put in place was deliberately chosen in order to probe real fouling layers. It is seldom that characterization of the fouling layer involved fouling deposit formed in situ (in the PHE) under real conditions. This was the case for this work, since no distortion with reality was used to form or to collect the fouling deposit (in this study the analysed fouling deposits are formed in a corrugated surface of a plate of heat exchanger located in a heating zone). It was decided to study the most concentrated model fouling solution (2.5% w/w) and the least concentrated model fouling solution (0.25% w/w). For both β -LG solutions, the thermal profile imposed for the heat-treatment experiment was #1 (T_{ip} 65°C, T_{op} 85°C, Q_p 300 L.h⁻¹, and Q_h 300 L.h⁻¹).

EPMA

Samples were embedded into epoxy resin, polished with an ESCIL 200 GT polishing machine using different grade of SiC sheets (up to $\frac{1}{4} \mu m$), and carbon coated with a Bal-Tec SCD005 sputter coater. This kind of sample preparation allows access to a very flat surface necessary for EPMA analysis.

A Cameca SX-100 EPMA was used to perform elemental analysis. Back scattered electron images were carried out at 15 kV 15 nA and X-ray mappings were carried out at 15 kV 40 nA. For mappings, a PET cristal was used to detect Ka X-rays of sulphur (characteristic element of β -LG protein) calcium, and chlorine (characteristic element of CaCl₂ used), and a LiF cristal to detect iron K α X-ray (characteristic element of the plates of the heat exchanger).

Biofouling

267 The mappings are colour coded from black to red, with black characterizing the absence of268 the element and red the highest concentration detected.

XPS

> 271 XPS analyses were performed on an Axis ultra DLD (Kratos analytical) using a 272 monochromatic Al K α X-ray source (1486.6 eV) under the following conditions: a voltage of 273 15 kV, a current source of 10 mA, a pressure of 10⁻⁷ Pa in the analysing chamber, and an 274 analysed area size of 300 × 700 μ m², with a depth of 10 nm.

> High resolution spectra of C1s peaks of carbon were recorded for binding energies between 0 and 1300 eV with a 1 eV step, at 160 eV pass energy. Data treatment and peak-fitting procedures were performed with the Casa XPS program (Casa Software, Ltd). The binding energy scale was calibrated to the C1s peak at 285 eV for charge correction. The Ca2p peak shapes were decomposed using is a combination of Lorentzian and Gaussian shapes.

Results and discussion

Reaction order of β-LG denaturation

The characterization of β -LG denaturation kinetic parameters in the WPI model solutions started with the identification of the appropriate reaction order, *n*. In the literature, *n* is often taken between 1 and 2 (Mulvihill and Donovan, 1987; Relkin, 1996; Petit et al., 2011).

In this study, *n* was varied from 1 to 2 (by 0.1 steps) to determine the reaction order that best fits the experimental decrease of soluble β -LG concentration plotted versus time. Figure 5 shows the experimental data for β -LG denaturation in a 0.5% (w/w) WPI model solution heated at 85°C.

As seen in figure 5, the n = 2 reaction order model curve diverged noticeably from the experimental points, whereas the 1.5 reaction order model precisely fitted the experimental data of β -LG denaturation at 85°C. This was confirmed for β -LG denaturation in all WPI model solutions in the temperature range investigated (from 70 to 90°C). For the following experiments, a reaction order of 1.5 was used for fitting β -LG denaturation of all WPI solutions.

55 296

297 Arrhenius plots for the β -LG denaturation of the WPI model solutions

59298The Arrhenius plots of β-LG denaturation reaction of the various WPI solutions (0.25, 0.5,
1, 2, and 2.5 % w/w) are presented in figure 6. This figure represents the temperature influence

300 on the β-LG denaturation kinetic rates from 70 to 90°C. Each symbol refers to one kinetic of β301 LG denaturation for a given holding temperature.

From figure 6, two β-LG denaturation regimes appear separated by an Arrhenius critical temperature at around 80°C. The slope break delimitates two temperature ranges: below the critical temperature, the β-LG denaturation reaction is unfolding limited which means that the unfolding reaction is slower than aggregation, and over 80°C, β-LG denaturation is limited by the aggregation reaction and in that case, aggregation is the slower reaction. Each temperature range is related to the predominance of the unfolding or aggregation mechanisms, indicating that denaturation kinetic rates varied with the temperature. The shape of Arrhenius plots is in agreement with the well-established chemical model for β -LG denaturation, stating that β -LG unfolds then aggregates, according to two successive kinetically-driven reactions (Tolkach and Kulozik, 2007; Petit et al., 2011).

When analysing the plots in regards of protein concentration in model solutions, it can be observed that β -LG denaturation kinetic decreases when protein concentration in model solutions increases. This trend is rather surprising regarding the reaction order of the kinetics of β -LG denaturation (1.5) and regarding the widely expected behaviour on fouling "the higher is the protein concentration in the solution, the higher is the reactivity of the solution". This investigation clearly shows that limiting the β -LG concentration is not a pertinent parameter to decrease denaturation level, and so another parameter should be found out to assess denaturation behaviour from fouling solution composition.

When analysing the plots in regards of calcium/protein molar ratio of model solutions, it appears clearly that Arrhenius plots are almost parallel both in the unfolding and aggregation limited areas, and shifted depending on the calcium/protein molar ratio. Indeed, β -LG denaturation kinetics increase strongly when the calcium/protein molar ratio in WPI model solutions increase, in both unfolding and aggregation limited regions. Denaturation is strongly enhanced in 0.25% (w/w) WPI model solution, owing to its higher calcium/protein molar ratio when compared to 2.5% WPI model solution. These results are in agreement with Sherwin and Foegeding (1997), who demonstrated that aggregation rates are affected by CaCl₂/protein stoichiometry rather than the Ca²⁺ and protein concentrations separately. This confirms that calcium strongly affects β -LG heat denaturation by favouring β -LG unfolding (Jeyarajah and Allen, 1994) and triggering its aggregation (Simons et al., 2002).

