Les invariants de Links-Gould comme généralisations du polynôme d’Alexander

par Ben-Michael Kohli

Thèse de doctorat en Mathématiques

Sous la direction de Peter Schauenburg et de Emmanuel Wagner.

Soutenue le 23-11-2016

à Dijon , dans le cadre de École doctorale Carnot-Pasteur (Besançon ; Dijon ; 2012-....) , en partenariat avec Institut de Mathématiques de Bourgogne (IMB) (Dijon) (laboratoire) .

Le président du jury était Stéphane Baseilhac.

Le jury était composé de Anna Beliakova, David Cimasoni.

Les rapporteurs étaient Stéphane Baseilhac, Nathan Geer.


  • Résumé

    On s’intéresse dans cette thèse aux rapports qui existent entre deux invariants d’entrelacs. D’une part l’invariant d’Alexander ∆ qui est l’invariant de nœuds le plus classique, et le plus étudié avec le polynôme de Jones, et d’autre part la famille des invariants de Links-Gould LGn,m qui sont des invariants quantiques dérivés des super algèbres de Hopf Uqgl(n|m). On démontre en particulier un cas de la conjecture de De Wit-Ishii-Links : certaines spécialisa- tions des polynômes de Links-Gould fournissent des puissances du polynôme d’Alexander. Les polynômes LG sont donc des généralisations du polynôme d’Alexander. On conjecture de plus que ces invariants conservent certaines propriétés homologiques bien connues de ∆ permettant d’évaluer le genre des entrelacs et de tester le caractère fibré des nœuds.

  • Titre traduit

    The Links-Gould invariants as generalizations of the Alexander polynomial


  • Résumé

    In this thesis we focus on the connections that exist between two link invariants: first the Alexander-Conway invariant ∆ that was the first polynomial link invariant to be discovered, and one of the most thoroughly studied since alongside with the Jones polynomial, and on the other hand the family of Links-Gould invariants LGn,m that are quantum link invariants derived from super Hopf algebras Uqgl(n|m). We prove a case of the De Wit-Ishii-Links conjecture: in some cases we can recover powers of the Alexander polynomial as evaluations of the Links-Gould invariants. So the LG polynomials are generalizations of the Alexander invariant. Moreover we give evidence that these invariants should still have some of the most remarkable properties of the Alexander polynomial: they seem to offer a lower bound for the genus of links and a criterion for fiberedness of knots.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Les invariants de Links-Gould comme généralisations du polynôme d'Alexander


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bourgogne. Service commun de la documentation. Bibliothèque de ressources électroniques en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

à

Informations

  • Sous le titre : Les invariants de Links-Gould comme généralisations du polynôme d'Alexander
  • Détails : 1 vol. (133 p.)
  • Annexes : Bibliographie p.[129]-133. 63 références
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.