Thèse soutenue

Optimisation auto-adaptative en environnement d’analyse multidisciplinaire via les modèles de krigeage combinés à la méthode PLS

FR  |  
EN
Auteur / Autrice : Mohamed Amine Bouhlel
Direction : Joseph MorlierNathalie Bartoli
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées et applications des mathématiques
Date : Soutenance le 26/01/2016
Etablissement(s) : Toulouse, ISAE
Ecole(s) doctorale(s) : École doctorale Aéronautique-Astronautique (Toulouse)
Partenaire(s) de recherche : Laboratoire : Office national d'études et recherches aérospatiales (Toulouse, Haute-Garonne). Département Conception et évaluation des Performances des Systèmes (DCPS)
Equipe de recherche : Équipe d'accueil doctoral Modélisation et ingénierie des systèmes (Toulouse, Haute-Garonne)
Jury : Président / Présidente : Marcel Mongeau
Examinateurs / Examinatrices : Joaquim R. R. A. Martins
Rapporteurs / Rapporteuses : Nicolas Gayton, Rodolphe Le Riche

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les turbomachines aéronautiques sont composées de plusieurs roues aubagées dont la fonction estde transférer l’énergie de l’air au rotor. Les roues aubagées des modules compresseur et turbine sontdes pièces particulièrement sensibles car elles doivent répondre à des impératifs de performanceaérodynamique, de tenue mécanique, de tenue thermique et de performance acoustique. L’optimisation aéro-méca-acoustique ou aéro-thermo-mécanique des aubages consiste à chercher, pourun ensemble de formes aérodynamiques paramétrées (par plusieurs dizaines de variables), celleassurant le meilleur compromis entre la performance aérodynamique du moteur et la satisfactionde plusieurs dizaines de contraintes souvent contradictoires. Cette thèse introduit une méthode d’optimisation basée sur les métamodèles et adaptée à la grande dimension pour répondre à la problématique industrielle des aubages. Les contributions de cettethèse portent sur deux aspects : le développement de modèles de krigeage, et l’adaptation d’unestratégie d’optimisation pour la gestion du grand nombre de variables et de contraintes.La première partie de ce travail traite des modèles de krigeage. Nous avons proposé une nouvelleformulation du noyau de covariance permettant de réduire le nombre de paramètres du modèleafin d’accélérer sa construction. Une des limitations connues du modèle de krigeage concernel’estimation de ses paramètres. Cette estimation devient de plus en plus difficile lorsque nousaugmentons la dimension du phénomène à approcher. En particulier, la base de données nécessitedavantage de points et par conséquent la matrice de covariance du modèle du krigeage est de plusen plus coûteuse à inverser. Notre approche consiste à réduire le nombre de paramètres à estimer en utilisant la méthode de régression des moindres carrés partiels (PLS pour Partial Least Squares). Cette méthode de réduction dimensionnelle fournit des informations sur la relation linéaire entre les variables d’entrée et la variable de sortie. Ces informations ont été intégrées dans les noyaux du modèle de krigeage tout en conservant les propriétés de symétrie et de positivité des noyaux. Grâce à cette approche, la construction de ces nouveaux modèles appelés KPLS est très rapide étant donné le faible nombre de paramètres nécessaires à estimer. La validation de ces modèles KPLS sur des cas test académiques ou industriels a démontré leur qualité de prédiction équivalente voire même meilleure que celle des modèles de krigeage classiques. Dans le cas de noyaux de covariance de type exponentiel, laméthode KPLS peut être utilisée pour initialiser les paramètres du krigeage classique, afin d’accélérerla convergence de l’estimation des paramètres du modèle. La méthode résultante, notée KPLS+K, a permis d’améliorer la qualité des modèles dans le cas de fonctions fortement multimodales. La deuxième contribution de la thèse a consisté à développer une stratégie d’optimisation globale sous contraintes pour la grande dimension, en s’appuyant sur les modèles KPLS ou les modèlesKPLS+K. En effet, nous avons étendu la méthode d’optimisation auto-adaptative connue dans lalittérature sous le nom "Efficient Global Optimisation, EGO" pour gérer les problèmes d’optimisationsous contraintes en grande dimension. Différents critères d’enrichissement adaptatifs ont pu êtreexplorés. Cette stratégie a permis de retrouver l’optimum global sur des problèmes académiquesjusqu’à la dimension 50. La méthode proposée a été confrontée à deux types de problèmes industriels, le cas test MOPTA issu de l’industrie automobile (124 variables d’entrée et 68 fonctions contraintes) et le cas test Snecma des aubes de turbomachines (50 variables d’entrée et 31 fonctions contraintes). Les résultats ont permis de montrer la validité de la démarche ainsi que les limites de la méthode pour une application dans un cadre industriel.