Even if Arrhenius plots of WPI model solutions are ranked depending on calcium/protein
 molar ratio, the ordinate shift of denaturation rate constants is not proportional to

calcium/protein molar ratio. Moreover, analysis of figure 6 seems to indicate the existence of a
threshold effect in calcium/protein molar ratio for higher denaturation rate constants. This
threshold effect is particularly visible in the aggregation limited temperature area of 0.25 and
0.5% (w/w) WPI model solutions, since the Arrhenius plots of these two solutions are
superimposed. These results are in agreement with Simons et al. (2002) work suggesting that
calcium was bound to carboxylates with a threshold affinity.

Further analysis of the Arrhenius plots in regards of calcium/protein molar ratio of model solutions, we concluded that for all calcium/protein molar ratios, the Arrhenius plots are purely shifted in ordinate axis values similarly both in unfolding and aggregation limited areas and can be viewed as a family of parallel curves. Note however, that this trend seems not wholly satisfy for the WPI solution with the highest calcium/protein molar ratio. Indeed for 0.25% (w/w) model solution, the shift in ordinate axis for the unfolding limited temperature area seems a little bit different than that for aggregation limited temperature. No explanation could be put forward to explain this slope change for the unfolding limited temperature area.

348 Kinetic parameters of β-LG denaturation

349 Kinetic parameters of β -LG denaturation were presented in table 4 in terms of frequency 350 factor logarithm (*ln k*°) and activation energy (*E_A*) for unfolding and aggregation reactions.

It is not possible to compare our results with those of the literature, such as those reported by Tolkach and Kulozik (2007) and Petit et al. (2011) since their results were obtained for solutions with different composition (both in β -LG and calcium concentrations). Moreover, the calcium/protein molar ratio are rarely reported. We can just mention that the kinetic rates increased with calcium concentration as found in previous studies (Petit et al., 2011; Khaldi et al., 2015a; Khaldi et al., 2015b).

Kinetic parameters in the unfolding and aggregation limited ranges were significantly different, confirming the well-known transition from one mechanism to another in β-LG denaturation. Table 4 confirms that the activation energy (E_A) is higher at lower temperatures (< 80°C), when protein unfolding is the rate-limiting step rather than in the aggregation ratelimiting step at higher temperatures (> 80°C).

55362By examining the unfolding limited range in table 4, it can be seen that the more the56363calcium/protein molar ratio increased (with decreasing the β-LG concentration), the more the58364frequency factor logarithm parameters increased (from 107.4 logarithm units at 2.5% w/w60365model solution to 147.7 logarithm units at 0.25% w/w model solution). This can be related to366the stabilization of unfolded β-LG by calcium, which exposes its free thiol on protein surface.

The free thiol is available for the formation of intermolecular disulfide bonds (Jeyarajah and Allen, 1994) and therefore enhances β -LG denaturation. Moreover, the great increase of $E_{A.unf}$ between 2.3 and 22.9 calcium/protein molar ratios indicates that the unfolding reaction needs more energy to initiate at higher calcium/protein molar ratio. This means that calcium ions should have a protective effect against β -LG unfolding. This can be explained by the fact that calcium alters the native β -LG tertiary structure and forms intermolecular bonds with some negatively charged groups, leading to the reinforcement of the native β -LG (Jeyarajah and Allen, 1994; Simons et al., 2002, O'Kennedy and Mounsey, 2009; Petit et al., 2011).

In the aggregation limited range, activation energy increases from 2.5 to 1% (w/w) of WPI model solution. This indicated that calcium favors β -LG aggregation (Verheul et al., 1998; Allen and Smith, 2001; Schmitt et al., 2007) by bridging of unfolded β -LG. The observed increase in β -LG aggregation frequency factor, with increasing the calcium/protein molar ratio from 2.3 to 5.7, may derive from protein electrostatic charge shielding and intermolecular crosslinking by calcium ions (Jeyarajah and Allen, 1994). However, a threshold effect of calcium/protein molar ratio was observed for 0.25 and 0.5% (w/w) model solutions. Indeed, excess of calcium at 11.5 and 22.9 calcium/protein molar ratios have an inhibitory effect on β -LG aggregation as indicated by the decrease of aggregation frequency factor and activation energies in agreement with Roefs and Peppelman (2001) study.

386 Fouling mass distribution in the PHE

Figure 7 represents the fouling results obtained with 0.25, 0.5, 1, 2, and 2.5% (w/w) WPI model solutions containing 100 ppm of total calcium, for the same temperature profile imposed along the PHE.

According to figure 7, PHE fouling is markedly impacted by the temperature in the channels whatever the WPI model solutions. As a general trend, fouling began in the 1st channel at 66.7°C and increased in the other passes of the PHE, where the temperature is higher. Moreover, the dry deposit mass is not uniform in all the channels and is distributed differently depending on the calcium/protein molar ratio of the fouling solutions. Indeed, for the WPI model solution at 0.25% (w/w), the dry deposit mass increases almost linearly from the 1st channel until the 4th channel and a decrease was then observed in the 5th channel of the PHE: the dry deposit mass goes from 40.6 g in the 4th channel to 34.7 g in the 5th channel, in spite of the fact that the temperature of the WPI model solution is still increasing. For the other WPI solutions, 0.5, 1, 2, and 2.5% (w/w), the dry deposit mass increases continuously to reach a maximum in the 5th channel. Note that a slight decrease of the fouling deposit in the last

401 channel of the PHE was observed for the 2.5% (w/w) model solution. In this case, there is a
402 small decline of the dry deposit mass from 10.6 to 9.7 g.

403 Whatever the heated WPI solution, the dry deposit mass strongly increases at the 2nd 404 channel. This increase results from the initiation of β-LG denaturation between 66.7°C (1st 405 channel temperature) and 70.9°C (2nd channel temperature), as indicated by Havea et al. 406 (2001) and Linmark-Mansson et al. (2005). The dry deposit mass is higher in the second 407 channel for WPI solutions at 0.25 and 0.5% (w/w) than the others, in agreement with higher β-408 LG unfolding kinetics.

In our work, the growth of the fouling mass is closely related to the availability of β -LG unfolded species as precursors in β -LG fouling mechanism. This is in agreement with the study of Blanpain-Avet et al. (2012). Indeed, these authors concluded from fouled deposit analysis by Raman spectroscopy that protein aggregates are not present in the deposit and the precursor specie of fouling is the unfolded β -LG.

