Thèse soutenue

Oscillations auto-induites en systèmes de conduites en présence d’écoulement diphasique air/eau

FR  |  
EN
Auteur / Autrice : Francesco Sanna
Direction : Yves AuréganJoachim Golliard
Type : Thèse de doctorat
Discipline(s) : Acoustique
Date : Soutenance le 15/04/2016
Etablissement(s) : Le Mans
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur, Géosciences, Architecture (Nantes)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'acoustique de l'Université du Mans - Laboratoire d'acoustique de l'université du Maine / LAUM
Equipe de recherche : TNO

Résumé

FR  |  
EN

Le couplage entre un écoulement instable et des résonances acoustiques dans des systèmes de conduites peut conduire à des phénomènes d’oscillations auto-induites. Ce type de phénomènes trouve principalement place dans des conduites latérales fermées, par exemple dans des systèmes de transport ou de compression de gaz. L’objectif de ce travail est d’étudier les oscillations auto-induites dans le cas où le fluide transporté ne se limite pas à un gaz, mais est un mélange de gaz et de liquide. Les pulsations sont mesurées dans des conduites latérales fermées, pour deux types de configurations (en tandem et en croix), avec écoulement d’un mélange variable d’air et d’eau. La position de l’injection d’eau est variable afin d’obtenir plusieurs régimes d’écoulement diphasique. Les résultats indiquent que la présence d’eau a un effet important sur les niveaux de pulsations dans les conduites. Cet effet a pu être attribué à deux mécanismes dus à la présence d’eau : les instabilités de couches de mélange sont modifiées et l’amortissement des ondes acoustiques est amplifié.Le deuxième mécanisme a été quantifié à l’aide de mesures sur un montage expérimental dédié conçu pour avoir un écoulement stratifié. On a observé que, dans tous les cas, la présence d’eau augmente l’amortissement. Cette augmentation a pu être attribuée à la réduction de la section effective de la conduite (due au remplissage partiel par l’eau) et à l’augmentation de la friction turbulente à l’interface entre les phases liquide et gazeuse.