From these experiments, it is clear that the dry deposit mass is not positively correlated with the protein concentration in the WPI fouling solutions, but depends on β -LG denaturation kinetics that are affected by the calcium/protein molar ratio in the fouling solutions.

*Relationship between the calcium/molar ratio and the total amount of the deposit mass in the*419 *PHE*

Figure 8 represents the effect of the calcium/protein molar ratio on the total amount of dry deposit mass in the PHE for the five WPI fouling solutions. It can be observed that, for the same inlet and outlet product temperatures, the total deposit mass increased with the increase of the calcium/protein molar ratio (obtained by the decrease of β -LG concentration for a constant calcium concentration) up to a calcium/protein molar ratio of 11.5 (protein concentration of 0.5% w/w). Indeed, for a 2.5% (w/w) WPI model solution containing a calcium/protein molar ratio of 2.3, the total deposit mass is about 29 g, whereas it is equal to 155.5 g for the 0.5% (w/w) WPI model solution containing a calcium/protein molar ratio of 11.5.

For higher calcium/protein molar ratio in the WPI model solution, a slow decline of the total deposit mass from 155.5 g to 135.1 g for 0.25% (w/w) WPI model solution is observed. This decrease can be explained by the fact that protein concentration is lower and may be limiting for constituting the fouling layer (more than 10% of the dry matter of the 0.25% WPI solution is recovered on the heated plates). Hence, the denaturation rate was slowed down by the depletion in native β -LG, leading to lower concentration of unfolded β -LG and lower fouling masses (Petit et al., 2013). The decrease of dry deposit mass could also be explained by the

435 protective effect of calcium toward β-LG denaturation at high calcium/protein molar ratio
436 (Roefs and Peppelman, 2001).

Figure 9 shows a picture of the deposit layer formed in the heat exchanger plates after conducting the fouling experiments with WPI model solutions at 0.25 and 2.5% (w/w) and containing 100 ppm of total calcium each. The observation of the fouling layer obtained after 2 hours of fouling runs at 70.9°C corresponding to 2nd channel (WPI model solutions at 0.25% w/w) and 84°C corresponding to 5th channel (WPI model solutions at 2.5% w/w) exhibited different aspects.

For 0.25% (w/w) WPI model solution, the fouling layer in the 2nd channel of the PHE is white, thick abundant and homogeneously distributed on the heated plate. It clearly appears that even at low temperature (70.9°C) an extensive fouling is obtained. These observations are in agreement with Havea et al. (2001) and Linmark-Mansson et al. (2005) who showed that whey proteins are expected to denature at temperatures as low as 70.9°C.

448 For 2.5% (w/w) model solution, the fouling layer in the 5th channel of the PHE is thin and
449 barely visible in spite of the higher temperature in the PHE channel (84°C). Fewer fouling is
30 450 observed at temperature over 80°C.

In order to characterize the fouling and understand the role of calcium/protein molar ratio in the fouling growth after 2 hours of fouling runs, the morphology and chemical composition of the fouling layer on the surface of heat exchanger plates were analysed using EPMA and XPS (Figure 10). Profile analyses reveal the elements characteristic of steel (Fe, iron), protein (S, sulfur), calcium (Ca) and chloride (Cl). As already said, the mappings are colour coded from black to red, with black characterizing the absence of the element and red the highest concentration detected. It is possible to compare the concentrations of an element between pictures a) and b) as colour scales are identical.

Calcium and sulfur mappings of the 0.25% (w/w) WPI solution (Figure 10a) indicate that the fouling layer is thick, not homogenous and has developed following an arborescence growth. It was also observed that calcium and sulfur are quite homogeneously dispatched in the arborescence and are co-localized. These results are in agreement with Jimenez et al. (2013) who explained the arborescent structure as a co-construction of the fouling layer by proteins and calcium containing particles. These latter act as anchoring points for further deposit growth.

⁵⁸ 59
 ⁶⁰ 466 Note that it is difficult to compare further our results with those obtained by Jimenez et al.
 ⁶⁰ 467 (2013) since fouling layers were not formed under the same operating conditions (composition of the solutions of both calcium and protein concentrations, history of the imposed temperature

Biofouling

in the PHE, etc.) and collected on the same localisation in the fouling experimental set-up. In
our case, fouling deposits were obtained in the heating zone, on a channel of the plate heat
exchanger and consequently on a corrugated surface, while the fouling deposits characterized
by Jimenez et al. (2013) were formed in stainless steel flat coupons inserted in a pipe
corresponding to a holding zone located after the PHE used for heating.

The 2.5% (w/w) WPI solution is thin, homogenous and much more compact and smaller (about 50 µm) than the previous one (Figure 10b). In this case, also calcium and sulfur are co-localized, with a lower calcium/protein molar ratio than for the 0.5% (w/w) solution (blue colour mainly versus green colour in picture a). The calcium/protein molar ratio acts not only on the deposit mass located on the surface of the heat exchanger plates but also on its structure. From the observed fouling layer, it is assumed that protein-protein interactions and proteincalcium particles interactions contribute to the formation of the fouling layer. At low calcium/protein molar ratio, protein-protein interactions are favoured at the expense of protein-calcium particles interactions in the fouling layer, resulting in a thin, smooth and compact structure. At high calcium/protein molar ratio, the calcium particles accelerate the growth of the fouling layer by exposing a larger surface for protein deposition. The growth of the fouling layer is then oriented by the deposit of calcium particles resulting in thicker, spongier and rougher structure.

As 90 ppm of calcium under CaCl₂ form was added to the 0.25% WPI model solution, it was
suggested that chloride could participate to the constitution of the fouling layer and could
explain the different structures of the fouling layer. However, chloride was not detected at all in
the fouling layer meaning that it is not present or present in too low amount in the fouling layer.
Consequently, chloride is not a major constituent in the build-up of the fouling layer.

To complete the analysis of the fouling layer obtained from the fouling runs of 0.25% (w/w) WPI model solution, the chemical form of the calcium constituting the deposit was investigated by XPS analyses (Figure 11). One peak could be identified for phosphorus (not shown here) and two peaks for the calcium, at 350,8 eV and 347.2 eV respectively, corresponding to the Ca 2p1/2 and Ca 2p3/2 in calcium phosphate. The experimental molar calcium/phosphate ratio was found equal to 1.45, which is close to the value found in the literature of about 1.47 (Tissier and Lalande, 1986) and 1.5 (Chusuei and Goodman, 1999). This is also a great difference with the work of Jimenez et al. (2013) who have established, for their fouling solution and tested operating conditions, that calcium carbonate was involved in the deposition mechanism. This difference may be explained mainly by the fact that WPI model solution of Jimenez et al. (2013) was obtained by rehydrating tap water (letting the possibilities of carbonate calcium to

be induced in the fouling solution). In our case, the fouling solutions were prepared using reverse osmosis water to limit the formation of carbonate calcium. Moreover, mineral concentrations of the model fouling solutions (namely in calcium and in phosphorus elements) are really different and lead to different salts balance.

Relationship between β -LG heat denaturation rate constants and the distribution of the deposit mass along the PHE

We have shown in the previous part of this article that β -LG denaturation kinetics increase strongly when calcium/protein molar ratio in WPI model solutions increase, in both unfolding and aggregation limited regions. We have also shown in a previous paper (Khaldi et al. 2015a), for two model fouling solutions containing a fixed protein content and various calcium content (precisely 1% w/w WPI solution containing 100 and 120 ppm total calcium), that it is possible to link the deposit formation rate within the PHE to the denaturation chemical reactions (unfolding and aggregation) occurring in the bulk. To do that, we suggested that the dry deposit mass distribution in the various channels of the PHE was plotted against the ratio between the unfolding reaction rate constant (k_{unf}) and the aggregation reaction rate constant (k_{agg}) calculated at the temperature of the bulk solution in the corresponding channel $(r = k_{unf}/k_{agg})$.

In this last part, we will bring a further insight into this field and how calcium/protein molar ratio of WPI model solutions impacts these plots.

Figure 12 represents the variation of the measured dry deposit mass in the different channels of the PHE with the ratio r, for the various investigated WPI model solutions.

For each fouling solution, it could be observed that an S curve exists to describe the variation of the dry deposit mass in the various channels of the PHE. The different master curves, representing the deposit mass per channel vs the ratio r, contained two characteristic zones:

i) an unfolding limited zone with an initial sharp increase at values of r close to zero, followed by a maximum of the deposit mass with *r*;

ii) an aggregation limited zone where the deposit mass per channel seems to reach a limiting value.

From figure 12, it is noticed that r values, at which fouling build-up starts, are very close to zero. This confirms that very little unfolded β -LG species are required for fouling to be deposited. Fouling first builds up and deposit mass increases sharply in the unfolding limited zone for 0.73 < r < 0.98, corresponding to bulk temperatures ranging from 76 to 80°C, where

the deposit mass is the highest. The fact that the deposit mass increases strongly, when r is below 1, shows that the unfolding limited zone controls the growth of the deposit mass.

Figure 12 also shows that the increase of the deposit mass per channel does not follow the same slope. The slope is clearly impacted by the values of calcium/protein molar ratio. Indeed, for WPI model solution containing a calcium/protein molar ratio equal to 11.5, the higher is the calcium/protein molar ratio, the sharper is the rise of the deposit mass per channel. Consequently for this WPI model solution, it seems that the temperature range of the aggregation limited zone is reducing when calcium/protein molar ratio increases. For the WPI model solution containing a calcium/protein molar ratio equal to 22.9 (0.25% w/w WPI solution), it is difficult to conclude since a change in the slope of the denaturation rate constant has been observed previously in the unfolding temperature area and impacted also the representation (the deposit mass per channel vs the ratio r).

At higher temperature along the PHE (above 80°C) and r > 1, corresponding to the aggregation limited area, for each fouling solution a plateau in the deposit mass is observed. This can be explained by an increase in the collision probability between unfolded β -LG molecules which will promote aggregate formation rather than deposit layer formation (Delplace et al., 1997). The values of this plateau increase with calcium/protein molar ratio values up to a calcium/protein molar ratio of 11.5. The value of the plateau seems to slightly decrease for higher calcium/protein molar ratio. This is in agreement with fouling mass distribution and total mass distribution which have shown a decrease for this calcium/protein molar ratio.

These results show unambiguously that whatever the calcium protein molar ratio of the fouling solution, the deposit mass per channel reaches a maximum limit when the aggregation reaction is high enough to consume the unfolded species under aggregated forms. Calcium/protein molar ratio of the fouling solutions impacts significantly both unfolding and aggregation reactions and consequently influences significantly the fouling mass distribution occurrence for a given bulk temperature profile.

563 For fouling solutions with various calcium/protein molar ratios, the fouling mass per channel 564 is reasonably well correlated to the ratio *r* providing additional proof that denaturation data 565 basis are prerequisites for controlling fouling.

Conclusions

567 The aim of this study was to evidence the influence of calcium/protein molar ratio on β -LG 568 heat-induced denaturation, the deposit mass distribution, and the fouling layer structure 569 obtained when processing protein-calcium solutions. Five WPI model fouling solutions at 570 various calcium/protein molar ratios (ranging from 2.3 to 22.9) were elaborated for this 571 purpose. The solutions were made by varying protein concentrations (from 0.25 to 2.5% w/w) 572 and fixing the total calcium content (100 ppm).

- 6 573 It was shown that:
- 574 1.5 reaction order is relevant to model β-LG denaturation reaction for all WPI model fouling
 575 solutions, whatever the calcium/protein molar ratio of the model solutions;
- 576 β -LG heat denaturation mechanism is limited either by aggregation or by unfolding according to the temperature value, whatever the calcium/protein molar ratio of the WPI fouling solutions;
- 579 Increasing calcium/protein molar ratio increases the β-LG denaturation kinetic parameters, both in the unfolding and aggregation limited zones;
- 581 Increasing the calcium/protein molar ratio leads to a strong increase of the fouling mass 582 582 within the PHE at low temperatures;
- 583 On the contrary, β -LG denaturation kinetic parameters and the fouling mass are not positively correlated with the protein concentration of the WPI fouling solutions (prepared at constant calcium content);
- The microstructure of the fouling layers is impacted by calcium/protein molar ratio. Indeed,
 the layer is thin, smooth and compact at low calcium/protein molar ratio, and on the contrary
 the layer is thin, smooth and spongy at high calcium/protein molar ratio;
- Mappings of the highest calcium/protein molar ratio indicate that calcium particles
 accelerate the growth of the fouling layer by exposing a larger surface for protein deposition;
 Mappings of the lowest calcium/protein molar ratio indicate that protein-protein interactions
 - are favoured at the expense of protein–calcium particles interactions in the fouling layer;
- For each model solution with different calcium/protein molar ratio, the plot of deposit mass per channel vs $r = k_{unf}/k_{agg}$ leads to an S curve. The deposit mass per channel increases and the final plateau of the S curve is clearly impacted by the values of calcium/protein molar ratio. It is recommended to determine more systematically the denaturation rate constants of fouling solutions to predict their fouling behaviour and the location of the deposit mass inside the PHE for an imposed temperature profile.

Biofouling

$egin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 30 \\ 13 \\ 23 \\ 34 \\ 5 \\ 26 \\ 27 \\ 28 \\ 9 \\ 30 \\ 13 \\ 23 \\ 34 \\ 5 \\ 26 \\ 27 \\ 28 \\ 9 \\ 30 \\ 31 \\ 23 \\ 34 \\ 5 \\ 26 \\ 27 \\ 28 \\ 9 \\ 30 \\ 31 \\ 23 \\ 34 \\ 5 \\ 26 \\ 27 \\ 28 \\ 9 \\ 30 \\ 31 \\ 23 \\ 34 \\ 5 \\ 26 \\ 27 \\ 28 \\ 9 \\ 30 \\ 31 \\ 23 \\ 34 \\ 5 \\ 26 \\ 27 \\ 28 \\ 9 \\ 30 \\ 31 \\ 23 \\ 34 \\ 5 \\ 26 \\ 27 \\ 28 \\ 9 \\ 30 \\ 31 \\ 23 \\ 34 \\ 35 \\ 26 \\ 27 \\ 28 \\ 20 \\ 31 \\ 32 \\ 34 \\ 35 \\ 20 \\ 31 \\ 32 \\ 34 \\ 35 \\ 20 \\ 31 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35$	599	Nomenclature			
	600	Ca	calcium concentration, ppm		
	601	C_{N}	concentration of native β -LG along the PHE channels, g L ⁻¹		
	602	Cs	soluble β -LG concentration, g L ⁻¹		
	603	C_8^0	initial β -LG total soluble concentration (at time zero), g L ⁻¹		
	604	C_U	concentration of unfolded β -LG along the PHE channels, g L ⁻¹		
	605	E _A	activation energy, J. mol ⁻¹		
	606	E _{A,unf}	β -LG unfolding activation energy, J mol ⁻¹		
	607	E _{A,agg}	β -LG aggregation activation energy, J mol ⁻¹		
	608	k _n	denaturation rate constant, g ¹⁻ⁿ L ⁿ⁻¹ s ⁻¹		
	609	k_n°	denaturation frequency factor, g ¹⁻ⁿ Ln ⁻¹ s ⁻¹		
	610	kunf	unfolding rate constant, g ¹⁻ⁿ L ⁿ⁻¹ s ⁻¹		
	611	k _{agg}	aggregation rate constant, g ¹⁻ⁿ L ⁿ⁻¹ s ⁻¹		
	612	n	heat-induced denaturation reaction order		
	613	Q	flow rate, L h ⁻¹		
	614	Qp	WPI fouling solution flow rate, L h ⁻¹		
	615	$\mathbf{Q}_{\mathbf{h}}$	hot water flow rate, L h-1		
	616	r	ratio between the unfolding and aggregation rate constants		
	617	R	the universal gas constant equal to 8.314, J mol ⁻¹ K ⁻¹		
30 37	618	Т	temperature, K		
38 39	619	T_{ip}	WPI fouling solution temperature at the PHE inlet, °C		
40 41	620	T _{op} 1	hot water temperature at the PHE outlet, °C		
42 43	621				
44	622	Acknowled	lgement		
45 46 47 48 49 50	623	This wo	ork was carried out within the framework of an ALIBIOTECH program. The authors are indebted to the		
	624	scientific c	ommittee of Agrocampus Ouest Rennes and HEI (Hautes Etudes d'Ingénieur, Lille) for stimulating		
	625	discussions	and financial support for the Ph.D. Thesis of the first author. The authors thank the Haut de France		
	626	region and FEDER for their financial support.			
51 52	627				

53 628 **References**

Bansal B, Chen XD, Lin SXQ. 2005. Skim milk fouling during ohmic heating. In: MüllerSteinhagen H, Malayeri MR, Watkinson AP, editors. Proceedings of 6th International
Conference on Heat Exchanger Fouling and Cleaning - Challenges and Opportunities, Editors
Engineering Conferences; 2005 June 5–10; Kloster Irsee, Germany.
Bansal B, Chen XD. 2005. Fouling of heat exchangers by dairy fluids - a review. In: Müller-Steinhagen H, Malayeri MR, Watkinson AP, editors. Proceedings of 6th International Conference on Heat Exchanger Fouling and Cleaning - Challenges and Opportunities, Editors Engineering Conferences; 2005 June 5–10; Kloster Irsee, Germany. Bansal B, Chen XD. 2006. A Critical Review of Milk Fouling in Heat Exchangers. Comprehensive Reviews in Food Science and Food Safety 5: 27–33. Belmar-Beiny MT, Gotham WR, Paterson WR, Fryer PJ. 1993. The effect of Reynolds number and fluid temperature in whey protein fouling. Journal of Food Engineering 19: 119-139. Blanpain-Avet P, Hédoux A, Guinet Y, Paccou L, Petit J, Six T, Delaplace G. 2012. Analysis by Raman spectroscopy of the conformational structure of whey proteins constituting fouling deposits during the processing in a heat exchanger. Journal of Food Engineering 110: 86-94. Changani SD, Belmar-Beiny MT, Fryer PJ. 1997. Engineering and chemical factors associated with fouling and cleaning in milk processing. Experimental Thermal and Fluid Science 14: 392-406. Chusuei CC, Goodman DW. 1999. Calcium Phosphate Phase Identification Using XPS and Time-of-Flight Cluster SIMS. Analytical Chemistry 71: 149–153. Chen XD, Chen J, Wilson DI. 2001. Modelling whey protein based fouling of heat exchangers - Further examining the deposition mechanisms. In: Müller-Steinhagen H, Malayeri MR, Watkinson AP, editors. 4th International Conference on Heat Exchanger Fouling -Fundamental Approaches and Technical Solutions; 2001 July 8–13; Davos, Switzerland. Christian GK, Changani SD, Fryer PJ. 2002. The effect of adding minerals on fouling from whey protein concentrate - development of a model fouling fluid for a plate heat exchanger. Trans IChemE C 80: 231-239. de Jong, P, Bouman S, van Der Linder HJ. 1992. Fouling of heat treatment equipment in relation to denaturation of β -lactoglobulin. Journal of the Society of Dairy Technology 45(1): 3-8. Daufin G, Labbé JP, Quemerais A, Brulé G, Michel F, Roignant M, Priol M. 1987. Fouling of a heat exchanger surface by whey, milk and model fluids: an analytical study. Lait 67: 339-364. de Jong P. 1997. Impact and control of fouling in milk processing. Trends in Food Science and Technology 8: 401-405.

Page 21 of 40

1 2		
3	666	de Jong P, van der Horst HC, Waalewijn R. 1998. Reduction of protein and mineral fouling.
4 5	667	Fouling and Cleaning in Food Processing. In: Wilson DI., Fryer PJ, Hasting APM Eds, editors.
6 7 8 9	668	Fouling and Cleaning in Food Processing, (pp. 39-46). Cambridge, England.
	669	Delplace F, Leuliet, JC, Tissier JP. 1994. Fouling experiments of a plate heat exchanger by
10 11	670	whey proteins solutions. Trans IChemE C 72: 163–169.
12	671	Delplace F, Leuliet JC, Levieux D. 1997. A reaction engineering approach to the analysis of
13	672	fouling by whey proteins of a six-channels-per-pass plate heat exchanger. Journal of Food
15 16	673	Engineering 34: 91–108.
17 18	674	Delsing BMA, Hiddink J. 1983. Fouling of heat transfer surfaces by dairy fluids.
19 20	675	Netherlands Milk Dairy Journal 37: 139–148.
20	676	Georgiadis MC, Papageorgiou LG, Macchietto S. 2000. Optimal cleaning policies in heat
22 23 24 25 26 27 28 29 30 31 32 33 34	677	exchanger networks under rapid fouling. Industrial and Engineering Chemistry Research 39:
	678	441–454.
	679	Gillham CR, Fryer PJ, Hasting APM, Wilson DI. 2000. Enhanced cleaning of whey protein
	680	soils using pulsed flows. Journal of Food Engineering 46: 199–209.
	681	Grandison, AS. 1988. Effects of natural (or seasonal) variation in concentration of
	682	components of milk and addition of divalent cations on ultra-high temperature processing
	683	characteristics. Journal of the Society of Dairy Technology 41: 117–119.
35 36	684	Guérin R, Ronse G, Bouvier L, Debreyne P, Delaplace G. 2007. Structure and rate of growth
37	685	of whey protein deposit from in situ electrical conductivity during fouling in a plate heat
38 39	686	exchanger. Chemical Engineering Science 62: 1948–1957.
40 41	687	Havea P, Singh H, Creamer LK. 2001. Characterization of heat-induced aggregates of β -
42 43	688	lactoglobulin, α -lactalbumin and bovine serum albumin in a whey protein concentrate
44	689	environment. Journal of Dairy Research 68: 483–497.
45 46	690	Jeyarajah S, Allen JC. 1994. Calcium binding and salt-induced structural changes of native
47 48	691	and preheated beta-lactoglobulin. Journal of Agricultural and Food Chemistry 42: 80–85.
49 50	692	Jeurnink TJM, Walstra P, de Kruif CG. 1996. Mechanism of Fouling in Dairy Processing,
51 52	693	Netherlands Milk and Dairy Journal 50: 407–426.
53	694	Jimenez M, Delaplace G, Nuns N, Bellayer S, Deresmes D, Ronse G, Alogaili G, Collinet-
54 55	695	Fressancourt M, Traisnel M. 2013. Toward the understanding of the interfacial dairy fouling
56 57	696	deposition and growth mechanisms at a stainless steel surface: A multiscale approach. Journal
58 59	697	of Colloid and Interface Science 404: 192–200.
60	698	Khaldi M, Ronse G, André C, Blanpain-Avet P, Bouvier L, Six T, Bornaz S, Croguennec T,
	699	Jeantet R, Delaplace G. 2015a. Denaturation kinetics of whey protein isolate solutions and

fouling mass distribution in a plate heat exchanger. International Journal of Chemical

Engineering, 2015 (Article ID 139638): 10 p. Khaldi M, Blanpain-Avet P, Guérin R, Ronse G, Bouvier L, André C, Bornaz S, Croguennec T, Jeantet R, Delaplace, G. 2015b. Effect of calcium content and flow regime on whey protein fouling and cleaning in a plate heat exchanger. Journal of Food Engineering 147: 68-78. Lalande M, René F. 1988. Fouling by milk and dairy product and cleaning of heat exchangers. In: Melo LF, Bott TR, Bernardo CA, editors. Fouling Science and Technology; Dordrecht: Kluwer Academic Publishers: 557-574. Linmark-Mansson H, Timgren A, Alden G, Paulsson M. 2005. Two-dimensional gel electrophoresis of proteins and peptides in bovine milk. International Dairy Journal 15: 111-121. Mahdi Y, Mouheb A, Oufer L. 2009. A dynamic model for milk fouling in a plate heat exchanger. Applied Mathematical Modelling 33: 648–662. McKinnon IR, Yap SE, Augustin MA, Hemar Y. 2009. Diffusing-wave spectroscopy investigation of heated reconstituted skim milks containing calcium chloride. Food Hydrocolloid 23(4): 1127–1133. Morison KR, Tie S.H. 2002. The Development and Investigation of a Model Milk Mineral Fouling Solution. Food and Bioproducts Processing 80(4): 326–331. Mulvihill, DM, Donovan M. 1987. Whey proteins and their thermal denaturation - A review. Irish Journal of Food Science and Technology 11: 43–75. Müller-Steinhagen H. 1993. Fouling: the ultimate challenge for heat exchanger design. 6th International Symposium on Transport Phenomena in Thermal Engineering; 1993 May 9-13; Seoul, Korea. Nielsen BT, Singh H, Latham JM. 1995. Aggregation of bovine β -lactoglobulin A and B on heating at 75°C. International Dairy Journal 6: 519–527. O'Kennedy BT, Mounsey JS. 2009. The dominating effect of ionic strength on the heat-induced denaturation and aggregation of beta-lactoglobulin in simulated milk ultrafiltrate. International Dairy Journal 19: 123–128. Oldfield DJ, Singh H, Taylor MW. 2005. Kinetics of heat induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration. Journal of Dairy Research 72: 369-378.

Page 23 of 40

1 2		
3 1	732	Petit J, Herbig AL, Moreau A, Delaplace G. 2011. Influence of calcium on blactoglobulin
5	733	denaturation kinetics: implications in unfolding and aggregation mechanisms. Journal of Dairy
6 7 8 9 10 11 12 12	734	Science 94: 5794–5810.
	735	Petit J, Six T, Moreau A, Ronse G, Delaplace G. 2013. β -lactoglobulin denaturation,
	736	aggregation, and fouling in a plate heat exchanger: pilot-scale experiments and dimensional
	737	analysis. Chemical Engineering. Science 101: 432–450.
14	738	Phan-Xuan T, Durand D. Nicolai T. 2013. Tuning the structure of protein particles and gels
15 16	739	with calcium or sodium ions. Biomacromolecules 14: 1980–1989.
17 18	740	Relkin P. 1996. Thermal unfolding of β -lactoglobulin, α -lactalbumin, and bovine serum
19	741	albumin: A thermodynamic approach. Critical Reviews in Food Science and Nutrition 36: 565–
20	742	601.
22	743	Roefs SPFM, de Kruif KG. 1994. A model for the denaturation and aggregation of β -
24 25	744	lactoglobulin. European Journal of Biochemistry 226: 883–889.
26 27	745	Roefs SPFM, Peppelman HA. 2001. Aggregation and gelation of whey proteins: specific
28	746	effect of divalent cations? In: Dickinson E, Miller R, editors. Food colloids: Fundamentals of
30	747	formulation, Royal Society of Chemistry Cambridge, UK: 358–368.
31 32	748	Sherwin C, Foegeding E. 1997. The effects of CaCl ₂ on aggregation of whey proteins.
33 34	749	Milchwissenschaft 52: 93–96.
35 36	750	Simons JWFA, Kosters HA, Visschers RW, de Jongh, HHJ. 2002. Role of calcium as trigger
37	751	in thermal beta-lactoglobulin aggregation. Archives of Biochemistry and Biophysics 406: 143–
38 39	752	152.
40 41	753	Tissier JP, Lalande M. 1986. Experimental device and methods for studying milk deposit
42 43	754	formation on heat exchange surfaces. Biotechnology Progress 2: 218–229.
44 45	755	Tolkach A, Kulozik U. 2007. Reaction kinetic pathway of reversible and irreversible thermal
46	756	denaturation of β -lactoglobulin. Dairy Science and Technology 87: 301–315.
47 48	757	Toyoda I, Schreier PJR, Fryer PJ. 1994. A computational model for reaction fouling from
49 50	758	whey protein solutions. In: Fryer PJ, Hasting APM, Jeurnink TJM, editors. Fouling Cleaning in
51 52	759	Food Processing; Jesus College, Cambridge, UK.
52 53 54 55	760	Tsuge H, Tanaka Y, Yoshizawa S, Kuraishi T. 2002. Reactive crystallization behaviour of
	761	calcium phosphate with and without whey protein addition: Chemical Engineering Research
56 57	762	and Design 80: 105–110.
58 59	763	van Asselt AJ, Vissers MMM, Smit F, de Jong P. 2005. In-line control of fouling. In: Müller-
60	764	Steinhagen H, Malayeri MR, Watkinson AP, editors. 6th International Conference on Heat

3 ⊿	765	Exchanger Fouling and Cleaning - Challenges and Opportunities, Editors Engineering
5	766	Conferences; 2005 June 5–10; Kloster Irsee, Germany.
6 7	767	Visser J, Jeurnink, TJM. 1997. Fouling of heat exchangers in the dairy industry.
8 9	768	Experimental Thermal and Fluid Science 14: 407–424.
10 11	769	Xiong YL. 1992. Influence of pH and ionic environment on thermal aggregation of whey
12 13 14 15 16 17 18 19 20 12 23 24 25 26 7 28 29 30 13 23 33 35 36 7 28 39 40 14 24 34 45 46 74 84 95 15 25 35 45 56 57 58 59 60 14 24 34 45 66 75 15 25 35 55 56 57 58 59 60 14 24 34 45 66 75 15 25 35 55 56 57 58 59 60 14 24 34 45 66 75 15 25 35 55 56 57 58 59 60 14 24 34 56 56 57 58 59 60 14 24 34 56 56 57 58 59 60 14 24 34 56 56 57 58 59 60 14 24 34 56 56 57 58 59 60 14 24 34 56 56 57 58 59 60 14 24 34 56 56 57 58 59 60 14 24 34 56 56 57 58 59 60 14 24 34 56 56 57 58 59 60 14 24 34 56 56 57 58 59 60 14 24 56 56 57 58 59 60 14 24 56 56 57 58 59 60 14 24 56 56 57 58 59 60 14 24 56 56 57 58 59 60 14 24 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 57 58 59 60 14 56 56 56 57 58 59 60 14 56 56 56 57 58 59 60 14 56 56 56 56 57 58 59 60 14 56 56 56 56 56 56 56 56 56 56 56 56 56	770	proteins. Journal of Agricultural and Food Chemistry 40: 380–384.

Figure 1. Experimental temperature profiles obtained by immersing the stainless steel tubes containing the protein solution in three successive water baths for the determination of β -LG denaturation rate constants.

Figure 2. Schematic diagram of the experimental set-up used at pilot scale for the whole fouling

experiments.

Figure 3. Plate heat exchanger flow arrangement.

Figure 5. Comparison between the β -LG denaturation models based on different reaction orders (1.5 and 2) at 85°C of 0.5% (w/w) WPI model solution.

Figure 6. Arrhenius plot for the β-LG denaturation of various heat-treated WPI model solutions

(from 0.5 to 2.5% w/w corresponding to calcium/protein molar ratio from 2.3 to 23).

Figure 7. Fouling mass distribution in each channel of the PHE for various WPI fouling solutions (0.25, 0.5, 1, 2 and 2.5% w/w) containing 100 ppm of total calcium, at the same imposed temperature profile.

Figure 8. Plot of the total amount of dry deposit mass versus the calcium/protein molar ratio.

Figure 9. Pictures of the deposit layers on the surface of the PHE after conducting a 2 hours fouling experiment with either 0.25 (left) or 2.5% (w/w) (right) WPI model solutions.

*The cross section is embedded in an epoxy resin containing chloride this is why some Cl is detected above the SS surface

Figure 10. Fe, Cl, S and Ca X-Ray mappings of the cross section of the fouling layer for (a) 0.25%

and (b) 2.5% (w/w) WPI model solutions.

http://mc.manuscriptcentral.com/gbif

Figure 11. XPS analysis of the calcium containing particles.

Figure 12. Variation of the dry deposit mass in the various channels of the PHE with the ratio r for the various WPI model solutions.

3
4
5
6
7
, Q
0
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
22 22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
26
30
31
38
39
40
41
42
43
11
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
52
50
59
60

Table 1.	Composition	of WPI powder.
----------	-------------	----------------

Component	Promilk 852FB1(% w/w)
Total proteins	80.1
β-LG	66.0
α-LA	13.3
Fat	1
Lactose	11
Minerals	2.9

β-LG	WPI powder	Calcium	Total	Calcium/protein
solution	calcium	concentration in	calcium	molar ratio
(% w/w)	concentration (ppm)	CaCl ₂ solution	content	
		(ppm)	(ppm)	
0.25	10	90	100	22.9
0.5	20	80	100	11.5
1	40	60	100	5.7
2	80	20	100	2.9
2.5 100		0	100	2.3

Table 2. Initial and added calcium contents of the different model fouling solutions.

Table 3. Operating conditions investigated with the pilot-scale experimental set: mean inlet and outlet temperatures and flow rates of β -LG concentrate and hot water.

$T_{ip}(^{\circ}C)$	$T_{op}(^{\circ}C)$	$Q_p(L.h^{-1})$	$Q_h (L.h^{-1})$
65	85	300	300

1
2
3
4
5
6
0
1
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
26
20
20
20
29
30
31
32
33
34
35
36
37
38
30
10
40 44
41
42
43
44
45
46
47
48
49
50
51
52
53
51
55
50
00 57
5/ 50
58
59

60

WPI

Table 4. β -LG	denaturation	parameters a	t various	WPI	concentrations	and	comparison	with
literature data.								

This study

solution					
	0.25	0.5	1	2	2.5
Unfolding					
$ln(k^{\circ}_{unf})$	147.7	141.8	124.8	107.1	107.4
EA, unf	449.9	431.6	384.5	335.7	337.2
(kJ/mol)					
Aggregation					
$ln(k^{\circ}_{agg})$	78.2	74.1	86.3	58.6	59.7
$E_{A,agg}$	245.5	233.5	271.3	193.3	197.6
(kJ/mol)					

271.

Rapport de soutenance de thèse

EN COTUTELLE

Nom et prénom : Mme Khaldi Marwa

Titre de la thèse : Etude du lien entre la physico-chimie de dérivés laitiers et leur aptitude à l'encrassement lors du traitement thermomécanique en échangeur de chaleur

Discipline : Génie Biologique et Agro-Alimentaire

Date de soutenance : 24/05/2016

Mardi 24 Mai 2016, Mme Marwa KHALDI a exposé, durant quarante-cinq minutes, ses travaux de thèse portant sur l' « étude du lien entre la physico-chimie de dérivés laitiers et leur aptitude à l'encrassement lors du traitement thermomécanique en échangeur de chaleur ».

Au travers d'un diaporama très bien construit et didactique, questionnements scientifiques, stratégie expérimentale et principaux résultats ont été présentés avec clarté et pédagogie. Cet exercice, délicat compte tenu de la pluridisciplinarité du sujet, a été unanimement apprécié par le jury.

Au cours de la discussion, qui a suivi la présentation, Mme Marwa KHALDI a été soumise à un ensemble de questions variées couvrant différents champs thématiques. Mme Marwa KHALDI a répondu à la majeure partie des interrogations qui lui ont été posées, avec détermination mais de façon calme et raisonnée. Avec justesse et honnêteté, elle a su convaincre les membres du jury des apports originaux de son travail notamment des rôles respectifs de la teneur en calcium et de la dénaturation des protéines dans l'encrassement.

Ses réponses aux questions et ses échanges avec le jury ont ainsi montré sa maîtrise du sujet multiéchelle et également pluridisciplinaire (i.e. génie de la réaction, biochimie, transfert de masse et d'énergie, analyse dimensionnelle...) et ainsi l'étendue de ses compétences.

Après délibération, et pour toutes les raisons évoquées ci-dessus, le jury a décidé d'attribuer à Madame Marwa KHALDI le grade de Docteur d'Université de Lille 1, discipline Génie Biologique et Agro-Alimentaire, avec la mention Très Honorable.

Mention :

☐ Honorable L'USTL n'attribue plus de mention « Très Honorables avec les Félicitations » (par décision du Conseil Scientifique du 15 Juin 2007) Nombre de page du rapport : 1

Jury : Président : Thierry Ruiz Signature des membres :

DELAPLACE Guillaume	Batt	RUIZ Thierry	tet
BORNAZ Salwa		AYADI Mohamed Ali	atta
ATTIA Hamadi	PTO HAD AUATTIA		
FILLAUDEAU Luc	J.J.		